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Abstract. We investigate a P1 finite element method for an elliptic distributed optimal
control problem with pointwise state constraints and a state equation that includes advec-
tive/convective and reactive terms. The convergence of this method can be established for
general polygonal/polyhedral domains that are not necessarily convex. The discrete prob-
lem is a strictly convex quadratic program with box constraints that can be solved efficiently
by a primal-dual active set algorithm.

1. Introduction

Let Ω be a polygonal/polyhedral domain in Rn (n = 2, 3), yd ∈ L2(Ω), β be a positive
constant and g ∈ H4(Ω). The elliptic optimal control problem is to find

(1.1) (ȳ, ū) = argmin
(y,u)∈Kg

[
1

2
‖y − yd‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

]
,

where (y, u) belongs to Kg ⊂ H1(Ω)× L2(Ω) if and only if

a(y, z) =

∫
Ω

uz dx ∀z ∈ H1
0 (Ω),(1.2a)

y = g on ∂Ω,(1.2b)

and

(1.3) y ≤ ψ a.e. in Ω.

Here ψ belongs to W 3,p(Ω) with p > n and ψ > g on ∂Ω, and the bilinear form a(·, ·) is
defined by

(1.4) a(y, z) =

∫
Ω

∇y · ∇z dx+

∫
Ω

(ζ · ∇y)z dx+

∫
Ω

γyz dx,

where the vector field ζ ∈ [W 1
∞(Ω)]n and the function γ ∈ W 1

∞(Ω).

Remark 1.1. We will follow the standard notation for function spaces, norms and operators
that can be found for example in [1, 12, 20].
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We assume that

(1.5) The boundary value problem (1.2) is uniquely solvable.

Remark 1.2. The assumption (1.5) holds for example under the condition that ζ ∈ [W 1
∞(Ω)]n

and γ ∈ L∞(Ω) satisfy γ − 1
2
∇ · ζ ≥ 0. The assumption that γ ∈ W 1

∞(Ω) is needed for the
derivation of the interior regularity of ȳ (cf. Section 2 and Appendix A).

Remark 1.3. The state equation defined by (1.2) is the weak form of the following Dirichlet
boundary value problem for a model second order elliptic partial differential equation with
advective/convective and reactive terms:

Ly = u in Ω,(1.6a)

y = g on ∂Ω,(1.6b)

where the partial differential operator L is given by

(1.7) Ly = −∆y + ζ · ∇y + γy.

Let E̊
(
∆;L2(Ω)

)
⊂ H1

0 (Ω) be defined by

(1.8) E̊
(
∆;L2(Ω)

)
= {y ∈ H1

0 (Ω) : ∆y ∈ L2(Ω)} = {y ∈ H1
0 (Ω) : Ly ∈ L2(Ω)},

where ∆y and Ly are understood in the sense of distributions. According to elliptic regularity
results for polygonal/polyhedral domains (cf. [21, 30, 38, 40]),

(1.9) E̊
(
∆;L2(Ω)

)
is a subspace of H1+α(Ω) ∩H2

loc(Ω) ∩H1
0 (Ω)

for some α ∈ (1
2
, 1] determined by the geometry of Ω, and

(1.10) ‖z‖H1+α(Ω) ≤ CΩ‖∆z‖L2(Ω) ∀z ∈ E̊
(
∆;L2(Ω)

)
.

We note that the index α can be taken to be 1 if Ω is convex.

Remark 1.4. E̊
(
∆;L2(Ω)

)
is more than just a subspace of H2

loc(Ω). Let Ωδ (δ > 0) be the
subset of Ω consisting of points whose distances from the reentrant corners of Ω are > δ. We
have z ∈ H2(Ωδ) for any z ∈ E̊

(
∆;L2(Ω)

)
and any positive δ.

It follows from (1.10) and the Sobolev inequality (cf. [1]) that

Vg = g + E̊
(
∆;L2(Ω)

)
⊂ C(Ω̄).

Therefore using (1.6a) we can reformulate (1.1)–(1.3) as the following equivalent problem:

(1.11) Find ȳ = argmin
y∈Kg

[
1

2
‖y − yd‖2

L2(Ω) +
β

2
‖Ly‖2

L2(Ω)

]
,

where

(1.12) Kg = {y ∈ Vg : y ≤ ψ in Ω}.
In the special case where ζ = 0 and γ = 0, two P1 finite element methods for the

minimization problem (1.11)–(1.12) were investigated in [8]. One of the methods exploits
mass lumping so that the resulting discrete problem can be efficiently solved by a primal-dual
active set algorithm. Our goal is to extend this method to the general case.
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Remark 1.5. If Ω is convex, then E̊
(
∆;L2(Ω)

)
coincides with H2(Ω) ∩ H1

0 (Ω) and (1.11)–
(1.12) defines a fourth order obstacle problem with the boundary conditions of a simply
supported plates. The idea of reformulating an elliptic optimal control problem with point-
wise state constraints as a fourth order optimization problem was first introduced in [37],
where the fourth order problem was solved by a Morley finite element method. This ap-
proach was extended to other finite element methods in [6, 7, 8, 10, 11, 15, 16, 17, 29], to
problems with both state and control constraints in [9, 14], and the convergence analysis
was refined in [13]. Compared with the traditional approach in [19, 22, 39, 33, 41], the
finite element methods based on the reformulation can be efficiently solved by a primal-dual
active set strategy and the convergence in the L∞ norm for the state is a natural byproduct.
Moreover, as demonstrated in [7, 8, 11] and the current paper, this new approach is also
applicable to nonconvex polygonal/polyhedral domains.

