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Abstract

We investigate C' finite element methods for one dimensional elliptic distrib-
uted optimal control problems with pointwise constraints on the derivative of the
state formulated as fourth order variational inequalities for the state variable. For
the problem with Dirichlet boundary conditions, we use an existing H 3-e regular-
ity result for the optimal state to derive O(h2~¢) convergence for the approxima-
tion of the optimal state in the H> norm. For the problem with mixed Dirichlet and
Neumann boundary conditions, we show that the optimal state belongs to H> under
appropriate assumptions on the data and obtain O(h) convergence for the approxi-
mation of the optimal state in the H? norm.

Keywords Elliptic distributed optimal control problems - Pointwise derivative
constraints - Cubic Hermite element

1 Introduction

Let I be the interval (—1, 1) and the function J : L,(/) X L,(I) — R be defined by
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1 2 2
JO,u) = E[”y_yd”Lz(I)+ﬁ”””L2(1)]a (1.1
where y,; € L,(I) and f is a positive constant.
The optimal control problem is to

find (9, #) = argminJ(y, u),
.u)ek (1 2)

where (y, u) € H>(I) X L,(I) belongs to K if and only if

=" =u+f  onl, (1.3)

Y <w on/, (1.4)
together with the following boundary conditions for y:
y=D=y1)=0, (1.5a)

or

y(=1) =y'(1)=0. (1.5b)

Remark 1.1 Throughout this paper we will follow standard notation for function
spaces and norms that can be found, for example, in Ciarlet (1978), Brenner and
Scott (2008) and Adams and Fournier (2003).

For the problem with the Dirichlet boundary conditions (1.5a), we assume that

fEH (), w eH:°(I) Ve>0 and /w dx > 0. (1.6)
1

For the problem with the mixed boundary conditions (1.5b), we assume that

feH), yw e H*(I) and (1) >0. (1.7)

Remark 1.2 In the case of Dirichlet boundary conditions, clearly we need /1 wdx >0
since [, y'dx =0and y’ <. However [,y dx =0 implies [,(y/ — y)dx = 0, which
together with y' <y leads to y' = y. Hence in this case K is a singleton and the
optimal control problem becomes trivial.

The optimal control problem with the Dirichlet boundary conditions (1.5a) is a
one dimensional analog of the optimal control problems considered in Casas and
Bonnans (1988), Casas and Fernandez (1993), Deckelnick et al. (2009), Ortner and
Wollner (2011) and Wollner (2012) on smooth or convex domains. In Casas and
Bonnans (1988) and Casas and Fernandez (1993), first order optimality conditions
were derived for a semilinear elliptic optimization problem with pointwise gradient
constraints on smooth domains, where the solution of the state equation is in Wi
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for any feasible control. These results were extended to non-smooth domains in Wol-
Iner (2012). On the other hand higher dimensional analogs of the optimal control
problem with the mixed boundary conditions (1.5b) are absent from the literature.

Finite element error analysis for the problem with the Dirichlet boundary con-
ditions was first carried out in Deckelnick et al. (2009) by a mixed formulation of
the elliptic equation and a variational discretization of the control, and in Ortner
and Wollner (2011) by a standard H'-conforming discretization with a possible non-
variational control discretization.

The goal of this paper is to show that it is also possible to solve the one dimen-
sional optimal control problem with either boundary conditions as a fourth order
variational inequality for the state variable by a C' finite element method. We note
that such an approach has been carried out for elliptic distributed optimal control
problems with pointwise state constraints in, for example, the papers (Liu et al.
2009; Brenner et al. 2013, 2014, 2016, 2018, 2018, 2019). The analysis in this paper
extends the general framework in Brenner and Sung (2017) to the one dimensional
problem defined by (1.1)—(1.5).

The rest of the paper is organized as follows. We collect information on the opti-
mal control problem in Sect. 2. The construction and analysis of the discrete prob-
lem are treated in Sect. 3, followed by numerical results in Sect. 4. We end with
some concluding remarks in Sect. 5. The appendices contain derivations of the
Karush—Kuhn-Tucker conditions that appear in Sect. 2.

