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Discontinuous Galerkin methods are popular because they can achieve high order where the solution is

smooth, because they can capture shocks while needing only nearest-neighbor communication, and

because they are relatively easy to formulate on complex meshes. We perform a detailed comparison of

various limiting strategies presented in the literature applied to the equations of general relativistic

magnetohydrodynamics. We compare the standard minmod=ΛΠN limiter, the hierarchical limiter of

Krivodonova, the simple WENO limiter, the HWENO limiter, and a discontinuous Galerkin-finite-

difference hybrid method. The ultimate goal is to understand what limiting strategies are able to robustly

simulate magnetized Tolman-Oppenheimer-Volkoff stars without any fine-tuning of parameters. Among

the limiters explored here, the only limiting strategy we can endorse is a discontinuous Galerkin-finite-

difference hybrid method.

DOI: 10.1103/PhysRevD.105.123031

I. INTRODUCTION

Many of the most energetic phenomena in the universe

involve matter under extreme gravitational conditions.

These phenomena include neutron-star binary mergers,

accretion onto black holes, and supernova explosions. For

many of these systems, the motion of this matter is

expected to generate extremely strong magnetic fields.

The matter and magnetic fields in these systems are

governed by the equations of general relativistic magneto-

hydrodynamics (GRMHD). These equations admit a rich

variety of solutions, which often include large-scale

relativistic flows and small-scale phenomena such as

shocks and turbulence.

High-resolution shock capturing (HRSC) finite-difference

(FD) methods are the current standard methods of choice for

numerically evolving these solutions since they are able to

robustly handle shocks. Unfortunately, HRSC FD methods

have significant computational overhead and are less effi-

cient than spectral-typemethods like discontinuous Galerkin

(DG) where the solution is smooth. Additionally, achieving

better than second-order convergence is generally difficult,

with recent results presented in [1,2]. The common use of

second-order methods means that the current generation of

GRMHD codes is not accurate enough to provide useful

predictions formany extreme systems. Increasing simulation

resolutions can improve this, but is very computationally

expensive. More appealing is using numerical methods with

higher convergence orders,which can increase accuracywith

significantly less cost than a similar improvement from
*
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resolution. Unfortunately, while higher-order methods han-

dle smooth solutions very well, they are generally poor at

handling discontinuities, such as fluid shocks, losing accu-

racy and sometimes failing completely.

Additionally, the time required to run simulations is

already too long for most interesting astrophysical cases.

The performance of individual computational processors

has stagnated over the past decade, so to improve computa-

tional speed, codes must be parallelized over more pro-

cessors. New supercomputer clusters will soon routinely

have millions of cores. Codes designed for running on

thousands of processors generally scale poorly to massively

parallel setups, however. As problems are divided up into

an increasing numbers of parts, the amount of communi-

cation required during the simulation can become prohibi-

tive, particularly for high-order methods.

Discontinuous Galerkin methods [3–8], together with a

task-based parallelization strategy, have the potential to deal

with these problems. DG methods offer high-order accuracy

in smooth regions, with the potential for robust shock

capturing by some nonlinear stabilization technique. The

methods are also well suited for parallelization: Their for-

mulation in terms of local, nonoverlapping elements requires

only nearest-neighbor communication regardless of the

scheme’s order of convergence. Additionally, these features

allow for comparatively straightforward hp-adaptivity/
adaptive mesh refinement and local time stepping, enabling

better load distribution across a large number of cores.

Despite extensive success in engineering and applied

mathematics communities over the past two decades,

applications of DG in relativity [9–13] and astrophysics

[14–17] have typically been exploratory or confined to

simple problems. However, recently there have been sig-

nificant advances toward production codes for nonrelativ-

istic [18] and relativistic [19–21] hydrodynamics, special

relativisticmagnetohydrodynamics [16,22–26], the Einstein

equations [13,27], and relativistic hydrodynamics coupled

to the Einstein equations [28]. Most of these codes use the

Message Passing Interface to implement a data parallelism

strategy, though [20,23] use task-based parallelism.

In this paper we present a detailed comparison of various

different limiting and shock capturing strategies for DG

methods in the context of demanding GRMHD test

problems. Specifically, we compare the classical limiters

ΛΠ
N limiter [29], Krivodonova limiter [30], and WENO-

based limiters [31,32], as well as a DG-FD hybrid method

similar to that of [33,34]. The ultimate goal is to simulate a

magnetized and nonmagnetized Tolman-Oppenheimer-

Volkoff (TOV) star in the Cowling approximation. To

the best of our knowledge this is the first time a magnetized

TOV star has been simulated using DG methods. This

paper presents a crucial first step to being able to apply DG

methods to simulations of binary neutron star mergers,

differentially rotating magnetized single neutron stars, and

magnetized accretion disks.

While generally the classical limiters produce the best

results when applied to the characteristic variables, these

are not known analytically for GRMHD. Even though most

test cases in this paper are in special relativity, we inten-

tionally apply the limiters to the conserved variables to

evaluate their performance in the form they need to be used

for GRMHD. Since FD methods are also known to be less

dissipative when applied to the characteristic variables, this

choice does not put any of the limiters at a disadvantage.

The paper is organized as follows. Section II describes

the formulation of GRMHD used in the problems presented

here. Section III describes the algorithms used by our open-

source code SpECTRE [35] to solve these equations. Results

of the evolutions of a variety of GRMHD problems are

presented in Sec. IV comparing the different shock captur-

ing strategies.

II. EQUATIONS OF GRMHD

We adopt the standard 3þ 1 form of the spacetime

metric (see, e.g., [36,37]),

ds2 ¼ gabdx
adxb

¼ −α2dt2 þ γij ðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

where α is the lapse, βi the shift vector, and γij is the spatial

metric.Weuse theEinstein summation convention, summing

over repeated indices. Latin indices from the first part of the

alphabet a; b; c;… denote spacetime indices ranging from

0 to 3, while Latin indices i; j;… are purely spatial, ranging

from 1 to 3. We work in units where c ¼ G ¼ M⊙ ¼ 1.

SpECTRE currently solves equations in flux-balanced and

first-order hyperbolic form. The general form of a flux-

balanced conservation law in a curved spacetime is

∂tU þ ∂iF
i ¼ S; ð2Þ

where U is the state vector, Fi are the components of the

flux vector, and S is the source vector.

We refer the reader to the literature [36,38,39] for a

detailed description of the equations of general relativistic

magnetohydrodynamics (GRMHD). If we ignore self-

gravity, the GRMHD equations constitute a closed system

that may be solved on a given background metric. We

denote the rest-mass density of the fluid by ρ and its

4-velocity by ua, where uaua ¼ −1. The dual of the

Faraday tensor Fab is

�Fab ¼ 1

2
ϵabcdFcd; ð3Þ

where ϵabcd is the Levi-Civita tensor. Note that the Levi-

Civita tensor is defined here with the convention [40] that in

flat spacetime ϵ0123 ¼ þ1. The equations governing the

evolution of the GRMHD system are
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∇aðρuaÞ ¼ 0 ðrest-mass conservationÞ; ð4Þ

∇aT
ab ¼ 0 ðenergy-momentum conservationÞ; ð5Þ

∇a
�Fab ¼ 0 ðhomogeneous Maxwell equationÞ: ð6Þ

In the ideal MHD limit the stress tensor takes the form

Tab ¼ ðρhÞ�uaub þ p�gab − babb; ð7Þ

where

ba ¼ −�Fabub ð8Þ

is the magnetic field measured in the comoving frame of the

fluid, and ðρhÞ� ¼ ρhþ b2 and p� ¼ pþ b2=2 are the

enthalpy density and fluid pressure augmented by contri-

butions of magnetic pressure pmag ¼ b2=2, respectively.