The rest of the paper is organized as follows. We recall some properties of the continuous
problem in Section 2 and present the finite element method in Section 3. Instead of repeating
arguments similar to the ones in [8], we keep these two sections concise and provide details
of the modifications necessitated by the general state equation (1.2) in Appendix A and
Appendix B. Numerical results are presented in Section 4 and we end with some concluding
remarks in Section 5.

Throughout the paper we will use C with or without subscript to denote a generic positive
constant that is independent of the meshes.

2. The Continuous Problem

Let z̄ = ȳ − g. Then the minimization problem defined by (1.11)–(1.12) is equivalent to
find

(2.1) z̄ = argmin
z∈K̃

[
1

2
‖z − (yd − g)‖2

L2(Ω) +
β

2
‖L(z + g)‖2

L2(Ω)

]
,

where

(2.2) K̃ = {z ∈ E̊
(
∆;L2(Ω)

)
: z ≤ ψ̃ = ψ − g in Ω}.

Note that E̊
(
∆;L2(Ω)

)
is a Hilbert space under the inner product ((·, ·)) defined by

((z, q)) = (z, q)L2(Ω) + (Lz,Lq)L2(Ω),

and K̃ is a nonempty closed convex subset of E̊
(
∆;L2(Ω)

)
. Therefore we can conclude

from the classical theory of calculus of variations (cf. [24, 35]) that (2.1)–(2.2) has a unique
solution characterized by the variational inequality

(2.3) β
[(
Lz̄,L(z − z̄)

)
L2(Ω)

+
(
g,L(z − z̄)

)
L2(Ω)

]
+ (z̄ − zd, z − z̄)L2(Ω) ≥ 0 ∀ z ∈ K̃,

where zd = yd− g, and it follows from the interior regularity theory in [18, 26, 27] for fourth
order variational inequalities that

(2.4) z̄ ∈ H3
loc(Ω) ∩W 2

∞,loc(Ω).

(Details for the derivation of (2.4) can be found in Appendix A.)



4 SUSANNE C. BRENNER, SIJING LIU, AND LI-YENG SUNG

The unique solvability of (1.11)–(1.12) follows from the unique solvability of (2.1)–(2.2),
and we can translate the variational inequality (2.3) into

(2.5) (ȳ − yd, y − ȳ)L2(Ω) + β(Lȳ,L(y − ȳ))L2(Ω) ≥ 0 ∀ y ∈ Kg.

Since ȳ = z̄ + g and g ∈ H4(Ω), we have, by (1.9) and (2.4),

(2.6) ȳ ∈ H1+α(Ω) ∩H3
loc(Ω) ∩W 2

∞,loc(Ω).

It follows from (2.5) and (2.6) that

(2.7)

∫
Ω

[
(ȳ − yd)z + β(Lȳ)(Lz)

]
dx =

∫
Ω

z dµ ∀ z ∈ E̊
(
∆;L2(Ω)

)
,

where

(2.8) µ is a non-positive regular Borel measure,

and the following complementarity condition holds:

(2.9)

∫
Ω

(ψ − ȳ)dµ = 0.

Moreover, we have

(2.10)

∣∣∣∣∫
Ω

z dµ

∣∣∣∣ ≤ C‖z‖H1(Ω) ∀ z ∈ E̊
(
∆;L2(Ω)

)
.

Remark 2.1. Condition (2.9) is equivalent to the statement that µ is supported on the active
set A = {x ∈ Ω : ȳ(x) = ψ(x)}. Note that A is a compact subset of Ω because ψ > g on ∂Ω.

The properties of ȳ in (2.6), the optimality conditions (2.7)–(2.9) and the regularity of µ
in (2.10) are key ingredients for the convergence analysis of the finite element method. We
omit the derivations of (2.7)–(2.10) since they can be found in [8, 13].

3. The Discrete Problem

Let Th be a shape regular simplicial triangulation of Ω, Vh ⊂ H1
0 (Ω) be the P1 finite

element space associated with Th (cf. [12, 20]), and V̊h = Vh ∩ H1
0 (Ω). The diameter of

T ∈ Th is denoted by hT and h = maxT∈Th hT is the mesh diameter.
Let the mass-lumping inner product (·, ·)h (cf. [42] and [47, Chapter 15]) be defined by

(3.1) (v, w)h =
∑
p∈Vh

( ∑
T∈Tp

|T |
n+ 1

)
v(p)w(p) ∀ v, w ∈ Vh,

where Vh is the set of the vertices of Th, Tp is the set of the elements in Th that share p as a
common vertex, and |T | is the area (n = 2) or volume (n = 3) of T .

