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1 | INTRODUCTION

The discrete variational inequalities resulting from C? inte-
rior penalty methods for the obstacle problem of clamped
Kirchhoff plates can be solved by the primal-dual active set
algorithm. We develop and analyze additive Schwarz pre-
conditioners for the auxiliary systems that appear in each
iteration of the primal-dual active set algorithm. Numerical
results corroborate our theoretical estimates.
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Let Q be a bounded polygonal domain in R?, f € L)), and yw € H3(Q) N W>*(Q) such that y < 0
on 0£2. The obstacle problem of clamped Kirchhoff plates on € is to find

. [1
u= arvgégln [Ea(v, v) —(f, v)] s (1)

where (-, -) is the inner product for L, (L),

2 2 2
a(v,w)= [ D?*v : D’wdx = E ol ow dx, 2
Q Qo 0xi0xj 6xi(3xj
ij=1

and K is the subset of H3(Q) defined by

K={veH}Q) :v>yonQ}. 3)
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Here and throughout this paper, we follow the standard notation for L,-based Sobolev spaces [1-3].

Since K is a nonempty closed convex subset of H3(Q), it follows from the standard theory of
calculus of variations [4, 5] that the obstacle problem (1)—(3) has a unique solution # € K characterized
by the following fourth-order variational inequality

au,v—u)—(f,v—u) >0, VveKk.

A quadratic C? interior penalty method for the obstacle problem of clamped Kirchhoof plates was
investigated in Brenner et al. [6]. The discrete variational inequalities resulting from the C° interior
penalty method can be solved by a primal-dual active set (PDAS) algorithm [7-10]. In each iteration
of the PDAS algorithm, an auxiliary system of equations involving the inactive nodes has to be solved.
Due to the nature of the fourth-order problem itself, such auxiliary systems are very ill-conditioned.
The goal of this paper is to develop one-level and two-level additive Schwarz preconditioners for these
auxiliary systems.

Domain decomposition methods for second-order variational inequalities can be found in Refer-
ences [11-22]. However, the literature on domain decomposition methods for fourth-order variational
inequalities is very limited. In Scarpini [23], Scarpini discussed an alternating Schwarz algorithm
for the plate obstacle problem discretized by a mixed finite element methods. Most recently, additive
Schwarz preconditioners for a partition of unity method for the obstacle problem of clamped Kirchhoff
plates were investigated in Brenner et al. [24].

The rest of the paper is organized as follows. We recall the C° interior penalty method and the
PDAS algorithm in Sections 2 and 3. Then we define and analyze one-level and two-level additive
Schwarz preconditioners for the auxiliary systems in Sections 4 and 5, respectively. Numerical results
are presented in Section 6, and we conclude the paper in Section 7.

2 | C'INTERIOR PENALTY METHODS

For solving fourth order problems, the C? interior penalty method has certain advantages [6, 25, 26].
It combines ideas of continuous and discontinuous Galerkin methods, and the stabilization technique.

Let 7;, be a quasi-uniform triangulation of € consisting of convex quadrilaterals, and let V}, be the
standard Qy finite element space associated with 7y,

Vi, ={veH\Q) : v|]p € QuD), YD € T;}.

We denote by N, the set of nodes in Q associated with V.
The discrete problem of the obstacle problem (1)—(3) resulting from the C? interior penalty method
is to find

u, = argmin [%ah(v, v) —(f, v)] s “4)

vekK,

where

=33 [ ot S L1515
Leg/<{{an2}}“ H {{arﬂ}}[g;“)ds )

Ki={veV,: vip)>w(p), Vpe N}, (6)
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and 7 in a;(-, -) is a sufficiently large penalty parameter. We denote by &), the set of all edges in 73, and
the jump [[-]] and the average {{-}} are defined as follows. On an edge shared by two elements, that
is, e € dD_ N dD,., we pick n, to be the unit normal vector pointing from D_ to D, and define

6\}” ovy  0v_ 0%y 1 (0%,  0%*v_
—|| = - d — == + .
[ [ on on, 0n, an on? 2\ on? on’
For an edge on the boundary of Q, we take n, to be the outward pointing unit normal vector, and
define
[ [ av ] ] dv % %
—|| == and — = .
on on, on? on’

Then it follows from the standard theory that the unique solution of (4) can be characterized by the
discrete variational inequality

an(up, v —up) — (f,v—up) >0, VveEK,. @)
Moreover, we have ([6], theorem 3.4)
lu = unlln < ChY,
where || - ||, is the mesh-dependent energy norm defined by
VI = Y Wiy + D lelll{{0*v/on* Y IF o, + D lel™ ll10v/onll; ),
DeT, €€}, €€,

h is the mesh size of the triangulation, the positive constant C is independent of %, and the index of
elliptic regularity « € (%, 1] is determined by the interior angles of €.

