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Abstract
We investigate multiscale finite element methods for an elliptic distributed optimal control
problem with rough coefficients. They are based on the (local) orthogonal decomposition
methodology of Målqvist and Peterseim.
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1 Introduction

Let� be a polyhedral domain inRd (d = 1, 2, 3) and yd ∈ L2(�).We consider the following
elliptic distributed optimal control problem:

Find (ȳ, ū) = argmin
(y,u)∈K

1

2

[‖y − yd‖2L2(�) + γ ‖u‖2L2(�)

]
, (1.1)

where (y, u) ∈ H1
0 (�) × L2(�) belongs to K if and only if

a(y, z) =
∫

�

uz dx ∀ z ∈ H1
0 (�), (1.2)
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and the bilinear form a(·, ·) is given by

a(y, z) =
∫

�

(A∇ y) · ∇z dx . (1.3)

Here ȳ is the optimal state, ū is the optimal control and yd is the desired state.

Remark 1.1 We will follow the standard notation for differential operators, function spaces
and norms that can be found for example in [3, 7, 9].

We assume only that the components of the symmetric diffusion matrix A belong to
L∞(�) and the eigenvalues of A are bounded below (resp., above) by the positive constant
α (resp., β), which covers many multiscale optimal control problems.

Example 1.2 This example is from [23], where � is the unit square (0, 1) × (0, 1),

A(x) =
[
c(x) 0
0 c(x)

]
,

and

c(x) =
2+ 1.8 sin

(2πx1
ε

)

2+ 1.8 cos
(2πx2

ε

) +
2+ sin

(2πx2
ε

)

2+ 1.8 sin
(2πx1

ε

)

is highly oscillatory for small ε. Note that

α = min
0≤x≤1

c(x) ≈ 1.248 and β = max
0≤x≤1

c(x) ≈ 19.526

for any ε ≤ 1.

Example 1.3 This example is from [6], where � is the unit square (0, 1) × (0, 1),

A =
[
A11 0
0 A22

]
,

and the componentsA11 andA22 are randomly generated piecewise constant functions with
respect to a uniform partition of � into 40× 40 small squares (cf. Fig. 1). The values ofA11

and A22 are between α = 1 and β = 1331.

Due to the roughness of the coefficients in (1.3), a standard finite element method can
only accurately capture the solution of (1.1) on a very fine mesh (cf. [5]), which can be too
expensive, especially when the problem has to be solved repeatedly for different yd . Our
goal is to construct generalized finite element spaces that can produce approximate solutions
of (1.1) with O(H) (resp., O(H2)) error in the energy (resp., L2) norm, where H is the
mesh size and the dimensions of the generalized finite element spaces are O(H−d). In other
words the performance of these generalized finite element methods is similar to standard
finite element methods for elliptic problems with smooth coefficients on smooth or convex
domains.

Our constructions are based on the LocalizedOrthogonal Decomposition (LOD) approach
in [20, 31] and the ideas in [6, 28] (cf. also [32,Section 4.3]). The basis functions of the
generalized finite element spaces are obtained by a correction process that can be carried
out offline. The online computation only involves solving a linear system of moderate size.
Therefore these generalized finite element methods can also be viewed as reduced order
methods that are particularly suitable for repeat solves.
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Fig. 1 A11 (left) and A22 (right)

There are many numerical methods for elliptic problems with rough coefficients besides
the LOD methods. They include the variational multiscale method (cf. [25–27] and the
references therein), themultiscalefinite elementmethod (cf. [13, 19, 23, 24] and the references
therein), the heterogeneous multiscale method (cf. [1, 2, 11, 12] and the references therein),
and the method of approximate component synthesis (cf. [21, 22] and the references therein).
We refer the readers to [32, 33] for the discussion of other methods.

On the other hand, as far as we know, there is only one paper [15] that solved the opti-
mal control problem (1.1)–(1.3) (with additional control constraints) by the heterogeneous
multiscale method, where scale separation and periodic structure are assumed. In the context
of parabolic optimal control problems with rough coefficients, reduced order finite element
methods in the same spirit of the current paper are treated in [30, 36]. In particular, the
methodology in [30] is also based on the LOD approach. The distinctive feature of our work
in this paper is that the construction of the localized multiscale finite element space and its
analysis are based entirely on classical techniques fromdomain decomposition and numerical
linear algebra.

The rest of the paper is organized as follows. We recall relevant results for the optimal
control problem in Sect. 2. A multiscale finite element method based on orthogonal decom-
position is treated in Sect. 3. We introduce a localized multiscale finite element space in
Sect. 4 and analyze the corresponding Galerkin method in Sect. 5, where the error estimates
in Sect. 3 play a useful role. Numerical results are presented in Sect. 6 and we end with some
concluding remarks in Sect. 7.

Wewill use 〈·, ·〉 to denote the canonical bilinear form on a finite dimensional vector space
V and its dual space V ′. A linear operator L : V −→ V ′ is symmetric if

〈Lv1, v2〉 = 〈Lv2, v1〉 ∀ v1, v2 ∈ V ,

and it is symmetric positive definite (SPD) if additionally

〈Lv, v〉 > 0 ∀ v ∈ V \ {0}.
Given two finite dimensional vector spaces V and W and a linear transform T : V −→ W ,
the transpose T t : W ′ −→ V ′ is defined by

〈T tμ, v〉 = 〈μ, T v〉 ∀μ ∈ W ′, v ∈ V .

We also assume that all the unspecified positive constants in the paper are greater than or
equal to 1.
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2 The Continuous Problem

By a standard result [29,Section 2.2], the convexminimization problemdefined by (1.1)–(1.3)
has a unique solution determined by the following first order optimality conditions:

a(ȳ, z) =
∫

�

ūz dx ∀ z ∈ H1
0 (�),

a( p̄, q) =
∫

�

(yd − ȳ)q dx ∀ q ∈ H1
0 (�),

p̄ = γ ū,

where the adjoint state p̄ belongs to H1
0 (�).

After eliminating ū, we have the following system for ( p̄, ȳ):

a( p̄, q) +
∫

�

ȳq dx =
∫

�

ydq dx ∀ q ∈ H1
0 (�), (2.1)

∫

�

p̄z dx − γ a(ȳ, z) = 0 ∀ z ∈ H1
0 (�). (2.2)

Remark 2.1 Note that (2.1)–(2.2) is equivalent to

ã( p̄, q) +
∫

�

ỹq dx =
∫

�

ỹdq dx ∀ q ∈ H1
0 (�),

∫

�

p̄z dx − γ̃ ã(ỹ, z) = 0 ∀ z ∈ H1
0 (�),

where ã(·, ·) = τa(·, ·), ỹ = τ ȳ, ỹd = τ yd , γ̃ = (γ /τ 2) and τ is any positive number.
Therefore we can assume that the lower bound α for the eigenvalues of A (cf. (1.3)) in the
definition of the bilinear form a(·, ·) in (2.1)–(2.2) is roughly 1, as in Examples 1.2 and 1.3.

Since the dependence on γ is not our main concern here, wewill take γ to be 1 in (2.2).We
will also simplify the notation by dropping the bars over p and y and consider the problem
of finding (p, y) ∈ H1

0 (�) × H1
0 (�) such that

a(p, q) +
∫

�

yq dx =
∫

�

ydq dx ∀ q ∈ H1
0 (�), (2.3)

∫

�

pz dx − a(y, z) = 0 ∀ z ∈ H1
0 (�). (2.4)

We can write (2.3)–(2.4) concisely as

B
(
(p, y), (q, z)

) =
∫

�

ydq dx ∀ (q, z) ∈ H1
0 (�) × H1

0 (�), (2.5)

where

B
(
(p, y), (q, z)

) = a(p, q) +
∫

�

yq dx +
∫

�

pz dx − a(y, z). (2.6)

We will use ‖ · ‖a to denote the energy norm
√
a(·, ·). Note that

√
α |v|H1(�) ≤ ‖v‖a ≤ √

β |v|H1(�) ∀ v ∈ H1(�) (2.7)
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by our assumption on A, and we have a Poincaré-Friedrichs inequality [3]

‖v‖2L2(�) ≤ CPF|v|2H1(�)
∀ v ∈ H1

0 (�). (2.8)

The following are the salient features of B
(·, ·) that follow immediately from (2.6)–(2.8)

and the Cauchy-Schwarz inequality:

B
(
(q, z), (q,−z)

) = ‖(q, z)‖2a×a ∀ (q, z) ∈ H1
0 (�) × H1

0 (�), (2.9)

and

B
(
(q, z), (r , s)

) ≤ [1+ (CPF/α)]‖(q, z)‖a×a‖(r , s)‖a×a (2.10)

for all (q, z), (r , s) ∈ H1
0 (�) × H1

0 (�), where the norm ‖ · ‖a×a is defined by

‖(q, z)‖2a×a = ‖q‖2a + ‖z‖2a . (2.11)

From here on we will also use boldfaced letters to denote members of the product space
H1
0 (�) × H1

0 (�) in order to improve the readability of the formulas.

