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Simulating magnetized neutron stars with discontinuous Galerkin methods
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Discontinuous Galerkin methods are popular because they can achieve high order where the solution is
smooth, because they can capture shocks while needing only nearest-neighbor communication, and
because they are relatively easy to formulate on complex meshes. We perform a detailed comparison of
various limiting strategies presented in the literature applied to the equations of general relativistic
magnetohydrodynamics. We compare the standard minmod/AITY limiter, the hierarchical limiter of
Krivodonova, the simple WENO limiter, the HWENO limiter, and a discontinuous Galerkin-finite-
difference hybrid method. The ultimate goal is to understand what limiting strategies are able to robustly
simulate magnetized Tolman-Oppenheimer-Volkoff stars without any fine-tuning of parameters. Among
the limiters explored here, the only limiting strategy we can endorse is a discontinuous Galerkin-finite-

difference hybrid method.
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I. INTRODUCTION

Many of the most energetic phenomena in the universe
involve matter under extreme gravitational conditions.
These phenomena include neutron-star binary mergers,
accretion onto black holes, and supernova explosions. For
many of these systems, the motion of this matter is
expected to generate extremely strong magnetic fields.
The matter and magnetic fields in these systems are
governed by the equations of general relativistic magneto-
hydrodynamics (GRMHD). These equations admit a rich
variety of solutions, which often include large-scale
relativistic flows and small-scale phenomena such as
shocks and turbulence.
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High-resolution shock capturing (HRSC) finite-difference
(FD) methods are the current standard methods of choice for
numerically evolving these solutions since they are able to
robustly handle shocks. Unfortunately, HRSC FD methods
have significant computational overhead and are less effi-
cient than spectral-type methods like discontinuous Galerkin
(DG) where the solution is smooth. Additionally, achieving
better than second-order convergence is generally difficult,
with recent results presented in [1,2]. The common use of
second-order methods means that the current generation of
GRMHD codes is not accurate enough to provide useful
predictions for many extreme systems. Increasing simulation
resolutions can improve this, but is very computationally
expensive. More appealing is using numerical methods with
higher convergence orders, which can increase accuracy with
significantly less cost than a similar improvement from

© 2022 American Physical Society



NILS DEPPE et al.

PHYS. REV. D 105, 123031 (2022)

resolution. Unfortunately, while higher-order methods han-
dle smooth solutions very well, they are generally poor at
handling discontinuities, such as fluid shocks, losing accu-
racy and sometimes failing completely.

Additionally, the time required to run simulations is
already too long for most interesting astrophysical cases.
The performance of individual computational processors
has stagnated over the past decade, so to improve computa-
tional speed, codes must be parallelized over more pro-
cessors. New supercomputer clusters will soon routinely
have millions of cores. Codes designed for running on
thousands of processors generally scale poorly to massively
parallel setups, however. As problems are divided up into
an increasing numbers of parts, the amount of communi-
cation required during the simulation can become prohibi-
tive, particularly for high-order methods.

Discontinuous Galerkin methods [3-8], together with a
task-based parallelization strategy, have the potential to deal
with these problems. DG methods offer high-order accuracy
in smooth regions, with the potential for robust shock
capturing by some nonlinear stabilization technique. The
methods are also well suited for parallelization: Their for-
mulation in terms of local, nonoverlapping elements requires
only nearest-neighbor communication regardless of the
scheme’s order of convergence. Additionally, these features
allow for comparatively straightforward hp-adaptivity/
adaptive mesh refinement and local time stepping, enabling
better load distribution across a large number of cores.

Despite extensive success in engineering and applied
mathematics communities over the past two decades,
applications of DG in relativity [9-13] and astrophysics
[14-17] have typically been exploratory or confined to
simple problems. However, recently there have been sig-
nificant advances toward production codes for nonrelativ-
istic [18] and relativistic [19-21] hydrodynamics, special
relativistic magnetohydrodynamics [ 16,22-26], the Einstein
equations [13,27], and relativistic hydrodynamics coupled
to the Finstein equations [28]. Most of these codes use the
Message Passing Interface to implement a data parallelism
strategy, though [20,23] use task-based parallelism.

In this paper we present a detailed comparison of various
different limiting and shock capturing strategies for DG
methods in the context of demanding GRMHD test
problems. Specifically, we compare the classical limiters
ATTV limiter [29], Krivodonova limiter [30], and WENO-
based limiters [31,32], as well as a DG-FD hybrid method
similar to that of [33,34]. The ultimate goal is to simulate a
magnetized and nonmagnetized Tolman-Oppenheimer-
Volkoff (TOV) star in the Cowling approximation. To
the best of our knowledge this is the first time a magnetized
TOV star has been simulated using DG methods. This
paper presents a crucial first step to being able to apply DG
methods to simulations of binary neutron star mergers,
differentially rotating magnetized single neutron stars, and
magnetized accretion disks.

While generally the classical limiters produce the best
results when applied to the characteristic variables, these
are not known analytically for GRMHD. Even though most
test cases in this paper are in special relativity, we inten-
tionally apply the limiters to the conserved variables to
evaluate their performance in the form they need to be used
for GRMHD. Since FD methods are also known to be less
dissipative when applied to the characteristic variables, this
choice does not put any of the limiters at a disadvantage.

The paper is organized as follows. Section II describes
the formulation of GRMHD used in the problems presented
here. Section III describes the algorithms used by our open-
source code SpECTRE [35] to solve these equations. Results
of the evolutions of a variety of GRMHD problems are
presented in Sec. IV comparing the different shock captur-
ing strategies.

II. EQUATIONS OF GRMHD

We adopt the standard 3 + 1 form of the spacetime
metric (see, e.g., [36,37]),

ds®> = g,,dx“dx”
= Q2R 4y (dxi 4 pide)(d + pdr). (1)

where a is the lapse, ' the shift vector, and y; ; 1s the spatial
metric. We use the Einstein summation convention, summing
over repeated indices. Latin indices from the first part of the
alphabet a, b, c, ... denote spacetime indices ranging from
0 to 3, while Latin indices i, j, ... are purely spatial, ranging
from 1 to 3. We work in units where c = G = My = 1.
SpECTRE currently solves equations in flux-balanced and
first-order hyperbolic form. The general form of a flux-
balanced conservation law in a curved spacetime is

o,U + 9,;F =S, (2)

where U is the state vector, F! are the components of the
flux vector, and S is the source vector.

We refer the reader to the literature [36,38,39] for a
detailed description of the equations of general relativistic
magnetohydrodynamics (GRMHD). If we ignore self-
gravity, the GRMHD equations constitute a closed system
that may be solved on a given background metric. We
denote the rest-mass density of the fluid by p and its
4-velocity by u“, where uu, = —1. The dual of the
Faraday tensor F is

1
*Fab — Eeadech (3)

where €%b¢? is the Levi-Civita tensor. Note that the Levi-

Civita tensor is defined here with the convention [40] that in
flat spacetime €(y,3 = +1. The equations governing the
evolution of the GRMHD system are

123031-2



SIMULATING MAGNETIZED NEUTRON STARS WITH ...

PHYS. REV. D 105, 123031 (2022)

V.(pu®) =0 (rest-mass conservation), (4)
V,T% =0 (energy-momentum conservation), (5)
V,*F® =0 (homogeneous Maxwell equation). (6)

In the ideal MHD limit the stress tensor takes the form
Tab — (ph)*u“ub + p*gab _ babb, (7)
where
b* = —*Fy, (8)
is the magnetic field measured in the comoving frame of the
fluid, and (ph)* = ph+ b* and p* = p + b?/2 are the
enthalpy density and fluid pressure augmented by contri-
butions of magnetic pressure p,, = b?/2, respectively.

