d open access

Mathematical Models and Methods in Applied Sciences Vol. 31, No. 14 (2021) 2887-2906 © The Author(s)

DOI: 10.1142/S0218202521500640

A C^1 virtual element method for an elliptic distributed optimal control problem with pointwise state constraints

Susanne C. Brenner* and Li-Yeng Sung[†] Department of Mathematics and Center for Computation and Technology, Louisiana State University Baton Rouge, LA 70803, USA *brenner@math.lsu.edu

 $^{\dagger}sung@math.lsu.edu$

Zhiyu Tan

Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA ztan@cct.lsu.edu

> Received 22 March 2021 Revised 19 June 2021 Accepted 7 July 2021 Published 10 January 2022

Communicated by L. Beirão da Veiga, N. Bellomo, F. Brezzi and L. D. Marini

We design and analyze a C^1 virtual element method for an elliptic distributed optimal control problem with pointwise state constraints. Theoretical estimates and corroborating numerical results are presented.

Keywords: Elliptic distributed optimal control problems; pointwise state constraints; C^1 virtual element method.

AMS Subject Classification 2020: 65K15, 65N30

1. Introduction

Let $\Omega \subset \mathbb{R}^2$ be a bounded convex polygonal domain, $y_d \in L^2(\Omega)$ and β be a positive constant. The elliptic optimal control problem³⁰ is given by

$$\min_{(y,u)\in Y_{ad}\times L^2(\Omega)} J(y,u) = \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\beta}{2} \|u\|_{L^2(\Omega)}^2$$
(1.1)

This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

^{*}Corresponding author.

subject to

$$\int_{\Omega} \nabla y \cdot \nabla z \, dx = \int_{\Omega} uz \, dx \quad \forall \, z \in H_0^1(\Omega), \tag{1.2}$$

where

$$Y_{ad} = \{ y \in H_0^1(\Omega) : y \le \psi \text{ a.e. in } \Omega \}.$$

$$(1.3)$$

We assume that

$$\psi$$
 belongs to $W^{3,p}(\Omega)$ for $p > 2$ and $\psi > 0$ on $\partial\Omega$. (1.4)

Here and throughout the paper we will follow standard notation for function spaces, norms and differential operators that can be found for example in Refs. 34, 1, 20 and 10.

Our goal is to design and analyze a C^1 virtual element method for the optimal control problem (1.1)–(1.3) that is based on Refs. 27, 33 and 2. The key is to transform the optimal control problem into an equivalent fourth-order variational inequality for the state that can be solved by many numerical methods originally designed for fourth-order elliptic boundary value problems. This idea was first proposed in Ref. 48 for a nonconforming finite element method, and later it was extended to other finite element methods in Refs. 40, 24, 13, 25, 18, 15, 14, 26 and 19. A summary of this new approach can be found in Refs. 21 and 12.

Unlike elliptic optimal control problems with control constraints, the Lagrange multiplier that appears in the first-order optimality conditions for (1.1)–(1.3) is only a Borel measure (cf. (2.10)–(2.12)). Therefore, error analysis that involves the approximation of the multiplier or the adjoint state is challenging. But these complications are completely absent from the new approach which only involves the state variable. Comparing with the approaches in Refs. 36, 49, 44 and 31, where the convergence is established in the H^1 norm for the state and the L^2 norm for the control, the new approach can also obtain convergence in the L^{∞} norm for the state.

The rest of the paper is organized as follows. We recall some results for the continuous problem in Sec. 2 and introduce the discrete problem in Sec. 3. We present in Sec. 4 some tools and preliminary estimates for the convergence analysis, which is carried out in Sec. 5. Numerical results are given in Sec. 6 and we end with some concluding remarks in Sec. 7.

We will use C, with or without subscript, to denote a generic positive constant that does not depend on the mesh size. We also use the symbol $A \lesssim B$ to represent $A \leq (\text{constant})B$ where the positive constant is independent of the mesh size. We write $A \approx B$ if $A \lesssim B$ and $B \lesssim A$.

2. The Continuous Problem

Since Ω is convex, the solution y of the state equation (1.2) belongs to $H^2(\Omega)$ by elliptic regularity.^{35,41} Hence the optimal control problem (1.1)–(1.3) can be

reformulated as

$$\min_{y \in \mathbb{K}} \left[\frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\beta}{2} \|\Delta y\|_{L^2(\Omega)}^2 \right], \tag{2.1}$$

where

$$\mathbb{K} = \{ y \in H^2(\Omega) \cap H_0^1(\Omega) : y \le \psi \text{ in } \Omega \}.$$
 (2.2)

Let the bilinear form $a(\cdot,\cdot)$ be defined by

$$a(y,z) = \int_{\Omega} (\Delta y)(\Delta z)dx. \tag{2.3}$$

We can rewrite (2.1) as

$$\min_{y \in \mathbb{K}} \left[\frac{1}{2} \mathcal{A}(y, y) - (y_d, y) \right], \tag{2.4}$$

where

$$\mathcal{A}(y,z) = \beta a(y,z) + (y,z) \tag{2.5}$$

and

$$(y,z) = \int_{\Omega} yz \, dx. \tag{2.6}$$

Remark 2.1. For functions $y, z \in H^2(\Omega) \cap H_0^1(\Omega)$, the bilinear form $a(\cdot, \cdot)$ in (2.3) has an alternative expression⁴¹ given by

$$a(y,z) = \sum_{i,j=1}^{2} \int_{\Omega} \left(\frac{\partial^{2} y}{\partial x_{i} \partial x_{j}} \right) \left(\frac{\partial^{2} z}{\partial x_{i} \partial x_{j}} \right) dx := \int_{\Omega} \nabla^{2} y : \nabla^{2} z dx.$$
 (2.7)

It follows from (2.7) and a Poincaré–Friedrichs inequality⁵⁰ that

$$a(v,v) = |v|^2_{H^2(\Omega)} \approx \|v\|^2_{H^2(\Omega)} \quad \forall \, v \in H^2(\Omega) \cap H^1_0(\Omega)$$

and also

$$||v||_{\mathcal{A}}^{2} = \mathcal{A}(v,v) = \beta |v|_{H^{2}(\Omega)}^{2} + ||v||_{L^{2}(\Omega)}^{2} \approx ||v||_{H^{2}(\Omega)}^{2} \quad \forall v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega).$$
(2.8)

Since \mathbb{K} is a non-empty closed convex subset of $H^2(\Omega) \cap H^1_0(\Omega)$, the minimization problem (2.4)–(2.6) has a unique solution $\bar{y} \in \mathbb{K}$ by the standard theory⁴⁶ that is characterized by the fourth-order variational inequality

$$\mathcal{A}(\bar{y}, y - \bar{y}) - (y_d, y - \bar{y}) \ge 0 \quad \forall y \in \mathbb{K}. \tag{2.9}$$

The variational inequality (2.9) is equivalent to the following Karush–Kuhn–Tucker conditions (cf. Refs. 30 and 21):

$$\mathcal{A}(\bar{y},z) - (y_d,z) = \int_{\Omega} z \, d\mu \quad \forall \, z \in H^2(\Omega) \cap H_0^1(\Omega), \tag{2.10}$$

$$\mu$$
 is a nonpositive finite Borel measure (2.11)

$$\int_{\Omega} (\psi - \bar{y}) d\mu = 0. \tag{2.12}$$

Remark 2.2. The complementarity condition (2.12) is equivalent to the statement that the support of μ is the active set $\mathfrak{A} = \{x \in \Omega : \bar{y}(x) = \psi(x)\}$. Note that \mathfrak{A} is a compact subset of Ω by the assumption (1.4) on ψ .

The following regularity results, which are based on the assumption (1.4) on ψ and the work in Refs. 38, 39, 28 and 31, can be found in Refs. 21 and 15.

$$\bar{y} \in H^3_{loc}(\Omega) \cap W^{2,\infty}_{loc}(\Omega) \cap H^{2+\alpha}(\Omega),$$
 (2.13)

$$\mu \in H^{-1}(\Omega), \tag{2.14}$$

where the index of elliptic regularity $\alpha \in (0,1]$ is determined by the angles at the corners of Ω (cf. Refs. 9, 41 and 35).