The linear map Lh : H1(Ω)→ Vh is then defined by

(3.2) (Lhw, vh)h = a(w, vh) ∀ vh ∈ V̊h.
Let Kg

h be the affine subspace of Vh defined by

(3.3) Kg
h = {yh ∈ Ihg + V̊h : yh ≤ Ihψ in Ω},
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where Ih : C(Ω̄) −→ Vh is the nodal interpolation operator. The P1 finite element method
for (1.11)–(1.12) is to find

(3.4) ȳh = argmin
yh∈Kg

h

[
1

2
(yh − yd, yh − yd)L2(Ω) +

β

2
(Lhyh,Lhyh)h

]
.

Remark 3.1. The minimization problem (3.4) is a strictly convex quadratic program with box
constraints. Due to mass lumping the system matrix for this quadratic program is readily
available. Therefore (3.4) can be solved efficiently by a primal-dual active set method (cf.
[4, 5, 32, 34]).

Let τ be defined by

(3.5) τ =

{
α if d = 2 or 3 and Th is quasi-uniform,

1 if d = 2 and Th is graded around the reentrant corners.

Here α ∈ (1
2
, 1] is the index of elliptic regularity in (1.10).

Theorem 3.2. Let ȳ be the solution of (1.11), ȳh be the solution of (3.4) and ūh = Lhȳh.
We have

(3.6) ‖ū− ūh‖L2(Ω) + ‖ȳ − ȳh‖L2(Ω) + |ȳ − ȳh|H1(Ω) ≤ C(| lnh|
1
2h+ hτ ),

where the positive constant C is independent of h and τ is given by (3.5).

We also have an L∞ error estimate in terms of the P1 finite element approximation Rhȳ
of ȳ defined by

Rhȳ ∈ V g
h = Ihg + V̊h

and

(3.7) a(Rhȳ, z) = a(ȳ, z) ∀ z ∈ V̊h.

Remark 3.3. Rhȳ is well-defined for h sufficiently small under assumption (1.5) (cf. [12,
Section 5.6] and [44]).

Theorem 3.4. Let ȳ be the solution of (1.11) and ȳh be the solution of (3.4). We have, for
h sufficiently small,

(3.8) ‖ȳ − ȳh‖L∞(Ω) ≤ C(| lnh|
1
2h+ hτ ) + ‖ȳ −Rhȳ‖L∞(Ω),

where the positive constant C is independent of h and τ is given by (3.5).

The proofs of these theorems are based on the properties of the continuous problem stated
in (2.6)–(2.10) and results from finite element analysis, in particular the estimates

‖ȳ −Rhȳ‖H1(Ω) ≤ Chτ ,(3.9)

‖ȳ −Rhȳ‖L2(Ω) ≤ Ch2τ ,(3.10)

‖ȳ −Rhȳh‖L∞(G) ≤ C(| lnh|h2 + h2τ ),(3.11)

that are valid for h sufficiently small. Here G ⊂ Ω is an open neighborhood of the active
set A such that Ḡ is a compact subset of Ω. (A derivation of (3.9)–(3.11) is provided in
Appendix B.)
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We omit the proofs of Theorem 3.2 and Theorem 3.4 since they follow the same lines as
in [8].

4. Numerical Results

In this section we present numerical examples on three different domains, where for sim-
plicity we take β = γ = 1 and ζ to be a constant vector. Note that for such choices of γ and
ζ we have

(4.1) LtLy = ∆2y − ζ · ∇(ζ · ∇y)− 2∆y + y

where the operator Lt is the transpose of L.
The discrete problems are solved by a primal-dual active set algorithm (cf. [4, 5, 32, 34]).

Example 4.1 (Disk Active Set). In this example we take Ω = [−4, 4]2, ζ = [1, 0]t (first test)
and [2, 2]t (second test), ψ = |x|2 − 1 and g = 0.

Following the ideas behind [8, Example 7.1], we define the exact solution by

(4.2) ȳ =

 |x|2 − 1 |x| ≤ 1
v(|x|) + (1− φ(|x|))w(x) 1 ≤ |x| ≤ 3

w(x) 3 ≤ |x|
,

where

v(|x|) = (|x|2 − 1)(1− |x| − 1

2
)4 +

1

4
(|x| − 1)2(|x| − 3)4,(4.3a)

φ(|x|) = (1 + 4
|x| − 1

2
+ 10(

|x| − 1

2
)2 + 20(

|x| − 1

2
)3)(1− |x| − 1

2
)4,(4.3b)

w(x) = 2 sin(
π

8
(x1 + 4))3 sin(

π

8
(x2 + 4))3.(4.3c)

Then we take (cf. (4.1))

yd =

{
LtLȳ + ȳ |x| > 1

LtLȳ + ȳ + 2 |x| ≤ 1
.

By construction ȳ ≤ ψ and the active set A is the closed disk D = {x : |x| ≤ 1}. The
choices of yd, ȳ and ψ lead to the optimality conditions (2.7)–(2.9) with the measure µ
defined by

(4.4)

∫
Ω

zdµ = −2

∫
D

zdx− 42

∫
∂D

zds.