3 | APDAS ALGORITHM

Let 45 : N}, — R be defined by

anun,v) = (Fv) = D @V(p), W E Vi ®)
PEN,,

The discrete variational inequality Equation (7) is then equivalent to Equation (8) together with the
optimality conditions

un(P) =y(P) 20, Ay(p) 20 and () —w(P)ip) =0, Vp €N,

which can be written concisely as

An(p) = max(0, 4x(p) + c(w(p) — un(p))),  Vp € N, €))

where c is a positive number.

The system defined by Equations (8) and (9) can be solved by a PDAS method.

Given any approximation (ug, Ax) of (u;, A), the next approximation is obtained by solving the
following system of equations

a1, v) = (F,0) = ) i (V). Vv € Vi, (10a)
PEN;,

U1 (p) =y (p),  Vp € Ay, (10b)
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Ar1(p) =0, Vp eI, (10c)

where Ay = {p € N) : Ap) + ctw(p) — m(p)) > 0} is the active set determined by
(ux, &), and I; = N\ A;. The iteration terminates when A;y; = Ay. Given a sufficiently accu-
rate initial guess, the PDAS algorithm converges superlinearly to the unique solution of (7) (cf.
Hintermiiller et al. [9]).

From Equations (10b) and (10c), we can reduce (10a) to an auxiliary system that only involves the
unknowns of u.1(p) for p € I;. But even so, the reduced auxiliary system is still a large, sparse, and
ill-conditioned system for small /4. Such system can be solved efficiently by a preconditioned Krylov
method such as the preconditioned conjugate gradient method.

Let j7h be a subset of N},. We define Th : Vi, = Vp, the truncation operator, by

s V(p)’ P € ]\7‘/1,
T = —_ 11
(Tw)(p) {0’ e NN, (11)

Then T"h is a projection from V}, onto ‘N/h = 7";, V5. Moreover, from the standard estimates for bivariate
polynomials, we have for all v € V),

VI 0 & 1 ) V),

PEN,,
which implies
1Tl < Collvli, WV € Vi (12)
Let Zh : \7h - F\;,’: be defined by
(Zhv, w) = ap(v,w) Yv,w € \N/h, (13)

where (-, -) is the canonical bilinear form on \N/}’l X \7h. From Equations (5) and (11), it holds that for #
sufficiently large [25],

Cillngr) < Ay < Vs, — WE (14)

where :
IMMm=ZW&@+ZrWWWW%W (15)

DeT, e€E), ¢

and the constants C, and C, depend only on the shape regularity of 7j,.

Remark 3.1  On the finite element space, | - |27,y and || - ||, are equivalent [25].

In the context of solving the discrete variational inequality (7), the set ]\7}1 represents the inactive
set that appears in an iteration of the PDAS algorithm and Zh represents the stiffness matrix for the
corresponding auxiliary system. Our goal is to construct and analyze additive Schwarz preconditioners
for A, whose performance is independent of m

4 | AONE-LEVEL ADDITIVE SCHWARZ PRECONDITIONER

In this section, we develop a one-level additive Schwarz preconditioner for the auxiliary system defined
by Ah .
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Let Q;,1 < j < J, be overlapping subdomains of Q such that Q = UJLIQj, diam Q; ~ H, and the
boundaries of ; are aligned with 7;,. We assume that there exist nonnegative §; € C*(Q) for 1 <j <J
such that

0;=0, on Q\Q; (16a)
J
Yo=1 on Q (16b)

C C
IVOillL_@ < g, V261l < (16¢)

=t

— 52 9

where Vzﬁj is the Hessian of 6;, 6 > 0 measures the overlap among subdomains, and C is a positive
constant independent of 4, H, and J. Moreover, we assume that

any pointin Q can belong to at most N, many subdomains, (17)

where the positive integer N, is independent of i, H,J, and 6 .

