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We analyze nonlinear pricing with finite information. We consider a multi-product
environment where each buyer has preferences over a d-dimensional variety of goods.
The seller is limited to offering a finite number n of d-dimensional choices. The limited
menu reflects a finite communication capacity between the buyer and seller.

We identify necessary conditions that the optimal finite menu must satisfy, for either
the socially efficient or the revenue-maximizing mechanism. These conditions require that
information be bundled, or "quantized,” optimally.

We introduce vector quantization and establish that the losses due to finite menus
converge to zero at a rate of 1/n?/¢. In the canonical model with one-dimensional products
and preferences, this establishes that the loss resulting from using the n-item menu
converges to zero at a rate proportional to 1/n?.
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1. Introduction

The theory of mechanism design addresses a wide set of questions, ranging from the design of markets and exchanges
to the design of constitutions and political institutions. A central result in the theory of mechanism design is the “revelation
principle,” which establishes that if an allocation can be implemented incentive-compatible in any mechanism, then it can
be truthfully implemented in the direct revelation mechanism, whereby every agent reports his private information, or
type, truthfully. Yet, when the amount of private information (the type space) of the agents is large, the direct revelation
mechanism requires both the agents to have abundant capacity to communicate with the principal and the principal to
have abundant capacity to process information. By contrast, the objective of this paper is to study the performance of
optimal mechanisms, when the agents can communicate only limited information, and/or the principal can process only
limited information. We pursue our analysis in the context of a representative, but suitably tractable, mechanism design
environment: namely, the canonical problem of nonlinear pricing. Here, the principal (seller) is offering a variety of choices
to the agent (buyer), who has private information about his own willingness-to-pay (preference or type) for the product.
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Our distinct point of view, relative to the seminal analysis by Mussa and Rosen (1978) and Maskin and Riley (1984), is
that the information conveyed by the agents, and subsequently the menu of possible choices offered by the seller, is finite,
rather than uncountable as in the earlier analysis. The limits to information may arise for various reasons, direct or indirect.
On the demand side, it may be too difficult or complex for the buyer, or consumer, to communicate his exact preferences
and resulting willingness-to-pay to the seller. On the supply side, it may be too time-consuming for the seller to process
the fine details of the buyer's preferences, or to identify the buyer's preferences across many goods with close attributes
and only subtle differences.

Our analysis adopts a linear-quadratic specification (analogous to that of Mussa and Rosen (1978) and Maskin and Riley
(1984)) in which the buyer's gross utility is the product of his willingness-to-pay (or type) # and the consumed quantity (or
quality) g of the product, whereas the cost of production is quadratic in the quantity (or quality). We reveal a fundamental
connection between the problem of optimal nonlinear pricing with limited information and the problem of optimally quan-
tizing a source signal by using a finite number of representation levels in information theory. In our setting, the socially
efficient quantity (quality) g for a buyer should be equated to his valuation & if a continuum of choices were available. In
the case where a finite number of choices are accessible, ¢ can take on only a finite number of values. If we interpret #
as the source signal and ¢ as the representation level, then the total social welfare can be written in terms of the mean
square error between the source signal and the representation signal. Thus, the social welfare maximization problem can
be characterized by the Lloyd-Max optimality conditions, a well-established result in the theory of quantization. Further-
more, we can extend this analysis to the revenue maximization problem after replacing the buyer's true valuation with the
corresponding virtual valuation. We estimate the welfare and revenue loss resulting from the use of a finite n-item menu
(relative to the continuum menu). In particular, we characterize the rate of convergence for the welfare and revenue loss as
a function of n. First, we examine this problem for a given distribution on the buyer's type, and then over all possible type
distributions with finite support.

We establish that the maximum welfare loss and the maximum revenue loss shrink towards zero at a rate proportional to
1/n%. We thus use quantization theory to approach a problem of mechanism design with limited information transmission.

Our approach extends naturally via vector quantization to the multidimensional nonlinear pricing problem. Here, the
seller is offering a variety of heterogeneous products to the buyer, who has private information about his preferences
(types) for these products. We maintain a linear-quadratic specification in multiple dimensions as in Armstrong (1996).
The advantage of the linear-quadratic model in one or many dimensions is its tractability. In particular, we can frequently
compute the lower and upper bounds explicitly. We briefly discuss in the Conclusion how existing results in information
theory would allow us to provide results for general non-linear environments as long as certain regularity conditions, such
as concavity or convexity of the optimization program are maintained. In the multi-dimensional environment we require an
additional separability condition regarding the type distribution. This condition was introduced earlier by Armstrong (1996)
to guarantee the incentive-compatibility of the menu in the continuous multi-dimensional setting.

We interpret the private information (the preference or type vector) as the signal vector and the choice (quantity or
quality vector) as the representation vector. The social welfare maximization problem and the revenue maximization prob-
lem can still be characterized by the Lloyd-Max optimality conditions for vector quantization. We estimate the welfare and
revenue loss resulting from the use of a d-dimensional finite menu with n choices. We establish an upper bound on the
welfare loss by appealing to decomposition result, see Lookabaugh and Gray (1989a). The upper bound uses subtle vector
quantization methods to design the multi-product finite menus over the entire type space. The gain from vector quanti-
zation consists of three components: space-filling advantage, shape advantage, and dependence advantage. Most notably,
even in the extreme case when the types are distributed independently and uniformly across all dimensions, the vector
quantization method can still reduce the welfare loss and the revenue loss due to the space-filling advantage. This is the
main reason why we bundle the buyer's preferences over multiple goods as a vector instead of viewing them separately
as independent dimensions. We then establish the vector-quantization-based upper bound and the lower bounds on the
welfare loss and the revenue loss.

The role of limited information in mechanism design has recently attracted increased attention. McAfee (2002) phrases
the priority rationing problem as a two-sided matching problem (between the buyer and services) and shows that a binary
priority contract (“coarse matching”) can already achieve at least half of the social welfare that could be generated by
a continuum of priorities. Hoppe et al. (2010) extend the matching analysis and explicitly consider monetary transfers
between the agents. In particular, they present lower bounds on the revenue which can be achieved with specific, but
not necessarily optimal, binary contracts. By contrast, Madarasz and Prat (2017) suggest a specific allocation—the “profit-
participation” mechanism—to establish approximation results, rather than finite optimality results, in the nonlinear pricing
environment. While the above contributions are concerned with single agent environments, there have been a number of
contributions to multi-agent mechanisms—specifically single-item auctions among many bidders. Blumrosen et al. (2007)
consider the effect of restricted communication in auctions with either two agents or binary messages for every agent.
Kos (2012) generalizes the analysis by allowing for a finite number of messages and agents. In turn, their equilibrium
characterization in terms of partitions shares features with the optimal information structures in auctions as derived by
Bergemann and Pesendorfer (2007).