The numerical results for the first test where ζ = [1, 0]t are reported in Table 4.1. The
state, the control and the active set computed at level 9 are shown in Figure 4.1. The
convergence in the H1 norm for the state is approaching O(h), which agrees with the estimate
in Theorem 3.2. We also observe that the orders of convergence in the L2 and L∞ norm for
the state and the L2 norm for the control are higher than the ones predicted by Theorem 3.2
and Theorem 3.4. This is likely due to the additional regularity enjoyed by the exact solution
ȳ defined by (4.2). Indeed ȳ is a piecewise C∞ function that belongs to C2(Ω̄) and hence
has higher regularity than as indicated by (2.6).
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k ‖ȳ − ȳh‖L2(Ω) Order |ȳ − ȳh|H1(Ω) Order ‖ū− ūh‖L2(Ω) Order ‖ȳ − ȳh‖L∞(Ω) Order

1 6.68e+00 - 1.17e+01 - 1.43e+01 - 2.29e+00 -

2 6.05e+00 0.14 9.15e+00 0.35 1.68e+01 -0.23 2.52e+00 -0.14

3 4.11e-01 3.88 1.96e+00 2.22 4.28e+00 1.97 1.81e-01 3.80

4 6.41e-01 -0.64 1.13e+00 0.80 1.91e+00 1.16 1.58e-01 0.20

5 2.30e-01 1.48 5.16e-01 1.13 6.97e-01 1.45 5.79e-02 1.45
6 8.68e-02 1.40 2.44e-01 1.08 2.69e-01 1.37 2.32e-02 1.32

7 3.08e-02 1.49 1.17e-01 1.06 9.82e-02 1.45 9.29e-03 1.32

8 7.18e-03 2.10 5.53e-02 1.08 3.23e-02 1.61 2.95e-03 1.65

9 3.10e-03 1.21 2.46e-02 1.17 1.17e-02 1.46 1.10e-03 1.43

Table 4.1. Convergence results for Example 4.1 with ζ = [1, 0]t.

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Figure 4.1. State, control and active set at level 9 for Example 4.1 with
ζ = [1, 0]t

The numerical results for the second test where ζ = [2, 2]t are reported in Table 4.2. We
observe similar behavior as in the first test case.
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k ‖ȳ − ȳh‖L2(Ω) Order |ȳ − ȳh|H1(Ω) Order ‖ū− ūh‖L2(Ω) Order ‖ȳ − ȳh‖L∞(Ω) Order

1 8.42e+00 - 1.83e+01 - 1.84e+01 - 3.91e+00 -

2 5.24e+00 0.68 8.30e+00 1.14 1.62e+01 0.18 2.24e+00 0.80

3 3.47e-01 3.92 2.00e+00 2.05 4.33e+00 1.91 1.60e-01 3.81

4 4.99e-01 -0.53 1.07e+00 0.90 1.84e+00 1.23 1.27e-01 0.33

5 1.82e-01 1.46 4.98e-01 1.10 6.64e-01 1.47 5.09e-02 1.32

6 6.87e-02 1.41 2.38e-01 1.07 2.54e-01 1.39 2.02e-02 1.33

7 2.47e-02 1.47 1.15e-01 1.05 9.20e-02 1.46 7.98e-03 1.34

8 5.91e-03 2.06 5.50e-02 1.07 3.04e-02 1.60 2.48e-03 1.69

9 2.51e-03 1.23 2.45e-02 1.17 1.10e-02 1.46 9.30e-04 1.41

Table 4.2. Convergence results for Example 4.1 with ζ = [2, 2]t.

Example 4.2 (L-shaped Domain with Singular Function). In this example Ω is the L-shaped
domain Ω = [−8, 8]2 \ ([0, 8]× [−8, 0]), ζ = [2, 1]t and g = 10.

Let the singular function ψs be defined by

Lψs = 0 in Ω,

ψs = 1 on ∂Ω.

We take the exact solution to be

ȳ = ỹ + 10ψs,

where

ỹ =


|x− x∗|2 − 1 |x− x∗| ≤ 1

v(|x− x∗|) + (1− φ(|x− x∗|))w(x− x∗) 1 ≤ |x− x∗| ≤ 3

w(x− x∗) 3 ≤ |x− x∗|
,

x∗ = (−4, 4), and the functions v, φ and w are defined in (4.3).
The constraint function ψ is given by

ψ = |x− x∗|2 − 1 + 10ψs

and the desired state is

yd =

{
LtLȳ + ȳ + 10ψs |x− x∗| > 1

LtLȳ + ȳ + 2 + 10ψs |x− x∗| ≤ 1
.

By construction the active set of this problem is the closed unit disc D centered at x∗,
and (4.4) remains valid for all z ∈ E̊

(
∆;L2(Ω)

)
. We solve the discrete problem on uniform

meshes and graded meshes (cf. [28]). The results are reported in Table 4.3 and Table 4.4.
We can clearly observe improvements in the orders of convergence in the H1 and L∞ norms
for the state on graded meshes, which agrees with Theorem 3.2 and Theorem 3.4.
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k
‖ȳ−ȳh‖L2(Ω)

‖ȳ‖L2(Ω)
Order

|ȳ−ȳh|H1(Ω)

|ȳ|H1(Ω)
Order

‖ū−ūh‖L2(Ω)

‖ū‖L2(Ω)
Order

‖ȳ−ȳh‖L∞(Ω)

