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1. Introduction
Let Q C R? be a bounded convex polygonal domain, y4 € L?(Q2) and 3 be a positive
constant. The elliptic optimal control problem?’ is given by

1 2 5 2
e o J(y,u) = §||y = Yallz20) + §||UHL2(Q) (L.1)
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subject to
/QVy-Vzdx:/Quzdx Vze Hi(Q), (1.2)
where
Yoa ={y € Hy(Q): y < a.e. in Q}. (1.3)
We assume that
1 belongs to W3P(Q) for p>2 and ¢ > 0on 9. (1.4)

Here and throughout the paper we will follow standard notation for function spaces,
norms and differential operators that can be found for example in Refs. 34, 1, 20
and 10.

Our goal is to design and analyze a C' virtual element method for the opti-
mal control problem (1.1)—(1.3) that is based on Refs. 27, 33 and 2. The key is to
transform the optimal control problem into an equivalent fourth-order variational
inequality for the state that can be solved by many numerical methods originally
designed for fourth-order elliptic boundary value problems. This idea was first
proposed in Ref. 48 for a nonconforming finite element method, and later it was
extended to other finite element methods in Refs. 40, 24, 13, 25, 18, 15, 14, 26 and
19. A summary of this new approach can be found in Refs. 21 and 12.

Unlike elliptic optimal control problems with control constraints, the Lagrange
multiplier that appears in the first-order optimality conditions for (1.1)-(1.3) is
only a Borel measure (cf. (2.10)—(2.12)). Therefore, error analysis that involves
the approximation of the multiplier or the adjoint state is challenging. But these
complications are completely absent from the new approach which only involves the
state variable. Comparing with the approaches in Refs. 36, 49, 44 and 31, where
the convergence is established in the H' norm for the state and the L? norm for
the control, the new approach can also obtain convergence in the L° norm for the
state.

The rest of the paper is organized as follows. We recall some results for the
continuous problem in Sec. 2 and introduce the discrete problem in Sec. 3. We
present in Sec. 4 some tools and preliminary estimates for the convergence analysis,
which is carried out in Sec. 5. Numerical results are given in Sec. 6 and we end with
some concluding remarks in Sec. 7.

We will use C, with or without subscript, to denote a generic positive constant
that does not depend on the mesh size. We also use the symbol A < B to represent
A < (constant) B where the positive constant is independent of the mesh size. We
write A~ Bif A< B and B < A.

2. The Continuous Problem

Since ) is convex, the solution y of the state equation (1.2) belongs to H2(Q)
by elliptic regularity.3>4 Hence the optimal control problem (1.1)-(1.3) can be
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reformulated as
1 B
min |51y = vl + 3180130 (2.1)
where
K={yec H*(Q)NH;Q): y<vyinQ}. (2.2)
Let the bilinear form a(-,-) be defined by

aly,z) = /Q(Ay)(Az)dx. (2.3)

We can rewrite (2.1) as

win [ 3A40:0) - (a0 (2.0
where

Aly, z) = Baly, 2) + (y, 2) (2.5)
and

(y,z):/Qyzdx. (2.6)

Remark 2.1. For functions y, z € H2(Q) N H(£2), the bilinear form a(-,-) in (2.3)
has an alternative expression*! given by

=3 [ () (2 Ywrm [wyiviain o
e _ij:1 o \9z;0z; O0x;0x; o= 0 Yy Vozdx. ]

It follows from (2.7) and a Poincaré-Friedrichs inequality®® that

a(v,0) = lfp(q) * [vlli2@) Vo€ H*(Q)N Hy(Q)

and also
[o]l% = Alv,v) = 5|U|12H2(Q) + ||U||2L2(Q) ~ HU”%{?(Q) Vv e H*(Q) N Hy (Q).
(2.8)

Since K is a non-empty closed convex subset of H?(2) N H{(£2), the minimization
problem (2.4)—(2.6) has a unique solution § € K by the standard theory?® that is
characterized by the fourth-order variational inequality

AWy —9)— Wa,y—9) 20 Vyek (2.9)
The variational inequality (2.9) is equivalent to the following Karush-Kuhn—
Tucker conditions (cf. Refs. 30 and 21):

A, 2) — (ya,2) = / zdp Yze H*(Q)N Hi(Q), (2.10)
Q
1 is a nonpositive finite Borel measure (2.11)

[ = pdn=o (2.12)
Q
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Remark 2.2. The complementarity condition (2.12) is equivalent to the statement
that the support of p is the active set A = {x € Q : y(z) = ¢¥(z)}. Note that A is
a compact subset of {2 by the assumption (1.4) on .

The following regularity results, which are based on the assumption (1.4) on
and the work in Refs. 38, 39, 28 and 31, can be found in Refs. 21 and 15.

g€ HE.(Q)NW2X(Q) N H> (), (2.13)

loc
e HHQ), (2.14)

where the index of elliptic regularity a € (0, 1] is determined by the angles at the
corners of  (cf. Refs. 9, 41 and 35).

3. The Discrete Problem

The discrete problem is defined on a H?-conforming C' virtual element space asso-
ciated with a triangulation of Q.

