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1
Lawrence E. Kidder ,

3
Jordan Moxon,

1

William Throwe ,
3
Nils L. Vu ,

4
Mark A. Scheel,

1
and Yanbei Chen

1,†

1
Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125, USA

2
Perimeter Institute and University of Waterloo, Waterloo, Ontario N2L 2Y5, Canada

3
Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York 14853, USA

4
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D-14476

Potsdam, Germany

(Received 7 March 2022; accepted 20 April 2022; published 5 May 2022)

We propose a new approach toward reconstructing the late-time near-horizon geometry of merging

binary black holes, and toward computing gravitational-wave echoes from exotic compact objects. A

binary black-hole merger spacetime can be divided by a timelike hypersurface into a black-hole

perturbation (BHP) region (in which the spacetime geometry can be approximated by homogeneous

linear perturbations of the final Kerr black hole) and a nonlinear region. At late times, the boundary

between the two regions is an infalling shell. The BHP region contains late-time gravitational waves

emitted toward the future horizon, as well as those emitted toward future null infinity. In this region, by

imposing no-ingoing-wave conditions at past null infinity and matching outgoing waves at future null

infinity with waveforms computed from numerical relativity, we can obtain waves that travel toward the

future horizon. In particular, the Newman-Penrose ψ0 associated with the ingoing wave on the horizon is

related to tidal deformations measured by fiducial observers floating above the horizon. We further

determine the boundary of the BHP region on the future horizon by imposing that ψ0 inside the BHP region

can be faithfully represented by quasinormal modes. Using a physically motivated method to impose

boundary conditions near the horizon and applying the so-called Boltzmann reflectivity, we compute the

quasinormal modes of nonrotating exotic compact objects, as well as gravitational-wave echoes. We also

investigate the detectability of these echoes in current and future detectors and prospects for parameter

estimation.
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I. INTRODUCTION

Delayed and repeating gravitational-wave echoes emit-

ted by compact-binary mergers [1–3] following the main

gravitational waves (GWs) can be signatures of (i) devia-

tions of laws of gravity from general relativity [4,5],

(ii) near-horizon quantum structures surrounding black

holes (BHs) [6–15], and (iii) the absence of an event

horizon—namely, the existence of horizonless exotic com-

pact objects (ECOs) [16–20]. We emphasize that strong

arguments (within the context of general relativity and the

standard model of matter) exist against the existence of

echoes and ECOs, including (i) the ergoregion instability

[21–24], (ii) the formation of a trapped surface due to the

pileup of energy near the stable photon orbit [25–28],

(iii) the collapse of the ECO due to the gravity of incident

GWs [29,30], and (iv) other nonlinear effects [31].

Nevertheless, if GW echoes do exist, their detection will

serve as an important tool for studying the physics of BHs

or ECOs. A lot of effort has been made to search for echoes

in observed data (see Ref. [32] for a thorough review). As a

result, constructing accurate waveform models for GW

echoes is necessary and timely [33,34].

If we restrict deviation from general relativity (GR) to be

localized near the would-be horizon, then, due to Birkhoff’s

theorem, the region outside a spherically symmetric ECO

can still be described by a Schwarzschild geometry.

Consequently, studies of echoes from nonspinning ECOs

were based mostly on the black hole perturbation (BHP)

theory and the Zerilli-Regge-Wheeler equations [35,36].

For instance, Cardoso and colleagues [1,2] showed that the

initial ringdown signal of different ECO models has a

universal feature and is identical to that of a Schwarzschild

BH, even though the quasinormal mode (QNM) spectra of

ECOs are completely different from the ones of the

Schwarzschild BH. This implies that the initial pulse of

the ringdown is more related to spacetime geometry near

*
sma@caltech.edu

†
yanbei@caltech.edu

PHYSICAL REVIEW D 105, 104007 (2022)

2470-0010=2022=105(10)=104007(23) 104007-1 © 2022 American Physical Society



the light ring than in the formal spectra of QNMs. The

following echoes do depend on the structure of the QNM

spectra [37], which is characterized by modes trapped

between the ECO surface and the peak of the BH potential

barrier [38]. Mark et al. [39] developed a framework to

systematically compute scalar echoes from nonspinning

ECOs (in terms of GWs propagating toward the would-be

horizon) and transfer functions that convert this horizon-

going wave into echoes toward infinity. Testa and Pani [40]

used a Pöschl-Teller potential to approximate the BH

potential for perturbations and derived an analytical echo

template. Meanwhile, Du and Chen [41] estimated the

contribution of GWechoes to the stochastic background. In

terms of the membrane diagram, Maggio et al. [42] and

Chakraborty et al. [13] treated the ECO surface as a

dissipative fluid and related the reflectivity to the bulk

and the shear viscosity. Cardoso et al. [43] studied the

resonant excitation of the modes of nonspinning ECOs

during an extreme-mass-ratio inspiral. More recently, the

echoes of fuzz balls [44,45] were computed numerically in

Ref. [46], and the GW echo from a three-body system was

studied in Ref. [47].

In astrophysical situations, merger remnants usually

have non-negligible spins [48]; hence, it is of great practical

interest to model echoes from spinning ECOs. Even if GR

is valid away from ECOs, the spacetime geometry there can

deviate significantly from Kerr, as it has a general multipole

structure [49,50]. Nevertheless, we shall restrict ourselves

to the Kerr geometry, whose linear perturbation is described

by the Teukolsky equation [51,52]. An early attempt at

constructing echo waveforms studied scalar perturbations

around a Kerr-like wormhole [53]. Working on a sourceless

system, Nakano et al. [54] imposed a complete reflecting

boundary condition at a constant Boyer-Lindquist radius.

Later, the effect of source terms was investigated [55–60].

Sago and Tanaka [55] and Maggio et al. [56] studied main

GWs and echoes generated by a particle that plunges into a

Kerr black hole. The case of a particle (with scalar charge)

sprialing into a Kerr black hole was studied in Ref. [57].

References [58–60] further introduced the backreaction of

GW emissions on orbital motion.

Recently, Chen et al. [61] proposed a more physically

motivated boundary condition by considering the tidal

fields experienced by fiducial observers with zero angular

momentum orbiting just above the ECO surface. This

model established a relation between the ingoing compo-

nent of the Weyl scalar ψ0 and the outgoing piece of the

Weyl scalar ψ4. Using this new boundary condition, Xin

et al. [59] calculated GW echoes by explicitly computing

the ψ4 falling down the ECO surface and converting it to ψ0

via the Teukolsky-Starobinsky (TS) identity [62,63]. They

found weaker echoes than those obtained using other

approaches [10,64]. A flaw in their calculation is that

the TS identity is applicable only in the absence of source

terms. A direct computation of ψ0 propagating toward the

ECO surface was later carried out by Srivastava and

Chen [60].

As we move away from extreme-mass-ratio inspirals,

several approaches have been adopted to model echoes

from comparable-mass binary black-hole (BBH) mergers.

These include the inside/outside formulations, which do

not involve modeling of the merger dynamics; the adapta-

tion of the effective one-body (EOB) [65,66]; and the close-

limit approximation (CLA) approaches [67–70]. All of

these have played important roles in modeling BBH ring-

down waveforms in GR.

In the outside prescription [71,72], the main GR GW

emitted by a BBH merger was modeled as having been

generated by the reflection of an initial pulse originating

from null infinity (see Fig. 1 in Ref. [71]). The rest of this

pulse travels through the light-ring potential and bounces

back and forth between the surface of the ECO and the peak

of the potential. As a result, a sequence of echoes follows

the main GR GW at null infinity. In the inside prescription

[10,64]. the main GR GW was modeled instead as the

transmitted wave of an initial wave emerging from the past

horizon (see Fig. 1 in Ref. [10]). Wang et al. [10] computed

this initial wave by matching the main GW to that of a BBH

merger event, whereas Maggio et al. [64] treated the main

pulse as a superposition of QNMs, which led to analytical

echo templates. Both the inside and outside prescriptions

make direct connections between the main BBH GW and

the ensuing echoes; they do not require detailed modeling

of the merger dynamics.

In contrast, the approach based on the EOB formulation

relies on the orbital dynamics. Following in the same spirit

as the EOB method, Micchi et al. [58] considered the

backreaction on the orbital evolution due to GWemissions.

With a more accurate orbital dynamics, they were able to

obtain a complete inspiral-merger-ringdown waveform and

the subsequent echoes. Xin et al. [59] calibrated the

dissipative force to a surrogate model [73,74] so that the

GW at infinity matches the prediction of numerical rela-

tivity (NR).

Recently, the CLA approach was applied to computation

of echoes from a head-on collision of two equal-mass

ECOs [75], where the Brill-Lindquist initial data [76] for

two BHs was ported into a linear perturbation of a single

Schwarzschild spacetime, with a modified boundary con-

dition on a surface right above the horizon.

In addition to the EOB and CLA approaches, a so-called

hybrid approach [77,78] has also been proposed to jointly

use post-Newtonian (PN) and BHP theories to model

comparable-mass BBH mergers. To illustrate this method,

a Penrose diagram of a BBH merger spacetime is shown in

Fig. 1. The spacetime is split by a timelike world tube ΣShell

(which asymptotes toward a null tube in its upper-left

section) into an inner PN region (III) and an outer BHP

region (Iþ II). The hybrid approach offers a way to

construct spacetime geometries in both regions—including
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GWs at null infinity; it was able to accurately predict the

GW waveform and kick velocity of a head-on colli-

sion [77,78].