Throughout the paper we will use C (with or without subscript) to denote a
generic positive constant independent of the mesh sizes.

2 The continuous problem

Let the space V be defined by

V={ve H*(D) : v(=1)=w) = 0} for the boundary conditions (1.5a),
(2.1a)
and

V={veH*I): v(-1)=Vv(1)=0} forthe boundary conditions (1.5b).
(2.1b)

The minimization problem defined by (1.1)—(1.5) can be reformulated as the fol-
lowing problem that only involves y:

o 1
Find 3= argmin; [y = yallZ oy + BIY" + 1117 ] 2.2)
ye

where
K={yeV:y <yonll. (2.3)

Note that the closed convex subset K of the Hilbert space V is nonempty for
either boundary conditions. In the case of the Dirichlet boundary conditions, the
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function y(x) = f_x] (w(t) — 6)dt belongs to K if we take 6 to be % /1 v dx (> 0).
Similarly, in the case of the mixed boundary conditions, the function
y(x) = /_x] [w(t) — 6 sin[(x/4)(1 + t)]dt belongs to K if we take & to be w(1) (= 0).
According to the standard theory in Ekeland and Témam (1999), there is a unique
solution y of (2.2)—(2.3) characterized by the fourth order variational inequality

/I@ -y = Vdx+ p /1@” +HG" =3)dx >0 VyeK. (2.4)
We can express (2.4) in the form of
a@.y =3 z /, Yy = P)dx = p /, 0" =3"dx Vye€K, 2.5)
where

ay,2)=p [y dx+ / yzdx. (2.6)
1 1

2.1 The Karush-Kuhn-Tucker conditions

The solution of (2.4) is characterized by the following conditions:

/@ —yzdx+p /@” +)7" dx + / Zdu=0 VzevV, 2.7
1 1 [-1,1]

/ ' — w)du =0, (2.8)
[-1,1]

where
u is a nonnegative finite Borel measure on [—1, 1]. 2.9
Note that (2.8) is equivalent to the statement that u is supported on the active set
d={xe[-1,1]: ¥ =y} (2.10)

for the derivative constraint (1.4).
We can also express (2.7) as

a(3,7) — /ydzdx+ﬂ/fz”dx = —/ Jdu VzeV. 2.11)
1 1 [=1,1]

The Karush—Kuhn-Tucker (KKT) conditions (2.7)—(2.9) can be derived from the
general theory on Lagrange multipliers that can be found, for example, in Luen-
berger (1969) and Ito and Kunisch (2008). For the simple one dimensional problem
here, they can also be derived directly (cf. “Appendix A” for the Dirichlet boundary
conditions and “Appendix B” for the mixed boundary conditions).

@ Springer



Finite element methods for one dimensional elliptic distributed...

Remark 2.1 In the case of the mixed boundary conditions, additional information on
the structure of y [cf. (2.27)] is obtained in “Appendix B”.

2.2 Dirichlet boundary conditions
We will use (2.7) to obtain additional regularity for ¥ that matches the regular-
ity result in Ortner and Wollner (2011). The following lemmas are useful for this

purpose.

Lemma 2.2 We have

/va’ dx < Cfl 1o Wi, YVE H'()ande €(0,1/2).  (2.12)
Proof Observe that
[ ds <liglo bl vve '@ @.13)
ifg € L,(I), and
/, odx <lglypIWllLg Vv e H'D) @.14)

if g € Hy(I). 1

Recall that f € H2"°(I) by the assumption in (1.6). The estimate (2.12) follows
from (2.13), (2.14) and bilinear interpolation (cf. Bergh and Lofstrom 1976, Theo-
rem 4.4.1), together with the following interpolations of Sobolev spaces (cf. Lions
and Magenes 1972, Sections 1.9 and 1.11):

—€

(LoD, HYD)s_, = H (D = H>"(1) and

[H' (1), L,(D]:

=—€
2

+€(I).

