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Abstract

We investigate multiscale finite element methods for an elliptic distributed optimal control
problem with rough coefficients. They are based on the (local) orthogonal decomposition
methodology of Malqvist and Peterseim.
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1 Introduction

Let © be a polyhedral domaininR? (d = 1,2, 3)and y; € L2(2). We consider the following
elliptic distributed optimal control problem:

. o o1
Find (3, @) = argmin 5[y = yal7, @) + v lullL,@)]. (1.1)
(y,u)eK

where (y, u) € HO1 (2) x Lo(2) belongs to K if and only if

a(y, z) 2/ uzdx Vze HOI(Q), (1.2)
Q
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and the bilinear form a(-, -) is given by

a(y,z) = / (AVy) - Vzdx. (1.3)
Q

Here y is the optimal state, u is the optimal control and y, is the desired state.

Remark 1.1 We will follow the standard notation for differential operators, function spaces
and norms that can be found for example in [3, 7, 9].

We assume only that the components of the symmetric diffusion matrix .4 belong to
L~ (€2) and the eigenvalues of .4 are bounded below (resp., above) by the positive constant
a (resp., B), which covers many multiscale optimal control problems.

Example 1.2 This example is from [23], where €2 is the unit square (0, 1) x (0, 1),

_|ex) O
A(x)—[ o C(x)],

and

2 2
2+1.8sin< ”‘) 2+sin< ”2)
€ €

2+ 1.8cos (Z’Texz) 2+ 18sin (2”;“)

c(x) =

is highly oscillatory for small €. Note that

o = min c(x) ~ 1.248 and B = max c(x) ~ 19.526
<x<l1 0<x<l1

forany e < 1.

Example 1.3 This example is from [6], where €2 is the unit square (0, 1) x (0, 1),

A 0
A= |An ,
0 Ax»
and the components 41 and Ay are randomly generated piecewise constant functions with

respect to a uniform partition of €2 into 40 x 40 small squares (cf. Fig. 1). The values of .41
and Ay, are between « = 1 and 8 = 1331.

Due to the roughness of the coefficients in (1.3), a standard finite element method can
only accurately capture the solution of (1.1) on a very fine mesh (cf. [5]), which can be too
expensive, especially when the problem has to be solved repeatedly for different y;. Our
goal is to construct generalized finite element spaces that can produce approximate solutions
of (1.1) with O(H) (resp., O(H?)) error in the energy (resp., Ly) norm, where H is the
mesh size and the dimensions of the generalized finite element spaces are O (H —dy_In other
words the performance of these generalized finite element methods is similar to standard
finite element methods for elliptic problems with smooth coefficients on smooth or convex
domains.

Our constructions are based on the Localized Orthogonal Decomposition (LOD) approach
in [20, 31] and the ideas in [6, 28] (cf. also [32,Section 4.3]). The basis functions of the
generalized finite element spaces are obtained by a correction process that can be carried
out offline. The online computation only involves solving a linear system of moderate size.
Therefore these generalized finite element methods can also be viewed as reduced order
methods that are particularly suitable for repeat solves.
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Fig. 1 Ajq (left) and .Ajp) (right)

There are many numerical methods for elliptic problems with rough coefficients besides
the LOD methods. They include the variational multiscale method (cf. [25-27] and the
references therein), the multiscale finite element method (cf. [13, 19, 23, 24] and the references
therein), the heterogeneous multiscale method (cf. [1, 2, 11, 12] and the references therein),
and the method of approximate component synthesis (cf. [21, 22] and the references therein).
We refer the readers to [32, 33] for the discussion of other methods.

On the other hand, as far as we know, there is only one paper [15] that solved the opti-
mal control problem (1.1)—(1.3) (with additional control constraints) by the heterogeneous
multiscale method, where scale separation and periodic structure are assumed. In the context
of parabolic optimal control problems with rough coefficients, reduced order finite element
methods in the same spirit of the current paper are treated in [30, 36]. In particular, the
methodology in [30] is also based on the LOD approach. The distinctive feature of our work
in this paper is that the construction of the localized multiscale finite element space and its
analysis are based entirely on classical techniques from domain decomposition and numerical
linear algebra.

The rest of the paper is organized as follows. We recall relevant results for the optimal
control problem in Sect. 2. A multiscale finite element method based on orthogonal decom-
position is treated in Sect. 3. We introduce a localized multiscale finite element space in
Sect. 4 and analyze the corresponding Galerkin method in Sect. 5, where the error estimates
in Sect. 3 play a useful role. Numerical results are presented in Sect. 6 and we end with some
concluding remarks in Sect. 7.

We will use (-, -) to denote the canonical bilinear form on a finite dimensional vector space
V and its dual space V'. A linear operator L : V —> V' is symmetric if

(Lvi, v2) = (Lvz,v1) Vv, meV,
and it is symmetric positive definite (SPD) if additionally
(Lv,v) >0 VYveV\{0}

Given two finite dimensional vector spaces V and W and a linear transform 7 : V. —> W,
the transpose T' : W' — V' is defined by

(T',v) = {(u, Tv) YpueW,veV.
We also assume that all the unspecified positive constants in the paper are greater than or

equal to 1.
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2 The Continuous Problem

By a standard result [29,Section 2.2], the convex minimization problem defined by (1.1)—(1.3)
has a unique solution determined by the following first order optimality conditions:

a(y, z) 2/ iz dx Vze Hi(Q),
Q

a(p,q) = /Q(yd —y)gdx Vq € Hy (),
p=vi,

where the adjoint state p belongs to HO1 ().
After eliminating u, we have the following system for (p, y):

a(ﬁ,q)+/ yq dx =/ Yaq dx Vq € Hj (), 2.1
Q Q

/ pzdx —ya(y,z) =0 Vze H(} (). (2.2)
Q

Remark 2.1 Note that (2.1)—(2.2) is equivalent to
i)+ [ Sadx= [ sugds Vg € HL(®),
/ pzdx —ya(y,z) =0 VzeHol(Q),
Q

where @(-,-) = ta(-,), ¥ = ¥, ¥a = Tya, ¥ = (y/7) and 7 is any positive number.
Therefore we can assume that the lower bound « for the eigenvalues of A (cf. (1.3)) in the
definition of the bilinear form a(-, -) in (2.1)—(2.2) is roughly 1, as in Examples 1.2 and 1.3.