We denote the unit normal vector to the spatial hyper-
surfaces as n¢, which is given by

nt = (1/a,=f'/a)T, )
n, = (-a,0,0,0). (10)

The spatial velocity of the fluid as measured by an observer
at rest in the spatial hypersurfaces (“Eulerian observer”) is

v":1<“—;+/)”‘), (11)
u

a

with a corresponding Lorentz factor W given by

1
W=—-un, = au’ = ——— (12)
\/ 1 —}/l’jUZUJ
= U+ Py = U+ 7 W, (13)

The electric and magnetic fields as measured by a Eulerian
observer are given by

E' = Flan, = aF%, (14)
B = —*Fiap, = —a'FY. (15)

Finally, the comoving magnetic field »“ in terms of B’ is

W
b’ = — B, (16)
a
b — B' + ab’u’ (17)
=—

while %> = b?b,, is given by

, B i 2
We now recast the GRMHD equations in a 3 4 1 split by
projecting them along and perpendicular to n¢ [38]. One of
the main complications when solving the GRMHD equa-
tions numerically is preserving the constraint

0,(\/7B) = 0, (19)

where y = det(y;;) is the determinant of the spatial metric.
Analytically, initial data evolved using the dynamical
Maxwell equations are guaranteed to preserve the con-
straint. However, numerical errors generate constraint
violations that need to be controlled. We opt to use the
generalized Lagrange multiplier or divergence cleaning
method [41] where an additional field ® is evolved in order
to propagate constraint violations out of the domain. Our
version is very close to the one in Ref. [42]. The augmented
system can still be written in flux-balanced form, where the
conserved variables are

D D
S; S;
U=r|l = | =] %
B/ B/
0} ®

pW
(ph)*W?v; — ab’b;

= V7| (ph)'W? = p* = (ab®)> = pW [. (20)
B/
D
with corresponding fluxes
D,

S;vi + ay/yp*8; —ab;B' /W
ol + ayrp vt = 2B°BYW |, (21)
ijfr —av/B + ayijé
aB — &p

Fi=

and corresponding sources

0
(a/Z)S'klajykl + S’kajﬂk - Edja
S = aSM K, — S0 . (22)
—B*op/ + Doy (ay/7r/*)
aB*o;Ina — aK® — axd
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The transport velocity is defined as v, = av’ — ' and the
generalized energy E and source S are given by

E=%4+D, (23)
ST = /rl(ph) W2v'vl + pyll —ykyllbby). (24)

The 341 GRMHD divergence cleaning evolution
equations analytically preserve the constraint (19), while
numerically constraint-violating modes will be damped at a
rate k. We typically choose k € [0, 10], but will specify the
exact value used for each test problem. We note that the
divergence cleaning method was shown to be strongly
hyperbolic in Ref. [43], a necessary condition for a well-
posed evolution problem. The primitive variables of the
GRMHD system are p, v;, B!, ®, and the specific internal
energy e.

Approximate Riemann solvers use the characteristic
speeds, which in the GRMHD case require solving a
nontrivial quartic equation for the fast and slow modes.
Instead, we use the approximation [44]

A= —a—p, (25)

A =al™ = f,, (26)
434567 = AUy = Py, (27)
Ay = aht =B, (28)
Ao = a—f,, (29)

where f, and v, are the shift and spatial velocity projected
along the normal vector in the direction that we want to
compute the characteristic speeds along, and

1
N =g [ =)

ten/(1=?)(1=2@ = 2(1-c)]. (30)

where c¢; is the sound speed given by

R

III. METHODS

A. The discontinuous Galerkin method

We briefly summarize the nodal discontinuous Galerkin
(DG) method for curved spacetimes [19] in d spatial
dimensions. We decompose the computational domain into
k elements, each with a reference coordinate system
{&,n,(} € [-1,1]. We denote the ith element by Q;, so

our computational domain Q =U;_; ; €;. In this work we
consider only dimension-by-dimension affine maps. We
expand the solution in each element over a tensor product
basis ¢ of 1d Lagrange polynomials 3,

U@ = sz(rwg(&)
= Z Z Z Uy 1 (€& 3¢ (£), (32)
1 j 2

where &, 17, and { are the logical (or reference) coordinates.
We use Legendre-Gauss-Lobatto collocation points, though
SpECTRE also supports Legendre-Gauss points. We denote a
DG scheme with 1d basis functions of degree N by Py.
A Py scheme is expected to converge at order O(AxV*1)
for smooth solutions [4], where Ax is the 1d size of an
element.

A spatial discretization is obtained by integrating the
evolution equations (2) against the basis functions ¢y,

0= [ U+ - Sips(x)x
Q.

i

- / QU + OF - Sis()de. (33)
Q;

where J is the Jacobian determinant of the map from the
reference coordinates & to the coordinates x. Denoting the
normal covector to the spatial boundary of the element as
n;, integrating the flux divergence term by-parts, replacing
Fin; with a boundary correction/numerical flux G, and
undoing the integration by-parts, we obtain

[ awiae=§ G-rujgse e

i

+ / OF + S5 e (34)
Q

i

where d?X is the area element on the surface of the element.
The area element in the +¢ direction is given by [19]

Vo)
Pyx=V7
VY

Note that the normalization of the normal vectors in the
G — F'n; term does not cancel out with the term in (35), as
stated in [19]. This is because both the inverse spatial
metric and the Jacobian may be different on each side of the
boundary. Specifically, when the spacetime is evolved, each
element normalizes the normal vector using its local inverse
spatial metric.

Finally, the semidiscrete evolution equations are obtained
by expanding U, F', and S in terms of the basis functions and
evaluating the integrals by Gaussian quadrature. Our nodal

% i aij.ég ,de . (35)

d ld 2:.1 An—T
sds Stoxt" ox
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DG code uses the mass lumping approximationl when
Gauss-Lobatto points are employed.

B. Numerical fluxes

One of the key ingredients in conservative numerical
schemes is the approximate solution to the Riemann
problem on the interface. We use the Rusanov solver
[46] (also known as the local Lax-Friedrichs flux), and
the solver of Harten, Lax, and van Leer (HLL) [47,48].
While both the Rusanov and the HLL solver are quite
simple, their use is standard in numerical relativity. The
Rusanov solver is given by

C
GRusanov _ (Fk’+n]j + Fk'_n]:) - E (U+ - U_>7 (36)

N[ =

where C = max(|4;(U")],[4;(U7)]), and 4;(U) is the set of
characteristic speeds. Quantities superscripted with a plus
sign are on the exterior side of the boundary between an
element and its neighbor, while quantities superscripted
with a minus sign are on the interior side. In this section 7,
is the outward pointing unit normal to the element.

