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Abstract
The discrete variational inequalities resulting from C0 inte-

rior penalty methods for the obstacle problem of clamped

Kirchhoff plates can be solved by the primal-dual active set

algorithm. We develop and analyze additive Schwarz pre-

conditioners for the auxiliary systems that appear in each

iteration of the primal-dual active set algorithm. Numerical

results corroborate our theoretical estimates.
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1 INTRODUCTION

Let Ω be a bounded polygonal domain in R
2, f ∈ L2(Ω), and 𝜓 ∈ H3(Ω) ∩ W2,∞(Ω) such that 𝜓 < 0

on 𝜕𝛺. The obstacle problem of clamped Kirchhoff plates on Ω is to find

u = argmin
v∈K

[
1

2
a(v, v) − (f , v)

]
, (1)

where (⋅, ⋅) is the inner product for L2(Ω),

a(v,w) = ∫Ω
D2v ∶ D2wdx = ∫Ω

2∑
i,j=1

(
𝜕2v

𝜕xi𝜕xj

)(
𝜕2w
𝜕xi𝜕xj

)
dx, (2)

and K is the subset of H2
0(Ω) defined by

K = {v ∈ H2
0(Ω) ∶ v ≥ 𝜓 on Ω}. (3)
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Here and throughout this paper, we follow the standard notation for L2-based Sobolev spaces [1–3].

Since K is a nonempty closed convex subset of H2
0(Ω), it follows from the standard theory of

calculus of variations [4, 5] that the obstacle problem (1)–(3) has a unique solution u ∈ K characterized

by the following fourth-order variational inequality

a(u, v − u) − (f , v − u) ≥ 0, ∀v ∈ K.

A quadratic C0 interior penalty method for the obstacle problem of clamped Kirchhoof plates was

investigated in Brenner et al. [6]. The discrete variational inequalities resulting from the C0 interior

penalty method can be solved by a primal-dual active set (PDAS) algorithm [7–10]. In each iteration

of the PDAS algorithm, an auxiliary system of equations involving the inactive nodes has to be solved.

Due to the nature of the fourth-order problem itself, such auxiliary systems are very ill-conditioned.

The goal of this paper is to develop one-level and two-level additive Schwarz preconditioners for these

auxiliary systems.

Domain decomposition methods for second-order variational inequalities can be found in Refer-

ences [11–22]. However, the literature on domain decomposition methods for fourth-order variational

inequalities is very limited. In Scarpini [23], Scarpini discussed an alternating Schwarz algorithm

for the plate obstacle problem discretized by a mixed finite element methods. Most recently, additive

Schwarz preconditioners for a partition of unity method for the obstacle problem of clamped Kirchhoff

plates were investigated in Brenner et al. [24].

The rest of the paper is organized as follows. We recall the C0 interior penalty method and the

PDAS algorithm in Sections 2 and 3. Then we define and analyze one-level and two-level additive

Schwarz preconditioners for the auxiliary systems in Sections 4 and 5, respectively. Numerical results

are presented in Section 6, and we conclude the paper in Section 7.

2 C0 INTERIOR PENALTY METHODS

For solving fourth order problems, the C0 interior penalty method has certain advantages [6, 25, 26].

It combines ideas of continuous and discontinuous Galerkin methods, and the stabilization technique.

Let h be a quasi-uniform triangulation of Ω consisting of convex quadrilaterals, and let Vh be the

standard Qk finite element space associated with h,

Vh = {v ∈ H1
0(Ω) ∶ v|D ∈ Qk(D), ∀D ∈ h}.

We denote by h the set of nodes in Ω associated with Vh.

The discrete problem of the obstacle problem (1)–(3) resulting from the C0 interior penalty method

is to find

uh = argmin
v∈Kh

[
1

2
ah(v, v) − (f , v)

]
, (4)

where

ah(v,w) =
∑
D∈h

2∑
i,j=1

∫D

𝜕2v
𝜕xi𝜕xj

𝜕2w
𝜕xi𝜕xj

dx +
∑
e∈h

𝜂|e| ∫e

[[
𝜕v
𝜕n

]] [[
𝜕w
𝜕n

]]
ds

+
∑
e∈h

∫e

({{
𝜕2v
𝜕n2

}}[[
𝜕w
𝜕n

]]
+
{{

𝜕2w
𝜕n2

}}[[
𝜕v
𝜕n

]])
ds, (5)

Kh = {v ∈ Vh ∶ v(p) ≥ 𝜓(p), ∀p ∈ h}, (6)
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and 𝜂 in ah(⋅, ⋅) is a sufficiently large penalty parameter. We denote by h the set of all edges in h, and

the jump [[⋅]] and the average {{⋅}} are defined as follows. On an edge shared by two elements, that

is, e ∈ 𝜕D− ∩ 𝜕D+, we pick ne to be the unit normal vector pointing from D− to D+, and define[[
𝜕v
𝜕n

]]
= 𝜕v+

𝜕ne
− 𝜕v−

𝜕ne
and

{{
𝜕2v
𝜕n2

}}
= 1

2

(
𝜕2v+
𝜕n2

e
+ 𝜕2v−

𝜕n2
e

)
.