Since the dependence on y is not our main concern here, we will take y to be 1 in (2.2). We
will also simplify the notation by dropping the bars over p and y and consider the problem
of finding (p, y) € H} () x H} () such that

atpe)+ [ yadx = [ yuqdx voeHL@, @3
/szdx —a(y,z) =0 Vz e Hy(9Q). (2.4)
We can write (2.3)—(2.4) concisely as
B((p.y). (q.2)) = fQ yaqdx ¥ (q.z) € H}(Q) x Hy(Q), (2.5)
where
B((p. y). (q.2)) =a(p.q) + /Q yq dx + /Q pzdx —a(y, 2). (2.6)

We will use || - ||, to denote the energy norm +/a(-, -). Note that

Ve vlgig < vlla < VBV Yve HY(Q) 2.7)
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by our assumption on .4, and we have a Poincaré-Friedrichs inequality [3]
7, < Cerlvlzig, Vv e Hy (. (2.8)

The following are the salient features of 3 (~, ) that follow immediately from (2.6)—(2.8)
and the Cauchy-Schwarz inequality:

B((q.2), (q,—2) = 1@, Dllawa ¥ (q.2) € Hy () x Hy (), (2.9)
and
B((q.2). () < [1+ Crr/)(G: Dllaxall (", 9)llaxa (2.10)
forall (¢, 2), (r,s) € Hj () x H] (), where the norm || - ||4xq is defined by
g, Dllzwa = gz + 213 @.11)

From here on we will also use boldfaced letters to denote members of the product space
Hi(Q) x HJ () in order to improve the readability of the formulas.

Lemma 2.2 Let V be a subspace of HO1 (2). We have
B(v, w)

inf —_ > (2.12)
veVxV yevxv VllaxallWllaxa
Proof Letv = (q,z) € V x V be arbitrary. According to (2.9), we have
1g. 2320 = B((q. 2), (g, —2))
and consequently
10l = B((¢,2), (¢, —2) _ B((g,2), (¢, —2)) < B(v, w) o1
g, 2)llaxa 1@ —Dlaxa  ~ wevxv IWllaxa
[m}

Remark 2.3 Let V be a closed subspace of H(} () and V = V x V. It follows from (2.10)
that we can define a linear transformation T : V. — V' by

(Tz,w) =B(z,w) Vz,weV.

Since the bilinear form B ( ) is symmetric, the inf-sup condition (2.12) implies that 7 is an

isomorphism and the operator norms of 7 and T~ (with respect to | - [|laxa) are bounded by
1 (cf. [4, 8]).

Remark 2.4 In view of Remark 2.3, one can solve (2.5) by a standard finite element method.
Let V), C HO1 (2) (resp., Vg C HOl (£2)) be the P; or Q finite element space associated with
the triangulation 7, (resp., 7y) of 2, where 7}, is a refinement of 7y and hence Vg is a
subspace of Vj,.

We assume that 4 < 1 so that (pj, yn) € V), x V), determined by

Blpno. @.9) = [ yagds V@2 € Vi x Vi @.14)
Q
provides a good approximation of the solution (p, y) of (2.5), but the dimension of V}, is

so large that the computational cost is prohibitive, especially if we have to solve (2.14)
repeatedly for different yj,.
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Fig.2 Finite element solutions of the optimal control in Example 1.2 with € = 0.025: solution on a fine mesh
with 2 = 1/320 (top left), solution on a coarse mesh with H = 1/20 (bottom), LOD solution with H = 1/20
and 7 = 1/320 (top right)

On the other hand, for H >> h, the solution (py, yy) € Vg x Vg defined by

B((pa- y)s (@, 2)) = /Q vagdx  V(q.2) € Vi x Vi (2.15)

is computationally feasible but not sufficiently accurate. Therefore we need generalized finite
element spaces to bridge the two scales.

Finite element solutions for the optimal controls in Examples 1.2 and 1.3 are displayed
in Figs. 2 and 3. It can be observed for both examples that the LOD solutions from Sect. 5

capture the fine scale solutions while the coarse scale solutions fail to do so.

Remark 2.5 1t follows from (2.7), (2.8), (2.12) and (2.14) that

gz,
1one ) llaxa < Myl sup P < /Cor/t yalliaa:
(q,2)eVpxVy ”(qv Z)”axa

3 The Ideal Multiscale Finite Element Method

In this section we construct and analyze the ideal multiscale finite element method following
the ideas in [28, 31], which begins with the construction of a projection operator. We will
denote by n (resp., m) the dimension of the finite element space V), (resp., V) in Remark 2.4.
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Fig.3 Finite element solutions of the optimal control in Example 1.3: solution on a fine mesh with # = 1/320
(top left), solution on a coarse mesh with # = 1/20 (bottom), LOD solution with H = 1/20 and & = 1/320
(top right)

3.1 The Projection Operator I,

The operator I1y : HOl () —> Vpg is defined by taking the nodal average of the local L,
orthogonal projections of ¢ € HO1 (2) onto Py or Q1 polynomials. More precisely, we define
[ly¢ by

1

Il =
(M) (p) A

> Qe (p)  Yp eV, 3.1

TeT,

where Vy is the set of all the (interior) vertices of 7y, 7, is the set of the elements in 7y
that share p as a common vertex, |7, | is the number of elements in 7),, ¢r is the restriction
of ¢ to T, and Q7 is the orthogonal projection from L (7T) onto P1(T) or Q1(T).

We have an obvious relation

[Myv=v VYveVy 3.2)
and also an interpolation error estimate [6,Appendix A]
H™'v = Mol + Mavlgig) < Cilvlgig) Vv e Hy (), (3.3)
where the positive constant C; depends only on the shape regularity of 7.

Remark 3.1 We can use (2.7) to translate the estimate for |IT,v| g1 (g into

IMyvlle < Coy/Blalvlle Yo e HY(Q).
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We will denote the kernel of the restriction of [Ty to Vj, by K }11'[ " ie.,
K" ={veV,: My =0} (3.4)
It follows from (3.2) and (3.4) that
dimK," = dimVj, — dimVy = n — m. (3.5)
A basis for K};IH is given in the following lemma.

Lemma3.2 Let{ =n —mand ¢1, ..., ¢; be the nodal basis functions in V), that vanish at
the nodes of Vy (cf. Fig. 4 for a two dimensional example with the Q1 finite element). Then
(I —Ty)e1, ..., —Iy)ee form a basis ofK,?H, where 1 is the identity operator on Vj,.

Proof Tt follows from (3.2) that (I — I1y)¢; € K}?H for 1 <i < ¢.In view of (3.5), it only
remains to show that the functions (I — I1y)¢q, ..., (I — I1)¢p, are linearly independent.