In this paper, we shall take a point of view similar to the

hybrid approach—by dividing the spacetime into a linear

BHP region (I and II in Fig. 1) and a region (III) in which

the spacetime is not a linear perturbation of the remnant

BH. We shall not attempt to approximately solve for the

entire spacetime geometry in all regions, but instead use the

gravitational waveform at the null infinity Iþ already

obtained from NR to reconstruct the spacetime geometry

in the BHP region—including GWs propagating toward the

future horizonHþ. In particular, we find the location of the

world tube ΣShell at H
þ can be determined by looking for

when the linearly quasinormal ringing of the horizon GW

starts. Equipped with this information, together with the

recent physically motivated boundary condition near the

would-be future horizon [61], we can construct gravita-

tional echoes at Iþ.

As a first step toward demonstrating our spacetime

reconstruction approach, in this paper, we restrict ourselves

to inspiraling BBHs whose remnants are nonrotating.
1

Specifically, we shall use a NR technique Cauchy-char-

acteristic extraction (CCE) [79–84] to extract the Weyl

scalars ψ4 and ψ0 of the BBH events in question and use

them to reconstruct spacetime geometry in the linear BH

regions I and II.

This paper is organized as follows. In Sec. II we explain

spacetime reconstruction in more detail using Fig. 1 and

outline the basic ideas of the hybrid method. We then

describe our NR techniques and simulations in Sec. III.

Taking these NR simulations, we explicitly carry out

spacetime reconstruction in Sec. IV, in particular, by

obtaining gravitational waves propagating toward the

future horizon Hþ. With these horizon waveforms, we

construct gravitational-wave echoes at Iþ in Sec. V.

Section VI focuses on the detectability of GW echo and

parameter estimation, using the Fisher information matrix

formalism. Finally, in Sec. VII we summarize our results.

Throughout this paper, we use the geometric units

G ¼ c ¼ 1. Unless stated otherwise, we use the remnant

mass Mf to normalize all dimensional quantities
2
(e.g.,

time, length, and Weyl scalars). Note that this choice is

different from the typical convention adopted by the NR

community, where the initial total mass of the system Mtot

is used.

II. SPACETIME RECONSTRUCTION FROM

GRAVITATIONAL WAVES AT FUTURE NULL

INFINITY: THEORY

In this section, we shall describe our theoretical strategy

for spacetime reconstruction based on BBH GWs at the

future null infinity Iþ. We shall divide the entire spacetime

into two regions, the black-hole perturbation region

(Iþ II in Fig. 1) and the strong-field region (III in

Fig. 1), as proposed during the construction of the hybrid

model for BBH coalescence [77,78]. In Sec. II A, we shall

review the hybrid method, focusing on how spacetime

geometry in the bulk of the BHP region depends on

boundary values. In Sec. II B, we discuss in particular

how the bulk geometry can be expressed in terms of waves

at Iþ. In Sec. II C, we focus on GWs that propagate toward

the future horizon Hþ, proposing in particular a way to

determine the boundary between the BHP region II and the

strong field region III. In Sec. II D, we comment on how

our approach is connected to previous works.

A. From the hybrid method to spacetime reconstruction

In the Penrose diagram of a coalescing BBH spacetime

(Fig. 1), the red curve represents the dynamical horizon,

FIG. 1. Spacetime of a BBH merger event. The hybrid method

divides the spacetime into an inner PN region (III) and an outer

BHP region (Iþ II). The two regions communicate via boundary

conditions at the world tube ΣShell (the blue curve), which was

assumed to track the motion of the BH. The dynamical horizon

(the red curve) lies inside the future horizon, and it eventually

settles down to the isolated horizon. The common horizon forms

at the time slice Σinit (the horizontal dashed line). The time slice

Σinit is not unique and is determined by gauge conditions. The

CLA focuses exclusively on region I, where the system is treated

as a Cauchy problem—initial data need to be provided on Σinit,

whereas the hybrid method gives attention to regions both I and II

and handles the system as a boundary value problem.

1
The initial parameters of BBHs are fine-tuned so that the

remnants are Schwarzschild BHs. Our method will also be appli-
cable to head-on collisions.

2
Namely, Mf ¼ 1.
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which is well known to be inside the event horizon [85].

Nichols and Chen [77] proposed using a three-dimensional

timelike tube ΣShell, shown as a blue curve, to divide the

spacetime into two regions. The exterior regions (Iþ II)

can be treated as a linearly perturbed Schwarzschild

spacetime. Interior to the tube ΣShell is a strong-field region

(III) which Nichols and Chen modeled using post-

Newtonian theory; this PN metric is matched to the exterior

perturbed Schwarzschild metric on the ΣShell. Note that the

PN expansion for the interior spacetime may break down in

the late stages of evolution, but the shell falls rapidly to the

horizon, so the errors might stay within the BH potential

and not propagate toward infinity.

For a head-on collision, the tube ΣShell passes through the

centers of the two BHs and follows the geodesic plunge of

the remnant BH (i.e., the BH on which regions I and II are

based). A more sophisticated framework was developed

later [78] to determine the motion of ΣShell for an inspiraling

BBH system. This framework added a radiation-reaction

force to account for the dissipative effect of the GW

emission. In the end, this PN-BHP system, accompanied

by the no-incoming-wave condition at I−, forms a com-

plete set of evolution equations, which leads to an approxi-

mated, ab initio waveform model. This method was able to

predict a reasonable waveform for a BBH system merging

in quasicircular orbits.

In this paper, we focus mainly on the region Iþ II, where

the spacetime is treated as a linear perturbation to a

Schwarzschild BH. Let us first examine this linear pertur-

bation using the Sasaki-Nakamura (SN) formalism [86], in

which the SN variable sΨ
SN
lm satisfies the Regge-Wheeler

(RW) equation [35]

�

∂2

∂u∂v
þ
Vl
RW

4

�

sΨ
SN
lm ¼ 0; ð1Þ

where u ¼ t − r� and v ¼ tþ r� are the retarded and

advanced times, respectively, with the tortoise coordinate

r� ¼ rþ 2 ln ðr
2
− 1Þ. The RW potential reads [87]

Vl
RW ¼

Δ

r5
½ðl2 þ lÞr − 2ðs2 − 1Þ�: ð2Þ

Here s corresponds to the spin weight of sΨ
SN
lm and

Δ ¼ r2 − 2r. In the hybrid approach, no-incoming-wave

condition was imposed on I−, while PN data was imposed

on Σshell. One way to obtain sΨ
SN
lm throughout regions Iþ II

from these boundary conditions is to use the characteristic

method that we discuss in Appendix B.

In this paper, while keeping the no-incoming condition

on I−, we shall revert the rest of the reconstruction process

by imposing outgoing waves obtained from NR on Iþ

(e.g., with the CCE method). In particular, we shall obtain

perturbative fields nearHþ, which will inform us about the

gravitational waveform going down the horizon and serve

as a foundation for obtaining GW echoes.

B. Spacetime reconstruction using homogeneous

Teukolsky solutions

As we reconstruct spacetime geometry, instead of SN

variables, we will directly consider both ψ0 and ψ4 because

they have explicit physical meanings, as explained in

Ref. [61]. Since the new boundary Iþ ∪ I− for spacetime

reconstruction has a regular shape (unlike Σshell), we can

carry out spacetime reconstruction by superimposing

homogeneous solutions to the Teukolsky equation that

already satisfy the no-ingoing boundary condition—tradi-

tionally referred to as the up solutions.

Let us first write general homogeneous solutions for ψ0

and ψ4 in mode expansions:

ψ4ðt; r; θ;ϕÞ ¼
1

r4

X

lm

Z

dω−2RlmωðrÞ−2Ylmðθ;ϕÞe
−iωt;

ð3aÞ

ψ0ðt; r; θ;ϕÞ ¼
X

lm

Z

dωþ2Rlmω
ðrÞþ2Ylmðθ;ϕÞe

−iωt:

ð3bÞ

Here sYlm are spin-weighted spherical harmonics. The

radial functions sRlmωðrÞ satisfy the radial Teukolsky

equation [52]

Δ
−s

d

dr

�

Δ
sþ1

d

dr
sRlmω

�

þ VsRlmω ¼ 0; ð4Þ

with

V ¼ 4isωr − lðlþ 1Þ þ
r4ω2 − 2isðr −MÞr2ω

Δ
:

The up solutions, with their conventional normalization

(with unity outgoing wave amplitude at infinity), have the

following asymptotic forms near infinity and horizon:

−2R
up
lmω ∼

�

r3eiωr� ; r� → þ∞;

Dout
lmωe

iωr� þ Δ
2Din

lmωe
−iωr� ; r� → −∞;

ð5aÞ

þ2R
up
lmω ∼

�

r−5eiωr� ; r� → þ∞;

Cout
lmωe

iωr� þ Δ
−2Cin

lmωe
−iωr� ; r� → −∞:

ð5bÞ

Numerical values of the coefficients C
in=out
lmω and D

in=out
lmω are

available from the Black Hole Perturbation Toolkit [88].
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In a BBH coalescence spacetime, the ψ0 and ψ4 in the

Iþ II region have the following asymptotic forms:

−2R
BBH
lmω ∼

�

r3Z∞

lmωe
iωr� ; r� → þ∞;

ZHout
lmω eiωr� þ Δ

2ZH in
lmωe

−iωr� ; r� → −∞;

ð6aÞ

þ2R
BBH
lmω

∼

�

r−5Y∞

lmωe
iωr� ; r� → þ∞;

YHout
lmω eiωr� þ Δ

−2YH in
lmωe

−iωr� ; r� → −∞:

ð6bÞ

Here the amplitudes at infinity, Z∞

lmω and Y∞

lmω in Eq. (6),

can be directly obtained from NR simulations. For com-

pleteness, the strain h∞lm observed at Iþ is related to Z∞

lmω

via

h∞lmðωÞ ¼
1

ω2
Z∞

lmω: ð7Þ

Note that h∞lm is defined later in Eq. (15b). By comparing

Eqs. (6) with the standard up solutions in Eqs. (5), we can

obtain amplitudes near the horizon:

ZHout
lmω ¼ Dout

lmωZ
∞

lmω; ZH in
lmω ¼ Din

lmωZ
∞

lmω; ð8aÞ

YHout
lmω ¼ Cout

lmωY
∞

lmω; YH in
lmω ¼ Cin

lmωY
∞

lmω: ð8bÞ

In this way, from the waves escaping at infinity, Z∞

lmω and

Y∞

lmω, the coefficients Din
lmω and Cin

lmω will allow us to

reconstruct ingoing waves Zin
lmω and Y in

lmω toward Hþ. We

plot Din
22ω and Cin

22ω in Fig. 2.

We note that for the same linear perturbative spacetime

of Schwarzschild governed by the vacuum Teukolsky

equation, the ψ0 and ψ4 can be related by the TS relations,

which state that [62,63]

4ω4

C� Y∞

lmω ¼ Z∞

lmω; ð9aÞ

YH in
lmω ¼

D

C
ZH in
lmω; ð9bÞ

with

C ¼ ðl − 1Þlðlþ 1Þðlþ 2Þ þ 12iω; ð10aÞ

D ¼ 64iωð128ω2 þ 8Þð1 − 2iωÞ: ð10bÞ

These relations are consistent with the coefficients in

Eqs. (8). For example, because
3

jCj2

4ω4
Cin
lm ¼ DDin

lm; ð11Þ

one can obtain YH in from Z∞ by either (i) using the TS

relation at infinity to obtain Y∞, followed by Eq. (8b), or

(ii) using Eq. (8a) to obtain ZH in, and then using the TS

relation near the horizon [i.e., Eq. (9b)]. Relations between

the BHP quantities have been summarized in Fig. 3. We

shall check the TS relations directly in Sec. IVA.

We would like to caution here that, while it has been

established [62,63] that the TS transformation maps

between solutions of ψ0 and ψ4, these works alone did

not explicitly establish the one-to-one relations in Eqs. (9)

between Zlmω and Ylmω for the same GW. Further work by

Wald [89] explicitly related both ψ0 and ψ4 to the Hertz

potential, while more recent work by Loutrel et al. [90]

provided a new way to reconstruct the metric (hence ψ0)

from ψ4. From Ref. [90], for the same generic GW,

the one-to-one relation is between ðZl;m;ω; Zl;−m;−ωÞ andFIG. 2. Coefficients Cin
lmω and D

in=out
lmω predicted by the Teukol-

sky equation, assuming a Schwarzschild BH. The vertical dashed

line stands for the real part of the fundamental QNM

ð0.374 − 0.0890iÞ. Data were obtained from the Black Hole

Perturbation Toolkit [88].

FIG. 3. Diagram summarizing the relations between BHP

quantities on the horizon, Zin
lmω and Y in

lmω, and those at infinity,

Z∞

lmω and Y∞

lmω.

3
We have checked to ensure that Eq. (11) holds up to

numerical accuracy, which is of the order of 10−13 for the Black
Hole Perturbation Toolkit.
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ðYl;m;ω; Yl;−m;−ωÞ rather than simply between Zlmω and

Ylmω. Nevertheless, as will be seen later in this paper (see

Sec. IVA), our numerical results for ψ0 and ψ4 agree with

Eqs. (9). This might be due to the fact that we have

nonprecessing systems which satisfy [91]

Zl;m;ω ¼ ð−1ÞlZ�
l;−m;−ω; Yl;m;ω ¼ ð−1ÞlY�

l;−m;−ω: ð12Þ

However, for more generic (e.g., precessing) binaries, the

naive TS relation Eqs. (9) may not hold.

C. Connection to the inside prescription and

determination of the location of ΣShell

To understand the physical meaning of ZHout
lmω and YHout

lmω ,

which mathematically appears to be emitted from the past

horizon H−, we have to go to Fig. 4 and remind ourselves

that region Iþ II does not contain the past horizon of the

background BH. Anything below the red curve (the shell)

in Fig. 4 are linear extrapolations. Nevertheless, this

extrapolation asserts that waveforms at infinity can be

thought of as being generated by “image waves” with ZHout

and YHout that rise from the past horizon. This follows the

same reasoning as the inside prescription [10,64].

Since the image wave encounters the BH potential

barrier (from the inside), it is partially transmitted toward

Iþ while partially reflected toward Hþ. We can rewrite

Z∞

lmω ¼
1

Dout
lmω

ZHout
lmω ; ZH in

lmω ¼
Din

lmω

Dout
lmω

ZHout
lmω ; ð13aÞ

Y∞

lmω ¼
1

Cout
lmω

YHout
lmω ; YH in

lmω ¼
Cin
lmω

Cout
lmω

YHout
lmω : ð13bÞ

Here 1=Dout
lmω and 1=Cout

lmω are the transmissivities from H−

to Iþ across the potential barrier, while Din
lmω=D

out
lmω and

Cin
lmω=C

out
lmω are reflectivities at the potential barrier that

direct the wave towardHþ. (The dependence of 1=Dout
22ω on

ω is plotted in Fig. 2.)

In this way, we have shown that the inside prescription

and the hybrid method correspond to the same

reconstruction of spacetime geometry in the regime where

the linear BHP applies. However, we want to emphasize

that the two methods adopt different approaches when

choosing the linear BHP region. In the hybrid method, it is

given by the exterior region of ΣShell. In particular, in order

to compute echoes, we shall need to terminate the linear

perturbation region at the intersection of the shell Σshell and

the future horizon, which is denoted by the advanced time

v ¼ v
ðHÞ
Σ

in Fig. 4. One natural way to determine the

intersection is to first evaluate the time-domain waveform

YH in
lm ðvÞ ¼

Z

dωYH in
lmωe

−iωv ð14Þ

and then define v
ðHÞ
Σ

as the starting time after which YH in
lm ðvÞ

can be decomposed as a sum of the QNM overtones. We

shall provide more details when we carry out this decom-

position in Sec. IV B.

On the contrary, the inside prescription uses only the

late-time evolution as the linear region. We shall have more

discussions regarding this comparison in Sec. II D.

D. Further comparisons with the inside prescription

and the close-limit approximation

To fit the inside prescription into our framework, in

Fig. 1, we choose a time slice Σinit after which the

spacetime (i.e., region I) is consistent with that of a single

perturbed BH. The time slice is usually not unique and is

determined by a gauge condition. An appropriate choice is

to let Σinit represent a moment when the common horizon

just forms, following the close-limit approximation

[92–99]. Then the inside prescription corresponds to taking

FIG. 4. Spacetime diagram illustrating the BHP region Iþ II

and its linear extrapolation into region III. Outside the matching

shell, curvature perturbations are linear combinations of the up-

mode solutions to the homogeneous Teukolsky equation. At

infinity Iþ, the values of Z∞

lmω and Y∞

lmω are chosen to be

consistent with the predictions of CCE. The past horizon exists in

the strong gravity region III, where ZHout
lmω and YHout

lmω represent the

image wave that gives rise to waves in the region Iþ II. They

serve the same role as the initial wave packet within the inside

prescription [10,64]. The future horizon lies partially outside the

matching shell: only the outside portion ðv > v
ðHÞ
Σ

Þ of ZH in
lm and

YH in
lm corresponds to the actual wave that falls down the horizon.

One natural way to self-consistently determine the location of

Σshell is to evaluate the starting time after which YH in
lm ðvÞ can be

decomposed as a sum of QNM overtones. More details can be

found in Sec. IV B.
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only region I and treating it as the linear BHP area.

Consequently, one needs to take the ringdown of the main

GWs at the null infinity as input, which is equivalent to

imposing a filter at Iþ [64], and use that information to

calculate the echoes. In fact, since region II is not included,

the indeterminate condition at past null infinity leaves room

for the outside prescription [71,72].

Similarly, the CLA corresponds to region I as well. This

is an approach to studying the spacetime based on the fact

that the gravitational field in region I can be modeled as that

of a single perturbed BH. The system in region I is then

treated as a Cauchy problem (i.e., an initial value problem)

as long as initial data are provided on Σinit. Previous studies

have investigated the Misner initial data [100], the Brill-

Lindquist initial data [76], the Bowen-York initial data

[101], and numerically generated initial data [102,103].

Once the gravitational field in region I is solved, one can

read off the value of ZH in
lmω and YH in

lmω at the future horizon

and compute echo waveforms [75].