3.1. The triangulation Ty

Let 75 be a triangulation of € by polygons, i.e.  is the union of the (closed)
polygons from 7, and the intersection of two distinct (closed) polygons from 7y, is
either empty, a common vertex or a common edge.

The set of the vertices (respectively, edges) of a polygon K € Ty, is denoted by
Vi (respectively, £k ), and the diameter of K (respectively, e € £k ) is denoted by
hi (respectively, he). The mesh size of T, is h = maxke7T;, hi.

We make the following assumptions* on the shape regularity of 7. There exists
a constant v € (0,1) such that

K is star-shaped with respect a ball of radius vhg for all K € Ty, (3.1a)
he > ~vhg forallee &g andall K € Ty, (3.1b)

3.2. A local virtual element space

Let K be a polygon in 7 and e € Ex. We will denote by Py (K) (respectively, Py(e))
the space of the restrictions of polynomials of total degree < ¢ to K (respectively, e).
For ¢,n € H*(K), we define

(e = [ V2 Vndo+ (/aKCds) (LKndS)

+< . vgds> : ( » Vnds). (3.2)

It follows from a Poincaré-Friedrichs inequality®® that ((-,-))x is an inner product
on H?(K) and the norm defined by ((-,-) g is equivalent to the standard norm of
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the Sobolev space H?(K). Therefore, we can define a projection operator I1% :
H?(K) — Py(K) by

(MR¢GA)x = (¢ a)x Vg € Pa(K),

or equivalently (cf. Ref. 33),

/VQH ¢): v2qd:c—/ V2(:Viqdr VqePyK), (3.3)
/ H@gds:/ Cds, (3.4)
OK OK
V(I%¢)ds = V¢ ds. (3.5)
oK oK
Note that (3.3) implies
NRC|m20) < [Clu2) V¢ € HA(K). (3.6)

In view of the integration by parts formula

o s (Foo | (G o
/KV ¢:Vndx /BKVC <8nVn ds /8K( anAn ds+/KC(A n)dx

that holds for ¢ € H%(K) and n € H*(K), we have

2 w2 o (9 _ 9
/KV (:V qda:—/aKVC (aan>ds / C(anAq)ds,

for all ( € H?(K) and g € Py(K). Therefore, we can compute I1%¢ through (3.3)—
(3.5) in terms of ¢ and V(¢ on 0K.

We are now ready to define the local virtual element space Q(K) C H?(K). A
function v € H2(K) belongs to the virtual element space Q(K) if and only if it
satisfies the following conditions:

vle € P3(e) Vece &k, (3.7)
(Ov/On)|. € P1(e) Ve €&k, (3.8)
A%y € Py(K), (3.9)

% v — gv =0, (3.10)

where (3.9) is understood in the sense of distributions and I1% is the L? projection
operator from L?(K) to Po(K). It is clear from the definition that Py(K) is a
subspace of Q(K).

Remark 3.1. The virtual element Q(K) defined by (3.7)—(3.10) is similar to the
one in Ref. 2, where the projection HIA( was defined with respect to a discrete inner
product instead of the inner product defined by (3.2). One can show by essentially
the same arguments for Lemma 2.3 in Ref. 2 that the dimension of Q(K) is 3|Vk|
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and a function in Q(K) is uniquely determined by its derivatives up to order 1 at
the vertices.

Since Po(K) is invariant under I1%;, we have, by the shape regularity assumption
(3.1) and the Bramble-Hilbert lemma,!!:37

¢ = O%Cllr2cry + hicl¢ — Mg Cla iy < ChlC 2 V(e H*(K), (3.11)
1¢ = %l Lo () < Chic|C|m2(re) V(e H*(K), (3.12)

¢ = % Cllm2(x) < Ch% | gra(xy V¢ € HT(K),
(3.13)

where « is the index of elliptic regularity in (2.13).

3.3. The discrete variational inequality

We need a discrete analog of (2.7) in order to define the discretization of (2.9). For
K € Ty, we define a (-, -) by

aK(v,w):/ Vi : Viwdr Yov,we H*(K). (3.14)
K

Then, we construct a symmetric positive definite bilinear form S¥ (v, w) with the
following stabilization property:

Coa (v,v) < K (v,v) < C1a®(v,v) Vv e Q(K) such that T{v =0  (3.15)
and set the discrete analog of (2.5) and (2.7) on K to be

A (v, w) = Baf (v, w) + /K () (I ) (3.16)

aff (v, w) = o (v, Mgw) + SK (v — Mgv, w — MEw), (3.17)

for all v, w € Q(K).
Note that (3.3), (3.14), (3.15) and (3.17) imply

v,v) = a®(v,v) Vve Q(K)
and hence, in view of (3.11), (3.14) and (3.16),
Al (v,v) = AK(v,v) Vv e Q(K), (3.18)

ak

(
)

where
AK (v, w) = Ba’ (v, w) +/ vwdz. (3.19)
K

Remark 3.2. There are many variants of S (-,-). The one we use (cf. Sec. 4.4 of
Ref. 27) is defined by

Kon,wn) = > b * {on(p) + [hpVor(p)] - [hpVewon (p)]

PEVK
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where v, (p) and h,Vup(p) are the degrees of freedom, and h,, is the average of the
lengths of the edges of 7} that share p as a common vertex.