Lemma 2.2 Let V be a subspace of H1
0 (�). We have

inf
v∈V×V

sup
w∈V×V

B
(
v,w

)

‖v‖a×a‖w‖a×a
≥ 1. (2.12)

Proof Let v = (q, z) ∈ V × V be arbitrary. According to (2.9), we have

‖(q, z)‖2a×a = B
(
(q, z), (q,−z)

)

and consequently

‖v‖a×a = B
(
(q, z), (q,−z)

)

‖(q, z)‖a×a
= B

(
(q, z), (q,−z)

)

‖(q,−z)‖a×a
≤ sup

w∈V×V

B
(
v,w

)

‖w‖a×a
. (2.13)

��
Remark 2.3 Let V be a closed subspace of H1

0 (�) and V = V × V . It follows from (2.10)
that we can define a linear transformation T : V −→ V ′ by

〈T z,w〉 = B
(
z,w

) ∀ z,w ∈ V .

Since the bilinear form B
(·, ·) is symmetric, the inf-sup condition (2.12) implies that T is an

isomorphism and the operator norms of T and T−1 (with respect to ‖ · ‖a×a) are bounded by
1 (cf. [4, 8]).

Remark 2.4 In view of Remark 2.3, one can solve (2.5) by a standard finite element method.
Let Vh ⊂ H1

0 (�) (resp., VH ⊂ H1
0 (�)) be the P1 or Q1 finite element space associated with

the triangulation Th (resp., TH ) of �, where Th is a refinement of TH and hence VH is a
subspace of Vh .

We assume that h � 1 so that (ph, yh) ∈ Vh × Vh determined by

B
(
(ph, yh), (q, z)

) =
∫

�

ydq dx ∀ (q, z) ∈ Vh × Vh (2.14)

provides a good approximation of the solution (p, y) of (2.5), but the dimension of Vh is
so large that the computational cost is prohibitive, especially if we have to solve (2.14)
repeatedly for different yd .
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Fig. 2 Finite element solutions of the optimal control in Example 1.2 with ε = 0.025: solution on a fine mesh
with h = 1/320 (top left), solution on a coarse mesh with H = 1/20 (bottom), LOD solution with H = 1/20
and h = 1/320 (top right)

On the other hand, for H � h, the solution (pH , yH ) ∈ VH × VH defined by

B
(
(pH , yH ), (q, z)

) =
∫

�

ydq dx ∀ (q, z) ∈ VH × VH (2.15)

is computationally feasible but not sufficiently accurate. Therefore we need generalized finite
element spaces to bridge the two scales.

Finite element solutions for the optimal controls in Examples 1.2 and 1.3 are displayed
in Figs. 2 and 3. It can be observed for both examples that the LOD solutions from Sect. 5
capture the fine scale solutions while the coarse scale solutions fail to do so.

Remark 2.5 It follows from (2.7), (2.8), (2.12) and (2.14) that

‖(ph, yh)‖a×a ≤ ‖yd‖L2(�) sup
(q,z)∈Vh×Vh

‖q‖L2(�)

‖(q, z)‖a×a
≤ √

CPF/α ‖yd‖L2(�).

3 The Ideal Multiscale Finite Element Method

In this section we construct and analyze the ideal multiscale finite element method following
the ideas in [28, 31], which begins with the construction of a projection operator. We will
denote by n (resp.,m) the dimension of the finite element space Vh (resp., VH ) in Remark 2.4.
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Fig. 3 Finite element solutions of the optimal control in Example 1.3: solution on a fine mesh with h = 1/320
(top left), solution on a coarse mesh with H = 1/20 (bottom), LOD solution with H = 1/20 and h = 1/320
(top right)

3.1 The Projection Operator5H

The operator 	H : H1
0 (�) −→ VH is defined by taking the nodal average of the local L2

orthogonal projections of ζ ∈ H1
0 (�) onto P1 or Q1 polynomials. More precisely, we define

	Hζ by

(	Hζ )(p) = 1

|Tp|
∑

T∈Tp

(QT ζT )(p) ∀ p ∈ VH , (3.1)

where VH is the set of all the (interior) vertices of TH , Tp is the set of the elements in TH
that share p as a common vertex, |Tp| is the number of elements in Tp , ζT is the restriction
of ζ to T , and QT is the orthogonal projection from L2(T ) onto P1(T ) or Q1(T ).

We have an obvious relation

	Hv = v ∀ v ∈ VH (3.2)

and also an interpolation error estimate [6,Appendix A]

H−1‖v − 	Hv‖L2(�) + |	Hv|H1(�) ≤ C†|v|H1(�) ∀ v ∈ H1
0 (�), (3.3)

where the positive constant C† depends only on the shape regularity of TH .

Remark 3.1 We can use (2.7) to translate the estimate for |	Hv|H1(�) into

‖	Hv‖a ≤ C†
√

β/α‖v‖a ∀ v ∈ H1
0 (�).
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Fig. 4 The nodes for VH are
represented by the circles and the
nodes for ϕ1, . . . , ϕ� ∈ Vh are
represented by the solid dots

We will denote the kernel of the restriction of 	H to Vh by K	H
h , i.e.,

K	H
h = {v ∈ Vh : 	Hv = 0}. (3.4)

It follows from (3.2) and (3.4) that

dimK	H
h = dimVh − dimVH = n − m. (3.5)

A basis for K	H
h is given in the following lemma.

Lemma 3.2 Let � = n − m and ϕ1, . . . , ϕ� be the nodal basis functions in Vh that vanish at
the nodes of VH (cf. Fig. 4 for a two dimensional example with the Q1 finite element). Then
(I − 	H )ϕ1, . . . , (I − 	H )ϕ� form a basis of K	H

h , where I is the identity operator on Vh.

Proof It follows from (3.2) that (I − 	H )ϕi ∈ K	H
h for 1 ≤ i ≤ �. In view of (3.5), it only

remains to show that the functions (I − 	H )ϕ1, . . . , (I − 	H )ϕ� are linearly independent.
Suppose

∑�
i=1 ci (I −	H )ϕi = 0. Then the function

∑�
i=1 ciϕi =

∑�
i=1 ci	Hϕ belongs

to VH and at the same time vanishes at the nodes of VH . It follows that
∑�

i=1 ciϕi = 0 and
hence ci = 0 for 1 ≤ i ≤ � because the functions ϕ1, . . . , ϕ� are linearly independent. ��

3.2 The Projection Operator C5H
h

According to Remark 2.3, we can define a linear transformation

C	H
h : Vh × Vh −→ K	H

h × K	H
h

by

B
(
C	H
h v,w

) = B
(
v,w

) ∀ v ∈ Vh × Vh, w ∈ K	H
h × K	H

h . (3.6)

The elementary algebraic properties of C	H
h that follow directly from (3.6) are collected in

the following lemma.
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Lemma 3.3 We have

B
(
C	H
h v,w

) = B
(
v, C	H

h w
) ∀ v,w ∈ Vh × Vh, (3.7)

(	H × 	H )C	H
h v = 0 ∀ v ∈ Vh × Vh, (3.8)

C	H
h v = v ∀ v ∈ K	H

h × K	H
h . (3.9)

Remark 3.4 It follows from (3.9) that C	H
h is a projection from Vh × Vh onto K	H

h × K	H
h ,

and that

(I − C	H
h )(I − 	H × 	H )v = 0 ∀ v ∈ Vh × Vh, (3.10)

where I is the identity operator on Vh × Vh .

