Calibrated Click-Through Auctions

Dirk Bergemann
dirk.bergemann@yale.edu
Yale University

Renato Paes Leme
renatoppl@google.com
Google Research

ABSTRACT

We analyze the optimal information design in a click-through auc-
tion with stochastic click-through rates and known valuations per
click. The auctioneer takes as given the auction rule of the click-
through auction, namely the generalized second-price auction. Yet,
the auctioneer can design the information flow regarding the click-
through rates among the bidders. We require that the information
structure to be calibrated in the learning sense. With this constraint,
the auction needs to rank the ads by a product of the value and a
calibrated prediction of the click-through rates. The task of design-
ing an optimal information structure is thus reduced to the task of
designing an optimal calibrated prediction.

We show that in a symmetric setting with uncertainty about the
click-through rates, the optimal information structure attains both
social efficiency and surplus extraction. The optimal information
structure requires private (rather than public) signals to the bidders.
It also requires correlated (rather than independent) signals, even
when the underlying uncertainty regarding the click-through rates
is independent. Beyond symmetric settings, we show that the opti-
mal information structure requires partial information disclosure,
and achieves only partial surplus extraction.
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1 INTRODUCTION

In the world of digital advertising the allocation mechanism is
frequently a pay-per-click auction. Hence, ad systems are a combi-
nation of an auction mechanism together with a machine learning
model predicting click probabilities. The question of learning click-
through rates has been analyzed extensively in terms of accuracy
and scalability [e.g., 15, 24]. In this paper we take a different perspec-
tive and analyze how different machine learning models influence
the performance of the auction in terms of revenue-efficiency trade-
offs.

1.1 Our Approach and Results

Our focus in this paper is on how the click-through-rate model
influences ranking and pricing, instead of focusing on accuracy
alone. We approach this question by keeping the auction mechan-
ics as simple as possible: a single-slot pay-per-click auction where
click-through-rates are stochastic, correlated and bidder-dependent.
What we will vary instead, will be the choice of the machine learn-
ing model. In other words, among different calibrated predictors for
click-through rates, which of them leads to higher revenue?

We will borrow both the terminology and the technical tools
from information design to tackle this question [e.g., 4]. In that con-
text, we will refer to a click-through-rate model as an information
structure or an information policy. We will enforce the constraint
that the model is calibrated (in the sense of Foster and Vohra [13]).
In other words, the expected click-through rate given a prediction
of the model is equal to the prediction itself. Among all possible
information policies, the complete information policy and the zero
information policy are both leading examples, as well as extremal
information policies. Under a complete information policy, the
seller completely discloses all information to the bidders. It is thus
as if the bidders were in a complete information environment. By
contrast, in a zero information policy the seller does not disclose
any information about the realized click-through rates. In conse-
quence, each bidder acts as if the realized click-through rate is
always equal to the ex ante expected click-through rate. These two
extremal information policies have dramatically different payoff
implications.

With stochastic click-through rates, social efficiency and revenue
will depend on which information about the click-through rates is
disclosed. With complete information, the resulting allocation is
always efficient. But as the competitive position of each bidder can
vary across the realized click-through rates, the resulting revenue
of the seller can be low due to weak competition. By contrast,
with zero information about the click-through rates, the resulting
allocation will typically fail to be socially efficient. As the bidding
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behavior cannot reflect any information about the click-through
rates, the socially relevant information fails to be reflected in the
auction outcome. Yet, as the bidding reflects only the expected click-
through rate, and hence only the mean of the click-through rate
(and not the higher moments of the click-through distribution), the
resulting bids will have zero variance, and thus be more competitive.

Our first result, Proposition 3.1, shows that a statistically inde-
pendent information structure can never improve the revenue over
the no-disclosure information policy. Our second result, Corollary
3.2, shows that with any level of uncertainty in the click-through
rates, the seller strictly prefers no-disclosure to full-disclosure. Thus,
the seller always favors competition over information disclosure.
We then ask whether there exists an improved information policy
that can realign social efficiency with the revenue of the seller.

Our main result, Theorem 4.1, establishes that a calibrated and
correlated information policy can completely align social efficiency
and revenue maximization. In particular, when the common prior
distribution over the click-through rates is symmetric across the
bidders, we can then explicitly construct an information policy
such that the socially efficient allocation is always realized and
the competition between the bidder levels the information rent
of the bidders to the ex-ante level. Given the symmetry of the
common prior distribution, this implies that the bidders compete
their residual surplus down to zero.

We also provide an explicit construction of the correlated infor-
mation structure (or signalling scheme). Interestingly, the optimal
information structure is an interior information structure; that is, it
is neither zero nor complete information disclosure. The informa-
tion structure balances two conditions that are necessary to attain
the socially efficient allocation while maintaining competition: (i)
it provides sufficient information to rank the alternative allocations
according to social efficiency, and (ii) it limits the variance in the
posterior beliefs of the competing bidders so that their equilibrium
bids remain arbitrarily close to support competitive bids.

In the full version, we show that this result extends to a set-
ting with two bidders under a weak notion of ex-ante symmetry:
the socially efficient allocation and revenue maximization remain
perfectly aligned as long as the expected click-through rate is equal-
ized across bidders, even when the support of the ex-post realized
click-through rates can vary across bidders.

Finally, in Theorem 5.1, we show that an interior information
structure remains part of the optimal information design with sto-
chastic click-through rates, even when the expected click-through
rates across the bidders differ, and therefore one bidder is stronger
from an ex-ante perspective. In particular, the optimal information
structure releases less information about the winning bidder than
about the losing bidder. This suggests that the optimal information
structure in an asymmetric auction seeks to strengthen the weak
bidder with additional information, relative to the strong bidder.