Closer to our approach is Wilson (1989), who considers the impact of a finite number of priority classes on the efficient
rationing of services. His analysis is less concerned with the optimal priority ranking for a given finite class and more with
the approximation properties of the finite priority classes. Wilson (1989) shows that the social welfare loss due to the use
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of a finite number of priority classes converges to zero at a rate no faster than 1/n2, where n is the number of classes. The
analysis in Wilson (1989), however, is limited to one-dimensional social welfare maximization and is not easily generalizable
to the multidimensional social welfare maximization problem or the revenue maximization problem. The latter problems
have remained open in general. In earlier work, Bergemann et al. (2012a, 2012b), some of use introduced the quantization
technique to analyze an environment with limited information. Bergemann et al. (2012a) focused entirely on the one-
dimensional environment to obtain upper and lower bounds on worst-case welfare and revenue. Their main results had a
gap between lower and upper bounds in either case. In the current work, Proposition 2 and 3 eliminate the gap by making
use of the high rate quantization results. Bergemann et al. (2012b) considers a multi-dimensional environment with some
additional restrictions. In particular, the analysis is restricted to welfare maximization in the absence of incentive constraints.
Using some foundational results in information theory, this paper represents the first systematic and comprehensive solution
to these problems in many dimensions,

Even in the absence of communication constraints, the multidimensional mechanism design does not represent a trivial
generalization of its one-dimensional counterpart. In many environments of interest, the preferences of an individual agent
cannot be summarized by a mere scalar, but are more suitably represented as a vector. A real-life example would be a
buyer who has to make choices in a supermarket where a large variety of commodities are available. Hence, designing a
smart pricing strategy (e.g., product bundling by offering a combination of several distinct products for joint sale, rather
than selling each item separately) is of first-order concern in practice. In this respect, Wilson (1993) and Armstrong (1996)
provide two notable early contributions, with explicit solutions to specific multidimensional screening problems. Rochet and
Chone (1998) develop a systematic approach, dubbed the dual approach, for a general class of environments, and pointed to
the prevalence of bunching (agents with different type profiles making the same choices). We refer readers to Rochet and
Stole (2003) for a detailed survey of multidimensional screening problems.

The rest of the paper is organized as follows. First, we introduce the basic nonlinear pricing model in the following
section. Then, in Section 3, we establish the link to the quantization problem in information theory in the one-dimensional
product space. Moreover, we introduce the Lloyd-Max conditions that the optimal finite menu must satisfy. In Section 4,
we generalize our approach to the multi-product environment by using vector quantization. In Section 5, we conclude with
a brief summary and note some open issues for our future research. The Appendix collects all proofs not presented in the
main body of the paper.

2. Model

We consider a seller (she) who is providing d heterogeneous goods to a buyer (he) with a continuum of possible pref-
erences. Each buyer's preferences over these goods is characterized by a d-dimensional vector # = (#q,....6y) € R‘i, called
the buyer's type vector, where for 1 <! < d, ) represents his preference (type) for good [. Let ® =0, l]d, where the unit
hypercube is without loss of generality as long as we consider a compact d-dimensional type space. The joint probability
distribution of #, denoted by F (#), is assumed to be commonly known. We denote by F; the marginal distribution function
of type #;. We assume that the joint density function f is continuous almost everywhere (a.e.) in the support (i.e., the type
space):

o={0eRr::f©)>0].

We further assume that the buyer's preferences over d products, 8y, ..., 8y, are identically, but not necessarily independently,
distributed.

A buyer with type 6 who receives a quantity (or quality) vector ¢ = (qq,....qq) € Ri and makes a monetary payment ¢
receives the following net utility:

U@.q.t)=0Tdg —t, (1)

where @ = (¢fj)dxd is a d x d symmetric matrix which captures the interactions among different goods. We assume that
¢ = 0 for all i.
The firm has a quadratic cost function for providing the vector ¢:

1
clg) = EqTZq. (2)

The matrix X = (o) dxd 15 @ d xd symmetric positive-definite matrix which characterizes the interactions in the production
cost of multiple products. All of its diagonal elements are assumed to be positive: oj; = 0 for all i. The seller’s profit is given

by:
1
R(q.t)=t—c(q)=r—5qT2q‘ (3)

This setting, usually called the linear-quadratic model, has been used extensively in the literature (see the seminal analysis
of Mussa and Rosen (1978) for the one-dimensional case and Armstrong (1996) for the multidimensional model). For the
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multidimensional model, it is helpful to notice that we can always rewrite the above model by a standard change of basis
argument in the “standard form,"” with

O=%=1I4, (4)

where Iz is the d x d identity matrix (see Lemma 2 in the Appendix).
3. One-dimensional product space

We begin the analysis with the one-dimensional version of the model; thus, d = 1. This will allow us to introduce some
key notions in the classic setting of nonlinear pricing, first analyzed by Mussa and Rosen (1978). We begin with the social
welfare maximization problem and then proceed to the revenue maximization problem.

3.1. Welfare maximization

In the presence of private information, the socially efficient allocation can be implemented by a direct mechanism
(q(8).,t(8)). In the efficient direct mechanism the buyer is offered a menu {g (9)}9,5'0‘1] in which type ¢ is allocated the
quantity (quality) q(#) against a (monetary) transfer t (#). An efficient mechanism maximizes the expected social welfare as
the sum of the buyer's net utility and the seller's profit:

1
Eo [ﬂq @) — Eqw)?].

For a buyer with type #, it is socially optimal to provide a production level equal to his type: g* (#) = 6. The maximized
social welfare for a given distribution F is:

Wi 2By [oq* ) — %q* (9)2] = %E [0]. (5)
The socially optimal menu thus requires an uncountable infinity, or continuum, of reports 8 € [0, 1] and a corresponding
continuum of allocations, hence our definition of Wg.

The mechanism, as a special case of the Vickrey-Clark-Groves mechanism, must satisfy two sets of constraints: the
individual rationality (or participation) constraint, #g(¢) —t () = 0, for all 8 € [0, 1]; and the incentive constraint, &¢q (&) —
t(6)=6q (') —t(6), for all 6,6" € ©.

By contrast, we are interested in finding the optimal menu when the buyer can communicate his type only in a finite
language; or equivalently, when the seller can process only finitely many different messages; or equivalently, when the
seller can produce only finitely many alternative versions of her product.

An n-item menu is composed of n < oo different allocations {gi}, k=1, ...,n, where g is the quantity (quality) of the
k—th item of the menu. Let {Pk = [Sk_l.{?k)}:ﬂ represent a corresponding partition of the set of buyer types, [0, 1], where
0=6y<6; <...<6, =11 A buyer with type 6 € P, is assigned quantity q(#) = q. A finite menu (and its associated
assignments) given by {Pk,qk}}jzl is called an n-item menu henceforth. We shall refer to menu as the partition of the type
space and the allocation. At this stage, we omit the transfers {t;};_, which follow directly from incentive compatibility. Let
M be the set of all n-item menus:

M= {{Pr.aity_y i Pk =[0_1.6k) .0=6p <6 <... <O =1}. (6)
We choose a finite menu {Py, qk},':'=1 from M to maximize the expected social welfare for a given distribution F:
A 1 2
Wg(n)= max Eo|8qg— =q . (7)
{Pr.qll_ €M 2

We ask how well the optimal n-item menu [P;‘q:]::1 can approximate the performance of the optimal continuous
menu {q* (8)}ycj0.1) as measured by the welfare loss: Wr — W (n).
It is easy to see that a tight lower bound on the welfare loss over all distributions is zero, Le., infr {Wr — WF(n)} =0.

This can be achieved by the discrete uniform distribution Pr |8 = :—j = % for k=1, ....n. In what follows we will therefore

focus on the upper bound on the welfare loss over all distributions with finite support. Thus, let F be the set of all
distribution functions on [0, 1]. Our main task is to estimate the worst-case behavior of the welfare loss over all distributions
FelF.