Let the global virtual element space associated with 7;, be defined by
Vi={ve H*(Q)NHj) :v|, € QK)VK € Ty}
and the discrete constraint set K; be given by
Kn = {yn € Vi : yn(p) < b(p) Vp € Vi}, (3.20)

where V), is the set of the vertices of Tp,.
The discrete problem for (2.9) is to find gj, € K}, such that

An @y — 9n) — (a5 (yn — 9n)) >0 Vyp € Ky, (3.21)

where

Anlyn,zn) = > Af(un,2n) = > Bay (yn, zn) + Mhyn, Mhzn)  (3.22)
KeTh KeTn

and IIY is the projection operator from L?(2) onto the space P2(€2; 75) of piecewise
quadratic polynomial functions defined by

()| =M% (v|,) VK € Th. (3.23)

4. Preliminary Estimates

In this section, we introduce some tools and preliminary estimates in preparation
for the convergence analysis in Sec. 5.

4.1. A mesh-dependent norm

Let H?(Q;T;,) be the space of piecewise H? functions with respect to 7,. The

piecewise version of the energy norm || - || 4 is defined by
ol = X2 ASw0) = 3 (Blelieue + 0liep) Yo HAQ ). (41)
KeTh KeTh
It follows from (3.18) that
S Al wv) =} Vv e Vi +Pa(Th). (4.2)
KeTh

4.2. The interpolation operator I,

The interpolation operator ITj, : H2+*(Q)N H}(Q) — V}, is defined by the condition
that ¢ and II,( share the same degrees of freedom, i.e.

Hn¢(p) =C(p)  Vp €V, (4.3)
VIIL((p) = V{(p) Vp € Vh, (4.4)

where V), is the set of the vertices of 7},.
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Since Py(K) is invariant under the restriction of IIj, to H**%(K), we have

2
D hkl¢ =Tl ey S B IClmevey VE €Th (4.5)
=0

by the shape regularity assumption (3.1) and the Bramble-Hilbert lemma.!!:37
Note that

15,y belongs to K, (4.6)

by (2.2), (3.20) and (4.3). In particular K}, is a non-empty closed convex subset of
Vi, and (3.21) has a unique solution 7, € Ky, by the standard theory.*”

4.3. The interpolation operator Iy

Let W), C H}(Q) be the lowest-order H'-conforming virtual element space asso-
ciated with 75 (cf. Ref. 4). The functions in W}, are harmonic functions on each
K € T, and linear polynomials on the edges of 7. The interpolation operator
Iy, : H3(Q) N H}(Q) — W), is defined by

In¢(p) =¢(p) VP EVh.

In view of the maximum principle for harmonic functions, we can rewrite
(3.20) as

Kp ={yn € Vi : Inyn < Intp}. (4.7)

Note that Py (K) is invariant under the restriction of I;, to H?(K). Therefore we
have, by the shape regularity assumption (3.1) and the Bramble-Hilbert lemma,*-20

1€ = InClle ) S P lClwee ) V¢ € WHP(K), (4.8)
1€ = InCllar ) S hilCluzey V¢ € HA(K). (4.9)
More details can be found in Refs. 6, 16, 22, 32 and 29.

4.4. A preliminary estimate

We are now ready to derive an estimate that reduces the convergence analysis to
the continuous level.

Lemma 4.1. There exists a positive constant C' independent of h such that

19— gnll% < C([A@G. 007 — 9n) — (o, TnG — )] + A2 + b7 — Gnlla).
(4.10)

Proof. Using (2.8) and (4.5), we can estimate the difference between the solution
g of (2.9) and the solution gy, of (3.21) by

17— gnllZ < 2(117 — Wl + 107 — gallZ) S B2 + 1067 — Gall,
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and we have, by (2.8), (3.11), (3.21), (4.1), (4.2) and (4.6),
0.5 = Fnl1% = 11165 — G
S An(ny — Gn, Uny — Yn)
= Ap(Iny, 1ny — Yn) — An(Yn, Hny — Un)
< An(Ung, g — Gn) = (ya, T (147 — Fn))
= An(Iny, 1wy — 9n) — (Ya, 1ny — Un)
+ (ya, g — Gn) — 15 (TG — )
< A9, 009 — 9n) — (Ya, ng — n) + A2 |5 — Gnl| 4-
It follows that

15— 9nll2 S An(Wag, 100G — §n) — (Ya Tny — §n) + 1> + W25 — g 4
(4.11)

Next we observe that the bilinear form A,[f satisfies the consistency relation
Al (q,vn) = AR (q,vn) Vovp € Q(K) and g € Po(K),

which follows from (3.16), (3.17), (3.19) and the fact that 119 and II% are projec-
tions onto Po(K). We can therefore rewrite the first term on the right-hand side of
(4.11) as follows:

An(hg, Ty — gn) = > (AR (g — 159,115 — ga) + AR (1159, 11,5 — 7a))

KeTy,

= 3 (AF (g — 1199, T — 5n) + A (97, 1,5 — 7))
KeTy,

= 3 (AF (g — 1099, 145 — gn) + AX (1195 — 5, 11,5 — G))
KeTy,
+ A7, TG — Fn)- (4.12)