The optimality of a noisy information structure has significant
implications in the world of digital advertising. Since the opti-
mal information structure remains noisy, better click-through-rate
predictions—achieved through improved learning—may not neces-
sarily lead to better auction results. Thus, there might be limits
to the returns of more elaborate machine learning algorithms to
inform the prediction problem.
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1.2 Discussion

Throughout this paper we maintain the simplifying assumption
that the valuation of each bidder is known. Thus there is complete
information regarding the value of each bidder. This setting is
commonly adopted in the analysis of sponsored search auctions,
see notably Edelman et al. [10] and Varian [25]. In our analysis,
this means that we can assume truth-telling by the bidders, and
thus the bids of the agents always equal their values. The complete
information assumption allows us to focus the analysis entirely on
the optimal information policy regarding click-through rates.

A significant next step would be to embed the current analysis
into an environment with incomplete information regarding the
values of the bidders. We would then be in a setting where both
the auctioneer and bidders have private information. A general
analysis with two-sided private information remains a wide-open
issue, even in a setting with a single bidder. Currently, progress
is being made only in specific settings, either binary actions and
states or multiplicative separable settings (see Kolotilin et al. [20]
and Candogan and Strack [7], respectively).

In our specific setting, we would need to augment the analysis
with truth-telling constraints by the bidders. We expect that these
incentive constraints would weaken the power of the information
design without eliminating it completely. In particular, we expect
that the bidders’ surplus would then only be partially extracted.

We also maintain the simplifying assumption that there is only
a single position to be allocated. This allows us to describe the dis-
tribution of the information among two bidders, the winning and
losing bidder. With many positions, the resulting information de-
sign would have to balance additional constraints that may impose
similar restrictions on surplus extraction as the introduction of pri-
vate information discussed above. Yet, even with a single position,
the click-through auction yields distinct outcomes from the second
price auction. In particular, in the click-through auction, the rev-
enue (and the bidders’ net surplus) are impacted by the correlation
between interim expected click-through rates and ex post realized
click-through rates. By contrast, in the second price auction, it is
only the interim expected rates that matter. It is the richer and
subtle interaction between interim and ex post click-through rates
that allows the click-through auction to align revenue and socially
efficiency more strongly.

A significant advance in our information design problem is to
allow for multi-dimensional and private information in a strate-
gic setting. By contrast, the most recent result in the design of
optimal information structure requires one-dimensional, or equiv-
alently symmetric, solutions to optimal design (see Kleiner et al.
[19] and Bergemann et al. [3]). A general approach to optimal
multi-dimensional information design in strategic settings is again
a wide-open question. In the current context, we could and do make
progress by insights specific to the auction setting.

1.3 Further Related Work

A recent strand of literature in algorithmic mechanism design has
considered different aspects of signalling and targeting in ad auc-
tions [e.g., 2, 3, 11, 14, 18]. The main difference to our work is that
these works have focused on per-impression auctions, which are
very different from the per-click auction considered here. An earlier
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literature [21, 23] has introduced the idea of “squashing” or “boost-
ing” of click-through rates to optimize auction performance. These
papers only consider expected click-through rates and do not insist
on calibration. In our analysis, we clearly separate between the
auction mechanism, the generalized second price auction, and the
information design. The joint attainment of revenue and efficiency
is due to the information design. This distinguishes our analysis
from the full surplus extraction results of [8, 9]. There, the transfer
payments in the mechanism are exactly chosen and tailored to the
correlation of the signals to allow for surplus extraction. In particu-
lar, with positive probability the payments need to be arbitrarily
larger to achieve the results. In the generalized second price auction,
the payments are determined independent of the correlation in the
signals. Despite these constraints, our positive results show how
impactful the design of the information can be to guide the bids
and the allocations in the auction.

We provide a more detailed discussion of this and additional
related work in Appendix A.

2 MODEL

We will analyze the setting of click-through auctions where bidders
are ranked by the product of their value (expressed as a maximum
willingness-to-pay per click) and a calibrated prediction of the click-
through rates. Our main goal will be to study how to engineer such
calibrated prediction to achieve better revenue-efficiency trade-offs.
In the language of information design, we will keep the auction
format fixed and vary the information structure.

To allow us to focus on the information structure, we will work
in the full information model where each bidderi = 1,...,nhasa
fixed and known value v; > 0 representing their willingness-to-pay
for a click. Our central object of study will be the click-through
rates (CTRs): before the auction, a vector r = (rq,...,ry) € [0,1]"
will be drawn from a joint prior distribution G, which is a multi-
dimensional distribution that may display correlation across the
bidders’ CTRs.

The click-through rates are known by the auctioneer: typically,
the platform is the one building a machine learning model to es-
timate them. The auctioneer must now decide on a score/signal
s =(s1,...,8n) € [0,1]" to rank the bidders. The design space will
be to design a joint probability distribution p on pairs (r, s) such
that the marginal on r is G:

/ dG(r) = / /dp(s, r), Y measurable R C [0,1]".
reR reR Js

This joint probability distribution will be referred as the information
structure. For notational convenience, it will be useful to assume
that both G and p are discrete distributions with finite support, and
hence we can write g(r) for the probability of a given vector r under
distribution G and x(r, s) as the probability of a pair (r,s) under
distribution p. With that notation, the information structure is a
function x : [0, 1] x [0, 1]" — [0, 1] satisfying:

Z x(r,s) =g(r), Vrelo,1]".
N
Auction Mechanics. Again for simplicity, we focus on the single
slot setting where the goal of the auction is to select a single winner
i* € [n]. The winner, assuming truthful bids, will be selected as the
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bidder having the largest s;v;, with a symmetric tie-breaking rule.
The winner’s cost per click is then:
vjsi

pi+ = max .
JEI* Si*

The winner only pays when there is a click, which happens with
probability r;+. Hence, the expected revenue from this per-click
auction is rjpj*.

Note that we are effectively operating a single-item, second-price
auction in which truth-telling is a dominant strategy equilibrium.
This is true even if the scores depend on the valuations, because
in the complete information setting we consider a bidder cannot
change signals by submitting a non-truthful bid. We therefore as-
sume truth-telling by the bidders.