Remark 4.1  Given a coarse triangulation 7z of Q consisting of convex quadrilaterals,
suppose 7}, is a refinement of 7, we can then construct Q; by enlarging the elements of
Tw by the amount of 6 so that each Q; is the union of the elements in 7;,. The construction
of ; that satisfy (16) is standard [27].

Now, let \7j, 1 <j < J, be the subspace of ‘711 whose members vanish at all nodes outside Q;, and
letA; @ V; — V/ be defined by

Evow) = ayv.w), Vv, we V.
We have an analog of (14) that
Cia ) < o) < bl e ¥ T a

where
1
M7= % M+ 3 on/onil

DeT, e €&,
Dcg ecQ;

The one-level additive Schwarz preconditioner Bor, : \7}’1 - \~/h is defined by
J
Bou = YA T,
j=1

Where7j : ‘N/j — ‘~/h, 1 <j < J, is the natural injection operator, andj; SV = v ; 1s the transpose of
7.

Next, we derive an estimate for the condition number of BOLZh.

From now on, to avoid the proliferation of constants, we use the notation A < B to represent the
statement A < constant X B, where the positive constant depends only on the shape regularity of the
meshes and not 4, H, J, §, nor ]\7;, The notation A =~ B is equivalentto A < Band B S A.

Let IT, : C%Q) — V), be the nodal interpolation operator. We have the following interpolation
error estimate ([28], lemma 3.2).
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Lemma 4.1 It holds that, for all ¢ € H}(Q),

€ — Miéll,@ + hlE — iélm) + P Mélmer) S B 1El ). (20

We begin with an upper bound for the eigenvalues of BoLAp.

Lemma 4.2  The following upper bound for the eigenvalues of BOLZh holds,
Amax(BorAp) S 1. @n

Proof. Letv € V) be arbitrary. For any v; € ‘7] such that v = Z]Ll?}vj, we have, by
Equations (14), (17), the Cauchy—Schwarz inequality, and Equation (18) that

J J J
1 ~ 2 7,12 _ 2 X
<AhV, V> ~ |V|H2(Q,77,) S lejvjlyyg’n) = Z|Vj|H2(Q/.,Th) S Z<Ajvj’ vj>’
j=1 i—

Jj=1 Jj=1

which implies

J
(Apv,v) S min_ DA,
j=1

V= ./=~llf Vi

v, €V;

Hence Equation (21) follows from (22) and the standard additive Schwarz theory [2,
17,29-31]. [

Next, we derive a lower bound for the eigenvalues of BOLXh.

Lemma 4.3 It holds that
Amin(BoLAR) 2 6%, (23)

where 6 measures the overlap among the subdomains.

Proof. Letve V, be arbitrary. We define

vi=I0y), 1<, 24)
From Equation (16a), we know v; € \71-, and furthermore from Equation (16b), it holds
that
J J J
D= Y@y =11, <29j) v=TIv=v.
J=1 J=1 J=1

It then follows from Equations (24), (20), and (16¢) that
2 2 2
|Vj|H2(D) = |Hh(9jV)IH2(D) < |0jV|H2(D)
SNOIE_ oy Ve + IVOIT_ oy Vi + IVOIE_ 0y lIVIZ
S WYL, ) Vg2 D) L, ) Vlgi o) L, ) IVIlLyD)
2 L 2 L2
S |V|H2(D) + ?lvlyl(D) + g”vlle(D)' (25)

Moreover, for e C ﬁj, an arbitrary edge from &, we have, from Equation (24), the
trace theorem with scaling, Equations (20), and (16c),

%u[[avj/an]]ui@ - |17|||[[a(nhw,-v»/anm&z(@
1

S % ILOTT6) = 6/ onlE )+ 1 IO /om I
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LS 10T (O) = ) /oml ) +
| |DeT | |

S ) [(diam D)2 [T(0v) = 0912 ) + (@) = Oy [ )] + — e
DeT,

||[[e,-<av/an>]]||iz(e)

” av/an]]||L2(e)