The hybrid method, however, is a boundary value

problem. It divides the spacetime into two regions via

the timelike shell ΣShell, as opposed to the spacelike

hypersurface Σinit adopted by the CLA. In addition, regions

I and II are both regarded as BHP areas.

III. NUMERICAL-RELATIVITY SIMULATIONS

In this section, we adopt two BBH merger simulations

performed using the Spectral Einstein Code (SpEC) [104]

developed by the Simulating eXtreme Spacetimes (SXS)

collaboration [105]. These binaries have their initial

parameters fine-tuned such that the remnant black holes

are nearly nonspinning. Gravitational waveforms (at infin-

ity) of these simulations are publicly available through the

SXS catalog [105] with the identifiers SXS:BBH:0207 and

SXS:BBH:1936.

We summarize the properties of these binaries in Table I,

where we adopt the standard convention in SpEC, namely,

by labeling the heavier hole with “1” and the lighter one

with “2” and assuming the z axis to be aligned with the

initial orbital angular momentum. Our two systems have

mass ratios q ¼ m2=m1 ¼ 7, 4, respectively; they undergo

Ncycle ¼ 36, 16.5 orbit cycles before the merger, with the

initial orbital eccentricity already reduced to ∼10−4. Both

systems are nonprecessing,with initial spins antialignedwith

the orbital angularmomentum (or vanishing), as indicated by

the negative signs of the dimensionless spin components, χz1
and χz2. The remnant BHs have small spins at the χf ∼ 10−2

level, with the remnant massMf slightly less than the initial

total mass of the system Mtot ¼ m1 þm2.

We extract gravitational waveforms at the null infinity

Iþ using the CCE method [83,84] implemented in the new

NR code SpECTRE [106,107]. The CCE system evolves

the Einstein field equations on a foliation of null hyper-

surfaces, where the metric is written in the Bondi-Sachs

coordinates [108]. This method is most efficient in evolving

the spacetime far from the BBH system and is reliable

enough to produce all Weyl scalars ψ0;1;2;3;4 with high

accuracy [83,84]. In practice, CCE first reads off boundary

data on a world tube covered by the inner Cauchy

evolution, and then evolves a hierarchical system from

the world tube toward future null infinity. The radii of the

extraction world tubes for SXS:BBH:0207 and SXS:

BBH:1936 are summarized in Table I. As in the standard

treatment in NR, CCE decomposes each of the Weyl scalars

ψ0;1;2;3;4 and the strain h into sums over a set of spin-

weighted spherical harmonics sYlmðθ;ϕÞ. Using the nota-

tion defined in Eqs. (6), the decomposition reads

½rMfψ4�Iþ ¼
X

l;m

−2Ylmðθ;ϕÞZ
∞

lm; ð15aÞ

½rh=Mf�Iþ ¼
X

l;m
−2Ylmðθ;ϕÞh

∞

lm; ð15bÞ

½r5M−3
f ψ0�Iþ ¼

X

l;m
þ2Ylmðθ;ϕÞY

∞

lm; ð15cÞ

where θ and ϕ are the polar and azimuthal angles,

respectively, on the sky in the source frame. Note that in

Eqs. (15) the asymptotic r dependences of ψ4, h, and ψ0, as

r → ∞, are consistent with the peeling theorem [109].

Furthermore, these fields are normalized by the appropriate

powers of Mf such that Z∞

lm, Y
∞

lm, and h∞lm are dimension-

less. We want to emphasize again that, as opposed to the

TABLE I. Summary of NR simulations used in this paper. The first column is the identifier in the SXS catalog

[105]. In the second column, q ¼ m2=m1 > 1 shows the mass ratio. The third column is the number of orbit cycles

that a system undergoes before the merger. The fourth and fifth columns give the initial individual dimensionless

spins. They have only a z component, where the z axis is chosen to be aligned with the orbital angular momentum.

The sixth and seventh columns exhibit the remnant mass (in the unit of initial total massMtot) and remnant spin. The

final column corresponds to the radius of the extraction world tube for CCE.

ID SXS:BBH q Ncycle χz1 χz2
Mf

Mtot
χf Extraction radius ðMtotÞ

0207 7.0 36 −0.6 10−6 0.991 −0.077 300

1936 4.0 16.5 −0.8 −0.8 0.985 0.022 273
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usual NR convention, where the initial total mass of the
system Mtot is used as the unit for time and length, in this
paper, we use the remnant mass Mf to normalize all

dimensional quantities because we deal mainly with pertur-
bations of the remnant (approximately) Schwarzschild BH.

Furthermore, we shift all temporal coordinates such that

u ¼ 0 corresponds to the peak of the total rms strain

amplitude:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

lm
jhlmðuÞj

2

q

�

�

�

�

u¼0

¼ peak: ð16Þ

IV. NUMERICAL IMPLEMENTATIONS OF THE

HYBRID METHOD

In this section, we apply the spacetime reconstruction

procedure of Sec. II to SXS:BBH:0207 and SXS:

BBH:1936. In Sec. IVA, we first investigate the validity

of TS identities at the future null infinity Iþ [see Eq. (9a)],

given that the future null infinity lies completely in the BHP

region. We also provide the horizon ψ0 at the future horizon

Hþ. Then in Sec. IV B, we use the horizon ψ0 to determine

the location of the matching tube ΣShell by looking for when

its linearly quasinormal ringing starts.

A. At null infinity and future horizon: The Weyl scalars

and the Teukolsky-Starobinsky identities

For SXS:BBH:0207, we plot its Z∞

l¼2;m¼2 and Y
∞

l¼2;m¼2 in
Fig. 5 in both the time domain (upper panel) and the
frequency domain (lower panel). In the frequency domain,
Z∞
22 (black curve) peaks at the fundamental (2,2) quasi-

normal mode frequency (the vertical dotted line). On the
other hand, Y∞

22 rises up sharply at low frequencies, where

its magnitude is much greater than that of Z∞

22. This feature

in the frequency domain is consistent with the TS identity at
infinity [see Eq. (9a)]. To be concrete, we test the validity of
Eq. (9a) in Fig. 6. The actual Z∞

22 (in black) is compared to
4ω4

C� Y∞

22 (in red) in the time domain (the left and center

panels) and the frequency domain (the right panel). We see
that the TS identity holds throughout the entire region. The
comparison for SXS:BBH:1936 is similar and can be found
in Appendix C.
At the future horizon, YH in

lm [Eq. (6)] is essential for us to
compute echoes (see Sec. VA for more details). In Fig. 7,

we plot YH in
22 of SXS:BBH:0207 in the time domain (blue

curve), where the advanced time v is used as the time

coordinate. Like Y∞

22 [see Fig. 5], YH in
22 has a dominated

low-frequency content. At early stage, YH in
22 is inside the

strong gravity region III and should be excised—as we
shall discuss in Secs. IV B and V C. For comparison, we
also plot Y∞

22 in the same figure (red curve)—using u as the

time coordinate. We caution that this comparison has only a
qualitative meaning because the two waveforms are emitted

in different directions. Showing the v dependence of YH in
22

and the u dependence of Y∞

22 in the same plot effectively

traces both of these waves back to the same time t at r� ¼ 0.

This is qualitatively meaningful because the ringdown
wave can be thought of as having originated from the

light ring at r ¼ 3M, where r� ≈ 0. From this comparison,

we can see that YH in
22 decreases faster and undergoes fewer

cycles of oscillation at the late phase than Y∞

22.

B. Determining the location of ΣShell

As mentioned in Sec. II, the region outside the matching

tube ΣShell is consistent with a sourceless, linearly perturbed

Schwarzschild spacetime. Accordingly, the part of YH in
lm that

is in region Iþ II can be decomposed into a sumofQNMs (in

the time domain). Conversely, we can use this fact to

determine the location of ΣShell. Indeed, this method has

been used not only to determine the start time of a BBH

ringdown at the future infinity
4
[110] but also to investigate

the dynamics of a final apparent horizon in a BBH system

approaching to equilibrium [111]. More specifically, we

write [112]

FIG. 5. Spherical modes Y∞

22 and Z∞

22 of SXS:BBH:0207 in the

time domain (upper panel) and in the frequency domain (lower

panel). The vertical lines in the lower panel represent QNM

frequencies of a Schwarzschild BH, labeled with the overtone

index n. The absolute value of Z∞

22 is amplified by a factor of 300

for simplicity.

4
The linear perturbation regime was found to be valid as early

as the peak of strain if seven overtones were included.
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h∞22ðu > uðhÞÞ ¼
X

nmax

n¼0

½A
ðhÞ
n e−iωnu þ B

ðhÞ
n eiω

�
nu�; ð17aÞ

Y∞
22ðu > uð∞ÞÞ ¼

X

nmax

n¼0

½A
ð∞Þ
n e−iωnu þ B

ð∞Þ
n eiω

�
nu�; ð17bÞ

YH in
22 ðv > v

ðHÞ
Σ

Þ ¼
X

nmax

n¼0

½A
ðHÞ
n e−iωnv þ B

ðHÞ
n eiω

�
nv�; ð17cÞ

whereωn is theQNM frequency of a Schwarzchild BH and n
refers to the overtone index (we have restricted it to l ¼ 2).

Note that for a Schwarzchild BH, the QNM frequency is

independent of its spin weight and azimuthal quantum

number.UnlikeGiesler et al. [110],we include both prograde

modes An and retrograde modes Bn for generality [113].