Lemma 3.5 We have

‖C	H
h v‖a×a ≤ [1+ (CPF/α)]‖v‖a×a ∀ v ∈ Vh × Vh .

Proof Let (q, z) = C	H
h v. Then (q, z) (and hence (q,−z)) belongs to K	H

h × K	H
h . It

follows from (2.9), (2.10) and (3.6) that

‖C	H
h v‖2a×a = ‖(q, z)‖2a×a = B((q, z), (q,−z))

= B(v, (q,−z)) ≤ [1+ (CPF/α)]‖v‖a×a‖C	H
h v‖a×a .

��
Corollary 3.6 The following relations are valid:

‖v − C	H
h v‖a×a ≤ [2+ (CPF/α)]‖v‖a×a ∀ v ∈ Vh × Vh, (3.11)

‖v‖a×a ≤ C†
√

β/α‖v − C	H
h v‖a×a ∀ v ∈ VH × VH . (3.12)

Proof The inequality (3.11) follows from Lemma 3.5 and the triangle inequality, and the
inequality (3.12) follows from (3.2), Remark 3.1 and (3.8) :

‖v‖a×a = ‖(	H × 	H )(v − C	H
h v)‖a×a ≤ C†

√
β/α ‖v − C	H

h v ‖a×a .

��

3.3 The Finite Element Space Vms,h
H

The ideal multiscale finite element space

V
ms,h
H ⊂ Vh × Vh

is defined by

V
ms,h
H = {v ∈ Vh × Vh : B

(
v,w

) = 0 ∀w ∈ K	H
h × K	H

h }. (3.13)

Let v ∈ Vh × Vh be arbitrary. It follows from Lemma 2.2 (with V = K	H
h ), (3.6) and

(3.13) that

v ∈ V
ms,h
H ⇔ B(C	H

h v,w) = 0 ∀w ∈ K	H
h × K	H

h ⇔ C	H
h v = 0. (3.14)
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Fig. 5 A basis function φi of VH

Therefore we have V
ms,h
H = (I − C	H

h )(Vh × Vh) and

dimV
ms,h
H = 2n − 2� = 2m. (3.15)

A basis for V
ms,h
H is given in the following lemma.

Lemma 3.7 Let {φ1, . . . , φm} be the nodal basis of VH , ψ i = C	H
h (φi , 0) and ξ i =

C	H
h (0, φi ). Then

{(φ1, 0) − ψ1, . . . , (φm, 0) − ψm, (0, φ1) − ξ1, . . . , (0, φm) − ξm}
is a basis for V

ms,h
H .

Proof In view of (3.15), it suffices to show that the 2m functions (φi , 0) − ψ i = (I −
C	H
h )(φi , 0) and (0, φi ) − ξ i = (I − C	H

h )(0, φi ) (1 ≤ i ≤ m) are linearly independent.

Suppose
∑m

i=1

[
ci (I−C	H

h )(φi , 0)+di (I−C	H
h )(0, φi )

] = 0. It then follows from (3.2)
and (3.8) that

∑m
i=1

[
ci (φi , 0) + di (0, φi )

] = 0 and hence ci = di = 0 for 1 ≤ i ≤ m. ��

Remark 3.8 It follows from Lemma 3.7 that we also have V
ms,h
H = (I − C	H

h )(VH × VH ).

Remark 3.9 Let (ψi,1, ψi,2) = ψ i = C	H
h (φi , 0) and (ξi,1, ξi,2) = ξ i = C	H

h (0, φi ). It
follows from (3.6) and the relation (cf. (2.6))

B
(
(y,−p), (q, z)

) = B
(
(p, y), (z,−q)

) ∀ (p, y), (q, z) ∈ H1
0 (�) × H1

0 (�)

that ψi,1 = ξi,2 and ψi,2 = −ξi,1.

The figure of a typical basis function φi of VH is given in Fig. 5, and the figure of the
corresponding basis function (φi , 0) − C	H

h (φi , 0) is displayed in Fig. 6 for Example 1.2,
and in Fig. 7 for Example 1.3.

Remark 3.10 The exponential decay of ψ i = C	H
h (φi , 0) (and hence ξ i = C	H

h (0, φi ) in
view of Remark 3.9) are clearly observed in Figs. 6 and 7.
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Fig. 6 The basis function (φi , 0) − C	H
h (φi , 0) of V

ms,h
H for Example 1.2 with H = 1/40, h = 1/320 and

ε = 0.0025: first component (left) and second component (right)

Fig. 7 The basis function (φi , 0) − C	H
h (φi , 0) of V

ms,h
H for Example 1.3 with H = 1/40 and h = 1/320:

first component (left) and second component (right)

3.4 The Discrete Problem

The approximate solution (pms,h
H , yms,h

H ) ∈ V
ms,h
H is defined by

B
(
(pms,h

H , yms,h
H ), (q, z)

) =
∫

�

ydq dx ∀ (q, z) ∈ V
ms,h
H . (3.16)

The well-posedness of (3.16) is guaranteed by the following lemma.

Lemma 3.11 We have

inf
v∈Vms,h

H

sup
w∈Vms,h

H

B
(
v,w

)

‖v‖a×a‖w‖a×a
≥ [2+ (CPF/α)]−1. (3.17)

Proof Let v = (q, z) ∈ V
ms,h
H be arbitrary. Then (q,−z) − C	H

h (q,−z) ∈ V
ms,h
H and it

follows from (2.9), (3.11) and (3.13) that

‖v‖a×a = B
(
(q, z), (q,−z)

)

‖(q,−z)‖a×a

= B
(
(q, z), (q,−z) − C	H

h (q,−z)
)

‖(q,−z)‖a×a
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≤ [2+ (CPF/α)]
(B

(
(q, z), (q,−z) − C	H

h (q,−z)
)

‖(q,−z) − C	H
h (q,−z)‖a×a

)

≤ [2+ (CPF/α)] sup
w∈Vms,h

H

B
(
v,w

)

‖w‖a×a

��
3.5 Energy Error

It follows from (2.14) and (3.16) that

B
(
(ph, yh) − (pms,h

H , yms,h
H ), (q, z)

) = 0 ∀ (q, z) ∈ V
ms,h
H . (3.18)

We will use the Galerkin relation (3.18) to derive an error estimate for the ideal multiscale
finite element method defined by (3.16).

Theorem 3.12 We have

‖(ph, yh) − (pms,h
H , yms,h

H )‖a×a ≤ (C†/
√

α)H‖yd‖L2(�). (3.19)

Proof In view of Remark 2.3, (3.13) and (3.18), we have (ph, yh)−(pms,h
H , yms,h

H ) ∈ K	H
h ×

K	H
h and consequently

ph − pms,h
H and yh − yms,h

H belong to K	H
h . (3.20)

Putting (2.7), (2.9), (2.14), (3.3), (3.13) and (3.20) together, we have

‖(ph, yh)−(pms,h
H , yms,h

H )‖2a×a=B
(
(ph, yh)−(pms,h

H , yms,h
H ), (ph,−yh)−(pms,h

H ,−yms,h
H )

)

= B
(
(ph, yh), (ph,−yh) − (pms,h

H ,−yms,h
H )

)

=
∫

�

yd(ph − pms,h
H )dx

=
∫

�

yd [(ph − pms,h
H ) − 	H (ph − pms,h

H )]dx
≤ C†H‖yd‖L2(�)|ph − pms,h

H |H1(�)

≤ (C†/
√

α)H‖yd‖L2(�)‖ph − pms,h
H ‖a,

and (3.19) follows immediately. ��
Remark 3.13 In view of (3.9), (3.14) and (3.20), we can express the error of the ideal multi-
scale finite element method as

(ph, yh) − (pms,h
H , yms,h

H ) = C	H
h ((ph, yh) − (pms,h

H , yms,h
H )) = C	H

h (ph, yh).

3.6 L2 Error

We will obtain an estimate for the L2 error by a duality argument.

Theorem 3.14 We have

‖(ph, yh) − (pms,h
H , yms,h

H )‖L2(�)×L2(�) ≤ [1+ (CPF/α)](C2
†/α)H2‖yd‖L2(�). (3.21)
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Proof In view of Remark 2.3, we can define (q, z) ∈ Vh × Vh by

B
(
(q, z), (r , s)

) =
∫

�

(ph − pms,h
H )r dx +

∫

�

(yh − yms,h
H )s dx ∀ (r , s) ∈ Vh × Vh .