T In general, a partition need not consist of intervals (only) due to the nature of the optimization problem in (7); however, it can be shown that the
optimal partition consists of intervals,
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Definition 1 (Welfare loss). For a given distribution F, the welfare loss of the optimal n-item menu relative to the continuous
menu given is:

Ly (n) = Wr — Wg (n):

and across all distributions F € F the maximum welfare loss is:

L(n) £ sup Lg (n).
FeF

If we view # as a continuous signal that must be represented by a representation point ¢ in the interval Py, then this
is an instance of the quantization problem in information theory. The intervals {P;;]L.l and the corresponding representation
points {qk}L] are jointly chosen to minimize the mean square error when we view the quantity g as the predictor of type
6. In information theory, this error is often referred to as the distortion D due to the quantization:

D%  min []Eg [(6 —q)z}l . (8)
[Pr.qely_ €M
Given the distribution F, the distortion D is equivalent to the welfare Wg (n) as defined above in (7). With this perspective,
we can interpret the finite menu {P; qz}:ﬂ as the solution to a scalar quantization problem. Henceforth, we use the terms
quantizer and finite menu interchangeably.
The optimal scalar quantizer {P;‘.q,’; }221 must satisfy the following optimality conditions:

1,
O =5 (@ + k) g =E[p|geP;]. k=1,....n; (9)

with A7 =0 and 67 = 1. Thus, 67, which separates two neighboring intervals P;; and P} ,, must be the arithmetic average

of q; and g, ;. At the same time, gy, the representation level for the interval Py = [9;_1,9;), must be the conditional

mean for A, given that # falls in this interval. These two necessary conditions are often referred to as Lloyd-Max optimality
conditions as they were independently established by Lloyd (1957) (and published in 1982) and later by Max (1960). The
Lloyd-Max optimality conditions remain valid in many dimensions. In Section 4, we therefore interpret {P;”::l as a Voronoi

partition (a set of the nearest-neighbor regions) with respect to {q: and ¢y is chosen as the conditional mean of &,

given that # lies in the region P} (see Lloyd (1982)).2

A commonly used scalar quantizer is the uniform quantizer, by which is meant that (i) the boundary points are equally
spaced, &, —6,_; = A, and (ii) the representation points are the midpoints of the quantization interval. For specific distribu-
tions it is possible to obtain the closed form of the optimal finite menus from the Lloyd-Max conditions. Here we consider
the uniform distribution 6 ~ 440, 1], for which the welfare loss can be exactly established, and a fortiori the resulting
convergence rate as n increases.

et

Proposition 1 (Welfare loss for uniform distribution). The optimal n-item menu {P;:, q:}:=1 P = [6,:’_1, B,j‘) is given by:

1
k K=y

l—)*:—__ * _
k= K n

and the associated welfare loss is Ly (n) = 1/24n,

The optimal scalar quantization for the uniform distribution illustrates how the Lloyd-Max conditions are used to ob-
tain the optimal finite menu. The resulting boundary points {9;}:::0, as well as the representation points {g;}j_,, share
the uniformity with the underlying distribution of the values. In particular, the optimal quantizer is a uniform quantizer.
The partition point {9;‘"} and the probability weight of the representation points are illustrated in Fig. 1 for the uniform
distribution with n =5.

The uniform distribution intuitively makes quantization difficult as (i) the uncertainty is uniformly spread and (ii) the
optimal allocation is a uniform response to the true underlying state. We now show that this intuition can be made precise
in the sense that the welfare loss associated with the uniform distribution is indeed an upper bound on welfare loss across
all possible distributions as n becomes large. The asymptotic results in quantization theory are often referred to as high-rate
quantization, as the number of representation points is allowed to become large.

2 The optimality conditions [9) are not sufficient conditions, and Lloyd (1957) provides counterexamples. Trushkin (1982) provides general conditions on
the probability density function, in particular that the density is logconcave, for the necessary conditions to lead to a unique solution,
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1-d uniform, welfare, n=5

T
T,
L ]

Hy

Fig. 1. Quantizer and representation points for welfare maximization with uniform distribution and n=5.
3.2, High-rate quantization

For a general class of distributions, analytical solutions to the Lloyd-Max conditions are not available. We therefore design
a sequence of finite menus to obtain an upper bound on the welfare loss. In these menus the quantities {qj} are consistent
with the Lloyd-Max conditions (9). This construction estimates how fast the maximum welfare loss converges to zero as the
number of classes n tends to infinity.

We first introduce the so-called high-rate non-uniform quantizing scheme, which provides an asymptotic optimal quan-
tization result (see Gersho and Gray (2007)). Specifically, consider a distribution f(#) on [0, 1] and define the overall
quantization distortion, namely the mean square error due to the quantization, to be

n %
D= f(e —qi)* [ ©6)de,
k=19,
where 6y =0 and 6, = 1. When (a) n is sufficiently large and (b) the input distribution f is sufficiently smooth, the condi-
tional type distribution in each quantization interval is approximately uniform. In turn, the distortion can be approximated
by:

D~Zf(9k) e ‘) :

Meanwhile, when n is sufficiently large, we denote by N(#)Ay the number of quantization levels that lie between #
and # + Ay for a small increment Ay, where Ay is larger than any quantization interval length (6, — 6,_1), and the term
A0) = N(B)/n is referred to as the point density of the quantizer. When Ay is sufficiently small, the quantizer density
integral satisfies

1 1
N(8)de
n
0

It follows that there are approximately ni(#)Ay uniformly spaced intervals between &, and €, + Ay, and thus the length of
each quantization interval is

length of increment Ay
number of intervals between 6, and ¢, + Ag
Ay
T na@ors A

Therefore, an approximation of the total distortion can be given as:

1 2
D"‘_Z““(nue))

which can be further approximated by an integral, as n is large:

1
o] f (9)
12n2 ,@(9)
0

O = Oy ==
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By applying Holder's inequality, this distortion integral can be further lower-bounded (see Theorem 2 in Zador (1982)):
3

1
1
liminfnzDz—z ff(e)‘ﬁde . (11)
0

n— 00 1

and the equality holds with the optimal quantizer density distribution, given by:
f((_})l;‘j
Jo F©73di’

Under the assumption that n is sufficiently large, the high-rate non-uniform distortion (11) provides a lower bound of the
quantization distortion, thus:

24 (0) =

1 3
1 ;
D~ —s 6)'3do
o | [ 1©
1]

Note that the high-rate non-uniform quantizing above assumes a sufficiently large n, yielding an arbitrarily high quanti-
zation rate, and quantizing points {#.} that are not necessarily uniformly distributed in the whole region [0, 1]. We then
derive an asymptotic bound for welfare loss using the high-rate non-uniform quantizing result.

Proposition 2 (Bound on welfare loss). If n is sufficiently large, then

L(ﬂ)SM”z- (12)

Combining the above result with Proposition 1, we obtain a sharp characterization of the asymptotic behavior of L(n).
A version of the one-dimensional social welfare maximization problem in (7) was considered earlier in Wilson (1989) and
in Bergemann et al. (2012a). Wilson (1989) obtained an approximate solution to (7) by a version of a uniform quantizer of
the distribution function of 8, and then by expanding the social welfare on each quantization interval by the Taylor series
around zero up to the order of 1/n%, where n is the total number of intervals. His version of the uniform quantizer requires
that each element of the partition contains the same probability (rather than maintaining the distance between the partition
points). Proposition 3 in Wilson (1989) establishes that the efficiency loss resulting from an n-item menu is of an order no
more than 1/n?; i.e., Wr(n) = Wr — 0 {l/nz]‘ In Bergemann et al. (2012a), Proposition 3 obtains a larger, and a fortiori
weaker, upper bound on the welfare loss by also relying on a uniform quantizer.

