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ABSTRACT
We analyze the optimal information design in a click-through auc-

tion with stochastic click-through rates and known valuations per

click. The auctioneer takes as given the auction rule of the click-

through auction, namely the generalized second-price auction. Yet,

the auctioneer can design the information flow regarding the click-

through rates among the bidders. We require that the information

structure to be calibrated in the learning sense. With this constraint,

the auction needs to rank the ads by a product of the value and a

calibrated prediction of the click-through rates. The task of design-

ing an optimal information structure is thus reduced to the task of

designing an optimal calibrated prediction.

We show that in a symmetric setting with uncertainty about the

click-through rates, the optimal information structure attains both

social efficiency and surplus extraction. The optimal information

structure requires private (rather than public) signals to the bidders.

It also requires correlated (rather than independent) signals, even

when the underlying uncertainty regarding the click-through rates

is independent. Beyond symmetric settings, we show that the opti-

mal information structure requires partial information disclosure,

and achieves only partial surplus extraction.
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1 INTRODUCTION
In the world of digital advertising the allocation mechanism is

frequently a pay-per-click auction. Hence, ad systems are a combi-

nation of an auction mechanism together with a machine learning

model predicting click probabilities. The question of learning click-

through rates has been analyzed extensively in terms of accuracy

and scalability [e.g., 15, 24]. In this paper we take a different perspec-

tive and analyze how different machine learning models influence

the performance of the auction in terms of revenue-efficiency trade-

offs.

1.1 Our Approach and Results
Our focus in this paper is on how the click-through-rate model

influences ranking and pricing, instead of focusing on accuracy

alone. We approach this question by keeping the auction mechan-

ics as simple as possible: a single-slot pay-per-click auction where

click-through-rates are stochastic, correlated and bidder-dependent.

What we will vary instead, will be the choice of the machine learn-

ing model. In other words, among different calibrated predictors for

click-through rates, which of them leads to higher revenue?

We will borrow both the terminology and the technical tools

from information design to tackle this question [e.g., 4]. In that con-

text, we will refer to a click-through-rate model as an information

structure or an information policy. We will enforce the constraint

that the model is calibrated (in the sense of Foster and Vohra [13]).

In other words, the expected click-through rate given a prediction

of the model is equal to the prediction itself. Among all possible

information policies, the complete information policy and the zero

information policy are both leading examples, as well as extremal

information policies. Under a complete information policy, the

seller completely discloses all information to the bidders. It is thus

as if the bidders were in a complete information environment. By

contrast, in a zero information policy the seller does not disclose

any information about the realized click-through rates. In conse-

quence, each bidder acts as if the realized click-through rate is

always equal to the ex ante expected click-through rate. These two

extremal information policies have dramatically different payoff

implications.

With stochastic click-through rates, social efficiency and revenue

will depend on which information about the click-through rates is

disclosed. With complete information, the resulting allocation is

always efficient. But as the competitive position of each bidder can

vary across the realized click-through rates, the resulting revenue

of the seller can be low due to weak competition. By contrast,

with zero information about the click-through rates, the resulting

allocation will typically fail to be socially efficient. As the bidding
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behavior cannot reflect any information about the click-through

rates, the socially relevant information fails to be reflected in the

auction outcome. Yet, as the bidding reflects only the expected click-

through rate, and hence only the mean of the click-through rate

(and not the higher moments of the click-through distribution), the

resulting bids will have zero variance, and thus be more competitive.

Our first result, Proposition 3.1, shows that a statistically inde-

pendent information structure can never improve the revenue over

the no-disclosure information policy. Our second result, Corollary

3.2, shows that with any level of uncertainty in the click-through

rates, the seller strictly prefers no-disclosure to full-disclosure. Thus,

the seller always favors competition over information disclosure.

We then ask whether there exists an improved information policy

that can realign social efficiency with the revenue of the seller.

Our main result, Theorem 4.1, establishes that a calibrated and

correlated information policy can completely align social efficiency

and revenue maximization. In particular, when the common prior

distribution over the click-through rates is symmetric across the

bidders, we can then explicitly construct an information policy

such that the socially efficient allocation is always realized and

the competition between the bidder levels the information rent

of the bidders to the ex-ante level. Given the symmetry of the

common prior distribution, this implies that the bidders compete

their residual surplus down to zero.

We also provide an explicit construction of the correlated infor-

mation structure (or signalling scheme). Interestingly, the optimal

information structure is an interior information structure; that is, it

is neither zero nor complete information disclosure. The informa-

tion structure balances two conditions that are necessary to attain

the socially efficient allocation while maintaining competition: (i)

it provides sufficient information to rank the alternative allocations

according to social efficiency, and (ii) it limits the variance in the

posterior beliefs of the competing bidders so that their equilibrium

bids remain arbitrarily close to support competitive bids.

In the full version, we show that this result extends to a set-

ting with two bidders under a weak notion of ex-ante symmetry:

the socially efficient allocation and revenue maximization remain

perfectly aligned as long as the expected click-through rate is equal-

ized across bidders, even when the support of the ex-post realized

click-through rates can vary across bidders.

Finally, in Theorem 5.1, we show that an interior information

structure remains part of the optimal information design with sto-

chastic click-through rates, even when the expected click-through

rates across the bidders differ, and therefore one bidder is stronger

from an ex-ante perspective. In particular, the optimal information

structure releases less information about the winning bidder than

about the losing bidder. This suggests that the optimal information

structure in an asymmetric auction seeks to strengthen the weak

bidder with additional information, relative to the strong bidder.