Calibration. The auctioneer is restricted to ranking with an esti-
mator of the click-through rates. We require the information struc-
ture to be calibrated in the Foster-Vohra sense [13]. An information
structure is called calibrated if the posterior, given any signal real-
ization slf for bidder i, matches with the signal itself, i.e.,

Elrilsi = s{] = s]. 1)
If the CTR and signal space is discrete, then we can write calibration
as:

Z x(r,s)-(ri —s)) =0, Visj.

(r.sksi=s]

There are two important examples of calibrated information
structures:

o Full-disclosure: where s; = r; almost surely.
o No-disclosure: where s; = E[r;] almost surely.

Since the calibration constraint is imposed on every bidder sepa-
rately, it is possible to create information structures that combine
disclosure and no-disclosure. For example, given two bidders, we
can consider an information structure where bidder 1 receives only
one signal, and the signal is equal to the ex-ante expectation of the
click-through rate, thus s; = E[r1]; and bidder 2 receives as many
signals as click-through rates, thus sy = ry. This forms a calibrated
information structure.

Whenever s; = E[r;] we will say that we fully bundle bidder i.
Whenever s; = r; we will say that we unbundle bidder i. If neither
is the case we will say that we partially bundle the bidder.

Calibrated vs. Unbiased Estimator. The current notion of cali-
brated estimator is related but distinct to the notion of unbiased
estimator. An unbiased estimator requires that E[s;|r;] = r; whereas
a calibrated prediction requires E[r;|s;] = s;.

When predictions are used to rank candidates in an auction,
calibration is a more useful notion than unbiasedness. Suppose
PCTR is the prediction and CTR is the true value of click-through-
rates. Then, by using a calibrated model, ranking by pCTR - bid is
the same as ranking by E[CTR - bid | pCTR]. This is why in practice
pCTR’s that are generated by a complex ML model are re-calibrated
to satisfy the basic requirement that the pCTRs match with the
unconditional expectation.
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Independence and Correlation. A information structure is called
independent if signals s; for j # i do not offer additional information
on the expectation of r; beyond s;. Formally:

Elrils = s'] = E[rils; = /], Vi,Vs. 2)

Both full-disclosure and no-disclosure information structures
are independent.

Whenever we do not assume independence, we will say that an
information structure is correlated. Below, we give an example of a
correlated and calibrated information structure. This will also serve
as an example of how information structures will be illustrated
throughout the paper. Consider the two-bidder setting where CTRs
arer € {(1/2,1/2),(1/2,1),(1,1/2),(1,1)}, each with probability
1/4 (hence ry and rp are independent). We represent an informa-
tion structure where rows correspond to pairs of CTRs (rq, rz) and
columns correspond to pairs of signals (s, s2). Each entry of the ma-
trix will correspond to x(r, s) which is the probability of the event
that the CTRs are r and the signals are s. Table 1 shows the“flipping
the square” structure, which we will discuss in detail in Section 4.1.

Table 1: Flipping the square

S
. G-e3-0|G-ei+e|G+ed-e|G+ei+e
(%,%) € 0 0 %—e
L 0 1 0 0
L 0 0 1 0
(1,1) %*G 0 0 €

One can check that while the calibration constraints (equation
(1)) hold, the independence condition (equation (2)) does not. So,
this is a calibrated, correlated information structure.

Normalization and Symmetry. We note that it is without loss of
generality to normalize all values to v} = v while scaling CTRs
and scores to rl.’ = v;ri/v and slf = v;s;j/v. Both the allocations and
expected payments remain identical after such normalization. We
therefore generally assume that v; = ... = v, = 1. A setting is
symmetric if (after normalization) random variables v1r1, ..., vpr,
are exchangeable. Whenever symmetry does not hold, we will say
that the environment is asymmetric.

3 INDEPENDENT INFORMATION
STRUCTURES

A first step in the analysis of optimal information design is a focus
on independent signals. With independent signals, the signal s; of
each bidder i contains all the information about the CTR r; that
the auctioneer releases before the auction. Thus, bidder i could not
learn anything more about the true CTR from any other bidder. In
turn, the information that bidder i receives from the auctioneer
is the maximal information that is available before the auction to
place an informed bid.

3.1 Independent Signals and Two Bidders
We begin the analysis with two bidders and then generalize the

insight to many bidders.

PROPOSITION 3.1 (INDEPENDENT AND CALIBRATED SIGNALLING).
In a two-bidder environment, the expected revenue of an independent
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and calibrated information structure cannot exceed the one from no-
disclosure.

Proor. We start by computing the expected revenue given sig-
nals s; and sy. If v1s; > vysy, then the revenue can be written

as:
V252
E|r - 22
S1

where the second equality follows from the independence of the
signaling scheme and the third equality follows from calibration.
Therefore, we can write the expected revenue as:

V282

81,32] =E[r1ls1,s2] -

V282

VS
=E[rls1] - —= =s1-
S1

- = U282,
S1

REv = E[ min v;s;] < min E[v;s;]

ie{1,2} ie{1,2}
= min v; E[s;] = min v; E[r;],
ie{1,2} ie{1,2}

where the first inequality follows from Jensen’s inequality and the
concavity of the minimum. The last equality follows from calibra-
tion. Finally, note that min(v; E[r1], v2 E[r2]) is the revenue from
no-disclosure. O

We have thus shown that full-disclosure can never revenue-
dominate no-disclosure. We next show that generically full-disclosure
is, in fact, strictly revenue-dominated by no-disclosure.

COROLLARY 3.2 (ZERO VS. COMPLETE INFORMATION DISCLOSURE).
In the two-bidder environment, if both viry > vary and viry < vary
occur with positive probability, then the revenue from no-disclosure
strictly dominates the revenue from full-disclosure.

Proor. If both events v1r; > varg and v1ry < vary occur with
positive probability, then Jensen’s inequality holds with a strict
inequality E[min(viry, v2r2)] < min(E[vqr1], E[varz]) in the previ-
ous proof. O

The argument suggests that the revenue dominance result does
not extend to more than two bidders. With more than two bidders,
the smaller of the two highest realizations determines the price, and
the expectation of the smaller of the two highest is now larger than
the unconditional expectation of the second highest click-through
rate.