The HLL solver is given by

kot + k= —
AminFoT 4 Aax FO 70y,

GHLL —
/Imax - /1min
AmaxAmi
_ max‘'min <U+ _ U_), (37)

lmax - lmin

where A, and 4., are estimates for the fastest left- and
right-moving signal speeds, respectively. We compute the
approximate signal speeds pointwise using the scheme
presented in Ref. [49]. Specifically,

Amin = min(4;(U™), 4,(U7),0),
Amax = max(4;(U™), 4,(U7),0). (38)

C. Time stepping

SpECTRE supports time integration using explicit multi-
step and substep integrators. The results presented here
were obtained using either a strong stability-preserving
third-order Runge-Kutta method [4] or a self-starting
Adams-Bashforth method. SpECTRE additionally supports
local time stepping when using Adams-Bashforth schemes
[50], but that feature was not used for any of these
problems. The maximum admissible time step size for a
Py scheme is [51]

Ar<_ & Ax
AN + 1) Ay

(39)

'“Mass lumping” is the term that describes using the diagonal
approximation for the mass matrix. See [45] for more details.

where ¢ is a time-stepper-dependent constant, d is the
number of spatial dimensions, Ax is the minimum 1d size
(along each Cartesian axis) of the element, and 4,,,, is the
maximum characteristic speed in the element.

D. Limiting

Near shocks, discontinuities, and stellar surfaces, the DG
solution may exhibit spurious oscillations (i.e., Gibbs
phenomenon) and overshoots. These oscillations can lead
to a nonphysical fluid state (e.g., negative densities) at
individual grid points and prevent stable evolution of the
system. To maintain a stable scheme, some nonlinear
limiting procedure is necessary. In general, we identify
elements where the solution contains spurious oscillations
(we label these elements as “troubled cells”’) and we modify
the solution on these elements to reduce the amount of
oscillation.

In this work we consider limiters that preserve the order
of the DG solution while maintaining a compact (nearest-
neighbor) stencil. The compact stencil greatly simplifies
communication patterns, but, in order to provide the limiter
with sufficient information to preserve the order of the
scheme, it becomes necessary to send larger amounts of
data from each element for each limiting step. We specifi-
cally consider

(i) the AITV limiter of [29];

(i) the hierarchical limiter of Krivodonova [30];

(iii) the simple WENO limiter of [31] (based on
weighted essentially nonoscillatory, often abbrevi-
ated as WENO, finite volume methods);

(iv) the Hermite WENO (HWENO) limiter of [32];

(v) a DG-finite-difference hybrid scheme similar to that
of [33,34].

Note that we do not use the limiter of Moe, Rossmanith,
and Seal [52] because our experiments show that it is not
very robust for the kinds of problems we study here.

Below we summarize the action of these limiters. Note
that because computing the characteristic variables of the
GRMHD system is complicated, we apply the limiters to
the evolved (i.e., conserved) variables. However, we do not
limit the divergence-cleaning field @, as it is not expected
to form any shocks. The limiters are applied at the end of
each time step when using an Adams-Bashforth method,
and at the end of each substep when using a Runge-Kutta
method.

1. ATV

The AIIVN limiter [6,29,51,53] works by reducing the
spatial slope of each variable U if the data look like they
may contain oscillations. Specifically, if the slope exceeds a
simple estimate based on differencing the cell average of U
vs the neighbor elements’ cell averages of U, then the
limiter will linearize the solution and reduce its slope in a
conservative manner. We use the total variation bounding
(TVB) version of this limiter, which only activates if the
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slope is above mh?, where m is the so-called TVB constant
and £ is the size of the DG element. This procedure is
repeated independently for each variable component U
being limited. While quite simple and robust, this limiter is
very aggressive and can cause significant smearing of
shocks and flattening of smooth extrema.

2. Krivodonova limiter

The Krivodonova limiter [30] works by limiting the
coefficients of the solution’s modal representation, starting
with the highest coefficient then decreasing in order until
no more limiting is necessary. This procedure is repeated
independently for each variable component U being
limited. Although the algorithm is only described in one
or two dimensions, the limiting algorithm is straightfor-
wardly generalized to our 3d application. We expand U
over a basis of Legendre polynomials P;,

N,N.N

U= S e

i,j.k=0,0,0

P;(mP(£),  (40)

l,m,n

where the ¢;ix are the modal coefficients, with the

superscript {l, m, n} representing the element indexed by
[, m, n, and the upper bound N is the number of collocation
points minus one in each of the &, 5, { directions.

Each coefficient is limited by comparison with the
coefficients of U in neighboring elements. The new value

~l.m,n l.m,n .
¢ of ¢;7; is computed according to
~lmn __ l,m,n I+1,m,n l.m,n
Cilik = minmod(c ik sai(cil ik — i—l,j,k)’
l,m,n I—1,m,n I,m+1,n l,m,n
a;(c;” Ljk ~ Cim1jk ), a'(cij—l,k - i,j—l,k)’
I,m,n lm 1,n I.m,n+1 l.m,n
a;(cl] Lk~ Cij-1k ), a(c Cijk=1 — ci,j,k—l)’
l,m,n lmn 1
ak(czjk 1 1]k 1 ))’ (41)

where minmod is the minmod function defined as

minmod(a,b,...)

_ {Sgn(a)
0,

and the @;, a;, o set the strength of the limiter. In all cases
shown in this paper, we set a; = 1, at the least dissipative
end of the range for these pzurameters.2

,...), if sgn(a)=sgn(b) =sgn(...)
otherwise,

(42)

>Whereas Krivodonova [30] changes normalization conven-
tion for the Legendre polynomials in going from one to two
dimensions, our convention matches their 1d convention in all
cases, so that the range of the a; parameters is given by Eq. (14) in
the reference.

The algorithm for limiting from highest to lowest modal
coefficient is as follows. We first compute ¢y y n (We drop
the element superscripts here). If this is equal to ¢y y y, no
limiting is done. Otherwise, we update ¢y y v = Cy .y, and
compute the trio of coefficients €y y y—1, Cy N—1.8> CN=1.N.N-
If all of these are unchanged, the limiting stops. Otherwise,
we update each coefficient and proceed to limiting all
coefficients given by index permutations such that
i+j+k=3N-2,then i+ j+k=3N-3, etc. up to
the three index permutations of ¢ . Finally, the limited
modal coefficients are used to recover the limited nodal
values of the function U. Note that by not modifying c( o
the cell average is maintained.

3. Simple WENO

For the two WENO limiters, we use a troubled-cell
indicator based on the TVB minmod limiter [6,51,53] to
determine whether limiting is needed. When needed, each
limiter uses a standard WENO procedure to reconstruct the
local solution from several different estimated solutions.

In the simple WENO limiter [31], each variable compo-
nent U being limited is checked independently: if it is
flagged for slope reduction by the minmod limiter, then this
component is reconstructed. This limiter uses several
different estimated solutions for U on the troubled element
labeled by k. The first estimate is the unlimited local data
U*. Each neighbor n of k also provides a “modified”
solution estimate U*»: in the case of the simple WENO
limiter, this estimate is simply obtained by evaluating the
neighbor’s solution U" on the grid points of the element k.
We follow the standard WENO algorithm of reconstructing
the solution from a weighted sum of these estimates,

Uﬁew = Wy U* + an Ukn’ (43)

where the w; are the weights associated with each solution
estimate, and satisfy the normalization >, w; = 1.

The weights are obtained by first computing an oscil-
lation indicator (also called a smoothness indicator) ¢; for
each U’ = {U*, U*}, which measures the amount of
oscillation in the data. We use an indicator based on
Eq. (23) of [54], but adapted for use on square or cubical
grids,

N N
0333 [
u+/i+y>0
anr/}Jr}/ N\ 2

———U'") dédndC. 44
(af"anf”ad ) s “

Here the restriction on the sum avoids the term that has
no derivatives of U’, and the powers of two come from
the interval width in the reference coordinates. From
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the oscillation indicators, we compute the nonlinear
weights:

@; = (6146)2 (45)

Here the y; are the linear weights that give the relative
weight of the local and neighbor contributions before
accounting for oscillation in the data, and e is a small
number to avoid the denominator vanishing. We use
standard values from the literature for both—we take y;, =
0.001 for the neighbor contributions (then y;, = 0.994 for
an element with six neighbors; in general y; is set by the
requirement that all the y; sum to unity), and € = 107°.
Finally, the normalized nonlinear weights that go into the
WENO reconstruction are given by

Wi
20
Note that the simple WENO limiter is not conservative

since the neighboring elements’ polynomials do not have
the same element average as the element being limited.

