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ABSTRACT: Strongly non-geodesic, or rapidly turning trajectories in multifield inflation
have attracted much interest recently from both theoretical and phenomenological perspec-
tives. Most models with large turning rates in the literature are formulated as effective
field theories. In this paper we investigate rapid-turn inflation in supergravity as a first
step towards understanding them in string theory. We find that large turning rates can be
generated in a wide class of models, at the cost of high field space curvature. In these mod-
els, while the inflationary trajectories are stable, one Hessian eigenvalue is always tachyonic
and large, in Hubble units. Thus, these models satisfy the de Sitter swampland conjecture
along the inflationary trajectory. However, the high curvatures underscore the difficulty of
obtaining rapid-turn inflation in realistic string-theoretical models. In passing, we revisit
the n-problem in multifield slow-roll inflation and show that it does not arise, inasmuch as
the inflatons, ¢%, can all be heavier (in absolute value) that the Hubble scale: |m;|/H > 1,
Vi.

KEYWORDS: cosmology, inflation, supergravity


mailto:aragam@utexas.edu
mailto:r.chiovoloni.967740@swansea.ac.uk
mailto:paban@physics.utexas.edu
mailto:rjrosati@utexas.edu
mailto:e.i.zavalacarrasco@swansea.ac.uk

Contents

1 Introduction 1
2 Slow-roll Multifield Inflation 3
2.1 Kinematic basis decomposition 3
2.2 Slow-roll in multifield inflation 5
2.3 Two-field inflation in field theory 6
2.4 Rapid-turn, multifield axion inflation 8

3 Large turning rates in supergravity 9
3.1 Multifield inflation in supergravity 10
3.2 Rapid-turn attractor in supergravity 10
3.3 Orthogonal inflation 11
3.4 Generating large turning rates in supergravity 12
3.4.1 No-scale inspired model 12

3.4.2 The EGNO model 14

4 Conclusions 17
A Single superfield model 19
B Results from survey of supergravity models 20

1 Introduction

Cosmological inflation is the leading mechanism for explaining the origin of primordial
perturbations, which seeded the large-scale structures that we observe today. The most
recent cosmological observations are consistent with the simplest inflationary scenario,
in which the potential energy of a single scalar field drives a period of early cosmolog-
ical acceleration [1]. However, multifield models of inflation with strongly non-geodesic
trajectories have received recent interest, motivated by theoretical and phenomenological
constraints. Strongly non-geodesic, or rapidly turning inflationary trajectories can satisfy
the recently proposed consistency conjectures on the inflationary scalar potential [2-6].
Moreover, rapid-turn models can admit fat fields, which are heavier than the Hubble scale
and thus avoid the n-problem [7]. Phenomenologically, strongly non-geodesic motion can
have interesting observational implications, such as breaking the single-field consistency
relations between observables [8-11], leaving signature features in the primordial pow-
erspectrum [12-16], producing primordial black holes [17-20], and sourcing a stochastic
background of gravitational waves [21-24].



In an effective derivative expansion, multifield physics is characterised by a field space
metric, a potential, and couplings to the spacetime metric via the Ricci scalar. The true
multifield nature of the trajectory manifests when the trajectory strongly deviates from
geodesic motion in field space. This deviation is measured by the dimensionless turning
rate 0/H, where H is the Hubble parameter. For minimally coupled scalars, one finds
[2, 3] that along solutions to the equations of motion,

n 22 1
EV:€{<1+2(36)> +9H2(16/3)2}’ (1.1)

where the slow-roll and gradient parameters are defined as:
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Slow-roll inflation, with € < 1 and 7 < 1, can happen in different regions of the Q/H
and ey plane. Potentials and metrics for which ey, < 1 allow for an effective single-field,
slow-roll trajectory, whereas steep potentials (eyy 2 1) can feature rapid-turn, slow-roll
trajectories (Q/H > 1, e < 1) [2, 3]. The conditions for rapid-turn, slow-roll trajectories
are known in the two-field case [7, 25, 26] and will be reviewed in Section 2. The conditions
for three or more fields in the low-torsion limit! are discussed in [28].

Moreover, it was shown in [7] that a sufficient condition for strongly non-geodesic
trajectories is to have all fields heavier than the Hubble scale, i.e. fat inflation. This is a
remarkable result, as it effectively evades the n-problem in multifield inflation. As we show
in section 2, more generally, multifield inflation does not have an n-problem, inasmuch
as all the inflations can be heavier than the Hubble parameter (|m;|/H > 1). In [7] it
was also shown that fat inflatons are sufficient, but not necessary for rapid-turn inflation.
An example of this is orbital inflation [29], which produces rapid-turn inflation with a
large negative mass-squared along the inflationary trajectory [30] (se also [31]) Note that
the tachyons along the inflationary trajectory do not imply an instability?. Indeed, the
trajectory can be stable in that the Lyupanov exponents contain a compensating term
from the turn rate [10, 33].

Multifield models of inflation are not inevitable, but they arise naturally in supergravity
and string theory compactifications. Thus, it is sensible to ask how common is strongly non-
geodesic, slow-roll behaviour in supergravity, being a low energy effective theory description
of string theory. In this paper we aim at addressing precisely these two questions.

The rest of the paper is organised as follows. In Section 2, we review the conditions for
slow-roll inflation in the multifield case and show that the n-problem does not arise. That
is, the masses of all the inflaton fields do not need to be smaller than the Hubble parameter
for a sustained period of inflation when more than one field is present. In Section 2.3, we
discuss possible two-field trajectories in detail, and apply these results to the supergravity
case in Section 3. In this section, we show how to construct rapid-turn trajectories in a

!See also [27] for a discussion on multifield inflation with any number of fields.
2This is standard for concave potentials, such as in single field Starobinsky inflation [32].



large class of supergravity models. In these models, the inflaton superfield does not mix
with the supersymmetry breaking direction, i.e. the inflaton and Goldstino superfields are
orthogonal. In Appendix B, we survey a broad set of models in the literature, including
several that do not belong to this class. We find that the non-orthogonal models have
neither large turning rates nor fat fields. In Appendix A, we analytically explore the
possibility of large turning rates in single superfield inflation. A survey of this class of
models is also included in Appendix B.