Suppose Zf:] ¢i(I —y)@; = 0. Then the function Zle cipi = Zf:] ¢;i 11, ¢ belongs
to Vg and at the same time vanishes at the nodes of V. It follows that Zf:] cip; = 0 and
hence ¢; = 0 for 1 < i < ¢ because the functions ¢, .. ., ¢, are linearly independent. O

3.2 The Projection Operator C,':' H
According to Remark 2.3, we can define a linear transformation
C}?H:thvh%K}?HxK,?H
by
My 3974 My
B(C,"v,w) =B(v,w) VveVyxV,, wek,” xK,". (3.6)

The elementary algebraic properties of C,ll_I 1 that follow directly from (3.6) are collected in
the following lemma.
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Lemma 3.3 We have

B(C}?”v, w) =B(v,C,?”w) Yo, weV, x Vy, 3.7)
(My x T)C v =0 VveV, x Vp, (3.8)
M= Voe KM x KM (3.9)

Remark 3.4 1t follows from (3.9) that C,? 7 is a projection from V}, x Vj, onto K }? i x K ,{I a,
and that

I-C'")YI =Ty xTMyv=0 VYveV,xV, (3.10)
where [ is the identity operator on Vj, x Vj,.
Lemma 3.5 We have

IC; " Vllaxa < [14 (Cpr/a)Vllaxa Vv € Vi X Vi

Proof Let (¢,z) = C;"v. Then (g, z) (and hence (g, —z)) belongs to K,/ x K. It
follows from (2.9), (2.10) and (3.6) that

I, 0112, = (g, D12 e = B((q, 2), (g, —2))
= B, (¢, —2)) < [1+ (Cpr/) 10 laxallCh " vllaxa-

O

Corollary 3.6 The following relations are valid:
10— C3 " vllaxa < [2+ (Cer/)][IV]laxa Vv eV, x Vi, (3.11)
Ivllaxa < Csv/B/allv = " vllaxa YoeVyx V. (312

Proof The inequality (3.11) follows from Lemma 3.5 and the triangle inequality, and the
inequality (3.12) follows from (3.2), Remark 3.1 and (3.8) :

I I
lvllaxa = 1Ty x M) (v — Ch Hv)”axa < Cyy/B/allv— Ch Mo llaxa -

|
3.3 The Finite Element Space V':,'s’h
The ideal multiscale finite element space
Vit c Vi x v,
is defined by
ms,h . Ma My
Vg ={veVyxVy:Bv,w)=0 Ywe K, " x K, "}. (3.13)

Let v € V), x V, be arbitrary. It follows from Lemma 2.2 (with V = K ,l,_l ), (3.6) and
(3.13) that

ms,h

ve VT & BECMuw) =0 Ywe KM x KM & ¢Mu=0. (3.14)

@ Springer
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Fig.5 A basis function ¢; of Vg

ms,h

Therefore we have V,; " = (I — C}? YV, x Vi) and

ms,h

dimVy & =2n —2¢ =2m. (3.15)

A basis for Vlr; i given in the following lemma.

Lemma3.7 Let {¢1,...,¢m} be the nodal basis of Vy, ¥; = C}?H(qbi,O) and &; =
C (0, ¢7). Then

{(‘plvo) - ‘/’]» BRI (¢m70) - V’m’ (09¢1) _Eh RN} (0’¢m) _gm}
is a basis for V;ins’h.

Proof In view of (3.15), it suffices to show that the 2m functions (¢;,0) — ¢; = (I —

C') (i, 0) and (0, ¢) — & = (I — C;'")(0, @) (1 < i < m) are linearly independent.
Suppose Y /L [ci (1 —c};‘”)(¢,-, 0)+d; (I —C}?H)(o, ¢i)] = 0.1t then follows from (3.2)

and (3.8) that Y7, [ci(#,0) +d;(0,¢;)] =0and hence c; =d; =0for1 <i <m. O

ms,h

Remark 3.8 1t follows from Lemma 3.7 that we also have V,; 7 = (I — C;l:l 1Y(Vyg x Vg).

Remark3.9 Let (i1, Vi2) = ¥; = C, " (¢;,0) and (&1,&2) = & = C;'7 (0, ). It
follows from (3.6) and the relation (cf. (2.6))

B((y.—p). (q.2) =B((p. y). . —q)) Y (p.).(q.2) € Hy(Q) x Hy ()
that ¥; 1 =& 2 and ¥; 2 = —&; 1.

The figure of a typical basis function ¢; of Vg is given in Fig. 5, and the figure of the
corresponding basis function (¢;, 0) — C,ll_l 1 (¢;, 0) is displayed in Fig. 6 for Example 1.2,
and in Fig. 7 for Example 1.3.

Remark 3.10 The exponential decay of ¥; = C,ll_[ H(¢i,0) (and hence &; = C}ll_[ "0, ¢;) in
view of Remark 3.9) are clearly observed in Figs. 6 and 7.
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Fig. 6 The basis function (¢;, 0) — C};IH (¢, 0) of V;_Ins'h for Example 1.2 with H = 1/40, h = 1/320 and
€ = 0.0025: first component (left) and second component (right)

Fig. 7 The basis function (¢;, 0) — CII;IH (¢i,0) of V;;S'h for Example 1.3 with H = 1/40 and & = 1/320:
first component (left) and second component (right)

3.4 The Discrete Problem

The approximate solution (p™>", ym/) ¢ Vlgls’h is defined by

ms,h
B((pE™, Yy, (g, 2)) = fQ vagdx  ¥(q.2) e vi™h, (3.16)

The well-posedness of (3.16) is guaranteed by the following lemma.

Lemma3.11 We have

. B(v, w) -1
inf sup ——— > [2+4 (Cpp/a)]™ . 3.17)
vevms,h ms,h “v”axa”w”axa
H wevVy

Proof Let v = (g,2) € V™" be arbitrary. Then (¢, —2) — CI'" (¢, —2) € Vi*" and it
follows from (2.9), (3.11) and (3.13) that

B((g.2). (g, —2))

1. —2) llaxa
_ B((g.9), (g, =2 — ;" (g, —2)
- 16, = laxa

Ivllaxa =

@ Springer
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B((q.2). (9. —2) — ;" (g, —z))>

<2+ (CPF/(X)]( T
(g, —2) = C, (g, =D llaxa

B(v, w)
<[2+ (Cpr/a)] sup
Vms,h ”w”aXa

SV

3.5 Energy Error

It follows from (2.14) and (3.16) that

Jh
B((pnsyw) — (P~ v, (q.2) =0 V(g e Vi (3.18)

We will use the Galerkin relation (3.18) to derive an error estimate for the ideal multiscale
finite element method defined by (3.16).