D=

H

O

Note that the map z — z” is an isomorphism between V [given by (2.1a)] and
L,(I). Therefore, by the Riesz representation theorem, for any # € V' we can
define p € L,(I) by

/pz” dx=¢(z) VzeV. (2.15)
1

Lemma 2.3 Given any s € [0, 11, the function p defined by (2.15) belongs to H'~*(I)
provided that
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£(2) < Clzlasgy Vz€H™ D). (2.16)
Proof On one hand, if # € (H*(I))’, we have
IPllL,ay < NN Erayy - 2.17)

On the other hand, if # € (H'(I))', then the solution p of (2.15) can also be defined
by the conditions that p € H;(I) and

/p’q’dx =—£(q) VqeHl.
1

Hence in this case we have
1Play < N ayy- (2.18)

The estimate (2.16) follows from (2.17), (2.18) and the following interpolations of
Sobolev spaces (cf. Lions and Magenes 1972, Sections 1.6 and 1.9):

[L,(D),H'(D],_, = H'™*(I)
and

[(HXDY,(H (D)'1,_, = (H'(D), HXD)],) = H™D))'.

O
Theorem 2.4 The solution y of (2.4) belongs to Hg_e(l)for alle € (0,1/2).
Proof Note that, by the Sobolev inequality (Adams and Fournier 2003),
1
/Ivd,u < C€|v|H%+E(1) Vve H (I)and e € (0,1/2). (2.19)

Let p € L,(I) be defined by
p pz”dx:/(yd—)_’)zdx—ﬁ/fz”dx—/ ddp VzeV. (220
I I 1 [-1,1]

where V is given by (2.1a). It follows from (2.12), (2.19), (2.20) and Lemma 2.3
(with s = % + €) that

p belongs to H3~(I) for all € € (0, 1/2). @.21)

Comparing (2.7) and (2.20), we see that

/)"/’z”dx = /pz”dx VzeV
1 1

and hence y" = p, which together with (2.21) concludes the proof. O
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Corollary 2.5 We haven = —y" — f € H%_S(I)for alle € (0,1/2).

Example 2.6 We take f = w = 1 and the exact solution

“la+D+ia+13+La-x23 —1<x<0

— 2 2 12

YO =9 X . - (22
—G= D+ -1+ (-7 0<x<1

It follows from a direct calculation that

—s 3+ 12— x(1 -2 —1<x<0
)_”()C)z _l+§(_1)2_l(1_2)2 0<r<l s
2 2)C 2x X S X
and
3+ 1) — 21— 6x2 + 5x%) —1<x<0
NN 2
V') =

3(x—1)—%(1—6x2+5x4) 0<x<1
It is straightforward to check that ¥ belongs to K, <= {0}, and for z € V,

0 1
/ y'7 dx = / 3(x+ D dx + / 3(x — )7 dx — % / (1 = 6x> + 5xM7"dx
1 - 0 1

1

=67(0) + /gz dx,
I
(2.23)

where
g(x) = 6(1 — 5x%).

Now we take

(762 -1) -1<x<0
f(x)‘{o 0<x<1

so that f € H3~“(I) for all ¢ > 0 and

0 0
/fz”dx = 7/ % = DZ"dx = =77 (0) + 14/ zdx VYzeV. (2.24)
1 -1 -1
Putting (2.23) and (2.24) together we have

_ /(14;((_1’0) + g)zdx + /()7" +N'dx+70)=0 VzeV, (2.25)
7 7
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where
) = 1 ifxes
APV=V0 ifxgs
is the characteristic function of the set S, and the KKT conditions (2.7)—(2.9) are sat-
isfied (with u being the Dirac point measure at the origin) if we choose
Yo=Y+ 14x 10+ 8 (2.26)

Remark 2.7 1t follows from Example 2.6 that the regularities of y and & stated in
Theorem 2.4 and Corollary 2.5 are sharp under the assumptions on the data in (1.6).