We denote the unit normal vector to the spatial hyper-

surfaces as na, which is given by

na ¼ ð1=α;−βi=αÞT ; ð9Þ

na ¼ ð−α; 0; 0; 0Þ: ð10Þ

The spatial velocity of the fluid as measured by an observer

at rest in the spatial hypersurfaces (“Eulerian observer”) is

vi ¼ 1

α

�

ui

u0
þ βi

�

; ð11Þ

with a corresponding Lorentz factor W given by

W ¼ −uana ¼ αu0 ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − γijv
ivj

q ð12Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γijuiuj

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γijW2vivj

q

: ð13Þ

The electric and magnetic fields as measured by a Eulerian

observer are given by

Ei ¼ Fiana ¼ αF0i; ð14Þ

Bi ¼ −�Fiana ¼ −α�F0i: ð15Þ

Finally, the comoving magnetic field ba in terms of Bi is

b0 ¼ W

α
Bivi; ð16Þ

bi ¼ Bi þ αb0ui

W
; ð17Þ

while b2 ¼ baba is given by

b2 ¼ B2

W2
þ ðBiviÞ2: ð18Þ

We now recast the GRMHD equations in a 3þ 1 split by

projecting them along and perpendicular to na [38]. One of
the main complications when solving the GRMHD equa-

tions numerically is preserving the constraint

∂ið
ffiffiffi

γ
p

BiÞ ¼ 0; ð19Þ

where γ ¼ detðγijÞ is the determinant of the spatial metric.

Analytically, initial data evolved using the dynamical

Maxwell equations are guaranteed to preserve the con-

straint. However, numerical errors generate constraint

violations that need to be controlled. We opt to use the

generalized Lagrange multiplier or divergence cleaning

method [41] where an additional field Φ is evolved in order

to propagate constraint violations out of the domain. Our

version is very close to the one in Ref. [42]. The augmented

system can still be written in flux-balanced form, where the

conserved variables are

U ¼ ffiffiffi

γ
p

0

B

B

B

B

B

B

@

D

Sj

τ

Bj

Φ

1

C

C

C

C

C

C

A

¼

0

B

B

B

B

B

B

@

D̃

S̃j

τ̃

B̃j

Φ̃

1

C

C

C

C

C

C

A

¼ ffiffiffi

γ
p

0

B

B

B

B

B

B

@

ρW

ðρhÞ�W2vj − αb0bj

ðρhÞ�W2 − p� − ðαb0Þ2 − ρW

Bj

Φ

1

C

C

C

C

C

C

A

; ð20Þ

with corresponding fluxes

Fi ¼

0

B

B

B

B

B

B

@

D̃vitr

S̃jv
i
tr þ α

ffiffiffi

γ
p

p�δij − αbjB̃
i=W

τ̃vitr þ α
ffiffiffi

γ
p

p�vi − α2b0B̃i=W

B̃jvitr − αvjB̃i þ αγijΦ̃

αB̃i
− Φ̃βi

1

C

C

C

C

C

C

A

; ð21Þ

and corresponding sources

S ¼

0

B

B

B

B

B

B

@

0

ðα=2ÞS̃kl∂jγkl þ S̃k∂jβ
k − Ẽ∂jα

αS̃klKkl − S̃k∂kα

−B̃k
∂kβ

j þΦ∂kðα
ffiffiffi

γ
p

γjkÞ
αB̃k

∂k ln α − αKΦ̃ − ακΦ̃

1

C

C

C

C

C

C

A

: ð22Þ
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The transport velocity is defined as vitr ¼ αvi − βi and the

generalized energy Ẽ and source S̃ij are given by

Ẽ ¼ τ̃ þ D̃; ð23Þ

S̃ij ¼ ffiffiffi

γ
p ½ðρhÞ�W2vivj þ p�γij − γikγjlbkbl�: ð24Þ

The 3þ 1 GRMHD divergence cleaning evolution

equations analytically preserve the constraint (19), while

numerically constraint-violating modes will be damped at a

rate κ. We typically choose κ ∈ ½0; 10�, but will specify the

exact value used for each test problem. We note that the

divergence cleaning method was shown to be strongly

hyperbolic in Ref. [43], a necessary condition for a well-

posed evolution problem. The primitive variables of the

GRMHD system are ρ, vi, B
i, Φ, and the specific internal

energy ϵ.

Approximate Riemann solvers use the characteristic

speeds, which in the GRMHD case require solving a

nontrivial quartic equation for the fast and slow modes.

Instead, we use the approximation [44]

λ1 ¼ −α − βn; ð25Þ

λ2 ¼ αΛ− − βn; ð26Þ

λ3;4;5;6;7 ¼ αvn − βn; ð27Þ

λ8 ¼ αΛþ − βn; ð28Þ

λ9 ¼ α − βn; ð29Þ

where βn and vn are the shift and spatial velocity projected

along the normal vector in the direction that we want to

compute the characteristic speeds along, and

Λ
� ¼ 1

1 − v2c2s

h

vnð1 − c2sÞ

�cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − v2Þð1 − v2c2s − v2nð1 − c2sÞÞ
q

i

; ð30Þ

where cs is the sound speed given by

c2s ¼
1

h

��

∂p

∂ρ

�

ϵ

þ p

ρ2

�

∂p

∂ϵ

�

ρ

�

: ð31Þ

III. METHODS

A. The discontinuous Galerkin method

We briefly summarize the nodal discontinuous Galerkin

(DG) method for curved spacetimes [19] in d spatial

dimensions. We decompose the computational domain into

k elements, each with a reference coordinate system

fξ; η; ζg ∈ ½−1; 1�. We denote the ith element by Ωi, so

our computational domain Ω ¼∪i¼1…k Ωi. In this work we

consider only dimension-by-dimension affine maps. We

expand the solution in each element over a tensor product

basis ϕs̆ of 1d Lagrange polynomials lĭ,

UðξÞ ¼
X

s̆

Us̆ðtÞϕs̆ðξÞ

¼
X

{̆

X

|̆

X

k̆

U{̆ |̆ k̆ðtÞl{̆ðξÞl|̆ðηÞlk̆ðζÞ; ð32Þ

where ξ, η, and ζ are the logical (or reference) coordinates.

We use Legendre-Gauss-Lobatto collocation points, though

SpECTRE also supports Legendre-Gauss points. We denote a

DG scheme with 1d basis functions of degree N by PN.

A PN scheme is expected to converge at order OðΔxNþ1Þ
for smooth solutions [4], where Δx is the 1d size of an

element.

A spatial discretization is obtained by integrating the

evolution equations (2) against the basis functions ϕs̆,

0 ¼
Z

Ωi

½∂tU þ ∂iF
i − S�ϕs̆ðxÞd3x

¼
Z

Ωi

½∂tU þ ∂iF
i − S�ϕs̆ðξÞJd3ξ; ð33Þ

where J is the Jacobian determinant of the map from the

reference coordinates ξ to the coordinates x. Denoting the

normal covector to the spatial boundary of the element as

ni, integrating the flux divergence term by-parts, replacing

Fini with a boundary correction/numerical flux G, and
undoing the integration by-parts, we obtain

Z

Ωi

∂tðUÞ Jd3ξ ¼
I

∂Ωi

ðG − FiniÞϕs̆ðξÞ d2Σ

þ
Z

Ωi

½∂iFi þ S�ϕs̆ðξÞJ d3ξ; ð34Þ

where d2Σ is the area element on the surface of the element.

The area element in the þζ direction is given by [19]

d2Σ ¼
ffiffiffiffiffiffiffi

ð2Þγ
p

ffiffiffi

γ
p dξ1dξ2 ¼ J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ
3̂ {̂

∂ξ{̂

∂xi
γij

∂ξ|̂

∂xj
δ
3̂ |̂

r

dξ1dξ2: ð35Þ

Note that the normalization of the normal vectors in the

G − Fini term does not cancel out with the term in (35), as

stated in [19]. This is because both the inverse spatial

metric and the Jacobian may be different on each side of the

boundary. Specifically, when the spacetime is evolved, each

element normalizes the normal vector using its local inverse

spatial metric.

Finally, the semidiscrete evolution equations are obtained

by expandingU;Fi, andS in terms of the basis functions and

evaluating the integrals by Gaussian quadrature. Our nodal

NILS DEPPE et al. PHYS. REV. D 105, 123031 (2022)

123031-4



DG code uses the mass lumping approximation
1
when

Gauss-Lobatto points are employed.

B. Numerical fluxes

One of the key ingredients in conservative numerical

schemes is the approximate solution to the Riemann

problem on the interface. We use the Rusanov solver

[46] (also known as the local Lax-Friedrichs flux), and

the solver of Harten, Lax, and van Leer (HLL) [47,48].