We can use (3.13), (4.1), (4.2) and (4.5) to estimate the sum on the right-hand
side of (4.12)

> (AF (Mg - 05, 10,5 — ) + AS (107 — 7,147 — 5n))
KeTn
S Mg — I g6 T6y — nlln + 1009 — G168y — Gnlln
S (Mg = glln + 55 — glln)ITRY — Fnlla
S Iy — Gall.a- (4.13)
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Finally, we conclude from (2.8), (4.5) and (4.11)—(4.13) that
19— gl S [AG G — 0n) — (ya. 100G — Gn)] + B> + R 11,5 — Gnlla
S [A@ LG — Gn) — (ya, Tny — §n)] + 1
+ 0 (g = glla+ 19— gnlla)
< [A@ LG — Gn) — (Ya, TnG — §n) | + h** + h* || — Gl a. O
Remark 4.1. It only remains to estimate the first term on the right-hand side of

(4.10), which no longer involves the discrete bilinear form Ap(-,-).

5. Convergence Analysis

In view of (2.10) and (2.12), we can write

AW, Uy — ) — (Ya, Tny — Un)

= /(th* Yn)dp
Q

= [ 105 =)+ 6 = 1)+ (T = o) + (i = )] s (51)

and the first three terms on the right-hand side of (5.1) can be estimated as follows:

/thg g < Wl oo 1T — Gl ey < B (5.2)
by (2.14) and (4.5),
/Q (% — It} < (@Y — Indll ey < 12 (5.3)

by (1.4), (2.11) and (4.8),

/Q(Ihll) — Ingn)dp < 0 (5.4)

by (2.11) and (4.7).
For the fourth term on the right-hand side of (5.1), we have a decomposition

/(Ih?h — Yn)dp = / Un(Gn —9) — (Gn — 9)]dp + / (Ing — y)dp (5.5)
Q Q Q
and

/Q[Ih@h =) — Wn — Pldp < pllg— @ 1Hn(@n — ) = (Gn — Dl a1 )

S hlg = Gnlla (5.6)
by (2.8), (2.14) and (4.9),

/Q (Ing — 9)dp < @115 — 7l 1~y S b (5.7)
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by (2.11), Remark 2.2, (2.13) and (4.8), where 2 is the active set introduced in
Remark 2.2.
Combining (5.1)—(5.7), we arrive at

A1 = ) = (ya: g = 5n) S W+ b5 = Gl a- (5.8)
Theorem 5.1. There exists a positive constant C' independent of h such that
19 = nlla < ChY,
where « is the index of elliptic reqularity in (2.13).
Proof. It follows from (4.10) and (5.8) that
15 = GnllZ < B + h2|5 — Gnlla

and the proof is completed by an application of the inequality of arithmetic and
geometric means. O

We can approximate u = —Ay by up, = —Agp,.
Corollary 5.1. There exists a positive constant C' independent of h such that
@ = unllrz0) + 1§ = Fnllz2) + 15 = Unlar@) + 17 = Unlle @) < CR%,
where « is the index of elliptic reqularity in (2.13).

Proof. The estimate for the control and the L? and H' estimates for the state
follow immediately from (2.8) and Theorem 5.1. The L™ estimate for the state is
a consequence of the Sobolev embedding! H?(Q) < L°°(2) and Theorem 5.1. O

We can also derive convergence results for the computable approximation y; =
H(})Lgh S IP)Q(Q; 771)

Theorem 5.2. There exists a positive constant C' independent of h such that

(Z y-?Jﬁ%#uo) < Ch%,

KeTy

where « is the index of elliptic reqularity in (2.13).

Proof. Let K € 7T, be arbitrary. We begin with
9 — Uil 2 (x) = (5 — T ) — Ui (G — Myey)| 12 (16
< g — 0yl 2 (xy + M (Gr — WyH) 2
and observe that
% (Gr — %) 20y = 0% Gn — D% 20y < |90 — D%l 120

<G = Unlzcx) + 19 — DYl r2(x)
by (3.6) and (3.10).
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It follows that

17— Unlmzc) <215 — Wyl w2 ) + 19 — Unl iz

and we can complete the proof by invoking (3.13) and Theorem 5.1. O

We can also approximate & = —Agy by the computable uf = —Ahﬂggjh, where
Ay, is the piecewise defined Laplacian.

Corollary 5.2. There exists a positive constant C' independent of h such that

1

2
a—apllz2@) + 17— Uhll2 ) + ( > - ﬂﬁﬁ{l(x)) + 19— GpllL (@) < CRY,
KeTh

where « is the index of elliptic reqularity in (2.13).

Proof. The estimate for the control follows immediately from (4.1) and
Theorem 5.2.
Let K € T;, be arbitrary. We have

17— Till2y = 15 — M%) — Wy (Gh — D)l Lo )
< NG = Uil oy + 150 — Gll Lo )

which together with (3.11) and Corollary 5.1 implies the L? estimate for the state.
Similarly, we have, by (3.11),

15— Uil o) < 10— Dbl ) + M G — 9) | (i)
< |y — 0%Gl sy + |90 — Gl ) + 1Gn — 9) — O Gn — 9) |2 (0
Sy — %yl ) + 9 — 9l ) + PrclGn — Pz,

which together with (3.11), Theorem 5.1 and Corollary 5.1 implies the nonconform-
ing H' estimate for the state.