2.3 Mixed boundary conditions

In this case the nonnegative Borel measure y on [—1, 1] satisfies [cf. (B.8)—(B.10)]
du = Blpdx +yds_,], (2.27)

where p € L,(I) is nonnegative, y is a nonnegative number and 6_, is the Dirac point
measure at —1.

Theorem 2.8 The solution ¥ of (2.4) belongs to H>(I).

Proof Recall that f € H'(I) by the assumption in (1.7). After substituting (2.27) into
(2.7) and carrying out integration by parts, we have

" dx = )z d. " — )/ d
ﬂ/ x = / -y)z x+ﬁ/1(f p)z dx (2.28)

+ If(=) =yl (=1) VzeV,

where V' is given by (2.1b).
Let H'(I;1) = {ve H'(I) : v(1) =0}and p € H'(I;1) be defined by

) !
pqu=—/CI)qu+/(f — p)gdx
/1 I I (2.29)

+ [f(=D=rlg(=1) VgeHUD,
where ® € H'(I;1) is defined by
po’ =y, - 7. (2.30)
Note that (2.29) is the weak form of the two-point boundary value problem
—p"=-®+f —p inl and p'(=D)=y—f(=1), p(1)=0

and hence we can conclude from elliptic regularity that
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p € H(I). (2.31)
Finally (2.28)—(2.30) imply

/)‘/”z"dx = /p’z”dx VzeV
I I

and hence 3" =p’ because the map z — 7’ is also an isomorphism between V
(defined by (1.5b)) and L,(/). The theorem then follows from (2.31). O

Corollary 2.9 We have it = ="' —f € H'(I).

Example 2.10 We take f = w = 1, f = 0 and the exact solution is given by

y&x) = / jp(t)dt, (2.32)
where
_ 1 —1<x< %
Pk = { sin[Z0x-1]  l<x<l (2.33)
We have o7 = [—1,1/3], p € H*(]),
pl(1/3)=-©Ox/4” and p(1)=p"(1)=0. (2.34)
If we choose the function @ by
D) = { “On/i} 1Sy (2.35)
p"(x) 3 <x<1

then ® € H'(I;1) by (2.34) and (2.35), and

1
/ = / ®gdx — / "9n/4%qdx YqeH' ). (2.36)
1 4 -1
Therefore (2.29) is valid if we take

p=On/4x 115 and y=0. (2.37)

Finally we define y, according to (2.30) so that

NES —l<x<j
ya(x) = {y(x) ) % <r<l” (2.38)

Putting (2.32) and (2.36)—(2.38) together, we see that the KKT conditions (2.7)—
(2.9) are valid provided we define the Borel measure u by
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du = (9”/4)2)([_1,1/3]dx~

3 The discrete problem

Let 7, be a quasi-uniform partition of / and V,, C V be the cubic Hermite finite
element space (Ciarlet 1978) associated with 7. The discrete problem is to

—_ . 1 2 2
find 5, = argmin; [y = all7 ) + By, + 17 - 3.1)
where
K,={y€V,: Py <Pyon[-11]}, (3.2)

and P, is the nodal interpolation operator for the P, finite element space (Ciarlet
1978; Brenner and Scott 2008) associated with 7. In other words the derivative con-
straint (1.4) is only imposed at the grid points.

The nodal interpolation operator from C!(I) onto V, will be denoted by II,.
Note that

II,yek, Vyek. 3.3)

In particular, the closed convex set K, is nonempty.
The minimization problem (3.1)—(3.2) has a unique solution characterized by
the discrete variational inequality

/@h =Yy — Yp)dx + ﬁ/()";' +N)0) =y)dx >0 Vy, €K,
I 1
which can also be written as
a(Vp yp = ¥p) /Yd()’h = ypdx = p /f()’;,/ —-y)dx Vy, €K, 3.4
I 1

We begin the error analysis by recalling some properties of P, and IT,,.
For0 <s <1 <t<2, we have an error estimate

¢ = Pulllgsay < CH N |y V¢ € H'(D) (3.5)

that follows from standard error estimates for P, (cf. Ciarlet 1978; Brenner and Scott
2008) and interpolation between Sobolev spaces (Adams and Fournier 2003).
For0 <s<1land2 <t <4, we also have the estimates

IS =8l + P16 = T Ly SCHIE |y V& € HY(D), (3.6)

18 =8 ey SCH e gy VE € HYD), (3.7)
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that follow from standard error estimates for I, (cf. Ciarlet 1978; Brenner and Scott
2008) and interpolation between Sobolev spaces.