3.2 Independent Signals with Many Bidders

Indeed, the power of independent signalling is much improved in
the presence of competition, and we now consider the case of more
than two bidders, n > 2. We show by example that an independent
symmetric-calibration signal can improve the revenue, and thus
partial revelation is better than no- or full-disclosure.

Consider a symmetric three-bidder environment with v = vp =
v3 = 1. For each bidder i let r; = 0 with probability 2/3, and
ri = 1 with probability 1/3. Moreover, assume that rq, r; and r3 are
independent. It is simple to check that full revelation has revenue
7/27 and no-revelation has revenue 9/27. This can be improved by
the following signaling scheme with partial bundling:

The revenue of partial disclosure is 4/9 whenever at least two of
the bidders have the high signal, which happens with probability
1-(1/4)> — 3(1/4)%(3/4) = 27/32. Hence, the overall revenue of
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Table 2: Partial bundling

Si
i =0 i =4/9
ri Si Si /
ri=0 1/4 5/12
ri=1 0 1/3

this partial disclosure scheme is 3/8, which dominates both full-
disclosure and no-disclosure.

Instead of trying to optimize for the optimal independent in-
formation structure, we will move to the more powerful model of
correlated information structures in the next section.

The results here mirror earlier results by Board [6], who consid-
ers an ascending auction in a private value setting without click-
through rates. In his analysis, he restricts attention to independent
signals and establishes that with two bidders, the seller’s revenue
is smaller with than without information disclosure. He further
shows that in a symmetric model, as the number of bidders be-
come arbitrarily large, complete information disclosure eventually
revenue-dominates zero information disclosure.

4 CORRELATED STRUCTURES IN
SYMMETRIC ENVIRONMENTS

We obtain a much stronger result if we allow the information struc-
ture to be correlated across bidders. The information flow allows
influence over the level of competition to some extent. This allows
us to conflate auction items and restore some market thickness (see
Levin and Milgrom [22]).

4.1 A First Example: Flipping the Square

To showcase the power of correlated information structures, we
start with an example where the optimal structure is rather coun-
terintuitive. Consider two bidders with values v; = v, = 1 and
independent click-through rates distributed uniformly in {%, 1}. Or
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by the off-diagonal pairs (1/2,1) and (1, 1/2) that are mapped into
order-preserving signals with probability 1, (3/4 — €,3/4 + €) and
(3/4 + €,3/4 — ¢€), respectively. The € perturbation in the mapping
of the diagonal pairs then achieves the ordering of the signals.

Figure 1: Depiction of the “flipping the square” structure
(with e-flows omitted).

We notice the click-through signals s; maintain the efficient
ranking of the alternatives, and thus guarantee an efficient outcome
in the auction. The revenue in the auction is given by:

3 3
1 1 1 7€ 1 7€ 1 21 — 4e 7
_._+_‘4 +_.4 + - = :——O(e)’
4 2 4 %+6 4 %+6 4 24+32¢ 8

which means that almost the entire surplus is extracted. The auction
uses a uniform tie-breaking rule, thus allocating the object with
equal probability if the signals are equal across the bidders.

4.2 A Second Example: Dispersion Along the
Diagonal

The second example maintains symmetry across the bidders but has
correlated click-through rates. The resulting information structure
is more subtle, reflecting the need to balance information neces-
sary to support an efficient allocation with information to support
competition.

We present the construction, which we refer to as “dispersion
along the diagonal,” for a small number of signals. Our main result
in this section (Theorem 4.1) builds on a generalization of this

rather: the vector r is uniformly distributed in {(3, 1), (%, 1), (1, %), (1,1)}. construction to more signals (see Lemma 4.2 and Figure 2).

With an independent signaling scheme, the opz)tifnal information
structure is no-disclosure, which yields revenue equal to 3/4. With
a correlated signaling scheme, one can obtain arbitrarily close to
7/8 revenue, which is optimal since it corresponds to the welfare
E[max; v;r;] of the optimal allocation.

The information structure is the “flipping the square” structure
described in Table 1. To see that this information structure is cali-
brated, observe that s; = 3/4 — € with probability 1/2. This proba-
bility event can be decomposed in two: with probability 1/4 + € we
output this signal with r; = 1/2, and with the remaining 1/4 — €
probability we have r; = 1. Hence:

_(1/4+e)-1/2+(1/4-€) 1
- 1/2

E[r|s1 = 3/4 - €] =3/4—e.
The counterintuitive nature of this mapping can best be seen
when depicted as in Figure 1. We map the CTRs in {1/2,1} to
two values {3/4 — €,3/4 + €} around the mean. The symmetric
pairs, (1/2,1/2) and (1, 1), are mapped with high probability into
symmetric, but order-reversed pairs, (3/4 + €,3/4 + €) and (3/4 —
€,3/4 — €), respectively. The calibration is nonetheless achieved
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Consider again two bidders with values v; = vy = 1 and click-
through rates either (1/2, 1) or (1, 1/2), with probability 1/2 each.
The CTRs are thus perfectly negatively correlated and the social
surplus is 1. The revenue under full-disclosure would be 1/2, and
under no-disclosure it would be 3/4. With no-disclosure, the price-
per-click is always competitive, as E [r1] /E [r2] = 1, but the auction
fails to lead to the efficient allocation with probability 1/2. With the
following information flow, we attain a revenue of 0.79 > 3/4: This

Table 3: Dispersion along the diagonal

N

6 6 6 3y| (3 6 3 15y | (15 3y | (15 15
(15> 19) ‘ (10-7) ‘ (3> 10) ‘ (3 13) ‘ (3.9 ‘ (13- 13)

information flow lowers the probability of an inefficient allocation
from 1/2 to 1/5 and attains an equilibrium price closer to 1. In
particular,

r

o uiny
=G

1 2 2
(.3 is 0

i ©
i ©
|
«l

ri

rj

Si

Sj

. 1 .
min =5 < ¢ =min

(ST
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The information flow in this example generates some symmetric
click-through signals in the absence of symmetric click-through
rates. The symmetric signals in the presence of asymmetric rates
create some inefficiency in the allocation. But the symmetric click-
through rates create the basis for signals that are adjacent, in the
sense that they are nearby, yet signal the correct ranking of the un-
derlying click-through rates. If we increase the numbers of signals
in the construction of the information flow, we can then reduce
the revenue loss and bring it arbitrarily close to zero. This is the
following content of Lemma 4.2.