The optimality of a noisy information structure has significant

implications in the world of digital advertising. Since the opti-

mal information structure remains noisy, better click-through-rate

predictions–achieved through improved learning–may not neces-

sarily lead to better auction results. Thus, there might be limits

to the returns of more elaborate machine learning algorithms to

inform the prediction problem.

1.2 Discussion
Throughout this paper we maintain the simplifying assumption

that the valuation of each bidder is known. Thus there is complete

information regarding the value of each bidder. This setting is

commonly adopted in the analysis of sponsored search auctions,

see notably Edelman et al. [10] and Varian [25]. In our analysis,

this means that we can assume truth-telling by the bidders, and

thus the bids of the agents always equal their values. The complete

information assumption allows us to focus the analysis entirely on

the optimal information policy regarding click-through rates.

A significant next step would be to embed the current analysis

into an environment with incomplete information regarding the

values of the bidders. We would then be in a setting where both

the auctioneer and bidders have private information. A general

analysis with two-sided private information remains a wide-open

issue, even in a setting with a single bidder. Currently, progress

is being made only in specific settings, either binary actions and

states or multiplicative separable settings (see Kolotilin et al. [20]

and Candogan and Strack [7], respectively).

In our specific setting, we would need to augment the analysis

with truth-telling constraints by the bidders. We expect that these

incentive constraints would weaken the power of the information

design without eliminating it completely. In particular, we expect

that the bidders’ surplus would then only be partially extracted.

We also maintain the simplifying assumption that there is only

a single position to be allocated. This allows us to describe the dis-

tribution of the information among two bidders, the winning and

losing bidder. With many positions, the resulting information de-

sign would have to balance additional constraints that may impose

similar restrictions on surplus extraction as the introduction of pri-

vate information discussed above. Yet, even with a single position,

the click-through auction yields distinct outcomes from the second

price auction. In particular, in the click-through auction, the rev-

enue (and the bidders’ net surplus) are impacted by the correlation

between interim expected click-through rates and ex post realized

click-through rates. By contrast, in the second price auction, it is

only the interim expected rates that matter. It is the richer and

subtle interaction between interim and ex post click-through rates

that allows the click-through auction to align revenue and socially

efficiency more strongly.

A significant advance in our information design problem is to

allow for multi-dimensional and private information in a strate-

gic setting. By contrast, the most recent result in the design of

optimal information structure requires one-dimensional, or equiv-

alently symmetric, solutions to optimal design (see Kleiner et al.

[19] and Bergemann et al. [3]). A general approach to optimal

multi-dimensional information design in strategic settings is again

a wide-open question. In the current context, we could and do make

progress by insights specific to the auction setting.

1.3 Further Related Work
A recent strand of literature in algorithmic mechanism design has

considered different aspects of signalling and targeting in ad auc-

tions [e.g., 2, 3, 11, 14, 18]. The main difference to our work is that

these works have focused on per-impression auctions, which are

very different from the per-click auction considered here. An earlier
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literature [21, 23] has introduced the idea of “squashing” or “boost-

ing” of click-through rates to optimize auction performance. These

papers only consider expected click-through rates and do not insist

on calibration. In our analysis, we clearly separate between the

auction mechanism, the generalized second price auction, and the

information design. The joint attainment of revenue and efficiency

is due to the information design. This distinguishes our analysis

from the full surplus extraction results of [8, 9]. There, the transfer

payments in the mechanism are exactly chosen and tailored to the

correlation of the signals to allow for surplus extraction. In particu-

lar, with positive probability the payments need to be arbitrarily

larger to achieve the results. In the generalized second price auction,

the payments are determined independent of the correlation in the

signals. Despite these constraints, our positive results show how

impactful the design of the information can be to guide the bids

and the allocations in the auction.

We provide a more detailed discussion of this and additional

related work in Appendix A.

2 MODEL
We will analyze the setting of click-through auctions where bidders

are ranked by the product of their value (expressed as a maximum

willingness-to-pay per click) and a calibrated prediction of the click-

through rates. Our main goal will be to study how to engineer such

calibrated prediction to achieve better revenue-efficiency trade-offs.

In the language of information design, we will keep the auction

format fixed and vary the information structure.

To allow us to focus on the information structure, we will work

in the full information model where each bidder i = 1, . . . ,n has a

fixed and known valuevi ≥ 0 representing their willingness-to-pay

for a click. Our central object of study will be the click-through

rates (CTRs): before the auction, a vector r = (r1, . . . , rn ) ∈ [0, 1]n

will be drawn from a joint prior distribution G, which is a multi-

dimensional distribution that may display correlation across the

bidders’ CTRs.

The click-through rates are known by the auctioneer: typically,

the platform is the one building a machine learning model to es-

timate them. The auctioneer must now decide on a score/signal

s = (s1, . . . , sn ) ∈ [0, 1]n to rank the bidders. The design space will

be to design a joint probability distribution ρ on pairs (r , s) such
that the marginal on r is G:∫

r ∈R
dG(r ) =

∫
r ∈R

∫
s
dρ(s, r ), ∀ measurable R ⊆ [0, 1]n .

This joint probability distribution will be referred as the information

structure. For notational convenience, it will be useful to assume

that bothG and ρ are discrete distributions with finite support, and

hence we can write д(r ) for the probability of a given vector r under
distribution G and x(r , s) as the probability of a pair (r , s) under
distribution ρ. With that notation, the information structure is a

function x : [0, 1]n × [0, 1]n → [0, 1] satisfying:∑
s

x(r , s) = д(r ), ∀r ∈ [0, 1]n .