The proof of the L*° estimate for the state can be established in the same way
after (3.11) is replaced by (3.12). O

Remark 5.1. Numerical results in Sec. 6 indicate that the error estimates in Corol-
lary 5.2 for the state are not sharp.

6. Numerical Results

We have tested our method on four examples from the literature. The domains are
squares and hence the index of elliptic regularity v = 1 in all the examples. The dis-
crete variational inequalities are solved by a primal-dual active set method.”-8:42:45

For a problem whose exact solution is not available, we use nested meshes
consisting of general polygons (cf. Fig. 1, left), and we use Voronoi meshes (cf.
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Fig. 1. Polygonal decompositions of the domain.

Fig. 1, right) if the exact solution is known. The Voronoi meshes are generated by
PolyMesher.®!

The errors of the computable approximation y§ = IV, in various norms are
denoted by

[T

eon == ill2@), enn=|ein+ Z 9= Tl |
KeTy

ean =€, + Z 9= Uity | 5 €oon = max|G(p) — g (p)l;
KeTh PEVn
where V), is the set of the vertices of Tp,.

For the examples with unknown exact solutions solved on nested meshes, we use
the same notation eg p, €1,n, €2,1, €co,n to denote the errors which are computed by
replacing y with the solution obtained after the mesh is refined.

The numerical results from all four examples indicate that the H? convergence
of the state and the L? convergence of the control is 1, which agree with Theorem
5.2 and Corollary 5.2. The convergence for the state in the L?, H' and L> norms
is better than the convergence predicted by Corollary 5.2.

Example 6.1. The domain  is the unit square (0,1)2. The data are given by
ya = 10(sin(27x1) + 22), 1 =0.01 and S =0.1.
This example is from Ref. 43 and it has also been tested in Refs. 48, 24 and 13.

The exact solution of this problem is unknown and the discrete variational
inequality (3.21) is solved on nested polygonal meshes. The results are presented
in Tables 1 and 2. The optimal state, optimal control and active set computed on
a mesh with & = 1.1108 x 10~2 are displayed in Fig. 2. They match the results in
Refs. 43, 48, 24 and 13.
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Table 1. Errors and orders of convergence for the state (Example 6.1).

h €h Order e1,n Order €o,h Order €co,h Order

4.3800e-1 1.6560e0 — 3.2952e-1 — 6.0428e-2 — 3.1742e-2 —
1.8222e-1  2.9137e-1 1.98 3.7752e-2 2.47 4.2256e-3 3.03 1.3074e-2 1.01
8.8407e-2  1.4995e-1 0.92 7.6856e-3 2.20 8.9746e-4 2.14 3.0611e-3 2.01
4.4303e-2  6.9608e-2 111 2.2298e-3 1.79 2.7516e-4 1.71 9.0366e-4 1.77
2.2193e-2  3.1081e-2 1.17 5.1339e-4 2.12 6.4203e-5 2.11 2.0829e-4 2.12
1.1108e-2  1.3864e-2 1.17 1.1049e-4 2.22 1.3721e-5 2.23 4.4367e-5 2.23

Table 2. Errors and orders of convergence for the control (Example 6.1).

h 4.3800e-1  1.8222e-1  8.8407e-2  4.4303e-2  2.2193e-2  1.1108e-2
|la— ﬂfLHLz(m 1.3399e0  2.7089%e-1  1.3896e-1  6.6671e-2  2.9876e-2  1.3308e-2
Order — 1.82 0.92 1.06 1.16 1.17

(a) The optimal state (b) The optimal control (c) The active set

Fig. 2. Optimal state, optimal control and active set of Example 1 (h = 1.1108 x 1072).

Example 6.2. The domain  is the unit square (0,1)2. The data are given by
yq = sin(2rx120), ® =0.1 and B =103

This example is from Ref. 8 and it has also been tested in Refs. 48, 24, 13 and 25.

The exact solution of this problem is unknown and the discrete variational
inequality (3.21) is solved on nested polygonal meshes. The results are presented
in Tables 3 and 4. The optimal state, optimal control and active set computed on
a mesh with 2 = 1.1108 x 10~2 are displayed in Fig. 3. They match the results in
Refs. 8, 48, 24, 13 and 25.

Table 3. Errors and orders of convergence for the state (Example 6.2).

h €h Order e1,n Order €o,h Order €co,h Order

4.3800e-1  5.7491e0 — 8.9377e-1 — 1.9290e-1 — 0.0000e0 —
1.8222e-1  2.3643e0 1.01 3.2736e-1 1.15 3.1017e-2 2.08 3.8640e-2 —
8.8407e-2 1.0050e0 1.18 4.9625e-2 2.61 3.2090e-3 3.14 9.3601e-3 1.96
4.4303e-2  4.7210e-1 1.09 1.2696e-2 1.97 7.7692e-4 2.05 2.5240e-3 1.90
2.2193e-2  2.1292e-1 1.15 3.3270e-3 1.94 1.9385e-4 2.01 5.7181e-4 2.15
1.1108e-2  9.5519e-2 1.16 8.3215e-4 2.00 4.2860e-5 2.18 1.4404e-4 1.99
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Table 4. Errors and orders of convergence for the control (Example 6.2).

h 4.3800e-1  1.8222e-1  8.8407e-2  4.4303e-2  2.2193e-2  1.1108e-2
la — aj, ||L2(Q) 5.3237e0 2.5665e0  9.4045e-1  4.4387e-1  2.0078e-1  9.0244e-2
Order — 0.83 1.39 1.09 1.15 1.16

(a) The optimal state (b) The optimal control (c) The active set

Fig. 3. Optimal state, optimal control and active set of Example 6.2 (h = 1.1108 x 10~2).