3.3. Revenue maximization

We now analyze the problem of revenue maximization. In contrast to the social welfare problem, here, the seller wishes
to design a menu {q(#), t(#)}oein,1] to maximize her expected net revenue, i.e., the difference between the gross revenue
that she receives from the buyer minus the cost of providing the demanded quantity (quality) for given distribution F:

1

Rp= max ‘]Eg [r (#) — —q (6)2] ] .
{q(8).t(6)} 2

As before, the contract offered has to satisfy two sets of constraints, namely the incentive constraints and the individual

rationality (or participation) constraints. The revenue maximization problem is transformed into a welfare maximization

problem (without incentive constraints) after replacing the valuation ¢ with the corresponding virtual valuation:

1-F ()
f@ -

The virtual valuation is below the true valuation, and the inverse of the hazard rate (1 — F(8))/f (8) accounts for the
information rent. This problem has been analyzed first by Mussa and Rosen (1978) and Maskin and Riley (1984). The
expected revenue of the seller (without communication constraints) is then:

Y (H) 26— (13)

i . 1, . 2
Rt = Eq [q*(a) Vo) -3 (" (@) } .
and the resulting optimal contract exhibits:
g* (A) £ max {y (8).0]. (14)
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We identify the lowest value @ at which the virtual valuation attains a nonnegative value as 8 £ min {6y (#) = 0} and hence
the corresponding revenue is

1
1 1
Rr =g [q* OICOEELY (6)2] =3 f W2 (©)dF (8). (15)
(2]

With the monotonicity of i (¢), we can relabel the type # directly in terms of the corresponding virtual valuation a-
# £ (#), and define the associated intervals {Py}_, directly in terms of the new variable 4:

0 e Pk:[Hk_l,Hk}«{#ge ﬁk:[@(_].@().l =k =n.

where ﬁ}( =(8), 1 <k <n. After this change of variable, we define a distribution function G(@) in terms of the original
distribution function F (8) : G(8) = G (¥ (8)) 2 F (8).> Then, the revenue of an n-item menu can be written in terms of the
virtual type #:

1 -~ 1
R (n) =Ey [qu}—iqz] =E; [qe— qu]. (16)

Definition 2 (Revenue loss). For a given distribution F, the revenue loss of the optimal n-item menu relative to the continuous
mentu is:

Lr (M) £ Rr — Rf (n):

and across all distributions F € F the maximum revenue is:

T 2supLrn).
FeF

We can now give the worst-case distribution for one-dimensional revenue maximization with the asymptotic upper
bound for revenue loss.

Proposition 3 (One-dimensional revenue bound). If n is sufficiently large, then

Similar to the welfare maximization case, the above upper bound is indeed attained by a specific distribution, namely
the uniform distribution. But in contrast to the welfare maximization problem, it is the uniform distribution on the upper half
of the unit interval; thus, [1/2,1]. In this interval, the virtual utility is guaranteed to be positive everywhere.

Thus, the convergence rate of the revenue loss induced by the optimal n-item menu for the uniform distribution is of
order 1/n?. It follows that the convergence rate for revenue maximization is identical to the one we established for the
social welfare maximization environment in Proposition 2.

Proposition 4 (One-dimensional reventue loss). If n is sufficiently large, then

Additionally, we find that for any finite menu the seller tends to serve fewer consumers when compared to the case of a
continuous menu. Thus, for example, the Lloyd-Max optimality conditions in the case of the uniform distribution yield that
n—+1 1
™ > == 63‘
2n+1 2
The difference 64 (n) — 65 shrinks to 0 as n goes to infinity. This is a consequence of the fact that the seller’s ability to
extract revenue is more limited in the case of finite menus. To compensate, the seller would like to reduce the service
coverage in order to pursue higher profits. This is illustrated in Fig. 2.

gy (n) =

¥ We note that the critical bounds are established by distributions that generate monotone virtual valuations. Thus the restriction to monotone, or
“regular environments” in the language of Myerson (1979), is without loss of generality,
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Fig. 2. Quantizer and representation points for revenue maximization with uniform distribution on [0, 1] and n=5.

4. Multidimensional product space

In this section, we consider the multidimensional version of the nonlinear pricing problem, which leads to the design
of finite menus over multiple products. We demonstrate that our quantization view generalizes to the multidimensional
environment. The optimal design of finite menus requires the technique of vector quantization. We present bounds on
the welfare and revenue loss arising from the communication constraints. In particular, we show that in many cases it
is beneficial to bundle the buyer's preferences over multiple goods as a vector, instead of treating them separately as
independent quantities as repeated scalar quantization would suggest, thereby enabling the true joint design of finite menus
over multiple goods.

4.1. Multidimensional welfare maximization

With a continuous menu, the social welfare of (1)-(3) is maximized by solving the d-dimensional linear-quadratic pro-
gram:

1

Wr =maxEg [HTq - —qrq} ;
qd) 2

and it is socially optimal to provide a quantity (quality) vector equal to the type vector g*(#) = 6. The maximal social

welfare for a given distribution F therefore equals:

_ RS SN gt 1 T
Wr = Ey [9 ¢"0)—54"®) g [9)]—2Ea[9 9] (18)

Any finite menu is now defined as a partition of the d—dimensional buyer’s type space ©, ie, PN Pj=#@ if i # j, and
Up_q P = @. All consumers with type vector 8 € Py will be allocated the kth quantity (quality) vector qi. Now, {Py.qk)}_,
describes a finite multi-product menu, called the n-item menu. If we view & as the signal vector and gy, as the representation
vector of & in the region Py, then this becomes the d-dimensional n-region vector quantization problem, where the partition
{Pk};_, and the set of representation points {qi};_, are jointly chosen to minimize the mean square error or distortion:
min By [16 - ql?]}.
{Pk’qk}g=] eM

In this manner, any multi-product finite menu {Py., qi};_, can be viewed as a vector quantizer. We can therefore use the
two terms “vector quantizer” and “finite multi-product menu” interchangeably.

As in the scalar case, we need to guarantee that the allocations are incentive compatible. With multiple dimensions, this
requirement is much more complex than the monotonicity condition in the scalar case. There, the monotonicity condition
is a necessary and sufficient condition for incentive compatibility. In the following we will follow the approach introduced
by Armstrong (1996) and require a separability condition of the type distribution.

Armstrong (1996) introduced a multiplicative separability condition in the analysis of many-item nonlinear pricing. This
condition allows him to establish the incentive compatibility of the menu which is an intractable problem in more general
envitonments. This condition stdles thal e “averdge lasle” dacioss dll dimensions—in our context Ly norn of the Llaste
vector [#]|2 of a consumer—does not provide any additional information about which of her taste parameters &;, are likely
to be greater than others, for any one of the dimensions, i = 1,...,d. Thus, the value of the average states does not convey
any information on which the ray from the origin the vector 8 lies.

Definition 3 (Separability condition). A joint distribution F is separable if the density [ satisfies:

7@y = f1dllell2) x f2(6)

and f; is homogeneous of degree zero in #.
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We denote the class of separable density functions by Fs. The above separability condition implies that we can write
the density in terms of polar coordinates f = f(r,¢), where r = ||6]]2 and ¢ is the vector of angles with respect to the
given orthonormal basis. We describe this more formally in (25) further down.

A second implication of the separability condition is that for a distribution F to belong to Fs it has to have support on
the positive orthant of the d-dimension unit ball rather than the d-dimensional unit cube.

Since the separability condition requires the distribution to be supported on a d-dimensional ball, our main task is to
quantify the worst-case behavior of the welfare loss, given earlier in Definition 1 and now augmented by the dimension
d, namely Lg(n,d), over all separable distributions F € Fs. Given the separability condition, a natural generalization of
the uniform distribution in the multidimensional type space is the uniform distribution on the positive orthant of the
d-dimensional unit ball, denoted as the uniball distribution (or i), namely Uy (8) = 1/V1(d), where

d
1 we

Vild) = ﬁm

is the volume of the positive orthant of the d-dimension unit ball and I"(-) is the gamma function.