We find that the surveyed models with large turning rates, as well as all rapid-turn
models we construct, have a large (w.r.t. the Hubble scale) tachyonic direction along the
inflationary trajectory. Thus, these models satisfy the swampland de Sitter conjecture
(dSSC) [5, 6] along the inflationary trajectory. This inflationary regime only occurs when
one of the coefficients in the Kéahler potential is unnaturally small and the field space
curvature is high. We therefore argue that rapid-turn inflation is rare in supergravity. We
finish with a summary and discussion of our results in Section 4.

2 Slow-roll Multifield Inflation

In this section we review slow-roll, multifield inflation following [7, 28]. The Lagrangian
for several scalar fields minimally coupled to gravity takes the form:

R gup(0°
S = / N [M%12 - 995, rongh - V<¢a>] , (2.1)
where gqp is the field space metric, M3 = (87Gy)~! is the Planck mass, and Gy is

Newton’s constant. In an FLRW spacetime, the equations of motion are

m = (v (22)
S 3ME\ 2 ’ '
¢ + 3H@? +TE.3°0° + g™V, = 0, (2.3)
where
¢ = g’ e (2.4)

The Christoffel symbols in (2.3) are computed using the scalar manifold metric g, and V,
denotes derivatives with respect to the scalar field ¢°.

2.1 Kinematic basis decomposition

The slow-roll conditions and rapid turning in multifield inflation can be understood neatly
by using a kinematic basis to decompose the inflationary trajectory into tangent and normal
directions. Let us introduce unit tangent and normal vectors to the inflationary trajectory,
T and N¢, as follows:

Ta:—, TaTa:]_, NaTa:O’ Na‘Nazl‘ (25)



This basis is useful in studying the slow-roll conditions, which mimic the single field case.
Projecting the equation of motion (2.3) for the scalars ¢® along these two directions gives:

p+3HO+Vr =0, (2.6)
DT +QN® =0, (2.7)
where Vp =V, T Vy = V,N® and the turning rate parameter € is defined as

VN
Q= —. 2.8
B (2.8)

The field-space covariant time derivative is defined as:
DT =T+ T¢T ¢ . (2.9)
To study the masses of the scalar field, we introduce the following matrix:

VvV
4= N2 -2
b Pl % )

where VoA, = 0,4y — 'S, A, for some vector Ap. For two fields, this can be written as

M — Mg, ( Vor Vin
V. \Vnr Van )’

(2.10)

where Vpp = T*T*V,V,V, etc., and we can now define the parameter 1y as:
ny = |min eigenvalue{M}| . (2.11)

Note also that the eigenvalues of M in the two field case can be written neatly as

Ay = % (TrM +/TrM2 — 4detM> : (2.12)

For example, if all eigenvalues are positive as in the case of fat inflation, one has that
0 < detM < TrM?2/4.

We now summarize useful expressions for the tangent and normal projections of the
mass matrix elements. Taking the time derivative of eq. (2.6), we obtain an expression for
the tangent projection, that is [2, 7, 9, 34]:

Vep Q2 §
- 5, =2 2.1
3HZ 3m2 T % T 30 (2.13)
where we have introduced the slow-roll parameters:
H 2
== 2.14
‘TTH? T M H? (2.14)
5
0p = — 2.15
P
§p = Hizgo (2.16)



Next, taking the time derivative of eq. (2.8), we obtain an expression for Vpy as [2, 34]:

Vrn

where we introduced the dimensionless turning rate w = 2/ H and its fractional derivative
w
=—. 2.18
V= g- (2.18)

Note that these relations are exact, as we have not made use of any slow-roll approxima-
tions. We observe that Vpr and Vpy can be written in terms of the turning rate and the
slow-roll parameters. On the other hand, Vi y depends on the inflationary trajectory in a

model-dependent manner.

2.2 Slow-roll in multifield inflation

A nearly exponential expansion is ensured by requiring the fractional change of the Hubble
parameter per e-fold, d(In H)/dN to be small. This corresponds to € < 1. In order for
inflation to last for a sufficiently long time and solve the horizon problem, one also requires
that e remains small for a sufficient number of Hubble times. This is measured by the
second slow-roll parameter 7, defined as:
n;é{:é+2e:25¢+2e<<1, (2.19)

Since € < 1 in slow-roll, a small 7 requires J, < 1.

Using the Friedmann equation, one can see that the first slow-roll condition, € < 1,
implies that (»> < V. Hence we can write

H? ~ V2 . (2.20)
3Mp,
Moreover, 6, < 1 implies that we can write (2.6) as
3H¢+Vp~0. (2.21)
Using (2.21) and (2.20), these conditions further imply
er = Mj’l <‘g>2 <1, (2.22)

such that only the tangent projection of the derivative of the potential need be small. Note
that during slow-roll, we can write (2.8) as

Q VN
RPN Rl 2.23
H Vi (2:23)
Additionally, from (2.13) we see that during slow-roll,
Vrr 0?
32~ 32 (2.24)
while from (2.17) we observe that barring cancellations, d, < 1 implies that
Vi  Q
3? ~ E, and 184 1. (225)

Hence, v is as a new slow-roll parameter in multifield inflation: the turning rate is guaran-
teed to be slowly varying in slow-roll.



No n-problem in mulfield inflation

Above we have explicitly derived the conditions for long lasting, slow-roll multfield infla-
tion, namely (2.21)-(2.25). So long as these conditions are satisfied, long-lasting slow-roll
trajectories are guaranteed. Note in particular that this does not impose any constraint
on 7y, defined in (2.11). Indeed, the minimal eigenvalue of M satisfies the condition

Amin < UMAU? (2.26)

where U? is an arbitrary unit vector. Taking U® = T%, the tangent to the trajectory,
we have that Apin < Mpp = Vpp/V. Thus, there arises the possibility of fat inflation,
introduced in [7]. There, it was shown that a sufficient condition to obtain large turns is
to have the minimal eigenvalue of M be much larger than one, that is Ay > 1, which
thus implies Vprp/V > 1, which from (2.24) implies w > 1. Thus it is possible to have all
fields heavier than the Hubble scale without spoiling long-lasting slow-roll. Moreover, one
can check that this also holds when the minimal eigenvalue is negative. That is, slow-roll
inflation is possible with fat tachyonic fields, |[Amin| > 1, and large turning rates, w > 1.
Note that these models satisfy the dSSC [4-6] along the trajectory, since Amin < —O(1).
An example of this type of inflationary attractor is angular inflation [9]. More generally, we
see that ny (2.11) can be either large or small, without affecting the inflationary attractor.
In particular, it is not necessary to fine-tune the masses of the inflatons to be small (in
Hubble units) to ensure a successful period of multifield inflation.