1
S D 0ling, + m||[[av/an]]||iz<e>
DeT,
< 2 1 2 1 2 1 a a 2 26
S Z |V|H2(D)+ §|V|H1(D)+§”V“L2(D) + m”[[ v/ n]]||L2(e)’ (26)
DeT,

where T, is the set of elements in 7, sharing e as a common edge.
We can now conclude from Equations (19), (17), (25), (26), and Poincaré—Friedrichs
inequalities [32] that

J J

2
2l = 2| 2 Wiliew) + Z le |”[[‘3VJ/"”]]||L2(e>
= ‘

=llper, ee€ &,
Dcy eCQ
2
3 Z <|V|H°(D) + 52|V|H‘(D) + = 54 ” ||L2(D)) + 27”[ aV/an]]”Lz(g)
DeT, e€E, | |
h
L,
S silleer): (27)

Therefore, Equation (23) follows from Equations (14), (18), (27) and the standard
additive Schwarz theory. n

Combining Lemma 4.2 and Lemma 4.3, we obtain the following estimate on the condition number
of the one-level additive Schwarz preconditioned auxiliary system.

Theorem 4.4  The condition number of BOLXh satisfies

max (BOLAh)
mm(BOLAh)

where 6 measures the overlap among the subdomains.

K(BoLAy) = (28)

Remark 4.2 Under the assumption that the subdomains €;, 1 < j < J, are shape regular,
we can improve the estimate Equation (28) to

k(BoLAy) S H™'673, (29)

by similar arguments in Brenner and Wang [28]. In the case of small overlap among the
subdomains é ~ h, we have

k(BoLAp) S H'h3, (30)

which implies that for a fixed & the condition number will increases as H decreases (or J
increases). In the case of generous overlap among the subdomains 6 ~ H, we have

k(BoLAn) S H™, 31

which indicates that K(BOLZ;,) remains constant as & decreases provided H (or J) is fixed.
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FIGURE1 (), element and Q4 Bogner—Fox—Schmit element

5 1| ATWO-LEVEL ADDITIVE SCHWARZ PRECONDITIONER

In this section, we develop a two-level additive Schwarz preconditioner for the auxiliary system defined
by A - In addition to subdomain solves, the two-level additive Schwarz preconditioner contains a coarse
grid solve.

Let Ty be a coarse quasi-uniform triangulation for Q whose mesh size is comparable to the diame-
ters of the subdomains €;,1 <j < J,and Vg C Hé () be the Oy finite element space associated with
Ty. For example, we can take Ty to be the triangulation mentioned in Remark 4.1.

Since the Q42> Bogner—Fox—Schmit tensor product element is a C! relative of the Qy tensor prod-
uct element [25], we define Wy C Hg(Q) to be the Oy.» Bogner—Fox—Schmit finite element space
associated with 7. The two spaces Vi and Wy can be connected by an enriching operator Ei which
is constructed by the averaging technique as follows.

For simplicity, we take Vy to be the () finite element space and Wy to be the Q4
Bogner—Fox—Schmit finite element space. The O, element and the Q4 Bogner-Fox-Schmit element are
depicted in Figure 1, where we use the solid dot e to denote pointwise evaluation of the shape func-
tions, the circle o to denote pointwise evaluation of all the first order derivatives of the shape functions,
the arrow 1 to denote pointwise evaluation of the normal derivative of the shape functions, and the
arrow ~ to denote pointwise evaluation of the mixed second order derivative of the shape functions.

The operator Ey : Vg — Wy is defined by

(Egv)(p) = v(p) (31a)
VEMP) = = 3 Vun(p) (31b)
|TP|D€TP
0(Egv) 1 0vp
Ton, (m,) = 1721 & on, (m,) (31¢)
0*(Epv) )= 1 *vp ) (31d)
axla)Q |T,,| Der 6x10x2
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where Equation (31a) is defined for any interior node p associated with Vg, 7, is the set of elements
in Ty sharing p as a common vertex, |7,| is the number of elements in 7,,, Equations (31b) and (31d)
are defined for any interior vertex p of Ty, T, is the set of elements in Ty sharing e as a common edge,
| 7| is the number of elements in 7, and Equation (31c¢) is defined for any interior edge e of Ty with
midpoint m,. The construction of Ey can be extended to other Q. finite element spaces.

Now we define Iy : Vg — V), by

Iov = I,Epv, Vv € Vy. (32)

The following property of the operator Iy holds ([28], lemma 3.3).