Auction Mechanics. Again for simplicity, we focus on the single

slot setting where the goal of the auction is to select a single winner

i∗ ∈ [n]. The winner, assuming truthful bids, will be selected as the

bidder having the largest sivi , with a symmetric tie-breaking rule.

The winner’s cost per click is then:

pi∗ = max

j,i∗
vjsj

si∗
.

The winner only pays when there is a click, which happens with

probability ri∗ . Hence, the expected revenue from this per-click

auction is ri∗pi∗ .
Note that we are effectively operating a single-item, second-price

auction in which truth-telling is a dominant strategy equilibrium.

This is true even if the scores depend on the valuations, because

in the complete information setting we consider a bidder cannot

change signals by submitting a non-truthful bid. We therefore as-

sume truth-telling by the bidders.

Calibration. The auctioneer is restricted to ranking with an esti-

mator of the click-through rates. We require the information struc-

ture to be calibrated in the Foster-Vohra sense [13]. An information

structure is called calibrated if the posterior, given any signal real-

ization s ′i for bidder i , matches with the signal itself, i.e.,

E[ri |si = s
′
i ] = s

′
i . (1)

If the CTR and signal space is discrete, then we can write calibration

as: ∑
(r,s);si=s ′i

x(r , s) · (ri − s ′i ) = 0, ∀i, s ′i .

There are two important examples of calibrated information

structures:

• Full-disclosure: where si = ri almost surely.

• No-disclosure: where si = E[ri ] almost surely.

Since the calibration constraint is imposed on every bidder sepa-

rately, it is possible to create information structures that combine

disclosure and no-disclosure. For example, given two bidders, we

can consider an information structure where bidder 1 receives only

one signal, and the signal is equal to the ex-ante expectation of the

click-through rate, thus s1 = E[r1]; and bidder 2 receives as many

signals as click-through rates, thus s2 = r2. This forms a calibrated

information structure.

Whenever si = E[ri ] we will say that we fully bundle bidder i .
Whenever si = ri we will say that we unbundle bidder i . If neither
is the case we will say that we partially bundle the bidder.

Calibrated vs. Unbiased Estimator. The current notion of cali-

brated estimator is related but distinct to the notion of unbiased

estimator. An unbiased estimator requires thatE[si |ri ] = ri whereas
a calibrated prediction requires E[ri |si ] = si .

When predictions are used to rank candidates in an auction,

calibration is a more useful notion than unbiasedness. Suppose

pCTR is the prediction and CTR is the true value of click-through-

rates. Then, by using a calibrated model, ranking by pCTR · bid is

the same as ranking by E[CTR ·bid | pCTR]. This is why in practice

pCTR’s that are generated by a complex ML model are re-calibrated

to satisfy the basic requirement that the pCTRs match with the

unconditional expectation.
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Independence and Correlation. A information structure is called

independent if signals sj for j , i do not offer additional information

on the expectation of ri beyond si . Formally:

E[ri |s = s
′] = E[ri |si = s

′
i ], ∀i,∀s . (2)

Both full-disclosure and no-disclosure information structures

are independent.

Whenever we do not assume independence, we will say that an

information structure is correlated. Below, we give an example of a

correlated and calibrated information structure. This will also serve

as an example of how information structures will be illustrated

throughout the paper. Consider the two-bidder setting where CTRs

are r ∈ {(1/2, 1/2), (1/2, 1), (1, 1/2), (1, 1)}, each with probability

1/4 (hence r1 and r2 are independent). We represent an informa-

tion structure where rows correspond to pairs of CTRs (r1, r2) and
columns correspond to pairs of signals (s1, s2). Each entry of the ma-

trix will correspond to x(r , s) which is the probability of the event

that the CTRs are r and the signals are s . Table 1 shows the“flipping
the square” structure, which we will discuss in detail in Section 4.1.

Table 1: Flipping the square

HHH
HHr
s

( 3
4
− ϵ, 3

4
− ϵ) ( 3

4
− ϵ, 3

4
+ ϵ) ( 3

4
+ ϵ, 3

4
− ϵ) ( 3

4
+ ϵ, 3

4
+ ϵ)

( 1
2
, 1
2
) ϵ 0 0

1

4
− ϵ

( 1
2
, 1) 0

1

4
0 0

(1, 1
2
) 0 0

1

4
0

(1, 1) 1

4
− ϵ 0 0 ϵ

One can check that while the calibration constraints (equation

(1)) hold, the independence condition (equation (2)) does not. So,

this is a calibrated, correlated information structure.

Normalization and Symmetry. We note that it is without loss of

generality to normalize all values to v ′
i = v while scaling CTRs

and scores to r ′i = viri/v and s ′i = visi/v . Both the allocations and

expected payments remain identical after such normalization. We

therefore generally assume that v1 = . . . = vn = 1. A setting is

symmetric if (after normalization) random variables v1r1, . . . ,vnrn
are exchangeable. Whenever symmetry does not hold, we will say

that the environment is asymmetric.

3 INDEPENDENT INFORMATION
STRUCTURES

A first step in the analysis of optimal information design is a focus

on independent signals. With independent signals, the signal si of
each bidder i contains all the information about the CTR ri that
the auctioneer releases before the auction. Thus, bidder i could not

learn anything more about the true CTR from any other bidder. In

turn, the information that bidder i receives from the auctioneer

is the maximal information that is available before the auction to

place an informed bid.