For an edge on the boundary of Ω, we take ne to be the outward pointing unit normal vector, and

define [[
𝜕v
𝜕n

]]
= − 𝜕v

𝜕ne
and

{{
𝜕2v
𝜕n2

}}
= 𝜕2v

𝜕n2
e
.

Then it follows from the standard theory that the unique solution of (4) can be characterized by the

discrete variational inequality

ah(uh, v − uh) − (f , v − uh) ≥ 0, ∀v ∈ Kh. (7)

Moreover, we have ([6], theorem 3.4)

‖u − uh‖h ≤ Ch𝛼,

where ‖ ⋅ ‖h is the mesh-dependent energy norm defined by

‖v‖2
h =

∑
D∈h

|v|2H2(D) +
∑
e∈h

|e|‖{{𝜕2v∕𝜕n2}}‖2
L2(e) +

∑
e∈h

|e|−1‖[[𝜕v∕𝜕n]]2L2(e),

h is the mesh size of the triangulation, the positive constant C is independent of h, and the index of

elliptic regularity 𝛼 ∈
(

1

2
, 1
]

is determined by the interior angles of Ω.

3 A PDAS ALGORITHM

Let 𝜆h ∶ h → R be defined by

ah(uh, v) − (f , v) =
∑

p∈h

𝜆h(p)v(p), ∀v ∈ Vh. (8)

The discrete variational inequality Equation (7) is then equivalent to Equation (8) together with the

optimality conditions

uh(p) − 𝜓(p) ≥ 0, 𝜆h(p) ≥ 0 and (uh(p) − 𝜓(p))𝜆h(p) = 0, ∀p ∈ h,

which can be written concisely as

𝜆h(p) = max(0, 𝜆h(p) + c(𝜓(p) − uh(p))), ∀p ∈ h, (9)

where c is a positive number.

The system defined by Equations (8) and (9) can be solved by a PDAS method.

Given any approximation (uk, 𝜆k) of (uh, 𝜆h), the next approximation is obtained by solving the

following system of equations

ah(uk+1, v) − (f , v) =
∑

p∈h

𝜆k+1(p)v(p), ∀v ∈ Vh, (10a)

uk+1(p) = 𝜓(p), ∀p ∈ k, (10b)



BRENNER ET AL. 105

𝜆k+1(p) = 0, ∀p ∈ k, (10c)

where k = {p ∈ h ∶ 𝜆k(p) + c(𝜓(p) − uk(p)) > 0} is the active set determined by

(uk, 𝜆k), and k = h∖k. The iteration terminates when k+1 = k. Given a sufficiently accu-

rate initial guess, the PDAS algorithm converges superlinearly to the unique solution of (7) (cf.

Hintermüller et al. [9]).

From Equations (10b) and (10c), we can reduce (10a) to an auxiliary system that only involves the

unknowns of uk+1(p) for p ∈ k. But even so, the reduced auxiliary system is still a large, sparse, and

ill-conditioned system for small h. Such system can be solved efficiently by a preconditioned Krylov

method such as the preconditioned conjugate gradient method.

Let ̃h be a subset of h. We define T̃h ∶ Vh → Vh, the truncation operator, by

(T̃hv)(p) =

{
v(p), p ∈ ̃h,

0, p ∈ h∖̃h.
(11)

Then T̃h is a projection from Vh onto Ṽh = T̃hVh. Moreover, from the standard estimates for bivariate

polynomials, we have for all v ∈ Vh, ‖v‖2
L2(Ω) ≈ h2

∑
p∈h

v2(p),

which implies ‖T̃hv‖L2(Ω) ≤ C∗‖v‖L2(Ω), ∀v ∈ Vh. (12)

Let Ãh ∶ Ṽh → Ṽ ′
h be defined by⟨Ãhv,w⟩ = ah(v,w) ∀v,w ∈ Ṽh, (13)

where ⟨⋅, ⋅⟩ is the canonical bilinear form on Ṽ ′
h × Ṽh. From Equations (5) and (11), it holds that for 𝜂

sufficiently large [25],

C1|v|2H2(Ω,h)
≤ ⟨Ãhv, v⟩ ≤ C2|v|2H2(Ω,h)

∀v ∈ Ṽh, (14)

where |v|2H2(Ω,h)
=

∑
D∈h

|v|2H2(D) +
∑
e∈h

1|e|‖[[𝜕v∕𝜕n]]‖2
L2(e), (15)

and the constants C1 and C2 depend only on the shape regularity of h.

