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Abstract

People living in the Balsas River basin in southwest México
domesticated maize from the bushy grass teosinte. Nine
thousand years later, in 2021, Ms. Deb Haaland — a member
of the Pueblo of Laguna tribe of New Mexico — wore a dress
adorned with a cornstalk when she was sworn in as the Sec-
retary of Interior of the United States of America. This choice of
garment highlights the importance of the coevolution of maize
and the farmers who, through careful selection over thousands
of years, domesticated maize and adapted the physiology and
shoot architecture of maize to fit local environments and
growth habits. Some traits such as tillering were directly
selected on (arches), and others such as tassel size are the
by-products (spandrels) of maize evolution. Here, we review
current knowledge of the underlying cellular, developmental,
physiological, and metabolic processes that were selected by
farmers and breeders, which have positioned maize as a top
global staple crop.
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The domestication of maize from teosinte (Figure 1)
[1,2], as well as its expansion to new environments, local
adaptation [3—5], and genetic improvement [6,7],
reduced overall genetic diversity through selection and
bottlenecks. Teosinte is a key resource for identifying
loci that regulate architectural traits that have been lost
during domestication, because maize shoot morphology
has a considerable impact on yield-related traits, such as
plant density and inflorescence and kernel production
[8—10]. Recently, several quantitative trait loci (QTL)
and candidate alleles related to the evolution of maize
shoot architecture were mapped using maize-teosinte
recombinant inbred line populations [11—17]. Using
this approach, Tian et al. identified UPAI (Upright Plant
Architecture 1) and UPAZ, two major QTL for upright
plant architecture. UPAZ is a cis-regulatory variant,
whereas UPAI encodes a biosynthesis enzyme for the
phytohormone brassinosteroid [16]. Introgression of the
teosinte allele of UPA2, which promotes more upright
blades, into maize hybrid lines permitted denser
planting and enhanced grain yield [16]. Although this
study demonstrates the importance of wild
relative alleles on shoot architecture and vyield, the
average selection intensity for reproductive traits was
found to be double that for vegetative traits, high-
lighting the importance of altering ear morphology [17].

Reduced axillary branching is a common trait in many
domesticated crop plants compared with their wild an-
cestors [18], and modifications of these developmental
patterns are fine-tuned at the regulatory level by dy-
namic interactions between proteins, transcription fac-
tors, and noncoding elements [19]. In maize, increased
apical dominance was key for domestication, and it was
achieved by the gain of function of the transcription
factor b1 (zeosinte branchedl). Tb1 has been proposed as a
crucial negative regulator of cell growth that modulates
several domestication genes, including grl (grassy til-
lersl), trul (tassels replace uppers earl), and tgal (teosinte
glume architecturel) [18,20]. Indeed, some groups of genes
related to crop domestication and improvement have
been reported, with maize TCP, bHLH, and MADS
families highly represented [21]. As per 701 function,
mutant 201, gt1, and #rul plants overproduce tillers and
aerial branches owing to altered bud dormancy [22—24].
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Axes of maize selection. Three axes on which human selection has acted on during maize domestication, adaptation, and improvement and some of the
traits that have been the results of this selection. The Y-axis represents the environmental and geographic changes that maize had to adapt after
domestication in current Mexico. Coloring in the map of America indicates day length. The X-axis indicates how selection by farmers and breeders has
acted to change whole plant architecture such as tillering, ear height, tassel size, and so on. The z-axis shows how changes at the metabolic, physi-
ological, genomic, and cellular levels underlie whole plant architecture changes. References indicate some of the key studies and genes involved in

processes in each of the three axes.

Furthermore, TB1 targets phytohormones and sugars by
positively regulating abscisic acid and jasmonic acid and
negatively regulating gibberellin and the sucrose trans-
porter SWEETI50 [18].