Using the slow-roll expressions for the mass matrix elements Vrr and Vrpy, we can
express the eigenvalues purely in terms of 2 and V. If all the eigenvalues are positive, as
in the case of fat inflation, we have that 0 < det M < TrM?/4. Since det M ~ Q?(Vyy —
9H?), fat inflation requires

Vny > 9H?. (2.27)

In the opposite case, Vyny < 9H?, the minimal eigenvalue will be negative?.

We now shift our attention toward the dynamics of rapid-turn inflationary trajectories.
We begin with a discussion on two-field trajectories before analysing rapid-turn inflation
in supergravity in Section 3.

2.3 Two-field inflation in field theory

Starting with the generic multi-field Lagrangian (2.1), we now focus on the two-field case
¢® = (r,0). In anticipation of examining inflation in supergravity, we refer to these fields
as the sazion and azion fields, respectively. For a broad class of highly symmetric field

3Recall that a tachyon along the inflationary trajectory does not indicate an instability. The criteria for
the stability of the trajectory are discussed e.g. in [33].



space geometries, the kinetic term can be written as *

LsD —fQQ(T) [(0r)? + (00)?] . (2.31)

Note that the field space metric is independent of the coordinate 6, indicating an isometry
direction. The equations of motion (2.2) and (2.3) in terms of r and 6 take the form

/2 ‘f
I ' , Jr 2 2 r
_ _ + = 2.32
" <3 QMl%l>r f (0 " ) H2f2 0, ( 3 )
12
" ' / Iro Vo
+ 924" + = 2.
0 (3 2M}%1>9 fQT H2f2 0, ( 33)

where primes denote e-fold derivatives, and (2.4) reduces to ¢'2 = f2(r)(r"? + 6'2).

Inflationary Solutions

We now consider the possible inflationary solutions to (2.32) and (2.33).

1. Sazion inflation. Single field saxion inflation can occur for 6/ ~ 0, with 6 fixed
at 0y such that Vyp(r,0p) = 0 V r. In this case (2.33) is automatically satisfied,
while (2.32) admits slow-roll solutions given a suitable potential. An example in
supergravity is discussed in [35, 36].

2. Azion inflation. A more interesting possibility occurs for solutions with / ~ 0 °. In
this case, imposing slow-roll in # on the equations of motion yields:

_ff92+ rerehe 0, (2.34)
)V
(3—6)0 + H;}Q =0. (2.35)

4Note that this metric can be written in several other equivalent forms by suitable redefinition of the
field r:

Ly D —% [(OR)* + f*(R)(96)?] (2.28)
5 f 2(p) [(0p)® + p°(00)°] . (2.29)

Hence, we focus on (2.31) and transform to either (2.28) or (2.29) by a simple redefinition of the radial
coordinate. Note further that in some cases [9], the scalar metric allegedly depends on both scalar fields.
However, it only depends on a single combination of them:

g = £(6 0061, 1) = = i

Therefore, it is possible to change coordinates to ¢ = rsin @ and x = r cos 6, such that the metric takes the

diag(1,1). (2.30)

form of (2.29), which in turn is equivalent to (2.31).
®While 6 = 6y (i.e. 8’ = 0) is always a geodesic, r = ro (7' = 0) is only a geodesic when (f,/f) |r, = 0.



These two equations give independent constraints on 6, which must be equal along
the inflationary trajectory. Demanding them be equal gives the consistency condition:

Vi W
(3—e)2HAfY  H2ff,’

V2 f3
= B, e)gHQW =7 (2.37)

(02 = (2.36)

This relationship vastly restricts the regions of field and parameter space satisfying
slow-roll, and can be used to identify the inflationary trajectory.

We can also have different scenarios depending on the initial conditions for the saxion:

(a) Single field axion inflation. Single field axion inflation occurs when the saxion
is fixed to rg such that V,.(r9,0) = 0 and (f/f)|r, = 0 so as to satisfy (2.34).
An example of this solution can be obtained in the minimal sidetrack models of
[37].

(b) Multifield azion inflation. Multifield inflation will occur whenever (2.34) is sat-
isfied with both terms non-vanishing. This can happen in two scenarios: ei-
ther V;(ro,0) # 0 and (fr/f)|r, # 0, or Vi.(r9,0) = 0 and (f»/f)|r, = 0 with
T = Tshift 7 ro. The minimal sidetrack models of [37] are an example of this
case. In this situation, one can in principle compute the value of 74 during
the multifield evolution. Note that in this case the axion follows slow-roll infla-
tion assisted by the saxion, which can give rise to large turning rates. These are
the type of solutions we examine in what follows.

. Multifield inflation. By appropriately choosing the initial conditions and potential,
it is possible to have double inflation without substantial turning (see e.g. Appendix
B of [7] and [38] for an example in supergravity) or genuinely multifield evolution
where both axion and saxion act as inflatons with interesting phenomenology.

We are interested in multifield axion inflation models. Note that it is not possible to

have a similar “assisted saxion” multifield inflation. Note also that all two-field rapid-turn
models described by the actions (2.31), (2.28), and (2.29) exhibit multifield axion inflation
(e.g. supergravity inspired angular inflation [9], orbital inflation [29], hyperinflation [39],
sidetrack inflation [37]).

2.4 Rapid-turn, multifield axion inflation

We now examine solutions to the equations for multifield axion inflation in greater detail.

In this case, the inflationary trajectory is mostly aligned with the axion direction, while the

saxion stays approximately constant and constitutes the direction normal to the trajectory.

Using the kinematic basis description in Section 2, we can express the trajectory’s unit

tangent and normal vectors as:

1
= 00, NT= 0. (2.38)



Since r’ ~ 0 in multifield axion inflation, the field velocity simplifies as ¢’ ~ f6’, which
reduces the unit vectors to 7% ~ (0,1/f) and N® ~ (1/f,0). The slow-roll parameter er
(2.22) is then

M2, 1 (Vo)
~ | 2 1. 2.39
Ty P ( v) < (239
Moreover, n (2.19) can be written as
n o~ —=2ny + der, (2.40)
where we defined )
ME, Voo
nr = Tgl Tk (2.41)

which should be small during inflation 177 < 1. Furthermore, using the definition of €2 in
(2.8), the unit normal vector, and (2.35), one can show that [37]

Q vV, Vr
—~———~—— (3 —¢). 2.42
i AR A (2.42)
Using equation (2.37), we can further write:
Q Vo [r 1 Jfr
~ ~ —Mp\2er — . 2.4
H™ HXf(3—¢ PIVECT 42 (2:43)

This expression for Q/H explicitly shows that a change in the field space metric, f(r),
directly affects the turning rate. We will later make use of this when showing how to
generate large turning rates in supergravity.