‖ȳ‖L∞(Ω)
Order

1 3.89e-01 - 7.61e-01 - 8.71e-01 - 4.98e-01 -

2 1.79e-01 1.12 5.05e-01 0.59 8.33e-01 0.06 3.12e-01 0.67

3 3.90e-02 2.19 2.82e-01 0.84 2.14e-01 1.96 1.68e-01 0.89

4 1.35e-02 1.53 1.52e-01 0.90 9.14e-02 1.23 9.06e-02 0.89

5 4.35e-03 1.63 7.98e-02 0.92 3.30e-02 1.47 5.25e-02 0.79

6 1.52e-03 1.52 4.24e-02 0.91 1.26e-02 1.39 3.22e-02 0.71

7 5.34e-04 1.51 2.30e-02 0.89 4.56e-03 1.46 1.96e-02 0.71

8 1.30e-04 2.04 1.26e-02 0.86 1.50e-03 1.61 1.16e-02 0.76

Table 4.3. Convergence results on uniform meshes for Example 4.2.

k
‖ȳ−ȳh‖L2(Ω)

‖ȳ‖L2(Ω)
Order

|ȳ−ȳh|H1(Ω)

|ȳ|H1(Ω)
Order

‖ū−ūh‖L2(Ω)

‖ū‖L2(Ω)
Order

‖ȳ−ȳh‖L∞(Ω)

‖ȳ‖L∞(Ω)
Order

1 4.31e-01 - 7.91e-01 - 1.31e+00 - 6.33e-01 -

2 2.11e-01 1.03 5.72e-01 0.47 6.52e-01 1.01 4.47e-01 0.50

3 8.65e-02 1.29 3.63e-01 0.66 4.46e-01 0.54 2.46e-01 0.86

4 1.90e-02 2.19 2.03e-01 0.84 1.33e-01 1.74 1.00e-01 1.30

5 7.60e-03 1.32 1.06e-01 0.94 6.38e-02 1.06 3.29e-02 1.61

6 2.56e-03 1.57 5.38e-02 0.98 2.61e-02 1.29 9.49e-03 1.79

7 9.40e-04 1.45 2.68e-02 1.00 1.04e-02 1.33 3.09e-03 1.62

8 2.39e-04 1.98 1.34e-02 1.01 3.34e-03 1.64 1.76e-03 0.81

Table 4.4. Convergence results on graded meshes for Example 4.2.

Example 4.3 (Three Dimensional Analog of Example 4.1). In this example Ω is the cubic
domain (−4, 4)3, ψ = |x|2− 1, ζ = [1, 1, 1]t and g = 0. We define ȳ again by (4.2), where we
modify w as follows:

w(x) = 2 sin(
π

8
(x1 + 4))3 sin(

π

8
(x2 + 4))3 sin(

π

8
(x3 + 4))3.

As in Example 4.1, the active set is the closed ball A = {x : |x| ≤ 1}. The convergence
results are shown in Table 4.5. Again we observe O(h) convergence in the H1 norm for the
state, which agrees with the estimate in Theorem 3.2. We also observe better convergence
than the ones predicted by Theorem 3.2 and Theorem 3.4 in the L2 and L∞ norms for the
state and the L2 norm for the control, which can be explained by the fact that the exact
solution ȳ is a piecewise C∞ function that belongs to C2(Ω̄).
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k ‖ȳ − ȳh‖L2(Ω) Order |ȳ − ȳh|H1(Ω) Order ‖ū− ūh‖L2(Ω) Order ‖ȳ − ȳh‖L∞(Ω) Order

1 1.01e+01 0.00 2.65e+01 0.00 2.76e+01 0.00 2.29e+00 0.00

2 1.15e+01 -0.18 1.47e+01 0.85 2.84e+01 -0.04 1.48e+00 0.62

3 1.01e+00 3.51 3.85e+00 1.93 7.22e+00 1.98 1.92e-01 2.95

4 5.63e-01 0.84 1.86e+00 1.05 2.60e+00 1.47 8.50e-02 1.18

5 1.11e-01 2.35 8.41e-01 1.14 7.98e-01 1.70 2.15e-02 1.99

6 4.30e-02 1.37 3.72e-01 1.18 2.78e-01 1.52 6.92e-03 1.63

Table 4.5. Convergence results for Example 4.3.

5. Concluding Remarks

We have extended the P1 finite element method based on mass lumping in [8] to elliptic
optimal control problems with a general state equation. Since we do not use any stabiliza-
tion technique in the discretization of the state equation, the performance of our method
depends on ζ. For instance, if the vector field ζ in Example 4.1 is taken to be [1000, 1000]t,
then the resulting errors at the beginning refinement levels are two orders higher than the
corresponding ones in Table 4.2. It is both interesting and challenging to construct more
sophisticated Lh in order to obtain methods that are robust with respect to ζ. We note that
in the case of control constraints this was investigated in [31, 36].

Acknowledgment

The authors would like to thank Joscha Gedicke for helpful discussions concerning the
numerical examples.

Appendix A. Interior Regularity of z̄

We will establish (2.4) by relating (2.3) to fourth order variational inequalities analyzed
in [18, 26, 27].