RNA-seq and ChIP-seq experiments have contributed
to a better understanding of the regulatory network
controlled by TB1 and GT1, explaining how allelic
variation in this transcriptional hub produced drastic
architectural changes that were agronomically benefi-
cial. Among TBI1 targets were genes related to light
perception and response to red and far-red light [18].
This observation fits the previously described function
of 101, where PHYTOCHROMER perceives shading as a
low red/far-red light ratio and initiates a signaling
cascade promoting 7B/ and G717 suppression of lateral
bud outgrowth in the shade [18,23]. In domesticated
maize, the 7B/-G17 module conditions constitutive
repression on axillary bud growth, which is perceived as
insensitivity to shade avoidance response, a distinctive
trait compared with teosinte [23,25]. Selection for bud

growth repression together with selection for upright
leaf angles has contributed to the increase of plant
densities in modern breeding [6], a fundamental factor
of increased yields per surface area [26].

Plant architecture depends on the activity of shoot
apical meristems (SAMs) (Figure 1) [27]. The CLV-
WUS (CLAVATA-WUSCHEL) module is a key feed-
back pathway that regulates communication between
cells within the SAM in different plant species [28];
in maize, CLV orthologs, FEA (FASCIATED EAR)
receptor-like proteins, and WUS proteins have been
studied primarily in the inflorescences [29,30]. In this
same pathway, ZmCRN (CORYNE), a signaling pro-
tein, functions downstream of FEA2/CLV2, which
transmits signals from CLE (CLV3/ESR-RELATED)
peptides through interactions with CT2 (COMPACT
PLANT?Z2) and ZmCRN [31]. Interestingly, other FEA
proteins have been identified functioning in parallel
pathways to CLV-WUS, for example, FEA4 promotes
differentiation in the SAM periphery in opposition to
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KN1 (KNOTTED1) and WUS [32]. These pathways
illustrate how cell—cell communication through signal
transduction pathways fine-tunes inflorescence meri-
stem activity, a target in maize domestication in search
of larger ear meristems. Recently, it was reported that
use of CRISPR-Cas9 genome editing to make weak
promoter alleles of maize CLE genes increased mul-
tiple grain yield-related traits, two ZmCLE7 fragment
promoter deletion alleles showed a significant increase
in most vyield-related traits including weight and
grain yield per ear, and some others showed compen-
sation and redundancy of ZmCLE7 null alleles [33].
Showing that in the genome editing era, rapid
domestication can be achieved more efficiently.
Furthermore, recreation of ancestral proteins in maize
into novel versions that harbor small changes in se-
quences, cither by genome editing or transgenesis,
highlights the potential for inducing gradual evolution
in plant morphology [34,35].

Advances in plant single-cell and single nucleus ‘omics’
are forging new opportunities to overcome organ and
tissue heterogeneity [36]. Single-cell transcriptomic
studies in maize highlight previously unappreciated
developmental and physiological changes in germinal
cells [37]. Vegetative and reproductive meristems his-
torically have been recalcitrant to isolating viable pro-
toplasts (plant cells without their cell wall). Recent
reports in the maize shoot apex and developing ear have
cleared technical hurdles for obtaining thousands of
protoplasts from shoot meristems for single-cell tran-
scriptomics [38,39]. In more differentiated maize leaf
tissues, scRNA: single cell RNA sequencing (scRNA-
seq) uncovered novel transcript accumulation of
SWEETI3 paralogs in abaxial bundle sheath cells that
surround rank-2 veins [40]. Furthermore, individualizing
nuclei and assaying accessible chromatin by sequencing
identified cell-specific lineages by enrichment of
accessible chromatin regions (ACRs), which often have
transcription factor DNA-binding motifs in proximity to
genes with cell-specific expression [41]. Moreover,
physical interactions between distal ACRs and genes,
especially for agronomically important loci, that were
found previously in whole tissues [42] were also
detected in single nuclei [41]. ACRs are highly
conserved across plant species [43], and single-cell/nu-
cleus applications have the potential to revolutionize
comparative studies. For example, by deciphering cell-
type-specific transcriptomes or chromatin status be-
tween teosinte and domesticated maize and/or by
incorporating plants grown in modeled domestication
conditions [44], such strategies could lead to under-
standing how environmental changes affected gene
expression in certain cell lineages during domestication.