While both the Rusanov and the HLL solver are quite

simple, their use is standard in numerical relativity. The

Rusanov solver is given by

GRusanov ¼ 1

2
ðFk;þnþk þ Fk;−n−k Þ −

C

2
ðUþ −U−Þ; ð36Þ

where C ¼ maxðjλiðUþÞj; jλiðU−ÞjÞ, and λiðUÞ is the set of
characteristic speeds. Quantities superscripted with a plus

sign are on the exterior side of the boundary between an

element and its neighbor, while quantities superscripted

with a minus sign are on the interior side. In this section nk
is the outward pointing unit normal to the element.

The HLL solver is given by

GHLL ¼ λminF
k;þnþk þ λmaxF

k;−n−k
λmax − λmin

−
λmaxλmin

λmax − λmin

ðUþ −U−Þ; ð37Þ

where λmin and λmax are estimates for the fastest left- and

right-moving signal speeds, respectively. We compute the

approximate signal speeds pointwise using the scheme

presented in Ref. [49]. Specifically,

λmin ¼ minðλiðUþÞ; λiðU−Þ; 0Þ;
λmax ¼ maxðλiðUþÞ; λiðU−Þ; 0Þ: ð38Þ

C. Time stepping

SpECTRE supports time integration using explicit multi-

step and substep integrators. The results presented here

were obtained using either a strong stability-preserving

third-order Runge-Kutta method [4] or a self-starting

Adams-Bashforth method. SpECTRE additionally supports

local time stepping when using Adams-Bashforth schemes

[50], but that feature was not used for any of these

problems. The maximum admissible time step size for a

PN scheme is [51]

Δt ≤
c

dð2N þ 1Þ
Δx

λmax

; ð39Þ

where c is a time-stepper-dependent constant, d is the

number of spatial dimensions, Δx is the minimum 1d size

(along each Cartesian axis) of the element, and λmax is the

maximum characteristic speed in the element.

D. Limiting

Near shocks, discontinuities, and stellar surfaces, the DG

solution may exhibit spurious oscillations (i.e., Gibbs

phenomenon) and overshoots. These oscillations can lead

to a nonphysical fluid state (e.g., negative densities) at

individual grid points and prevent stable evolution of the

system. To maintain a stable scheme, some nonlinear

limiting procedure is necessary. In general, we identify

elements where the solution contains spurious oscillations

(we label these elements as “troubled cells”) and we modify

the solution on these elements to reduce the amount of

oscillation.

In this work we consider limiters that preserve the order

of the DG solution while maintaining a compact (nearest-

neighbor) stencil. The compact stencil greatly simplifies

communication patterns, but, in order to provide the limiter

with sufficient information to preserve the order of the

scheme, it becomes necessary to send larger amounts of

data from each element for each limiting step. We specifi-

cally consider

(i) the ΛΠ
N limiter of [29];

(ii) the hierarchical limiter of Krivodonova [30];

(iii) the simple WENO limiter of [31] (based on

weighted essentially nonoscillatory, often abbrevi-

ated as WENO, finite volume methods);

(iv) the Hermite WENO (HWENO) limiter of [32];

(v) a DG-finite-difference hybrid scheme similar to that

of [33,34].

Note that we do not use the limiter of Moe, Rossmanith,

and Seal [52] because our experiments show that it is not

very robust for the kinds of problems we study here.

Below we summarize the action of these limiters. Note

that because computing the characteristic variables of the

GRMHD system is complicated, we apply the limiters to

the evolved (i.e., conserved) variables. However, we do not

limit the divergence-cleaning field Φ, as it is not expected

to form any shocks. The limiters are applied at the end of

each time step when using an Adams-Bashforth method,

and at the end of each substep when using a Runge-Kutta

method.

1. ΛΠN

The ΛΠ
N limiter [6,29,51,53] works by reducing the

spatial slope of each variable U if the data look like they

may contain oscillations. Specifically, if the slope exceeds a

simple estimate based on differencing the cell average of U
vs the neighbor elements’ cell averages of U, then the

limiter will linearize the solution and reduce its slope in a

conservative manner. We use the total variation bounding

(TVB) version of this limiter, which only activates if the

1
“Mass lumping” is the term that describes using the diagonal

approximation for the mass matrix. See [45] for more details.
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slope is above mh2, where m is the so-called TVB constant

and h is the size of the DG element. This procedure is

repeated independently for each variable component U
being limited. While quite simple and robust, this limiter is

very aggressive and can cause significant smearing of

shocks and flattening of smooth extrema.

2. Krivodonova limiter

The Krivodonova limiter [30] works by limiting the

coefficients of the solution’s modal representation, starting

with the highest coefficient then decreasing in order until

no more limiting is necessary. This procedure is repeated

independently for each variable component U being

limited. Although the algorithm is only described in one

or two dimensions, the limiting algorithm is straightfor-

wardly generalized to our 3d application. We expand U
over a basis of Legendre polynomials Pi,

Ul;m;n ¼
X

N;N;N

i;j;k¼0;0;0

cl;m;n
i;j;k PiðξÞPjðηÞPkðζÞ; ð40Þ

where the cl;m;n
i;j;k are the modal coefficients, with the

superscript fl; m; ng representing the element indexed by

l,m, n, and the upper bound N is the number of collocation

points minus one in each of the ξ, η, ζ directions.

Each coefficient is limited by comparison with the

coefficients of U in neighboring elements. The new value

c̃l;m;n
i;j;k of cl;m;n

i;j;k is computed according to

c̃l;m;n
i;j;k ¼ minmodðcl;m;n

i;j;k ; αiðclþ1;m;n
i−1;j;k − cl;m;n

i−1;j;kÞ;
αiðcl;m;n

i−1;j;k − cl−1;m;n
i−1;j;k Þ; αjðcl;mþ1;n

i;j−1;k − cl;m;n
i;j−1;kÞ;

αjðcl;m;n
i;j−1;k − cl;m−1;n

i;j−1;k Þ; αkðcl;m;nþ1

i;j;k−1 − cl;m;n
i;j;k−1Þ;

αkðcl;m;n
i;j;k−1 − cl;m;n−1

i;j;k−1 ÞÞ; ð41Þ

where minmod is the minmod function defined as

minmodða;b;…Þ

¼
�

sgnðaÞminðjaj;jbj;…Þ; if sgnðaÞ¼ sgnðbÞ¼ sgnð…Þ
0; otherwise;

ð42Þ

and the αi, αj, αk set the strength of the limiter. In all cases

shown in this paper, we set αi ¼ 1, at the least dissipative

end of the range for these parameters.
2

The algorithm for limiting from highest to lowest modal

coefficient is as follows. We first compute c̃N;N;N (we drop

the element superscripts here). If this is equal to cN;N;N , no

limiting is done. Otherwise, we update cN;N;N ¼ c̃N;N;N , and

compute the trio of coefficients c̃N;N;N−1; c̃N;N−1;N ; c̃N−1;N;N .

If all of these are unchanged, the limiting stops. Otherwise,

we update each coefficient and proceed to limiting all

coefficients given by index permutations such that

iþ jþ k ¼ 3N − 2, then iþ jþ k ¼ 3N − 3, etc. up to

the three index permutations of c1;0;0. Finally, the limited

modal coefficients are used to recover the limited nodal

values of the function U. Note that by not modifying c0;0;0
the cell average is maintained.

3. Simple WENO

For the two WENO limiters, we use a troubled-cell

indicator based on the TVB minmod limiter [6,51,53] to

determine whether limiting is needed. When needed, each

limiter uses a standard WENO procedure to reconstruct the

local solution from several different estimated solutions.

In the simple WENO limiter [31], each variable compo-

nent U being limited is checked independently: if it is

flagged for slope reduction by the minmod limiter, then this

component is reconstructed. This limiter uses several

different estimated solutions for U on the troubled element

labeled by k. The first estimate is the unlimited local data

Uk. Each neighbor n of k also provides a “modified”

solution estimate Ukn ; in the case of the simple WENO

limiter, this estimate is simply obtained by evaluating the

neighbor’s solution Un on the grid points of the element k.
We follow the standard WENO algorithm of reconstructing

the solution from a weighted sum of these estimates,

Uk
new ¼ ωkU

k þ
X

n

ωnU
kn ; ð43Þ

where the ωi are the weights associated with each solution

estimate, and satisfy the normalization
P

i ωi ¼ 1.