Lemma 5.1 Forallv € Vy, we have
v = Iovll,@ + HIv = Il + H* vy S H V@) (33)

where | - |27, is the analog of | - |27 for v € V.

We define ‘70 C \7h by

Vo =TyloVy,
and the operator Zo : \70 - Vg by
(Xo v,w) =ay(v,w), VYv,w € \N/o. (34)
Similarly, we have - -
(Agv,v) ~ |v|§p(g,m, Yy e V. (35)

Then the two-level additive Schwarz preconditioner By, : FVZ - \7;, is given by
J
= NTA-T
B = leAj I,
j=0

Wherejj : ‘N/j - \~/h, 0 <j < J, is the natural injection operator, andT; is the transpose of 71
The proof of the following Lemma is similar to Lemma 4.2.

Lemma 5.2 It holds that
Amax(BriAp) S 1. (36)

We now turn our attention to a lower bound for the eigenvalues of BTLZh.
Let 1y : C%(Q) — Vj be the nodal interpolation operator and ij : Vi, = Vy be defined by

Jiv =TREw, Vv eV,

where Ej, : V, — W, is an enriching operator defined by the averaging technique, and W), is the Q42
Bogner-Fox—Schmit finite element space associated with 7.
The following estimate holds for J;’f ([28], lemma 3.5).

Lemma 5.3 Forallv € V,, it is valid that
v = Il + Hlv = Il + HAEVeer,) S H Vrar)- 37
Moreover, let Ry : V), — \70 be defined by
Rov = ThloJv, Vv € V. (38)

Then we have the following estimate for the operator R.
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Lemma 5.4 It holds that

2 2 7
[lv— R()V”Lz(g) + hlv — ROVlHl(Q) +h|y— R0V|H2(Q,Th) <H |V|H2(Q,T;,), Yv e V. (39)

Proof. Forallv e \7h, it follows from Equations (38), (12), (33), and (37) that
lv = Rovllr,@ = IIv = Tilo SVl

= |Th(v — LoVl
S v =IoJyvll,@
S v = Il + Modi'v = Iivil,@
S H* s, + H Ve,
S H* @) (40)

From standard inverse estimates, we know that for all D € 7},

[v=Rovlmp) S h' v = Rovllpy and v = Rovlgap) S h2 v = Rovllyom)- (41)

Moreover, for any e € &, by the trace theorem with scaling and Equation (41), we
have
1

L 0w = Row/onllI2,, < o

D119 = Rov)p /o3

le] b
s [(diamD)~2[v — Rov|%1 p, + |V — Rov]? 2 )]
S 0Vig (D) 0¥1H2(D)
DEeT,
S ) (diamD)~|v = Rov[l} ), (42)
DEeT,

where T, is the set of the elements in 7}, sharing e as a common edge.
By summing up Equations (41) and (42) over all the elements in 7}, and all the edges
in £, we obtain

lv=Rovlm@ Shlv=Rovll,e and |v—Royvlmar) S 2Iv = Rovli,@.

which together with Equation (40) implies (39). [
The lower bound for the eigenvalues of By Ay, is then given by the following lemma.

Lemma 5.5 It holds that
1

Amin(B A > 43
(BrAn) min(H /1), 59) (43)
Proof. Letve \~/h be arbitrary, vo = Ryv € \70, and v; = I1,(6;(v —vp)) € \~/j, 1<j<J.
It is clear that
J J J
Zvj =+ Zl’[h(ej(v — ) =vo+ 11 l<26’j> - vo)] =Vvo+v—vy=.
j=0 =1 j=1
First of all, from Equations (35), (39), and (14), we have
~ H\* H\* ~
(Aovo, Vo) ~ IRVIipa7) S (E> Wleor) * (z) (Apv,v). (44)

Next, we consider v; for 1 <j < J.
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Let D C Q; be an arbitrary element in 7, and e C ﬁj be an edge from &;. Since
v — vy € Vp, by using similar discussions as we did in Equations (25) and (26), we have

2 2
|Vj|H2(D) Slv- V0|H2(D) + 52' vOl]—]l(D) + 5t ” - VOHLZ(D)’

and

1 1 1
v /onli ¢, < DZT (v = ol + 5510 = v0lnoy + 55 1V = ol )
S

e

+ ﬁn[ o —vo)/on11I12, o,

which together with Equations (18), (19), (17), (39), and (14) imply

J J

~ N 5
Z(Ajvj"’j) ~ Zlvj|H2(Qj,Th)