A possible quantization scheme in the multidimensional environment would be to separately and repeatedly perform
the scalar quantization we investigated in the previous section in every dimension. Such repeated scalar quantization would
create a set of regions that are orthotopes, i.e., the Cartesian product of intervals in d dimensions.

However, as one might have anticipated, in general repeated scalar quantization does not result in the optimal n-item
menu. Indeed, in higher dimensions, we can use more subtle vector quantization methods to design better finite menus.
To achieve this, we bundle the buyer's preferences over multiple goods as a vector, instead of viewing them separately as
independent choices.

For an arbitrary multidimensional distribution F, the optimal vector quantization typically cannot be established explic-
itly. In some special cases it can be iteratively approximated with the multidimensional version of the Lloyd-Max optimality
condition,

Nevertheless, Lookabaugh and Gray (1989a) establish that when the number of items per dimension is sufficiently large,
then the gain from vector quantization gain can be decomposed into three distinct terms that allow for an explicit calcula-
tion of the loss. We use this decomposition approach in the next result.

Proposition 5 (Welfare loss for uniball distribution). For the uniball distribution, assuming d and na" are sufficiently large, then

1
Lub(ﬂ. d) = 3
8nd

We illustrate the optimal vector quantization for the case of the uniform distribution on the unit-ball in Fig. 3. By
contrast, in Fig. 4 we display the solution for the repeated scalar quantization. The vector quantization bundles across the
dimensions, whereas the scalar quantization creates orthotopes of varying size along each dimension.

As we consider the optimal quantization in the positive orthant, one might guess that the “worst scenario” (i.e., achieving
the largest welfare loss) would be the case when the type probability is equally distributed in the d-dimensional unit ball—
thus, the uniball distribution. In fact, we now show that the uniball case gives an asymptotic upper bound of the welfare
loss in the presence of the separability condition.

Proposition 6 (Multidimensional welfare loss bound). Given both d and nd are sufficiently large, for any distribution F € Fg

Lin,d) < L} (19)
8nd

Combining Proposition 5 and Proposition G, establishes the asymptotic behavior of the welfare loss L(n, d). We note that
our analysis here assumed the separability condition (see Definition 3). We have separately developed a similar analysis for
multidimensional welfare loss in the absence of the separability condition. The upper bound for the welfare loss without
the separability condition is a fortiori larger than the bound with the separability condition. The details are presented
in Proposition 9 in the Appendix. Proposition 9 presents the corresponding result to Proposition 5 in the absence of the
separability condition. We show that the upper bound in then attained by the multidimensional uniform distribution on
the unit cube. Now, the quantization region is not restricted anymore to the positive orthant of the unit ball, and given
instead by the unit cube. Without the restriction to the separability condition, the bound shows a linear degradation in the
dimensionality d of the allocation problem, namely d/n?/d.

4.2, Multidimensional revenue maximization

We complete our analysis by considering the revenue maximization problem in many dimensions. The problem for the
seller in the direct mechanism without communication constraints is given by maximizing
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Voronoi: uniform, welfare, n=16
T T T T

Fig. 3. Quantizer and representation points for welfare maximization with uniball distribution for d =2, n =16,

Voronoi{repeated scalar quantizing): Welfare, Uniform, n=16
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Fig. 4. Repeated scalar quantizer and representation points for welfare maximization with uniball distribution and d = 2, n = 16.

1o T
Rrp= max [Eg|t(8)——=qg(# ol
F7 eren 8[ ®) —5a6) q( )]_

subject to the individual rationality and incentive constraints.
In an important contribution, Armstrong (1996) shows that the firm’'s revenue—given the separability condition (see
Definition 3)— can be written as:

1
Rp=Eg |:¢ @"q6) - 74 ®'q (9}] .

where

_B®)

6)=h()6, he)=1
y(@)=h()6, h(e) O’

B(6) = /f(re)r“ Lar. (20)
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The optimal continuous menu satisfies:

e |w® ifeeot
‘”9]‘{ 0 iffee\0+"

where ®T = [# € ®:h(#) = 0} is the active type space. The maximum revenue can therefore be expressed as:

1 ) 1
Rr=Ey [w &' q*®) - 57" (H)Tq”‘(e)] =§fw(9)th9)dF (#). (21)
o

The finite version of the revenue maximization problem specifies a menu which contains n = oo different items. Arm-
strong (1996) already observed that some consumers with low type vectors in the active type space ©& will leave the market
when a finite menu is offered. Thus, there exists a region Pp € ®, determined endogenously, such that all consumers with
6 € Pg will choose qg =0, tg = 0. The seller chooses {Pj, qk}Ezg to maximize the expected revenue:

Rf(n)=  max |Ea[wa)Tq—1qTq]]. (22)
{Pe-ailf_g=M 2

Virtual type space Define for # € ©, the virtual type vector

=1 @©)=h(®)e6. (23)

As in the one-dimensional analysis, we can transform the partition {P}}_, of the active type space into a partition {ﬁk}::o
of the virtual type space @ as follows:

OePyefePr=1{y@®):0cP.

In the virtual space, the expected revenue for an n-item menu can be written as:
r, 1r s 1 g
Eo|v@®) a-5a'a|=Ez|0a—5aqf.
and the expected revenue of the optimal n-item menu is given as:

~ 1
Rp(m)= _max [Ez [qu - —qrq} .
{Pr.dke_peM 2
The problem is now formally equivalent to the earlier multidimensional welfare maximization problem (7). We now consider
how well the optimal n-item menu can approximate the performance of the optimal continuous menu. We can further write
the revenue loss from quantization as:

- R Y N 5
Lr(n.d) = E]Etﬁ[(e -a)' (@ —Q}] ’

where we extend the expression Tr () given by the earlier Definition 2 to account for the dimension d.
One can see that the above expression is indeed the multidimensional welfare loss in terms of the virtual type #. Let
G (¥ (@) = F (#) denote the virtual type distribution and g(-) denote the density function; then,

TF (n.d)y=1Lg (n.d). (24)

Similar to the case for welfare maximization, we are interested in the worst-case behavior of the revenue loss over all
joint distributions with a d-dimensional support set (i.e., the type space) with positive and finite volume, and with the
separability condition, thus

T(n.d)2 sup Lr (n.d).
FE.F;

Bounds on revenue loss Using the relationship between the revenue maximization problem and the vector quantization
problem, we can obtain upper and lower bounds on the revenue loss, as in the social welfare case.

Before investigating the multidimensional revenue loss upper and lower bounds, one may ask the following question:
given that the original type distribution F satisfies the separability condition, does the virtual type distribution G also satisfy
it? The answer is positive and we will show this important property in the following lemmas, which describe the behavior
of the virtual type under the separability condition.

The separability condition requires the independence of the angle and the norm of the type distribution. A hyperspherical
coordinate system, (see Blumenson (1960)) naturally captures this property. In this way, the type distribution can be written
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in the product form as follows. We first introduce the hyperspherical coordinate transformation to the type vector space.
Namely, for a d-dimensional type & € (0,19, let r €[0, 1] and ¢ [0, 31971, such that:

61 =rcos(¢).
6y =rsin(¢ ) cos(¢ha),
(25)
Og—z =rsin(¢1) - - - sin(¢g_3) cos(¢g_2).
Ba—1 =rsin(¢1) - - - sin(¢a—2) cos(pa—1).

We then denote the type distribution density function after the coordinate transformation as fr(r.¢); ie. f(8) = fr(r.¢).
The separability condition (3) can then equivalently be written as:

F(0) = frir.¢) = fr(r) x fp(9). (26)

We can similarly transform the density of the virtual utility as the next lemma establishes.