The weights are obtained by first computing an oscil-

lation indicator (also called a smoothness indicator) σi for

each Ui ¼ fUk; Ukng, which measures the amount of

oscillation in the data. We use an indicator based on

Eq. (23) of [54], but adapted for use on square or cubical

grids,

σi ¼
X

N

α¼0

X

N

β¼0

X

N

γ¼0

αþβþγ>0

Z

22ðαþβþγÞ−1

×

�

∂
αþβþγ

∂ξα∂ηβ∂ζγ
Ui

�

2

dξ dη dζ: ð44Þ

Here the restriction on the sum avoids the term that has

no derivatives of Ui, and the powers of two come from

the interval width in the reference coordinates. From

2
Whereas Krivodonova [30] changes normalization conven-

tion for the Legendre polynomials in going from one to two
dimensions, our convention matches their 1d convention in all
cases, so that the range of the αi parameters is given by Eq. (14) in
the reference.
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the oscillation indicators, we compute the nonlinear

weights:

ω̄i ¼
γi

ðϵþ σiÞ2
: ð45Þ

Here the γi are the linear weights that give the relative

weight of the local and neighbor contributions before

accounting for oscillation in the data, and ϵ is a small

number to avoid the denominator vanishing. We use

standard values from the literature for both—we take γkn ¼
0.001 for the neighbor contributions (then γk ¼ 0.994 for

an element with six neighbors; in general γk is set by the

requirement that all the γi sum to unity), and ϵ ¼ 10−6.

Finally, the normalized nonlinear weights that go into the

WENO reconstruction are given by

ωi ¼
ω̄i

P

iω̄i

: ð46Þ

Note that the simple WENO limiter is not conservative

since the neighboring elements’ polynomials do not have

the same element average as the element being limited.

4. HWENO

Our implementation of the HWENO limiter [32] follows

similar steps. Note that we again use the TVB minmod

limiter as troubled-cell indicator, whereas the reference

uses the troubled-cell indicator of [55]. But, in keeping with

the HWENO algorithm, we check the minmod indicator on

all components ofU being limited, and if any component is

flagged for slope reduction, then the element is labeled as

troubled and every variable being limited is reconstructed

using the WENO procedure.

The HWENO modified solution estimates from the

neighboring elements are computed as a least-squared fit

to U across several elements. This broader fitting reduces

oscillations as compared to the polynomial extrapolation

used in the simple WENO estimates, and this improves

robustness near shocks. The HWENO reconstruction uses a

differently weighted oscillation indicator, computed sim-

ilarly to Eq. (44) but with the prefactor in the integral being

instead ð22ðαþβþγÞ−1Þ=ððαþ β þ γÞ!Þ2. The HWENO algo-

rithm explicitly guarantees conservation by constraining

the reconstructed polynomials to have the same element-

average value.

5. DG-finite-difference hybrid method

To the best of our knowledge the idea of hybridizing

efficient spectral-type methods with robust high-resolution

shock-capturing finite difference (FD) or finite volume

(FV) schemes was first presented in [33]. However, our

implementation is more similar to that of [34]. The basic

idea is that after a time step or substep we check that the

unlimited DG solution is satisfactory. If it is not, we mark

the cell as troubled and retake the time step using standard

FD methods. In this paper we use monotized-central

reconstruction and the same numerical flux/boundary

correction as the DG scheme uses. Our DG-FD hybrid

method is also similar to that used in [21]. However, [21]

did not attempt to run the method in 3d because of memory

overhead. We have not done a detailed comparison of

memory overhead between different limiting strategies, but

have not noticed any significant barriers with the DG-FD

hybrid scheme. We present a detailed description of our

DG-FD hybrid method in a companion paper [56]. Our

DG-FD hybrid method is not strictly conservative at

boundaries where one element uses DG and another uses

FD. This is because on the DG element we use the

boundary correction of the reconstructed FD data, rather

than the reconstructed boundary correction computed on

the FD grid. In practice we have not found any negative

impact from this choice.

E. Primitive recovery

One of the most difficult and expensive aspects of

evolving the GRMHD equations is recovering the primitive

variables from the conserved variables. Several different

primitive recovery schemes are compared in [57]. We use

the recently proposed scheme of Kastaun et al. [58]. If this

scheme fails to recover the primitives, we try the Newman-

Hamlin scheme [59]. If the Newman-Hamlin scheme fails,

we use the scheme of Palenzuela et al. [60], and if that fails

we terminate the simulation. Note that we have not yet

incorporated all the fixing procedures to avoid recovery

failure that are presented in [58].

F. Variable fixing

During the evolution the conserved and primitive var-

iables can become nonphysical or enter regimes where the

evolution is no longer stable (e.g., zero density). When

limiting the solution does not remove these unphysical or

bad values, a pointwise fixing procedure is used—at any

grid points where the chosen conditions are not satisfied,

the conserved variables are adjusted. The fixing procedures

are generally not conservative and are used only as a

fallback to ensure a stable evolution. In SpECTRE we

currently use two fixing algorithms: The first applies an

“atmosphere” in low-density regions, while the second

adjusts the conserved variables in an attempt to guarantee

primitive recovery.

Our atmosphere treatment is similar to that of [61–63].

We define values ρatm and ρcutoff , where ρatm ≤ ρcutoff . For

any point where ρ < ρcutoff we set

ρ ¼ ρatm; vi ¼ 0; W ¼ 1: ð47Þ

When ρcutoff < ρ ≤ 10ρatm we require that vivi < 10−4.

After the primitive variables are set to the atmosphere we

recompute the conserved variables from the primitive ones.
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Our fixing of the conserved variables is based on that of

Refs. [63,64]. We define Dmin and Dcutoff and adjust D̃ if

D < Dcutoff . Specifically, we set D̃ ¼ ffiffiffi

γ
p

Dmin. We adjust τ̃

such that B̃2
≤ 2

ffiffiffi

γ
p ð1 − ϵBÞτ̃, where ϵB is a small number

typically set to 10−12.

Finally, we adjust S̃i such that S̃2 ≤ S̃2max, where S̃
2
max is

defined below. We define variables

τ̂ ¼ τ̃

D̃
; ð48Þ

B̂2 ¼ B̃2

ffiffiffi

γ
p

D̃
; ð49Þ

μ̂ ¼
� S̃iB̃

i

ffiffiffiffiffiffiffi

B̃2S̃2
p ; B̃2 > D̃× 10−16 and S̃2 > D̃2 × 10−16

0; otherwise:

ð50Þ

The Lorentz factor is bounded by

maxð1; 1þ τ̂ − B̂2Þ ≤ W ≤ 1þ τ̂; ð51Þ

and is determined by finding the root of

gðWÞ ¼ ðW þ B̂2
− τ̂ − 1Þ½W2 þ B̂2μ̂2ðB̂2 þ 2WÞ�

−
B̂2

2
½1þ μ̂2ðW2 þ 2WB̂2 þ B̂4

− 1Þ�: ð52Þ

Using the Lorentz factor W obtained by solving (52) we

define S̃max as

S̃max ¼ S̃min

�

1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1− ϵSÞðWþ B̂2Þ2ðW2−1ÞD̃2

ðS̃2þ D̃2×10−16Þ½W2þ μ̂2B̂2ðB̂2þ2WÞ�

s

�

; ð53Þ

where ϵS is a small number typically set to 10−12. We apply

the check on the conserved variables after each time or

substep before a primitive recovery is done.

Implementing root finding for Eq. (52) in a manner that

is well behaved for floating point arithmetic is important.