Theorem 3.12 We have

1Py ) — P VY laxa < (Ci/Va) Hlyall Ly ()- (3.19)

Proof In view of Remark 2.3, (3.13) and (3.18), we have (py,, y) — (pi™~", yi") € KM x
K }11'[ 1 and consequently

pn— ™" and y, — y™" belong to K,?H. (3.20)
Putting (2.7), (2.9), (2.14), (3.3), (3.13) and (3.20) together, we have

ms,h _ms,h ms,h _ms,h ms,h ms,h

Ipns y) —PES" YR " oo =By y) = (P YES™), (pr —y) — (™" —yi>™)

ms,h ms,h

= B((prs yn)s (P —yn) — (P =yi™))

= / ya(pn — pi~"dx
Q

= / yal(pn — Py = Ty (py — P> 1dx
Q

s, h
< CiH|lyallL,)lpn — P?s |H1(Q)
h

< (Ci/NO) Hllyall Ly lpr — P las

and (3.19) follows immediately. ]

Remark 3.13 In view of (3.9), (3.14) and (3.20), we can express the error of the ideal multi-
scale finite element method as

ms,h _ms,h ms,h _ms,h

(Prs i) — (P vty = M (s ) — (P>, Y™ = ¢ (pis yw).-

3.6 L Error

We will obtain an estimate for the L error by a duality argument.
Theorem 3.14 We have

1(as ) — PR VS La@x 2@ < [1+ (Cpr/a)(CE /@) H[|yallLo()- (3:21)
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Proof In view of Remark 2.3, we can define (¢, z) € V; x V}, by

B((q.2). (. 5)) = /Q(ph —pZ‘S”l)rdHfQ(yh _ymhedy Y s) € Vi x Vi
(3.22)

Let C;'" (q,2) € K, x K™ be denoted by (7, 7). It follows from (2.7), (2.9), (3.3),
(3.6), (3.7), (3.9), (3.22) and the Cauchy-Schwarz inequality that

1G. D0 = B(@G. D). (G. —2))
=B((g,2), (G, —2)

_ fg (ph — P™M dx — /Q (o — ¥z dix

_ / (ph — PG — Tp)dx — / (o — Y™ E — M2)da
Q Q

h . & -
< CiH(llpr — Pi>" @1 ey + v — i~ s 2 g ey)
sh sh L.
< CiH(pn — 25" v = Y O La@x L2 @ A/ VO (@G, D llaxas

and hence

1C;" (@, Dllaxa < (C/VOHI(pry yi) — (P v M) @ xa@)- (3.23)

On the other hand, we have

s,h s,h s, h s,h
Ipn = PE>" vn = i Ly w oy = B(@. 2. (on = ™" yn — yi=™)

= B(C; " (@, 2. (pn = PE™" o = ¥i™™)
<[1+ (CPF/OZ)]”C}?H(q, MlaralPn— PP 5 — A (300

by (2.10), (3.6), (3.20) and (3.22).
Putting (3.19), (3.23) and (3.24) together, we arrive at

s h h
1Py yi) — (P v O Ly @) x Lo ()
< [1 4 (Cpr/)NCs /O HI(pr — PE" v = Y laxa

< [+ (Cpp/a)(C /) H? |1yl Ly -

4 A Localized Multiscale Finite Element Space

The constructions of ; = C,?”(d)i, 0) Khn” XK?” and§; = C,?”(O,qbi) € K,?” XK;IH
require solving the equations
B(¥:. (q.2) = B((¢1.0). (¢.2))  VY(q.2) € K" x K", @.1)
B(&;, (q,2) = B(0, ¢, (¢.2))  ¥(g.2) € K" x KM, 4.2)

which are expensive. However the exponential decays of ¥; and &; observed in Figs. 7, 6 and
Remark 3.10 indicate that it is possible to capture ¥; and &; by local approximations. (Note
that in practice we only need to solve one of these equations because of the observation in
Remark 3.9.)
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Fig. 8 The patches wy; (left) and @y; (right), the node x; is represented by the circle and the nodes for
@i 1, @i m; arerepresented by the solid dots

Remark 4.1 For certain problems with high contrast 8/, the decays of ¥; and §; are sensitive

h
to H if we use the data independent projection operator ITy in the construction of Vms

Under additional assumptions on the diffusion matrix .4, better decays can be achleved by
replacing IT, with a data adapted interpolation operator (cf. [17, 34]).

We will construct a localized multiscale finite element space by replacing ¥; (resp., &;)
with an approximate solution of (4.1) (resp., (4.2)) obtained by a preconditioned minimum
residual (P-MINRES) algorithm (cf. [16,Chapter 8] and [14,Section 4.1]). Our construction
extends those in [6, 28] to symmetric indefinite problems.

4.1 An Additive Schwarz Preconditioner
Let A;[” 'K }?H — (K ,l,_[” )’ be the linear operator defined by

(Aly, w) =a(,w) Vv,weK,", 4.3)

where a(-, -) is given in (1.3). We begin by constructing an additive Schwarz preconditioner
(cf. [7, 10, 35]) for A"
Let xq, ..., x,, be the (interior) nodes for V. We define the subspaces K }1,_[ IH 1<i<m)

of K™ by
K,ll_[lH ={(I —y)v: v € V,and v vanishes outside wy, }, 4.4)

where oy, is the union of the elements in 7y that share x; as a common vertex (cf. Fig. 8

for a two dimensional example with the Q| element). The functions in K " are supported
on the patch @y, obtained from w,,; by adding one layer of elements in T H (cf Fig. 8). Let
®i.1, -, Pim; bethenodal basis functions of V}, that vanish at x; and outside wy, (cf. Fig. 8).

Then, as in Lemma 3.2, {(/ — TL;)@i.1. ... (I — I14)@;m,} is a basis of K,/
Let/; : K }11'1 l” — K ,? ™ be the natural injection. The SPD additive Schwarz precondi-
tioner S}l;[” : (K;l?”)’ —> K}?” for A}?” is given by

Z I; (A“H) t (4.5)
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where A,l:[f’ : K}IL_IZH — (Khrfl.H )’ is defined by
(Affv,w) =a@,w)  Yv,weKH. (4.6)
According to the Raleigh quotient formulas, we have
a(,v) = (A0, 0) < Amax (S AT (ST T, v) Vuek,", (47
a(,v) = (A0, 0) > Amin(S;H AT (ST ", v) Voe KM, (48)
and the following spectral estimates can be found in [6,Section 3]:
Danax (S A}1) < Cupper - and dmin (S, A1) = Ciower @/ B), (4.9)

where the positive constants Cypper and Ciower only depend on the shape regularity of 7.