(40)

CU,':

4. HWENO

Our implementation of the HWENO limiter [32] follows
similar steps. Note that we again use the TVB minmod
limiter as troubled-cell indicator, whereas the reference
uses the troubled-cell indicator of [55]. But, in keeping with
the HWENO algorithm, we check the minmod indicator on
all components of U being limited, and if any component is
flagged for slope reduction, then the element is labeled as
troubled and every variable being limited is reconstructed
using the WENO procedure.

The HWENO modified solution estimates from the
neighboring elements are computed as a least-squared fit
to U across several elements. This broader fitting reduces
oscillations as compared to the polynomial extrapolation
used in the simple WENO estimates, and this improves
robustness near shocks. The HWENO reconstruction uses a
differently weighted oscillation indicator, computed sim-
ilarly to Eq. (44) but with the prefactor in the integral being
instead (22@+#47)=1) /((a 4 p 4 y)!)?. The HWENO algo-
rithm explicitly guarantees conservation by constraining
the reconstructed polynomials to have the same element-
average value.

5. DG-finite-difference hybrid method

To the best of our knowledge the idea of hybridizing
efficient spectral-type methods with robust high-resolution
shock-capturing finite difference (FD) or finite volume
(FV) schemes was first presented in [33]. However, our
implementation is more similar to that of [34]. The basic
idea is that after a time step or substep we check that the
unlimited DG solution is satisfactory. If it is not, we mark

the cell as troubled and retake the time step using standard
FD methods. In this paper we use monotized-central
reconstruction and the same numerical flux/boundary
correction as the DG scheme uses. Our DG-FD hybrid
method is also similar to that used in [21]. However, [21]
did not attempt to run the method in 3d because of memory
overhead. We have not done a detailed comparison of
memory overhead between different limiting strategies, but
have not noticed any significant barriers with the DG-FD
hybrid scheme. We present a detailed description of our
DG-FD hybrid method in a companion paper [56]. Our
DG-FD hybrid method is not strictly conservative at
boundaries where one element uses DG and another uses
FD. This is because on the DG element we use the
boundary correction of the reconstructed FD data, rather
than the reconstructed boundary correction computed on
the FD grid. In practice we have not found any negative
impact from this choice.

E. Primitive recovery

One of the most difficult and expensive aspects of
evolving the GRMHD equations is recovering the primitive
variables from the conserved variables. Several different
primitive recovery schemes are compared in [57]. We use
the recently proposed scheme of Kastaun et al. [58]. If this
scheme fails to recover the primitives, we try the Newman-
Hamlin scheme [59]. If the Newman-Hamlin scheme fails,
we use the scheme of Palenzuela et al. [60], and if that fails
we terminate the simulation. Note that we have not yet
incorporated all the fixing procedures to avoid recovery
failure that are presented in [58].

F. Variable fixing

During the evolution the conserved and primitive var-
iables can become nonphysical or enter regimes where the
evolution is no longer stable (e.g., zero density). When
limiting the solution does not remove these unphysical or
bad values, a pointwise fixing procedure is used—at any
grid points where the chosen conditions are not satisfied,
the conserved variables are adjusted. The fixing procedures
are generally not conservative and are used only as a
fallback to ensure a stable evolution. In SpECTRE we
currently use two fixing algorithms: The first applies an
“atmosphere” in low-density regions, while the second
adjusts the conserved variables in an attempt to guarantee
primitive recovery.

Our atmosphere treatment is similar to that of [61-63].
We define values p,, and peyiofrs Where pam < Peutost- FOT
any point where p < p.yonr WE Set

P = Pam> v = 0, wW=1 (47)
When poyofr < p < 10p,m We require that v'v; < 1074,
After the primitive variables are set to the atmosphere we
recompute the conserved variables from the primitive ones.
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Our fixing of the conserved variables is based on that of
Refs. [63,64]. We define D,,;, and D¢ and adjust D if
D < Dyt Specifically, we set D = /Y Din- We adjust 7
such that B> < 2,/7(1 — eg)7, where € is a small number

typically set to 1072, - )
Finally, we adjust S; such that §* < §2. , where S2,., is
defined below. We define variables

T
T = = 48
=3 (48)
. B?
B =, (49)
V7D
S,B' B2 < 7 -16 2o P2 -16
= _  B*>Dx10 d S°>D*x10
o= (o 0
0, otherwise.
(50)
The Lorentz factor is bounded by
max(1,1 +2-B>) <W<1+1%, (51)
and is determined by finding the root of
g(W) = (W + B> =2 — 1)[W? + B2p2(B* + 2W)]
B? AU
—7[1 + 2(W? +2WB* + B* - 1)). (52)

Using the Lorentz factor W obtained by solving (52) we
define S, as

S max —S‘min(l,

(1= en) W+ BP(W = )D?
\/(§2+sz10—16)[W2+ﬁ232(32+2w)]), (53)

where € is a small number typically set to 107!, We apply
the check on the conserved variables after each time or
substep before a primitive recovery is done.

Implementing root finding for Eq. (52) in a manner that
is well behaved for floating point arithmetic is important.
Specifically, we solve

1. R .
g(W) = <EBZ - T> (1+2B%p* + B*i?)
+ (W =1D[2(B> - %)(1 + B*2?) + B*p? + 1]
R 3.
+ (W - 1)2<32 —%+§BQ,&2 +2>

+(W-1)3 (54)

for W — 1 when the lower bound for W is 1 and

- B (55)

for W — (1 4% — B?) when the lower bound for W is
1+%- B~

We also have a flattening algorithm inspired by [65] that
reduces oscillations of the conserved variables if the
solution is unphysical. Unlike the pointwise fixing, the
flattening algorithm is conservative. In particular, we
reduce the oscillations in D if it is negative at any point
in the cell, and we rescale 7 to satisfy B% < 2\/)7%. Finally, if
the primitive variables cannot be recovered we reset the
conserved variables to their mean values.

IV. NUMERICAL RESULTS

For all test problems we use the less dissipative HLL
boundary correction. In many cases one of the limiting
strategies fails. This failure usually occurs during the
primitive recovery. However, this is a symptom of the
DG and limiting procedure producing a bad state rather
than a poor primitive recovery algorithm. All simulations
are performed using SpECTRE v2022.04.04 [35] and the input
files used are provided alongside the arXiv version.

A. 1d smooth flow

We consider a simple 1d smooth flow problem to test
which of the limiters and troubled-cell indicators are able to
solve a smooth problem without degrading the order of
accuracy. A smooth density perturbation is advected
across the domain with a velocity v'. The analytic solution
is given by

p=1+0.7 sin[ki(x' — vi1)], (56)
v = (0.8,0,0), (57)

ki = (1,0,0), (58)
p=1 (59)

B' = (0.0.0), (60)

and we close the system with an adiabatic equation of state,

p=pe(l - 1), (61)

123031-8



SIMULATING MAGNETIZED NEUTRON STARS WITH ...