(3.22)

Let C	H
h (q, z) ∈ K	H

h × K	H
h be denoted by (q̃, z̃). It follows from (2.7), (2.9), (3.3),

(3.6), (3.7), (3.9), (3.22) and the Cauchy-Schwarz inequality that

‖(q̃, z̃)‖2a×a = B
(
(q̃, z̃), (q̃,−z̃)

)

= B
(
(q, z), (q̃,−z̃)

)

=
∫

�

(ph − pms,h
H )q̃ dx −

∫

�

(yh − yms,h
H )z̃ dx

=
∫

�

(ph − pms,h
H )(q̃ − 	H q̃)dx −

∫

�

(yh − yms,h
H )(z̃ − 	H z̃)dx

≤ C†H
(‖ph − pms,h

H ‖L2(�)|q̃|H1(�) + ‖yh − yms,h
H ‖L2(�)|z̃|H1(�)

)

≤ C†H‖(ph − pms,h
H , yh − yms,h

H )‖L2(�)×L2(�)(1/
√

α)‖(q̃, z̃)‖a×a,

and hence

‖C	H
h (q, z)‖a×a ≤ (C†/

√
α)H‖(ph, yh) − (pms,h

H , yms,h
H )‖L2(�)×L2(�). (3.23)

On the other hand, we have

‖(ph − pms,h
H , yh − yms,h

H )‖2L2(�)×L2(�) = B
(
(q, z), (ph − pms,h

H , yh − yms,h
H )

)

= B
(
C	H
h (q, z), (ph − pms,h

H , yh − yms,h
H )

)

≤ [1+ (CPF/α)]‖C	H
h (q, z)‖a×a‖(ph − pms,h

H , yh − yms,h
H )‖a×a (3.24)

by (2.10), (3.6), (3.20) and (3.22).
Putting (3.19), (3.23) and (3.24) together, we arrive at

‖(ph, yh) − (pms,h
H , yms,h

H )‖L2(�)×L2(�)

≤ [1+ (CPF/α)](C†/
√

α)H‖(ph − pms,h
H , yh − yms,h

H )‖a×a

≤ [1+ (CPF/α)](C2
†/α)H2‖yd‖L2(�).

��

4 A LocalizedMultiscale Finite Element Space

The constructions ofψ i = C	H
h (φi , 0) ∈ K	H

h ×K	H
h and ξ i = C	H

h (0, φi ) ∈ K	H
h ×K	H

h
require solving the equations

B
(
ψ i , (q, z)

) = B
(
(φi , 0), (q, z)

) ∀ (q, z) ∈ K	H
h × K	H

h , (4.1)

B
(
ξ i , (q, z)

) = B
(
(0, φi ), (q, z)

) ∀ (q, z) ∈ K	H
h × K	H

h , (4.2)

which are expensive. However the exponential decays ofψ i and ξ i observed in Figs. 7, 6 and
Remark 3.10 indicate that it is possible to capture ψ i and ξ i by local approximations. (Note
that in practice we only need to solve one of these equations because of the observation in
Remark 3.9.)
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Fig. 8 The patches ωxi (left) and ω̃xi (right), the node xi is represented by the circle and the nodes for
ϕi,1, . . . , ϕi,mi are represented by the solid dots

Remark 4.1 For certain problemswith high contrastβ/α, the decays ofψ i and ξ i are sensitive

to H if we use the data independent projection operator 	H in the construction of V
ms,h
H .

Under additional assumptions on the diffusion matrix A, better decays can be achieved by
replacing 	H with a data adapted interpolation operator (cf. [17, 34]).

We will construct a localized multiscale finite element space by replacing ψ i (resp., ξ i )
with an approximate solution of (4.1) (resp., (4.2)) obtained by a preconditioned minimum
residual (P-MINRES) algorithm (cf. [16,Chapter 8] and [14,Section 4.1]). Our construction
extends those in [6, 28] to symmetric indefinite problems.

4.1 An Additive Schwarz Preconditioner

Let A	H
h : K	H

h −→ (K	H
h )′ be the linear operator defined by

〈A	H
h v,w〉 = a(v,w) ∀ v,w ∈ K	H

h , (4.3)

where a(·, ·) is given in (1.3). We begin by constructing an additive Schwarz preconditioner
(cf. [7, 10, 35]) for A	H

h .

Let x1, . . . , xm be the (interior) nodes for VH . We define the subspaces K	H
h,i (1 ≤ i ≤ m)

of K	H
h by

K	H
h,i = {(I − 	H )v : v ∈ Vh and v vanishes outsideωxi }, (4.4)

where ωxi is the union of the elements in TH that share xi as a common vertex (cf. Fig. 8
for a two dimensional example with the Q1 element). The functions in K	H

h,i are supported
on the patch ω̃xi obtained from ωxi by adding one layer of elements in TH (cf. Fig. 8). Let
ϕi,1, . . . , ϕi,mi be the nodal basis functions of Vh that vanish at xi and outsideωxi (cf. Fig. 8).
Then, as in Lemma 3.2, {(I − 	H )ϕi,1, . . . , (I − 	H )ϕi,mi } is a basis of K	H

h,i .

Let Ii : K	H
h,i −→ K	H

h be the natural injection. The SPD additive Schwarz precondi-

tioner S	H
h : (K	H

h )′ −→ K	H
h for A	H

h is given by

S	H
h =

m∑

i=1

Ii (A
	H
h,i )−1 I ti , (4.5)
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where A	H
h,i : K	H

h,i −→ (K	H
h,i )′ is defined by

〈A	H
h,i v,w〉 = a(v,w) ∀ v,w ∈ K	H

h,i . (4.6)

According to the Raleigh quotient formulas, we have

a(v, v) = 〈A	H
h v, v〉 ≤ λmax(S

	H
h A	H

h )〈(S	H
h )−1v, v〉 ∀ v ∈ K	H

h , (4.7)

a(v, v) = 〈A	H
h v, v〉 ≥ λmin(S

	H
h A	H

h )〈(S	H
h )−1v, v〉 ∀ v ∈ K	H

h , (4.8)

and the following spectral estimates can be found in [6,Section 3]:

λmax(S
	H
h A	H

h ) ≤ Cupper and λmin(S
	H
h A	H

h ) ≥ Clower(α/β), (4.9)

where the positive constants Cupper and Clower only depend on the shape regularity of TH .

4.2 The Generalized Finite Element Space Vms,h
H,k

Let

B
	H
h : K	H

h × K	H
h −→ (K	H

h × K	H
h )′

be the linear operator defined by

〈B	H
h v,w〉 = B(v,w) ∀ v,w ∈ K	H

h × K	H
h . (4.10)

We can then rewrite (4.1) and (4.2) as

B
	H
h ψ i = f i , (4.11)

B
	H
h ξ i = gi , (4.12)

where f i , gi ∈ (K	H
h × K	H

h )′ are defined by

〈 f i ,w〉 = B
(
(φi , 0),w

)
and 〈gi ,w〉 = B

(
(0, φi ),w

) ∀w ∈ K	H
h × K	H

h .

Let ψ i,k ∈ K	H
h × K	H

h (resp., ξ i,k ∈ K	H
h × K	H

h ) be the output of k steps of the
P-MINRES algorithm applied to (4.11) (resp., (4.12)) with initial guess 0, where the SPD
preconditioner

S
	H
h : (K	H

h × K	H
h )′ −→ K	H

h × K	H
h

is given by

S
	H
h (μ, ρ) = (S	H

h μ, S	H
h ρ). (4.13)

Then the 2m functions

(φ1, 0) − ψ1,k, . . . , (φm, 0) − ψm,k, (0, φ1) − ξ1,k, . . . , (0, φm) − ξm,k (4.14)

are linearly independent because the intersection of VH × VH and K	H
h × K	H

h is trivial,

and we define the generalized finite element space V ms,h
H ,k by

V ms,h
H ,k = span

{
(φ1, 0) − ψ1,k, . . . , (φm, 0) − ψm,k, (0, φ1) − ξ1,k, . . . , (0, φm) − ξm,k

}
.