It follows from (2.3) and the Riesz representation theorem for non-negative functionals
(cf. [25, 43, 46]) that

(A.1) β
[(
Lz̄,Lz

)
L2(Ω)

+
(
g,Lz

)
L2(Ω)

]
+ (z̄ − zd, z)L2(Ω) =

∫
Ω

z dν ∀ z ∈ E̊
(
∆;L2(Ω)

)
,

where ν is a non-positive regular Borel measure. Moreover,

(A.2) ν is supported on A = {x ∈ Ω : z̄ = ψ̃(x)} = {x ∈ Ω : ȳ(x) = ψ(x)}

by the principle of virtual work.
Let φ be any C∞ function with compact support in Ω such that

(A.3) φ = 1 on an open neighborhood of A.

We will show that z̃ = φz̄ belongs to H3(Ω) ∩W 2
∞(Ω), which then implies (2.4).
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Given any z ∈ E̊
(
∆;L2(Ω)

)
, we have, in view of (1.7),

L(φz) = −∆(φz) + ζ · ∇(φz) + γ(φz)

= −(∆φ)z − 2∇φ · ∇z − φ(∆z) + (ζ · ∇φ)z + φ(ζ · ∇z) + φ(γz)(A.4)

= φLz +Mz,

where M : E̊
(
∆;L2(Ω)

)
−→ H1

0 (Ω) is defined by

(A.5) Mz = −2∇φ · ∇z +
(
ζ · ∇φ−∆φ

)
z.

Here Mz ∈ H1
0 (Ω) because E̊

(
∆;L2(Ω)

)
is a subspace of H2

loc(Ω).
Note that z̃ belongs to

(A.6) K† = {z† ∈ H2
0 (Ω) : z† ≤ φψ̃ on Ω},

and we have, in view of (A.2) and (A.3),

(A.7)

∫
Ω

φ(z† − z̃)dν =

∫
A

(z† − φψ̃)dν ≥ 0 ∀z† ∈ K†.

It follows from (A.1), (A.4) and (A.7) that(
Lz̃,L(z† − z̃)

)
L2(Ω)

=
(
Lz̄, φL(z† − z̃)

)
L2(Ω)

+
(
Mz̄,L(z† − z̃)

)
L2(Ω)

=
(
Lz̄,L(φ(z† − z̃))

)
L2(Ω)

−
(
Lz̄,M(z† − z̃)

)
L2(Ω)

+
(
Mz̄,L(z† − z̃)

)
L2(Ω)

≥ −β−1
(
z̄ − zd, φ(z† − z̃)

)
L2(Ω)

−
(
g,L(φ(z† − z̃))

)
L2(Ω)

−
(
Lz̄,M(z† − z̃)

)
L2(Ω)

+
(
Mz̄,L(z† − z̃)

)
L2(Ω)

,

which together with (1.7) implies(
∆z̃,∆(z† − z̃)

)
L2(Ω)

≥ −β−1
(
z̄ − zd, φ(z† − z̃)

)
L2(Ω)

−
(
Lz̄,M(z† − z̃)

)
L2(Ω)

−
(
g,−∆(φ(z† − z̃)) + (ζ · ∇)(φ(z† − z̃)) + γφ(z† − z̃)

)
L2(Ω)

+
(
Mz̄,−∆(z† − z̃) + ζ · ∇(z† − z̃) + γ(z† − z̃)

)
L2(Ω)

(A.8)

+
(
∆z̃, ζ · ∇(z† − z̃) + γ(z† − z̃)

)
L2(Ω)

−
(
ζ · ∇z̃ + γz̃,−∆(z† − z̃) + ζ · ∇(z† − z̃) + γ(z† − z̃)

)
L2(Ω)

.

Since z̃ = φz̄ belongs to H2
0 (Ω), Mz̄ belongs to H1

0 (Ω), g belongs to H4(Ω), ζ belongs to
[W 1
∞(Ω)]n and γ belongs to W 1

∞(Ω), we can use (A.5) and integration by parts to rewrite
(A.8) in the form of

(A.9)
(
∆z̃,∆(z† − z̃)

)
L2(Ω)

≥
n∑
i=1

(
fi, ∂i(z† − z̃)

)
L2(Ω)

+ (f0, z† − z̃)L2(Ω) ∀z† ∈ K†,

where fi ∈ L2(Ω) for 0 ≤ i ≤ n.
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Note that (A.6) and (A.9) define a biharmonic variational inequality treated in [26]. There-
fore we can apply the interior regularity result there to conclude that z̃ ∈ H3

loc(Ω), and hence
z̃ ∈ H3(Ω) because z̃ is compactly supported in Ω. We can also conclude that z̄ ∈ H3

loc(Ω).
According to the Sobolev embedding theorem, we have H1(Ω) ↪→ L6(Ω) and W 1

6/5(Ω) ↪→
L2(Ω) in both two and three dimensions. Hence we can use (A.4), the facts that ζ ∈
[W 1
∞(Ω)]n, γ ∈ W 1

∞(Ω), z̄ ∈ H3
loc(Ω) together with integration by parts to rewrite (A.8) in

the form of

(A.10)
(
∆z̃,∆(z† − z̃)

)
L2(Ω)

≥ F (z† − z̃),

where F ∈ W−1
6 (Ω).

Let ρ ∈ H2
0 (Ω) be defined by

(∆ρ,∆v)L2(Ω) = F (v) ∀ v ∈ H2
0 (Ω).