4.2 The Generalized Finite Element Space V:,‘i’h
Let
Bl : K, x K — (K x KM

be the linear operator defined by

Bl v, w) =B, w) Vo,weK," x K" (4.10)

We can then rewrite (4.1) and (4.2) as
By = f;. (.11
By =g, (4.12)

where f;, g; € (K}l;[” X K,?H)/ are defined by
(fi,w) =B((¢:,0),w) and (g;, w) =B(0,¢),w) VYweK," x K"

Let ¢, € K}l;[” X K;;IH (resp., &; . € K}II_IH X K,I?H) be the output of k steps of the
P-MINRES algorithm applied to (4.11) (resp., (4.12)) with initial guess 0, where the SPD
preconditioner

S (KM x Ky — K x K
is given by
Sit (i, p) = (S, 1, ;17 p). (4.13)
Then the 2m functions

(1,0 = V1 ks (D, 0) =¥y 45 (0,01) — &1 ks (0, ) — 6, (414)

are linearly independent because the intersection of Vg x Vg and K }11'[ i x K ,?H is trivial,

and we define the generalized finite element space V;;i*h by

V]r{rtzh = Span{(¢1, 0) - ‘.//l,/(’ R} (d)m’O) - '/,m,lw (07 ¢1) - El,k’ B} (07 ¢m) _Sm,k}'
(4.15)
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Remark 4.2 Tt follows from (2.6), (4.5) and (4.10) that the support of S;""B;'# (¢, 2) is a
subset of the union of all the &,; whose intersection with the support of (¢, z) have nonempty
interiors. As the output of a preconditioned Krylov subspace method with initial guess 0, the
function ¥; ; belongs to

span{S}, 1, (5" By IS, fi. . (S BIDISI A,

and hence is supported in a patch around x; (with respect to 7 ) whose diameter is pro-
portional to kK H. This is also true for the function §; ;. The functions in (4.14) are therefore

locally corrected basis functions and VI_IIn ?h defined by (4.15) is a localized multiscale finite
element space.

Remark 4.3 In view of (2.6), we can express IB%;:[” in the matrix form

Alle M
Bl — | “h he |, 4.16
h [M,?H —A,?H] (4.16)

where M }ll_[ i K ;1,_[ A (K ;l_[ ) is the (symmetric) linear operator defined by

(M,?”r,z):/rzdx Vr,zeK,?”.
Q

We can also write SZIH as the diagonal matrix

st
StH — [ n . 4.17
h { 0 S}l,_[”i| (@.17)

; MMy . ATy H H H

4.3 Spectral Analysis of S, "B, " : K,';' X K,';' — K,';' X KI';'
A spectral analysis of the operator S,I?” ]B%,l?” is provided in the following lemma, which is
the key to the analysis of the localized multiscale finite element method in Sect. 5.
Lemma 4.4 The spectrum O'(S,I?HB}:IH) of S,I?”IB%;I” satisfies

o (S, B;") C [=dy, —cu] U les, dal, (4.18)
where

Ny 4,0y Np 4N

cx = hmin(Sy A and dy = Anax (S5 A1 + (Cr fo0)]. (4.19)

Proof In view of (4.16) and (4.17), the eigenvalues of S,I?H IB%,?H are real numbers. Let A be

one of the eigenvalues and (r, s) € K }ll_[ "xK }ll_[ 7 be a corresponding eigenvector. Given any
(¢,2) € K, x K[, we have, by (4.10),

B((r,s). (q.2)) = (S ") 'S;BM (r,5), (. 2)) = M(S, ), 9). (q. 2)).
(4.20)
It follows from (2.9), (4.3), (4.8), (4.13) and (4.20) that
1, )2 = B, ). (. —5) = A(S )TN, s), (7 —s))
= (S ) = (85 s 5)
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< IS ) 4 (5 s, 5)
< A0 domin (S AT, )12

axa

and hence
A1 = Anin (S, A}1H).
On the other hand we can deduce from (2.10), (4.7) and (4.20) that

) 120 < Amax (S AT (ST ™ ) + (S s, 5))|
= Jmax (S5 7 AL ST T, 5), (7, 9)|
= Jmax (S5 1 AL DIB((r, 5), (, 9)]
< Amax (S AL + (Cpp /)1l 9112

and hence

A < Amax(S; 7 A; O + (Cpr/a)].

[m}

Corollary 4.5 The following relations hold for any v € K}’IL-IH y K}IL_IH :

= I Mypg o\ L

(W>”vllaxa < (B} v, S} B} " )2

Amax (S, T A, )2
dy
S\ ) IPllaxa “.21)
)Lmin(Sh Ah )2

Proof Since the operator S,?H IBS;IH is symmetric with respect to the inner product defined by
((S?” )_1 -, -}, we have, by Lemma 4.4 and the spectral theorem,

(S v, )7 < (B o, SBM 4y < (ST, v)3,

which together with (4.7) and (4.8) implies (4.21). O

5 The Localized Multiscale Finite Element Method

The localized multiscale finite element method is to find (pii%", yrs) e V;,ni’h such that

By v (q.2) = / yagdx  V(q.2) € V", .1
Q

We will keep track of all the constants in the error analysis so that the constants that appear
in the energy error estimate (cf. Theorem 5.11) and the L (2) x L, (€2) error estimate (cf.
Theorem 5.13) are independent of the mesh sizes (7 and H) and the contrast §/«.

We begin the error analysis by comparing ¥; and ¥, ; (resp., &; and §; ;).
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5.1 The Relation Between (y;, &) and (Y «, &; )

Itfollows from Lemma 4.4 and the theory of the P-MINRES algorithm (cf. [14,Theorem 4.14])
that
1

1
B Wy — ¥, 0 STB (0 — ¥0) 2 < 2% By, S By, (5.2)
1
2

(EI?H(SI' —&i ) S;?HB;[H(& - gi,k»% < 2g k72 (B}I?Hgi’ S;I?HB;[H&) (5.3)
where (cf. (4.19))
_dy—c
1= d* + Cx
k(S A+ (Cpp/a)] — 1
= _"h (5.4)

k(ST A+ (Cpr/a)] 4+ 1

Remark 5.1 Tt follows from (4.9) that the condition number K(S}ll-[ " A,I;I” ) has the following
(pessimistic) upper bound that is independent of the mesh sizes:

Amax(S;l?HA;l?H) - (Cupper>(.3>

My 411
k(S TA ) = < —). (5.5)
b Dnin (ST AT = X Cloer / \ax
Consequently we also have the bound
C
(S (Bt 4 (o) — 1
Clower/ \
=< (5.6)
Cupper B
(Z25) (51 + (Cor/en) + 1
lower / N ¢
that is independent of the mesh sizes, but which may be too pessimistic.
Lemma 5.2 We have
1 = ¥ikllaxa < Cog ™ 1¥;llaxa for 1<i=m (57
and
Lk/2] i
g; — gi,k”axa <C.q 1 laxa for 1<i<m, (5.8)
where the positive constant C, is independent of the mesh sizes.
Proof Tt follows from (4.21) and (5.2) that
I Myl
Amax (S, A2 1
Wi = Wikllaxa < P By = ¥, S, B (B — 00)2
*
I Myl
Amax (S, A2
< gt/ e G B )% lly, gllugllny,)
*
1
Lj2) Pmax (S, A2 dy
<2q N N ”’/’i”axa’
Cr Amin (S}, HAh )2
which implies (5.7) with (cf. (4.19))
3
Co = 26(S; A2 1 + (Cpr /)] (5.9)
Similarly we can derive (5.8) from (4.21) and (5.3). ]
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Remark 5.3 It follows from Lemma 5.2 that the basis corrections C,? T (¢i,0) = ¢; and

C;I” 0,¢i) = & (1 <i < m)used in the construction of V;,ns’h decay exponentially, as
observed in Figs. 7, 6 and Remark 3.10.