3. The Discrete Problem

The discrete problem is defined on a H^2 -conforming C^1 virtual element space associated with a triangulation of Ω .

3.1. The triangulation \mathcal{T}_h

Let \mathcal{T}_h be a triangulation of Ω by polygons, i.e. $\bar{\Omega}$ is the union of the (closed) polygons from \mathcal{T}_h and the intersection of two distinct (closed) polygons from \mathcal{T}_h is either empty, a common vertex or a common edge.

The set of the vertices (respectively, edges) of a polygon $K \in \mathcal{T}_h$ is denoted by \mathcal{V}_K (respectively, \mathcal{E}_K), and the diameter of K (respectively, $e \in \mathcal{E}_K$) is denoted by h_K (respectively, h_e). The mesh size of \mathcal{T}_h is $h = \max_{K \in \mathcal{T}_h} h_K$.

We make the following assumptions⁴ on the shape regularity of \mathcal{T}_h . There exists a constant $\gamma \in (0,1)$ such that

$$K$$
 is star-shaped with respect a ball of radius γh_K for all $K \in \mathcal{T}_h$, (3.1a)

$$h_e \ge \gamma h_K$$
 for all $e \in \mathcal{E}_K$ and all $K \in \mathcal{T}_h$. (3.1b)

3.2. A local virtual element space

Let K be a polygon in \mathcal{T}_h and $e \in \mathcal{E}_K$. We will denote by $\mathbb{P}_{\ell}(K)$ (respectively, $\mathbb{P}_{\ell}(e)$) the space of the restrictions of polynomials of total degree $\leq \ell$ to K (respectively, e). For $\zeta, \eta \in H^2(K)$, we define

$$((\zeta, \eta))_{K} = \int_{K} \nabla^{2} \zeta : \nabla^{2} \eta \, dx + \left(\int_{\partial K} \zeta \, ds \right) \left(\int_{\partial K} \eta \, ds \right) + \left(\int_{\partial K} \nabla \zeta \, ds \right) \cdot \left(\int_{\partial K} \nabla \eta \, ds \right). \tag{3.2}$$

It follows from a Poincaré–Friedrichs inequality⁵⁰ that $((\cdot, \cdot))_K$ is an inner product on $H^2(K)$ and the norm defined by $((\cdot, \cdot))_K$ is equivalent to the standard norm of

the Sobolev space $H^2(K)$. Therefore, we can define a projection operator $\Pi_K^{\Delta}: H^2(K) \to \mathbb{P}_2(K)$ by

$$((\Pi_K^{\Delta}\zeta, q))_K = ((\zeta, q))_K \quad \forall q \in \mathbb{P}_2(K),$$

or equivalently (cf. Ref. 33),

$$\int_{K} \nabla^{2}(\Pi_{K}^{\Delta}\zeta) : \nabla^{2}q \, dx = \int_{K} \nabla^{2}\zeta : \nabla^{2}q \, dx \quad \forall \, q \in \mathbb{P}_{2}(K), \tag{3.3}$$

$$\int_{\partial K} \Pi_K^{\Delta} \zeta \, ds = \int_{\partial K} \zeta \, ds,\tag{3.4}$$

$$\int_{\partial K} \nabla (\Pi_K^{\Delta} \zeta) ds = \int_{\partial K} \nabla \zeta \, ds. \tag{3.5}$$

Note that (3.3) implies

$$|\Pi_K^{\Delta}\zeta|_{H^2(K)} \le |\zeta|_{H^2(K)} \quad \forall \, \zeta \in H^2(K). \tag{3.6}$$

In view of the integration by parts formula

$$\int_{K} \nabla^{2} \zeta : \nabla^{2} \eta \, dx = \int_{\partial K} \nabla \zeta \cdot \left(\frac{\partial}{\partial n} \nabla \eta \right) ds - \int_{\partial K} \zeta \left(\frac{\partial}{\partial n} \Delta \eta \right) ds + \int_{K} \zeta (\Delta^{2} \eta) dx$$

that holds for $\zeta \in H^2(K)$ and $\eta \in H^4(K)$, we have

$$\int_K \nabla^2 \zeta : \nabla^2 q \, dx = \int_{\partial K} \nabla \zeta \cdot \left(\frac{\partial}{\partial n} \nabla q \right) ds - \int_{\partial K} \zeta \left(\frac{\partial}{\partial n} \Delta q \right) ds,$$

for all $\zeta \in H^2(K)$ and $q \in \mathbb{P}_2(K)$. Therefore, we can compute $\Pi_K^{\Delta}\zeta$ through (3.3)–(3.5) in terms of ζ and $\nabla \zeta$ on ∂K .

We are now ready to define the local virtual element space $\mathcal{Q}(K) \subset H^2(K)$. A function $v \in H^2(K)$ belongs to the virtual element space $\mathcal{Q}(K)$ if and only if it satisfies the following conditions:

$$v|_e \in \mathbb{P}_3(e) \quad \forall e \in \mathcal{E}_K,$$
 (3.7)

$$(\partial v/\partial n)|_e \in \mathbb{P}_1(e) \qquad \forall e \in \mathcal{E}_K,$$
 (3.8)

$$\Delta^2 v \in \mathbb{P}_2(K), \tag{3.9}$$

$$\Pi_K^0 v - \Pi_K^\Delta v = 0, (3.10)$$

where (3.9) is understood in the sense of distributions and Π_K^0 is the L^2 projection operator from $L^2(K)$ to $\mathbb{P}_2(K)$. It is clear from the definition that $\mathbb{P}_2(K)$ is a subspace of $\mathcal{Q}(K)$.

Remark 3.1. The virtual element $\mathcal{Q}(K)$ defined by (3.7)–(3.10) is similar to the one in Ref. 2, where the projection Π_K^{Δ} was defined with respect to a discrete inner product instead of the inner product defined by (3.2). One can show by essentially the same arguments for Lemma 2.3 in Ref. 2 that the dimension of $\mathcal{Q}(K)$ is $3|\mathcal{V}_K|$

and a function in Q(K) is uniquely determined by its derivatives up to order 1 at the vertices.

Since $\mathbb{P}_2(K)$ is invariant under Π_K^0 , we have, by the shape regularity assumption (3.1) and the Bramble–Hilbert lemma, 11,37

$$\|\zeta - \Pi_K^0 \zeta\|_{L^2(K)} + h_K |\zeta - \Pi_K^0 \zeta|_{H^1(K)} \le C h_K^2 |\zeta|_{H^2(K)} \qquad \forall \zeta \in H^2(K), \quad (3.11)$$

$$\|\zeta - \Pi_K^0 \zeta\|_{L^{\infty}(K)} \le Ch_K |\zeta|_{H^2(K)} \qquad \forall \zeta \in H^2(K), \quad (3.12)$$

$$\|\zeta - \Pi_K^0 \zeta\|_{H^2(K)} \le C h_K^{\alpha} |\zeta|_{H^{2+\alpha}(K)} \quad \forall \zeta \in H^{2+\alpha}(K),$$
(3.13)

where α is the index of elliptic regularity in (2.13).