Then ρ belongs to W 3
6,loc(Ω) ⊂ W 2

∞,loc(Ω) by interior elliptic regularity (cf. [2, section 14])
and the Sobolev embedding theorem, and (A.10) becomes the variational inequality

(A.11)
(
∆z∗,∆(z] − z∗)

)
L2(Ω)

≥ 0 ∀ z] ∈ K],

where
K] = {z] ∈ H2

0 (Ω) : z] ≤ φψ̃ − ρ}
and z∗ = z̃ − ρ ∈ K].

We can now apply the interior regularity results in [18, 27] to the biharmonic variational
inequality (A.11) to conclude that z∗ ∈ W 2

∞,loc(Ω), and hence z̃ = z∗ + ρ ∈ W 2
∞(Ω) because

z̃ is compactly supported in Ω.

Appendix B. Estimates for Rhȳ

It follows from the assumptions on ζ and γ that we have

(B.1) a(y, z) ≤ C‖y‖H1(Ω)‖z‖H1(Ω) ∀ y, z ∈ H1(Ω),

and also the following G̊arding inequality (cf. [12, Theorem 5.6.8])

(B.2) a(z, z) + κ‖z‖2
L2(Ω) ≥

1

2
‖z‖2

H1(Ω) ∀ z ∈ H1(Ω),

where κ is a positive constant.
Recall Ih : C(Ω̄) −→ Vh is the nodal interpolation operator and there is a standard

estimate (cf. [12, 20, 23])

(B.3) |ζ − Ihζ|Hs(T ) ≤ Cht−sT |ζ|Ht(T )

that holds for t > n/2, 0 ≤ s ≤ t, ζ ∈ H t(T ) and T ∈ Th.
In view of (1.10) and (B.3), we have the following interpolation error estimate (cf. [3, 12,

20, 23, 30]):

(B.4) ‖z − Ihz‖L2(Ω) + h|z − Ihz|H1(Ω) ≤ Ch1+τ‖∆z‖L2(Ω) ∀ z ∈ E̊
(
∆;L2(Ω)

)
,

where τ is defined in (3.5). It follows from (B.4) that

(B.5) ‖ȳ − Ihȳ‖L2(Ω) + h|ȳ − Ihȳ|H1(Ω) ≤ Ch1+τ



A P1 FINITE ELEMENT METHOD FOR AN ELLIPTIC OPTIMAL CONTROL PROBLEM 13

because ȳ ∈ g + E̊
(
∆;L2(Ω)

)
and g ∈ H4(Ω).

As mentioned in Remark 3.3, the finite element approximation Rhȳ is well-defined for h
sufficiently small.

Since the function Ihȳ −Rhȳ belongs to V̊h ⊂ H1
0 (Ω), we have

1

2
‖Ihȳ −Rhȳ‖2

H1(Ω) ≤ a(Ihȳ −Rhȳ, Ihȳ −Rhȳ) + κ‖Ihȳ −Rhȳ‖2
L2(Ω)

= a(Ihȳ − ȳ, Ihȳ −Rhȳ) + κ‖Ihȳ −Rhȳ‖2
L2(Ω)(B.6)

≤ Chτ‖Ihȳ −Rhȳ‖H1(Ω) + κ‖Ihȳ −Rhȳ‖2
L2(Ω)

by (3.7), (B.1) and (B.5).
Let φ ∈ H1

0 (Ω) be defined by

(B.7) a(z, φ) = (z, Ihȳ −Rhȳ)L2(Ω) ∀ z ∈ H1
0 (Ω).

Then φ belongs to E̊
(
∆;L2(Ω)

)
and we have

(B.8) ‖φ‖H1+α(Ω) ≤ C‖∆φ‖L2(Ω) ≤ C‖Ihȳ −Rhȳ‖L2(Ω)

by elliptic regularity.
It follows from (3.7) and (B.7) that

(B.9) ‖Ihȳ −Rhȳ‖2
L2(Ω) = a(Ihȳ −Rhȳ, φ− Ihφ) + a(Ihȳ − ȳ, Ihφ),

and we can use (B.1), (B.4) and (B.8) to estimate the first term on the right-hand side of
(B.9) by

(B.10) a(Ihȳ −Rhȳ, φ− Ihφ) ≤ Chτ‖Ihȳ −Rhȳ‖H1(Ω)‖Ihȳ −Rhȳ‖L2(Ω).

According to (1.4), the second term on the right-hand side of (B.9) is given by

a(Ihȳ − ȳ, Ihφ) =

∫
Ω

∇(Ihȳ − ȳ) · ∇(Ihφ)dx+

∫
Ω

[
ζ · ∇(Ihȳ − ȳ)

]
Ihφ dx(B.11)

+

∫
Ω

γ(Ihȳ − ȳ)Ihφ dx,

and we have ∫
Ω

[
ζ · ∇(Ihȳ − ȳ)

]
Ihφ dx+

∫
Ω

γ(Ihȳ − ȳ)Ihφ dx

= −
∫

Ω

(Ihȳ − ȳ)ζ · ∇(Ihφ)dx+

∫
Ω

(γ −∇ · ζ)(Ihȳ − ȳ)Ihφ dx(B.12)