3.1 Independent Signals and Two Bidders
We begin the analysis with two bidders and then generalize the

insight to many bidders.

Proposition 3.1 (Independent and Calibrated Signalling).

In a two-bidder environment, the expected revenue of an independent

and calibrated information structure cannot exceed the one from no-

disclosure.

Proof. We start by computing the expected revenue given sig-

nals s1 and s2. If v1s1 ≥ v2s2, then the revenue can be written

as:

E

[
r1 ·

v2s2
s1

����s1, s2] = E [r1 |s1, s2] · v2s2s1

= E [r1 |s1] ·
v2s2
s1
= s1 ·

v2s2
s1
= v2s2,

where the second equality follows from the independence of the

signaling scheme and the third equality follows from calibration.

Therefore, we can write the expected revenue as:

Rev = E[ min

i ∈{1,2}
visi ] ≤ min

i ∈{1,2}
E[visi ]

= min

i ∈{1,2}
vi E[si ] = min

i ∈{1,2}
vi E[ri ],

where the first inequality follows from Jensen’s inequality and the

concavity of the minimum. The last equality follows from calibra-

tion. Finally, note that min(v1 E[r1],v2 E[r2]) is the revenue from
no-disclosure. □

We have thus shown that full-disclosure can never revenue-

dominate no-disclosure.We next show that generically full-disclosure

is, in fact, strictly revenue-dominated by no-disclosure.

Corollary 3.2 (Zero vs. Complete Information Disclosure).

In the two-bidder environment, if both v1r1 > v2r2 and v1r1 < v2r2
occur with positive probability, then the revenue from no-disclosure

strictly dominates the revenue from full-disclosure.

Proof. If both events v1r1 > v2r2 and v1r1 < v2r2 occur with
positive probability, then Jensen’s inequality holds with a strict

inequality E[min(v1r1,v2r2)] < min(E[v1r1],E[v2r2]) in the previ-

ous proof. □

The argument suggests that the revenue dominance result does

not extend to more than two bidders. With more than two bidders,

the smaller of the two highest realizations determines the price, and

the expectation of the smaller of the two highest is now larger than

the unconditional expectation of the second highest click-through

rate.

3.2 Independent Signals with Many Bidders
Indeed, the power of independent signalling is much improved in

the presence of competition, and we now consider the case of more

than two bidders, n > 2. We show by example that an independent

symmetric-calibration signal can improve the revenue, and thus

partial revelation is better than no- or full-disclosure.

Consider a symmetric three-bidder environment with v1 = v2 =
v3 = 1. For each bidder i let ri = 0 with probability 2/3, and

ri = 1 with probability 1/3. Moreover, assume that r1, r2 and r3 are
independent. It is simple to check that full revelation has revenue

7/27 and no-revelation has revenue 9/27. This can be improved by

the following signaling scheme with partial bundling:

The revenue of partial disclosure is 4/9 whenever at least two of

the bidders have the high signal, which happens with probability

1 − (1/4)3 − 3(1/4)2(3/4) = 27/32. Hence, the overall revenue of
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Table 2: Partial bundling

H
HHHHri

si si = 0 si = 4/9

ri = 0 1/4 5/12

ri = 1 0 1/3

this partial disclosure scheme is 3/8, which dominates both full-

disclosure and no-disclosure.

Instead of trying to optimize for the optimal independent in-

formation structure, we will move to the more powerful model of

correlated information structures in the next section.

The results here mirror earlier results by Board [6], who consid-

ers an ascending auction in a private value setting without click-

through rates. In his analysis, he restricts attention to independent

signals and establishes that with two bidders, the seller’s revenue

is smaller with than without information disclosure. He further

shows that in a symmetric model, as the number of bidders be-

come arbitrarily large, complete information disclosure eventually

revenue-dominates zero information disclosure.

4 CORRELATED STRUCTURES IN
SYMMETRIC ENVIRONMENTS

We obtain a much stronger result if we allow the information struc-

ture to be correlated across bidders. The information flow allows

influence over the level of competition to some extent. This allows

us to conflate auction items and restore some market thickness (see

Levin and Milgrom [22]).

4.1 A First Example: Flipping the Square
To showcase the power of correlated information structures, we

start with an example where the optimal structure is rather coun-

terintuitive. Consider two bidders with values v1 = v2 = 1 and

independent click-through rates distributed uniformly in { 1
2
, 1}. Or

rather: the vector r is uniformly distributed in {( 1
2
, 1
2
), ( 1

2
, 1), (1, 1

2
), (1, 1)}.

With an independent signaling scheme, the optimal information

structure is no-disclosure, which yields revenue equal to 3/4. With

a correlated signaling scheme, one can obtain arbitrarily close to

7/8 revenue, which is optimal since it corresponds to the welfare

E[maxi viri ] of the optimal allocation.

The information structure is the “flipping the square” structure

described in Table 1. To see that this information structure is cali-

brated, observe that s1 = 3/4 − ϵ with probability 1/2. This proba-

bility event can be decomposed in two: with probability 1/4 + ϵ we

output this signal with r1 = 1/2, and with the remaining 1/4 − ϵ
probability we have r1 = 1. Hence:

E[r1 |s1 = 3/4 − ϵ] =
(1/4 + ϵ) · 1/2 + (1/4 − ϵ) · 1

1/2
= 3/4 − ϵ .