Lemma 1 (Separability of virtual utility function). Let g(-) be the probability density function of the virtual type vector distribution. If
£(09) is transformed to g7 (r, ¢) with the hyperspherical coordinate transformation, then

gr(r.¢) =gr(r) x g2y (o).

Lemma 1 shows that the distribution after the virtual valuation transformation (namely G(-)) also satisfies the separa-
bility condition, and thus the active type space © to be quantized is essentially the area between the positive orthant of a
d-dimensional sphere with unit radius and a d-dimensional sphere with radius r, where r € (0, 1)—both centered at 0. Qur
previous analysis of multidimensional welfare maximization therefore applies to G(-).

Proposition 7 (Upper bound on multidimensional revenue loss). For any F € Fs, given both d and ni are sufficiently large, the revenue
loss satisfies

-~ 1
nd

Proof. Given distribution F € Fg, by (24), TF (n,d) =Lg (n,d). By Lemma 1, it follows that the distribution G also satisfies
the separability condition, and thus by Proposition 6:

Te(n.d) <1/8ni,

which completes the proof. 0O

In the one-dimensional revenue maximization scenario, the upper bound of T given by the high-rate non-uniform
quantizer is indeed tight, since a type distribution that meets the bound is presented. However, in the multidimensional
case a distribution that attains the upper bound in Proposition 7 may not exist, as Armstrong (1996) has shown that there
always exist some customers that are not served by the finite menu when d = 2.

Nonetheless, we next show that the upper bound on the revenue loss is indeed achieved when the virtual type prob-
ability is equally distributed in the quantization area. While an explicit form of the original type distribution leading to
a uniball-distributed virtual type is hard to find, we provide a family of special truncated beta distributions whose virtual
type distribution asymptotically approaches the uniball distribution. Thus, the corresponding revenue loss asymptotically
approximates the upper bound stated in Proposition 8.

Proposition 8 (Revenue luss for oruncated beta distribution ). Let Fp be a special cruncated beca distribution, specifically,

2
(d+3)2% 'I'(d/2 1-d . 2 \@=T
foy = | S 21 E, i ()T <len<1;
0. otherwise.

Then, if d is sufficiently large, and n'/4 is sufficiently large, we have

- 1
Lg, (n,d) = —5. (28)
8na
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Voronoi (Original Type): beta, revenue, n=16

Fig. 5. Quantizer and representation points for revenue maximization with beta distribution and d =2, n=16.

In Fig. 5 we illustrate the resulting quantizer. Thus, by combining the results of Proposition 7 and 8, we have indeed
obtained the following asymptotic bound on the multidimensional revenue loss, namely:

- 1
Lin,d)~ —.
8nd

5. Conclusion

We explored the consequences of economic transactions with limited information within the concrete setting of the
nonlinear pricing model. Using the linear-quadratic specification, we relate both social welfare maximization and revenue
maximization to the quantization problem in information theory. Using this link, we introduce the Lloyd-Max conditions
that the optimal finite menu for the socially efficient and the revenue-maximizing mechanism must satisfy. Additionally,
we study the performance of the finite menus relative to the optimal continuous menu. Qur analysis shows that for both
social welfare and the seller's revenue, the losses due to the usage of the n-item finite menu converge to zero at a rate
proportional to 1/n?.

Based on the information-theoretic approach in the one-dimensional environment, we generalize our results to the
multi-product environment. We introduce the vector quantization gain and a decomposition method, and obtain a vector-
quantization-based upper bound and a lower bound on the welfare loss and the revenue loss. The vector-quantization-based
upper bound is tighter than the repeated scalar upper bound, and the improvement becomes significant in higher dimen-
sions, and/or when a correlation among the buyer's preferences over multiple products exists. This shows that it is beneficial
to bundle the buyer's preferences over multiple goods, and then design the finite menus jointly in multiple dimensions.

We restricted attention to a linear-quadratic payoff environment throughout. A natural question is therefore to what
extent our results would generalize (or require modification) in a broader class of non-linear environments. We briefly
discuss how existing results in information theory may assist us.

A first observation is that given a general utility u(¢.q) and cost function c(g), the finite menu that maximizes social
welfare:

W =[Esu(8.q) —c(q)]

is equivalent to the optimal quantizer for minimizing the expected distortion Eq[d(#, q)], where

d(f,q)=cl(g) —u(d.q).

Thus, a generalization to nonlinear payoff environments is equivalent to a distortion function different from the mean
squared error used in this paper. Indeed, the high-rate non-uniform quantization results were generalized in various direc-
tions, for example to a locally quadratic distortion in Li et al. (1999), to the p-th power distortion d(x, y) = |x — ¥|? in Zador
(1982) and more recently to the Orlicz-norm distortion in Dereich and Vormoor (2011). In particular, Lookabaugh and Gray
(1989b), developed an argument for vector quantization gain under the p-th power distortion which we could use to obtain
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approximation results similar to the ones obtained here. The information-theoretic arguments appear therefore portable to
non-linear environments. It follows that the critical and open challenge would seem to be a general characterization of
incentive compatible allocation in many dimensions.

While the nonlinear pricing environment is of interest by itself, it also represents an elementary instance of the general
mechanism design environment. The simplicity of the nonlinear pricing problem arises from the fact that it can be viewed
as a relationship between the principal (here, the seller) and a single agent (here, the buyer), even in the presence of many
buyers. The reason for this simplicity is that the principal does not have to solve allocative externalities. By contrast, in
auctions and other multi-agent allocation problems, the allocation (and hence the relevant information), with respect to a
given agent, constrains and is constrained by the allocation to the other agents.

Finally, the current analysis focused on limited information and the ensuing problem of efficient source coding. But
clearly, from an information-theoretic as well as an economic viewpoint, it is natural to augment the analysis to reliable
communication between the agent and principal over noisy channels—the problem of channel coding—which we plan to
address in future work.

Appendix
The appendix collects auxiliary results and the remaining proofs of the results in the main body of the text.

Lemma 2 (Standard form). For every utility and revenue function given by (1) and (3) there is an equivalent standard form given by

(4).

Proof. We say that the utility and the cost function have the standard form if ® = X = I (the d x d identity matrix). We
can transform the utility and the cost function into the standard form as follows: We diagonalize the symmetric positive-
definite matrix £: £ = PTAP, where A =diag (i1, ... Ad), Aj = 0 is the i-th eigenvalue of ¥, and P is a unitary matrix (i.e.,
PTP=14). Let B=AY2P and A=A"V2p®T, where A’ =diag (A}, ....2}), i==7. Then, it is easy to show that ATB =
and BTB = . If we introduce the new type vector 8 = A9 and the new quantity (quality) vector § = Bq, then the buyer’s
net utility and the cost function can be written in the standard form in terms of 6 and q:

u@,q)=0"Toqg=6"a"TBg =674,
1 T 1 TpT 1"T"
C = — E = — B B = — .
@=54"24=24q 4=50'q

Thus, without loss of generality, we focus on the standard form with =X =1[4. O

Proof of Proposition 1. The conditional mean in any interval Py is E[6]0 € Pi] = (6 + 6—1) /2. From (9), the optimal menu
{P¢ g}, must satisfy:

G + Gy O 1+
2 ' 2 '

Hence, 9;“ o 28,;k + 9,’:_] = 0. Note that ff =0.6; =1, and thus we have a unique solution to the Lloyd-Max conditions
given by (10). The expected social welfare is

9:: q:: k=1,....n.