≤ Ch1+τ‖Ihȳ −Rhȳ‖L2(Ω)

≤ Ch2τ‖Ihȳ −Rhȳ‖L2(Ω)

by (B.4) and (B.8).
It only remains to estimate the first term on the right-hand side of (B.11), which can be

rewritten through integration by parts as

(B.13)

∫
Ω

∇(Ihȳ − ȳ) · ∇(Ihφ)dx =
∑
σ∈Sh

∫
σ

(Ihȳ − ȳ)[[∂(Ihφ− φ)/∂n]]dS,
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where Sh is the set of all the sides, [[∂(Ihφ − φ)/∂n]] is the jump of the normal derivative
of (Ihφ − φ) across σ, and dS denotes the infinitesimal length (n = 2) or infinitesimal area
(n = 3).

Lemma B.1. We have

(B.14)

∫
Ω

∇(Ihȳ − ȳ) · ∇(Ihφ)dx ≤ Ch2τ‖Ihȳ −Rhȳ‖L2(Ω).

Proof. Let σ be a side (edge if n = 2 and face if n = 3 ) of the element T . By the trace
theorem with scaling, we have, for 1/2 < s ≤ 1,

(B.15) ‖ζ‖L2(σ) ≤ C
[
h
−1/2
T ‖ζ‖L2(T ) + h

s−(1/2)
T |ζ|Hs(T )

]
.

In the case of quasi-uniform meshes, we can use (B.3), (B.8), (B.13) and (B.15) to obtain∫
Ω

∇(Ihȳ − ȳ) · ∇(Ihφ)dx ≤ C
∑
T∈Th

h
α/2
T |Ihȳ − ȳ|H(1+α)/2(T )h

α−(1/2)
T |φ|H1+α(T )

≤ Ch2α‖Ihȳ −Rhȳ‖L2(Ω),

which is (B.14) for quasi-uniform meshes.
The case of graded meshes in two dimensions is more involved. Let c1, . . . , cL be the

corners of Ω and ω` be the interior angle at c`. We take α` to be a number < π/ω (α` = 1
if ω < π) so that the index of elliptic regularity α = min1≤`≤L α`.

We can use (B.13) and (B.15) to obtain∫
Ω

∇(Ihȳ − ȳ) · ∇(Ihφ)dx ≤ C
L∑
`=1

∑
T∈Th,`

h
α`/2
T |Ihȳ − ȳ|H(1+α`)/2(T )h

α`−(1/2)
T |φ|H1+α` (T )(B.16)

+ C
∑
T∈T̃h

h
1/2
T |Ihȳ − ȳ|H1(T )h

1/2
T |φ|H2(T ),

where Th,` is the set of the triangles in Th that touch the corner c`, and T̃h = Th \
(⋃L

`=1 Th,`
)

.

Note that ȳ and φ belong to H2(T ) for T ∈ T̃h (cf. Remark 1.4).
The first sum on the right-hand side of (B.16) is bounded by

L∑
`=1

∑
T∈Th,`

h
α`/2
T |Ihȳ − ȳ|H(1+α`)/2(T )h

α`−(1/2)
T |φ|H1+α` (T )

≤ C

L∑
`=1

∑
T∈Th,`

h2α`
T |ȳ|H1+α` (T )|φ|H1+α` (T ) ≤ Ch2‖Ihȳ −Rhȳ‖L2(Ω),

where we have used (B.3), (B.8) and the fact that on the graded mesh we have hT ≈ h1/α`

if T ∈ Th,` (cf. [3, Section 4] and [30, Section 8.4.1]).
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Finally the second sum on the right-hand side of (B.16) is bounded by∑
T∈T̃h

h
1/2
T |Ihȳ − ȳ|H1(T )h

1/2
T |φ|H2(T ) ≤ C

∑
T∈T̃h

h2
T |ȳ|H2(T )|φ|H2(T )

≤ Ch2
( ∑
T∈T̃h

(hT/h)2|ȳ|2H2(T )

) 1
2
( ∑
T∈T̃h

(hT/h)2|φ|H2(T )

) 1
2

≤ Ch2‖∆ȳ‖L2(Ω)‖∆φ‖L2(Ω)

≤ Ch2‖Ihȳ −Rhȳ‖L2(Ω),

where we have used (B.3), (B.8), the fact that on the graded mesh we have

(hT/h) ≈ (distance between T and the closest corner c`)
1−α` if T ∈ T̃h,

together with the nature of the singularity at a reentrant corner of Ω (cf. [3, Section 4] and
[30, Section 8.4.1]). �

Putting (B.9)–(B.12) and (B.14) together, we arrive at the estimate

(B.17) ‖Ihȳ −Rhȳ‖L2(Ω) ≤ Chτ (hτ + ‖Ihȳ −Rhȳ‖H1(Ω)

)
.

It follows from (B.6) and (B.17) that

‖Ihȳ −Rhȳ‖H1(Ω) ≤ Chτ and ‖Ihȳ −Rhȳ‖L2(Ω) ≤ Ch2τ ,

which together with (B.4) imply (3.9) and (3.10).
Finally the estimate (3.11) follows from (2.6), (3.10) and the interior maximum norm

estimate in [45, Eq. (0.8)].
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