PHYS. REV. D 105, 123031 (2022)

where I" is the adiabatic index, which we set to 1.4. We use
a domain given by [0,27z]® and apply periodic boundary
conditions in all directions. The time step size is Af =
27/5120 so that the spatial discretization error is larger than
the time stepping error for all resolutions we use.

We perform a convergence test using the different
limiting strategies and present the results in Table I. We
show both the L, norm of the error and the convergence
order. The L, norm is defined as

(62)

where M is the total number of grid points and u; is
the value of u at grid point i and the convergence order is
given by

Lz(gzvx/z)] ' (63)

Ly(Ey,)

We see that the troubled-cell indicator for the AITV,
HWENO, and simple WENO limiters does not flag any
cells as troubled and the full order of accuracy of the DG

L, order = log, {

TABLE 1. The errors and local convergence order for the
smooth flow problem using different limiting strategies. Note
that the limiter is not applied if the troubled-cell indicator
determines the DG solution to be valid. Except for the Krivo-
donova limiter, which is nonconvergent, we observe the expected
convergence order except when the solution is under-resolved
because too few elements are used.

Limiter N, L,(E(p)) L, order
ATTY 2 2.22282 x 1073
4 2.23822 x 1073 6.63
8 3.18504 x 1077 6.13
16 5.08821 x 107 5.97
HWENO 2 2.22282 x 1073
4 2.23822 x 107° 6.63
8 3.18504 x 1077 6.13
16 5.08821 x 107 5.97
Simple WENO 2 2.22282 x 1073
4 2.23822 x 107° 6.63
8 3.18504 x 1077 6.13
16 5.08821 x 107 5.97
Krivodonova 2 3.92346 x 107!
4 4.94975 x 107! —0.34
8 4.94975 x 107! 0.00
16 4.73294 x 107! 0.06
DG-FD P; 2 3.45679 x 107!
4 2.23822¢ x 1073 13.91
8 3.18504 x 1077 6.13
16 5.08821 x 107° 5.97

scheme is preserved. For these simulations we used a TVB
constant of 1. The Krivodonova limiter completely flattens
the solution and shows no convergence. The reason is that
the Krivodonova limiter is unable to preserve a smooth
solution if the flow is constant in an orthogonal direction.
This can be understood from the minmod algorithm being
applied to the neighboring coefficients. The smooth flow
solution is constant in the y and z directions, and so the
Krivodonova limiter effectively zeros all higher moments.
The DG-FD P5 scheme switches to FD when we use only
two elements, but from four to 16 elements it uses DG. The
order of convergence is so large for the N, =4 case
because in addition to doubling the resolution, the code
also switches from using second-order FD to sixth-order
DG, causing a very large decrease in the errors. Using a
higher-order or adaptive-order FD scheme is expected to
preserve the accuracy much better when the hybrid scheme
is using FD, while still being able to capture shocks
robustly and accurately.

B. 1d Riemann problems

One-dimensional Riemann problems are a standard test
for any scheme that must be able to handle shocks. We will
focus on the first Riemann problem (RP1) of [66]. The
setup is given in Table II. While not the most challenging
Riemann problem, it gives a good baseline for different
limiting strategies. We perform simulations using an SSP-
RK3 method with Ar =5 x 107%. In Fig. 1 we show the
rest mass density p at 1, = 0.4 for simulations using the
simple WENO, HWENO, AIT", and Krivodonova limiters,
as well as a run using the DG-FD hybrid scheme. The thin
black curve is the analytic solution obtained using the
Riemann solver of [67]. All simulations use 128 elements
in the x direction with a P, (third-order) DG scheme, and an
ideal fluid equation of state, Eq. (61).

While all five limiting strategies evolve to the final time,
the DG-FD scheme is the least oscillatory and is also able to
resolve the discontinuities much more accurately. The
HWENO scheme is slightly less oscillatory if linear
neighbor weights of y;, =0.01 are used instead of
7r = 0.001. However, the simple WENO limiter fails to
evolve the solution with y, = 0.01 and such sensitivity to
parameters in the algorithm is not desirable when solving
realistic problems. Going to higher order has proven to be
especially challenging. While both the AITY and the
Krivodonova complete the evolution when using a Pj

TABLEII. The initial conditions for Riemann problem 1 of [66].
The domain is x € [-0.5,0.5], the final time is 7, = 0.4, and an
ideal fluid equation of state is used with an adiabatic index of 2.

P P v B'
x<0 1.0 1.0 (0,0,0) (0.5, 1,0)
x>0 0.125 0.1 (0,0,0) 0.5, —1,0)
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1.0
—— HWENO
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== AIIY
0.8 = Krivodonova
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= 0.6
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(a) Riemann Problem 1 comparison
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—— HWENO
—— Simple WENO
0.754 —— AIY
= Krivodonova
DG-FD P,
0.701 — Exact

0.55 H
020 —015 -010 —-005 000 005 o:.10
x
(b) Zoom in of Riemann Problem 1
FIG. 1. A comparison of different limiters used to stabilize the

evolution of the Riemann problem 1 of [66]. The problem is
solved using 128 third-order (P,) elements. The DG-FD hybrid
scheme significantly outperforms the other limiters both in
robustness and accuracy.

scheme with 64 elements (simple WENO and HWENO
fail), additional spurious oscillations are present. In com-
parison, the DG-FD hybrid scheme actually has fewer
oscillations when going to higher order. In Fig. 2 we plot
the error of the numerical solution using a P, DG-FD
scheme with 128 elements and a P5 DG-FD scheme with 64
elements. We see that the P5 hybrid scheme actually has
fewer oscillations than the P, scheme, while resolving the
discontinuities equally well. We attribute this to the
troubled-cell indicators actually triggering earlier when a
higher polynomial degree is used since discontinuities
entering an element rapidly dump energy into the high
modes. While we will compare the different limiting
strategies for 2d and 3d problems below, it is already quite
apparent that the DG-FD hybrid scheme is by far the most
robust and accurate method.

DG-FD P,
‘ ---- DG-FD P,
0.1 i t
i
f |
Y RS W B
£
‘.
= —0.1
Q;
-0.21
o4 -02 00 02 0.4

X

FIG. 2. The difference between the analytic and numerical
solution of the Riemann problem 1 of [66] at = 0.4 for the DG-
FD P, scheme (solid light blue curve) and the DG-FD P5 scheme
(dashed purple curve). The Ps scheme is able to resolve the
discontinuities just as well as the P, scheme, while also admitting
fewer unphysical oscillations away from the discontinuities.