Specifically, we solve

gðWÞ ¼
�

1

2
B̂2

− τ̂

�

ð1þ 2B̂2μ̂2 þ B̂4μ̂2Þ

þ ðW − 1Þ½2ðB̂2
− τ̂Þð1þ B̂2μ̂2Þ þ B̂2μ̂2 þ 1�

þ ðW − 1Þ2
�

B̂2
− τ̂ þ 3

2
B̂2μ̂2 þ 2

�

þ ðW − 1Þ3 ð54Þ

for W − 1 when the lower bound for W is 1 and

gðWÞ ¼ −
1

2
B̂2½1þ μ̂2τ̂ðτ̂ þ 2Þ�

þ ½W − ð1þ τ̂ − B̂2Þ�½1þ B̂2μ̂2

þ ðτ̂ − B̂2ÞðB̂2μ̂2 þ τ̂ − B̂2 þ 2Þ�

þ ½W − ð1þ τ̂ − B̂2Þ�2
�

2ðτ̂ − B̂2Þ þ 3

3
B̂2μ̂2 þ 2

�

þ ½W − ð1þ τ̂ − B̂2Þ�3 ð55Þ

for W − ð1þ τ̂ − B̂2Þ when the lower bound for W is

1þ τ̂ − B̂2.

We also have a flattening algorithm inspired by [65] that

reduces oscillations of the conserved variables if the

solution is unphysical. Unlike the pointwise fixing, the

flattening algorithm is conservative. In particular, we

reduce the oscillations in D̃ if it is negative at any point

in the cell, and we rescale τ̃ to satisfy B̃2
≤ 2

ffiffiffi

γ
p

τ̃. Finally, if

the primitive variables cannot be recovered we reset the

conserved variables to their mean values.

IV. NUMERICAL RESULTS

For all test problems we use the less dissipative HLL

boundary correction. In many cases one of the limiting

strategies fails. This failure usually occurs during the

primitive recovery. However, this is a symptom of the

DG and limiting procedure producing a bad state rather

than a poor primitive recovery algorithm. All simulations

are performed using SpECTRE v2022.04.04 [35] and the input

files used are provided alongside the arXiv version.

A. 1d smooth flow

We consider a simple 1d smooth flow problem to test

which of the limiters and troubled-cell indicators are able to

solve a smooth problem without degrading the order of

accuracy. A smooth density perturbation is advected

across the domain with a velocity vi. The analytic solution
is given by

ρ ¼ 1þ 0.7 sin½kiðxi − vitÞ�; ð56Þ

vi ¼ ð0.8; 0; 0Þ; ð57Þ

ki ¼ ð1; 0; 0Þ; ð58Þ

p ¼ 1; ð59Þ

Bi ¼ ð0; 0; 0Þ; ð60Þ

and we close the system with an adiabatic equation of state,

p ¼ ρϵðΓ − 1Þ; ð61Þ
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where Γ is the adiabatic index, which we set to 1.4. We use

a domain given by ½0; 2π�3 and apply periodic boundary

conditions in all directions. The time step size is Δt ¼
2π=5120 so that the spatial discretization error is larger than
the time stepping error for all resolutions we use.

We perform a convergence test using the different

limiting strategies and present the results in Table I. We

show both the L2 norm of the error and the convergence

order. The L2 norm is defined as

L2ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M

X

M−1

i¼0

u2i

v

u

u

t ; ð62Þ

where M is the total number of grid points and ui is

the value of u at grid point i and the convergence order is

given by

L2 order ¼ log2

�

L2ðENx=2
Þ

L2ðENx
Þ

�

: ð63Þ

We see that the troubled-cell indicator for the ΛΠ
N ,

HWENO, and simple WENO limiters does not flag any

cells as troubled and the full order of accuracy of the DG

scheme is preserved. For these simulations we used a TVB

constant of 1. The Krivodonova limiter completely flattens

the solution and shows no convergence. The reason is that

the Krivodonova limiter is unable to preserve a smooth

solution if the flow is constant in an orthogonal direction.

This can be understood from the minmod algorithm being

applied to the neighboring coefficients. The smooth flow

solution is constant in the y and z directions, and so the

Krivodonova limiter effectively zeros all higher moments.

The DG-FD P5 scheme switches to FD when we use only

two elements, but from four to 16 elements it uses DG. The

order of convergence is so large for the Nx ¼ 4 case

because in addition to doubling the resolution, the code

also switches from using second-order FD to sixth-order

DG, causing a very large decrease in the errors. Using a

higher-order or adaptive-order FD scheme is expected to

preserve the accuracy much better when the hybrid scheme

is using FD, while still being able to capture shocks

robustly and accurately.

B. 1d Riemann problems

One-dimensional Riemann problems are a standard test

for any scheme that must be able to handle shocks. We will

focus on the first Riemann problem (RP1) of [66]. The

setup is given in Table II. While not the most challenging

Riemann problem, it gives a good baseline for different

limiting strategies. We perform simulations using an SSP-

RK3 method with Δt ¼ 5 × 10−4. In Fig. 1 we show the

rest mass density ρ at tf ¼ 0.4 for simulations using the

simple WENO, HWENO, ΛΠN , and Krivodonova limiters,

as well as a run using the DG-FD hybrid scheme. The thin

black curve is the analytic solution obtained using the

Riemann solver of [67]. All simulations use 128 elements

in the x direction with a P2 (third-order) DG scheme, and an

ideal fluid equation of state, Eq. (61).

While all five limiting strategies evolve to the final time,

the DG-FD scheme is the least oscillatory and is also able to

resolve the discontinuities much more accurately. The

HWENO scheme is slightly less oscillatory if linear

neighbor weights of γk ¼ 0.01 are used instead of

γk ¼ 0.001. However, the simple WENO limiter fails to

evolve the solution with γk ¼ 0.01 and such sensitivity to

parameters in the algorithm is not desirable when solving

realistic problems. Going to higher order has proven to be

especially challenging. While both the ΛΠ
N and the

Krivodonova complete the evolution when using a P5

TABLE I. The errors and local convergence order for the

smooth flow problem using different limiting strategies. Note

that the limiter is not applied if the troubled-cell indicator

determines the DG solution to be valid. Except for the Krivo-

donova limiter, which is nonconvergent, we observe the expected

convergence order except when the solution is under-resolved

because too few elements are used.

Limiter Nx L2ðEðρÞÞ L2 order

ΛΠ
N 2 2.22282 × 10−3

4 2.23822 × 10−5 6.63

8 3.18504 × 10−7 6.13

16 5.08821 × 10−9 5.97

HWENO 2 2.22282 × 10−3

4 2.23822 × 10−5 6.63

8 3.18504 × 10−7 6.13

16 5.08821 × 10−9 5.97

Simple WENO 2 2.22282 × 10−3

4 2.23822 × 10−5 6.63

8 3.18504 × 10−7 6.13

16 5.08821 × 10−9 5.97

Krivodonova 2 3.92346 × 10−1

4 4.94975 × 10−1 −0.34

8 4.94975 × 10−1 0.00

16 4.73294 × 10−1 0.06

DG-FD P5 2 3.45679 × 10−1

4 2.23822e × 10−5 13.91

8 3.18504 × 10−7 6.13

16 5.08821 × 10−9 5.97

TABLE II. The initial conditions for Riemann problem 1 of [66].

The domain is x ∈ ½−0.5; 0.5�, the final time is tf ¼ 0.4, and an

ideal fluid equation of state is used with an adiabatic index of 2.

ρ ρ vi Bi

x < 0 1.0 1.0 (0,0,0) (0.5, 1,0)

x ≥ 0 0.125 0.1 (0,0,0) (0.5, −1; 0)
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scheme with 64 elements (simple WENO and HWENO

fail), additional spurious oscillations are present. In com-

parison, the DG-FD hybrid scheme actually has fewer

oscillations when going to higher order. In Fig. 2 we plot

the error of the numerical solution using a P2 DG-FD

schemewith 128 elements and a P5 DG-FD schemewith 64

elements. We see that the P5 hybrid scheme actually has

fewer oscillations than the P2 scheme, while resolving the

discontinuities equally well. We attribute this to the

troubled-cell indicators actually triggering earlier when a

higher polynomial degree is used since discontinuities

entering an element rapidly dump energy into the high

modes. While we will compare the different limiting

strategies for 2d and 3d problems below, it is already quite

apparent that the DG-FD hybrid scheme is by far the most

robust and accurate method.