Lastly, we note that the normal projection of the potential’s covariant Hessian matrix

simplifies to
1 r
Vow = (v _ v-’;) , (2.44)

emphasising that positive eigenvalues require Viyy > 9H?2, while negative ones Vi y < 9H2.

3 Large turning rates in supergravity

We are now ready to investigate the viability of rapid-turn inflation in supergravity. Our
starting point was the observation that numerical scans of supergravity models in the lit-
erature failed to find trajectories with large turning rates. The results of the scans of
supergravity models are provided in Appendix B. In this section, we show how to under-
stand the small turning rates of most models and provide a method to increase the turning
rate. As we discuss, these rapid-turn examples consistently have a fat tachyonic direction,
(] Amin| > 1) along the inflationary trajectory®. We conjecture that rapid-turn inflationary
trajectories in supergravity always occur in the presence of tachyonic directions, potentially
satisfying the dSSC.

SRecall that this does not indicate an instability, similar to concave potential inflation, such as Starobin-
sky inflation [32].



3.1 Multifield inflation in supergravity

Our starting point is the supergravity Lagrangian:
R S -
S = /d4x\/7—g [M1§12 — K;;0,8'0"®7 — V(9% %) | | (3.1)

where Kj;; is the Kéhler metric and W is the superpotential. The scalar potential is given
in terms of the Kéahler potential K and the superpotential as

V = KIMB(KTD,WDW — 3|W[2M;2) (3.2)

where D;W = W; + K; /MPQ,IW. Here ®* are complex fields, of which there are generically
many. To study inflation we consider an FLRW 4D spacetime, in which the equations of
motion for the scalars take the form:

&'+ 3H' 4 T dIdF + K7V, =0, (3:3)

with an additional equation of motion for the conjugate field ®!. Here the Christoffel
symbols are computed from the Kahler metric Kj;;, with only ka and F;-g non-zero.

The simplest setup involves a single superfield comprised of two real scalars, so our
previous discussion on two-field inflation immediately applies. In this case, known as
sgoldstino inflation [40, 41], the inflaton and the sgoldstino are aligned. However, inflation
is generally difficult to realize with a single superfield [36]. In Appendix A we explore the
possibility of sgoldstino inflation in a simple, analytically solvable model.

The next possibility involves two superfields, in such a way that during inflation, only
two of the real fields evolve. In [35] an interesting strategy to realise single field inflation
with any potential along the direction orthogonal to the sgoldstino [36] was introduced.
The model introduces two superfields, which act as the sgoldstino and inflaton respectively.
It was shown that the three additional scalars can always be stabilised by introducing a
suitable Kéahler potential. Moreover, in [42] the sgoldstino was eliminated by introducing
a nilpotent condition to the goldstino superfield. Note that in principle one could com-
bine the real fields from the different superfields to drive two-field inflation. However,
such a configuration will not give rise to the type of attractors in the previous section.
Consequently, we consider the class of orthogonal inflation models throughout this section.

3.2 Rapid-turn attractor in supergravity

We saw in Section 2.3 that slow-roll in the r’ ~ 0 attractor implies ez < 1, which can
be written in terms of Vp as in (2.39). In supergravity, this is expressed in terms of the
complex fields ® and ® as

M 1 (i(Va—Va)\®
~ A4
=Ty 2Kq,¢< % : (3-4)

where V' is the supergravity scalar potential. The nr parameter (2.41) can be written as

M3 (2Ves — Vao — Vas)
nr

~ R e . (3.5)

~10 -



Transforming the expression for w in (2.43) to complex coordinates and neglecting factors
of €, we obtain:

0 5 i(Ve —Vg) (Koso + Koo s) — (Kepo + Kos )
H M 14 (2K33)? - Mz (2Kp5)%?

From this equation it is evident that large turning rates can be adjusted by tuning the

(3.6)

Kahler potential. Meanwhile, the superpotential can be tuned to ensure slow-roll, i.e.
er < 1. We will see this in concrete examples below.

In what follows, we consider large turning rates and fat inflatons in specific supergravity
models. As we have identified above, tuning the K&hler potential and superpotential
suitably can in principle generate strongly non-geodesic inflationary trajectories. In all
these examples, we find fat tachyonic fields along the trajectory.

3.3 Orthogonal inflation

As described previously, we consider two “orthogonal” chiral superfields, the goldstino
and inflaton superfieds S and @, respectively. We denote the scalar components of these
superfields with the same letter. We can now to eliminate S by either introducing a suitable
Kihler potential to stabilise it to S = 0, or by introducing a nilpotent condition S? = 0
[35, 42].

Consider a general Kahler potential and the superpotential of the form

K(®,®;5,9), W = SF(®), (3.7)

where the Kahler potential is separately invariant under the transformations S — —S.
This ensures that the Kihler potential is a function of S? 4+ 52 and SS (if S is nilpotent,
K depends only on SS); for now we do not make further assumptions on ®. In this case,
Ks=Kg=0at S=0, and derivatives of the superpotential reduce to:

DsW = F(®), DaeW =0, (3.8)
The scalar potential then takes the simple form:
_ . ~
V = K@R00/Me (D, $,0,0) |[F(D). (3.9)

Assuming that the Kéhler potential is shift symmetric in @, such that it is a function of
(® + @) only, we have the simplifications K¢ = K, K°° o =K 85 5> etc. The expressions
for e and w in (3.4) and (3.6) reduce to:

M2, (F3F — FF3\>
- _ _ 3.10
T~ UK, ( FF ’ (3.10)
Q i(Fch—FF@) (2K<1><I> <1>) (2K<I><T> rb)
=~ —M? _ 2L~ MpV2ep ———— 3.11
7S M TR @Ry T VT e B

From here we again observe that slow-roll is attainable by suitably tuning the superpoten-
tial, while large turning rates can be obtained by tuning the K&hler potential. One can
also write the eigenvalues in terms of derivatives of K and W, making use of the slow-roll
conditions. However, it is not simple to understand analytically why there is always a fat
tachyonic direction.