3.1 Anintermediate error estimate

Let the energy norm || - ||, be defined by
V12 = a(v,v) = V12 ) + Iy (3.8)
We have, by a Poincaré—Friedrichs inequality (Necas 2012),
Cilvlle £ V) < Golvll, Vv ev. (3.9)
Observe that (3.4), (3.8) and the Cauchy—Schwarz inequality imply
Iy _)_)h”i =a(y =y, Yy —yp) +a@ = Iy Yn — n)

- 1,._ _ _
< ||y—)’h||2+E”}’—yh”i‘l'a()’,)’h_)’h)

S

(3.10)
- / Yaop = F)dx + B / 07 s Yy, €Ky,
1 1
and we have, by (2.8)—(2.11) and (3.2),
=50 = [ =30as+ 8 [0 =5
1 1
= @), — ydu
[-1.1]

= @), — P,y,)du + /

[-1.1] [-1.1]

+/ (w—i’)d/H/ G —y)du,
[-1,1] [—1.1]

Py, — Ppw)du + / Py — w)dp
(-1,1]

< G, — Puy)du + / Py —w)du + G = ydu
[-1,1] [-11] [—11]
(3.11)
for all y, € K,
It follows from (3.10) and (3.11) that
15~ 5ul12 <2 [ [ Gi-ropau+ [ vw- w)du]
=1 =1 (3.12)

+ inf (|Iy— 2+2/ ¥ —y')d >
yheKh<||y yally [_m(y y,)du
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3.2 Dirichlet boundary conditions

The following estimates will allow us to produce concrete error estimates from
(3.12). First of all, we have

/ 3, — P,y,)du = / |5, =) = Py, = )]du + / ¢ = P,y)du
[-1,1] [-1,1] [

-1,1]

epe o
< C (W5 =5ill, + ', ) Ve>0

(3.13)
by (2.19), Theorem 2.4, (3.5) and (3.9); secondly

/ (P —w)du < CH Iyl . Ve >0 (3.14)

by the assumption on y in (1.6) and (3.5). Finally, in view of Theorem 2.4, (2.19),
(3.6)—(3.7) and (3.9), we also have

15 = 1,312 +2 /

[5/ _ (th),]dﬂ S Cehl_e Ve > 0 (315)
[-1,1]

Putting (3.3), (3.12)—(3.15) and Young’s inequality together, we arrive at the
estimate

1
Iy —yull, < C.h2™¢ (3.16)

that is valid for any e > 0, which in turn implies the following result, where
it, = =y, —f is the approximation for z = —5" — f.

Theorem 3.1 Under the assumptions on the data in (1.6), we have
1
|57_}_]h|1.11(1)+ ||17t—17th||L2(1) Scshz ¢ Ve>0.
Remark 3.2 Numerical results in Sect. 4 indicate that |y — |1, is of higher order.
3.3 Mixed boundary conditions

In this case we have

), — P,y,)dy = p [ / G, — Pyy))pdx + (), — Ph)_’;,)(_l)]
1

[-L1]

ﬁ[/}[@i -5 - Py, —y’)]pdx+ /I(y’ —Phy’)pdx]

< C(hlly =1l + #1510 )
(3.17)
by (2.27), Theorem 2.8, (3.5) and (3.9);
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/ Py —yw)du=p /(Phy/ — y)pdx < Ch? (3.18)
[-1,1] !

by the assumption on y in (1.7), (2.27) and (3.5); and

15 = 1,312 +2 /

[/ — (11,5)|du < Ch? (3.19)
[-1,1]

by (2.27), Theorem 2.8, (3.6), (3.7) and (3.9).
Combining (3.12) and (3.17)—(3.19) with Young’s inequality, we find

1y = ull, < Ch, (3-20)

which immediately implies the following result, where &, = —¥, — f is the approxi-
mation forz = —y"" — f.