4.3 Optimal Information Structure

We can now state and establish the first main result, showing that
for any n-bidder symmetric environment it is possible to construct
an information structure extracting revenue that is arbitrarily close
to the optimal surplus.

THEOREM 4.1 (FuLL SURPLUS EXTRACTION IN SYMMETRIC ENVI-
RONMENTS). For every symmetric n-bidder environment, there exists
a randomized and calibrated correlated information structure whose
revenue is arbitrarily close to full surplus extraction.

As a building block, we will consider the special case of a sym-
metric environment of two bidders where v1 = v9 = v and

Pr[r = (L,h)] =Pr[r = (h, )] =1/2,

for two values 0 < I < h < 1. We will then reduce the general
symmetric case to a composition of information structures for pairs
(h,1). The optimal information structure will be to disperse the
signals along the diagonal as depicted in Figure 2. The following
lemma, Lemma 4.2, is the technical heart of the paper.

Figure 2: Depiction of the “dispersion along the diagonal”
structure for Lemma 4.2.

(Ih)

(h.D)

LEMMA 4.2 (DISPERSION ALONG THE DiaGoNAL). Consider the
symmetric setting of two bidders with normalized valuesvi = v3 = v
where the click-through rate vector is either (I, h) or (h, 1), each with
probability 1/2. Then, for every € > 0, there is a calibrated, correlated
information structure with revenue vh — €.

Proor oF LEMMA 4.2. To prove the lemma, we construct an in-
formation structure with a finite set of signals, S C [0, 1]. The key
to this construction is to (i) properly select the signal set S, and (ii)
come up with a discretized and calibrated information structure
x(r,s) for r € {(I, h), (h,1)} and s € S that achieves almost optimal
revenue.

We consider the following construction with parameters § > 0
and xp > 0 to be determined later:
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(1) SignalsetS = {s_g,...,50,51,...,5K}, where sp = (I+h)/2,
sp=s0-(1+68)for-K <k <K,

2h
K = {Iog(lﬂg) mJ - 1;

(2) x((lv h)’ (Sk,Sk+1)) = x((h’ l)’ (Sk+1,8k)) = Xk for-K <k <

K — 1, where
h- h-
= Sk xk—1:x01_[ sK,whenlSkSK—l,
sp—1 oy Sk -1
Sk+1 — ¢ l 41 — |
- = ,when —K <k < -1;
X = h—sk X “Xgg1 = X0 l—[ —— when
(3) x((L, h), (s-k»s-k)) = x((h,]), (s-k,5-K)) = y, where
S_K -1
= — . X_x.
Yo lvh-2g 7K
(4) x((L h), (s> sK)) = x((h, 1), (s, 5K )) = z, where
h— SK
= XK_1.
g —1-h K71

In the rest of the proof, we first verify that the construction is a
valid calibrated and correlated information structure, then show
that by choosing a sufficiently small §, the revenue is at least h — €.

Step 1: We verify that the signals are valid probabilities, i.e., S C [0, 1].

For sufficiently small % >0>0,K-1= |_10g(1+5) %J -
1>1.Forall-K < k <K,

l 1 2 1
se<sk =K < BB e = e <h<
sk2sg =B (1)K > BRI (145
>4 (148)>1>0.

Therefore, S C [0, 1] is a valid finite signal space.
Step 2: We verify that the parameters xy., y, z are non-negative.

Since si € (I, h), by the construction of xj for k # 0, x /xp > 0.
For y and z, since s_g < sop = (I + h)/2 < sx,

_ _s.x=L _ (skx-=DJ2
YI*K = Gt g = Teh=s i > %

_ _h-sxg _ _(h=sk)/2
2/XK-1 = 350k = s=aenyz > O

Therefore, as long as xo > 0, all probability terms are positive.
Step 3: We verify that we can choose x¢ such that:

DUl h),5) = Y x((hD),s) = 1/2

S
As we showed, the coefficients, xi /xo, y/xo, and z/xq are all

positive and fixed. Then with xj defined below,
X0 = % . > 0,

we have Y, x((I, h),s) =

1
y/xo+z/Xo+ Xk Xk /X0

Sex((hD),s)=y+z+ Y xp =1/2.

Step 4: We check that the calibration constraints are satisfied.
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For —-K + 1 < k < K — 1, we verify the calibration constraint for
sending signal sy to bidder 1 as follows:

2ses x((LR), (sx,9)) - (I = sg) + x((h, D), (sk,8)) - (h = s)
=xp (L= sp) + xp—q - (h = sg)

h—
: Skf’f (= sg) +xg_g - (h—s,) = 0.

= Xk-1

When sending signal sk to bidder 1:

2ses x((LR), (K, 9)) - (I = sk) + x((h, 1), (s ) - (h = sK)
z-(l-sg)+xg_1-(h=sg)+z-(h-sk)

h—
soton Xk-1 (L= s) + xg—1 - (h = s)

st xir - (h =) = 0.

+ 2sg—1—

When sending signal s_g to bidder 1:

Zses x((LA), (s-k»9)) - (I = s—x) + x((h, 1), (s-K,9)) - (h = s_K)
=xg-(-s-g)+y-(h-s_x)+y-(h—s_g)
i

=5 (=50 + 1

— Xk (I=s5k)

S,K—I

t hezs

-x_g - (h—s_g)=0.

As the construction is symmetric for bidder 1 and 2, we omit the
verification of the calibration constraints for bidder 2.

Step 5: We bound the revenue.