In Eqs. (17) we use uð∞=hÞ and v
ðHÞ
Σ

to indicate the time at

which ringdown begins, and we emphasize again that the

retarded time u is used for h∞22 and Y∞

22 at null infinity,

whereas the advanced time v is used for YH in
22 at the future

horizon.

In making the decomposition, we follow the procedure

of Ref. [110]—namely, we use the mismatch M between

the quasinormal mode ringdown waveform model (e.g.,

h
Ringdown
22 ) and the NR result (e.g., hNR22 ) as a loss function

M ¼ 1 −
ðhNR22 ; h

Ringdown
22 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhRingdown22 ; h
Ringdown
22 ÞðhNR22 ; h

NR
22 Þ

q ; ð18Þ

with

ðhNR22 ; h
Ringdown
22 Þ ¼ Re

Z

T

u
ðhÞ
Σ

hNR22 h
Ringdown�
22 dt; ð19Þ

where the upper limit of the integral T is taken to be 90Mf

after the peak of the total rms strain amplitude. In addition,

we use unweighted linear least squares to fit the mode

amplitudes and use nonlinear least squares to fit the final

spin and mass. The mode frequency ωn is obtained from the

PYTHON package QNM [114]. During the fit, we find that the

numerical accuracy of Y∞

22 and Y
H in
22 is much worse than that

of h∞22, which makes the remnant mass and spin more

difficult to recover.

In Fig. 8, we plot the mismatch M for h∞22 (left panels),

Y∞

22 (middle panels), and YH in
22 (right panels) for SXS:

BBH:0207 (upper panels) and SXS:BBH:1936 (lower

panels). We see that the strain h∞22 can be decomposed

into the sum of the fundamental mode and six overtones.
5

For SXS:BBH:0207, the linear regime can be extended to

16Mf before the peak of h∞22, whereas for SXS:BBH:1936

FIG. 6. Validity of the TS identity at infinity [Eq. (9a)] using SXS:BBH:0207. The predicted form 4ω4

C� Y∞

22 (in red) is compared to the

actual Z∞

22 (in black) in the time domain (the left and center panels) and the frequency domain (the right panel). The comparison for SXS:

BBH:1936 is in Fig. 20.

FIG. 7. Real part of YH in
22 [Eqs. (6)] and Y∞

22 in the time domain

using SXS:BBH:0207. The temporal coordinate for YH in
22 is v,

while is u for Y∞

22. Both coordinates are in the unit of final mass.

5
Including more overtones no longer improves the match.
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the linear quasinormal ringing regime starts from 2.0Mf,

similar to the case of GW150914 [110] and superkick

systems [115].

On the other hand, since the numerical accuracy of Y∞

22

and YH in
22 from CCE is not as high as h∞22, only five

overtones can be resolved. In particular, the late-time

portion is dominated by numerical noise; therefore, the

mismatchM tends to increase significantly. The start times

of the linear regime for h∞22, Y
∞
22, and YH in

22 are summarized

in Table II. Below, we shall use the start time of YH in
22 ,

denoted by v
ðHÞ
Σ

, as the advanced time of the matching tube

ΣShell (Figs. 1 and 4) and shall utilize the exterior portion of

the GW to approximate the actual wave falling down the

future horizon.

In addition to searching for the start time of the

quasinormal ringing regime of YH in
22 , it is also interesting

to investigate their QNM amplitudes [115,116]. This topic

is beyond the scope of our study, but we provide a brief

discussion of it in Appendix A.

V. CONSTRUCTING ECHOES

Now we utilize the horizon-going GWobtained above to

construct GW echoes at infinity. In Sec. VA, we first

introduce physical boundary conditions near an ECO

(a)

(b)

FIG. 8. Mismatch as a function of start time (in the unit of remnant mass) for different models [Eqs. (17)]. Each model includes up to

nmax overtones. The left panels correspond to the strain h∞22 at infinity, the middle panels correspond to Y∞

22, and the right panels

correspond to YH in
22 [see Eqs. (6) and (15b)]. (a) refers to SXS:BBH:0207, whereas (b) refers to SXS:BBH:1936. All waveforms are

aligned such that t ¼ 0 occurs at the peak of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

lm jhlmðtÞj
2

p

.

TABLE II. Summary of the QNM decompositions of h∞22, Y
∞

22,

and YH in
22 . The second row refers to the maximum number of

overtones that we have included in Eq. (17). The third and fourth

rows correspond to the time from which the waveform is

consistent with a linear quasinormal ringing. The values are

from the minimum of the corresponding curves in Fig. 8.

h∞22 Y∞

22 YH in
22

nmax 6 5 5

uð∞=hÞ or v
ðHÞ
Σ

SXS:BBH:0207 −11.1 −14.1 −13

SXS:BBH:1936 2.0 −14.2 −15
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surface [61] and obtain formulas that relate horizon waves

to echoes at infinity. Then, in Sec. V B, we focus on the

Boltzmann reflectivity and discuss QNM structures of the

ECO. Next in Sec. V C, we compute echo waveforms

numerically and investigate the impact of prescriptions

made at the matching shell ΣShell (see Fig. 1), taking SXS:

BBH:0207 as an example. Finally, we compare the hybrid

method with the inside prescription in Sec. V D.

A. Constructing echoes using the physical boundary

condition near an ECO surface

Chen et al. [61] recently proposed imposing boundary

conditions near the ECO surface using the membrane

paradigm, in which a family of zero-angular-momentum

fiducial observers (FIDOs) are considered. Within their own

rest frame, the FIDOs experience a tidal tensor field [117]

Eij ¼ hai h
c
jCabcdU

bUd; ð20Þ

whereCabcd is theWeyl tensor,Ub is the four-velocity of the

FIDOs, and hai ¼ δai þ UaUi is the projection operator. The

transverse component of Eij [61],

Etransverse ∼ −
Δ

4r2
ψ0 −

r2

Δ
ψ�
4; ð21Þ

is of particular interest since it represents the stretching and

squeezing effect due to GW. In analogous to the tidal

response of a neutron star, the response of the ECO was

proposed to be linear in Etransverse; namely [61],

�

−
r2

Δ
ψ�
4

�

surface

¼

�

RECO

RECO − 1
Etransverse

�

surface

: ð22Þ

The reflectivityRECO depends on the (non-GR) property of

ECO, as we shall discuss in Sec. V B.

Near the ECO surface, ψ0 is dominated by the incident

wave (toward the horizon), whereas ψ4 by the reflected

wave (by the ECO), i.e.,

þ2R
ECO
lm

ðu; vÞ ∼

Z

dω

Δ
2
YH inECO
lmω e−iωv; ð23aÞ

−2R
ECO
lmω ðu; vÞ ∼

Z

dωZHout ECO
lmω e−iωu; ð23bÞ

with �2R
ECO
lm ðu; vÞ the radial Teukolsky function for the

ECO. Here we use the same notation as Eqs. (6), and we

emphasize that YH inECO
lmω stands for the actual ψ0 wave that

falls down the future horizon.

After simplification, the boundary condition in Eq. (22)

becomes

ZHout ECO
lmω ¼

ð−1Þlþmþ1

4
RECOYH inECO

lmω ; ð24Þ

where we have used the following symmetry of a non-

precessing BBH system under reflection across the orbital

plane [91]:

½YH in ECO
l;−m;−ω �

� ¼ ð−1ÞlYH in ECO
lmω : ð25Þ

Subsequently, the echo waveform at null infinity reads [59]

Z∞echo
lmω ¼ KðωÞYH inECO

lmω ; ð26Þ

with the transfer function KðωÞ,

KðωÞ¼
ð−1Þlþmþ1RECO

1−RECORBHT

1

4Dout
lm

¼
C

DDin
lm

X

n¼1

ðRECORBHTÞn;

ð27Þ

and

RBHT ¼ ð−1Þlþmþ1
Din

lm

Dout
lm

D

4C
: ð28Þ

In Eq. (27), we have written the total echo signal as a sum

of individual echoes.

B. The Boltzmann reflectivity

To model quantum effects around the horizon, Oshita

et al. [11] and Wang et al. [10] proposed that GWs

around the horizon interact with a quantum thermal

bath. Specifically, these waves are subject to a position-

dependent dissipation Ωðr�Þ=EPl and driven by a position-

dependent stochastic source ξðr�Þ; levels of the driving and
the dissipation are related using the fluctuation-dissipation

theorem [118]. Then the BHP equation is modified as

[10,11]

�

−iγ
Ωðr�Þ

EPl

d2

dr2�
þ

d2

dr2�
þ ω2 − Vl

RWZ

�

sΨ
SN
lm ðr�Þ ¼ ξðr�Þ;

ð29Þ

where Ωðr�Þ ¼ jωj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jg00ðr�Þj
p

is the proper frequency

measured in the frame of the Schwarzschild observers,

EPl is the Planck energy, and γ is a dimensionless

dissipation parameter that controls how the damping ramps

up as the wave gets close to the horizon. Note that Eq. (29)

reduces to the classical Zerilli-RW equation in the limit of

γ → 0 (vanishing of the dissipative effect) and ξ → 0

(vanishing of the fluctuation source). Consequently, the

modified equation leads to the following Boltzmann

reflectivity [10,11]:

RECO ¼ exp

�

−i
ω

πTQH

lnðγjωjÞ

�

exp

�

−
jωj

2TQH

�

; ð30Þ
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where the quantity TQH is the effective horizon temper-

ature. The first term on the right-hand side of Eq. (30)

implies that, as γ ≪ 1, the region between r� ∼
ln γ

2πTQH
and

the peak of the BH potential forms a cavity. In this way, the

ECO’s QNM frequencies ωn are determined as poles of the

transfer function KðωÞ [see Eq. (27)],

RECOðωnÞR
BHTðωnÞ ¼ 1: ð31Þ

We solve Eq. (31) numerically and plot the value of ωn as a

function of γ in Fig. 9, where the quantum horizon

temperature TQH is set as the Hawking temperature TH:

TH ≔
κ

2π
¼

1

8π
; ð32Þ

with κ ¼ 1=4 the surface gravity. We can see that the

absolute value of the real and imaginary parts of ωn

increases with γ and n. In particular, the negative sign of

Imωn ensures the stability of the QNMs. For the funda-

mental mode n ¼ 0, the decay rate is less than 10−3; hence,

it is long-lived.