=1 =1

AM&

Z |VJ|H2(D)+ Z le| [5VJ/5”]]||L2(e)

=llbper, eEE,
DcQ eCQ
1
Z <|v vole(D)+ 62| V0|H1(D)+ 5 || voIILZ(D)> + Z ”[[O(V—VO)/an]]“iz(e)
€7, LESh
~ |V - VOlHZ(Q,Th) + ?' VO|H1(Q) + = 5 ” VO”LZ(Q)
1 1 2
= |V — R()Vle(QT) + 52' ROVIHI(Q) + = 54 ” - ROVHLZ(Q)
H* H* H*
< (5 i ¢ ) Wi
4
< (%) (Apv, v). )

Hence by combining Equations (44) and (45), we obtain

J

Z@Vp Vi) S (H/W* A, v),

j=0
which implies
Amin(BriAy) 2 (H /)™
by the standard additive Schwarz theory.

On the other hand, we can also use the decomposition of v in the one-level case to
conclude that

Amin(BrLAR) 2 6.

Therefore, the estimate (43) holds. ]

Combining Lemma 5.2 and Lemma 5.5, we have the following estimate on the condition number
of B TLAh .
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Theorem 5.6 It holds that
k(BrLAp) S min((H/h)*,67).

Remark 5.1 Because of the necessity of a truncation operator in the construction of Vo
when the obstacle is present, the estimate Equation (46) is different from the one for the
plate bending problem without obstacles (cf. Brenner and Wang [28]) that takes the form

k(BrLAp) S (1 + (H/8)Y).

Remark 5.2 Under the assumption that the subdomains Q,, ... ,€; are shape regular,
the condition number estimate Equation (46) can be improved to (cf. Brenner and Wang
[28]) ~

k(BriAy) S min((H/h)*, H™'67%),

which indicates that the two-level additive Schwarz algorithm is scalable as long as H/h
is bounded, and the condition number for the two-level algorithm is (up to a constant) at
least as good as the one-level algorithm.

113

Left: discrete active set .4,, at refinement level 8; right: graph of the discrete Lagrange multiplier 4, at refinement

(46)

(47)
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TABLE 1
auxiliary system without a preconditioner, and

Average condition number of

number of iterations of the PDAS algorithm

D W N N N N NN
Il
N4 o A W —

x(A;)

1.7200 x 10°
7.2687 x 10!
1.7912 x 107
1.8327 x 10°
3.1546 x 10*
5.2298 x 10°
8.4722 x 10°

PDAS
Iterations

Abbreviation: PDAS, primal-dual active set.

TABLE 2 Average condition number for one-level additive Schwarz preconditioned
auxiliary system with small overlap

D Y YA N NN
Il
= Y S NS )

TABLE 3

D Y A N NN
Il
[ O T NI )

Moreover, we can deduce from Equation (47) that

J=4
4.4972 x 10°
5.5042 x 10°
4.2146 x 10°
5.7727 x 10°
1.4470 x 10!

J=16

6.4417 x 10°
1.2558 x 10"
6.6345 x 10!
4.6800 x 10?

J =64

2.4693 x 10"
1.1999 x 10?
8.9931 x 107

J =256

3.1176 x 10*
1.6871 x 10°

Average condition number for two-level additive Schwarz preconditioned
auxiliary system with small overlap

J=4

4.6253 x 10°
5.4757 x 10°
4.8622 x 10°
6.4056 x 10°
1.4899 x 10

J=16

5.5599 x 10°
7.3983 x 10°
2.8187 x 10!
1.7420 x 107

J =64

6.2173 x 10°
8.6746 x 10°
27963 x 10"

k(BrLAy) < k(BoLAy),

J =256

6.6549 x 10°
9.5560 x 10°

if H < h in the case of small overlap 6 ~ h, and if H> < & in the case of generous

overlap 6 = H.

Furthermore, in the case of generous overlap 6 ~ H, K(BTLZh) remains constant as &
decreases provided that H is kept fixed.