Example 6.3. The domain (Q is the unit square (0,1)2. The data are given by
yq = sin(4rzi20) + 1.5, =1 and B=10""

This example is from Ref. 8 and it has also been tested in Refs. 48, 24, 13 and 25.

The exact solution of this problem is unknown and the discrete variational
inequality (3.21) is solved on nested polygonal meshes. The results are presented
in Tables 5 and 6. The optimal state, optimal control and active set computed on
a mesh with A = 1.1108 x 10~2 are displayed in Fig. 4. They match the results in
Refs. 8, 48, 24, 13 and 25.

Table 5. Errors and orders of convergence for the state (Example 6.3).

h €2.n Order €1,n Order €0,h Order €co,h Order

4.3800e-1  3.3514el — 3.8719e0 — 5.7631e-1 — 0.0000e0 —
1.8222e-1  2.4068el 0.38 1.8534e0 0.84 1.7390e-1 1.37 2.7611e-1 —
8.8407e-2  1.4709el 0.68 6.7202e-1 1.40 4.1621e-2 1.98 1.4707e-1 0.87
4.4303e-2  7.3367e0 1.01 1.9826e-1 1.77 9.5251e-3 2.13 3.4246e-2 2.11
2.2193e-2  3.3743e0 1.12 5.1706e-2 1.94 2.6323e-3 1.86 1.0660e-2 1.69
1.1108e-2  1.5379e0 1.14 1.3112e-2 1.98 6.7255e-4 1.97 3.0619e-3 1.80

Table 6. Errors and orders of convergence for the control (Example 6.3).

h 4.3800e-1  1.8222¢-1 8.8407¢-2  4.4303e-2  2.2193e-2  1.1108e-2
o — a5l o) 291191  2.2103el  1.350lel  6.9196e0  3.2090e0  1.4699¢0
Order — 0.31 0.68 0.97 111 1.13
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(a) The optimal state (b) The optimal control (c) The active set

Fig. 4. Optimal state, optimal control and active set of Example 6.3 (h = 1.1108 x 10~2).

Example 6.4. This example is from Ref. 15. The domain € is the square (—4,4)2.

The data are given by 8 =1, ¢ = |z|?> — 1 and
A%y + if |2 > 1,
Ya =
A?j+y+2 iffz[ <1

and the exact optimal state g is given by

|z —1 if |z| <1,
g(z) = {o(lz]) + 1 = o(jzD]w(z) if 1 <[z <3,
w(z) if || > 3,
where
4
o) =@ -1) (1-50) 4 -0
2 3 4
6(t) = 144 (21> +10 (t;l) +20 <H> (1 _ ’5‘21)
and

w(zx) = 2sin (g(xl + 4)) sin (g(xg + 4))
The exact active set is the disc {z : || < 1} and the exact optimal control is
u=—Ay.
The discrete variational inequality (3.21) is solved on Voronoi meshes. The
results are presented in Tables 7 and 8.

Table 7. Errors and orders of convergence for the state (Example 6.4).

h €2.h Order e1,n Order €o,h Order €co,h Order

2.6054e0 2.9231el — 2.4131el — 1.3487el — 3.8025e0 —
1.3270e0 7.7532e0 1.97 3.7478e0 2.76 2.0435e0 2.80 1.2321e0 1.67
7.8544e-1  3.9787e0 1.27 9.9106e-1 2.54 3.0289%e-1 3.64 2.0243e-1 3.44
3.5849e-1  2.0335e0 0.86 2.8188e-1 1.60 8.3854e-2 1.64 3.0817e-2 2.40
1.8057e-1 1.0590e0 0.95 8.7947e-2 1.70 3.0596e-2 1.47 9.3315e-3 1.74
9.7469e-2  5.3274e-1 1.11 2.6411e-2 1.95 1.0359e-2 1.76 2.8191e-3 1.94
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Table 8. Errors and orders of convergence for the control (Example 6.4).

h 2.6054e0  1.3270e0  7.8544e-1  3.5849e-1  1.8057e-1  9.7469e-2
[z — 'BZHL2(Q) 1.9111el  7.1613e0  3.9383e0 2.0404e0 1.0473e0  5.2275e-1
Order — 1.45 1.14 0.84 0.97 1.13

(a) The optimal state (b) The optimal control (c) The active set

Fig. 5. Optimal state, optimal control and active set of Example 6.4 (h = 9.7469 x 10~2).