This feature of the ECO QNMs is also visible in the

transfer function K, as shown in Fig. 10. The blue curve

corresponds to the case with γ ¼ 10−15 and TQH ¼ TH.

There are a number of local maxima (resonances) whose

locations are close to the real part of the corresponding

QNMs. In the limit of γ ≪ 1, the peak frequency ω
ðnÞ
peak is

given by

ω
ðnÞ
peak ¼ ω

ðnÞ
FSR −

ω
ðnÞ
FSR

ð2nþ 1Þπ
Im ln ½RBHTðω

ðnÞ
FSRÞ�; ð33Þ

where the free spectral range (FSR) of the cavity is written as

ω
ðnÞ
FSR ¼ ð2nþ 1Þ

TQHπ
2

j ln γj

�

1 −
1

ln γ
ln

�

ð2nþ 1Þ
TQHπ

2

j ln γj

�	

þO½ðln γÞ−2�; n ¼ 0; 1…: ð34Þ

In Fig. 10 we label the location of ω
ðnÞ
peak for n ¼ 0, 1, 2 using

dashed vertical lines. Additionally,K has a global maximum

at the fundamental QNM of a Schwarzschild BH ð0.374 −
0.0890iÞ that is contributed by the factor 1=Dout

22 (see the blue

curve in Fig. 2). Within the frequency band ω < 0.374,K is

dominated by 1=Dout
22 ; hence, its asymptotic behavior is ∼ω4

as ω → 0. Conversely, for the band ω > 0.374, K decays

exponentially due to the second term on the right-hand side

of Eq. (30).

On the other hand, when γ is comparable to 1, GWs

cannot be effectively trapped near the ECO surface, and the

ECO QNMs do not exist. This fact is clearly manifested in

the transfer function of the case with γ ¼ 10−1 and

TQH ¼ 5TH, which is shown as a black curve in Fig. 10.

Moreover, since the value of TQH is greater than the

previous one, more high-frequency contents can be

reflected by the ECO surface, and hence emerge at infinity.

FIG. 10. Transfer function K of the ECO using ðγ ¼
10−15; TQH ¼ THÞ (blue curve) and ðγ ¼ 10−1; TQH ¼ 5THÞ
(black curve). The QNM resonances are visible in the former

case, where the locations of the first three resonances are labeled

with the dashed vertical lines, based on the estimation in Eq. (33).

By comparison, the red curve corresponds to the absolute value of

the filtered horizon wave YHFilter for SXS:BBH:0207 assuming

that vH
Σ
¼ −13 and Δv ¼ 2=κ [see Eq. (36)]. Its value is

decreased by a factor of 4000 for simplicity.

FIG. 9. Real and imaginary parts of QNMs for an irrotational

ECO as functions of γ. They are the solutions to Eq. (31). The

Boltzmann reflectivity is used, assuming TQH ¼ TH. Each mode

is labeled with the overtone index n. The imaginary part of the

QNMs is negative, meaning that the mode is stable.
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C. Numerical computation of echo waveforms

In order to use Eq. (26) to compute echo waveforms, we

first need to estimate the actual wave YH inECO
lmω [see

Eq. (23)], which falls down along the future horizon. In

the context of the hybrid method, the future horizon exists

partially in region Iþ II, except that the late-time portion of

YH in
lm [see Eq. (14)] can represent YH inECO

lm ; namely,

YH in ECO
lm ðvÞ ¼ YH in

lm ðvÞ; when v > v
ðHÞ
Σ

: ð35Þ

Note again that the condition is in the time domain. The

value of v
ðHÞ
Σ

was determined by searching for the starting

time after which YH in
lm ðvÞ can be decomposed as a sum of

the QNM overtones, as discussed in Sec. IV B. In practice,

we impose the condition in Eq. (35) via a filter as follows:

YH inECO
lm ðvÞ→ YHFilter

lm ðvÞ;

¼ YH in
lm ðvÞF ðvÞ þ const × ½1 − F ðvÞ�; ð36Þ

where the Planck-taper filter F ðvÞ is given by [119]

FIG. 11. Echo emitted by SXS:BBH:0207 following the main

GW. Here we set v
ðHÞ
Σ

¼ −13;Δv ¼ 2=κ ¼ 8; γ ¼ 10−15,

and TQH ¼ TH .

FIG. 12. The echoes emitted by SXS:BBH:0207, with a variety of TQH and γ. The width of filter Δv is equal to 2=κ. The total echoes
(orange curves) are compared to the first echoes (blue curves). In the upper-left panel, the values of TQH and γ are small enough that the

spacing between echoes is greater than the echo duration; hence, the individual pulses are well separated, whereas in the other three

panels different pulses overlap and interfere with each other.
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F ðv; v
ðHÞ
Σ

;ΔvÞ ¼

8

>

>

<

>

>

:

0; v < v
ðHÞ
Σ

− Δv;

1
exp zþ1

; v
ðHÞ
Σ

− Δv < v < v
ðHÞ
Σ

;

1; v > v
ðHÞ
Σ

;

ð37Þ

and z ¼ Δv

v−v
ðHÞ
Σ

þ Δv

v−v
ðHÞ
Σ

þΔv
. The Planck-taper filter F ðvÞ is a

function that gradually ramps up from 0 to 1 within the time

interval ½v
ðHÞ
Σ

− Δv; v
ðHÞ
Σ

�. Therefore, YHFilter
lm ðvÞ in Eq. (36)

represents a quantity that switches from a constant value to

YH in
lm ðvÞ that is predicted by the hybrid method. The value

of the constant does not affect the echo waveform, since

this zero-frequency content cannot penetrate the BH

potential (see the value of Dout
22 in Fig. 2). In our case,

we set the constant to 0.

With the transfer function at hand, we are able to

compute echo waveforms. Figure 11 shows an echo signal

following the main GW, emitted by the system SXS:

BBH:0207, assuming that v
ðHÞ
Σ

¼ −13 (as summarized in

Table II), Δv ¼ 2=κ ¼ 8, γ ¼ 10−15, and TQH ¼ TH. To

further investigate how the echo signal is impacted by the

parameters ðγ; TQHÞ, we vary their values and exhibit the

results in Fig. 12. The echo waveform of SXS:BBH:1936

looks similar to that of SXS:BBH:0207, and it can be found

in Appendix C. The total echo waveform is compared to the

first echo. In the case of γ ¼ 10−15 and TQH ¼ TH (shown

in the upper-left panel), distinct echo pulses are separated

by an equal time interval of

Δuecho ∼ j ln γj=ðπTQHÞ; ð38Þ

which is long compared to the duration of the BBH

ringdown. These well-separated echoes result mathemati-

cally from a collective excitation of the ECO’s multiple

QNMs displayed in Fig. 10—even though each individual

QNM bears little resemblance to the echo pulse. On the

other hand, for greater values of TQH and γ (γ ¼ 10−1 and

TQH ¼ 5TH; shown in the lower-right panel), the spacing

between nearby pulses becomes comparable to the pulse

duration, distinct echo pulses interfere with each other, and

we cannot resolve any single pulse. In addition, since the

ECO with greater TQH reflects a broader frequency band,

the final echo is stronger.

We then investigate the impact of the filter parameter Δv
in Eq. (37). As shown in Fig. 13, we compute the first echo

emitted by SXS:BBH:0207, using ðγ ¼ 10−15; TQH ¼ THÞ

and v
ðHÞ
Σ

¼ −13, for a variety of Δv. We can see that the

waveforms have different amplitude evolutions within the

first two cycles, but the distinction is suppressed shortly

afterward.

D. Comparison with the inside prescription

The horizon filter is absent in the framework of the

inside prescription [10,64]. Taking v
ðHÞ
Σ
→ −∞, Eq. (35)

reduces to

FIG. 13. The influence of the filter parameter Δv on echo

waveforms. Each curve corresponds to the real part of the first

echo (with different Δv), using SXS:BBH:0207 and the Boltz-

mann reflectivity (γ ¼ 10−15 and TQH ¼ TH). The filter is applied

at the future horizon with v
ðHÞ
Σ

¼ −13.