Theorem 3.3 Under the assumptions on the data in (1.7), we have
1y =Vl + o=yl < Ch.

Remark 3.4 Numerical results in Sect. 4 again indicate that [y — 3,41 is of higher
order.

4 Numerical results

In the first experiment, we solved the problem in Example 2.6 on a uniform mesh
with dyadic grid points. The errors of ¥, in various norms are reported in Table 1.
We observed O(h?) convergence in | - | w2y and higher convergence in the lower order
norms. This phenomenon can be justified as follows.

Note that for this example the first term on the right-hand side of (3.12) vanishes
because p is supported at the origin which is one of the grid points where y, (resp. y)
and P,y, (resp., P,y) assume identical values. The remaining term on the right-hand
side of (3.12) is bounded by

Table 1 Numerical results for Example 2.6 on meshes with dyadic grid points

DOFs 113 = $ull,0) 1y = ¥ull_ [y = Vulmay [y = Vulweay

2! 1.082369 e—01 1.545433 e—01 3.788872 e—01 2.178934 e+00
22 5.972336 e—03 7.142850 e—03 2.452678 e—02 7.191076 e—01
23 1.223603 e—03 1.806781 e—03 8.520509 e—03 1.114423 e-01
24 8.653379 e—05 1.732075 e—04 1.200903 e—03 3.118910 e—02
23 5.561252 e—06 1.295847 e—05 1.542654 e—04 8.001098 e—03
20 3.508709 e—07 8.804766 e—07 1.929895 e—05 2.012955 e-03
27 2.199861 e—08 5.729676 e—08 2.303966 e—06 5.040206 e—04
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Table 2 Numerical results for Example 2.6 on meshes where 0 is not a grid point

DOFs 11y = $ull,0) 1y = ¥ulle_ [y = Vulmay [y = Vulway

242! 5.972336 e—03 7.142850 e—03 2.452678 e—02 1.910760 e—01
2422 3.045281 e—02 3.279329 e-02 1.188082 e—01 1.285638 e+00
2423 3.187355 e—02 3.182310 e—02 1.071850 e—01 1.022401 e+00
2424 3.216705 e—02 3.175715 e—02 1.048464 e—01 8.070390 e—01
2425 3.220153 e—02 3.175558 e—02 1.044763 e—01 6.496040 e—01
2426 1.814346 e—02 2.074403 e—02 5.740999 e—02 4.408863 e—01
2427 9.754613 e—-03 1.167762 e—02 2.983716 e—02 3.016101 e—01

Table 3 Numerical results for Example 2.10 on meshes with dyadic grid points

DOFs 11y = ¥ullL,0 11y = ¥ulle_ 1Yy = ¥ulma 1y = ¥l

1422 1.406813 e+01 1.658318 e+01 1.269278 e+01 2.070271 e+01
1+23 4.654073 e+00 4.618639 e+00 4.221134 e+00 1.379991 e+01
1424 1.574605 e+00 1.683229 e+00 1.376788 e+00 8.047102 e+00
142° 3.745106 e—01 3.781562 e—01 3.252880 e—01 4.073631 e+00
1426 9.856747 e—02 1.022258 e—01 8.574934 e—02 2.081469 e+00
1427 2.378457 e—02 2.368760 e—02 2.075267 e—02 1.037836 e+00
1428 5.802109 e—03 5.661900 e—03 5.218542 e-03 5.212004 e—01

15— @PIP +2 / ¥ — (3| du = Iy — (L2 < Ch,
I

where we have used the estimate (3.6), with I replaced by the intervals (-1, 0) and
(0, 1), the norm equivalence (3.9), and the fact that y defined by (2.22) is a sextic
polynomial on each of these intervals.