1 A 1 11
Wy (n) =Eq |69* () — —q* (6)* | = fﬁ*——*zdﬁ':—— .
w (n) 9[@() 54" ®) E G — 5% S~ a2
T
By contrast, the social welfare realized by the optimal continuous menu is Wy = %]E [92] = 1/6, which yields as welfare
loss: Ly (n) =1/24n2, O

Proof of Proposition 2. Let F denote the type distribution supported on [0, 1], and f(-) the density function. As n goes to
infinity, by Gersho and Gray (2007), p. 186, the quantization loss of the Lloyd-Max quantizer is approached by a high-rate
non-uniform quantizer. Specifically, the minimum quantization distortion is given by:

1
1 1'
D= /3
—  12n? ff(x)
0

Thus, we have the corresponding welfare loss

3
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3

b

P =

1
1 .
Lp(n)= W ff(x)”'idx
0

Note that by Hélder's inequality, we have

1 -1 kR 5
ff(x]mdxg ff(x)dx fldx
0 Lo 1 Lo

- 13
= /f(x)dx
L0 |

=1,

where the equality holds when f(x) =1, x € [0, 1]. We then arrive at the upper bound of welfare loss given n is large,

1
Lp(n) £ —.
F < 54

which completes the proof. 0O

Proof of Proposition 3. Let g(-) denote the virtual type distribution, and L;(n) denote the quantization loss by the Lloyd-
Max algorithm applied on the g(-) distribution in interval [0, 1] with nn quantizing levels (i.e., the Lloyd-Max applied on the
virtual type), then we have Lg(n) = Lg(n). Thus, as in the welfare maximization case, we have:

; 3
1 1
— /3
Lg(n) = a2 fg(x] dx
0

Evaluating the RHS, we have

1 -1 93 3
fg(x)mdx < fg(x)dx fldx
0 L0 J Lo
1
-1 q3
= fg(x)dx
LD i
(@)
=1

where (a) holds since fol g(x)dx < _f_loc Z(x)dx = _{Dl f(x)dx = 1. Thus, we have the upper bound of revenue loss given n is
large,

-~ 1
Le(n) < ——.
P = o

which completes the proof. 0O

Proof of Proposition 4. Consider the uniform distribution with support on [1/2,1]:

ifo €0, 1).
pop= [0 T0cI0D
2, ifgel3,1]

The virtual type is given by:

<0 if6 € [0, 1)
v {:29 -1 ifge[d 1l

with its inverse function for the positive input:
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.Belo.1]

i~ B41
17 —
y(e) = >

and the virtual type distribution

e@ =f ' @ENW Y@ =1 ,7e[0.1].
Thus,
1 3

= 1 1/3 1
Lildp.n) = — X)Pdx | =—=.
Up-M =5 f‘g() 24n2
0

The revenue loss for distribution {4, thus attains the bound exactly:

- 1
L(ﬂ) = W

which completes the proof. 0O

Given the joint distribution F € F, for each dimension 8}, 1 =[ =d, consider a K-level scalar quantizer [Pf_k,fh._kl‘le eM
on [0, 1] where M is the set of all scalar quantizers for the marginal distribution Fj:

M= {[PI,kaQL_k ],i] P =[0k—1.60k) . 0=00 <61 <...<Op= 1} .

d

d
We construct the corresponding d-dimensional K°-region repeated scalar quantizer {PL'QL}Ll in the type space [0, l]‘11 as:

P = Py %o x Pagy e (1., K) 1 <1 <d]),

(@l =@ da) ke (1K) 1 <1 <d)

d
One can see that the set of regions {P;{}E; are orthotopes, i.e., the Cartesian product of intervals in d dimensions. A
simple upper bound on the welfare loss in multiple dimensions is the repeated scalar quantizer.
Given an identical type distribution F, with F; being the marginal distribution, the social welfare loss of the repeated

scalar quantizer with n quantization levels each dimension is given by Z}L, Lf, (n).
Let the welfare loss of the optimal vector quantizer with n -d quantization levels be Lg(n-d,d), then Lp(n-d,d) <

Zf=] Lf, (n) since the repeated scalar quantizer is a special case of vector quantizer.
Moreover, the vector quantization gain for social welfare is defined by the ratio of the welfare loss induced by the
repeated scalar quantizer to the welfare loss induced by the optimal vector quantizer, namely

d
_ Z[:] LFI (n]
Lr(n-d.d)’
Denote by f and f; the joint density function and the marginal density function, respectively. When the number n

of items in each dimension becomes sufficiently large, the vector quantization gain can be decomposed as follows as,
established by Lookabaugh and Gray (1989a), p. 1022:

Gw (29)

Cw = F(d) x S(fi.d) x M(fi. f.d), (30)

where F(d), S(f;,d), and M(f}, f.d) are called the space-filling advantage, shape advantage, and dependence advantage,
respectively.

Specifically, when d = 3, it is optimal to choose the admissible polytopes as close as possible to the d-dimensional sphere,
leading to an asymptotic space-filling advantage, limg—. F (d) = e/6, as established by Conway and Sloane (1985).

Given the dimension d, the shape advantage S ( fj, d) depends solely on fj (e.g., the uniform distribution does not provide
any shape advantage):

[/ (i@ 69:]3

d+2°
[.f (f1 () H/4+2 de;] '

The dependence advantage M (f;, f.d) is determined by both f and f;, (e.g., any independent and identical distribution
does not provide any dependence advantage):

S(fi.d) = (31)
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d+2
[f (f1(6p)Y+2 def] ’

[f”.f(f(ﬁh ..... a2 do, . dey

M(fi. f.d)= (32)

:| (d+2)/d "

Proof of Proposition 5. The welfare loss is computed using the decomposition given by (30):

d x LI},,(m

F(d) xS (z,}b,d) x M (db,z,{b,d)

Ly, (n, d) =

d+2
. d d
~ 3 1 -1 1 .
w d[fo th@kdo] g [Jo - Jo (—v_(a}m)d91 "'d9d]
= -z X ; X - ; 3
24n (o ()30
_dx V(@)
‘ﬁlm’nEZIT
® 1
8n§r

where :’j’b denotes the marginal distribution of 4, which need not be computed explicitly; (a) used the one-dimensional
optimal high-rate non-uniform quantizer and (b) holds by Stirling's approximation. O

Proof of Proposition 6. Under the assumption that both d and n'/? are sufficiently large, let f(x) denotes the type prob-
ability density distribution. Then, by Gersho and Gray (2007), pp. 339, generalizing the non-uniform high-rate quantizing
result into d-dimension, the optimal quantization distortion is given by:

d+2
d

(XN

i
d T _d
D> - ]fw)wde (33)
@+2mé \r(4+1)
]
where I'(-) is the common gamma function. The equality holds if n is sufficiently large, and the optimal high-rate non-

uniform quantizer is used, denoted as Dy
Thus, the welfare loss is upper bounded by

-2 d+2
d
1 d Tl
Lr (n.d) = = Dypin = iy — ff(ma'%da
2 2(d + 2)nd F(%H) y
Applying Holder's inequality, we have
d 2
a2z a+z
d
ff(@)mdc? = ff(@)dé‘ f‘ld@
a 9 ]

(4] 2
< (Vi(d))a=

where (a) holds, since given the separability condition the quantization space is at most the positive orthant of the d-
dimension unit ball.
Thus, when d is sufficiently large the welfare loss is upper-bounded by

d ~a 1 a d
o2 T2
2@+2mi \T(4+1) 2r(4+41)
_d
8(d +2)ni
1
~—,
8nd

which completes the proof. O
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Proof of Lemma 1. We define the cumulative density function of original type vector ¢ = (r. ¢g) for polar coordinates to
be

Fr(r.¢)=Prirg <r. ¢a < ¢},

where ¢y = ¢ denotes the inequality for all d — 1 components of vectors ¢ and ¢.
Since f(#) satisfies the separability condition, we have:

Ty
FT(_rH<¢9)=] f Jr(r.¢)dedr
0 ¢=es

7]
= / fr(rydr x f fo(@)dd
0 Py
=Prirg =1} x Prigy = o}.
Similarly, we define the cumulative density function of virtual type vector 0= (r7, ¢) for polar coordinates to be
Gr(r.¢)=Pr{rg<r.¢y <o},
with

3
Gr(rp. ) = f f gr(r. $)dadr.
[

Because 6 = ¢ (#) = h(8)d, with h(f) € R, we know that the virtual valuation transformation preserves the angle 43: @.
Thus, we have

Pr{rg <rh(9). ¢ < ¢} =Prire <r.¢s < ¢}.
On the other hand, we know that h(¢) only depends on ||#] (namely r). Specifically,
[ e fs (@) de

h(f)y=1-":
: Fr ) o @)
1 2 frenettde
B Ir(r)

Thus, we can denote h.(r) =h(¢) and then:

Gr(rhe(r). ¢) =Pr{ry <rh:(r). ¢7 < ¢}
=Priry <r.¢p <o}
=Pr{rg <r} x Prigyg <¢}.