Remark 3.1 On the finite element space, | ⋅ |H2(Ω,h) and ‖ ⋅ ‖h are equivalent [25].

In the context of solving the discrete variational inequality (7), the set ̃h represents the inactive

set that appears in an iteration of the PDAS algorithm and Ãh represents the stiffness matrix for the

corresponding auxiliary system. Our goal is to construct and analyze additive Schwarz preconditioners

for Ãh whose performance is independent of ̃h.

4 A ONE-LEVEL ADDITIVE SCHWARZ PRECONDITIONER

In this section, we develop a one-level additive Schwarz preconditioner for the auxiliary system defined

by Ãh.
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Let Ωj, 1 ≤ j ≤ J, be overlapping subdomains of Ω such that Ω = ∪J
j=1Ωj, diam Ωj ≈ H, and the

boundaries of Ωj are aligned with h. We assume that there exist nonnegative 𝜃j ∈ C∞(Ω) for 1 ≤ j ≤ J
such that

𝜃j = 0, on Ω∖Ωj, (16a)

J∑
j=1

𝜃j = 1, on Ω, (16b)

‖∇𝜃j‖L∞(Ω) ≤ C†

𝛿
, ‖∇2𝜃j‖L∞(Ω) ≤ C†

𝛿2
, (16c)

where ∇2𝜃j is the Hessian of 𝜃j, 𝛿 > 0 measures the overlap among subdomains, and C† is a positive

constant independent of h,H, and J. Moreover, we assume that

any point in Ω can belong to at most Nc many subdomains, (17)

where the positive integer Nc is independent of h,H, J, and 𝛿 .

Remark 4.1 Given a coarse triangulation H of Ω consisting of convex quadrilaterals,

suppose h is a refinement of H , we can then construct Ωj by enlarging the elements of

H by the amount of 𝛿 so that each Ωj is the union of the elements in h. The construction

of 𝜃j that satisfy (16) is standard [27].

Now, let Ṽj, 1 ≤ j ≤ J, be the subspace of Ṽh whose members vanish at all nodes outside Ωj, and

let Ãj ∶ Ṽj → Ṽ ′
j be defined by

⟨Ãjv,w⟩ = ah(v,w), ∀v,w ∈ Ṽj.

We have an analog of (14) that

C3|v|2H2(Ωj,h)
≤ ⟨Ãjv, v⟩ ≤ C4|v|2H2(Ωj,h)

, ∀v ∈ Ṽj, (18)

where |v|2H2(Ωj,h)
=

∑
D ∈ h

D ⊂ Ωj

|v|2H2(D) +
∑

e ∈ h

e ⊂ Ωj

1|e|‖[[𝜕v∕𝜕n]]‖2
L2(e).

The one-level additive Schwarz preconditioner BOL ∶ Ṽ ′
h → Ṽh is defined by

BOL =
J∑

j=1

ĨjÃ−1
j Ĩt

j ,

where Ĩj ∶ Ṽj → Ṽh, 1 ≤ j ≤ J, is the natural injection operator, and Ĩt
j ∶ Ṽ ′h → Ṽ ′j is the transpose of

Ĩj.

Next, we derive an estimate for the condition number of BOLÃh.

From now on, to avoid the proliferation of constants, we use the notation A ≲ B to represent the

statement A ≤ constant × B, where the positive constant depends only on the shape regularity of the

meshes and not h,H, J, 𝛿, nor ̃h. The notation A ≈ B is equivalent to A ≲ B and B ≲ A.

Let Πh ∶ C0(Ω) → Vh be the nodal interpolation operator. We have the following interpolation

error estimate ([28], lemma 3.2).
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Lemma 4.1 It holds that, for all 𝜉 ∈ H2
0(Ω),‖𝜉 − Πh𝜉‖L2(Ω) + h|𝜉 − Πh𝜉|H1(Ω) + h2|Πh𝜉|H2(Ω,h) ≲ h2|𝜉|H2(Ω). (20)

We begin with an upper bound for the eigenvalues of BOLÃh.

Lemma 4.2 The following upper bound for the eigenvalues of BOLÃh holds,

𝜆max(BOLÃh) ≲ 1. (21)

Proof. Let v ∈ Ṽh be arbitrary. For any vj ∈ Ṽj such that v =
∑J

j=1Ĩjvj, we have, by

Equations (14), (17), the Cauchy–Schwarz inequality, and Equation (18) that

⟨Ãhv, v⟩ ≈ |v|2H2(Ω,h)
≲

J∑
j=1

|̃Ijvj|2H2(Ω,h)
=

J∑
j=1

|vj|2H2(Ωj,h)
≲

J∑
j=1

⟨Ãjvj, vj⟩,
which implies

⟨Ãhv, v⟩ ≲ min
v =

∑J
j=1 Ĩjvj

vj ∈ Ṽj

J∑
j=1

⟨Ãjvj, vj⟩.
Hence Equation (21) follows from (22) and the standard additive Schwarz theory [2,

17, 29–31]. ▪

Next, we derive a lower bound for the eigenvalues of BOLÃh.