C. 2d cylindrical blast wave

A standard test problem for GRMHD codes is the

cylindrical blast wave [68,69], where a magnetized fluid

initially at rest in a constant magnetic field along the x axis
is evolved. The fluid obeys the ideal fluid equation of state

(61) with γ ¼ 4=3. The fluid begins in a cylindrically

symmetric configuration, with hot, dense fluid in the region

with cylindrical radius r < 0.8 surrounded by a cooler, less

dense fluid in the region r > 1. The initial density ρ and

pressure p of the fluid are

ρðr < 0.8Þ ¼ 10−2;

ρðr > 1.0Þ ¼ 10−4;

pðr < 0.8Þ ¼ 1;

pðr > 1.0Þ ¼ 5 × 10−4: ð64Þ
In the region 0.8 ≤ r ≤ 1, the solution transitions contin-

uously and exponentially (i.e., transitions such that the

logarithms of the pressure and density are linear functions

of r). The fluid begins threaded with a uniform magnetic

field with Cartesian components

ðBx; By; BzÞ ¼ ð0.1; 0; 0Þ: ð65Þ
The magnetic field causes the blast wave to expand

nonaxisymmetrically. For all simulations we use a time

step size Δt ¼ 10−2 and an SSP RK3 time integrator.

We evolve the blast wave to time t ¼ 4.0 on a grid of

64 × 64 × 1 elements covering a cube of extent ½−6; 6�3
using a DG P2 scheme, a comparable resolution to what FD

code tests use. We apply periodic boundary conditions in

all directions, since the explosion does not reach the outer

boundary by t ¼ 4.0. Figure 3 shows the logarithm of

the rest-mass density at time t ¼ 4.0, at the end of

(a)

(b)

FIG. 1. A comparison of different limiters used to stabilize the

evolution of the Riemann problem 1 of [66]. The problem is

solved using 128 third-order (P2) elements. The DG-FD hybrid

scheme significantly outperforms the other limiters both in

robustness and accuracy.

FIG. 2. The difference between the analytic and numerical

solution of the Riemann problem 1 of [66] at t ¼ 0.4 for the DG-

FD P2 scheme (solid light blue curve) and the DG-FD P5 scheme

(dashed purple curve). The P5 scheme is able to resolve the

discontinuities just as well as the P2 scheme, while also admitting

fewer unphysical oscillations away from the discontinuities.

NILS DEPPE et al. PHYS. REV. D 105, 123031 (2022)

123031-10



evolutions using the different limiting strategies. We see

from Figs. 3(c) and 3(d) that the ΛΠ
N and Krivodonova

limiters result in a very poorly resolved solution. The

simple WENO evolution, Fig. 3(e) is much better but still

not nearly as good as a FDmethod with the same number of

degrees of freedom. The HWENO limiter, Fig. 3(f), suffers

from various spurious artifacts. The DG-FD hybrid scheme,

however, again demonstrates its ability to robustly handle

discontinuities, while also resolving smooth features with

very high order. Figure 3(a) shows the result of a simulation

using a P2 DG-FD scheme and Fig. 3(b) using a P5 DG-FD

scheme with half the number of elements. The increased

resolution of a high-order scheme is clear when comparing

the P2 and P5 solutions in the interior region of the blast

wave. We conclude that the DG-FD hybrid scheme is the

most robust and accurate method/limiting strategy for

solving the cylindrical blast wave problem.

D. 2d magnetic rotor

The second two-dimensional test problem we study is

the magnetic rotor problem originally proposed for

nonrelativistic MHD [70,71] and later generalized to the

relativistic case [72,73]. A rapidly rotating dense fluid

cylinder is inside a lower density fluid, with a uniform

pressure and magnetic field everywhere. The magnetic

braking will slow down the rotor over time, with an

approximately 90 degree rotation by the final time

t ¼ 0.4. We use a domain of ½−0.5; 0.5�3 and a time step

size Δt ¼ 10−3 and an SSP RK3 time integrator. An ideal

fluid equation of state with Γ ¼ 5=3 is used, and the

following initial conditions are imposed:

p ¼ 1

Bi ¼ ð1; 0; 0Þ

vi ¼
� ð−yΩ; xΩ; 0Þ; if r ≤ Rrotor ¼ 0.1

ð0; 0; 0Þ; otherwise;

ρ ¼
�

10; if r ≤ Rrotor ¼ 0.1

1; otherwise;
ð66Þ

with angular velocity Ω ¼ 9.95. The choice of Ω and

Rrotor ¼ 0.1 guarantees that the maximum velocity of the

fluid (0.995) is less than the speed of light.

(a) (b) (c)

(d) (e) (f)

FIG. 3. Cylindrical blast wave ρ at t ¼ 4 comparing the DG-FD hybrid scheme, the ΛΠN , Krivodonova, simple WENO, and HWENO

limiters using P2 DG, as well as the DG-FD scheme using P5 DG. There are 192 degrees of freedom per dimension, comparable to what

is used when testing FD schemes. We see that only the DG-FD hybrid scheme really resolves the features to an acceptable level, and the

ΛΠ
N and Krivodonova smear out the solution almost completely. In the plots of the DG-FD hybrid scheme the regions surrounded by

black squares have switched from DG to FD at the final time.
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We show the results of our evolutions in Fig. 4, which are

all done with 192 grid points and periodic boundary

conditions. Figures 4(c) and 4(d) show results using the

ΛΠ
N and Krivodonova limiter which both severely smear

out the solution. The simple WENO limiter suffers from

spurious artifacts [Fig. 4(d)], while the HWENO limiter

does a reasonable job [Fig. 4(e)]. The DG-FD hybrid

scheme is most robust and accurate, but a fairly large

number of cells end up being marked as troubled in this

problem and switched to FD. While ideally fewer cells

would be switched to FD, it is better to have a scheme that

is capable of solving a large array of problems without fine-

tuning than to have a slightly different fine-tuned scheme

for each test problem.

E. 2d magnetic loop advection

The third two-dimensional test problem we study is the

magnetic loop advection problem [74]. A magnetic loop is

advected through the domain until it returns to its starting

position. We use an initial configuration very similar to

[42,75–77], where

ρ ¼ 1

p ¼ 3

vi ¼ ð1=1.2; 1=2.4; 0Þ

Bx ¼

8

<

:

−Aloopy=Rin; if r ≤ Rin

−Aloopy=r; if Rin < r < Rloop

0; otherwise;

By ¼

8

<

:

Aloopx=Rin; if r ≤ Rin

Aloopx=r; if Rin < r < Rloop

0; otherwise;

ð67Þ

with Rloop ¼ 0.3, Rin ¼ 0.001, and an ideal gas equation of

state with Γ ¼ 5=3. The computational domain is

½−0.5; 0.5�3 with 64 × 64 × 1 elements and periodic boun-

dary conditions being applied everywhere. The final time

for one period is t ¼ 2.4. For all simulations we use a time

step size Δt ¼ 10−3 and an SSP RK3 time integrator.

In Fig. 5 we plot the magnetic field component Bx at

t ¼ 0 on the left half of each plot and after one period

(a) (b) (c)

(d) (e) (f)

FIG. 4. Magnetic rotor ρ at t ¼ 0.4 comparing the DG-FD hybrid scheme, the ΛΠ
N , Krivodonova, simple WENO, and HWENO

limiters using P2 DG, as well as the DG-FD scheme using P5 DG. There are 192 degrees of freedom per dimension, comparable to what

is used when testing FD schemes. We see that only the DG-FD hybrid scheme really resolves the features to an acceptable level, and the

ΛΠ
N and Krivodonova smear out the solution almost completely. The simple WENO limiter fails to solve the problem. In the plots of the

DG-FD hybrid scheme the regions surrounded by black squares have switched from DG to FD at the final time.
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t ¼ 2.4 on the right half of each plot for results using

various limiting strategies. We use a TVB constant of 5 for

the ΛΠ
N , simple WENO, and HWENO limiters, and use

neighbor weights γk ¼ 0.001 for the simple WENO and

HWENO limiters. The Krivodonova limiter completely

destroys the solution and only remains stable because of

our conservative variable fixing scheme. Both WENO

limiters work quite well, maintaining the shape of the loop

with only some oscillations being generated. The DG-FD

hybrid scheme again performs the best. In Fig. 5(a) we

show the result using a P2 DG-FD scheme and in Fig. 5(b)

using a P5 DG-FD scheme. The P5 scheme resolves

the smooth parts of the solution more accurately than

the P2 scheme, as is to be expected. The DG-FD hybrid

scheme also does not generate the spurious oscillations that

are present when using the WENO limiters. While the

spurious oscillations may be reduced by fine-tuning the

TVB constant and the neighbor weights, this type of fine-

tuning is not possible for complex physics simulations

and so we do not spend time searching for the “optimal”

parameters.