3.3. The discrete variational inequality

We need a discrete analog of (2.7) in order to define the discretization of (2.9). For $K \in \mathcal{T}_h$, we define $a^K(\cdot, \cdot)$ by

$$a^{K}(v,w) = \int_{K} \nabla^{2}v : \nabla^{2}w \, dx \quad \forall v, w \in H^{2}(K).$$

$$(3.14)$$

Then, we construct a symmetric positive definite bilinear form $S^K(v, w)$ with the following stabilization property:

$$C_0 a^K(v, v) \le S^K(v, v) \le C_1 a^K(v, v) \quad \forall v \in \mathcal{Q}(K) \quad \text{such that } \Pi_K^{\Delta} v = 0$$
 (3.15)

and set the discrete analog of (2.5) and (2.7) on K to be

$$\mathcal{A}_{h}^{K}(v,w) = \beta a_{h}^{K}(v,w) + \int_{K} (\Pi_{K}^{0}v)(\Pi_{K}^{0}w)dx, \tag{3.16}$$

$$a_h^K(v, w) = a^K(\Pi_K^{\Delta}v, \Pi_K^{\Delta}w) + S^K(v - \Pi_K^{\Delta}v, w - \Pi_K^{\Delta}w),$$
 (3.17)

for all $v, w \in \mathcal{Q}(K)$.

Note that (3.3), (3.14), (3.15) and (3.17) imply

$$a_h^K(v,v) \approx a^K(v,v) \quad \forall v \in \mathcal{Q}(K)$$

and hence, in view of (3.11), (3.14) and (3.16),

$$\mathcal{A}_h^K(v,v) \approx \mathcal{A}^K(v,v) \quad \forall v \in \mathcal{Q}(K),$$
 (3.18)

where

$$\mathcal{A}^{K}(v,w) = \beta a^{K}(v,w) + \int_{K} vw \, dx. \tag{3.19}$$

Remark 3.2. There are many variants of $S^K(\cdot,\cdot)$. The one we use (cf. Sec. 4.4 of Ref. 27) is defined by

$$S^K(v_h, w_h) = \sum_{p \in \mathcal{V}_K} h_p^{-2} \big\{ v_h(p) \cdot w_h(p) + [h_p \nabla v_h(p)] \cdot [h_p \nabla w_h(p)] \big\},$$

where $v_h(p)$ and $h_p \nabla v_h(p)$ are the degrees of freedom, and h_p is the average of the lengths of the edges of \mathcal{T}_h that share p as a common vertex.

Let the global virtual element space associated with \mathcal{T}_h be defined by

$$V_h = \{ v \in H^2(\Omega) \cap H_0^1(\Omega) : v \big|_K \in \mathcal{Q}(K) \ \forall K \in \mathcal{T}_h \}$$

and the discrete constraint set \mathbb{K}_h be given by

$$\mathbb{K}_h = \{ y_h \in V_h : y_h(p) \le \psi(p) \ \forall \ p \in \mathcal{V}_h \}, \tag{3.20}$$

where \mathcal{V}_h is the set of the vertices of \mathcal{T}_h .

The discrete problem for (2.9) is to find $\bar{y}_h \in \mathbb{K}_h$ such that

$$\mathcal{A}_h(\bar{y}_h, y_h - \bar{y}_h) - \left(y_d, \Pi_h^0(y_h - \bar{y}_h)\right) \ge 0 \quad \forall y_h \in \mathbb{K}_h, \tag{3.21}$$

where

$$\mathcal{A}_{h}(y_{h}, z_{h}) = \sum_{K \in \mathcal{T}_{h}} \mathcal{A}_{h}^{K}(y_{h}, z_{h}) = \sum_{K \in \mathcal{T}_{h}} \beta a_{h}^{K}(y_{h}, z_{h}) + (\Pi_{h}^{0} y_{h}, \Pi_{h}^{0} z_{h})$$
(3.22)

and Π_h^0 is the projection operator from $L^2(\Omega)$ onto the space $\mathbb{P}_2(\Omega; \mathcal{T}_h)$ of piecewise quadratic polynomial functions defined by

$$(\Pi_h^0 v)\big|_K = \Pi_K^0 (v\big|_K) \quad \forall K \in \mathcal{T}_h. \tag{3.23}$$

4. Preliminary Estimates

In this section, we introduce some tools and preliminary estimates in preparation for the convergence analysis in Sec. 5.

4.1. A mesh-dependent norm

Let $H^2(\Omega; \mathcal{T}_h)$ be the space of piecewise H^2 functions with respect to \mathcal{T}_h . The piecewise version of the energy norm $\|\cdot\|_{\mathcal{A}}$ is defined by

$$||v||_h^2 = \sum_{K \in \mathcal{T}_h} \mathcal{A}^K(v, v) = \sum_{K \in \mathcal{T}_h} \left(\beta |v|_{H^2(K)}^2 + ||v||_{L^2(K)}^2\right) \quad \forall v \in H^2(\Omega; \mathcal{T}_h). \tag{4.1}$$

It follows from (3.18) that

$$\sum_{K \in \mathcal{T}_h} \mathcal{A}_h^K(v, v) \approx \|v\|_h^2 \quad \forall v \in V_h + \mathbb{P}_2(\Omega; \mathcal{T}_h). \tag{4.2}$$

4.2. The interpolation operator Π_h

The interpolation operator $\Pi_h: H^{2+\alpha}(\Omega) \cap H^1_0(\Omega) \to V_h$ is defined by the condition that ζ and $\Pi_h \zeta$ share the same degrees of freedom, i.e.

$$\Pi_h \zeta(p) = \zeta(p) \qquad \forall \, p \in \mathcal{V}_h,$$

$$\tag{4.3}$$

$$\nabla \Pi_h \zeta(p) = \nabla \zeta(p) \quad \forall \, p \in \mathcal{V}_h,$$
 (4.4)

where \mathcal{V}_h is the set of the vertices of \mathcal{T}_h .

Since $\mathbb{P}_2(K)$ is invariant under the restriction of Π_h to $H^{2+\alpha}(K)$, we have

$$\sum_{\ell=0}^{2} h_K^{\ell} |\zeta - \Pi_h \zeta|_{H^{\ell}(K)} \lesssim h_K^{2+\alpha} |\zeta|_{H^{2+\alpha}(K)} \quad \forall K \in \mathcal{T}_h$$

$$\tag{4.5}$$

by the shape regularity assumption (3.1) and the Bramble–Hilbert lemma. 11,37 Note that

$$\Pi_h \bar{y}$$
 belongs to \mathbb{K}_h (4.6)

by (2.2), (3.20) and (4.3). In particular \mathbb{K}_h is a non-empty closed convex subset of V_h and (3.21) has a unique solution $\bar{y}_h \in \mathbb{K}_h$ by the standard theory.⁴⁷

4.3. The interpolation operator I_h

Let $W_h \subset H_0^1(\Omega)$ be the lowest-order H^1 -conforming virtual element space associated with \mathcal{T}_h (cf. Ref. 4). The functions in W_h are harmonic functions on each $K \in \mathcal{T}_h$ and linear polynomials on the edges of \mathcal{T}_h . The interpolation operator $I_h: H^2(\Omega) \cap H_0^1(\Omega) \to W_h$ is defined by

$$I_h\zeta(p) = \zeta(p) \quad \forall p \in \mathcal{V}_h.$$

In view of the maximum principle for harmonic functions, we can rewrite (3.20) as

$$\mathbb{K}_h = \{ y_h \in V_h : I_h y_h \le I_h \psi \}. \tag{4.7}$$

Note that $\mathbb{P}_1(K)$ is invariant under the restriction of I_h to $H^2(K)$. Therefore we have, by the shape regularity assumption (3.1) and the Bramble–Hilbert lemma, ^{11,20}

$$\|\zeta - I_h \zeta\|_{L^{\infty}(K)} \lesssim h_K^2 |\zeta|_{W^{2,\infty}(K)} \quad \forall \, \zeta \in W^{2,\infty}(K), \tag{4.8}$$

$$\|\zeta - I_h \zeta\|_{H^1(K)} \lesssim h_K |\zeta|_{H^2(K)} \qquad \forall \zeta \in H^2(K). \tag{4.9}$$

More details can be found in Refs. 6, 16, 22, 32 and 29.

4.4. A preliminary estimate

We are now ready to derive an estimate that reduces the convergence analysis to the continuous level.