C. 2d cylindrical blast wave

A standard test problem for GRMHD codes is the
cylindrical blast wave [68,69], where a magnetized fluid
initially at rest in a constant magnetic field along the x axis
is evolved. The fluid obeys the ideal fluid equation of state
(61) with y =4/3. The fluid begins in a cylindrically
symmetric configuration, with hot, dense fluid in the region
with cylindrical radius r < 0.8 surrounded by a cooler, less
dense fluid in the region r > 1. The initial density p and
pressure p of the fluid are

p(r <0.8)=1072,

p(r>1.0) =104,

p(r<08)=1,

p(r>1.0)=5x10"* (64)

In the region 0.8 < r < 1, the solution transitions contin-
uously and exponentially (i.e., transitions such that the
logarithms of the pressure and density are linear functions
of r). The fluid begins threaded with a uniform magnetic
field with Cartesian components

(B*,B”, B%) = (0.1,0,0). (65)

The magnetic field causes the blast wave to expand
nonaxisymmetrically. For all simulations we use a time
step size At = 1072 and an SSP RK3 time integrator.
We evolve the blast wave to time t = 4.0 on a grid of
64 x 64 x 1 elements covering a cube of extent [—6, 6]
using a DG P, scheme, a comparable resolution to what FD
code tests use. We apply periodic boundary conditions in
all directions, since the explosion does not reach the outer
boundary by ¢ = 4.0. Figure 3 shows the logarithm of
the rest-mass density at time f=4.0, at the end of
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FIG. 3.
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©)
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— 7.5e4 — 7.5e4
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Cylindrical blast wave p at t = 4 comparing the DG-FD hybrid scheme, the AIT", Krivodonova, simple WENO, and HWENO

limiters using P, DG, as well as the DG-FD scheme using Ps DG. There are 192 degrees of freedom per dimension, comparable to what
is used when testing FD schemes. We see that only the DG-FD hybrid scheme really resolves the features to an acceptable level, and the
AITY and Krivodonova smear out the solution almost completely. In the plots of the DG-FD hybrid scheme the regions surrounded by

black squares have switched from DG to FD at the final time.

evolutions using the different limiting strategies. We see
from Figs. 3(c) and 3(d) that the AITY and Krivodonova
limiters result in a very poorly resolved solution. The
simple WENO evolution, Fig. 3(e) is much better but still
not nearly as good as a FD method with the same number of
degrees of freedom. The HWENO limiter, Fig. 3(f), suffers
from various spurious artifacts. The DG-FD hybrid scheme,
however, again demonstrates its ability to robustly handle
discontinuities, while also resolving smooth features with
very high order. Figure 3(a) shows the result of a simulation
using a P, DG-FD scheme and Fig. 3(b) using a P DG-FD
scheme with half the number of elements. The increased
resolution of a high-order scheme is clear when comparing
the P, and P5 solutions in the interior region of the blast
wave. We conclude that the DG-FD hybrid scheme is the
most robust and accurate method/limiting strategy for
solving the cylindrical blast wave problem.

D. 2d magnetic rotor

The second two-dimensional test problem we study is
the magnetic rotor problem originally proposed for

nonrelativistic MHD [70,71] and later generalized to the
relativistic case [72,73]. A rapidly rotating dense fluid
cylinder is inside a lower density fluid, with a uniform
pressure and magnetic field everywhere. The magnetic
braking will slow down the rotor over time, with an
approximately 90 degree rotation by the final time
t = 0.4. We use a domain of [—0.5,0.5]* and a time step
size At = 1072 and an SSP RK3 time integrator. An ideal
fluid equation of state with I'=15/3 is used, and the
following initial conditions are imposed:

p=1
B = (1,0,0)
; (=yQ,xQ,0), if r < Ryor = 0.1
"o {(0,0,0), otherwise,
10, if r < Ryior = 0.1
r= { 1, otherwiszo (66)

with angular velocity ©Q = 9.95. The choice of © and
Roior = 0.1 guarantees that the maximum velocity of the
fluid (0.995) is less than the speed of light.
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(a) DG-FD, P», 642 elements

(d) Krivodonova, Pa, 642 elements

(b) DG-FD, P5, 322 elements

€) Simple WENO, P5, 642 elements
(e)

8.20

4.10

0.20
(c) AIIN | P5, 642 elements

8.20
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0.20

(f) HWENO, P>, 642 elements

FIG. 4. Magnetic rotor p at t = 0.4 comparing the DG-FD hybrid scheme, the AIT", Krivodonova, simple WENO, and HWENO
limiters using P, DG, as well as the DG-FD scheme using Ps DG. There are 192 degrees of freedom per dimension, comparable to what
is used when testing FD schemes. We see that only the DG-FD hybrid scheme really resolves the features to an acceptable level, and the
AITY and Krivodonova smear out the solution almost completely. The simple WENO limiter fails to solve the problem. In the plots of the
DG-FD hybrid scheme the regions surrounded by black squares have switched from DG to FD at the final time.

We show the results of our evolutions in Fig. 4, which are
all done with 192 grid points and periodic boundary
conditions. Figures 4(c) and 4(d) show results using the
AITY and Krivodonova limiter which both severely smear
out the solution. The simple WENO limiter suffers from
spurious artifacts [Fig. 4(d)], while the HWENO limiter
does a reasonable job [Fig. 4(e)]. The DG-FD hybrid
scheme is most robust and accurate, but a fairly large
number of cells end up being marked as troubled in this
problem and switched to FD. While ideally fewer cells
would be switched to FD, it is better to have a scheme that
is capable of solving a large array of problems without fine-
tuning than to have a slightly different fine-tuned scheme
for each test problem.

E. 2d magnetic loop advection

The third two-dimensional test problem we study is the
magnetic loop advection problem [74]. A magnetic loop is
advected through the domain until it returns to its starting
position. We use an initial configuration very similar to
[42,75-77], where

p=1
p=3
vl =(1/1.2,1/2.4,0)
—Ajoopy/Rin. if r < Ry,
B* = ¢ —Apopy/r,  if Ry <7 < Rigep
0, otherwise,
ApoopX/Rin, if r < Ry,
BY = ¢ AjpopX/T, if Ry <7 < Rygep (67)
0, otherwise,

with Ry, = 0.3, R;; = 0.001, and an ideal gas equation of
state with T'=5/3. The computational domain is
[-0.5,0.5]® with 64 x 64 x 1 elements and periodic boun-
dary conditions being applied everywhere. The final time
for one period is t = 2.4. For all simulations we use a time
step size At = 1073 and an SSP RK3 time integrator.

In Fig. 5 we plot the magnetic field component B* at
t = 0 on the left half of each plot and after one period
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(a) DG-FD, Ps, 642 elements (b) DG-FD, Ps5, 322 elements (c) AIIV | Po, 642 elements
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FIG. 5. B* for the magnetic loop advection problem. The left half of each plot is at the initial time, while the right half is after one
period (¢ = 2.4). We compare the DG-FD hybrid scheme, the ATV, Krivodonova, simple WENO, and HWENO limiters using P, DG,
as well as the DG-FD scheme using Ps DG. There are 192 degrees of freedom per dimension, comparable to what is used when testing
FD schemes. In the plots of the DG-FD hybrid scheme the regions surrounded by black squares have switched from DG to FD at the

final time.

t = 2.4 on the right half of each plot for results using
various limiting strategies. We use a TVB constant of 5 for
the AITY, simple WENO, and HWENO limiters, and use
neighbor weights y, = 0.001 for the simple WENO and
HWENO limiters. The Krivodonova limiter completely
destroys the solution and only remains stable because of
our conservative variable fixing scheme. Both WENO
limiters work quite well, maintaining the shape of the loop
with only some oscillations being generated. The DG-FD
hybrid scheme again performs the best. In Fig. 5(a) we
show the result using a P, DG-FD scheme and in Fig. 5(b)
using a Ps DG-FD scheme. The Ps scheme resolves
the smooth parts of the solution more accurately than
the P, scheme, as is to be expected. The DG-FD hybrid
scheme also does not generate the spurious oscillations that
are present when using the WENO limiters. While the
spurious oscillations may be reduced by fine-tuning the
TVB constant and the neighbor weights, this type of fine-
tuning is not possible for complex physics simulations
and so we do not spend time searching for the “optimal”
parameters.