FIG. 14. Comparison between the hybrid approach and the

inside prescription using SXS:BBH:0207. We choose a Boltz-

mann reflectivity with γ ¼ 10−15 and TQH ¼ TH . The upper

panel shows the first echo, whereas the bottom panel displays the

second echo. The filter is applied at null infinity (red curve

labeled “Inside”) and at the future horizon (black curve labeled

“Hybrid”). The width of both filters Δv is 2=κ.
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YH inECO
lmω ¼ Cin

lmðωÞY
∞

lmω ð39Þ

and Eq. (26) becomes

Z∞ echo
lmω ¼

X

∞

n¼1

ðRECORBHTÞnZ∞

lmω; ð40Þ

where we have used the TS identities in Eqs. (9). A direct

usage of Eq. (40) will lead to undesired low-frequency

contents contributed by the inspiral stage. A work-around

would be taking only the ringdown portion of Z∞

lmðuÞ,
following Ref. [64]. We compare the hybrid method

[Eq. (26)] to the inside formula [Eq. (40)] in Fig. 14,

assuming SXS:BBH:0207. Here we choose Δv ¼ 2=κ,

γ ¼ 10−15, and TQH ¼ TH. We see that for the first echo

the hybrid method leads to a stronger signal, but the inside

prescription has a stronger second echo. Meanwhile, for the

initial part of the first echo, the hybrid method gives rise to

one more cycle, but the evolution is almost identical

afterward.

VI. DETECTABILITY AND PARAMETER

ESTIMATION

In this section, we focus on the detectability of the

echoes computed in this paper by current and future

detectors. We first give a brief summary of the detector

response, signal-to-noise ratio (SNR), and Fisher-matrix

calculations in Sec. VI A. Then we study the detectability

of echoes by calculating the SNR in Sec. VI B and discuss

the parameter estimation by adopting the Fisher matrix in

Sec. VI C.

A. The signal-to-noise ratio and Fisher-matrix

formalism

We first construct two polarizations of an echo hechoþ;× by

assembling hecholm :

hechoþ − ihecho× ¼
X

m¼�2

−2Yl¼2;mðθ;ϕÞh
echo
l¼2;m; ð41Þ

where we use the leading contributions hecho2;�2, which satisfy

the condition hecho2;−2 ¼ ðhecho2;2 Þ�. The echo strain hecho

detected by a detector is given by

hecho ¼ FþðθS;ϕL;ψLÞh
echo
þ þ F×ðθS;ϕL;ψLÞh

echo
× ; ð42Þ

with ðθS;ϕLÞ the sky location of a source with respect to the
detector and ψL the polarization angle. The SNR of a given

GW signal h is written as
ffiffiffiffiffiffiffiffiffiffiffi

ðhjhÞ
p

, where the inner product

between the two waveforms ðhjgÞ reads

ðhjgÞ ¼ 4Re

Z

h�ðfÞgðfÞ

SnðfÞ
df: ð43Þ

Here SnðfÞ is the spectral density of the noise when it

detects GWs. The averaged SNR over angular parameters

ðθS;ϕL;ψL; θ;ϕÞ is given by [120]

hρ2i ¼
16

25

Z

jhþj
2ðθ ¼ 0Þ

SnðfÞ
df: ð44Þ

We shall adopt the sky-averaged SNR throughout

this paper.

On the other hand, the Fisher matrix for a given

gravitational waveform hðλiÞ can be written as

Γij ¼

�

∂h

∂λi

�

�

�

�

∂h

∂λj

�

; ð45Þ

where λi are parameters to be estimated. In this paper, we

restrict ourselves to γ and TQH values that determine the

Boltzmann reflectivity [Eq. (30)]. By inverting Γij, we

obtain the parameter estimation accuracies for λi,

Δλi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΓ−1Þii

q

: ð46Þ

B. Detectability of echoes

To study how the SNR is impacted by the reflectivity

parameters (γ and TQH), we adopt an aLIGO-like detector

[121] and a Cosmic Explorer (CE)-like detector [122] for

both SXS:BBH:0207 and SXS:BBH:1936. We assume the

binaries to have a total mass of 60 M⊙ and to be located

100 Mpc from the detector.

In the baseline case with TQH ¼ TH, γ ¼ 10−1, andΔv ¼

2=κ and using the values of v
ðHÞ
Σ

given in Table II, we obtain

(sky-averaged) echo SNRs of ∼0.45 for aLIGO and ∼15 for

CE.The echoSNRsofSXS:BBH:1936 aregreater than those

of SXS:BBH:0207 by a factor of ∼1.5 in both detectors. In

order to make a comparison with Ref. [58], we also estimate

the ratios between the echo SNR and the ringdown SNR. To

first obtain the ringdown SNR, we choose the lower limit of

integration in Eq. (44) to be the frequency of h∞22 evaluated at

uðhÞ [see Eq. (17a) and Table II]. For aLIGO, the ringdown

SNR for SXS:BBH:0207 is around 7.0 and the ratio

SNRecho=SNRringdown ¼ 6.5%, which is close to the blue

curve in the bottom-left panel of Fig. 9 in Ref. [58].

In Fig. 15, we explore how the echo SNR depends on

values of γ and TQH, for both detectors and both binaries,

respectively, assuming that Δv ¼ 2=κ and using values of

v
ðHÞ
Σ

listed in Table II. The SNR increases with TQH since a

larger TQH corresponds to a broader reflection frequency

band, and more incident waves are reflected. The γ

dependence of SNR is more complex. For small values

of TQH (i.e., those around unity, as originally proposed by

Wang et al. [10]), the SNR barely depends on γ because in

this case the echoes are weak and dominated mainly by the
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first pulse, where γ controls only the separation between the
echoes in time, meaning that it does not affect the SNR. By
contrast, for TQH ≳ 5TH, the echoes may overlap with each

other and (constructively) interfere, thereby elevating
the SNR.
Next we investigate the impact of filters on the horizon—

namely, the advanced time v
ðHÞ
Σ

at which the shell Σ crosses

the horizon—and the thickness Δv of the transition region
in which we cut off reflection. Taking SXS:BBH:0207 and
CE, for example, we plot in Fig. 16 the sky-averaged echo

SNR as a function of two filter parameters v
ðHÞ
Σ

and Δv [see

Eq. (37)], where we choose γ ¼ 10−15 and TQH ¼ TH.

As expected, the SNR decreases as either v
ðHÞ
Σ

increases or

Δv decreases. The global pattern suggests that the depend-

ence on v
ðHÞ
Σ

and Δv is linearly correlated.

C. Parameter estimation

We now use the Fisher-matrix formalism to study the

parameter estimation. Here we restrict ourselves to the

reflectivity parameters (γ and TQH) resulting in 2D Fisher

matrices. This will result in an underestimate of the

measurement errors. As shown in Fig. 17, we compute

the fractional errors of TQH and γ using SXS:BBH:0207.

(a) (b)

(c) (d)

FIG. 15. Sky-averaged echo SNR across the TQH − γ space using SXS:BBH:0207 (upper panels) and SXS:BBH:1936 (lower panels),

as well as aLIGO (left column) and CE (right column). The binary system is 100 Mpc from the detector, with a total mass of 60 M⊙. We

set Δv to 2=κ, and the values of v
ðHÞ
Σ

are listed in Table II.
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We still assume that the system has a total mass of 60 M⊙

and a location 100 Mpc from the detector. The two filter

parameters v
ðHÞ
Σ

and Δv are still set at −13 and 2=κ,

respectively. We vary the value of TQH from 0.4 to 10 while

fixing the value of γ at 10−15. We see that the fractional

error decreases as TQH increases since the echo signal is

stronger. The constraint on TQH is greater than γ since it has

a greater impact on the echo’s profile and SNR. When we

choose TQH ¼ TH, aLIGO can constrain γ and TQH to the

level of 366.7% and 10.2%, respectively. These two

constraints lead to 20.9% measurement uncertainty in

the time interval Δuecho between individual echoes based

on Eq. (38). For CE, the fractional errors of γ, TQH, and

Δuecho are 11.4%, 0.3%, and 0.65%, respectively.

VII. CONCLUSION

In this paper, we made use of the hybrid method [77,78]

to establish an echo waveform model for comparable-mass

merging binaries whose remnants do not rotate. The hybrid

method was originally proposed to predict GWs emitted by

BBH coalescences—it separates the spacetime of a BBH

event into an inner PN region and an outer BHP region (see

Fig. 1). The two regions communicate via boundary

conditions on a world tube Σ. To build the echo model,

we first took the Weyl scalars of the BBH systems from

CCE [83] at future null infinity. Then we reversed the

process of the hybrid method by evolving Weyl scalars

back into the bulk, and the solution in the BHP region was

proportional to the up-mode solution to the homogeneous

Teukolsky equation, as required by the uniqueness of the

solutions. With the solution at hand, we were able to

compute the GW that falls down along the future horizon.

Since the BHP theory is not valid inside the matching

shell Σ, only the portion of GW that lies outside the world

tube ΣShell is physical. Consequently, the usefulness of our

method is limited to the ringdown phase. We determined

the location of Σ (namely, the advanced time v
ðHÞ
Σ

at which

it crosses the future horizon) by looking for the quasinor-

mal ringing regime of the horizon—ψ0; we fitted YH in
lm to a

superposition of five overtones [Eq. (17)]. We then

removed the earlier piece of ψ0 (with v < v
ðHÞ
Σ

) by applying

a Planck-taper filter whose width Δv (a free parameter in

our model) can be viewed as the effective thickness of the

matching shell.