Note that when s € {(sg, Sk+1)> (Sk+1» sk)}kK:__lK, the auction allo-
cates the item efficiently and the auctioneer extracts almost all the
surplus. More specifically, when s = (si, sg.41) for CTR profile (I, h),
or s = (Sg41,5k) for CTR profile (h,[), the conditional expected
revenue is

he 3 =h/(1+6) > h—€/2, when 6 < 7.

Therefore, we remain to prove that the probability of not extract-
ing revenue h/(1 + 0) is sufficiently small, i.e., y,z < €/8.

Recall that h > sk - (1 + §), with sufficiently small § < (h —
D/2(h +1),

h— sk h—h/(1+9)
B e Tk = K i1 8) — I —h
Sh 2h 2h
=K T s e SO ol K <O Ty

which is less than €/8 when § < % - €.

Similarly, s_x = (1+8)K - (1+h)/2 < Bh - (1+8)-(1+h)/2 <
(14 8)(h + 31)/4, with sufficiently small § < (h —1)/2(h + 3I),

sk —1 (1+8)h+30)/4—1
I+h-2s_g T+h—(1+08)(h+3l)2
h=1+6-(h+3]) 3
K oh—i—25-(h+3) 2 K

Yy=x_K- < X-K

It suffices to show x_g < €/12 with a sufficiently small §. Note
thats_g < -+ <s_;1 <sgp=({+h)/2 <s1 <--+ < sg,we then
have xo > x; > -+ > xg_1and x9 > x_1 > --- > x_g. Then

1/2:y+z+Zf:__1ka >(K+1) x_g.
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Therefore, when 6 < % -log % x_g can be bounded by €/12:

1
x_g <1/2(K+1) < Z0g 1702/ + 1)
_ log(1+9) 1)
"~ 2log(2h/(l + h)) < 2log(2h/(1 + h))

In summary, for any given € > 0, we can conclude the proof
with a sufficiently small §:
h-1
3(h+1)

€

h—e = h/(1+68) > h-€/2,
h-1 h-1
2(h+1)" 16h

&E-O i —_— <€/8 [m]
2h+3)6 Blyn) Y '

b <

— K-12>1,

<

5<min( -e):>z<e/8,

5<min(

Lemma 4.2 is stated for a very special case within the class of
symmetric environments. Both bidders have value 1, each bidder has
only one of two possible click-through rates, and the click-through
rates are perfectly negatively correlated. However, the result can
now be extended immediately to a general symmetric environment.
The extension is based on two simple observations:

COROLLARY 4.3 (HigH-Low PAIRING). Consider n bidders with
normalized values v; = v and click-through rates uniformly dis-
tributed between two profiles where r and r’ are such for two bidders
i,j € [n] that we have: r; = rJf >rj=r]2 rk,r]’c foranyk # i,j.
Then, for any € > 0 there is a calibrated, correlated information
structure with revenue vr; — €.

The next lemma shows that information structures can be com-
posed, in the sense that if we decompose a distribution of click-
through rates and design an information structure for each of them,
we can later compose them without loss in calibration.

LEMMA 4.4 (SIGNAL COMPOSITION). Let G’ and G”' be distribu-
tions over click-through rate profiles r of n bidders and let ¥’ and
F"" be corresponding calibrated information structures given by joint
distributions over vector pairs (r, s) such that the r-marginals are G’
and G"' respectively.

Let G be the distribution obtained by sampling from G’ with
probability A, and G"" with probability 1 — A. Define a distribution &
similarly. Then, F is a calibrated information structure for G and

REV(F) = AREV(F') + (1 — )ReV(F"").
Combining the previous lemmas, we can prove Theorem 4.1:

Proor oF THEOREM 4.1. Consider an n-bidder symmetric envi-
ronment and assume for simplicity that the distribution over CTRs
is discrete. For every profile of CTRs where bidder i has the highest
CTR r; and bidder j has the second highest CTR r; (breaking ties
lexicographically), we can pair with a profile where the CTRs of
i and j are reversed. This leads to a decomposition of the original
distribution of CTRs into distributions with support two of the form
studied in Corollary 4.3. The results follow from applying Corollary
4.3 together with the composition technique in Lemma 4.4. O
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It turns out that the idea behind the construction can be gener-
alized to work under the weaker requirement of equal means. We
refer to the full version for a discussion of this generalization.

5 CORRELATED STRUCTURES BEYOND
SYMMETRIC ENVIRONMENTS

In this section, we pursue a more limited objective for general
asymmetric environments. To this end we consider an environment
in which there are two bidders with values v;1 = vy = 1, and
two possible click-through rate configurations, namely (r1, r2) and
(r{,ry). Without loss of generality, we can always label the identities
of the bidders and the click-through rates so that:

ry = ri,ra,ry.
The prior probability of the pair (r1,72) is p, the other pair (r{, ;)
has the complementary probability 1 —p. Let g = p-r1 +(1-p)-r{
and gz = p - r2 + (1 - p) - r; be the expected click-through rates of
bidder 1 and bidder 2, respectively.

5.1 The Disclosure Lattice

Different information structures offer different levels of informa-
tiveness, and in fact form a lattice (see Figure 3). No disclosure is
the minimal, and full disclosure the maximal policy. Together, they
form the set of extremal policies. We refer to every policy that is
not extremal as moderate, and to any policy that does not consist
of a combination of full- or no-disclosure as interior.

Figure 3: Disclosure lattice. The label XY denotes the policies
of bidder 1 and bidder 2. F = full, P = partial, and N = no.

SN
/ FP\PP/PF \ y
\ PN/ \NP /
AV

5.2 Extremal Structures are Dominated

FN

The central result of this section establishes that optimal informa-
tion design remains a powerful instrument to increase revenue,
irrespective of the joint distribution of the click-through rates.