Taking the derivative, we have

P Cr(rhe(r), ¢) f
arep gr(rhe(r), @) (he(r) +rhy(r) .
And thus

grrhy(r), ¢)) = Jr() ) x fo ().

(hp(r) | rhi(r)
It follows that the virtual type distribution gt could be written as the product of two functions which solely depend on r

and ¢, respectively. Thus, the virtual type distribution satisfies the separability condition. O

Proof of Proposition 8. First, we show that f,(¢) is indeed a valid probability density distribution. For convenience of the
integration, we denote by S(r) the area of a (d — 1)-dimensional sphere with radius r in the positive orthant, namely

1 2md/2 -

S0 = 29 T(d/2)
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Define the radius direction probability f;(-) such that f.(||¢|) = fp(#); then we have

1
ffb(ﬁ)d(ﬂ:ffr(i’)S(r)dr
é 0

1
N [ @+3)27'T(d/2) 1a1 2792 4,

_ 27 4/2 20 T(d/2)
PRY
()
: d+3
= f 3,50
2
2
()™
d+3
=1

which shows that fy(€) is a valid probability density distribution. It is obvious that Fj € Fs; thus by Lemma 1 the virtual
type distribution also satisfies the separability condition. Specifically corresponding to (20),

o0 1 _
) :f roydlgr="100""""_ "~
! J & o1

1-d d+41
1614 [y Ac2 = 1de = 2 poi— (1~ 61+ )
= —d 1 oSt a1 24 a0 -d
191 f(i)dil AT e lde = ZA 0|
d+3

where A = %‘;“ﬂ is the coefficient in f3(#). Thus, we have
(2]
hih=1— &

fp(8)
- g1

- Heror-<(1-101" )_d__

1—d -
— Aoy +1 7~ d+l1
<0

_2_
a+3

B

2
_d+1 . a1
2 Lyel~ T L if (a—;) =y

if 191 < (72)

P<el<
2

)m

=1

S

2
Let 8 = (a_%)a__] since h(f) < 0 when [|#]| < &, and h(#) = 0 when ||f] = &, we know that £ is indeed the radius
threshold for a positive virtual valuation. The virtual type (&) corresponding to positive h (¢) is defined as

— d+3 2 _dil
T=y@) =—" 2 _oI~F )o. foro<|e| <1.
¥ (@) (d+1 d+1" I ) orf |0 =

Let g(g) denote the distribution of virtual typeﬂa Since & has the same angle as ¢, but a different magnitude, and f;(6)
only depends on the magnitude ||¢||, we know g(¢) only depends on ||#|], i.e., g(&) = g (||¢]).

Let

Gr(r) =Pr(|8] <1)

denote the probability that the virtual type magnitude is no more that r, with r € |0, 1]. Similarly, define

Fr(r)=Pr(l€l =1).

We then have

Fr(r)y=Pr(l|o] =1)

d+3 2 a1 d+3 2
=Pr( el ———=0el =z = r— T
d+1 d+1 d+1 d+1

= Gr(ir (1)),
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where
d+3 2 a1
N=———r———r1""72,
Yrn = 1 dd
On the other hand, we could calculate Gg(i, (r)) and Fg(r) separately for r = 8, where

Fr(r)= f fr(6)S(e)de

dj2
A 2w f de 14

o T'(d/2)
_dr3a 2
Td+1 +1 d+1
and
Yr(r)
Gr(Yr(r) = f gr(t)S(t)dr.
0
Thus by (34),
¥ (r)
jagmﬂnmzii?ﬁ?—E%T
0

Taking the derivative of both sides, we have

(35)

. d+3 daa
& (Wr MSWr (Y () =——r 7.
Recall that the minimum quantization distortion for a multidimensional variable @ achieved with the high-rate non-uniform

quantizer is given by

_2
LA (2 ) f{é‘m"—;ae
= —— | — +
M n2/dd 42\ drd/2) ] £
t

Given the correspondence in (24), we can compute the revenue loss as:

d_}g

1
LF,, (n,d) = —Dmm

1 d
1 d 22\ @ o
= 124 2d+2) (dl"(d,Q]) fg’(”ms(’ )dr
0

The integral term can be [urther writlen as

1 1
fgr(P 33— (r)dr—fgr(wr(rn 2S(Yr(r) Yy (rydr
0

1 d
_ d+Z
@fc;%%)zﬂmmmwwmﬁ‘
g

where (a) holds by (35) and

82



D. Bergemann, E. Yeh and J. Zhang Games and Economic Behavior 130 (2021) 62-84

1 2(i—1) 2

d ( _
f d+3 d_i_ a+2 d+3r_ 2 r_d_)—_l [ d+3+d—lr_d_5_1 ﬂ+2dr
d+1 d+1 d+1 d+1

2
L da+1
d

Thus, we have

2 2
-~ /2 \"d T2\
Lk, (n,d) = 2n 1207 )y
Zfd 2(d +2) \dray2) 20 T'(d/2)

M (36)

d

=

+2

.

n.u\.

anr’d d + 2
Note that all terms in (36) are computable and one can take this as an accurate lower bound of f(n_. d). Nevertheless,
we now make further approximation to (36) and show that it asymptotically approaches the upper bound 1/8n2/?, given by

Proposition 7.
Provided d is sufficiently large, we can approximate M to be

1
[}
ld 4
~ a1 2 —d a
I}
ld 12 1
d d
= [ =rzdr —-rzd 2dr
[ grtars [rtars |
[} i} [}
ld
gj—r%dr
2
i}
B d
d+3

AN

where (b) holds since (1 +r_%) =~ 1 given d is large. (c) holds since ﬁ} f—ir_%dr ~0 and fnl 2dr == 0.

Thus, the revenue loss can be approximated as

1 d d \'7T
- 2
L, (n,d) == did
U (d+3)
1
g2

which completes the proof. O

Proposition 9 (Welfare loss for multi-dimensional uniform distribution). Given d and nd are large, for the d-dimensional uniform
distribution U4 (i.e., 6 are Li.d. uniformly distributed on [0, 1] forl =1, --- ,d), we have

Ly (n,d) =

2
4end
Proof. Following the decomposition given by (20), we know that the welfare loss for the multidimensional uniform distri-

bution can be calculated as

dx —L_
Lie(K®, dy = —24K2
Gw
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where K=[néj,and
Te
Gw”w"SFxSxDP%?xlxl,

thus,

6 d
24K2 " 7e  amek?

Ly(K9,d) =

We then have that given d and ni are sufficiently large,

d
Ly(n.d) = ——.
4mend

which completes the proof. O
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