Lemma 4.1. There exists a positive constant C independent of h such that

$$\|\bar{y} - \bar{y}_h\|_{\mathcal{A}}^2 \le C(\left[\mathcal{A}(\bar{y}, \Pi_h \bar{y} - \bar{y}_h) - (y_d, \Pi_h \bar{y} - \bar{y}_h)\right] + h^{2\alpha} + h^{\alpha}\|\bar{y} - \bar{y}_h\|_{\mathcal{A}}).$$
(4.10)

Proof. Using (2.8) and (4.5), we can estimate the difference between the solution \bar{y} of (2.9) and the solution \bar{y}_h of (3.21) by

$$\|\bar{y} - \bar{y}_h\|_{\mathcal{A}}^2 \le 2(\|\bar{y} - \Pi_h \bar{y}\|_{\mathcal{A}}^2 + \|\Pi_h \bar{y} - \bar{y}_h\|_{\mathcal{A}}^2) \lesssim h^{2\alpha} + \|\Pi_h \bar{y} - \bar{y}_h\|_{\mathcal{A}}^2,$$

and we have, by (2.8), (3.11), (3.21), (4.1), (4.2) and (4.6),

$$\begin{split} \|\Pi_{h}\bar{y} - \bar{y}_{h}\|_{\mathcal{A}}^{2} &= \|\Pi_{h}\bar{y} - \bar{y}_{h}\|_{h}^{2} \\ &\lesssim \mathcal{A}_{h}(\Pi_{h}\bar{y} - \bar{y}_{h}, \Pi_{h}\bar{y} - \bar{y}_{h}) \\ &= \mathcal{A}_{h}(\Pi_{h}\bar{y}, \Pi_{h}\bar{y} - \bar{y}_{h}) - \mathcal{A}_{h}(\bar{y}_{h}, \Pi_{h}\bar{y} - \bar{y}_{h}) \\ &\leq \mathcal{A}_{h}(\Pi_{h}\bar{y}, \Pi_{h}\bar{y} - \bar{y}_{h}) - (y_{d}, \Pi_{h}^{0}(\Pi_{h}\bar{y} - \bar{y}_{h})) \\ &= \mathcal{A}_{h}(\Pi_{h}\bar{y}, \Pi_{h}\bar{y} - \bar{y}_{h}) - (y_{d}, \Pi_{h}\bar{y} - \bar{y}_{h}) \\ &+ (y_{d}, (\Pi_{h}\bar{y} - \bar{y}_{h}) - \Pi_{h}^{0}(\Pi_{h}\bar{y} - \bar{y}_{h})) \\ &\lesssim \mathcal{A}_{h}(\Pi_{h}\bar{y}, \Pi_{h}\bar{y} - \bar{y}_{h}) - (y_{d}, \Pi_{h}\bar{y} - \bar{y}_{h}) + h^{2} \|\Pi_{h}\bar{y} - \bar{y}_{h}\|_{\mathcal{A}}. \end{split}$$

It follows that

$$\|\bar{y} - \bar{y}_h\|_{\mathcal{A}}^2 \lesssim \mathcal{A}_h(\Pi_h \bar{y}, \Pi_h \bar{y} - \bar{y}_h) - (y_d, \Pi_h \bar{y} - \bar{y}_h) + h^{2\alpha} + h^2 \|\Pi_h \bar{y} - \bar{y}_h\|_{\mathcal{A}}.$$
(4.11)

Next we observe that the bilinear form \mathcal{A}_h^K satisfies the consistency relation

$$\mathcal{A}_h^K(q, v_h) = \mathcal{A}^K(q, v_h) \quad \forall v_h \in \mathcal{Q}(K) \quad \text{and} \quad q \in \mathbb{P}_2(K),$$

which follows from (3.16), (3.17), (3.19) and the fact that Π_K^0 and Π_K^{Δ} are projections onto $\mathbb{P}_2(K)$. We can therefore rewrite the first term on the right-hand side of (4.11) as follows:

$$\mathcal{A}_{h}(\Pi_{h}\bar{y},\Pi_{h}\bar{y}-\bar{y}_{h}) = \sum_{K\in\mathcal{T}_{h}} \left(\mathcal{A}_{h}^{K}(\Pi_{h}\bar{y}-\Pi_{h}^{0}\bar{y},\Pi_{h}\bar{y}-\bar{y}_{h}) + \mathcal{A}_{h}^{K}(\Pi_{h}^{0}\bar{y},\Pi_{h}\bar{y}-\bar{y}_{h}) \right)
= \sum_{K\in\mathcal{T}_{h}} \left(\mathcal{A}_{h}^{K}(\Pi_{h}\bar{y}-\Pi_{h}^{0}\bar{y},\Pi_{h}\bar{y}-\bar{y}_{h}) + \mathcal{A}^{K}(\Pi_{h}^{0}\bar{y},\Pi_{h}\bar{y}-\bar{y}_{h}) \right)
= \sum_{K\in\mathcal{T}_{h}} \left(\mathcal{A}_{h}^{K}(\Pi_{h}\bar{y}-\Pi_{h}^{0}\bar{y},\Pi_{h}\bar{y}-\bar{y}_{h}) + \mathcal{A}^{K}(\Pi_{h}^{0}\bar{y}-\bar{y},\Pi_{h}\bar{y}-\bar{y}_{h}) \right)
+ \mathcal{A}(\bar{y},\Pi_{h}\bar{y}-\bar{y}_{h}).$$
(4.12)

We can use (3.13), (4.1), (4.2) and (4.5) to estimate the sum on the right-hand side of (4.12)

$$\sum_{K \in \mathcal{T}_{h}} \left(\mathcal{A}_{h}^{K} (\Pi_{h} \bar{y} - \Pi_{h}^{0} \bar{y}, \Pi_{h} \bar{y} - \bar{y}_{h}) + \mathcal{A}^{K} (\Pi_{h}^{0} \bar{y} - \bar{y}, \Pi_{h} \bar{y} - \bar{y}_{h}) \right)
\lesssim \|\Pi_{h} \bar{y} - \Pi_{h}^{0} \bar{y}\|_{h} \|\Pi_{h} \bar{y} - \bar{y}_{h}\|_{h} + \|\Pi_{h}^{0} \bar{y} - \bar{y}\|_{h} \|\Pi_{h} \bar{y} - \bar{y}_{h}\|_{h}
\lesssim (\|\Pi_{h} \bar{y} - \bar{y}\|_{h} + \|\Pi_{h}^{0} \bar{y} - \bar{y}\|_{h}) \|\Pi_{h} \bar{y} - \bar{y}_{h}\|_{\mathcal{A}}
\lesssim h^{\alpha} \|\Pi_{h} \bar{y} - \bar{y}_{h}\|_{\mathcal{A}}.$$
(4.13)

Finally, we conclude from (2.8), (4.5) and (4.11)–(4.13) that

$$\begin{split} \|\bar{y} - \bar{y}_h\|_{\mathcal{A}}^{2} &\lesssim \left[\mathcal{A}(\bar{y}, \Pi_h \bar{y} - \bar{y}_h) - (y_d, \Pi_h \bar{y} - \bar{y}_h) \right] + h^{2\alpha} + h^{\alpha} \|\Pi_h \bar{y} - \bar{y}_h\|_{\mathcal{A}} \\ &\lesssim \left[\mathcal{A}(\bar{y}, \Pi_h \bar{y} - \bar{y}_h) - (y_d, \Pi_h \bar{y} - \bar{y}_h) \right] + h^{2\alpha} \\ &\quad + h^{\alpha} \left(\|\Pi_h \bar{y} - \bar{y}\|_{\mathcal{A}} + \|\bar{y} - \bar{y}_h\|_{\mathcal{A}} \right) \\ &\lesssim \left[\mathcal{A}(\bar{y}, \Pi_h \bar{y} - \bar{y}_h) - (y_d, \Pi_h \bar{y} - \bar{y}_h) \right] + h^{2\alpha} + h^{\alpha} \|\bar{y} - \bar{y}_h\|_{\mathcal{A}}. \end{split}$$

Remark 4.1. It only remains to estimate the first term on the right-hand side of (4.10), which no longer involves the discrete bilinear form $\mathcal{A}_h(\cdot,\cdot)$.