THEOREM 5.1 (MODERATE INFORMATION STRUCTURES). There
always exists a moderate information structure that strictly dominates

any extremal information structure.
Our proof of this result, which we defer to the full version, pro-
ceeds by distinguishing the following cases:
Uniform Winner: r{ > r, Variable Winner: r] < rj
Congruent Loser: ry > ré Incongruent Loser: ry < ré

Weak Competition: ry < pq Strong Competition: ry > 11
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5.3 Moderate vs. Interior Structures

We highlight two building blocks in the proof of Theorem 5.1. Our
first result is for the uniform winner congruent loser, and weak
competition case. For this setting, we can identify the uniquely
optimal information structure. Namely, it is optimal to bundle the
click-through rates of the winner and to unbundle the click-through
rates of the loser. The bundling of the click-through rates of the
winner generates more competitive prices, and hence higher rev-
enue for the auctioneer. Thus, the optimal information structure is
moderate, but not interior.

THEOREM 5.2 (UNIFORM WINNER, CONGRUENT LOSER, WEAK
COMPETITION). The optimal information structure for the uniform
winner, congruent loser, and weak competition case leaves the loser
unbundled and fully bundles the winner.

We provide the proof of this result, which relies on Chebyshev’s
sum inequality and nicely demonstrates the gist of our results for
the asymmetric setting in Appendix C.

For the next result we stay with the uniform winner setting, but
now flip the ranking of click-through rates across click-through
realizations. Thus, we consider the case of the incongruent loser.
We can verify that the competition is guaranteed to be weak in
the above sense. Now, we can show that an interior information
structure will always be the optimal information structure. In con-
trast, the moderate information structure that was optimal in the
congruent setting can be shown to perform worse than either of
the extremal information structures.

PrOPOSITION 5.3 (UNIFORM WINNER AND INCONGRUENT LOSER).
With a uniform winner and incongruent loser, there is always an inte-
rior information structure that is revenue-improving over all exterior
information structures. In particular, partially bundling the winner
and the loser is revenue-improving, relative to all exterior information
structures.

These two cases demonstrate how rich the optimal structures
in the asymmetric setting can be, but they also emphasize that
the same guiding principles that governed the optimal policy in
symmetric settings are in play. Namely, as in the symmetric setting,
the optimal schemes that we identify are not extremal, maintain
efficiency, and seek to strengthen competition through calibrated
signals.

6 CONCLUSION

The disclosure policy of the auctioneer regarding the click-through
rates influences the distribution of bids, holding fixed the distri-
bution of preferences among the bidders. By disclosing less, the
auctioneer in effect bundles certain features, or as Levin and Mil-
grom [22] suggest, conflates features of the viewer. The process of
conflation influences the thickness or thinness of the market—in
other words, the strength of the competition.

In our analysis, conflation was achieved by bundling the infor-
mation regarding click-through rates in an optimal manner. The
optimal information structure conveys just enough information so
that the resulting bidding process ranks the bidders according to the
true social value of each bidder. At the same time, the information
is released only partially to maintain bids as close as possible to
a perfectly competitive level. We show that this requires that the
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information is provided to each bidder as private information at
an individual level, rather than as public information on a market
level.
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A DETAILED LITERATURE REVIEW

Bergemann and Pesendorfer [5] and Es6 and Szentes [12] are among
the first to investigate the design of optimal information structure
in an auction setting. They consider an auction environment with
n bidders and independent private values where the seller jointly
optimizes auction and information policies. A number of contribu-
tions have recently analyzed the optimal information structure for
a given mechanism or auction format. Badanidiyuru et al. [2], Emek
et al. [11], Fu et al. [14] consider a second-price auction where
the information about the valuation of bidder i is partially shared
between the bidder and the platform. Emek et al. [11] study the
computational problem of the revenue-optimal public information
structure. Badanidiyuru et al. [2] prove that in order to guarantee a
constant approximation to the optimal revenue in this case, the size
of the information structure needs to be exponentially large. Fu et al.
[14] provide examples where partial information disclosure may
yield higher expected revenue than both full- and no-disclosure
in second price auctions with reserves. Hummel and McAfee [18]
study a wide range of position auctions, including both GSP and
VCG auctions, with or without reserve prices. They consider differ-
ent orders between realizing values and submitting bids, which are
essentially equivalent to full-disclosure (if realize-value-then-bid)
and no-disclosure (if bid-then-realize-value).

Given the randomness of the click-through rates an earlier liter-
ature noticed that a systematic modification of the click-through
rates may positively impact the revenue of the click-through auc-
tion. The adjusted click-through rates in Lahaie and Pennock [21]
and Mahdian and Sundararajan [23] are not calibrated, as the true
click-through rate is "squashed" or "boosted" for the purpose of
ranking. This suggests a natural distinction between the analysis
of optimal calibrated and non-calibrated information structures.

In the current setting, we explicitly allow for private information
disclosure, rather than public information disclosure. By contrast,
in most of the preceding literature the information disclosure was
either public, as in Arieli and Babichenko [1], or independent across
bidders, as in Bergemann and Pesendorfer [5]. Here, we are allow
for, and importantly show the optimality of private and correlated
information structures. The role of correlated signals for the rev-
enue maximizing mechanism has been observed earlier in Cremer
and McLean [8, 9]. They establish that correlation in the private
values among bidders can be used in an optimal mechanism to ex-
tract the full surplus. While our results also highlight the increased
power of correlated signals relative to independent signals, the
setting and arguments differ substantially. In Cremer and McLean
[8, 9], the auctioneer is free to choose the optimal mechanism,
while we take the generalized second-price auction as given. We
choose the information structure so that the signals are sufficiently
informative, yet yield competitive interim expectations. Thus, the
correlation of the signals achieves very different objectives in these
two settings, and accordingly the construction differs significantly.
In particular, Cremer and McLean [8, 9] take as given the signals
and then design the optimal transfer function. We take as given the
transfer function, namely the payment rules, and then design the
signals to maintain competition.

Hartline et al. [17] suggest a class of dashboard mechanism that

shares some of the themes with our contribution in a very distinct
setting. They offer dashboards as an instrument for platforms to
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offer bid recommendation in mechanism when truthtelling does
not form an equilibrium strategy. The leading examples are first
price auction and all pay auctions. The dashboard converts the
initial information of the bidders into bid recommendation and then
asks which allocation and bid recommendations lead to obedient
behavior by the bidders.