(4.15)

123



76 Page 16 of 30 Journal of Scientific Computing (2022) 91 :76

Remark 4.2 It follows from (2.6), (4.5) and (4.10) that the support of S	H
h B

	H
h (q, z) is a

subset of the union of all the ω̃xi whose intersection with the support of (q, z) have nonempty
interiors. As the output of a preconditioned Krylov subspace method with initial guess 0, the
function ψ i,k belongs to

span
{
S

	H
h f i , (S

	H
h B

	H
h )S

	H
h f i , . . . , (S

	H
h B

	H
h )k−1

S
	H
h f i

}
,

and hence is supported in a patch around xi (with respect to TH ) whose diameter is pro-
portional to kH . This is also true for the function ξ i,k . The functions in (4.14) are therefore

locally corrected basis functions and V ms,h
H ,k defined by (4.15) is a localized multiscale finite

element space.

Remark 4.3 In view of (2.6), we can express B	H
h in the matrix form

B
	H
h =

[
A	H
h M	H

h
M	H

h −A	H
h

]

, (4.16)

where M	H
h : K	H

h −→ (K	H
h )′ is the (symmetric) linear operator defined by

〈M	H
h r , z〉 =

∫

�

r z dx ∀ r , z ∈ K	H
h .

We can also write S	H
h as the diagonal matrix

S
	H
h =

[
S	H
h 0
0 S	H

h

]

. (4.17)

4.3 Spectral Analysis of S5H
h B

5H
h : K5H

h × K5H
h −→ K5H

h × K5H
h

A spectral analysis of the operator S	H
h B

	H
h is provided in the following lemma, which is

the key to the analysis of the localized multiscale finite element method in Sect. 5.

Lemma 4.4 The spectrum σ(S
	H
h B

	H
h ) of S	H

h B
	H
h satisfies

σ(S
	H
h B

	H
h ) ⊆ [−d∗,−c∗] ∪ [c∗, d∗], (4.18)

where

c∗ = λmin(S
	H
h A	H

h ) and d∗ = λmax(S
	H
h A	H

h )[1+ (CPF/α)]. (4.19)

Proof In view of (4.16) and (4.17), the eigenvalues of S	H
h B

	H
h are real numbers. Let λ be

one of the eigenvalues and (r , s) ∈ K	H
h × K	H

h be a corresponding eigenvector. Given any

(q, z) ∈ K	H
h × K	H

h , we have, by (4.10),

B((r , s), (q, z)) = 〈(S	H
h )−1

S
	H
h B

	H
h (r , s), (q, z)〉 = λ〈(S	H

h )−1(r , s), (q, z)〉.
(4.20)

It follows from (2.9), (4.3), (4.8), (4.13) and (4.20) that

‖(r , s)‖2a×a = B((r , s), (r ,−s)) = λ〈(S	H
h )−1(r , s), (r ,−s)〉

= λ
(〈(S	H

h )−1r , r〉 − 〈(S	H
h )−1s, s〉)
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≤ |λ|(〈(S	H
h )−1r , r〉 + 〈(S	H

h )−1s, s〉)

≤ |λ|[1/λmin(S
	H
h A	H

h )]‖(r , s)‖2a×a

and hence

|λ| ≥ λmin(S
	H
h A	H

h ).

On the other hand we can deduce from (2.10), (4.7) and (4.20) that

|λ|‖(r , s)‖2a×a ≤ λmax(S
	H
h A	H

h )
∣
∣λ

(〈(S	H
h )−1r , r〉 + 〈(S	H

h )−1s, s〉)∣∣
= λmax(S

	H
h A	H

h )
∣
∣λ〈(S	H

h )−1(r , s), (r , s)〉∣∣
= λmax(S

	H
h A	H

h )|B((r , s), (r , s))|
≤ λmax(S

	H
h A	H

h )[1+ (CPF/α)]‖(r , s)‖2a×a

and hence

|λ| ≤ λmax(S
	H
h A	H

h )[1+ (CPF/α)].

��

Corollary 4.5 The following relations hold for any v ∈ K	H
h × K	H

h :
(

c∗
λmax(S

	H
h A	H

h )
1
2

)
‖v‖a×a ≤ 〈B	H

h v,S
	H
h B

	H
h v〉 1

2

≤
(

d∗
λmin(S

	H
h A	H

h )
1
2

)
‖v‖a×a . (4.21)

Proof Since the operator S	H
h B

	H
h is symmetric with respect to the inner product defined by

〈(S	H
h )−1·, ·〉, we have, by Lemma 4.4 and the spectral theorem,

c∗〈(S	H
h )−1v, v〉 1

2 ≤ 〈B	H
h v,S

	H
h B

	H
h v〉 1

2 ≤ d∗〈(S	H
h )−1v, v〉 1

2 ,

which together with (4.7) and (4.8) implies (4.21). ��

5 The LocalizedMultiscale Finite Element Method

The localized multiscale finite element method is to find (pms,h
H ,k , yms,h

H ,k ) ∈ V ms,h
H ,k such that

B
(
(pms,h

H ,k , yms,h
H ,k ), (q, z)

) =
∫

�

ydq dx ∀ (q, z) ∈ V ms,h
H ,k . (5.1)

Wewill keep track of all the constants in the error analysis so that the constants that appear
in the energy error estimate (cf. Theorem 5.11) and the L2(�) × L2(�) error estimate (cf.
Theorem 5.13) are independent of the mesh sizes (h and H ) and the contrast β/α.

We begin the error analysis by comparing ψ i and ψ i,k (resp., ξ i and ξ i,k).
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5.1 The Relation Between (Ãi, �i) and (Ãi,k, �i,k)

It follows fromLemma4.4 and the theoryof theP-MINRESalgorithm (cf. [14,Theorem4.14])
that

〈B	H
h (ψ i − ψ i,k),S

	H
h B

	H
h (ψ i − ψ i,k)〉

1
2 ≤ 2q�k/2�〈B	H

h ψ i ,S
	H
h B

	H
h ψ i 〉

1
2 , (5.2)

〈B	H
h (ξ i − ξ i,k),S

	H
h B

	H
h (ξ i − ξ i,k)〉

1
2 ≤ 2q�k/2�〈B	H

h ξ i ,S
	H
h B

	H
h ξ i 〉

1
2 , (5.3)

where (cf. (4.19))

q = d∗ − c∗
d∗ + c∗

= κ(S	H
h A	H

h )[1+ (CPF/α)] − 1

κ(S	H
h A	H

h )[1+ (CPF/α)] + 1
. (5.4)

Remark 5.1 It follows from (4.9) that the condition number κ(S	H
h A	H

h ) has the following
(pessimistic) upper bound that is independent of the mesh sizes:

κ(S	H
h A	H

h ) = λmax(S
	H
h A	H

h )

λmin(S
	H
h A	H

h )
≤

(Cupper

Clower

)(β

α

)
. (5.5)

Consequently we also have the bound

q ≤

(Cupper

Clower

)(β

α

)
[1+ (CPF/α)] − 1

(Cupper

Clower

)(β

α

)
[1+ (CPF/α)] + 1

(5.6)

that is independent of the mesh sizes, but which may be too pessimistic.

Lemma 5.2 We have

‖ψ i − ψ i,k‖a×a ≤ C�q
�k/2�‖ψ i‖a×a for 1 ≤ i ≤ m (5.7)

and

‖ξ i − ξ i,k‖a×a ≤ C�q
�k/2�‖ξ i‖a×a for 1 ≤ i ≤ m, (5.8)

where the positive constant C� is independent of the mesh sizes.

Proof It follows from (4.21) and (5.2) that

‖ψ i − ψ i,k‖a×a ≤ λmax(S
	H
h A	H

h )
1
2

c∗
〈B	H

h (ψ i − ψ i,k),S
	H
h B

	H
h (ψ i − ψ i,k)〉

1
2

≤ 2q�k/2� λmax(S
	H
h A	H

h )
1
2

c∗
〈B	H

h ψ i ,S
	H
h B

	H
h ψ i 〉

1
2

≤ 2q�k/2� λmax(S
	H
h A	H

h )
1
2

c∗
d∗

λmin(S
	H
h A	H

h )
1
2

‖ψ i‖a×a,

which implies (5.7) with (cf. (4.19))

C� = 2κ(S	H
h A	H

h )
3
2 [1+ (CPF/α)]. (5.9)

Similarly we can derive (5.8) from (4.21) and (5.3). ��
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Remark 5.3 It follows from Lemma 5.2 that the basis corrections C	H
h (φi , 0) = ψ i and

C	H
h (0, φi ) = ξ i (1 ≤ i ≤ m) used in the construction of V

ms,h
H decay exponentially, as

observed in Figs. 7, 6 and Remark 3.10.