Lemma 4.3 It holds that
𝜆min(BOLÃh) ≳ 𝛿4, (23)

where 𝛿 measures the overlap among the subdomains.

Proof. Let v ∈ Ṽh be arbitrary. We define

vj = Πh(𝜃jv), 1 ≤ j ≤ J. (24)

From Equation (16a), we know vj ∈ Ṽj, and furthermore from Equation (16b), it holds

that
J∑

j=1

vj =
J∑

j=1

Πh(𝜃jv) = Πh

( J∑
j=1

𝜃j

)
v = Πhv = v.

It then follows from Equations (24), (20), and (16c) that|vj|2H2(D) = |Πh(𝜃jv)|2H2(D) ≲ |𝜃jv|2H2(D)

≲ ‖𝜃j‖2
L∞(D)|v|2H2(D) + ‖∇𝜃j‖2

L∞(D)|v|2H1(D) + ‖∇2𝜃j‖2
L∞(D)‖v‖2

L2(D)

≲ |v|2H2(D) +
1

𝛿2
|v|2H1(D) +

1

𝛿4
‖v‖2

L2(D). (25)

Moreover, for e ⊂ Ωj, an arbitrary edge from h, we have, from Equation (24), the

trace theorem with scaling, Equations (20), and (16c),

1|e|‖[[𝜕vj∕𝜕n]]‖2
L2(e) =

1|e|‖[[𝜕(Πh(𝜃jv))∕𝜕n]]‖2
L2(e)

≲
1|e|‖[[𝜕(Πh(𝜃jv) − 𝜃jv)∕𝜕n]]‖2

L2(e) +
1|e|‖[[𝜕(𝜃jv)∕𝜕n]]‖2

L2(e)
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≲
1|e| ∑D∈e

‖𝜕(Πh(𝜃jv) − 𝜃jv)D∕𝜕n‖2
L2(e) +

1|e|‖[[𝜃j(𝜕v∕𝜕n)]]‖2
L2(e)

≲
∑
D∈e

[(diamD)−2|Πh(𝜃jv) − 𝜃jv|2H1(D) + |Πh(𝜃jv) − 𝜃jv|2H2(D)] +
1|e|‖[[𝜕v∕𝜕n]]‖2

L2(e)

≲
∑
D∈e

|𝜃jv|2H2(D) +
1|e|‖[[𝜕v∕𝜕n]]‖2

L2(e)

≲
∑
D∈e

(|v|2H2(D) +
1

𝛿2
|v|2H1(D) +

1

𝛿4
‖v‖2

L2(D)

)
+ 1|e|‖[[𝜕v∕𝜕n]]‖2

L2(e), (26)

where e is the set of elements in h sharing e as a common edge.

We can now conclude from Equations (19), (17), (25), (26), and Poincaré–Friedrichs

inequalities [32] that

J∑
j=1

|vj|2H2(Ωj,h)
=

J∑
j=1

⎛⎜⎜⎜⎜⎝
∑

D ∈ h

D ⊂ Ωj

|vj|2H2(D) +
∑

e ∈ h

e ⊂ Ωj

1|e|‖[[𝜕vj∕𝜕n]]‖2
L2(e)

⎞⎟⎟⎟⎟⎠
≲

∑
D∈h

(|v|2H2(D) +
1

𝛿2
|v|2H1(D) +

1

𝛿4
‖v‖2

L2(D)

)
+

∑
e∈h

1|e|‖[[𝜕v∕𝜕n]]‖2
L2(e)

≲
1

𝛿4
|v|2H2(Ω,h)

. (27)

Therefore, Equation (23) follows from Equations (14), (18), (27) and the standard

additive Schwarz theory. ▪

Combining Lemma 4.2 and Lemma 4.3, we obtain the following estimate on the condition number

of the one-level additive Schwarz preconditioned auxiliary system.

Theorem 4.4 The condition number of BOLÃh satisfies

𝜅(BOLÃh) =
𝜆max(BOLÃh)
𝜆min(BOLÃh)

≲ 𝛿−4, (28)

where 𝛿 measures the overlap among the subdomains.