Since we are using hyperbolic divergence cleaning,
violations of the d;B" = 0 constraint occur. In Fig. 6 we
plot the divergence cleaning field ® at the final time t = 2.4.
The simple WENO, HWENO, and DG-FD hybrid schemes
all have |®|~5x 107%, while the AITY limiter has ®
approximately 1 order of magnitude larger. For the magnetic
loop advection problem we find that all classical limiters
perform comparably, except the Krivodonova limiter com-
pletely destroys the solution and remains stable only because
of our conservative variable fixing scheme. Nevertheless,
the DG-FD hybrid scheme is better than the classical
limiters, and we conclude that the DG-FD hybrid scheme
is both the most robust and accurate method/limiting
strategy for solving the magnetic loop advection problem.

F. 2d magnetized Kelvin-Helmholtz instability

The last two-dimensional test problem we study is the
magnetized Kelvin-Helmholtz (KH) instability, similar to
[78]. The domain is [0, 1]* and we use the following initial
conditions [18]:
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(a) DG-FD, P2, 642 elements (b) DG-FD, P5, 322 elements (c) AIIN | Po, 642 elements
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FIG. 6. The divergence cleaning field ® for the magnetic loop advection problem after one period (¢ = 2.4) comparing the DG-FD
hybrid scheme, the ATV, Krivodonova, simple WENO, and HWENO limiters using P, DG, as well as the DG-FD scheme using Ps DG.
There are 192 degrees of freedom per dimension, comparable to what is used when testing FD schemes. In the plots from the DG-FD
hybrid scheme the regions surrounded by black squares have switched from DG to FD at the final time.

1, ly —0.5] <0.25 time integrator, and [64 x 1 x 64] P, elements for the

P =9 (0= : (68)  Classical limiters. For the DG-FD hybrid method we use
107, otherwise,

both [64 x 1 x 64] P, elements and [32 x 1 x 32] P5 ele-

p=10, (69) ments. We use a TVB constant of 1 for all the limiters.

Using the flattening algorithm is crucial for the results

0.5, ly —0.5] < 0.25 obtained hqre, while for other test problems it is signifi-

v = , (70)  cantly less important.

—0.5, otherwise,

In Fig. 7 we plot the density at the final time comparing

0.75)2 the different limiting strategies. From Figs. 7(e) and 7(d)
v = 0.1 sin(4zx) [exp <_ H) we see that the simple WENO and Krivodonova limiters
0.0707 destroy the solution almost completely. The ATTY limiter

(y-— 0.25)2 [Fig. 7(c)] retains some hints of the expected flow pattern,
+exp | - 0.07072 ’ (1) put also nearly completely destroys the solution. The
HWENO limiter is plotted in Fig. 7(e) and does by far

»* = 0.0, (72) the best of the classical limiters. Ultimately, only the DG-
FD hybrid method [Fig. 7(a) for P, and Fig. 7(b) for Ps] is
B — 1073 (73) able to produce the expected vortices and flow patterns.
B = BZ=0.0. (74) G. TOV star

A rigorous 3d test case in general relativity is the

We use an ideal gas equation of state with I' = 4 /3, a final
time ¢, = 1.6, a time step size of Az = 1073, an SSP RK3

evolution of a static, spherically symmetric star. The
TOV solution [79,80] describes such a setup. In this section
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FIG. 7. Magnetized Kelvin-Helmholtz instability p at ¢ = 1.6 comparing the DG-FD hybrid scheme, the AITV, Krivodonova, simple
WENO, and HWENO limiters using P, DG, as well as the DG-FD scheme using Ps DG. There are 192 degrees of freedom per
dimension, comparable to what is used when testing FD schemes. Only the DG-FD hybrid scheme and the HWENO limiter produce
reasonable results, while the ATTY limiter has very low effective resolution, and the Krivodonova and simple WENO limiters smear out
the solution almost completely. In the plots of the DG-FD hybrid scheme the regions surrounded by black squares have switched from

DG to FD at the final time.

we study evolutions of both nonmagnetized and magnet-
ized TOV stars. We adopt the same configuration as in [81].
Specifically, we use a polytropic equation of state,

p(p) = Kp", (75)

with the polytropic exponent I" = 2, polytropic constant
K =100, and a central density p, = 1.28 x 1073, When
considering a magnetized star we choose a magnetic field
given by the vector potential,

Ay = Ay (x* + y?) max(p — pey. 0)™, (76)

with A, = 2500, p. = 0.04pna, and ng = 2. This con-
figuration yields a magnetic field strength in CGS units,

‘BCGS| =V b2 x 8.352 x 1019 G, (77)

of |Bcgs| = 1.03 x 10'® G. The magnetic field is only
a perturbation to the dynamics of the star, since
(Pmag/P)(r = 0) ~ 5 x 107>, However, evolving the field

stably and accurately can be challenging. The magnetic
field corresponding to the vector potential in Eq. (76) in the
magnetized region is given by

1 xz
B*=_—_""A ) _ nl\—la ,
\/7 - bn.s(p pcut) rP
. Lyz .
B’ = WTAbns(p - pcut) : ]arp’
A
B = —7; 2(p = peud)™
x? +y?
+ - ns(p - pcut)ny_larp ’ (78)
and at r =0 is
Ay
B*=0, B'=0, B'=-—"2(p—pa)". (79

VT

We perform all evolutions in full 3d with no symmetry
assumptions and in the Cowling approximation, i.e., we do
not evolve the spacetime. To match the resolution usually
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used in FD/FV numerical relativity codes we use a domain
[—20, 20]* with a base resolution of 6 Ps DG elements and
12 P, DG elements. This choice means we have approx-
imately 32 FD grid points covering the star’s diameter at the
lowest resolution, 64 when using 12 P5 elements, and 128
grid points when using 24 Ps elements. In all cases we set
Pam = 1075 and p o = 1.01 x 10715,

In Fig. 8 we show the normalized maximum rest mass
density over the grid for the nonmagnetized TOV star. The
six-element simulation uses FD throughout the interior of
the star and so there is no grid point at r = 0. This is the
reason the data is shifted compared to 12- and 24-element
simulations, where the unlimited Ps DG solver is used
throughout the star interior and so there is a grid point at the
center of the star. The increased “noise” in the 12- and
24-element data actually stems from the higher oscillation
modes in the star that are induced by numerical error. In
Fig. 9 we plot the power spectrum using data at the three
different resolutions. The six-element simulation only has
one mode resolved, while 12 elements resolve two modes
well, and the 24-element simulation resolves three modes
well. In Fig. 10 we show the normalized maximum rest
mass density over the grid for the best two cases using the
classical limiters. The simple WENO and HWENO limiters
performed similarly and were only stable for P,. The
Krivodonova limiter only succeeded at three of the 16
resolutions we attempted, and its best result is noticeably
noisier than the other limiters. Note that our experience is
consistent with that of Ref. [21], which was unable to

1.0159
—— 6 elements

12 elements
—— 24 elements

1.010 1

1.005 1

1.000

0.995

0.990 -

max]p(t)]/max[p(0)]

0.985

0.980 -

0.975

00 25 50 75 100 125 150 175 20.0
Time (ms)

FIG. 8. The maximum density over the grid max(p) divided by
the maximum density over the grid at t = O for three different
resolutions for the nonmagnetized TOV star simulations. The six-
element simulation uses FD throughout the interior of the star,
while 12- and 24-element simulations use DG. The increased
high-frequency content in 12- and 24-element simulations occurs
because the high-order DG scheme is able to resolve higher
oscillation modes in the star. The maximum density in the six-
element case drifts down at early times because of the low
resolution and the relatively low accuracy of using FD at the
center.