5. Convergence Analysis

In view of (2.10) and (2.12), we can write

$$\mathcal{A}(\bar{y}, \Pi_h \bar{y} - \bar{y}_h) - (y_d, \Pi_h \bar{y} - \bar{y}_h)$$

$$= \int_{\Omega} (\Pi_h \bar{y} - \bar{y}_h) d\mu$$

$$= \int_{\Omega} \left[(\Pi_h \bar{y} - \bar{y}) + (\psi - I_h \psi) + (I_h \psi - I_h \bar{y}_h) + (I_h \bar{y}_h - \bar{y}_h) \right] d\mu, \quad (5.1)$$

and the first three terms on the right-hand side of (5.1) can be estimated as follows:

$$\int_{\Omega} (\Pi_h \bar{y} - \bar{y}) d\mu \le \|\mu\|_{H^{-1}(\Omega)} \|\Pi_h \bar{y} - \bar{y}\|_{H^1(\Omega)} \lesssim h^{1+\alpha}$$
 (5.2)

by (2.14) and (4.5),

$$\int_{\Omega} (\psi - I_h \psi) d\mu \le |\mu(\Omega)| \|\psi - I_h \psi\|_{L^{\infty}(\Omega)} \lesssim h^2$$
(5.3)

by (1.4), (2.11) and (4.8),

$$\int_{\Omega} (I_h \psi - I_h \bar{y}_h) d\mu \le 0 \tag{5.4}$$

by (2.11) and (4.7).

For the fourth term on the right-hand side of (5.1), we have a decomposition

$$\int_{\Omega} (I_h \bar{y}_h - \bar{y}_h) d\mu = \int_{\Omega} [I_h (\bar{y}_h - \bar{y}) - (\bar{y}_h - \bar{y})] d\mu + \int_{\Omega} (I_h \bar{y} - \bar{y}) d\mu \qquad (5.5)$$

and

$$\int_{\Omega} [I_h(\bar{y}_h - \bar{y}) - (\bar{y}_h - \bar{y})] d\mu \le \|\mu\|_{H^{-1}(\Omega)} \|I_h(\bar{y}_h - \bar{y}) - (\bar{y}_h - \bar{y})\|_{H^1(\Omega)}
\le h \|\bar{y} - \bar{y}_h\|_{A}$$
(5.6)

by (2.8), (2.14) and (4.9),

$$\int_{\Omega} (I_h \bar{y} - \bar{y}) d\mu \le |\mu(\mathfrak{A})| \|I_h \bar{y} - \bar{y}\|_{L^{\infty}(\mathfrak{A})} \lesssim h^2 \tag{5.7}$$

by (2.11), Remark 2.2, (2.13) and (4.8), where \mathfrak{A} is the active set introduced in Remark 2.2.

Combining (5.1)–(5.7), we arrive at

$$\mathcal{A}(\bar{y}, \Pi_h \bar{y} - \bar{y}_h) - (y_d, \Pi_h \bar{y} - \bar{y}_h) \lesssim h^{1+\alpha} + h \|\bar{y} - \bar{y}_h\|_{\mathcal{A}}. \tag{5.8}$$

Theorem 5.1. There exists a positive constant C independent of h such that

$$\|\bar{y} - \bar{y}_h\|_{\mathcal{A}} \le Ch^{\alpha},$$

where α is the index of elliptic regularity in (2.13).

Proof. It follows from (4.10) and (5.8) that

$$\|\bar{y} - \bar{y}_h\|_{\mathcal{A}}^2 \lesssim h^{2\alpha} + h^{\alpha} \|\bar{y} - \bar{y}_h\|_{\mathcal{A}}$$

and the proof is completed by an application of the inequality of arithmetic and geometric means. \Box

We can approximate $\bar{u} = -\Delta \bar{y}$ by $\bar{u}_h = -\Delta \bar{y}_h$.

Corollary 5.1. There exists a positive constant C independent of h such that

$$\|\bar{u} - \bar{u}_h\|_{L^2(\Omega)} + \|\bar{y} - \bar{y}_h\|_{L^2(\Omega)} + |\bar{y} - \bar{y}_h|_{H^1(\Omega)} + \|\bar{y} - \bar{y}_h\|_{L^{\infty}(\Omega)} \le Ch^{\alpha},$$

where α is the index of elliptic regularity in (2.13).

Proof. The estimate for the control and the L^2 and H^1 estimates for the state follow immediately from (2.8) and Theorem 5.1. The L^{∞} estimate for the state is a consequence of the Sobolev embedding $H^2(\Omega) \hookrightarrow L^{\infty}(\Omega)$ and Theorem 5.1. \square

We can also derive convergence results for the computable approximation $\bar{y}_h^c = \Pi_h^0 \bar{y}_h \in \mathbb{P}_2(\Omega; \mathcal{T}_h)$.

Theorem 5.2. There exists a positive constant C independent of h such that

$$\left(\sum_{K\in\mathcal{T}_h} |\bar{y} - \bar{y}_h^c|_{H^2(K)}^2\right)^{\frac{1}{2}} \le Ch^{\alpha},$$

where α is the index of elliptic regularity in (2.13).

Proof. Let $K \in \mathcal{T}_h$ be arbitrary. We begin with

$$\begin{split} |\bar{y} - \bar{y}_h^c|_{H^2(K)} &= |(\bar{y} - \Pi_K^0 \bar{y}) - \Pi_K^0 (\bar{y}_h - \Pi_K^0 \bar{y})|_{H^2(K)} \\ &\leq |\bar{y} - \Pi_K^0 \bar{y}|_{H^2(K)} + |\Pi_K^0 (\bar{y}_h - \Pi_K^0 \bar{y})|_{H^2(K)} \end{split}$$

and observe that

$$|\Pi_K^0(\bar{y}_h - \Pi_K^0 \bar{y})|_{H^2(K)} = |\Pi_K^\Delta(\bar{y}_h - \Pi_K^0 \bar{y})|_{H^2(K)} \le |\bar{y}_h - \Pi_K^0 \bar{y}|_{H^2(K)}$$

$$\le |\bar{y} - \bar{y}_h|_{H^2(K)} + |\bar{y} - \Pi_K^0 \bar{y}|_{H^2(K)}$$

by (3.6) and (3.10).

It follows that

$$|\bar{y} - \bar{y}_h^c|_{H^2(K)} \le 2|\bar{y} - \Pi_K^0 \bar{y}|_{H^2(K)} + |\bar{y} - \bar{y}_h|_{H^2(K)}$$

and we can complete the proof by invoking (3.13) and Theorem 5.1.

We can also approximate $\bar{u} = -\Delta \bar{y}$ by the computable $\bar{u}_h^c = -\Delta_h \Pi_h^0 \bar{y}_h$, where Δ_h is the piecewise defined Laplacian.

Corollary 5.2. There exists a positive constant C independent of h such that

$$\|\bar{u} - \bar{u}_h^c\|_{L^2(\Omega)} + \|\bar{y} - \bar{y}_h^c\|_{L^2(\Omega)} + \left(\sum_{K \in \mathcal{T}_h} |\bar{y} - \bar{y}_h^c|_{H^1(K)}^2\right)^{\frac{1}{2}} + \|\bar{y} - \bar{y}_h^c\|_{L^{\infty}(\Omega)} \le Ch^{\alpha},$$

where α is the index of elliptic regularity in (2.13).

Proof. The estimate for the control follows immediately from (4.1) and Theorem 5.2.