Let the linear operator C,lz §:Vex Vg — K hn“ x K ,? 7 be defined by

Cil (.00 =, and C[(0.¢) =&, for 1<i=<m, (5.10)

where ¢1, ..., ¢, are the nodal basis functions of V.
Our next goal is to understand the relation between the operators C,l;[ A and C,? 2.

5.2 The Relation Between C,';'” and C;;"“I’(

We begin with the following lemma.

Lemma 5.4 There exist positive constants C¢, and Co depending only on the shape regularity
of Ty such that

_1 d=1
2

|¢i|Hl(Q)SC<>HId with Td = 0 d=2, (511)
I d=3

where d is the dimension of 2, and
Yo ail +1diD < otV H™ | Yo [a@n 0 +d0.¢0]|  s.12)
i=1 i=1

for any real numbers cy, ..., cy,d1, ..., dy.

Proof The estimate (5.11) follows from a scaling argument. For the estimate (5.12), we begin
with an inverse estimate

Li@xL1(2)

S e + ki) = CH| 3 [er00.0)+ 0,00
i=1

i=1

where the positive constant Cy; depends only on the shape regularity of 7. The proof is then
completed by the Poincaré-Friedrichs inequality

IE0z, @ < Calllm@ V¢ € Hy ()

and the estimate (2.7). ]

Lemma 5.5 The following estimate is valid for any v € Vg x Vg :
1
3B\ -
1 = Gt Wllaxa = Care(S " A (5) 114 (Corfea) H 74 g 1
(5.13)

where the positive constant Ce depends only on the shape regularity of Ty.
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Proof Let > /" [ci(¢i,0) + d;i (0, ¢;)] be an arbitrary element of Vi x V. It follows from
(2.7), Lemmas 3.5, 5.2 and 5.4 that

i=1

m

<Y [leill¥s = i kllaxa + 1dil1E; — & gllaxa]

i=1

m
< Coq™ Y [leill¥ i llaxa + 1di 111 llaxa]
i=1

< Cug" (1 + (Cpp /)] Z leilllgilla + 1di i 1]
< Cog™ 1 + (Cpr/)]V/B Z(|c,-| +1diDI$il g1 ()
i=1
< Cog"™ P 1 + (Cor/) VB CoH™ Y (Icil + Idi))
i=1

< Cog™H[1 + (Cpp/a)1y/B CoH™ Co(1/Ja)H ™

< | 3 [ei(61. 000,90 -
i=1

= C.CoCoy/B/all + Cor/ea)lH g | 3 [0, 0) + di0.90)] | .
i=1

which together with (5.9) implies (5.13) for Cq = 2C+Co. O
We have an analog of Corollary 3.6.

Corollary 5.6 The following relations are validfor anyv e Vg x Vg :
B My 4Ny ﬂ —d+q k2]
v Ch k Vlaxa = (Cax (S, Ay )3 [1 + (Cpp/a)]? q (5.14)

+12+ (CPF/an)nvnaxa,

19llaxa < Ciy/B/etllv = Cpt Vlaxa- (5.15)
Proof The estimate (5.14) follows from (3.11), (5.13) and the triangle inequality. The proof
of (5.15) is identical to the proof of (3.12). ]

5.3 The Well-Posedness of (5.1)

We will use Corollary 3.6, Lemma 5.5 and Corollary 5.6 to derive an analog of Lemma 3.11
under some assumptions on k.

Assumption 1 The number of P-MINRES steps & is sufficiently large so that, by (5.14),

1o = Cy i vllaxa < B+ (Cer/)]Vllaxa Vv € Vi X Vi (5.16)
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Remark 5.7 The following condition on k guarantees (5.16):

B

1
C.K<S,?”A£H)%(;)2[1 + (Cpp/a)PH gkl < 1

or equivalently

3 1
InCa + 5 Ink (S, A + 5 In(B/e) + 21n[1 + (Cpr/a)]

+(=d +t5)InH + |k/2]Ing <0 (5.17)
It follows from Corollaries 3.6, 5.6 and (5.16) that
o = Ci i vllaxa < Callo = C ¥ vlaxa Yve Vi x Vi, (5.18)
where
Ca = [3+ (Cpr/0)]Ciy/B/ar. (5.19)

Assumption 2 The number of P-MINRES steps k is sufficiently large so that, by (3.12),
Lemma 5.5 and (5.15),

Cal2 + Cpp/a) 1€ —Ci ) vllaxa

.
< ~min([v — ;" vllaxa. 10— Cjf Vllaxa) (5.20)

3
forall v € Vg x Vgy.

Remark 5.8 The following condition on k guarantees (5.20):

3
3CaCH3 + Copfa (s Al (E)? pmdrraglins <
or equivalently
2 3 My 4y
In(3CaC3) + 51In[3 + (Cpr/a)] + 3 Ink (S, ™A,

+ % In(B/a) + (—d + t4) In H + [k/2] Ing < 0. (5.21)

The well-posedness of (5.1) for a sufficiently large k is addressed by the following lemma.

Lemma 5.9 The inf-sup condition

n m
Bv—-C fv,w—-C "w 1
inf  sup (H hi Lk ) > (5.22)
veVy x Vy WeVExVy ||V — Ch’llgv”axa lw— Chfw”axa 3Cal2 + (Cpr/a)]

holds under Assumption 1 and Assumption 2.

Proof Let v € Vg x Vg be arbitrary. We have, by (2.10), Remark 3.8, Lemma 3.11, (5.18)
and (5.20),

I I
v = Cy i vllaxa < Callv = C; " vllaxa

B(v—Chn”v,w—C,?”w)
< Cal2+ (Cpp/)]  sup T
weVyxVy ||w _Ch w”axa
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B (Cn” —CHH)v, w—CMy
< Calz+ Corfar] sup NGk =G T ")
weVyxVy [lw _Ch Wllaxa

B(U—Chn,’:’v,w—ci?”w)
+ Cal2+ (Cpp/a)]  sup T
weVy xVy ||w _Ch wllaxa
< Cal2 + Crr/)PIC, T — i )vllaxa
B(v—ClMv, M —cl'yw
FCal+ Corfar] sup DU o )
weVy xVy lw— Ch Wlaxa

B(v—C{l”v,w—C}:{,’jw)
+ Cal2 + (Cpp/a)]  sup T ’
weVyxVy lw _Ch Wllaxa

IA

1 I
5 ||1) - Ch’][:v”axa

HH HH
mn ”(Ch - ChJ( YW|laxa
+ Cal2+ (Cpr/a) v = Cp f Vllaxa  sup T
weVy xVy ”w_ch Wllaxa