Remark 4.2 Under the assumption that the subdomains Ωj, 1 ≤ j ≤ J, are shape regular,

we can improve the estimate Equation (28) to

𝜅(BOLÃh) ≲ H−1𝛿−3, (29)

by similar arguments in Brenner and Wang [28]. In the case of small overlap among the

subdomains 𝛿 ≈ h, we have

𝜅(BOLÃh) ≲ H−1h−3, (30)

which implies that for a fixed h the condition number will increases as H decreases (or J
increases). In the case of generous overlap among the subdomains 𝛿 ≈ H, we have

𝜅(BOLÃh) ≲ H−4, (31)

which indicates that 𝜅(BOLÃh) remains constant as h decreases provided H (or J) is fixed.
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FIGURE 1 Q2 element and Q4 Bogner–Fox–Schmit element

5 A TWO-LEVEL ADDITIVE SCHWARZ PRECONDITIONER

In this section, we develop a two-level additive Schwarz preconditioner for the auxiliary system defined

by Ãh. In addition to subdomain solves, the two-level additive Schwarz preconditioner contains a coarse

grid solve.

Let H be a coarse quasi-uniform triangulation for Ω whose mesh size is comparable to the diame-

ters of the subdomains Ωj, 1 ≤ j ≤ J, and VH ⊂ H1
0(Ω) be the Qk finite element space associated with

H . For example, we can take H to be the triangulation mentioned in Remark 4.1.

Since the Qk+2 Bogner–Fox–Schmit tensor product element is a C1 relative of the Qk tensor prod-

uct element [25], we define WH ⊂ H2
0(Ω) to be the Qk+2 Bogner–Fox–Schmit finite element space

associated with H . The two spaces VH and WH can be connected by an enriching operator EH which

is constructed by the averaging technique as follows.

For simplicity, we take VH to be the Q2 finite element space and WH to be the Q4

Bogner–Fox–Schmit finite element space. The Q2 element and the Q4 Bogner-Fox-Schmit element are

depicted in Figure 1, where we use the solid dot • to denote pointwise evaluation of the shape func-

tions, the circle ◦ to denote pointwise evaluation of all the first order derivatives of the shape functions,

the arrow ↑ to denote pointwise evaluation of the normal derivative of the shape functions, and the

arrow to denote pointwise evaluation of the mixed second order derivative of the shape functions.

The operator EH ∶ VH → WH is defined by

(EHv)(p) = v(p) (31a)

∇(EHv)(p) = 1|p| ∑D∈p

∇vD(p) (31b)

𝜕(EHv)
𝜕ne

(me) =
1|e| ∑D∈e

𝜕vD
𝜕ne

(me) (31c)

𝜕2(EHv)
𝜕x1𝜕x2

(p) = 1|p| ∑D∈p

𝜕2vD
𝜕x1𝜕x2

(p) (31d)
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where Equation (31a) is defined for any interior node p associated with VH , p is the set of elements

in H sharing p as a common vertex, |p| is the number of elements in p, Equations (31b) and (31d)

are defined for any interior vertex p of H , e is the set of elements in H sharing e as a common edge,|e| is the number of elements in e, and Equation (31c) is defined for any interior edge e of H with

midpoint me. The construction of EH can be extended to other Qk finite element spaces.

Now we define I0 ∶ VH → Vh by

I0v = ΠhEHv, ∀v ∈ VH . (32)

The following property of the operator I0 holds ([28], lemma 3.3).

Lemma 5.1 For all v ∈ VH , we have‖v − I0v‖L2(Ω) + H|v − I0v|H1(Ω) + H2|I0v|H2(Ω,h) ≲ H2|v|H2(Ω,H ), (33)

where | ⋅ |H2(Ω,H ) is the analog of | ⋅ |H2(Ω,h) for v ∈ VH .

We define Ṽ0 ⊂ Ṽh by

Ṽ0 = T̃h I0 VH ,

and the operator Ã0 ∶ Ṽ0 → Ṽ ′
0 by⟨Ã0 v,w⟩ = ah(v,w), ∀v,w ∈ Ṽ0. (34)

Similarly, we have ⟨Ã0 v, v⟩ ≈ |v|2H2(Ω,h)
, ∀v ∈ Ṽ0. (35)

Then the two-level additive Schwarz preconditioner BTL ∶ Ṽ ′
h → Ṽh is given by

BTL =
J∑

j=0

ĨjÃ−1
j Ĩt

j ,

where Ĩj ∶ Ṽj → Ṽh, 0 ≤ j ≤ J, is the natural injection operator, and Ĩt
j is the transpose of Ĩj.

The proof of the following Lemma is similar to Lemma 4.2.

Lemma 5.2 It holds that
𝜆max(BTLÃh) ≲ 1. (36)

We now turn our attention to a lower bound for the eigenvalues of BTLÃh.

Let ΠH ∶ C0(Ω) → VH be the nodal interpolation operator and JH
h ∶ Vh → VH be defined by

JH
h v = ΠHEhv, ∀v ∈ Vh,

where Eh ∶ Vh → Wh is an enriching operator defined by the averaging technique, and Wh is the Qk+2

Bogner–Fox–Schmit finite element space associated with h.