- 11 -



3.4 Generating large turning rates in supergravity

We now discuss two models where we demonstrate how to use our discussion above to
generate large turning rates. As we will see, these models are stable, while they always
feature a fat tachyonic Hessian element along the inflationary trajectory.

3.4.1 No-scale inspired model

Let us consider (3.7) with the following Kéahler potential:
K = —3aM$ log[(® + ®)/Mp] + SS, (3.12)

which corresponds to no-scale supergravity for & = 1 [43]. For a general a > 0, the field
space curvature is given by R = —4/(3a). The potential (3.9) is

_ MY |FP?

= G a (3.13)

while the turning rate (3.11) is

£ e (3.14)

H  3a

As anticipated, choosing an appropriate Kahler potential allows us to generate large turning

rates. This requires a sufficiently small o < 1, which consequently yields a large negative
curvature. We have checked that this is the case for a wide variety of superpotentials F'(®).
For clarity we now concentrate on the simple choice’:

F(@) = Do —i—pl(I) . (3.15)
In terms of real fields ® = r 4 0, the scalar potential and field space metric are given by

202 2 2
pi6° + (po + p17) 3a M,
V= Mg? [ L 8a7“3a ] 5 Gab = ” Pl 5ab . (316)

Before examining inflationary solutions, we first consider the masses of the inflatons. As
seen in the previous section, for the attractor with r’ ~ 0, Vyy can be written as in
eq. (2.44). In the small-« limit this simplifies to

‘?IV;V —9:32“(\/5—3 — 94 0(a). (3.17)
The sign of the expression above (3.17) determines the sign of the determinant, and the
number of positive eigenvalues. When e is small as required for inflation, (3.17) is manifestly
negative. Additionally, whenever € is small, w is large, and « is small, we find that Vyy <
9H?. This fixes the Hessian’s eigenvalues to have opposite signs, implying the existence of
a tachyonic direction, which, as we will see, is large in Hubble units.

"The exact form of F(®) is unimportant for supporting inflation, as can be seen in several of the families
of models in Table 1.
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Figure 1: Here we show the dimensionless turning rate Q/H for different values of a for
the no-scale inspired model (3.16). In all these cases, inflation lasts at least 60 e-folds and
we plot the turning rate in the last 60 e-folds. For o > 1072, inflation lasts less than
60-folds for the same values of the parameters (po, p1)-

2

— a=102
a=2.3X10"%

— a=2.3X107*

— a=2.3X10"°

20 30 40 50 60

Figure 2: We show here the minimal eigenvalue for different values of « as in figure 1. It is
clear that they are always fat and tachyonic and increase (in absolute value) as the turning
rate increases. Thus these models satisfy the dSSC along the inflationary trajectory.

In Figure 1, we show the turning rate for different values of a.. For all the values shown,

inflation lasts at least 60 e-folds; we plot the turning rate in the last 60 e-folds. For values of
a 2> 1072, inflation lasts less than 60 e-folds for the same values of the parameters (pg, p1).
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As discussed previously, it is possible to generate strongly non-geodesic trajectories by
tuning «, which changes the field space curvature, R = —4/3c. On the other hand, one
of the masses is always tachyonic and large along the inflationary trajectory. We show in
Figure 2 the minimal eigenvalue of (2.1), which clearly satisfies the dSSC.

3.4.2 The EGNO model

We now discuss the only supergravity model we are aware of with a dimensionless turn-
ing rate larger than one: the EGNO model of [44]. The original Lagrangian obeys the
symmetries of K (S, S) discussed previously, though in principle there is not necessarily a
shift symmetry in ®. However, the parameters that yield turning rates larger than one
and long-lasting inflation do admit a shift symmetry. In this region of parameter space,
we can make use of the expressions found in our above analysis of rapid-turn inflation in
supergravity.

The Lagrangian

Setting Mp; = 1 in this subsection for simplicity, the Kéahler potential and superpotential
for the EGNO model are

- SS

K = —3alog [<1> +®—c[(®+d—1)cos (p) — i(® — ®)sin (p)]ﬂ tarap G
W= SF@®), F(®)= %?@ —a). (3.19)

Following our previous discussion, we introduced the parameter «, which allows for tuning
to obtain large turning rates. The parameters p, ¢, a, and M are arbitrary constants.

For p = 0, the Kéhler potential and superpotential satisfy the symmetries discussed
previously®. The scalar potential is given by (3.9):

3M2 (D+B) (a—P)(a—D)
4 a2 (@—i—‘i’—c[(@—i—@—l)rl)ga

_GMZrP (2 — (1 - 22)24)3‘1 ((a—r)?+6%) (3.20)

V=

where the superfield ® is expanded as ® = r + 1. We observe that the potential has a
minimum at (min, @min) = (a,0) for any value of a.

This model has a non-trivial field space curvature, R, along S = S = 0, which depends
on the value of @ and ¢. When ¢ = 0 we have R = —4/3a, while for ¢ — +oc0 the curvature
is R = —1/3a. Additionally, R — —1/3a as r — co. Interestingly, the curvature can be
very large and positive or negative depending on the values of ¢ and «. In particular, the
a = 1 inflationary trajectory in [44] has R > 0 (see Figure 4). Note that although the
curvature changes sign, the metric is always positive.

The EGNO model has a = 1, a = 1/2, ¢ = 1000, and p = 0, which sets the dimen-
sionless turning rate at w ~ 1.5 (see the left panel of Figure 6). For p # 0, our scan in
Appendix B found smaller turning rates whenever p is far from a multiple of 7 (see Fig. 8).

8In Appendix B we scan over p as a free parameter.
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We emphasize that w can be increased or decreased by tuning the Kahler potential as
in (3.11). Since it depends on ¢, we may increase or decrease w by increasing or decreasing
c. For example, when ¢ = 10, the turning rate drops below one, w < 1. In Figure 3 we
show the potential and inflationary trajectory for the example in [44] with « = 1, a = 1/2,
M =103, ¢ = 1000, p = 0, and initial conditions as indicated in the figure. The evolution
of the fields r and 6 for this example is shown in Figure 5.