B(v—C]n,’:v,w—Chn,’jw)
+ Cal2 + (Cpp/a)]  sup S P
weVyxVy [lw _Ch Wllaxa

IA

2
30 =il vllaxa + Cal2 + (Cor/o0)]
B(v—C,?,’jv,w—C,?,’jw)
X sup T -
weVy xVy lw— Ch,]gw”axa

which implies (5.22). O

’

Remark 5.10 In view of (4.15) and (5.10), we can rewrite the inf-sup condition (5.22) as

) B(v, w) 1
inf sup > .
veVHn?]‘?‘h wev}l{r,l:,h lvllaxallwllaxa 3Cal2 + (Cpp/a)]

(5.23)

5.4 Energy Error

Under the inf-sup condition (5.23) we have a standard quasi-optimal error estimate (cf.
[8,Theorem 2.1]) for the solution (p;sk‘h, y}?i’h) of (5.1):

1Pns y1) — P VM laxa < O inf (s ) = (@5 Dllaxas  (5.24)
@.DeVe
where
Cixx =14 3Cq[2 + (Cpr/a)]. (5.25)

It then follows from Remark 3.1, (3.10), Remark 3.13, (4.15), Lemma 5.5 and (5.24) that

o msh
1on yn) — Pis s vk Dllaxa

< Cal| (o yi) = (I = Ty x L) (P 3| e
= Cox|[[(pn. yw) — (T = C;"™) (Mg x T) (o yi)]
+ € = YTy X TL) (P ) | g
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= Cox|[[(pn. yw) — I = ) (i y)] + € = M Ty x ) (P 3 | e
= Cox (1 ) = P laxa+ 1€ = T X TP v laxa)
< G (1 ) = D" 3l + CaCir (S5 A1) (B0

x [1 + (Cpr/a)PH g 82 | (py, yi) laxa), (5.26)

i.e., up to a term that decreases exponentially as k increases, the performance of the localized
multiscale finite element method defined by (5.1) is similar to the performance of the ideal
multiscale finite element method defined by (3.16).

Assumption 3 The number of P-MINRES steps k is sufficiently large so that

g2 < (ST AT =3 (/) AT (5.27)
Theorem 5.11 Under Assumptions 1-3, we have
1P ) = PR VI M laxa < C:Hllyall oo (5.28)
where
Cs = Cx(Ci/v/a) (1 + Call + (Cre/a)*/Crr ) (5.29)

is independent of h, H and B/a.

Proof The estimate (5.26) is valid under Assumptions 1 and 2. It then follows from
Remark 2.5, Theorem 3.12 and Assumption 3 that

ms,h _ms,h

1(Pns yn) — Py Yui laxa
< Cx ((C%/«/&)Hllydlle(m + CaC+[1 + (Cpr/a) P H || (ph, yh)“axa)

< cm/d&)(l + Call + (Cp /o) 2 cpp)Hnydan(m.

Remark 5.12 Note that (5.27) is equivalent to
3 My My
lk/2]Ing + 3 Ink(S, " A,") +In(B/a) — (1 +d —19)In H < 0. (5.30)

By examining (5.17), (5.21) and (5.30), we see that the impacts of the mesh-independent
quantities, including the condition number « (S, }ll_[ " AE” ) and the contrast B /o, are mitigated
by the natural log function, and the dominating condition on k is roughly (cf. (5.30))

In(1/H)
In(1/q)

From (5.4) and the relation |In(1 + x)| & |x| (for |x| small), we can also see that

k>2(1+d—1q)

In(1/q) % —————.
K(SHTH AT

Therefore, provided K(S,?”A,rll”) is moderate, we can choose k = [j In(1/H)] for a
moderate positive integer j. In the case of Examples 1.2 and 1.3, this is true for any H.
For other high contrast problems the magnitude of K(Sfll-[ " A,?H ) can be sensitive to H (cf.

[34,Section 5]) and we can use it as an indicator of the effectiveness of our method.
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5.5 L, Error

We can use a duality argument to obtain an L, error estimate.
Observe that Assumption 3 and Lemma 5.5 imply

1€ =l llaxa < CsHIVllaxa Y € Vg x Vi, (5.31)
where
Cy = Call + (Cpr/a)*. (5.32)
Theorem 5.13 Under Assumptions 1-3, we have
1pas i) — PR VI La@x1a@) < Cov/Ble H2 1vall o) (5.33)
where
Cy = 2C;C4C4[1 + (Cpr/)]y/Cpr /o (5.34)

is independent of h, H and B/a.

Proof Let (¢, z) € V), x V, be defined by
Bl(a.2. ) = [ (pn = i dx
Q

+/ (yp — y,‘;’fk*h)sdx Y(r,s) eV, x V. (5.35)
Q

It follows from (2.7), (2.8), (2.12) and (5.35) that

ms,h

h
(g, Dllaxa < 1prs yi) — Px s Yix MLa@)xL2(2)

(s )Ly @)x Lo ()

sup (5.36)

roeri@xul@ 0 Dlaxa
h Jh
< VCer/a l(pns y) = (P Vi 2@ x L2
By repeating the arguments in the proof of Theorem 3.14 that led to (3.23), we also have

1C3" (@, Dllaxa < (C/VOHI(pr, yi) — (P v M) @ xia)-  (5.37)

ms,h _ms,h

Let (r,s) = (pn, yn) — (Pui > Yuy )- Then the Galerkin relation

B(v, (r,9)) =0 Yve V" (5.38)

follows from (2.14) and (5.1).
Combining (3.10), (4.15), (5.35) and (5.38), we obtain

I )75 1oy = B((@. 2). (. 5))
=B((g.2) — (I = C 1) (T, x T,)(q. 2), (. 5))
= B((Cp ! — ") (My x M) (g, 2), (7, 5))
+B((g.2) — (I = C;™)(q.2). (r.5))

= B((Cy 1 — ™Iy x My)(g. 2). (r,5)) + B(C " (q. 2). (7, 5)).
(5.39)
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Table 1 Choices for i, H, and j

for different values of € € 0.08 0.04 0.025

1/h 256 320

1/H 8 16 32 64 10 20 40 80
j 2 2 3 3 2 2 3 3

Using (2.10), Remark 3.1, (5.31), (5.36), we can bound the first term on the right-hand
side of (5.39) by
My My
B((Ch,k Ch Iy x y)(g, 2), (r, S))
< [+ (Cpr/a)1| € = M) [y x T (q. )] oo 10 ) llaxa
< [1+ (Cpr/a)]C: H||(Ty x T)(q, 2|, 1072 ) llaxa
= [1+ (Cpr/)IC:Ci/ B/aHII(G, Dllaxall(r, $)llaxa

< [1 + (Cpr/a)]C:Cs+/B/a/Cpr/aH||(r, )|l Ly ) x Lo @) 1 (s ) llaxa-
(5.40)

For the second term on the right-hand side of (5.39), we have the bound

B(C;?”(q, 2, (r,9) <[1+ (CPF/Ot)]IIC;?”(q, Dllaxall(r, $)llaxa
< [1 + (Cop/)(Ci/VOHI|(r, )| Ly @ x L@ | (7 llaxa  (5:41)
by (2.10) and (5.37).
Putting (5.28) and (5.39)—(5.41) together, we arrive at the estimate

s ms,h
1Prs i) — (Prs s Ve M La@x L)

< [1 + (Cop/a)1(Ct /) [Coy/Cr(B /) + 1 HI (s yi) — (P35 i laxa
< [1 + (Cpr/@)I(Cs /) [C+/Crr(B/a) + 1]C:H yall Ly ()
which implies (5.33) with C}, given by (5.34). ]

6 Numerical Results

The numerical results for Examples 1.2 and 1.3 are presented in Sects. 6.1 and 6.2. We also
describe briefly some computational aspects in Sect. 6.3.