B PROOFS OMITTED FROM SECTION 4

PrRoOOF OF COROLLARY 4.3. Treat bidders i and j as the high/low
pair in Lemma 4.2 and do full-disclosure for any other bidder. The
signal is still calibrated and only i and j win the item since their
signals will be above the signals of any other bidder. Hence, the
revenue bound in Lemma 4.2 still holds. O

ProoOF oF LEMMA 4.4. The r-marginal of ¥ is clearly G and it
holds that REv(F) = AREV(F”) + (1 — A)REV(F"’). The only non-
trivial part is to check that ¥ is calibrated, which we do below:
Eglril{si —s;}]

Elrils; = M= ——— =
?jrz Isi = s;] Pry(s; = 5))
B AB@[rit{s; —s{}] + (1 = ) Egn[ri1{s; — 5]}
- APrg(si = s)) + (1= ) Progn(s; = )
_ ABp[si1{s; = s;}] + (1 = ) Egn[s{1{s; — s]}] _

APrg(si = s7) + (1 = D) Prgn(si = s;) i
This concludes the proof. O

C PROOF OF THEOREM 5.2

We provide the proof of Theorem 5.2. The main tool in the proof is
the following lemma.

LEmMA C.1 (CHEBYSHEV’S SUM INEQUALITY [16]). Given two se-
quencesay > dz > ...ap > 0andby > by > ...by > 0 that are
monotone in the same direction, and a set of non-negative weights
w;i > 0 (not necessarily monotone), then:

(S ()2 (S [

If{a;} and {b;} sequences are monotone in different directions (one
increasing and one decreasing), the inequality holds in the opposite
direction.

(Aside: The probabilistic interpretation of Lemma C.1 is that
if A and B are two positively-correlated random variables, then
E[AB] > E[A] - E[B].)

Proor or THEOREM 5.2. We will start with a generic solution
x(r,s) and show that using two applications of Chebyshev’s sum
inequality (Lemma C.1) we can bound it with respect to

4

r2 ;T2
R aep) 2
p I p)-r e

®)

which is the revenue obtained from leaving the loser unbundled
and bundling the winner. We will proceed in three steps.

Step 1: Bounding the revenue. Consider any information structure
defined by x(r, s). For each signal s = (s1, s2), the revenue in the
event that bidder 1 wins is (x(r, s)r1 + x(r’,s)r{) - s2/s1. If bidder 2
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wins, the revenue is (x(r, s)ry + x(r’, s)rz’) -51/s2. In the second case,
observe that since s; > s; we have z—; <1< i—z and since we are
in the uniform winner case, we know that x(r, s)r; + x(r’,s)r{ =
x(r, s)rs + x(r’, s)ré. Hence, we can bound:

s s
(x(r, )ra + x(r’, s)ry) - 2. (x(r, s)r1 + x(r’, s)r]) - —2,
S2 S1

and write:
s
REV < Z(x(r, s)ry + x(r’, s)ry) - 2
S1
S

Step 2: Unbundling the loser. Substituting s, by the calibration con-
straint we obtain:

Rev < ; ; (x(r, (31,52))% + x(r',(sl,sz)):—i)
. D5, x(r, (s1,82))r2 + x(r’, (51, 52))r75
Zsl x(r, (31, 52) + x(r’v (319 32))

< 33 st oo™ e, mm%) ,

S22 51

where the second inequality follows from Chebyshev’s sum inequal-
ity with
’ ’

I nnh "1
{ai}i = (—1,

51
Congruence implies that the sequence {b;} is sorted. The sequence
{a;} is sorted because rl' < s% <...< sy <ry,and hence Z—i >1>
Z—i. Now that the loser is unbundled, there is no longer any need to
keep track of sy. To simplify notation we will define:

F(ros1) = Y x(r, (s1,52)
S2

and re-write our current bound on the objective as:

x(r,s1)rira
REv < Z

S1

+ x(r’, sl)rl’rz’

S1

..,—n,—,...,—n), {bi}i =(ra,....r2,1p. . 1p).
1 1
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Step 3: Bundling the winner. We will replace s; according to the
calibration constraint in the expression above and replace:

B x(r,s1)
Als1) = x(r,s1) + x(r’, s1)

We obtain:

REvV < Z(i(r,sl)rlrz +x(r', s1)riry) -

sy = — XUhs)
and A1) = ) 7

#(r,s1) + X(r’, 51)

r1X(r,s1) + r{X(r’, s1)

- (%(r,s1) + x(r’, 51)).

J
Asp)rire + A (s))r{ry
- zjl Alstrt + A (sp)r{
Now we can apply Chebyshev’s sum inequality one more time
with:
A(s)rire + A (s)rqr
Aspry + M (spry

w(s1) = X(r, s1) + x(r’, s1).

a(sy) = b(s1) = Als)ry + A (s)ry,

Note that we can reorder signals s; in any order we wish. Let us
reorder the signals so that A(s1) is increasing. This immediately
implies that b(s1) is increasing. Namely, b(s;) = A(s))r1 + (1 —
A(s1))r] = A(s1)(r1 — r{) + r{. For a(s1), we can take the derivative
in A,

ry-ry-(r2—ry)

(nA-r{(1-2))?
Thus, a(s1) is also increasing in A, allowing us to apply the inequality
to obtain:

> wisatsy) < (Z wsi)a(s)b(s1)

S1 S1

d
aa(sl) =

s, wis1)
) s, wls1)b(s1)’
which translates to (since Y., w(s1) = 1):
D5, X(r,s)rire + X(r', s1)r{r;

Rev < = =
Ds, X(r,s)ry + x(r/, s)ry

7 7

N T N r T r

= Z x(r, sl)r1—2 + x(r',sl)rl’—2 = pr1—2 +(1 —p)rl’—z.
& 1 I 1 I

This is the revenue obtained by bundling the winner and unbundling
the loser as desired. O
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