6 | NUMERICAL RESULTS

We consider the obstacle problem (cf. Brenner et al. [33]) with Q = (=0.5,0.5)%,f = 0, and y =
1 — 5|x|*> + |x|*. We discretize the model problem by the C? interior penalty method that is based
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TABLE 4  Average condition number for one-level additive Schwarz preconditioned
auxiliary system with generous overlap

J=4 J=16 J=64 J =256
£=2 1.0000 x 10° — — —
=3 1.0000 x 10° 2.8958 x 10° — —
=4 1.0000 x 10° 2.6102 x 10° 5.9018 x 10° —
£=5 1.0000 x 10° 2.6319 x 10° 6.4099 x 10° 5.2953 x 10"
=6 1.0000 x 10° 2.5289 x 10° 6.6582 x 10° 5.5126 x 10"

TABLE 5  Average condition number for two-level additive Schwarz preconditioned
auxiliary system with generous overlap

J=4 J=16 J =64 J =256
£=2 1.2083 x 10° — — —
£=3 1.2500 x 10° 2.9011 x 10° — —
‘=4 1.2500 x 10° 2.6830 x 10° 4.2245 % 10° —
£=5 1.2500 x 10° 2.6803 x 10° 4.5906 x 10° 1.0738 x 10"
=6 1.2501 x 10° 2.5504 x 10° 4.9739 x 10° 1.0999 x 10!

on a rectangular mesh, and choose Vj, to be the standard Q, finite element space with the mesh size
h =277, where ¢ is the refinement level. The resulting discrete variational inequalities are solved by
the PDAS algorithm in Section 3, where the constant ¢ in Equation (9) is chosen to be 10®. The initial
guess for the PDAS algorithm is taken to be the solution at the previous level or zero when £ = 1.

Graphs of the obstacle function y and the numerical solution u;, (at refinement level 8) are given
in Figure 2. Moreover, the discrete active set .4; and the discrete Lagrange multiplier 4, (at refinement
level 8) are displayed in Figure 3, from which we observe that 4, is positive along the boundary of the
active set Aj,. These figures match the ones obtained by a partition of unity method in Brenner et al.
[24].

For comparison, we first calculate the condition number of the un-preconditioned auxiliary system
Zh in each iteration of the PDAS algorithm and then average them. The average condition numbers
and numbers of iterations of the PDAS algorithm for various £ levels are presented in Table 1.

We then apply the one-level and two-level additive Schwarz preconditioners on the auxiliary sys-
tem in each iteration of the PDAS algorithm. The average condition numbers of both preconditioned
auxiliary systems for 4, 16, 64, and 256 subdomains with small overlap, 6 = h, are reported in Tables 2
and 3 respectively. Comparing to average condition numbers of the unpreconditioned auxiliary system
in Table 1, both the one-level and two-level algorithms show significant improvement.

Moreover, we observe that the condition numbers for the one-level algorithm in Table 2 agree with
Equation (30) in Remark 4.2. In addition, a comparison of Tables 2 and 3 shows that K(BTLZ;,) is
smaller than K(BOLZ;,) for J large.

Similar simulations for generous overlap 6 = H are also performed. The average condition numbers
of the one-level and two-level additive Schwarz preconditioned auxiliary systems for various number
of subdomains are presented in Tables 4 and 5. From the behavior of the condition numbers, we notice
that if H or J is fixed, both K(BOLZ},) and K(BTLZh) remain constant as & decreases, which coincide
with our theoretical results in Remark 4.2 and Remark 5.2, respectively. In addition, as in the case of
small overlap, we can see that K(BTLZh) is smaller than K(BOLZ;,) for J large.
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7 | CONCLUDING REMARKS

We investigate the one-level and two-level additive Schwarz domain decomposition preconditioners
for the auxiliary systems that appear in a PDAS algorithm for solving the obstacle problem of clamped
Kirchhoff plates, where the discrete problem is discretized by C? interior penalty methods. We demon-
strate that both preconditioners improve the condition numbers of the auxiliary systems dramatically.
The condition number estimates for the one-level additive Schwarz preconditioner are identical to the
ones for the plate bending problem without obstacles, whereas the condition number estimates for the
two-level additive Schwarz preconditioner are different because of the necessity of the a truncation
operator in the construction of the coarse problem. All theoretical results are confirmed by numerical
results.

The results in this paper can also be applied to the general Kirchhoff plate model described in
(1.2.45) of Ciarlet [3].
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