Next, by utilizing the physical boundary condition near

the ECO surfaces [61] and the Boltzmann reflectivity [10],

we computed the QNMs of irrotational ECOs, as well as

echo signals of two systems, SXS:BBH:0207 and SXS:

BBH:1936. We picked these two runs because their

remnant spins vanish. The prediction made using the hybrid

method for ringdown signals proved to be accurate in this

FIG. 16. Sky-averaged echo SNR as a function of filter

parameters v
ðHÞ
Σ

and Δv [see Eq. (37)] using CE. The binary

system is SXS:BBH:0207 and has the same total mass and

distance as Fig. 15. We use the Boltzmann reflectivity with γ ¼
10−15 and TQH ¼ TH . The vertical dash-dotted line represents the

value of v
ðHÞ
Σ

given in Table II.

FIG. 17. Fractional error of TQH (solid curves) and γ (dashed

curves) as functions of TQH using aLIGO (black curves) and CE

(red curves). The binary system is SXS:BBH:0207, which has a

total mass of 60 M⊙ and is located 100 Mpc from the detector.

The two filter parameters v
ðHÞ
Σ

and Δv are still set to −13 and 2=κ,

respectively. We vary the value of TQH from 0.4 to 10 while fixing

the value of γ at 10−15.
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case [77]. Finally, we studied the detectability and param-

eter estimation of the echoes.

We summarize our main conclusions as follows:

(i) The hybrid method is similar to the inside prescrip-

tion of Refs. [10,64] in the sense that both of them

treat the main GWas a transmitted wave of an initial

pulse emerging from the past horizon (see Fig. 4).

Furthermore, filters are involved in both treatments,

which, however, have different physical interpreta-

tions. The inside prescription (also the CLA) handles

the system as an initial value problem (the Cauchy

problem), where the entire process is split into two

stages. Only the late-time portion lies in the BHP

region. Therefore, the filter needs to be applied at

future null infinity. Conversely, in our case, the

exterior system is described by a boundary value

problem—a spatial volume is separated at every

moment. Accordingly, the filter is imposed at the

future horizon to remove the unrealistic portion of

the incoming GW. We took SXS:BBH:0207 as an

example and compared the hybrid method with the

inside prescription. We found that the inside pre-

scription leads to fewer cycles than the hybrid

method for the initial part of the echo. Meanwhile,

the first echo predicted using the inside prescription

is weaker than the result using the hybrid method.

(ii) The Weyl scalars ψ0;4 from CCE are consistent with

the TS identities throughout the entire frequency

band in question. This supports the treatment of the

hybrid method that uses BHP theory to describe the

exterior region, at least when the remnant object

does not rotate.

(iii) As in the studies of Refs. [110,115], using six

overtones, the ringdown of the strain for SXS:

BBH:1936 starts 2Mf after the peak. However,

the time for SXS:BBH:0207 can be extended to

∼11Mf before the peak. For the horizon and infinity

ψ0: Y
H=∞
22 , the prediction made using CCE is less

accurate, and we were only able to resolve five

overtones. The linearly quasinormal ringing regimes

of YH in
22 for SXS:BBH:0207 and SXS:BBH:1936

are similar, and they start at ∼13Mf–15Mf before

the peak.

We restricted ourselves to inspiraling compact binaries

whose remnants are Schwarzschild-like ECOs. Future work

could extend the hybrid method to Kerr-like ECOs and

utilize it to compute echoes emitted by more general

comparable-mass coalescence systems. It is worth pointing

out that, throughout the process, the Kerr-like background

should have an adiabatically evolving mass and angular

momentum due to GW emission. It will be a limitation for

the hybrid method if one fails to capture this feature.

Another possible avenue for future work is to apply our

calculations to head-on collisions and compare the echo

waveform with the results in Ref. [75].
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APPENDIX A: THE QNM AMPLITUDES OF SXS:

BBH:0207 AND SXS:BBH:1936

Figure 18 shows the absolute value and phase of

A
ðh=∞=HÞ
n and B

ðh=∞=HÞ
n [see Eq. (17)]. For SXS:

BBH:1936, A
ðhÞ
n peaks at n ¼ 5, which is consistent with

previous studies [110,115,116]. However, in this case the

absolute value of the retrograde mode B
ðhÞ
n is comparable to

that of A
ðhÞ
n ; thus, it is not negligible. For SXS:BBH:0207,

the contribution of the retrograde mode B
ðhÞ
n is considerable

as well, while A
ðhÞ
n peaks at n ¼ 2 and B

ðhÞ
n peaks at n ¼ 3.

APPENDIX B: THE CHARACTERISTIC

APPROACH TO SOLVING THE RW EQUATION

Equation (1) can be solved numerically via a second-

order-accurate, characteristic method proposed by

Gundlach et al. [123]. As shown in Fig. 19, Gundlach

et al. [123] picked four points on a discretized ðu; vÞ grid:

sΨ
N
lm ¼ sΨ

SN
lm ðuþ h; vþ hÞ; sΨ

E
lm ¼ sΨ

SN
lm ðu; vþ hÞ;

sΨ
W
lm ¼ sΨ

SN
lm ðuþ h; vÞ; sΨ

S
lm ¼ sΨ

SN
lm ðu; vÞ; ðB1Þ

with h the step size. The value in the lower-left corner,

sΨ
W
lm, can be obtained using

sΨ
W
lm ¼ sΨ

N
lm þ sΨ

S
lm − sΨ

E
lm

þ
h2

8
Vl
RWðrcÞðsΨ

N
lm þ sΨ

S
lmÞ þOðh3Þ; ðB2Þ

where Vl
RWðrcÞ is the value of the RW potential at the

center, rc ¼ ðuþ h=2; vþ h=2Þ. We note that Eq. (B2) is

different from the one used in Refs. [77,78], where sΨ
N
lm

was calculated based on the other three. This is because we

evolve the system backward into the bulk (from Iþ to the

past horizon).
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APPENDIX C: SXS:BBH:1936

Using SXS:BBH:1936, we test the validity of the TS

identity at the null infinity [see Eq. (9a)] in Fig. 20.

Conventions are the same as in Fig. 6.

In Fig. 21, we present the total echo and the first echo

with a variety of γ and TQH values. The location of the filter

is listed in Table II, and the width of the filter is set at 2=κ.

APPENDIX D: CHANDRASEKHAR-SASAKI-

NAKAMURA TRANSFORMATION

The generalized Chandrasekhar-Sasaki-Nakamura trans-

formation reads [124]

sΨ
SN
lm ¼

8

<

:

rjsjþ1Djsj
−




1

rjsj s
RBH
lm

�

s < 0;

rsþ1Ds
þ

h

ðΔ
r
Þs

s
RBH
lm

i

s ≥ 0;
ðD1aÞ

sR
BH
lm ¼

8

<

:

1
c0
ðΔ
r
ÞjsjD

jsj
þ ðrjsj−1sΨ

SN
lm Þ s ≤ 0;

1
c0

1
rs
Ds

−ðr
s−1

sΨ
SN
lm Þ s > 0;

ðD1bÞ

with D� ¼ d
dr
� iωr2

Δ
and the constant c0 given by

FIG. 19. The ðu; vÞ grid cell in a characteristic evolution

scheme of the RW equation.

(a)

(b)

FIG. 18. Absolute value (left two panels) and phase (right two panels) of the prograde modeAn and the retrograde mode Bn assuming

that (a) SXS:BBH:0207 and (b) SXS:BBH:1936. We fit Eqs. (17) to the data of h∞22 (blue), Y∞

22 (black), and YH in
22 (red) obtained

from CCE.
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c0 ¼

8

<

:

C� s ¼ −2;

lðlþ 1Þ s ¼ �1;

C s ¼ 2;

where C is as defined in Eq. (10a).

The up-mode solution, sΨ
up
lmω, to the RW equation

[Eq. (1)] takes an asymptotic expansion

−2Ψ
up
lmω ∼

�

B∞

lmωe
iωr� ; r� → þ∞;

Bout
lmωe

iωr� þ Bin
lmωe

−iωr� ; r� → −∞;
ðD2aÞ

þ2Ψ
up
lmω ∼

�

A∞

lmωe
iωr� ; r� → þ∞;

Aout
lmωe

iωr� þ Ain
lmωe

−iωr� ; r� → −∞:
ðD2bÞ

Plugging Eqs. (5) and (D2) into Eq. (D1), we obtain

FIG. 21. Same as Fig. 12 using SXS:BBH:1936.

FIG. 20. Same as Fig. 6 using SXS:BBH:1936.
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B∞

lmω ¼ −
C�

4ω2
; Bout

lmω ¼ −
C�Dout

lm

8ωðiþ 4ωÞ
; Bin

lmω ¼ 16ð1 − 6iω − 8ω2ÞDin
lm;

A∞

lmω ¼ −4ω2; Ain
lmω ¼

C

8ωði − 4ωÞ
Cin
lm; Aout

lmω ¼ 16ð1þ 6iω − 8ω2ÞCout
lm ; ðD3aÞ

and the TS identity in Eq. (11) implies

Bin
lmω

B∞

lmω

¼
Ain
lmω

A∞

lmω

: ðD4Þ
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