6.1 Highly Oscillatory Problem

We solve the optimal control problem (1.1) on the unit square (0, 1) x (0, 1), where y =1,
ya = —1, and A is the matrix in Example 1.2 with ¢ = 0.08, 0.04 and 0.025. We use the
localized multiscale finite element method from Sect. 5.

For this problem o ~ 1 and 8 ~ 20, the magnitude of K(S,fI " A,T“ ) is moderate by
(5.5) and, according to Remark 5.12, we can choose the number of P-MINRES steps & to
be [j In(1/H)] for a moderate positive integer j. The choices for 4, H and j for different
values of ¢ are described in Table 1.
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Fig. 9 Relative || - ||¢xq errors of the localized multiscale approximations of the highly oscillatory problem

for different values of €

Relative Error (Ly x Ly norm)

—¥— ¢=0.025
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—6—¢=0.08
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10?

10°
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Fig. 10 Relative || - [ L, (@)x L, () errors of the localized multiscale approximations of the highly oscillatory
problem for different values of €

The relative errors in the || - [laxq norm and the || - ||1,(@)x L, (@) Norm are presented in
Figs. 9 and 10. We observe O (H) convergence in the || - || ;x; norm and O (H 2y convergence
in the || - || 2,(Q)x L,(©) norm, which agree with Theorems 5.11 and 5.13.
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Fig.11 Relative | - ||4 x4 errors of the multiscale approximations of the highly heterogeneous problem, where
h=1/320,k=[jIn(l/H)], with j =2for H =1/10, j =3 for H = 1/20,and j = 4 for H = 1/40

6.2 Highly Heterogeneous Problem

We solve the optimal control problem (1.1) on the unit square, where y = 1, y; = 1, and
A is the matrix from Example 1.3. We use the ideal multiscale finite element method from
Sect. 3 and the localized multiscale finite element method from Sect. 5. The reference mesh
size is h = 1/320.

For this problem we have @« = 1 and § = 1331. The value of the condition number
K(S}l:[ " A;IH ) is found computationally to be less than 10, which is much better than the
pessimistic bound in (5.5). Therefore we can, according to Remark 5.12, choose the number
of P-MINRES steps k to be [j In(1/H)] for a moderate positive integer j. Here we take
j=2for H=1/10, j =3 for H =1/20, and j = 4 for H = 1/40.

The relative errors in the || - ||4xq norm and the || - [|1,(@)x1,() norm are displayed in
Figs. 11 and 12. We observe that the errors for the ideal multiscale finite element method and
the localized multiscale finite element method are indistinguishable. The order of convergence
inthe || - ||4xq normis 1, which agrees with Theorems 3.12 and 5.11. The convergence history
forthe |||l ,(@)x L,(©) norm s similar to the early stage of the history for the highly oscillatory
but well-conditioned problem in Fig. 10. Therefore it is reasonable to expect that the order of
convergence in the || - || 1, (@) x L, () norm for the ill-conditioned highly heterogenous problem
will also approach 2 at a later stage.

6.3 Some Computational Aspects

We will focus on the highly heterogeneous problem in Sect. 6.2, where the reference solution
is obtained by a standard finite element method with # = 1/320. Below are some observations
on the case where the coarse mesh size is H = 1/20 and the solution obtained by the localized
multiscale method in Sect. 5 is quite reasonable (cf. Fig. 3).
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Fig. 12 Relative || - Il L, (@)x L, () errors of multiscale approximations of the highly heterogeneous problem,
where h = 1/320, k = [j In(1/H)7, with j = 2 for H = 1/10, j = 3 for H = 1/20, and j = 4 for
H =1/40

The parallel computing was carried out on a cluster with 440 compute nodes running the
Red Hat Enterprise Linux 6 operating system and has a 146 TFlops peak performance. Each
compute node is equipped with two 8-core Sandy Bridge Xeon 64-bit processors operating at
a core frequency of 2.6 GHz, 32GB 1666MHz RAM, 500GB HD, 40 Gigabit/sec Infiniband
network interface and a 1 Gigabit Ethernet network interface.

We computed the reference solution with the PETSc library using 128 processors and an
ILU(0) preconditioner in PGMRES. The solution time is 0.22 seconds. For comparison, we
solved the smaller system (5.1) by Gaussian elimination in MATLAB on a MacBook Pro
(2.8 Ghz Quad-Core Intel Core i7 processor and a 16GB 2133 Mhz LPDDR RAM). The
solution time is 0.02 seconds.

The total (set-up and solution) time for computing the reference solution with PETSc
using 128 processors is 0.47 seconds. For comparison, the total time for solving (5.1) with
128 different right-hand sides simultaneously using PETSc and Gaussian elimination is 1.36
seconds.

Using 1024 processors, it took 2104 seconds in the offline stage to construct the basis
functions of the ideal multiscale finite element space VII; b in Sect. 3.3, and 535 seconds

to construct the basis functions of the localized multiscale finite element space Vlflni’h in
Sect. 4.2.

7 Concluding Remarks
In this paper we have developed multiscale finite element methods for a linear-quadratic

elliptic optimal control problem with rough coefficients, where scale separation and periodic
structures are not assumed. These methods can be viewed as reduced order methods.
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In particular, we have constructed a generalized finite element method with localized
basis functions whose performance is similar to standard finite element methods for smooth
problems. Both the construction of the generalized finite element space and the analysis of
the resulting Galerkin method are based on basic finite element technology and two (by now)
classical numerical linear algebra ingredients, namely the additive Schwarz preconditioner
and the preconditioned minimum residual algorithm. Our work further illustrates the idea put
forth in [28] that multiscale problems can be solved by combining finite element methods,
domain decomposition algorithms and iterative Krylov subspace solvers.

The techniques developed in this paper and [6] can be extended to elliptic variational
inequalities with rough coefficients, such as the obstacle problem and the optimal control
problem with control constraints. They can also be applied to elliptic boundary control
problems where we can adopt the LOD techniques for nonhomogeneous boundary conditions
in [18].
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