The following estimate holds for JH
h ([28], lemma 3.5).

Lemma 5.3 For all v ∈ Vh, it is valid that‖v − JH
h v‖L2(Ω) + H|v − JH

h v|H1(Ω) + H2|JH
h v|H2(Ω,H ) ≲ H2|v|H2(Ω,h). (37)

Moreover, let R0 ∶ Vh → Ṽ0 be defined by

R0v = T̃hI0JH
h v, ∀v ∈ Vh. (38)

Then we have the following estimate for the operator R0.
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Lemma 5.4 It holds that‖v − R0v‖L2(Ω) + h|v − R0v|H1(Ω) + h2|v − R0v|H2(Ω,h) ≲ H2|v|H2(Ω,h), ∀v ∈ Ṽh. (39)

Proof. For all v ∈ Ṽh, it follows from Equations (38), (12), (33), and (37) that‖v − R0v‖L2(Ω) = ‖v − T̃hI0JH
h v‖L2(Ω)

= ‖T̃h(v − I0JH
h v)‖L2(Ω)

≲ ‖v − I0JH
h v‖L2(Ω)

≲ ‖v − JH
h v‖L2(Ω) + ‖I0JH

h v − JH
h v‖L2(Ω)

≲ H2|v|H2(Ω,h) + H2|JH
h v|H2(Ω,H )

≲ H2|v|H2(Ω,h). (40)

From standard inverse estimates, we know that for all D ∈ h,|v − R0v|H1(D) ≲ h−1‖v − R0v‖L2(D) and |v − R0v|H2(D) ≲ h−2‖v − R0v‖L2(D). (41)

Moreover, for any e ∈ h, by the trace theorem with scaling and Equation (41), we

have

1|e|‖[[𝜕(v − R0v)∕𝜕n]]‖2
L2(e) ≲

1|e| ∑D∈e

‖𝜕(v − R0v)D∕𝜕n‖2
L2(e)

≲
∑
D∈e

[(diamD)−2|v − R0v|2H1(D) + |v − R0v|2H2(D)]

≲
∑
D∈e

(diamD)−4‖v − R0v‖2
L2(D), (42)

where e is the set of the elements in h sharing e as a common edge.

By summing up Equations (41) and (42) over all the elements in h and all the edges

in h, we obtain|v − R0v|H1(Ω) ≲ h−1‖v − R0v‖L2(Ω) and |v − R0v|H2(Ω,h) ≲ h−2‖v − R0v‖L2(Ω),

which together with Equation (40) implies (39). ▪

The lower bound for the eigenvalues of BTLÃh is then given by the following lemma.

Lemma 5.5 It holds that

𝜆min(BTLÃh) ≳
1

min ((H∕h)4, 𝛿−4)
. (43)

Proof. Let v ∈ Ṽh be arbitrary, v0 = R0v ∈ Ṽ0, and vj = Πh(𝜃j(v− v0)) ∈ Ṽj, 1 ≤ j ≤ J.

It is clear that

J∑
j=0

vj = v0 +
J∑

j=1

Πh(𝜃j(v − v0)) = v0 + Πh

[( J∑
j=1

𝜃j

)
(v − v0)

]
= v0 + v − v0 = v.

First of all, from Equations (35), (39), and (14), we have

⟨Ã0v0, v0⟩ ≈ |R0v|2H2(Ω,h)
≲
(H

h

)4|v|2H2(Ω,h)
≈
(H

h

)4⟨Ãhv, v⟩. (44)

Next, we consider vj for 1 ≤ j ≤ J.
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Let D ⊂ Ωj be an arbitrary element in h and e ⊂ Ωj be an edge from h. Since

v − v0 ∈ Ṽh, by using similar discussions as we did in Equations (25) and (26), we have

|vj|2H2(D) ≲ |v − v0|2H2(D) +
1

𝛿2
|v − v0|2H1(D) +

1

𝛿4
‖v − v0‖2

L2(D),

and

1|e|‖[[𝜕vj∕𝜕n]]‖2
L2(e) ≲

∑
D∈e

(|v − v0|2H2(D) +
1

𝛿2
|v − v0|2H1(D) +

1

𝛿4
‖v − v0‖2

L2(D)

)
+ 1|e|‖[[𝜕(v − v0)∕𝜕n]]‖2

L2(e),

which together with Equations (18), (19), (17), (39), and (14) imply

J∑
j=1

⟨Ãjvj, vj⟩ ≈ J∑
j=1

|vj|2H2(Ωj,h)

=
J∑

j=1

⎛⎜⎜⎜⎜⎝
∑

D ∈ h

D ⊂ Ωj

|vj|2H2(D) +
∑

e ∈ h

e ⊂ Ωj

1|e|‖[[𝜕vj∕𝜕n]]‖2
L2(e)