The counterintuitive nature of this mapping can best be seen

when depicted as in Figure 1. We map the CTRs in {1/2, 1} to

two values {3/4 − ϵ, 3/4 + ϵ} around the mean. The symmetric

pairs, (1/2, 1/2) and (1, 1), are mapped with high probability into

symmetric, but order-reversed pairs, (3/4 + ϵ, 3/4 + ϵ) and (3/4 −

ϵ, 3/4 − ϵ), respectively. The calibration is nonetheless achieved

by the off-diagonal pairs (1/2, 1) and (1, 1/2) that are mapped into

order-preserving signals with probability 1, (3/4 − ϵ, 3/4 + ϵ) and
(3/4 + ϵ, 3/4 − ϵ), respectively. The ϵ perturbation in the mapping

of the diagonal pairs then achieves the ordering of the signals.

Figure 1: Depiction of the “flipping the square” structure
(with ϵ-flows omitted).

We notice the click-through signals si maintain the efficient

ranking of the alternatives, and thus guarantee an efficient outcome

in the auction. The revenue in the auction is given by:

1

4

·
1

2

+
1

4

·

3

4
− ϵ

3

4
+ ϵ
+
1

4

·

3

4
− ϵ

3

4
+ ϵ
+
1

4

=
21 − 4ϵ

24 + 32ϵ
=

7

8

−O(ϵ),

which means that almost the entire surplus is extracted. The auction

uses a uniform tie-breaking rule, thus allocating the object with

equal probability if the signals are equal across the bidders.

4.2 A Second Example: Dispersion Along the
Diagonal

The second example maintains symmetry across the bidders but has

correlated click-through rates. The resulting information structure

is more subtle, reflecting the need to balance information neces-

sary to support an efficient allocation with information to support

competition.

We present the construction, which we refer to as “dispersion

along the diagonal,” for a small number of signals. Our main result

in this section (Theorem 4.1) builds on a generalization of this

construction to more signals (see Lemma 4.2 and Figure 2).

Consider again two bidders with values v1 = v2 = 1 and click-

through rates either (1/2, 1) or (1, 1/2), with probability 1/2 each.

The CTRs are thus perfectly negatively correlated and the social

surplus is 1. The revenue under full-disclosure would be 1/2, and

under no-disclosure it would be 3/4. With no-disclosure, the price-

per-click is always competitive, as E [r1] /E [r2] = 1, but the auction

fails to lead to the efficient allocation with probability 1/2. With the

following information flow, we attain a revenue of 0.79 > 3/4: This

Table 3: Dispersion along the diagonal

HHH
HHr
s

( 6

10
, 6
10
) ( 6

10
, 3
4
) ( 3

4
, 6
10
) ( 3

4
, 15
16
) ( 15

16
, 3
4
) ( 15

16
, 15
16
)

( 1
2
, 1) 2

15

2

5
0

2

5
0

1

15

(1, 1
2
) 2

15
0

2

5
0

2

5

1

15

information flow lowers the probability of an inefficient allocation

from 1/2 to 1/5 and attains an equilibrium price closer to 1. In

particular,

min

����rir j
���� = 1

2

<
4

5

= min

����sisj
���� .
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The information flow in this example generates some symmetric

click-through signals in the absence of symmetric click-through

rates. The symmetric signals in the presence of asymmetric rates

create some inefficiency in the allocation. But the symmetric click-

through rates create the basis for signals that are adjacent, in the

sense that they are nearby, yet signal the correct ranking of the un-

derlying click-through rates. If we increase the numbers of signals

in the construction of the information flow, we can then reduce

the revenue loss and bring it arbitrarily close to zero. This is the

following content of Lemma 4.2.

4.3 Optimal Information Structure
We can now state and establish the first main result, showing that

for any n-bidder symmetric environment it is possible to construct

an information structure extracting revenue that is arbitrarily close

to the optimal surplus.

Theorem 4.1 (Full Surplus Extraction in Symmetric Envi-

ronments). For every symmetric n-bidder environment, there exists

a randomized and calibrated correlated information structure whose

revenue is arbitrarily close to full surplus extraction.

As a building block, we will consider the special case of a sym-

metric environment of two bidders where v1 = v2 = v and

Pr[r = (l ,h)] = Pr[r = (h, l)] = 1/2,

for two values 0 ≤ l < h ≤ 1. We will then reduce the general

symmetric case to a composition of information structures for pairs

(h, l). The optimal information structure will be to disperse the

signals along the diagonal as depicted in Figure 2. The following

lemma, Lemma 4.2, is the technical heart of the paper.

Figure 2: Depiction of the “dispersion along the diagonal”
structure for Lemma 4.2.

(l ,h)

(h, l)

Lemma 4.2 (Dispersion Along the Diagonal). Consider the

symmetric setting of two bidders with normalized valuesv1 = v2 = v
where the click-through rate vector is either (l ,h) or (h, l), each with

probability 1/2. Then, for every ϵ > 0, there is a calibrated, correlated

information structure with revenue vh − ϵ .

Proof of Lemma 4.2. To prove the lemma, we construct an in-

formation structure with a finite set of signals, S ⊂ [0, 1]. The key

to this construction is to (i) properly select the signal set S , and (ii)

come up with a discretized and calibrated information structure

x(r , s) for r ∈ {(l ,h), (h, l)} and s ∈ S that achieves almost optimal

revenue.