Let the linear operator C	H
h,k : VH × VH −→ K	H

h × K	H
h be defined by

C	H
h,k (φi , 0) = ψ i,k and C	H

h,k (0, φi ) = ξ i,k for 1 ≤ i ≤ m, (5.10)

where φ1, . . . , φm are the nodal basis functions of VH .
Our next goal is to understand the relation between the operators C	H

h and C	H
h,k .

5.2 The Relation Between C5H
h and C5H

h,k

We begin with the following lemma.

Lemma 5.4 There exist positive constants C♦ andC♥ depending only on the shape regularity
of TH such that

|φi |H1(�) ≤ C♦H τd with τd =

⎧
⎪⎨

⎪⎩

− 1
2 d = 1

0 d = 2
1
2 d = 3

, (5.11)

where d is the dimension of �, and

m∑

i=1

(|ci | + |di |) ≤ C♥(1/
√

α)H−d
∥∥∥

m∑

i=1

[
ci (φi , 0) + di (0, φi )

]∥∥∥
a×a

(5.12)

for any real numbers c1, . . . , cm, d1, . . . , dm.

Proof The estimate (5.11) follows from a scaling argument. For the estimate (5.12), we begin
with an inverse estimate

m∑

i=1

(|ci | + |di |) ≤ C�H
−d

∥∥∥
m∑

i=1

[
ci (φi , 0) + di (0, φi )

]∥∥∥
L1(�)×L1(�)

,

where the positive constant C� depends only on the shape regularity of TH . The proof is then
completed by the Poincaré-Friedrichs inequality

‖ζ‖L1(�) ≤ C�|ζ |H1(�) ∀ ζ ∈ H1
0 (�)

and the estimate (2.7). ��

Lemma 5.5 The following estimate is valid for any v ∈ VH × VH :

‖(C	H
h − C	H

h,k )v‖a×a ≤ C♠κ(S	H
h A	H

h )
3
2

(β

α

) 1
2 [1+ (CPF/α)]2H−d+τd q�k/2�‖v‖a×a,

(5.13)

where the positive constant C♠ depends only on the shape regularity of TH .
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Proof Let
∑m

i=1[ci (φi , 0) + di (0, φi )] be an arbitrary element of VH × VH . It follows from
(2.7), Lemmas 3.5, 5.2 and 5.4 that

∥
∥
∥(C	H

h − C	H
h,k )

m∑

i=1

[ci (φi , 0) + di (0, φi )]
∥
∥
∥
a×a

≤
m∑

i=1

[|ci |‖ψ i − ψ i,k‖a×a + |di |‖ξ i − ξ i,k‖a×a
]

≤ C�q
�k/2�

m∑

i=1

[|ci |‖ψ i‖a×a + |di |‖ξ i‖a×a
]

≤ C�q
�k/2�[1+ (CPF/α)]

m∑

i=1

[|ci |‖φi‖a + |di |‖φi‖a
]

≤ C�q
�k/2�[1+ (CPF/α)]√β

m∑

i=1

(|ci | + |di |)|φi |H1(�)

≤ C�q
�k/2�[1+ (CPF/α)]√β C♦H τd

m∑

i=1

(|ci | + |di |)

≤ C�q
�k/2�[1+ (CPF/α)]√β C♦H τd C♥(1/

√
α)H−d

×
∥∥∥

m∑

i=1

[
ci (φi , 0)+di (0, φi )

]∥∥∥
a×a

= C�C♦C♥
√

β/α[1+ (CPF/α)]H−d+τd q�k/2�
∥∥∥

m∑

i=1

[
ci (φi , 0) + di (0, φi )

]∥∥∥
a×a

,

which together with (5.9) implies (5.13) for C♠ = 2C♦C♥. ��
We have an analog of Corollary 3.6.

Corollary 5.6 The following relations are valid for any v ∈ VH × VH :

‖v − C	H
h,k v‖a×a ≤

(
C♠κ(S	H

h A	H
h )

3
2

(β

α

) 1
2 [1+ (CPF/α)]2H−d+τd q�k/2� (5.14)

+ [2+ (CPF/α)]
)
‖v‖a×a,

‖v‖a×a ≤ C†
√

β/α‖v − C	H
h,k v‖a×a . (5.15)

Proof The estimate (5.14) follows from (3.11), (5.13) and the triangle inequality. The proof
of (5.15) is identical to the proof of (3.12). ��

5.3 TheWell-Posedness of (5.1)

We will use Corollary 3.6, Lemma 5.5 and Corollary 5.6 to derive an analog of Lemma 3.11
under some assumptions on k.

Assumption 1 The number of P-MINRES steps k is sufficiently large so that, by (5.14),

‖v − C	H
h,k v‖a×a ≤ [3+ (CPF/α)]‖v‖a×a ∀ v ∈ VH × VH . (5.16)
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Remark 5.7 The following condition on k guarantees (5.16):

C♠κ(S	H
h A	H

h )
3
2

(β

α

) 1
2 [1+ (CPF/α)]2H−d+τd q�k/2� ≤ 1,

or equivalently

lnC♠ + 3

2
ln κ(S	H

h A	H
h ) + 1

2
ln(β/α) + 2 ln[1+ (CPF/α)]

+(−d + τd) ln H + �k/2� ln q ≤ 0 (5.17)

It follows from Corollaries 3.6, 5.6 and (5.16) that

‖v − C	H
h,k v‖a×a ≤ C♣‖v − C	H

h v‖a×a ∀ v ∈ VH × VH , (5.18)

where

C♣ = [3+ (CPF/α)]C†
√

β/α. (5.19)

Assumption 2 The number of P-MINRES steps k is sufficiently large so that, by (3.12),
Lemma 5.5 and (5.15),

C♣[2+ (CPF/α)]2‖(C	H
h − C	H

h,k )v‖a×a

≤ 1

3
min(‖v − C	H

h v‖a×a, ‖v − C	H
h,k v‖a×a) (5.20)

for all v ∈ VH × VH .

Remark 5.8 The following condition on k guarantees (5.20):

3C♠C2
† [3+ (CPF/α)]5κ(S	H

h A	H
h )

3
2

(β

α

) 3
2
H−d+τd q�k/2� ≤ 1,

or equivalently

ln(3C♠C2
† ) + 5 ln[3+ (CPF/α)] + 3

2
ln κ(S	H

h A	H
h )

+ 3

2
ln(β/α) + (−d + τd) ln H + �k/2� ln q ≤ 0. (5.21)

The well-posedness of (5.1) for a sufficiently large k is addressed by the following lemma.

Lemma 5.9 The inf-sup condition

inf
v∈VH×VH

sup
w∈VH×VH

B
(
v − C	H

h,k v,w − C	H
h,k w

)

‖v − C	H
h,k v‖a×a‖w − C	H

h,k w‖a×a

≥ 1

3C♣[2+ (CPF/α)] (5.22)

holds under Assumption 1 and Assumption 2.