⎞⎟⎟⎟⎟⎠
≲

∑
D∈h

(|v − v0|2H2(D) +
1

𝛿2
|v − v0|2H1(D) +

1

𝛿4
‖v − v0‖2

L2(D)

)
+

∑
e∈h

1|e|‖[[𝜕(v − v0)∕𝜕n]]‖2
L2(e)

≲ |v − v0|2H2(Ω,h)
+ 1

𝛿2
|v − v0|2H1(Ω) +

1

𝛿4
‖v − v0‖2

L2(Ω)

= |v − R0v|2H2(Ω,h)
+ 1

𝛿2
|v − R0v|2H1(Ω) +

1

𝛿4
‖v − R0v‖2

L2(Ω)

≲

(
H4

h4
+ H4

h2𝛿2
+ H4

𝛿4

) |v|2H2(Ω,h)

≲
(H

h

)4⟨Ãhv, v⟩. (45)

Hence by combining Equations (44) and (45), we obtain

J∑
j=0

⟨Ãjvj, vj⟩ ≲ (H∕h)4⟨Ãhv, v⟩,
which implies

𝜆min(BTLÃh) ≳ (H∕h)−4

by the standard additive Schwarz theory.

On the other hand, we can also use the decomposition of v in the one-level case to

conclude that

𝜆min(BTLÃh) ≳ 𝛿4.

Therefore, the estimate (43) holds. ▪

Combining Lemma 5.2 and Lemma 5.5, we have the following estimate on the condition number

of BTLÃh.
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FIGURE 2 Left: graph of the obstacle function 𝜓 ; right: graph of the numerical solution uh at refinement level 8

FIGURE 3 Left: discrete active set h at refinement level 8; right: graph of the discrete Lagrange multiplier 𝜆h at refinement

level 8

Theorem 5.6 It holds that

𝜅(BTLÃh) ≲ min((H∕h)4, 𝛿−4). (46)

Remark 5.1 Because of the necessity of a truncation operator in the construction of Ṽ0

when the obstacle is present, the estimate Equation (46) is different from the one for the

plate bending problem without obstacles (cf. Brenner and Wang [28]) that takes the form

𝜅(BTLAh) ≲ (1 + (H∕𝛿)4).

Remark 5.2 Under the assumption that the subdomains Ω1, … ,ΩJ are shape regular,

the condition number estimate Equation (46) can be improved to (cf. Brenner and Wang

[28])

𝜅(BTLÃh) ≲ min((H∕h)4,H−1𝛿−3), (47)

which indicates that the two-level additive Schwarz algorithm is scalable as long as H∕h
is bounded, and the condition number for the two-level algorithm is (up to a constant) at

least as good as the one-level algorithm.
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TABLE 1 Average condition number of
auxiliary system without a preconditioner, and
number of iterations of the PDAS algorithm

𝜿(Ãh)
PDAS
Iterations

𝓁 = 1 1.7200 × 100 2

𝓁 = 2 7.2687 × 101 5

𝓁 = 3 1.7912 × 102 10

𝓁 = 4 1.8327 × 103 12

𝓁 = 5 3.1546 × 104 17

𝓁 = 6 5.2298 × 105 32

𝓁 = 7 8.4722 × 106 49

Abbreviation: PDAS, primal-dual active set.

TABLE 2 Average condition number for one-level additive Schwarz preconditioned
auxiliary system with small overlap

J = 4 J = 16 J = 64 J = 256

𝓁 = 2 4.4972 × 100 — — —

𝓁 = 3 5.5042 × 100 6.4417 × 100 — —

𝓁 = 4 4.2146 × 100 1.2558 × 101 2.4693 × 101 —

𝓁 = 5 5.7727 × 100 6.6345 × 101 1.1999 × 102 3.1176 × 102

𝓁 = 6 1.4470 × 101 4.6800 × 102 8.9931 × 102 1.6871 × 103

TABLE 3 Average condition number for two-level additive Schwarz preconditioned
auxiliary system with small overlap

J = 4 J = 16 J = 64 J = 256

𝓁 = 2 4.6253 × 100 — — —

𝓁 = 3 5.4757 × 100 5.5599 × 100 — —

𝓁 = 4 4.8622 × 100 7.3983 × 100 6.2173 × 100 —

𝓁 = 5 6.4056 × 100 2.8187 × 101 8.6746 × 100 6.6549 × 100

𝓁 = 6 1.4899 × 101 1.7420 × 102 2.7963 × 101 9.5560 × 100

Moreover, we can deduce from Equation (47) that

𝜅(BTLÃh) < 𝜅(BOLÃh),

if H5 ≪ h in the case of small overlap 𝛿 ≈ h, and if H2 ≪ h in the case of generous

overlap 𝛿 ≈ H.