Humans have selected secondary metabolites that
impact color, sweetness, and other kernel traits that are
related to flavor and general organoleptic properties

[45]. Indeed, genes such as ZmSWEET4 involved in
sugar transport into the seed show signals of selection in
domesticated maize (and rice) when compared with
teosinte [46]. Vallebueno et al. [47] suggest that the
timing of selection on 7B/ may point out that domes-
tication could first be targeted to increase stalk biomass
for direct consumption. Later on, sweet corn was
developed by indigenous people, with mutant SU7 al-
leles having been fixed and cultivated three separate
times in North America [48]. Selection for a reduction
in grain bitterness may have led to a reduction of alka-
loids in maize when compared with teosinte [49]. Many
of the metabolic changes taking place during domesti-
cation were unintended, so to compare them is infor-
mative in assessing the nutritional composition and
differences between crops and their progenitors. Fang
et al. [50] found that there is similar genetic architec-
ture in maize and teosinte oil and carotenoid variation
and that maize traits underwent a strong and recent
selection during and after domestication. Carotenoids in
particular are an area where work is being performed to
harness natural variation to increase levels and regain
nutritional content for locations where maize is a
nutritional staple [51]. A recent study compared the
metabolites of a BC2S7 population created by crossing a
highland teosinte (Zea mays ssp. Mexicana) with Mol7, a
modern maize inbred line, and showed that long-term
domestication and breeding reshaped amino acid
metabolism, likely to meet demands in high-yielding
modern varieties [52]. The origin of many of the most
favorable alleles resulting in altered sugars, amino acids,
or tricarboxylic acid cycle intermediates came from
teosinte [52]. Other favorable metabolic traits intro-
duced from highland teosinte may have helped maize
adapt to higher altitudes and lower temperatures. A
teosinte introgression into some highland maize land-
races carries a favorable allele that alters membrane lipid
quantities by increasing the amount of phosphatidyl-
choline [53]. Several other genes in the phospholipid
pathways of maize have shown accelerated evolution to
cold, as well [54].

Humans did not just adapt teosinte into modern maize,
but they have also adapted and relocated tropical maize
into more temperate climates that required additional
metabolic changes. Deng et al. [55] found that 39.8% of
metabolites analyzed were significantly altered between
tropical and temperate maize kernels. The genetic ar-
chitecture of genes involved in metabolomic differences
between temperate maize and tropical maize is simpler
(fewer changed genes and larger effect sizes) than maize
and its wild relatives, probably reflecting the shorter
evolutionary divergence between temperate and trop-
ical maize. Alkaloids, terpenoids, and lipids were targe-
ted when tropical and temperate maize diverged. For
example, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-
one (DIMBOA) compound concentrations are higher in
temperate maize than tropical maize and at least one
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such compound, 2,4-dihydroxy-7-methoxy-1,4-benzox-
azin-3-one glucoside (DIMBOA-GIc), may be important
for local adaptation of temperate maize to resist new
insect pressure [49].

Photoperiod adaptation was a key component that
enabled maize to expand across the Americas after
domestication [4,56] (Fig. 1). This was particularly
crucial as it moved northward to the United States
where day lengths are longer during the growing season,
delaying flowering time in unadapted tropical maize.
Photoperiod adaptation was not an issue as maize
moved southward, and this may have facilitated the
rapid expansion of maize to Central and South America
after domestication [57,58]. The nested association
panel was used to identify the major QTL involved in
photoperiod sensitivity [59]. Major genes that increase
photoperiod sensitivity include ZmCCT (CO-like/COL.
and TOCI) 9 [60], ZmCCTI10 [61], and ZmRap2.7 [62].
On the other hand, ZCNS (CENTRORADIALISS), the
most commonly known/studied maize florigen gene,
decreases photoperiod sensitivity [63]. Adaptation to
temperate latitudes resulted in additive selection of
genetic variants that increase the activity of ZCN8 [63]
and decrease the activity of ZmCCT9 [60] and
ZmCCT10 [64] leading to reduced photoperiod
sensitivity. Artificial evolution experiments that
selected for shorter flowering of tropical maize popu-
lations recapitulated the evolutionary process of trop-
ical maize adaptation and identified the same major key
regulators of photoperiod sensitivity [65]. Other genes,
such as zag/l (zea agamous-likel), that are not neces-
sarily involved in photoperiod sensitivity but can
reduce flowering time, were also under strong selection
during maize domestication [66]. Genes involved in
maize flowering time can also exhibit pleiotropic ef-
fects, as observed with zag/l’s effect on increased ear
size [66] and the effect of a ZmCC'T gene on resistance
to Gibberella stalk rot [67].