We consider the following construction with parameters δ > 0

and x0 > 0 to be determined later:

(1) Signal set S = {s−K , . . . , s0, s1, . . . , sK }, where s0 = (l +h)/2,

sk = s0 · (1 + δ )
k
for −K ≤ k ≤ K ,

K =

⌊
log(1+δ )

2h

l + h

⌋
− 1;

(2) x((l ,h), (sk , sk+1)) = x((h, l), (sk+1, sk )) = xk for −K ≤ k ≤

K − 1, where

xk =
h − sk
sk − l

· xk−1 = x0

k∏
κ=1

h − sκ
sκ − l

, when 1 ≤ k ≤ K − 1,

xk =
sk+1 − l

h − sk+1
· xk+1 = x0

−1∏
κ=k

sκ+1 − l

h − sκ+1
, when − K ≤ k ≤ −1;

(3) x((l ,h), (s−K , s−K )) = x((h, l), (s−K , s−K )) = y, where

y =
s−K − l

l + h − 2s−K
· x−K ;

(4) x((l ,h), (sK , sK )) = x((h, l), (sK , sK )) = z, where

z =
h − sK

2sK − l − h
· xK−1.

In the rest of the proof, we first verify that the construction is a

valid calibrated and correlated information structure, then show

that by choosing a sufficiently small δ , the revenue is at least h − ϵ .

Step 1: We verify that the signals are valid probabilities, i.e., S ⊂ [0, 1].

For sufficiently small
h−l

3(h+l ) > δ > 0, K − 1 =
⌊
log(1+δ )

2h
l+h

⌋
−

1 ≥ 1. For all −K ≤ k ≤ K ,

sk ≤ sK =
l+h
2

· (1 + δ )K ≤ l+h
2

· 2h
l+h · 1

1+δ =
h

1+δ < h ≤ 1;

sk ≥ s−K =
l+h
2

· (1 + δ )−K ≥ l+h
2

· l+h
2h · (1 + δ )

≥ 4hl
4h · (1 + δ ) > l ≥ 0.

Therefore, S ⊂ [0, 1] is a valid finite signal space.

Step 2: We verify that the parameters xk ,y, z are non-negative.

Since sk ∈ (l ,h), by the construction of xk for k , 0, xk/x0 > 0.

For y and z, since s−K < s0 = (l + h)/2 < sK ,

y/x−K =
s−K−l

l+h−2s−K
=

(s−K−l )/2
(l+h)/2−s−K

> 0,

z/xK−1 =
h−sK

2sK−l−h
=

(h−sK )/2
sK−(l+h)/2

> 0.

Therefore, as long as x0 > 0, all probability terms are positive.

Step 3: We verify that we can choose x0 such that:∑
s

x((l ,h), s) =
∑
s

x((h, l), s) = 1/2

As we showed, the coefficients, xk/x0, y/x0, and z/x0 are all

positive and fixed. Then with x0 defined below,

x0 =
1

2
· 1

y/x0+z/x0+
∑
k xk /x0

> 0,

we have

∑
s x((l ,h), s) =

∑
s x((h, l), s) = y + z +

∑
k xk = 1/2.

Step 4: We check that the calibration constraints are satisfied.

52



Calibrated Click-Through Auctions WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

For −K + 1 ≤ k ≤ K − 1, we verify the calibration constraint for

sending signal sk to bidder 1 as follows:∑
s ∈S x((l ,h), (sk , s)) · (l − sk ) + x((h, l), (sk , s)) · (h − sk )

= xk · (l − sk ) + xk−1 · (h − sk )

= xk−1 ·
h−sk
sk−l

· (l − sk ) + xk−1 · (h − sk ) = 0.

When sending signal sK to bidder 1:∑
s ∈S x((l ,h), (sK , s)) · (l − sK ) + x((h, l), (sK , s)) · (h − sK )

= z · (l − sK ) + xK−1 · (h − sK ) + z · (h − sK )

=
h−sK

2sK−l−h
· xK−1 · (l − sK ) + xK−1 · (h − sK )

+
h−sK

2sK−l−h
· xK−1 · (h − sK ) = 0.

When sending signal s−K to bidder 1:∑
s ∈S x((l ,h), (s−K , s)) · (l − s−K ) + x((h, l), (s−K , s)) · (h − s−K )

= x−K · (l − s−K ) + y · (h − s−K ) + y · (h − s−K )

= x−K · (l − s−K ) +
s−K−l

l+h−2s−K
· x−K · (l − s−K )

+
s−K−l

l+h−2s−K
· x−K · (h − s−K ) = 0.

As the construction is symmetric for bidder 1 and 2, we omit the

verification of the calibration constraints for bidder 2.

Step 5: We bound the revenue.

Note that when s ∈ {(sk , sk+1), (sk+1, sk )}
K−1
k=−K , the auction allo-

cates the item efficiently and the auctioneer extracts almost all the

surplus. More specifically, when s = (sk , sk+1) for CTR profile (l ,h),
or s = (sk+1, sk ) for CTR profile (h, l), the conditional expected

revenue is

h ·
sk
sk+1
= h/(1 + δ ) > h − ϵ/2, when δ < ϵ

2h−ϵ .