Let $K \in \mathcal{T}_h$ be arbitrary. We have

$$\begin{split} \|\bar{y} - \bar{y}_h^c\|_{L^2(K)} &= \|(\bar{y} - \Pi_K^0 \bar{y}) - \Pi_K^0 (\bar{y}_h - \bar{y})\|_{L_2(K)} \\ &\leq \|\bar{y} - \Pi_K^0 \bar{y}\|_{L_2(K)} + \|\bar{y}_h - \bar{y}\|_{L_2(K)}, \end{split}$$

which together with (3.11) and Corollary 5.1 implies the L^2 estimate for the state. Similarly, we have, by (3.11),

$$\begin{split} |\bar{y} - \bar{y}_h^c|_{H^1(K)} &\leq |\bar{y} - \Pi_K^0 \bar{y}|_{H^1(K)} + |\Pi_K^0 (\bar{y}_h - \bar{y})|_{H^1(K)} \\ &\leq |\bar{y} - \Pi_K^0 \bar{y}|_{H^1(K)} + |\bar{y}_h - \bar{y}|_{H^1(K)} + |(\bar{y}_h - \bar{y}) - \Pi_K^0 (\bar{y}_h - \bar{y})|_{H^1(K)} \\ &\lesssim |\bar{y} - \Pi_K^0 \bar{y}|_{H^1(K)} + |\bar{y}_h - \bar{y}|_{H^1(K)} + h_K |\bar{y}_h - \bar{y}|_{H^2(K)}, \end{split}$$

which together with (3.11), Theorem 5.1 and Corollary 5.1 implies the nonconforming H^1 estimate for the state.

The proof of the L^{∞} estimate for the state can be established in the same way after (3.11) is replaced by (3.12).

Remark 5.1. Numerical results in Sec. 6 indicate that the error estimates in Corollary 5.2 for the state are not sharp.

6. Numerical Results

We have tested our method on four examples from the literature. The domains are squares and hence the index of elliptic regularity $\alpha=1$ in all the examples. The discrete variational inequalities are solved by a primal-dual active set method. ^{7,8,42,45}

For a problem whose exact solution is not available, we use nested meshes consisting of general polygons (cf. Fig. 1, left), and we use Voronoi meshes (cf.

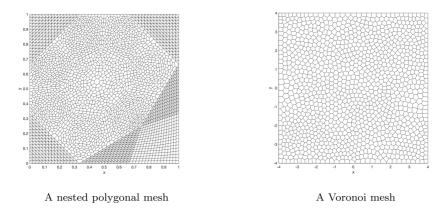


Fig. 1. Polygonal decompositions of the domain.

Fig. 1, right) if the exact solution is known. The Voronoi meshes are generated by PolyMesher.⁵¹

The errors of the computable approximation $\bar{y}_h^c = \Pi_h^0 \bar{y}_h$ in various norms are denoted by

$$e_{0,h} = \|\bar{y} - \bar{y}_h^c\|_{L^2(\Omega)}, \quad e_{1,h} = \left(e_{0,h}^2 + \sum_{K \in \mathcal{T}_h} |\bar{y} - \bar{y}_h^c|_{H^1(K)}^2\right)^{\frac{1}{2}},$$

$$e_{2,h} = \left(e_{1,h}^2 + \sum_{K \in \mathcal{T}_h} |\bar{y} - \bar{y}_h^c|_{H^2(K)}^2\right)^{\frac{1}{2}}, \quad e_{\infty,h} = \max_{p \in \mathcal{V}_h} |\bar{y}(p) - \bar{y}_h(p)|,$$

where \mathcal{V}_h is the set of the vertices of \mathcal{T}_h .

For the examples with unknown exact solutions solved on nested meshes, we use the same notation $e_{0,h}$, $e_{1,h}$, $e_{2,h}$, $e_{\infty,h}$ to denote the errors which are computed by replacing \bar{y} with the solution obtained after the mesh is refined.

The numerical results from all four examples indicate that the H^2 convergence of the state and the L^2 convergence of the control is 1, which agree with Theorem 5.2 and Corollary 5.2. The convergence for the state in the L^2 , H^1 and L^{∞} norms is better than the convergence predicted by Corollary 5.2.

Example 6.1. The domain Ω is the unit square $(0,1)^2$. The data are given by

$$y_d = 10(\sin(2\pi x_1) + x_2), \quad \psi = 0.01 \quad \text{and} \quad \beta = 0.1.$$

This example is from Ref. 43 and it has also been tested in Refs. 48, 24 and 13.

The exact solution of this problem is unknown and the discrete variational inequality (3.21) is solved on nested polygonal meshes. The results are presented in Tables 1 and 2. The optimal state, optimal control and active set computed on a mesh with $h = 1.1108 \times 10^{-2}$ are displayed in Fig. 2. They match the results in Refs. 43, 48, 24 and 13.

h	$e_{2,h}$	Order	$e_{1,h}$	Order	$e_{0,h}$	Order	$e_{\infty,h}$	Order
4.3800e-1	1.6560e0	_	3.2952e-1	_	6.0428e-2	_	3.1742e-2	_
1.8222e-1	2.9137e-1	1.98	3.7752e-2	2.47	4.2256e-3	3.03	1.3074e-2	1.01
8.8407e-2	1.4995e-1	0.92	7.6856e-3	2.20	8.9746e-4	2.14	3.0611e-3	2.01
4.4303e-2	6.9608e-2	1.11	2.2298e-3	1.79	2.7516e-4	1.71	9.0366e-4	1.77
2.2193e-2	3.1081e-2	1.17	5.1339e-4	2.12	6.4203 e-5	2.11	2.0829e-4	2.12
1.1108e-2	1.3864e-2	1.17	1.1049e-4	2.22	1.3721e-5	2.23	4.4367e-5	2.23

Table 1. Errors and orders of convergence for the state (Example 6.1).

Table 2. Errors and orders of convergence for the control (Example 6.1).

h	4.3800e-1	1.8222e-1	8.8407e-2	4.4303e-2	2.2193e-2	1.1108e-2
$\ \bar{u} - \bar{u}_h^c\ _{L^2(\Omega)}$	1.3399e0	2.7089e-1	1.3896e-1	6.6671 e-2	2.9876e-2	1.3308e-2
Order	_	1.82	0.92	1.06	1.16	1.17

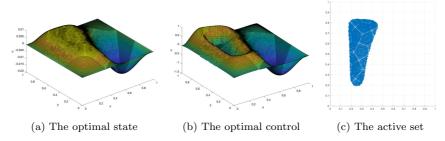


Fig. 2. Optimal state, optimal control and active set of Example 1 ($h = 1.1108 \times 10^{-2}$).

Example 6.2. The domain Ω is the unit square $(0,1)^2$. The data are given by

$$y_d = \sin(2\pi x_1 x_2), \quad \psi = 0.1 \quad \text{and} \quad \beta = 10^{-3}.$$

This example is from Ref. 8 and it has also been tested in Refs. 48, 24, 13 and 25. The exact solution of this problem is unknown and the discrete variational inequality (3.21) is solved on nested polygonal meshes. The results are presented in Tables 3 and 4. The optimal state, optimal control and active set computed on a mesh with $h = 1.1108 \times 10^{-2}$ are displayed in Fig. 3. They match the results in Refs. 8, 48, 24, 13 and 25.

Table 3. Errors and orders of convergence for the state (Example 6.2).

h	$e_{2,h}$	Order	$e_{1,h}$	Order	$e_{0,h}$	Order	$e_{\infty,h}$	Order
4.3800e-1	5.7491e0	_	8.9377e-1	_	1.9290e-1	_	0.0000e0	_
1.8222e-1	2.3643e0	1.01	3.2736e-1	1.15	3.1017e-2	2.08	3.8640e-2	_
8.8407e-2	1.0050e0	1.18	4.9625e-2	2.61	3.2090e-3	3.14	9.3601e-3	1.96
4.4303e-2	4.7210e-1	1.09	1.2696e-2	1.97	7.7692e-4	2.05	2.5240e-3	1.90
2.2193e-2	2.1292e-1	1.15	3.3270e-3	1.94	1.9385e-4	2.01	5.7181e-4	2.15
1.1108e-2	9.5519 e-2	1.16	8.3215e-4	2.00	4.2860 e-5	2.18	1.4404e-4	1.99

h	4.3800e-1	1.8222e-1	8.8407e-2	4.4303e-2	2.2193e-2	1.1108e-2
$\ \bar{u} - \bar{u}_h^c\ _{L^2(\Omega)}$	5.3237e0	2.5665e0	9.4045e-1	4.4387e-1	2.0078e-1	9.0244e-2
Order	_	0.83	1.39	1.09	1.15	1.16

Table 4. Errors and orders of convergence for the control (Example 6.2).