—— 6 elements
-3
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—— 24 elements
10 4 |
|
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FIG. 9. The power spectrum of the maximum density for three
different resolutions for the nonmagnetized TOV star simulations.
The six-element simulation uses FD throughout the interior of the
star, while the 12- and 24-element simulations use DG. When the
high-order DG scheme is used, more oscillation frequencies are
resolved. The vertical dashed lines correspond to the known
frequencies in the Cowling approximation [82].

achieve stable evolutions of a 3d TOV star using the simple
WENO limiter.

We show the normalized maximum rest mass density
over the grid for the magnetized TOV star in Fig. 11.
Overall the results are nearly identical to the nonmagne-
tized case. One notable difference is the decrease in the
12-element simulation between 7.5 and 11 ms, which

1.015
1.010
1.005 1
1.000
0.995

0.990 -

max|p(t)] /max[p(0)]

0.985

0.9801 —— KrivodonovaP4 48 elements

0.975 | HWENOP2 48 elements

00 25 50 75 100 125 150 175 20.0
Time (ms)

FIG. 10. The maximum density over the grid max(p) divided
by the maximum density over the grid at ¢ = 0 for the best two
cases using classical limiters for the nonmagnetized TOV star
simulations. The HWENO limiter is only stable for a P, DG
solver. Simple WENO (not plotted) gives similar results. The
Krivodonova limiter only succeeded at some resolutions (three of
the 16 attempted runs) and the shown best result is noticeably
noisier than the subcell limiter.
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FIG. 11. The maximum density over the grid max(p) divided

by the maximum density over the grid at # = O for three different
resolutions for the magnetized TOV star simulation. The six-
element simulation uses FD throughout the interior of the star,
while 12- and 24-element simulations use DG. The increased
high-frequency content in 12- and 24-element simulations occurs
because the high-order DG scheme is able to resolve higher
oscillation modes in the star. The maximum density in the six-
element case drifts down at early times because of the low
resolution and the relatively low accuracy of using FD at the
center.

occurs because the code switches from DG to FD at the
center of the star at 7.5 ms and back to DG at 11 ms.
Nevertheless, the frequencies are resolved just as well for
the magnetized star as for the nonmagnetized case, as can
be seen in Fig. 12 where we plot the power spectrum.
Specifically, we are able to resolve the three largest modes
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FIG. 12. The power spectrum of the maximum density for three
different resolutions of the magnetized TOV star simulations. The
six-element simulation uses FD throughout the interior of the star,
while the 12- and 24-element simulations use DG. When the
high-order DG scheme is used, more oscillation frequencies are
resolved. The vertical dashed lines correspond to the known
frequencies in the Cowling approximation.

with our Ps DG-FD hybrid scheme. To the best of our
knowledge, these are the first simulations of a magnetized
neutron star using high-order DG methods.

V. CONCLUSIONS

We compare various shock capturing strategies to
stabilize the DG method applied to the equations of general
relativistic magnetohydrodynamics in the presence of
discontinuities and shocks. We use the open source
numerical relativity code SpECTRE [35] to perform the
simulations. We compare the classic AITY method [29],
the hierarchical limiter of Krivodonova [30], the simple
WENO limiter [31], the HWENO limiter [32], and a
DG-FD hybrid approach that uses DG where the solution
is smooth and HRSC FD methods where the solution
contains discontinuities [56]. While many of the limiting
strategies appear promising in the Newtonion hydrody-
namics case, we have found stable and accurate simulations
of GRMHD to be a much more challenging problem. This
is in part because limiting the characteristic variables is
difficult since the characteristic variables are not known
analytically for the GRMHD system.

In the Newtonian hydrodynamics case, the literature
advocates for using the classical limiters (AITV,
Krivodonova, simple WENO, HWENO) on the character-
istic variables of the evolution system to reduce oscilla-
tions, for using more detailed troubled-cell indicators like
that of [55], and for supplementing the limiting with
flattening schemes to further correct any unphysical values
remaining after limiting. We have found these techniques
do somewhat improve the accuracy and robustness of the
limiters in the Newtonian case, but not enough to avoid the
need for problem-dependent tuning of parameters, or to
obtain truly robust behavior. Since these techniques do not
all easily generalize to the relativistic magnetohydrody-
namics case we consider here, we use the classical limiters
in their simplest configuration. Our experience with limit-
ers in Newtonian hydrodynamics suggests that limiting
characteristic variables with specialized troubled-cell
indicators and flatteners will likely still be problematic
in the more complicated GRMHD case.

A further challenge with the classical limiters lies in
extending the DG method to higher orders. With all these
limiters, we consistently find large oscillations and a
corresponding loss of accuracy with P, or higher-order
DG schemes, both in Newtonian and relativistic hydro-
dynamics evolutions. The difficulty in robustly applying
these limiters to higher-order DG schemes gives further
motivation to favor the DG-FD hydrid method for scientific
applications.

We find that only the DG-FD hybrid method is able to
maintain stability when using a sixth-order DG scheme.
The other methods are unstable or in the case of the ATV
limiter fall back to a linear approximation everywhere.
The classical limiters all work on only some subset of the
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test problems, and even there some tuning of parameters is
required. While it is certainly conceivable that with enough
fine-tuning each limiter could simulate most or all of the
test problems, this does not make the limiter useful in
scientific applications where a wide variety of different
types of shock interactions and wave patterns appear. A
realistic limiting strategy cannot require any fine-tuning for
different problems. The only method that presents such a
level of robustness is the DG-FD hybrid scheme. As a
result, the DG-FD hybrid method is the only method with
which we are able to simulate both magnetized and
nonmagnetized TOV stars. To the best of our knowledge
this paper presents the first simulations of a magnetized
TOV star where DG is used.

While the DG-FD hybrid scheme is certainly the most
complicated approach for shock capturing in a DG code,
our results demonstrate that such complexity unfortunately
seems to be necessary. We are not optimistic that any
classical limiting strategy can be competitive with the DG-
FD hybrid scheme since none of the methods presented in
the literature are able to resolve discontinuities within a DG
element. This means that discontinuities are at best only
able to be resolved at the level of an entire DG element.
Thus, at discontinuities the classical limiting strategies
effectively turn DG into a finite volume scheme with an
extremely stringent time step restriction. Switching the DG
scheme to a classical WENO finite-volume-type scheme
was actually the only way Ref. [21] was able to evolve a
nonmagnetized TOV star.

It is unclear to us how discontinuities could be resolved
inside a DG element since the basis functions are poly-
nomials. By switching to FD, the hybrid scheme increases
resolution and is able to resolve discontinuities inside an
element. This can also be thought of as instead of solving
the partial differential equations governing the fluid dynam-
ics, we want to solve as many Rankine-Hugoniot con-
ditions as possible to resolve the discontinuities as cleanly
as possible.

Alternatively, we can view the hybrid scheme as a
FD method where in smooth regions the solution is
compressed to a high-order spectral representation to

increase efficiency. The DG-FD hybrid scheme reduces
the number of grid points per dimension roughly in half,
and so in theory a speedup of approximately eight is
expected in 3d. With the current code, we see more
moderate speedups of approximately two, so there is
certainly room for optimizations in SpECTRE.

In the future we plan to evolve the coupled generalized
harmonic and GRMHD system together as one monolithic
coupled system, generalize the DG-FD hybrid scheme to
curved meshes, and use more robust positivity-preserving
adaptive-order FD schemes to achieve high-order accuracy
even in regions where the FD scheme is being used.
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