Therefore, we remain to prove that the probability of not extract-

ing revenue h/(1 + δ ) is sufficiently small, i.e., y, z < ϵ/8.
Recall that h ≥ sK · (1 + δ ), with sufficiently small δ < (h −

l)/2(h + l),

z = xK−1 ·
h − sK

2sK − l − h
≤ xK−1 ·

h − h/(1 + δ )

2h/(1 + δ ) − l − h

= xK−1 ·
δh

h − l − δ · (h + l)
< δ ·

2h

h − l
· xK−1 < δ ·

2h

h − l
,

which is less than ϵ/8 when δ < h−l
16h · ϵ .

Similarly, s−K = (1+ δ )−K · (l +h)/2 ≤ l+h
2h · (1+ δ ) · (l +h)/2 <

(1 + δ )(h + 3l)/4, with sufficiently small δ < (h − l)/2(h + 3l),

y = x−K ·
s−K − l

l + h − 2s−K
≤ x−K ·

(1 + δ )(h + 3l)/4 − l

l + h − (1 + δ )(h + 3l)/2

= x−K ·
h − l + δ · (h + 3l)

2h − l − 2δ · (h + 3l)
<

3

2

· x−K .

It suffices to show x−K < ϵ/12 with a sufficiently small δ . Note
that s−K < · · · < s−1 < s0 = (l + h)/2 < s1 < · · · < sK , we then
have x0 > x1 > · · · > xK−1 and x0 > x−1 > · · · > x−K . Then

1/2 = y + z +
∑K−1
k=−K xk > (K + 1) · x−K .

Therefore, when δ < ϵ
6
· log 2h

l+h , x−K can be bounded by ϵ/12:

x−K < 1/2(K + 1) <
1

2 log(1+δ )(2h/(l + h))

=
log(1 + δ )

2 log(2h/(l + h))
<

δ

2 log(2h/(l + h))
.

In summary, for any given ϵ > 0, we can conclude the proof

with a sufficiently small δ :

δ <
h − l

3(h + l)
=⇒ K − 1 ≥ 1,

δ <
ϵ

2h − ϵ
=⇒ h/(1 + δ ) ≥ h − ϵ/2,

δ < min

(
h − l

2(h + l)
,
h − l

16h
· ϵ

)
=⇒ z < ϵ/8,

δ < min

(
h − l

2(h + 3l)
,
ϵ

6

· log
2h

l + h

)
=⇒ y < ϵ/8. □

Lemma 4.2 is stated for a very special case within the class of

symmetric environments. Both bidders have value 1, each bidder has

only one of two possible click-through rates, and the click-through

rates are perfectly negatively correlated. However, the result can

now be extended immediately to a general symmetric environment.

The extension is based on two simple observations:

Corollary 4.3 (High-Low Pairing). Consider n bidders with

normalized values vi ≡ v and click-through rates uniformly dis-

tributed between two profiles where r and r ′ are such for two bidders

i, j ∈ [n] that we have: ri = r ′j > r j = r ′i ≥ rk , r
′
k for any k , i, j.

Then, for any ϵ > 0 there is a calibrated, correlated information

structure with revenue vri − ϵ .

The next lemma shows that information structures can be com-

posed, in the sense that if we decompose a distribution of click-

through rates and design an information structure for each of them,

we can later compose them without loss in calibration.

Lemma 4.4 (Signal Composition). Let G′
and G′′

be distribu-

tions over click-through rate profiles r of n bidders and let F ′
and

F ′′
be corresponding calibrated information structures given by joint

distributions over vector pairs (r , s) such that the r -marginals are G′

and G′′
respectively.

Let G be the distribution obtained by sampling from G′
with

probability λ, and G′′
with probability 1− λ. Define a distribution F

similarly. Then, F is a calibrated information structure for G and

Rev(F ) = λRev(F ′) + (1 − λ)Rev(F ′′).

Combining the previous lemmas, we can prove Theorem 4.1:

Proof of Theorem 4.1. Consider an n-bidder symmetric envi-

ronment and assume for simplicity that the distribution over CTRs

is discrete. For every profile of CTRs where bidder i has the highest
CTR ri and bidder j has the second highest CTR r j (breaking ties
lexicographically), we can pair with a profile where the CTRs of

i and j are reversed. This leads to a decomposition of the original

distribution of CTRs into distributions with support two of the form

studied in Corollary 4.3. The results follow from applying Corollary

4.3 together with the composition technique in Lemma 4.4. □
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It turns out that the idea behind the construction can be gener-

alized to work under the weaker requirement of equal means. We

refer to the full version for a discussion of this generalization.

5 CORRELATED STRUCTURES BEYOND
SYMMETRIC ENVIRONMENTS

In this section, we pursue a more limited objective for general

asymmetric environments. To this end we consider an environment

in which there are two bidders with values v1 = v2 = 1, and

two possible click-through rate configurations, namely (r1, r2) and
(r ′
1
, r ′
2
).Without loss of generality, we can always label the identities

of the bidders and the click-through rates so that:

r1 ≥ r ′
1
, r2, r

′
2
.

The prior probability of the pair (r1, r2) is p, the other pair (r
′
1
, r ′
2
)

has the complementary probability 1−p. Let µ1 = p · r1 + (1−p) · r
′
1

and µ2 = p · r2 + (1 − p) · r ′
2
be the expected click-through rates of

bidder 1 and bidder 2, respectively.

5.1 The Disclosure Lattice
Different information structures offer different levels of informa-

tiveness, and in fact form a lattice (see Figure 3). No disclosure is

the minimal, and full disclosure the maximal policy. Together, they

form the set of extremal policies. We refer to every policy that is

not extremal as moderate, and to any policy that does not consist

of a combination of full- or no-disclosure as interior.