Since we are using hyperbolic divergence cleaning,

violations of the ∂iB
i ¼ 0 constraint occur. In Fig. 6 we

plot the divergence cleaning fieldΦ at the final time t ¼ 2.4.

The simple WENO, HWENO, and DG-FD hybrid schemes

all have jΦj ∼ 5 × 10−6, while the ΛΠ
N limiter has Φ

approximately 1 order ofmagnitude larger. For themagnetic

loop advection problem we find that all classical limiters

perform comparably, except the Krivodonova limiter com-

pletely destroys the solution and remains stable only because

of our conservative variable fixing scheme. Nevertheless,

the DG-FD hybrid scheme is better than the classical

limiters, and we conclude that the DG-FD hybrid scheme

is both the most robust and accurate method/limiting

strategy for solving the magnetic loop advection problem.

F. 2d magnetized Kelvin-Helmholtz instability

The last two-dimensional test problem we study is the

magnetized Kelvin-Helmholtz (KH) instability, similar to

[78]. The domain is ½0; 1�3 and we use the following initial

conditions [18]:

(a) (b) (c)

(d) (e) (f)

FIG. 5. Bx for the magnetic loop advection problem. The left half of each plot is at the initial time, while the right half is after one

period (t ¼ 2.4). We compare the DG-FD hybrid scheme, the ΛΠN , Krivodonova, simple WENO, and HWENO limiters using P2 DG,

as well as the DG-FD scheme using P5 DG. There are 192 degrees of freedom per dimension, comparable to what is used when testing

FD schemes. In the plots of the DG-FD hybrid scheme the regions surrounded by black squares have switched from DG to FD at the

final time.
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ρ ¼
�

1; jy − 0.5j < 0.25

10−2; otherwise;
ð68Þ

p ¼ 1.0; ð69Þ

vx ¼
�

0.5; jy − 0.5j < 0.25

−0.5; otherwise;
ð70Þ

vy ¼ 0.1 sinð4πxÞ
�

exp

�

−
ðy − 0.75Þ2
0.07072

�

þ exp

�

−
ðy − 0.25Þ2
0.07072

��

; ð71Þ

vz ¼ 0.0; ð72Þ

Bx ¼ 10−3; ð73Þ

By ¼ Bz ¼ 0.0: ð74Þ

We use an ideal gas equation of state with Γ ¼ 4=3, a final

time tf ¼ 1.6, a time step size of Δt ¼ 10−3, an SSP RK3

time integrator, and ½64 × 1 × 64� P2 elements for the

classical limiters. For the DG-FD hybrid method we use

both ½64 × 1 × 64� P2 elements and ½32 × 1 × 32� P5 ele-

ments. We use a TVB constant of 1 for all the limiters.

Using the flattening algorithm is crucial for the results

obtained here, while for other test problems it is signifi-

cantly less important.

In Fig. 7 we plot the density at the final time comparing

the different limiting strategies. From Figs. 7(e) and 7(d)

we see that the simple WENO and Krivodonova limiters

destroy the solution almost completely. The ΛΠ
N limiter

[Fig. 7(c)] retains some hints of the expected flow pattern,

but also nearly completely destroys the solution. The

HWENO limiter is plotted in Fig. 7(e) and does by far

the best of the classical limiters. Ultimately, only the DG-

FD hybrid method [Fig. 7(a) for P2 and Fig. 7(b) for P5] is

able to produce the expected vortices and flow patterns.

G. TOV star

A rigorous 3d test case in general relativity is the

evolution of a static, spherically symmetric star. The

TOV solution [79,80] describes such a setup. In this section

(a) (b) (c)

(d) (e) (f)

FIG. 6. The divergence cleaning field Φ for the magnetic loop advection problem after one period (t ¼ 2.4) comparing the DG-FD

hybrid scheme, the ΛΠN , Krivodonova, simple WENO, and HWENO limiters using P2 DG, as well as the DG-FD scheme using P5 DG.

There are 192 degrees of freedom per dimension, comparable to what is used when testing FD schemes. In the plots from the DG-FD

hybrid scheme the regions surrounded by black squares have switched from DG to FD at the final time.
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we study evolutions of both nonmagnetized and magnet-

ized TOV stars. We adopt the same configuration as in [81].

Specifically, we use a polytropic equation of state,

pðρÞ ¼ KρΓ; ð75Þ

with the polytropic exponent Γ ¼ 2, polytropic constant

K ¼ 100, and a central density ρc ¼ 1.28 × 10−3. When

considering a magnetized star we choose a magnetic field

given by the vector potential,

Aϕ ¼ Abðx2 þ y2Þmaxðp − pcut; 0Þns ; ð76Þ

with Ab ¼ 2500, pcut ¼ 0.04pmax, and ns ¼ 2. This con-

figuration yields a magnetic field strength in CGS units,

jBCGSj ¼
ffiffiffiffiffi

b2
p

× 8.352 × 1019 G; ð77Þ

of jBCGSj ¼ 1.03 × 1016 G. The magnetic field is only

a perturbation to the dynamics of the star, since

ðpmag=pÞðr ¼ 0Þ ∼ 5 × 10−5. However, evolving the field

stably and accurately can be challenging. The magnetic

field corresponding to the vector potential in Eq. (76) in the

magnetized region is given by

Bx ¼ 1
ffiffiffi

γ
p

xz

r
Abnsðp − pcutÞns−1∂rp;

By ¼ 1
ffiffiffi

γ
p yz

r
Abnsðp − pcutÞns−1∂rp;

Bz ¼ −
Ab
ffiffiffi

γ
p

�

2ðp − pcutÞns

þ x2 þ y2

r
nsðp − pcutÞns−1∂rp

�

; ð78Þ

and at r ¼ 0 is

Bx ¼ 0; By ¼ 0; Bz ¼ −
Ab
ffiffiffi

γ
p 2ðp − pcutÞns : ð79Þ

We perform all evolutions in full 3d with no symmetry

assumptions and in the Cowling approximation, i.e., we do

not evolve the spacetime. To match the resolution usually

(a) (b) (c)

(d) (e) (f)

FIG. 7. Magnetized Kelvin-Helmholtz instability ρ at t ¼ 1.6 comparing the DG-FD hybrid scheme, the ΛΠN , Krivodonova, simple

WENO, and HWENO limiters using P2 DG, as well as the DG-FD scheme using P5 DG. There are 192 degrees of freedom per

dimension, comparable to what is used when testing FD schemes. Only the DG-FD hybrid scheme and the HWENO limiter produce

reasonable results, while the ΛΠN limiter has very low effective resolution, and the Krivodonova and simple WENO limiters smear out

the solution almost completely. In the plots of the DG-FD hybrid scheme the regions surrounded by black squares have switched from

DG to FD at the final time.
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used in FD/FV numerical relativity codes we use a domain

½−20; 20�3 with a base resolution of 6 P5 DG elements and

12 P2 DG elements. This choice means we have approx-

imately 32 FD grid points covering the star’s diameter at the

lowest resolution, 64 when using 12 P5 elements, and 128

grid points when using 24 P5 elements. In all cases we set

ρatm ¼ 10−15 and ρcutoff ¼ 1.01 × 10−15.