In the second experiment we solved the problem in Example 2.6 on slightly per-
turbed meshes where the origin is no longer a grid point. The errors are reported in
Table 2. We observed O(h%) convergence in the | - | w2y (Which agrees with Theo-
rem 3.1) and O(h) convergence in the lower order norms.

In the third experiment, we solved the problem in Example 2.10 on a uniform
mesh with dyadic grid points. We observed O(h) convergence in | - |, from the
results in Table 3 (which agrees with Theorem 3.3) and O(h?) convergence in the
lower order norms.

In the final experiment, we solved the problem in Example 2.10 by a uniform
mesh that includes 1/3 as a grid point. The errors are reported in Table 4. We
observed similar convergence behavior as the dyadic case, but the magnitude of the
errors is smaller. This can be justified by the observation that the term [cf. (3.17)]
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Table 4 Numerical results for Example 2.10 on uniform meshes where 1/3 is a grid point

DOFs 15 = ¥ull,0) 15 =¥l [y = Vulmay [y = Vulweay

1+3-2! 2.448013 e+00 2.343224 e+00 2.236575 e+00 1.082726 e+01
14322 6.406496 e—01 6.095607 e—01 5.795513 e-01 5.541353 e+00
1+3.23 1.616111 e-01 1.539557 e—-01 1.461718 e—01 2.778978 e+00
14+3.24 4.025578 e—02 3.858795 e—02 3.665436 e—02 1.390198 e+00
14+3.2° 9.822613 e—03 9.653193 e-03 9.268709 e—03 6.951994 e—01
1+3.26 2.233582 e-03 2.413687 e—03 2.657435 e-03 3.476583 e—01

1
3
/ - Py )pdx = / (= Py)pdx =0
1 0

because y(x) = 1 + x on the active set /= [—1,1/3]and 1/3 is a grid point. On the
other hand the corresponding integral is nonzero for dyadic meshes.

5 Concluding remarks

We have demonstrated in this paper that the convergence analysis developed in Brenner
and Sung (2017) can be adopted to elliptic distributed optimal control problems with
pointwise constraints on the derivatives of the state, at least in a simple one dimen-
sional setting.

The results in this paper can be extended to two-sided constraints of the form
v; <Y < w,, where y; and y, are sufficiently regular and y; < 0 < y, on /. In par-
ticular, they are valid for the constraints defined by |y'| < 1.

It would be interesting to find out if the results in this paper can be extended to
higher dimensions. We note that the higher dimensional analogs of the variational ine-
quality for the derivative [cf. (B.5)] lead to obstacle problems for the vector Laplacian.
Such obstacle problems are of independent interest and appear to be open.

Appendix A. KKT conditions for the Dirichlet boundary conditions

First we note that
o #[-1,1] (A1)
since /,y'dx = 0and /, w dx > 0, and also

(y : yeVvy= {veHl(l) : /vdx=0} =H'()/R. (A2)
1

Let 7= {ve H'(I)/R : v <y inI}. We can rewrite (2.4) in the form of
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/Cb(q — p)dx + /(p’ +)(¢ —pdx>0 Vqe X, (A3)
1 I

where
p=y (A4
and the function ® € H'(I)/R is defined by
po’ =y, - 7. (A.5)
Let the bounded linear functional L : H'(I)/R — R be defined by

Ly = /@v dx + /(p’ + ) dx. (A.6)
I I

Observe that (A.3) implies
Lv=0 ifve H'()/R and &/nsuppv = @, (A7)

since in this case +ev +p € # for0 < e < 1.

Since the active set <7 is a closed subset of [0, 1], according to (A.1) there exist
two numbers a,b € I such that a < b and [a,b]N F=@. Let G = (-1,a) U (b, 1).
Then we have (i) & NI C G and (ii) there exists a bounded linear extension oper-
ator E, : H'(G) — H'(I)/R.