Proof Let v ∈ VH × VH be arbitrary. We have, by (2.10), Remark 3.8, Lemma 3.11, (5.18)
and (5.20),

‖v − C	H
h,k v‖a×a ≤ C♣‖v − C	H

h v‖a×a

≤ C♣[2+ (CPF/α)] sup
w∈VH×VH

B
(
v − C	H

h v,w − C	H
h w

)

‖w − C	H
h w‖a×a
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≤ C♣[2+ (CPF/α)] sup
w∈VH×VH

B
(
(C	H

h,k − C	H
h )v,w − C	H

h w
)

‖w − C	H
h w‖a×a

+ C♣[2+ (CPF/α)] sup
w∈VH×VH

B
(
v − C	H

h,k v,w − C	H
h w

)

‖w − C	H
h w‖a×a

≤ C♣[2+ (CPF/α)]2‖(C	H
h,k − C	H

h )v‖a×a

+ C♣[2+ (CPF/α)] sup
w∈VH×VH

B
(
v − C	H

h,k v, (C	H
h,k − C	H

h )w
)

‖w − C	H
h w‖a×a

+ C♣[2+ (CPF/α)] sup
w∈VH×VH

B
(
v − C	H

h,k v,w − C	H
h,k w

)

‖w − C	H
h w‖a×a

≤ 1

3
‖v − C	H

h,k v‖a×a

+ C♣[2+ (CPF/α)]2‖v − C	H
h,k v‖a×a sup

w∈VH×VH

‖(C	H
h − C	H

h,k )w‖a×a

‖w − C	H
h w‖a×a

+ C♣[2+ (CPF/α)] sup
w∈VH×VH

B
(
v − C	H

h,k v,w − C	H
h,k w

)

‖w − C	H
h w‖a×a

≤ 2

3
‖v − C	H

h,k v‖a×a + C♣[2+ (CPF/α)]

× sup
w∈VH×VH

B
(
v − C	H

h,k v,w − C	H
h,k w

)

‖w − C	H
h,k w‖a×a

,

which implies (5.22). ��
Remark 5.10 In view of (4.15) and (5.10), we can rewrite the inf-sup condition (5.22) as

inf
v∈V ms,h

H ,k

sup
w∈V ms,h

H ,k

B
(
v,w

)

‖v‖a×a‖w‖a×a
≥ 1

3C♣[2+ (CPF/α)] . (5.23)

5.4 Energy Error

Under the inf-sup condition (5.23) we have a standard quasi-optimal error estimate (cf.
[8,Theorem 2.1]) for the solution (pms,h

H ,k , yms,h
H ,k ) of (5.1):

‖(ph, yh) − (pms,h
H ,k , yms,h

H ,k )‖a×a ≤ C� inf
(q,z)∈V ms,h

H ,k

‖(ph, yh) − (q, z)‖a×a, (5.24)

where

C� = 1+ 3C♣[2+ (CPF/α)]. (5.25)

It then follows from Remark 3.1, (3.10), Remark 3.13, (4.15), Lemma 5.5 and (5.24) that

‖(ph , yh) − (pms,h
H ,k , yms,h

H ,k )‖a×a

≤ C�
∥
∥(ph , yh) − (I − C	H

h,k )(	H × 	H )(ph , yh)
∥
∥
a×a

= C�
∥
∥[

(ph , yh) − (I − C	H
h )(	H × 	H )(ph , yh)

]

+ (C	H
h,k − C	H

h )(	H × 	H )(ph , yh)
∥
∥
a×a
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= C�
∥
∥[

(ph , yh) − (I − C	H
h )(ph , yh)

] + (C	H
h,k − C	H

h )(	H × 	H )(ph , yh)
∥
∥
a×a

≤ C�
(
‖(ph , yh) − (pms,h

H , yms,h
H )‖a×a+‖(C	H

h,k − C	H
h )(	H × 	H )(ph , yh)‖a×a

)

≤ C�
(
‖(ph , yh) − (pms,h

H , yms,h
H )‖a×a + C♠C†κ(S	H

h A	H
h )

3
2 (β/α)

× [1+ (CPF/α)]2H−d+τd q�k/2�‖(ph , yh)‖a×a

)
, (5.26)

i.e., up to a term that decreases exponentially as k increases, the performance of the localized
multiscale finite element method defined by (5.1) is similar to the performance of the ideal
multiscale finite element method defined by (3.16).

Assumption 3 The number of P-MINRES steps k is sufficiently large so that

q�k/2� ≤ κ(S	H
h A	H

h )−
3
2 (α/β)H1+d−τd . (5.27)

Theorem 5.11 Under Assumptions 1–3, we have

‖(ph, yh) − (pms,h
H ,k , yms,h

H ,k )‖a×a ≤ C�H‖yd‖L2(�), (5.28)

where

C� = C�(C†/
√

α)
(
1+ C♠[1+ (CPF/α)]2√CPF

)
(5.29)

is independent of h, H and β/α.

Proof The estimate (5.26) is valid under Assumptions 1 and 2. It then follows from
Remark 2.5, Theorem 3.12 and Assumption 3 that

‖(ph, yh) − (pms,h
H ,k , yms,h

H ,k )‖a×a

≤ C�
(
(C†/

√
α)H‖yd‖L2(�) + C♠C†[1+ (CPF/α)]2H‖(ph, yh)‖a×a

)

≤ C�(C†/
√

α)
(
1+ C♠[1+ (CPF/α)]2√CPF

)
H‖yd‖L2(�).

��
Remark 5.12 Note that (5.27) is equivalent to

�k/2� ln q + 3

2
ln κ(S	H

h A	H
h ) + ln(β/α) − (1+ d − τd) ln H ≤ 0. (5.30)

By examining (5.17), (5.21) and (5.30), we see that the impacts of the mesh-independent
quantities, including the condition number κ(S	H

h A	H
h ) and the contrast β/α, are mitigated

by the natural log function, and the dominating condition on k is roughly (cf. (5.30))

k ≥ 2(1+ d − τd)
ln(1/H)

ln(1/q)

From (5.4) and the relation | ln(1+ x)| ≈ |x | (for |x | small), we can also see that

ln(1/q) ≈ 1

κ(S	H
h A	H

h )
.

Therefore, provided κ(S	H
h A	H

h ) is moderate, we can choose k = � j ln(1/H) for a
moderate positive integer j . In the case of Examples 1.2 and 1.3, this is true for any H .
For other high contrast problems the magnitude of κ(S	H

h A	H
h ) can be sensitive to H (cf.

[34,Section 5]) and we can use it as an indicator of the effectiveness of our method.
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5.5 L2 Error

We can use a duality argument to obtain an L2 error estimate.
Observe that Assumption 3 and Lemma 5.5 imply

‖(C	H
h − C	H

h,k )v‖a×a ≤ C‡H‖v‖a×a ∀ v ∈ VH × VH , (5.31)

where

C‡ = C♠[1+ (CPF/α)]2. (5.32)

Theorem 5.13 Under Assumptions 1–3, we have

‖(ph, yh) − (pms,h
H ,k , yms,h

H ,k )‖L2(�)×L2(�) ≤ C�

√
β/α H2‖yd‖L2(�), (5.33)

where

C� = 2C†C�C‡[1+ (CPF/α)]√CPF/α (5.34)

is independent of h, H and β/α.

Proof Let (q, z) ∈ Vh × Vh be defined by

B
(
(q, z), (r , s)

) =
∫

�

(ph − pms,h
H ,k )r dx

+
∫

�

(yh − yms,h
H ,k )s dx ∀ (r , s) ∈ Vh × Vh . (5.35)

It follows from (2.7), (2.8), (2.12) and (5.35) that

‖(q, z)‖a×a ≤ ‖(ph, yh) − (pms,h
H ,k , yms,h

H ,k )‖L2(�)×L2(�)

sup
(r ,s)∈H1

0 (�)×H1
0 (�)

‖(r , s)‖L2(�)×L2(�)

‖(r , s)‖a×a
(5.36)

≤ √
CPF/α ‖(ph, yh) − (pms,h

H ,k , yms,h
H ,k )‖L2(�)×L2(�).

By repeating the arguments in the proof of Theorem 3.14 that led to (3.23), we also have

‖C	H
h (q, z)‖a×a ≤ (C†/

√
α)H‖(ph, yh) − (pms,h

H ,k , yms,h
H ,k )‖L2(�)×L2(�). (5.37)

Let (r , s) = (ph, yh) − (pms,h
H ,k , yms,h

H ,k ). Then the Galerkin relation

B
(
v, (r , s)

) = 0 ∀ v ∈ V ms,h
H ,k (5.38)

follows from (2.14) and (5.1).
Combining (3.10), (4.15), (5.35) and (5.38), we obtain

‖(r , s)‖2L2(�)×L2(�) = B
(
(q, z), (r , s)

)

= B
(
(q, z) − (I − C	H

h,k )(	H × 	H )(q, z), (r , s)
)

= B
(
(C	H

h,k − C	H
h )(	H × 	H )(q, z), (r , s)

)

+ B
(
(q, z) − (I − C	H

h )(q, z), (r , s)
)

= B
(
(C	H

h,k − C	H
h )(	H × 	H )(q, z), (r , s)

) + B
(
C	H
h (q, z), (r , s)

)
.