In Fig. 8 we show the normalized maximum rest mass

density over the grid for the nonmagnetized TOV star. The

six-element simulation uses FD throughout the interior of

the star and so there is no grid point at r ¼ 0. This is the

reason the data is shifted compared to 12- and 24-element

simulations, where the unlimited P5 DG solver is used

throughout the star interior and so there is a grid point at the

center of the star. The increased “noise” in the 12- and

24-element data actually stems from the higher oscillation

modes in the star that are induced by numerical error. In

Fig. 9 we plot the power spectrum using data at the three

different resolutions. The six-element simulation only has

one mode resolved, while 12 elements resolve two modes

well, and the 24-element simulation resolves three modes

well. In Fig. 10 we show the normalized maximum rest

mass density over the grid for the best two cases using the

classical limiters. The simple WENO and HWENO limiters

performed similarly and were only stable for P2. The

Krivodonova limiter only succeeded at three of the 16

resolutions we attempted, and its best result is noticeably

noisier than the other limiters. Note that our experience is

consistent with that of Ref. [21], which was unable to

achieve stable evolutions of a 3d TOV star using the simple

WENO limiter.

We show the normalized maximum rest mass density

over the grid for the magnetized TOV star in Fig. 11.

Overall the results are nearly identical to the nonmagne-

tized case. One notable difference is the decrease in the

12-element simulation between 7.5 and 11 ms, which

FIG. 8. The maximum density over the grid maxðρÞ divided by

the maximum density over the grid at t ¼ 0 for three different

resolutions for the nonmagnetized TOV star simulations. The six-

element simulation uses FD throughout the interior of the star,

while 12- and 24-element simulations use DG. The increased

high-frequency content in 12- and 24-element simulations occurs

because the high-order DG scheme is able to resolve higher

oscillation modes in the star. The maximum density in the six-

element case drifts down at early times because of the low

resolution and the relatively low accuracy of using FD at the

center.

FIG. 9. The power spectrum of the maximum density for three

different resolutions for the nonmagnetized TOV star simulations.

The six-element simulation uses FD throughout the interior of the

star, while the 12- and 24-element simulations use DG. When the

high-order DG scheme is used, more oscillation frequencies are

resolved. The vertical dashed lines correspond to the known

frequencies in the Cowling approximation [82].

FIG. 10. The maximum density over the grid maxðρÞ divided
by the maximum density over the grid at t ¼ 0 for the best two

cases using classical limiters for the nonmagnetized TOV star

simulations. The HWENO limiter is only stable for a P2 DG

solver. Simple WENO (not plotted) gives similar results. The

Krivodonova limiter only succeeded at some resolutions (three of

the 16 attempted runs) and the shown best result is noticeably

noisier than the subcell limiter.
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occurs because the code switches from DG to FD at the

center of the star at 7.5 ms and back to DG at 11 ms.

Nevertheless, the frequencies are resolved just as well for

the magnetized star as for the nonmagnetized case, as can

be seen in Fig. 12 where we plot the power spectrum.

Specifically, we are able to resolve the three largest modes

with our P5 DG-FD hybrid scheme. To the best of our

knowledge, these are the first simulations of a magnetized

neutron star using high-order DG methods.

V. CONCLUSIONS

We compare various shock capturing strategies to

stabilize the DG method applied to the equations of general

relativistic magnetohydrodynamics in the presence of

discontinuities and shocks. We use the open source

numerical relativity code SpECTRE [35] to perform the

simulations. We compare the classic ΛΠ
N method [29],

the hierarchical limiter of Krivodonova [30], the simple

WENO limiter [31], the HWENO limiter [32], and a

DG-FD hybrid approach that uses DG where the solution

is smooth and HRSC FD methods where the solution

contains discontinuities [56]. While many of the limiting

strategies appear promising in the Newtonion hydrody-

namics case, we have found stable and accurate simulations

of GRMHD to be a much more challenging problem. This

is in part because limiting the characteristic variables is

difficult since the characteristic variables are not known

analytically for the GRMHD system.

In the Newtonian hydrodynamics case, the literature

advocates for using the classical limiters (ΛΠN ,

Krivodonova, simple WENO, HWENO) on the character-

istic variables of the evolution system to reduce oscilla-

tions, for using more detailed troubled-cell indicators like

that of [55], and for supplementing the limiting with

flattening schemes to further correct any unphysical values

remaining after limiting. We have found these techniques

do somewhat improve the accuracy and robustness of the

limiters in the Newtonian case, but not enough to avoid the

need for problem-dependent tuning of parameters, or to

obtain truly robust behavior. Since these techniques do not

all easily generalize to the relativistic magnetohydrody-

namics case we consider here, we use the classical limiters

in their simplest configuration. Our experience with limit-

ers in Newtonian hydrodynamics suggests that limiting

characteristic variables with specialized troubled-cell

indicators and flatteners will likely still be problematic

in the more complicated GRMHD case.

A further challenge with the classical limiters lies in

extending the DG method to higher orders. With all these

limiters, we consistently find large oscillations and a

corresponding loss of accuracy with P4 or higher-order

DG schemes, both in Newtonian and relativistic hydro-

dynamics evolutions. The difficulty in robustly applying

these limiters to higher-order DG schemes gives further

motivation to favor the DG-FD hydrid method for scientific

applications.

We find that only the DG-FD hybrid method is able to

maintain stability when using a sixth-order DG scheme.

The other methods are unstable or in the case of the ΛΠN

limiter fall back to a linear approximation everywhere.

The classical limiters all work on only some subset of the

FIG. 11. The maximum density over the grid maxðρÞ divided
by the maximum density over the grid at t ¼ 0 for three different

resolutions for the magnetized TOV star simulation. The six-

element simulation uses FD throughout the interior of the star,

while 12- and 24-element simulations use DG. The increased

high-frequency content in 12- and 24-element simulations occurs

because the high-order DG scheme is able to resolve higher

oscillation modes in the star. The maximum density in the six-

element case drifts down at early times because of the low

resolution and the relatively low accuracy of using FD at the

center.

FIG. 12. The power spectrum of the maximum density for three

different resolutions of the magnetized TOV star simulations. The

six-element simulation uses FD throughout the interior of the star,

while the 12- and 24-element simulations use DG. When the

high-order DG scheme is used, more oscillation frequencies are

resolved. The vertical dashed lines correspond to the known

frequencies in the Cowling approximation.
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test problems, and even there some tuning of parameters is

required. While it is certainly conceivable that with enough

fine-tuning each limiter could simulate most or all of the

test problems, this does not make the limiter useful in

scientific applications where a wide variety of different

types of shock interactions and wave patterns appear. A

realistic limiting strategy cannot require any fine-tuning for

different problems. The only method that presents such a

level of robustness is the DG-FD hybrid scheme. As a

result, the DG-FD hybrid method is the only method with

which we are able to simulate both magnetized and

nonmagnetized TOV stars. To the best of our knowledge

this paper presents the first simulations of a magnetized

TOV star where DG is used.

While the DG-FD hybrid scheme is certainly the most

complicated approach for shock capturing in a DG code,

our results demonstrate that such complexity unfortunately

seems to be necessary. We are not optimistic that any

classical limiting strategy can be competitive with the DG-

FD hybrid scheme since none of the methods presented in

the literature are able to resolve discontinuities within a DG

element. This means that discontinuities are at best only

able to be resolved at the level of an entire DG element.

Thus, at discontinuities the classical limiting strategies

effectively turn DG into a finite volume scheme with an

extremely stringent time step restriction. Switching the DG

scheme to a classical WENO finite-volume-type scheme

was actually the only way Ref. [21] was able to evolve a

nonmagnetized TOV star.

It is unclear to us how discontinuities could be resolved

inside a DG element since the basis functions are poly-

nomials. By switching to FD, the hybrid scheme increases

resolution and is able to resolve discontinuities inside an

element. This can also be thought of as instead of solving

the partial differential equations governing the fluid dynam-

ics, we want to solve as many Rankine-Hugoniot con-

ditions as possible to resolve the discontinuities as cleanly

as possible.

Alternatively, we can view the hybrid scheme as a

FD method where in smooth regions the solution is

compressed to a high-order spectral representation to

increase efficiency. The DG-FD hybrid scheme reduces

the number of grid points per dimension roughly in half,

and so in theory a speedup of approximately eight is

expected in 3d. With the current code, we see more

moderate speedups of approximately two, so there is

certainly room for optimizations in SpECTRE.

In the future we plan to evolve the coupled generalized

harmonic and GRMHD system together as one monolithic

coupled system, generalize the DG-FD hybrid scheme to

curved meshes, and use more robust positivity-preserving

adaptive-order FD schemes to achieve high-order accuracy

even in regions where the FD scheme is being used.
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