Figure 3: EGNO potential and inflationary trajectory for the parameters « = 1, a = 1/2,
M = 1073, ¢ = 1000, and p = 0 as in the original model [44]. The initial conditions are
Tini = @, Oini = Ha+/2/3, yielding Ny, = 87.

, 120
0 L
100
5000} %0
3 ® 60
—10000} ] "
20
-15000}
048 043 050 051 052 0.470 0.475 0.480 0.485

r r

Figure 4: Curvature around the inflationary region (right) and during the last 60-efolds
of inflation (left) in the EGNO model for the parameter values given in Figure 3.

It is now evident that in the ENGO model, we can turn on « to generate rapidly
turning trajectories. As a concrete example, in the right panel of Figure 6 we show the
value of w for a smaller value of o and a larger value of c¢. The field space curvature increases
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Figure 5: Trajectories for » and # in the original EGNO model for the parameters and
initial conditions given in Figure 3.

2.0

a=1, ¢c=1000

(QH)
(Q/H)

0= """ 20 30 0 70 80 100 110 120 130 140 150 160
N

Figure 6: Turning rate in the original EGNO model for two sets of parameters. On the
left, we use the parameters and initial conditions given in Figure 3 and find w(Nepq) ~ 3,
where N.,q is the end of inflation, i.e. € = 1. On the right, we use a = 1073, ¢ = 10° to
increase the turn rate up to w(Nepq) ~ 42.

for these values, but as in the original model the metric is always positive. Moreover, in
the original EGNO model, the minimal eigenvalue is negative and of order A\_ ~ —0.4 (see
Figure 7), while for the modified EGNO model with larger turning rate (left panel, Figure
6), the smallest eigenvalue is larger in absolute value, A\_ ~ —3 thus satisfying the dSSC
along the inflationary trajectory. Nevertheless the potential does not satisfy it globally.
Away from the trajectory, the potential has neither a large gradient parameter €y nor a

large tachyonic direction.
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Figure 7: On the left, we show the Hessian eigenvalues on the trajectory of the EGNO
model for the parameters and initial conditions of Figure 3. On the right, for the same
initial conditions, we show the kinematic-basis Hessian elements during the evolution and
compare them to their dynamical equivalents when available (i.e., Eqs. (2.24) and (2.25)).

4 Conclusions

Strongly non-geodesic inflationary trajectories in multifield inflation have attracted re-
vived interest recently from theoretical and phenomenological perspectives. However to
date, rapid-turn multifield models in supergravity and string theory are scarce. On the
supergravity side, the only model we are aware of with an order one turning rate w = 1 is
the EGNO model [44] that we discussed in Section 3.4.2. On the string theory side, the
only available model is the multifield fat inflation D5-brane model introduced in [7].

In the present work we have systematically analysed rapid-turn inflation in supergrav-
ity as a first step toward understanding multifield inflationary attractors in string theory.
In Section 2, we revisit the slow-roll conditions in multifield inflation and showed that light
inflatons (in Hubble units) are not required to ensure sustained inflation. That is, the ny
parameter (2.11) does not need to be small in multifield inflation as commonly assumed.
We further discuss in detail the large turn inflationary attractor in effective field theory and
study the forms of two-field inflation that may occur in supergravity Lagrangians and focus
on multifield axion inflation for its relation to well-known rapid-turn inflationary models
in the literature.

In Section 3 we then introduce multifield inflation in supergravity. For concreteness,
we focus on a large class of two-superfield supergravity models, in which the inflaton is
orthogonal to the sGoldstino direction [35, 36, 42]. In this class of models, inflation occurs
along a single superfield direction, i.e. along two real directions. Using our discussion in
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effective field theory, we find expressions for the slow-roll parameter ¢ and dimensionless
turning rate w in terms of derivatives of the Kéhler potential (3.10) and the superpotential
(3.11). From these expressions we observe that one can tune the superpotential F'(®) to
ensure a small €, while independently tuning of the Kahler potential to increase the turning
rate.

We find a large class of models with a high turn rate, a large field space curvature, and
a fat tachyonic mass, that is, with ny < —1. This class matches all instances of rapid-turn
inflation found in our survey of supergravity models in Appendix B. We study in detail
two of these models: a no-scale-inspired model and the EGNO model. In both cases, we
show that the turn rate increases as the field space curvature increases and that one of the
masses is always tachyonic when slow-roll and rapid-turn are valid approximations. This
tachyon does not destabilise the trajectory.

In both supergravity rapid turn models we discussed above, we have tuned by hand
the parameters need to get strongly non-geodesic inflationary trajectories’. However, these
can only be considered as toy models, as such small values of & do not occur in theoretically
motivated models of supergravity or string theory. Interestingly, tuning of the superpoten-
tial and Kéhler potential to achieve long lasting inflation and large turns, gives rise to fat
tachyonic fields.

In the main text, we focused on a large class of supergravity models that were useful
to illustrate our findings. We expect however that similar arguments apply to more general
models'. In Appendix A, we also discuss a single superfield example where we can see
that inflation with large turns cannot be achieved.

These results, together with our survey of a wide variety of supergravity models, lead
us to conjecture that rapid-turn inflation is rare in theoretically motivated supergravity
constructions. This is the primary conclusion of this paper. When allowing for large field
space curvature, rapid-turn inflation becomes possible with ny < —O(1). This appears to
be a ubiquitous feature of rapid-turn inflation in supergravity; tachyons are also a feature
of de Sitter constructions in supergravity [49]. The models we have examined in Section
3 do not satisfy the refined de Sitter conjecture globally as they have points with positive
masses and ey ~ O(10~%); however, rapid-turn inflationary trajectories do not exist in
that region.
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A Single superfield model

In order to understand the viability of large turning rates analytically, we now examine
models consisting of a single superfield ®, i.e. multifield sGoldstino inflation. We consider
models with a Kéhler potential given by

K = —3alog[(® + ®)/Mpy]. (A.1)
For simplicity, we take the superpotential to be a monomial in @,
W = M3, (A.2)

where n is an integer. Expanding the superfield into real and imaginary parts, ® = r + 0,
the resulting scalar potential is

02 +12)" " [/ (o — 2n/3)2

_ 2(3—n) ( _ 2 _ 2

V =3M Jiarsa K - 1) 2+ (a—1)8 ] : (A.3)
and the metric on real fields takes the form of (2.31) with f = 23%

Axion inflation solutions require the consistency of both 6’ expressions in (2.34) and
(2.35). Denoting these expressions as 6] and 6/, respectively, we find them to be

;L 2
% _\/a (02 +12) (9a2 (02 + r2) — 3 (302 + (4n + 3)r?) + 4n2r2) (A4)

X [7“2( —270% (607 +r?) (6* + (2n + 1)r?) + 27a” (6% + r2)2

1/ (A.5)
+ 6anr? (02(2n + 7) + (6n + 3)r*) — 8n*r? (6 + nr?) ﬂ
40nr? (902 (62 + r%) — 9ab? + 3a(1 — 4n)r? + 4(n — 1)nr?)

g = — . (A.6)
2 3a (62 4+ 1r2) (9a2 (62 + r2) — 3a (362 + (4n + 3)72) + 4n?r?)