Remark A.1 Observe that a bounded linear extension operator EZ  H'(G) — H'(D)
can be constructed by reflections (cf. Adams and Fournier 2003). The operator E;
can then be defined by

Eq(v) = Ey0) - < / Eg(v)dx> 5
1

where ¢ is a smooth function with compact support in (a, b) such that /1 ¢dx =1

We define a bounded linear map 7, : H'(G) — R by
T,v=Lv (A.8)

where ¥ is any function in H'(/)/R such that ¥ = v on G. T, is well-defined because
the existence of ¥ is guaranteed by the extension operator E, and the independence
of the choice of ¥ follows from (A.7).

Let v € H'(G) be nonnegative. Then —e¥+p € # for 0 < e < 1 because
p <won G and p < y on the compact set [a, b] = I\G. Hence we have

~T.v=e'T,(—ev) = e 'L(—eV) > 0 (A.9)

by (A.3) and (A.6).
It follows from (A.9) and the Riesz-Schwartz Theorem (cf. Rudin 1966;
Schwartz 1966) for nonnegative functionals that
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T.v= _/ vdu, YveH\(G). (A.10)
[—1,alulb,1]

where 1 1S a nonnegative Borel measure on[—1,a] U [, 1].
Because of (A.8) and (A.10), we have

—Lv=—T(v|G)=/ vdu, YveHI)/R, (A.11)
[~ Lalulb.1]

and the observation (A.7) implies that 4, is supported on 7.
We conclude from (A.6) and (A.11) that

/d)vdx+/(p' +f)v’dx+/ vdii=0 YveH'()/R, (A.12)
I 1 [-1.1]
where ji is the trivial extension of g to[—1, 1]. It follows that

¢ —w)du =0,
~1.11

where y = fji, and in view of (A.2), (A.4), (A.5) and (A.12),

/@—yd)de+ﬁ/@" +f)z”dx+/ Jduy=0 VzeV.
1 I [-1,1]

Appendix B. KKT conditions for the mixed boundary conditions

In this case we have, by (2.1b),
O : yEV}={vEH1(1) s v(l) =0} = H'\(L;1). (B.1)

Let #={ve H'(I;1) : v<w inl}. We can rewrite (2.4) in the form of
/<I>(q - p)dx + /(p’ +)(¢ —pHdx>0 VYqe ., (B.2)
I I

where

p=yex, (B.3)
and the function ® € H'(I;1) is defined by

po’ =y, 3. (B.4)

Note that f € H'(I) by the assumption in (1.7). After integration by parts, the ine-
quality (B.2) becomes
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—fenmen—peny{ﬂ®—foq»w

! (B.5)

+/p’(q' -pdx>0 Vge.x
I

The variational inequality defined by (B.3) and (B.5) is equivalent to a second order
obstacle problem with mixed boundary conditions whose coincidence set is identi-
cal to the active set .7 in (2.10).

Since y € H?(I) by the assumption in (1.7), we can apply the penalty method in
Murthy and Stampacchia (1973) to show that

the solution p of (B.5) belongs to H>(I), (B.6)

and, after integration by parts, we have

—ﬂ4MPD+/@—fMM
1

B.7)
+/p’q’dx+/ gdv=0 VgqeH ),
1 [-1.1]
where
dv= Q" +f —®dx+ (f(-1) + p'(-1))dé_,, (B.8)
and é_, is the Dirac point measure at —1.
The variational inequality (B.5) is then equivalent to
p vy in [, (B.9a)
pl+f —®>0 inl, (B.9b)
f=D+p'(=1) 20, (B.9¢)
(p —w)dv =0. (B.9d)
[-1,1]
Consequently the KKT conditions (2.7)—(2.9) hold for the Borel measure
u=pv. (B.10)

Remark B.1 In the special case where f = 0 and y is a positive constant, the con-
dition (B.9d) implies p’(—1) =0 if —1 € &7, and the conditions (B.9a) and (B.9c¢)
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imply p’(—=1) = 0if —1 € . Therefore we have p’(—1) = 0if f = 0 and y is a pos-
itive constant, in which case p is absolutely continuous with respect to the Lebesgue
measure. Hence it is necessary to choose y = p’(—1) = 0 in Example 2.10.
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