The optimal state, optimal control and active set computed on a mesh with
h = 9.7469 x 102 are displayed in Fig. 5. The exact optimal state, optimal control
and the exact active set are clearly captured.

7. Concluding Remarks

We have studied in this paper a C'! virtual element method for an elliptic distributed
optimal control problem with pointwise state constraints using the simplest virtual
element for fourth-order problems. Our approach can also be applied to other C*
27:33 and nonconforming virtual elements3:°2 for fourth-order prob-
lems. It can also be extended to three-dimensional optimal control problems by
using the C! virtual elements in Ref. 5.

It is also possible to use this approach to design and analyze new virtual element
methods for optimal control problems with both state and control constraints. In
the case of classical nonconforming finite element methods and C? interior penalty
methods, this has been carried out in Refs. 17 and 23.

virtual elements

Acknowledgment

This work was supported in part by the National Science Foundation under Grant
No. DMS-19-13035.

References

1. R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edn. (Academic Press, 2003).

2. P. F. Antonietti, L. Beirdo da Veiga, S. Scacchi and M. Verani, A C' virtual element
method for the Cahn—Hilliard equation with polygonal meshes, STAM J. Numer. Anal.
54 (2016) 34-56.



Math. Models Methods Appl. Sci. 2021.31:2887-2906. Downloaded from www.worldscientific.com

by LOUISIANA STATE UNIVERSITY on 07/03/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

2904 S. C. Brenner, L.-Y. Sung & Z. Tan

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

P. F. Antonietti, G. Manzini and M. Verani, The fully nonconforming virtual element
method for biharmonic problems, Math. Models Methods Appl. Sci. 28 (2018) 387—
407.

L. Beirao da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo,
Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23
(2013) 199-214.

L. Beirdo da Veiga, F. Dassi and A. Russo, A C'! virtual element method on polyhedral
meshes, Comput. Math. Appl. 79 (2020) 1936-1955.

L. Beirdo da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual
element method, Math. Models Methods Appl. Sci. 27 (2017) 2557-2594.

M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal
control problems, SIAM J. Control Optim. 37 (1999) 1176-1194 (electronic).

M. Bergounioux and K. Kunisch, Primal-dual strategy for state-constrained optimal
control problems, Comput. Optim. Appl. 22 (2002) 193-224.

H. Blum and R. Rannacher, On the boundary value problem of the biharmonic
operator on domains with angular corners, Math. Methods Appl. Sci. 2 (1980) 556—
581.

D. Boffi, F. Brezzi and M. Fortin, Mized Finite Element Methods and Applications
(Springer, 2013).

J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces
with applications to Fourier transforms and spline interpolation, SIAM J. Numer.
Anal. 7 (1970) 113-124.

S. C. Brenner, Finite element methods for elliptic optimal control problems with point-
wise state constraints, in Advances in Mathematical Sciences, eds. B. Acu, D. Danielli,
M. Lewicka, A. N. Pati, R. V. Saraswathy and M. I. Teboh-Ewungkem, Association
for Women in Mathematics Series, Vol. 21 (Springer, 2020), pp. 3-16.

S. C. Brenner, C. B. Davis and L.-Y. Sung, A partition of unity method for a class
of fourth-order elliptic variational inequalities, Comp. Methods Appl. Mech. Eng. 276
(2014) 612-626.

S. C. Brenner, J. Gedicke and L.-Y. Sung, CY interior penalty methods for an elliptic
distributed optimal control problem on nonconvex polygonal domains with pointwise
state constraints, SIAM J. Numer. Anal. 56 (2018) 1758-1785.

S. C. Brenner, J. Gedicke and L.-Y. Sung, P; finite element methods for an elliptic
optimal control problem with pointwise state constraints, IMA J. Numer. Anal. 40
(2020) 1-28.

S. C. Brenner, Q. Guan and L.-Y. Sung, Some estimates for virtual element methods,
Comput. Methods Appl. Math. 17 (2017) 553-574.

S. C. Brenner, T. Gudi, K. Porwal and L.-Y. Sung, A Morley finite element method
for an elliptic distributed optimal control problem with pointwise state and control
constraints, ESAIM:Control Optim. Calc. Vari. 24 (2018) 1181-1206.

S. C. Brenner, M. Oh, S. Pollock, K. Porwal, M. Schedensack and N. Sharma, A
CY interior penalty method for elliptic distributed optimal control problems in three
dimensions with pointwise state constraints, in Topics in Numerical Partial Differ-
ential Fquations and Scientific Computing, ed. S. C. Brenner, The IMA Volumes in
Mathematics and its Applications, Vol. 160 (Springer, 2016), pp. 1-22.

S. C. Brenner, M. Oh and L.-Y. Sung, P; finite element methods for an elliptic state-
constrained distributed optimal control problem with Neumann boundary conditions,
Res. Appl. Math. 8 (2020) 100090.

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
3rd edn. (Springer-Verlag, 2008).



Math. Models Methods Appl. Sci. 2021.31:2887-2906. Downloaded from www.worldscientific.com

by LOUISIANA STATE UNIVERSITY on 07/03/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

A C" virtual element method for an elliptic optimal control problem 2905

S. C. Brenner and L.-Y. Sung, A new convergence analysis of finite element meth-
ods for elliptic distributed optimal control problems with pointwise state constraints,
SIAM J. Control Optim. 55 (2017) 2289-2304.