When these expressions are equal, slow-roll trajectories are constrained to be of the form
r = cnb, (A.7)

where ¢, is a proportionality constant depending on the order n of the monomial su-
perpotential and a. Although the expressions are unwieldy for n > 2, we present the
proportionality constant for the n = 1 case below:

ot /Fa Va(=8la? + 29702 —303a+87) +v/31/(—405a3 + 124202 —933a + 288) (ar—1)2
o (3a — 2)(9a2 — 21a + 4)2 '
(A.8)
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These solutions are only real-valued for 1 < a < ~=, which corresponds to a negative
potential. Hence, we can exclude slow-roll axion inflation from models with an n = 1
monomial superpotential. For higher order monomials with n = 2,3,4,5, our numerical
scans similarly find that the potential is either negative or complex wherever the solutions
are real-valued. We therefore expect slow-roll axion inflation to be forbidden in this entire
class of models with monomial superpotentials.

B Results from survey of supergravity models

To study the possibility of rapid-turn inflation in supergravity models, we surveyed several
from the literature ([44, 50-55]), as well as studied several ad-hoc models of our own
creation. After constructing the potential and field space metric in terms of real fields,
we scanned a wide region of allowed field and parameter space for each model. This
was achieved using an efficient differential-evolution optimizer in BlackBoxOptim.j1'!,
assuming “good” initial inflationary points minimized one of several cost functions. We
performed several scans with each choice of cost function, first assuming the initial velocities
to follow the rapid-turn solution [25, 28]. This cost function can be written
costrapid_tum(q;, parameters) = 3;}; + Ae + Bln| + C|v| + D(Q/H) ™2, (B.1)

v

where v% is the potential gradient unit vector and ¢, = v%},. This expression is small when
the solution admits both slow-roll and rapid-turn, and with A, B, C, D chosen to weight
each term’s relative contribution. Typical values chosen were A = 100, B = 10,C' =D =1,
though small changes in these values did not affect the result. For details on our numerical
method of constructing the zero-torsion rapid-turn inflationary solution at a given point in
parameter space, see [28].

As alternatives, we also examined cost functions to prefer high masses, with no infla-
tionary considerations:

oo 1
costgat (¢, d, parameters) = 10'°(# negative eigvals of Vj2) +

— —, (B.2)
lmin. eigval of V|

and an empirical cost function, with no assumptions about the initial conditions other than

the velocities were small enough to allow inflation to begin, i.e. the initial € < 1:

LR 1 J

COs'tempirical< ; ,parameters) =

Nend Wend ’ (B3)
where J = 100w, if the total number of e-foldings Nepng < 60 and is otherwise 1, and
Wend 18 the lowest value of w recorded during the final 10 e-folds of evolution. Numerical
integration was paused when ¢ = 1 or after 60 e-folds, whichever occurred first. The
empirical and high-mass scans treated the fields’ initial velocities as free parameters, rather
than determining them with the rapid-turn solution.

"https://github.com/robertfeldt/BlackBoxOptim.jl
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For each choice of cost function, at several hundred of its minimizing field and pa-
rameter values, we evolved the classical equations of motion using the publicly-available
multi-field inflationary dynamics code Inflation.jl [56] and recorded the number of e-
folds as well as the lowest turn rate recorded during the final 10 e-folds, weng. The empirical
cost function proved to be the most successful at finding inflationary points with slow-turn
inflation, while the rapid-turn cost function was comparably effective at finding rapid-turn
inflation. The fat cost function was the least effective at finding inflationary initial condi-
tions, suggesting the correlation between high mass points and inflationary points is not a
strong one in these models.

Below we display each scanned model’s Kéahler and superpotential, its reference when
available, and the best solution as ranked by the empirical cost function, even if found in a
scan using one of the other cost functions. Many published models restrict the field space to
the regime with S = 0, but in these scans we have avoided that limitation when possible,
rendering some of these models non-inflationary. Because the scale of the inflationary
potential does not affect the background evolution, coefficients common to all terms in the
superpotential have been neglected when possible. Although not indicated in the table,
none of the found rapid-turn phases were fat inflation. In each model, its real fields are
defined from the complex fields as ® = ¢! +i¢?, S = ¢° +i¢p*. We denote the initial e-fold
velocities by 7% = q'ﬁa /H. For notational convenience we set Mp) = 1.
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Figure 8: Behaviour of wgnd for different values of p in the EGNO model in Table 1.
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Table 1: Searched SUGRA models

Model K w 1Cs Nend wgnd Ref | Scanned range
o' = 0.6496
¢* =1.719 o' € (0.0,1.0)
= —0.2204 $* € (0.0,5.0)
72 = —0.6702 e (—V2,V2)
EGNO!? (3.18) (3.19) a = 0.966 60.0 | 10.58 | [44] | 7% € (—V2,V?2)
p = 3.055 a € (0.0,1.0)
c = 2258 p € (0,2m)
a=1 ¢ € (0,3000)
S=0
o' =14.59
$? = 5.237
3 =19.75
¢t = 4.783
) e (0.0,20.0)
7l = —0.8464 I
A — pd 72 = (.8382 € (0.0,1079
2 — 3log[® + & — SS] . 60.0 | ~107% | [54] | p e (0.0,107%)
+ BS + S 7 = —0.5993 ;
. e (0.0,107%)
7t = —0.4731 5
€ (0.0,107%)
A = 0.0003386
1 = 0.00005
B = 0.0003447
v = 0.0007987
ot =0.7162
$? = 0.01539 .
X #* € (0.0,5.0)
¢ = 2.441 )
- ¢4 = 0.005576 ¢ € (0:0,V3)
—3log[l + —(® — ®)* , o % € (0.0,V6)
3 1 —-S(e*- — = —1.026 60.0 | 0.004 | [50] |
_ 21435 2 € (0.0,V6)
3 ] 72 = —0.6852 ,
7€ (—V2,V?2)
73 =1.392
v € (0.0,20.0)
mt = —0.9465
v =0.5917