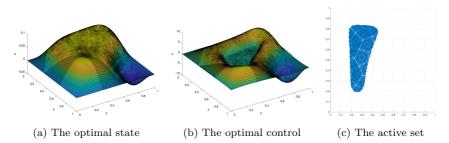


Fig. 3. Optimal state, optimal control and active set of Example 6.2 $(h = 1.1108 \times 10^{-2})$.

Example 6.3. The domain Ω is the unit square $(0,1)^2$. The data are given by $y_d = \sin(4\pi x_1 x_2) + 1.5$, $\psi = 1$ and $\beta = 10^{-4}$.

This example is from Ref. 8 and it has also been tested in Refs. 48, 24, 13 and 25. The exact solution of this problem is unknown and the discrete variational inequality (3.21) is solved on nested polygonal meshes. The results are presented in Tables 5 and 6. The optimal state, optimal control and active set computed on a mesh with $h = 1.1108 \times 10^{-2}$ are displayed in Fig. 4. They match the results in Refs. 8, 48, 24, 13 and 25.

Table 5. Errors and orders of convergence for the state (Example 6.3).

h	$e_{2,h}$	Order	$e_{1,h}$	Order	$e_{0,h}$	Order	$e_{\infty,h}$	Order
4.3800e-1	3.3514e1	_	3.8719e0	_	5.7631e-1	_	0.0000e0	_
1.8222e-1	2.4068e1	0.38	1.8534e0	0.84	1.7390e-1	1.37	2.7611e-1	_
8.8407e-2	1.4709e1	0.68	6.7202 e-1	1.40	4.1621e-2	1.98	1.4707e-1	0.87
4.4303e-2	7.3367e0	1.01	1.9826e-1	1.77	9.5251e-3	2.13	3.4246e-2	2.11
2.2193e-2	3.3743e0	1.12	5.1706e-2	1.94	2.6323e-3	1.86	1.0660e-2	1.69
1.1108e-2	1.5379e0	1.14	1.3112e-2	1.98	6.7255 e-4	1.97	3.0619e-3	1.80

Table 6. Errors and orders of convergence for the control (Example 6.3).

h	4.3800e-1	1.8222e-1	8.8407e-2	4.4303e-2	2.2193e-2	1.1108e-2
$\ \bar{u} - \bar{u}_h^c\ _{L^2(\Omega)}$	2.9119e1	2.2103e1	1.3501e1	6.9196e0	3.2090e0	1.4699e0
Order	_	0.31	0.68	0.97	1.11	1.13

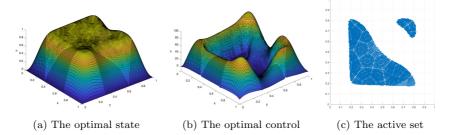


Fig. 4. Optimal state, optimal control and active set of Example 6.3 $(h = 1.1108 \times 10^{-2})$.

Example 6.4. This example is from Ref. 15. The domain Ω is the square $(-4,4)^2$. The data are given by $\beta = 1$, $\psi = |x|^2 - 1$ and

$$y_d = \begin{cases} \Delta^2 \bar{y} + \bar{y} & \text{if } |x| > 1, \\ \Delta^2 \bar{y} + \bar{y} + 2 & \text{if } |x| < 1 \end{cases}$$

and the exact optimal state \bar{y} is given by

$$\bar{y}(x) = \begin{cases} |x|^2 - 1 & \text{if } |x| \le 1, \\ v(|x|) + [1 - \phi(|x|)]w(x) & \text{if } 1 \le |x| \le 3, \\ w(x) & \text{if } |x| \ge 3, \end{cases}$$

where

$$v(t) = (t^2 - 1)\left(1 - \frac{t - 1}{2}\right)^4 + \frac{1}{4}(t - 1)^2(t - 3)^4,$$

$$\phi(t) = \left[1 + 4\left(\frac{t - 1}{2}\right) + 10\left(\frac{t - 1}{2}\right)^2 + 20\left(\frac{t - 1}{2}\right)^3\right]\left(1 - \frac{t - 1}{2}\right)^4$$

and

$$w(x) = 2\sin\left(\frac{\pi}{8}(x_1+4)\right)\sin\left(\frac{\pi}{8}(x_2+4)\right).$$

The exact active set is the disc $\{x: |x| \leq 1\}$ and the exact optimal control is $\bar{u} = -\Delta \bar{y}$.

The discrete variational inequality (3.21) is solved on Voronoi meshes. The results are presented in Tables 7 and 8.

Table 7. Errors and orders of convergence for the state (Example 6.4).

h	$e_{2,h}$	Order	$e_{1,h}$	Order	$e_{0,h}$	Order	$e_{\infty,h}$	Order
2.6054e0	2.9231e1	_	2.4131e1	_	1.3487e1	_	3.8025e0	
1.3270e0	7.7532e0	1.97	3.7478e0	2.76	2.0435e0	2.80	1.2321e0	1.67
7.8544e-1	3.9787e0	1.27	9.9106e-1	2.54	3.0289e-1	3.64	2.0243e-1	3.44
3.5849e-1	2.0335e0	0.86	2.8188e-1	1.60	8.3854e-2	1.64	3.0817e-2	2.40
1.8057e-1	1.0590e0	0.95	8.7947e-2	1.70	3.0596e-2	1.47	9.3315e-3	1.74
9.7469e-2	5.3274e-1	1.11	2.6411e-2	1.95	1.0359e-2	1.76	2.8191e-3	1.94

h	$2.6054\mathrm{e}0$	1.3270e0	7.8544e-1	3.5849e-1	1.8057e-1	9.7469e-2
$\ \bar{u} - \bar{u}_h^c\ _{L^2(\Omega)}$	1.9111e1	7.1613e0	3.9383e0	2.0404e0	1.0473e0	5.2275 e-1
Order	_	1.45	1.14	0.84	0.97	1.13

Table 8. Errors and orders of convergence for the control (Example 6.4).

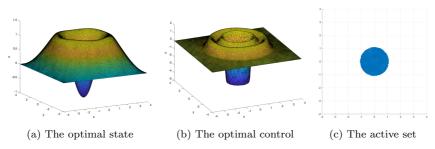


Fig. 5. Optimal state, optimal control and active set of Example 6.4 ($h = 9.7469 \times 10^{-2}$).

The optimal state, optimal control and active set computed on a mesh with $h = 9.7469 \times 10^{-2}$ are displayed in Fig. 5. The exact optimal state, optimal control and the exact active set are clearly captured.

7. Concluding Remarks

We have studied in this paper a C^1 virtual element method for an elliptic distributed optimal control problem with pointwise state constraints using the simplest virtual element for fourth-order problems. Our approach can also be applied to other C^1 virtual elements^{27,33} and nonconforming virtual elements^{3,52} for fourth-order problems. It can also be extended to three-dimensional optimal control problems by using the C^1 virtual elements in Ref. 5.

It is also possible to use this approach to design and analyze new virtual element methods for optimal control problems with both state and control constraints. In the case of classical nonconforming finite element methods and C^0 interior penalty methods, this has been carried out in Refs. 17 and 23.

Acknowledgment

This work was supported in part by the National Science Foundation under Grant No. DMS-19-13035.

References

- 1. R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edn. (Academic Press, 2003).
- P. F. Antonietti, L. Beirão da Veiga, S. Scacchi and M. Verani, A C¹ virtual element method for the Cahn-Hilliard equation with polygonal meshes, SIAM J. Numer. Anal. 54 (2016) 34–56.