Furthermore, in the case of generous overlap 𝛿 ≈ H, 𝜅(BTLÃh) remains constant as h
decreases provided that H is kept fixed.

6 NUMERICAL RESULTS

We consider the obstacle problem (cf. Brenner et al. [33]) with Ω = (−0.5,0.5)2, f = 0, and 𝜓 =
1 − 5|x|2 + |x|4. We discretize the model problem by the C0 interior penalty method that is based
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TABLE 4 Average condition number for one-level additive Schwarz preconditioned
auxiliary system with generous overlap

J = 4 J = 16 J = 64 J = 256

𝓁 = 2 1.0000 × 100 — — —

𝓁 = 3 1.0000 × 100 2.8958 × 100 — —

𝓁 = 4 1.0000 × 100 2.6102 × 100 5.9018 × 100 —

𝓁 = 5 1.0000 × 100 2.6319 × 100 6.4099 × 100 5.2953 × 101

𝓁 = 6 1.0000 × 100 2.5289 × 100 6.6582 × 100 5.5126 × 101

TABLE 5 Average condition number for two-level additive Schwarz preconditioned
auxiliary system with generous overlap

J = 4 J = 16 J = 64 J = 256

𝓁 = 2 1.2083 × 100 — — —

𝓁 = 3 1.2500 × 100 2.9011 × 100 — —

𝓁 = 4 1.2500 × 100 2.6830 × 100 4.2245 × 100 —

𝓁 = 5 1.2500 × 100 2.6803 × 100 4.5906 × 100 1.0738 × 101

𝓁 = 6 1.2501 × 100 2.5504 × 100 4.9739 × 100 1.0999 × 101

on a rectangular mesh, and choose Vh to be the standard Q2 finite element space with the mesh size

h = 2−𝓁 , where 𝓁 is the refinement level. The resulting discrete variational inequalities are solved by

the PDAS algorithm in Section 3, where the constant c in Equation (9) is chosen to be 108. The initial

guess for the PDAS algorithm is taken to be the solution at the previous level or zero when 𝓁 = 1.

Graphs of the obstacle function 𝜓 and the numerical solution uh (at refinement level 8) are given

in Figure 2. Moreover, the discrete active set h and the discrete Lagrange multiplier 𝜆h (at refinement

level 8) are displayed in Figure 3, from which we observe that 𝜆h is positive along the boundary of the

active set h. These figures match the ones obtained by a partition of unity method in Brenner et al.

[24].

For comparison, we first calculate the condition number of the un-preconditioned auxiliary system

Ãh in each iteration of the PDAS algorithm and then average them. The average condition numbers

and numbers of iterations of the PDAS algorithm for various 𝓁 levels are presented in Table 1.

We then apply the one-level and two-level additive Schwarz preconditioners on the auxiliary sys-

tem in each iteration of the PDAS algorithm. The average condition numbers of both preconditioned

auxiliary systems for 4, 16, 64, and 256 subdomains with small overlap, 𝛿 = h, are reported in Tables 2

and 3 respectively. Comparing to average condition numbers of the unpreconditioned auxiliary system

in Table 1, both the one-level and two-level algorithms show significant improvement.

Moreover, we observe that the condition numbers for the one-level algorithm in Table 2 agree with

Equation (30) in Remark 4.2. In addition, a comparison of Tables 2 and 3 shows that 𝜅(BTLÃh) is

smaller than 𝜅(BOLÃh) for J large.

Similar simulations for generous overlap 𝛿 = H are also performed. The average condition numbers

of the one-level and two-level additive Schwarz preconditioned auxiliary systems for various number

of subdomains are presented in Tables 4 and 5. From the behavior of the condition numbers, we notice

that if H or J is fixed, both 𝜅(BOLÃh) and 𝜅(BTLÃh) remain constant as h decreases, which coincide

with our theoretical results in Remark 4.2 and Remark 5.2, respectively. In addition, as in the case of

small overlap, we can see that 𝜅(BTLÃh) is smaller than 𝜅(BOLÃh) for J large.
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7 CONCLUDING REMARKS

We investigate the one-level and two-level additive Schwarz domain decomposition preconditioners

for the auxiliary systems that appear in a PDAS algorithm for solving the obstacle problem of clamped

Kirchhoff plates, where the discrete problem is discretized by C0 interior penalty methods. We demon-

strate that both preconditioners improve the condition numbers of the auxiliary systems dramatically.

The condition number estimates for the one-level additive Schwarz preconditioner are identical to the

ones for the plate bending problem without obstacles, whereas the condition number estimates for the

two-level additive Schwarz preconditioner are different because of the necessity of the a truncation

operator in the construction of the coarse problem. All theoretical results are confirmed by numerical

results.

The results in this paper can also be applied to the general Kirchhoff plate model described in

(1.2.45) of Ciarlet [3].
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