Before maize was brought to northern latitudes, it first
was adapted to the highlands of México, Central
America, and South América. In highland environ-
ments, low temperatures that lead to slow heat unit
accumulation have imposed a strong selection for early
flowering genetic variants and/or against late-flowering
variants. Genomic scans of highland adapted materials
have identified that flowering time genes are under
selection in highland maize [68,69]. Highland teosinte
(Z. mays ssp. Mexicana) is a source of early flowering
alleles in highland maize [53]. Introgressed early
flowering alleles have been conserved in temperate
maize [53,63], pointing to a relevant role of highland
teosinte mexicana introgression [70] in maize adapta-
tion to environments where the ability to photosyn-
thesize in low-temperature conditions [71] and flower
early is advantageous. Teosinte mexicana is found in the
Mesomerica highlands but not in South America.

However, evidence shows significant gene flow be-
tween highland populations of Mesomerica and South
America [69], so the role of teosinte mexicana derived
alleles in South America highland maize adaptation
cannot be ruled out. Strong selection for early flowering
affects several developmental and genomic traits that
enable faster development, growth, and flowering,
which contributed to local adaptation. SAM size and
flowering time are inversely correlated such that maize
with large meristems flowers earlier than maize with
small meristems [72,73]. Larger cells and faster leaf
cell production rates are also correlated with smaller
genome size in maize and teosintes, and in turn, maize
and teosintes with smaller genome sizes are more
prevalent at high elevations [74,75]. In theory, smaller
genome sizes should enable faster cell replication rates
and facilitate faster development; indeed, artificial
selection experiments have shown that selection for
early flowering does indeed reduce genome size [76].

Perspective and outlook

Comparative morphology and genomics will continue to
be foundational to future studies on maize domestication
and adaprtation. The current genomics era is providing a
more complete understanding of maize evolution as more
high-quality genome assemblies for maize inbred lines
[77], landraces [78], and wild relatives [70] become
available, in addition to the construction of a pangenome
graphical representation of haplotypes [79]. This col-
lective wealth of genomic information, together with the
development of new gene-editing technologies in an
ever-growing number of genotypes [80,81], is enabling
CRISPR/Cas9 high-throughput mutagenesis [82], trait
stacking in precise genome locations [83], and even
targeted chromosomal inversions [84]. Technologies that
leverage this wealth of genomics, such as single-cell/
single-nucleus ‘omics’ [37,38,40,41,85], assays that infer
genome-wide DNA binding landscapes and associations
between transposons, regulatory regions, and target
genes [86—90] and evolutionary-guided machine
learning methods to predict levels of gene products [91]
will continue to foster and inform innovative strategies to
study and modify maize genetic variation, conceivably at
precise cell-type or pathway resolution.

The development of more diverse mapping populations
with open-pollinated maize landraces [53,65] and wild
relatives [92—94] together with genomic scans of se-
lection has proven to be a powerful tool to uncover loci
contributing to domestication and local adaptation, and
the important roles that teosinte parviglumis [16] and
the highland teosinte mexicana have in modern maize
[53,63]. The ability to identify domestication- and
adaptive-QTL/QTN and QTL by environment in-
teractions will gain further momentum as more maize-
teosinte mapping populations are generated and large-
scale common garden experiments [68,95] with an
ever-growing number of genotypes are implemented.
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Finally, we hope that our highlighting the decades of
attention to understanding the genetic basis of maize
domestication and adaptation is accompanied by an
appreciation (Figure 1) of the fundamental roles that
smallholder farmers and campesinos have played — and
continue to play — in the development and mainte-
nance of maize diversity and, ultimately, in ensuring
present and future food security [96].
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