- P. F. Antonietti, G. Manzini and M. Verani, The fully nonconforming virtual element method for biharmonic problems, *Math. Models Methods Appl. Sci.* 28 (2018) 387– 407.
- L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, *Math. Models Methods Appl. Sci.* 23 (2013) 199–214.
- L. Beirão da Veiga, F. Dassi and A. Russo, A C¹ virtual element method on polyhedral meshes, Comput. Math. Appl. 79 (2020) 1936–1955.
- L. Beirão da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method, Math. Models Methods Appl. Sci. 27 (2017) 2557–2594.
- M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems, SIAM J. Control Optim. 37 (1999) 1176–1194 (electronic).
- M. Bergounioux and K. Kunisch, Primal-dual strategy for state-constrained optimal control problems, Comput. Optim. Appl. 22 (2002) 193–224.
- H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, *Math. Methods Appl. Sci.* 2 (1980) 556– 581.
- D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications (Springer, 2013).
- J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970) 113–124.
- S. C. Brenner, Finite element methods for elliptic optimal control problems with pointwise state constraints, in *Advances in Mathematical Sciences*, eds. B. Acu, D. Danielli, M. Lewicka, A. N. Pati, R. V. Saraswathy and M. I. Teboh-Ewungkem, Association for Women in Mathematics Series, Vol. 21 (Springer, 2020), pp. 3–16.
- S. C. Brenner, C. B. Davis and L.-Y. Sung, A partition of unity method for a class of fourth-order elliptic variational inequalities, Comp. Methods Appl. Mech. Eng. 276 (2014) 612–626.
- S. C. Brenner, J. Gedicke and L.-Y. Sung, C⁰ interior penalty methods for an elliptic distributed optimal control problem on nonconvex polygonal domains with pointwise state constraints, SIAM J. Numer. Anal. 56 (2018) 1758–1785.
- 15. S. C. Brenner, J. Gedicke and L.-Y. Sung, P_1 finite element methods for an elliptic optimal control problem with pointwise state constraints, *IMA J. Numer. Anal.* **40** (2020) 1–28.
- S. C. Brenner, Q. Guan and L.-Y. Sung, Some estimates for virtual element methods, Comput. Methods Appl. Math. 17 (2017) 553–574.
- 17. S. C. Brenner, T. Gudi, K. Porwal and L.-Y. Sung, A Morley finite element method for an elliptic distributed optimal control problem with pointwise state and control constraints, ESAIM:Control Optim. Calc. Vari. 24 (2018) 1181–1206.
- 18. S. C. Brenner, M. Oh, S. Pollock, K. Porwal, M. Schedensack and N. Sharma, A C⁰ interior penalty method for elliptic distributed optimal control problems in three dimensions with pointwise state constraints, in *Topics in Numerical Partial Differential Equations and Scientific Computing*, ed. S. C. Brenner, The IMA Volumes in Mathematics and its Applications, Vol. 160 (Springer, 2016), pp. 1–22.
- 19. S. C. Brenner, M. Oh and L.-Y. Sung, P_1 finite element methods for an elliptic state-constrained distributed optimal control problem with Neumann boundary conditions, Res. Appl. Math. 8 (2020) 100090.
- S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn. (Springer-Verlag, 2008).

- S. C. Brenner and L.-Y. Sung, A new convergence analysis of finite element methods for elliptic distributed optimal control problems with pointwise state constraints, SIAM J. Control Optim. 55 (2017) 2289–2304.
- S. C. Brenner and L.-Y. Sung, Virtual element methods on meshes with small edges or faces, Math. Models Methods Appl. Sci. 28 (2018) 1291–1336.
- S. C. Brenner, L.-Y. Sung and Z. Tan, A cubic C⁰ interior penalty method for elliptic distributed optimal control problems with pointwise state and control constraints, Res. Appl. Math. 7 (2020) 100119.
- 24. S. C. Brenner, L.-Y. Sung and Y. Zhang, A quadratic C⁰ interior penalty method for an elliptic optimal control problem with state constraints, in *Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations*, eds. O. Karakashian X. Feng and Y. Xing, The IMA Volumes in Mathematics and its Applications, Vol. 157 (Springer, 2013), pp. 97–132. (2012 John H. Barrett Memorial Lectures).
- 25. S. C. Brenner, L.-Y. Sung and Y. Zhang, Post-processing procedures for a quadratic C^0 interior penalty method for elliptic distributed optimal control problems with pointwise state constraints, *Appl. Numer. Math.* **95** (2015) 99–117.
- 26. S. C. Brenner, L.-Y. Sung and Y. Zhang, C^0 interior penalty methods for an elliptic state-constrained optimal control problem with Neumann boundary condition, J. Comput. Appl. Math. **350** (2019) 212–232.
- F. Brezzi and L. D. Marini, Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462.
- L. A. Caffarelli and A. Friedman, The obstacle problem for the biharmonic operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979) 151–184.
- 29. S. Cao and L. Chen, Anisotropic error estimates of the linear virtual element method on polygonal meshes, SIAM J. Numer. Anal. **56** (2018) 2913–2939.
- E. Casas, Control of an elliptic problem with pointwise state constraints, SIAM J. Control Optim. 24 (1986) 1309–1318.
- 31. E. Casas, M. Mateos and B. Vexler, New regularity results and improved error estimates for optimal control problems with state constraints, *ESAIM Control Optim. Calc. Var.* **20** (2014) 803–822.
- L. Chen and J. Huang, Some error analysis on virtual element methods, Calcolo 55
 Article no. 5 (2018) 23.
- 33. C. Chinosi and L. D. Marini, Virtual element method for fourth order problems: L^2 -estimates, Comput. Math. Appl. **72** (2016) 1959–1967.
- 34. P. G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, 1978).
- M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics, Vol. 1341 (Springer-Verlag, 1988).
- K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a stateconstrained elliptic control problem, SIAM J. Numer. Anal. 45 (2007) 1937–1953 (electronic).
- T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comput. 34 (1980) 441–463.
- J. Frehse, Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung, Abh. Math. Sem. Univ. Hamburg 36 (1971) 140–149.
- J. Frehse, On the regularity of the solution of the biharmonic variational inequality, Manuscripta Math. 9 (1973) 91–103.
- W. Gong and N. Yan, A mixed finite element scheme for optimal control problems with pointwise state constraints, J. Sci. Comput. 46 (2011) 182–203.
- 41. P. Grisvard, Elliptic Problems in Non Smooth Domains (Pitman, 1985).

- 42. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim. 13 (2003) 865–888.
- 43. M. Hintermüller and K. Kunisch, Stationary optimal control problems with pointwise state constraints, in *Numerical PDE Constrained Optimization*, eds. Matthias Heinkenschloss, Luis Nunes Vicente and Luis Merca Fernandes (Springer, 2009).
- 44. M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, *Optimization with PDE Constraints* (Springer, 2009).
- 45. K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications (Society for Industrial and Applied Mathematics, 2008).
- 46. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications (Society for Industrial and Applied Mathematics, 2000).
- 47. J.-L. Lions and G. Stampacchia, Variational inequalities, *Comm. Pure Appl. Math.* **20** (1967) 493–519.
- W. Liu, W. Gong and N. Yan, A new finite element approximation of a stateconstrained optimal control problem, J. Comput. Math. 27 (2009) 97–114.
- 49. C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints, *Control Cybernet.* **37** (2008) 51–83.
- 50. J. Nečas, Direct Methods in the Theory of Elliptic Equations (Springer, 2012).
- C. Talischi, G. H. Paulino, A. Pereira and I. F. M. Menezes, PolyMesher: A general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim. 45 (2012) 309–328.
- 52. J. Zhao, B. Zhang, S. Chen and S. Mao, The Morley-type virtual element for plate bending problems, *J. Sci. Comput.* **76** (2018) 610–629.