S. C. Brenner and L.-Y. Sung, Virtual element methods on meshes with small edges
or faces, Math. Models Methods Appl. Sci. 28 (2018) 1291-1336.

S. C. Brenner, L.-Y. Sung and Z. Tan, A cubic Y interior penalty method for elliptic
distributed optimal control problems with pointwise state and control constraints,
Res. Appl. Math. 7 (2020) 100119.

S. C. Brenner, L.-Y. Sung and Y. Zhang, A quadratic €Y interior penalty method for
an elliptic optimal control problem with state constraints, in Recent Developments in
Discontinuous Galerkin Finite Element Methods for Partial Differential Equations,
eds. O. Karakashian X. Feng and Y. Xing, The IMA Volumes in Mathematics and its
Applications, Vol. 157 (Springer, 2013), pp. 97-132. (2012 John H. Barrett Memorial
Lectures).

S. C. Brenner, L.-Y. Sung and Y. Zhang, Post-processing procedures for a quadratic
CY interior penalty method for elliptic distributed optimal control problems with
pointwise state constraints, Appl. Numer. Math. 95 (2015) 99-117.

S. C. Brenner, L.-Y. Sung and Y. Zhang, C° interior penalty methods for an ellip-
tic state-constrained optimal control problem with Neumann boundary condition, J.
Comput. Appl. Math. 350 (2019) 212-232.

F. Brezzi and L. D. Marini, Virtual element methods for plate bending problems,
Comput. Methods Appl. Mech. Eng. 253 (2013) 455-462.

L. A. Caffarelli and A. Friedman, The obstacle problem for the biharmonic operator,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979) 151-184.

S. Cao and L. Chen, Anisotropic error estimates of the linear virtual element method
on polygonal meshes, SIAM J. Numer. Anal. 56 (2018) 2913-2939.

E. Casas, Control of an elliptic problem with pointwise state constraints, SIAM J.
Control Optim. 24 (1986) 1309-1318.

E. Casas, M. Mateos and B. Vexler, New regularity results and improved error esti-
mates for optimal control problems with state constraints, ESAIM Control Optim.
Cale. Var. 20 (2014) 803-822.

L. Chen and J. Huang, Some error analysis on virtual element methods, Calcolo 55
Article no. 5 (2018) 23.

C. Chinosi and L. D. Marini, Virtual element method for fourth order problems:
L2-estimates, Comput. Math. Appl. 72 (2016) 1959-1967.

P. G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, 1978).
M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in
Mathematics, Vol. 1341 (Springer-Verlag, 1988).

K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state-
constrained elliptic control problem, SIAM J. Numer. Anal. 45 (2007) 1937-1953
(electronic).

T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces,
Math. Comput. 34 (1980) 441-463.

J. Frehse, Zum Differenzierbarkeitsproblem bei Variationsungleichungen héherer Ord-
nung, Abh. Math. Sem. Univ. Hamburg 36 (1971) 140-149.

J. Frehse, On the regularity of the solution of the biharmonic variational inequality,
Manuscripta Math. 9 (1973) 91-103.

W. Gong and N. Yan, A mixed finite element scheme for optimal control problems
with pointwise state constraints, J. Sci. Comput. 46 (2011) 182—203.

P. Grisvard, Elliptic Problems in Non Smooth Domains (Pitman, 1985).



Math. Models Methods Appl. Sci. 2021.31:2887-2906. Downloaded from www.worldscientific.com

by LOUISIANA STATE UNIVERSITY on 07/03/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

2906 S. C. Brenner, L.-Y. Sung & Z. Tan

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

M. Hintermiiller, K. Ito and K. Kunisch, The primal-dual active set strategy as a
semismooth Newton method, SIAM J. Optim. 13 (2003) 865—888.

M. Hintermiiller and K. Kunisch, Stationary optimal control problems with point-
wise state constraints, in Numerical PDE Constrained Optimization, eds. Matthias
Heinkenschloss, Luis Nunes Vicente and Luis Merca Fernandes (Springer, 2009).

M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints
(Springer, 2009).

K. Tto and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and
Applications (Society for Industrial and Applied Mathematics, 2008).

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and
Their Applications (Society for Industrial and Applied Mathematics, 2000).

J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math.
20 (1967) 493-519.

W. Liu, W. Gong and N. Yan, A new finite element approximation of a state-
constrained optimal control problem, J. Comput. Math. 27 (2009) 97-114.

C. Meyer, Error estimates for the finite-element approximation of an elliptic control
problem with pointwise state and control constraints, Control Cybernet. 37 (2008)
51-83.

J. Necas, Direct Methods in the Theory of Elliptic Equations (Springer, 2012).

C. Talischi, G. H. Paulino, A. Pereira and I. F. M. Menezes, PolyMesher: A general-
purpose mesh generator for polygonal elements written in Matlab, Struct. Multidiscip.
Optim. 45 (2012) 309-328.

J. Zhao, B. Zhang, S. Chen and S. Mao, The Morley-type virtual element for plate
bending problems, J. Sci. Comput. 76 (2018) 610-629.