( To be continued)

12Note that these parameters are not limited to p = 0, like the parameters presented in Section 3.4.2.
They were found during a scan with Inflation.jl and BlackBoxOptim.j1l as described above.
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Model K w 1Cs Nend wfmd Ref | Scanned range
o' = —0.04236
»* = 0.4779
& — 9,098 P € (—2.0,2.0)
¢t = 0‘1057 @ € (00,100)
)2 o 3 € (0.0,10.0
4.1 ®+2) 1+ 55 S(1— e ®) ' = —0.07004 | 60.0 | 0.00297 | [51] ¢4 ( )
2 ) #* € (0.0,10.0)
72 = —0.01171
7 =0.3973 ™ (-V2,V2)
. 0'93 a € (0.0,10.0)
T = U.
a = 0.4813
o =1.921
¢* =0.1958
> = 0.03938 € (20,20)
o 0'1432 € (0.0,10.0)
T2 P ‘ 0.0,10.0
4.2 ®+9) + 85 S'sin <a> nl =0.7423 13.27 | ~ 1078 | [51] €l )
2 2 e (0.0,10.0)
72 = 1.408
- € (—v2,v2)
7 = —0.04178
. € (0.0,10.0)
7t = —0.6481
o = 2.107
o' =1.874
2
= 0.7861
23—009951 ¢1€( 2.0,2.0)
¢! = 0.8866 " €(00,100)
i _'0 10 3 € (0.0,10.0)
' 0.0,10.0
O+ 5> ) S(Asin(®a/2) 72 =1.136 €l )
4.3 + 55 , 5 60.0 | 0.0025 | [51] € (-v2,v?2)
2 +Bsin(®5/2)) ™ =0.02645
‘_ 110 e (0.0,10.0)
™ = 1.
o 195 56(00100)
5 4'175 A €(0.0,10.0)
o € (0.0,10.0),
A =3.718
B = 1.402

( 'To be continued)
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Model K w 1Cs Nend wfmd Ref | Scanned range
¢ =0.2574
$? =2.173
$* =1.203
' =9.63 € (0.0,10.0)
_ 7l = —0.2818 € (—V2,V?2)
—3log (® + D)+ —if 4+ ihS
5 og (S 1 5) i 72 =-0.01292 | 0.6489 | 0.0014 | [53] € (0.0,10.0)
— 10 2
& 1 7 =-1.37 € (0.0,10.0)
7t = —0.00025 € (0.0,10.0)
h=17%10""
q = 3.625
f=2.599
1
= 0.9854
¢2 $* € (0.0,1.0)
$* = 0.09409 )
otif 1 09966 ¢“ € (0.0,1.0)
6 P P — - 60.0 | ~107% | [52] | 7' e (—=V2,V2
V2 72 = —0.6254 152] ( )
c € (0.0,2.0)
¢ = 0.07026
f €(0.0,2.0)
f=0.1019
¢t = 1.777
$? = 0.3429
7l = —0.5227
72 = —1.292
po = 93.3
p1 = 73.06
p2 = 31.9 (10—6 10%)
_ p3 = 98.48 € (—10%,10%)
—3log(® + ® N o
Poly N iés ) S b por ps = —3.389 60.0 | 0.0033 | - € (-v2,v2)
n=0 ps = 57.9 (—102, 102)
pe = 69.24 Ne{1,...,10}
pr = —70.46
pg = —85.69
pg = —61.32
P1o = —19.51
N =10
S=0

( To be continued)
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Model K w 1Cs Nend wfmd Ref | Scanned range
ol =1.992
$? = —8.307
7l =—-1.233
72 =0.9123
po = —27.69
p1 = 33.45
po = 27.29 ¢1 (10—6 10%)
_ N p3 = —93.18 € (—10%,10%)
QPoly N Bﬁgg ) q)]?\’ﬁ;! pi=—5178 | 60.0 | ~107* | - € (-v2,v2)
n=0 ps = 23.04 € (—102,10?)
p = 16.54 Ne{l,...,10}
pr = 67.45
pg = 78.78
po = 38.83
pio = 58.3
N =10
S=0
' = 0.5322
$? =15.81
7l = —0.4712
72 = 0.1758
po = —3.048
p1 = —41.88
P2 = —52.78 € (1075,10%)
_ N p3 = 97.38 € (—102,10%)
EPoly N _3%? ) S p";;@ py =534 60.0 | 054 | - € (—V2,V?2)
n=0 ps = 75.42 pi € (=10%,10%)
pe = 36.84 Ne{l,...,10}
pr = 73.26
pg = 20.15
pg = 32.92
p1o = 36.91
N =10
S=0

( 'To be continued)
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Model K w 1Cs Nend wfmd Ref | Scanned range
ol =1.735
$? = —37.83
!l = —0.4471 € (1075,10%)
Serlog(® + ) - 7 = 0.2346 € (—10%,10%)
—a 10
PolyNa'? . 55 > p’;' a=0001984 | 60.0 | 16.28 | - € (—v2,V2)
n=0 po = 69.23 € (1072,10.0)
p1 = —6.451 € (—102,10%)
N=1
S=0
1
= 0.9469
¢2 Pt e (1072,10%)
$* = 10.09 5 € (00,109
€ (0.0,
. _ N m! = —0.06989 _
MonoNa! —3alog(® + @) ® > _ 1 oes 60.0 | 1.294 | - | 7€ (=v2,V2)
o= —1.
a € (1073,1.0)
o = 0.9966
N — 0.076 N € (2.0,10.0)
o' =0.8386
) € (0.01,1.0)
$* = 64.83
' _ 01642 € (0.0,100.0)
o = U.
€ (V2,v2)
2
_ 7% = 0.8657
Racetrack!® —3alog (P + ) Ae™ @ 4 0® 17.74 | ~ 1078 | [55] € (1073,1.0)
o = 0.9097
€ (0.0,10.0)
a=0.1189
€ (0.0,10.0)
b=9.857
€ (0.0,10.0)
A =17.964
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