(5.39)
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Table 1 Choices for h, H , and j
for different values of ε

ε 0.08 0.04 0.025

1/h 256 320

1/H 8 16 32 64 10 20 40 80

j 2 2 3 3 2 2 3 3

Using (2.10), Remark 3.1, (5.31), (5.36), we can bound the first term on the right-hand
side of (5.39) by

B
(
(C	H

h,k − C	H
h )(	H × 	H )(q, z), (r , s)

)

≤ [1+ (CPF/α)]∥∥(C	H
h,k − C	H

h )(	H × 	H )(q, z)
∥
∥
a×a‖(r , s)‖a×a

≤ [1+ (CPF/α)]C‡H‖(	H × 	H )(q, z)
∥
∥
a×a‖(r , s)‖a×a

≤ [1+ (CPF/α)]C‡C†
√

β/αH‖(q, z)‖a×a‖(r , s)‖a×a

≤ [1+ (CPF/α)]C‡C†
√

β/α
√
CPF/αH‖(r , s)‖L2(�)×L2(�)‖(r , s)‖a×a .

(5.40)

For the second term on the right-hand side of (5.39), we have the bound

B
(
C	H
h (q, z), (r , s)

) ≤ [1+ (CPF/α)]‖C	H
h (q, z)‖a×a‖(r , s)‖a×a

≤ [1+ (CPF/α)](C†/
√

α)H‖(r , s)‖L2(�)×L2(�)‖(r , s)‖a×a (5.41)

by (2.10) and (5.37).
Putting (5.28) and (5.39)–(5.41) together, we arrive at the estimate

‖(ph, yh) − (pms,h
H ,k , yms,h

H ,k )‖L2(�)×L2(�)

≤ [1+ (CPF/α)](C†/
√

α)
[
C‡

√
CPF(β/α) + 1

]
H‖(ph, yh) − (pms,h

H ,k , yms,h
H ,k )‖a×a

≤ [1+ (CPF/α)](C†/
√

α)
[
C‡

√
CPF(β/α) + 1

]
C�H

2‖yd‖L2(�),

which implies (5.33) with C� given by (5.34). ��

6 Numerical Results

The numerical results for Examples 1.2 and 1.3 are presented in Sects. 6.1 and 6.2. We also
describe briefly some computational aspects in Sect. 6.3.

6.1 Highly Oscillatory Problem

We solve the optimal control problem (1.1) on the unit square (0, 1) × (0, 1), where γ = 1,
yd = −1, and A is the matrix in Example 1.2 with ε = 0.08, 0.04 and 0.025. We use the
localized multiscale finite element method from Sect. 5.

For this problem α ≈ 1 and β ≈ 20, the magnitude of κ(S	H
h A	H

h ) is moderate by
(5.5) and, according to Remark 5.12, we can choose the number of P-MINRES steps k to
be � j ln(1/H) for a moderate positive integer j . The choices for h, H and j for different
values of ε are described in Table 1.
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Fig. 9 Relative ‖ · ‖a×a errors of the localized multiscale approximations of the highly oscillatory problem
for different values of ε

Fig. 10 Relative ‖ · ‖L2(�)×L2(�) errors of the localized multiscale approximations of the highly oscillatory
problem for different values of ε

The relative errors in the ‖ · ‖a×a norm and the ‖ · ‖L2(�)×L2(�) norm are presented in
Figs. 9 and 10. We observe O(H) convergence in the ‖ · ‖a×a norm and O(H2) convergence
in the ‖ · ‖L2(�)×L2(�) norm, which agree with Theorems 5.11 and 5.13.
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Fig. 11 Relative ‖ · ‖a×a errors of the multiscale approximations of the highly heterogeneous problem, where
h = 1/320, k = � j ln(1/H) , with j = 2 for H = 1/10, j = 3 for H = 1/20, and j = 4 for H = 1/40

6.2 Highly Heterogeneous Problem

We solve the optimal control problem (1.1) on the unit square, where γ = 1, yd = 1, and
A is the matrix from Example 1.3. We use the ideal multiscale finite element method from
Sect. 3 and the localized multiscale finite element method from Sect. 5. The reference mesh
size is h = 1/320.

For this problem we have α = 1 and β = 1331. The value of the condition number
κ(S	H

h A	H
h ) is found computationally to be less than 10, which is much better than the

pessimistic bound in (5.5). Therefore we can, according to Remark 5.12, choose the number
of P-MINRES steps k to be � j ln(1/H) for a moderate positive integer j . Here we take
j = 2 for H = 1/10, j = 3 for H = 1/20, and j = 4 for H = 1/40.

The relative errors in the ‖ · ‖a×a norm and the ‖ · ‖L2(�)×L2(�) norm are displayed in
Figs. 11 and 12. We observe that the errors for the ideal multiscale finite element method and
the localizedmultiscale finite elementmethod are indistinguishable. Theorder of convergence
in the ‖·‖a×a norm is 1, which agrees with Theorems 3.12 and 5.11. The convergence history
for the ‖·‖L2(�)×L2(�) norm is similar to the early stage of the history for the highly oscillatory
but well-conditioned problem in Fig. 10. Therefore it is reasonable to expect that the order of
convergence in the ‖·‖L2(�)×L2(�) norm for the ill-conditioned highly heterogenous problem
will also approach 2 at a later stage.

6.3 Some Computational Aspects

Wewill focus on the highly heterogeneous problem in Sect. 6.2, where the reference solution
is obtained by a standard finite elementmethodwith h = 1/320.Below are some observations
on the casewhere the coarsemesh size is H = 1/20 and the solution obtained by the localized
multiscale method in Sect. 5 is quite reasonable (cf. Fig. 3).
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Fig. 12 Relative ‖ · ‖L2(�)×L2(�) errors of multiscale approximations of the highly heterogeneous problem,
where h = 1/320, k = � j ln(1/H) , with j = 2 for H = 1/10, j = 3 for H = 1/20, and j = 4 for
H = 1/40

The parallel computing was carried out on a cluster with 440 compute nodes running the
Red Hat Enterprise Linux 6 operating system and has a 146 TFlops peak performance. Each
compute node is equipped with two 8-core Sandy Bridge Xeon 64-bit processors operating at
a core frequency of 2.6 GHz, 32GB 1666MHz RAM, 500GB HD, 40 Gigabit/sec Infiniband
network interface and a 1 Gigabit Ethernet network interface.

We computed the reference solution with the PETSc library using 128 processors and an
ILU(0) preconditioner in PGMRES. The solution time is 0.22 seconds. For comparison, we
solved the smaller system (5.1) by Gaussian elimination in MATLAB on a MacBook Pro
(2.8 Ghz Quad-Core Intel Core i7 processor and a 16GB 2133 Mhz LPDDR RAM). The
solution time is 0.02 seconds.

The total (set-up and solution) time for computing the reference solution with PETSc
using 128 processors is 0.47 seconds. For comparison, the total time for solving (5.1) with
128 different right-hand sides simultaneously using PETSc and Gaussian elimination is 1.36
seconds.

Using 1024 processors, it took 2104 seconds in the offline stage to construct the basis

functions of the ideal multiscale finite element space V
ms,h
H in Sect. 3.3, and 535 seconds

to construct the basis functions of the localized multiscale finite element space V ms,h
H ,k in

Sect. 4.2.

7 Concluding Remarks

In this paper we have developed multiscale finite element methods for a linear-quadratic
elliptic optimal control problem with rough coefficients, where scale separation and periodic
structures are not assumed. These methods can be viewed as reduced order methods.
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In particular, we have constructed a generalized finite element method with localized
basis functions whose performance is similar to standard finite element methods for smooth
problems. Both the construction of the generalized finite element space and the analysis of
the resulting Galerkin method are based on basic finite element technology and two (by now)
classical numerical linear algebra ingredients, namely the additive Schwarz preconditioner
and the preconditioned minimum residual algorithm. Our work further illustrates the idea put
forth in [28] that multiscale problems can be solved by combining finite element methods,
domain decomposition algorithms and iterative Krylov subspace solvers.

The techniques developed in this paper and [6] can be extended to elliptic variational
inequalities with rough coefficients, such as the obstacle problem and the optimal control
problem with control constraints. They can also be applied to elliptic boundary control
problemswherewe can adopt the LOD techniques for nonhomogeneous boundary conditions
in [18].
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