Figure 3: Disclosure lattice. The label XY denotes the policies
of bidder 1 and bidder 2. F = full, P = partial, and N = no.

FN

PN

FP

FF

PP

NN

PF

NP

NF

5.2 Extremal Structures are Dominated
The central result of this section establishes that optimal informa-

tion design remains a powerful instrument to increase revenue,

irrespective of the joint distribution of the click-through rates.

Theorem 5.1 (Moderate Information Structures). There

always exists a moderate information structure that strictly dominates

any extremal information structure.

Our proof of this result, which we defer to the full version, pro-

ceeds by distinguishing the following cases:

Uniform Winner: r ′
1
≥ r ′

2
Variable Winner: r ′

1
< r ′

2

Congruent Loser: r2 ≥ r ′
2

Incongruent Loser: r2 < r ′
2

Weak Competition: r2 ≤ µ1 Strong Competition: r2 > µ1

5.3 Moderate vs. Interior Structures
We highlight two building blocks in the proof of Theorem 5.1. Our

first result is for the uniform winner congruent loser, and weak

competition case. For this setting, we can identify the uniquely

optimal information structure. Namely, it is optimal to bundle the

click-through rates of the winner and to unbundle the click-through

rates of the loser. The bundling of the click-through rates of the

winner generates more competitive prices, and hence higher rev-

enue for the auctioneer. Thus, the optimal information structure is

moderate, but not interior.

Theorem 5.2 (Uniform Winner, Congruent Loser, Weak

Competition). The optimal information structure for the uniform

winner, congruent loser, and weak competition case leaves the loser

unbundled and fully bundles the winner.

We provide the proof of this result, which relies on Chebyshev’s

sum inequality and nicely demonstrates the gist of our results for

the asymmetric setting in Appendix C.

For the next result we stay with the uniform winner setting, but

now flip the ranking of click-through rates across click-through

realizations. Thus, we consider the case of the incongruent loser.

We can verify that the competition is guaranteed to be weak in

the above sense. Now, we can show that an interior information

structure will always be the optimal information structure. In con-

trast, the moderate information structure that was optimal in the

congruent setting can be shown to perform worse than either of

the extremal information structures.

Proposition 5.3 (Uniform Winner and Incongruent Loser).

With a uniform winner and incongruent loser, there is always an inte-

rior information structure that is revenue-improving over all exterior

information structures. In particular, partially bundling the winner

and the loser is revenue-improving, relative to all exterior information

structures.

These two cases demonstrate how rich the optimal structures

in the asymmetric setting can be, but they also emphasize that

the same guiding principles that governed the optimal policy in

symmetric settings are in play. Namely, as in the symmetric setting,

the optimal schemes that we identify are not extremal, maintain

efficiency, and seek to strengthen competition through calibrated

signals.

6 CONCLUSION
The disclosure policy of the auctioneer regarding the click-through

rates influences the distribution of bids, holding fixed the distri-

bution of preferences among the bidders. By disclosing less, the

auctioneer in effect bundles certain features, or as Levin and Mil-

grom [22] suggest, conflates features of the viewer. The process of

conflation influences the thickness or thinness of the market—in

other words, the strength of the competition.

In our analysis, conflation was achieved by bundling the infor-

mation regarding click-through rates in an optimal manner. The

optimal information structure conveys just enough information so

that the resulting bidding process ranks the bidders according to the

true social value of each bidder. At the same time, the information

is released only partially to maintain bids as close as possible to

a perfectly competitive level. We show that this requires that the
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information is provided to each bidder as private information at

an individual level, rather than as public information on a market

level.
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A DETAILED LITERATURE REVIEW
Bergemann and Pesendorfer [5] and Eső and Szentes [12] are among

the first to investigate the design of optimal information structure

in an auction setting. They consider an auction environment with

n bidders and independent private values where the seller jointly

optimizes auction and information policies. A number of contribu-

tions have recently analyzed the optimal information structure for

a given mechanism or auction format. Badanidiyuru et al. [2], Emek

et al. [11], Fu et al. [14] consider a second-price auction where

the information about the valuation of bidder i is partially shared

between the bidder and the platform. Emek et al. [11] study the

computational problem of the revenue-optimal public information

structure. Badanidiyuru et al. [2] prove that in order to guarantee a

constant approximation to the optimal revenue in this case, the size

of the information structure needs to be exponentially large. Fu et al.

[14] provide examples where partial information disclosure may

yield higher expected revenue than both full- and no-disclosure

in second price auctions with reserves. Hummel and McAfee [18]

study a wide range of position auctions, including both GSP and

VCG auctions, with or without reserve prices. They consider differ-

ent orders between realizing values and submitting bids, which are

essentially equivalent to full-disclosure (if realize-value-then-bid)

and no-disclosure (if bid-then-realize-value).

Given the randomness of the click-through rates an earlier liter-

ature noticed that a systematic modification of the click-through

rates may positively impact the revenue of the click-through auc-

tion. The adjusted click-through rates in Lahaie and Pennock [21]

and Mahdian and Sundararajan [23] are not calibrated, as the true

click-through rate is "squashed" or "boosted" for the purpose of

ranking. This suggests a natural distinction between the analysis

of optimal calibrated and non-calibrated information structures.

In the current setting, we explicitly allow for private information

disclosure, rather than public information disclosure. By contrast,

in most of the preceding literature the information disclosure was

either public, as in Arieli and Babichenko [1], or independent across

bidders, as in Bergemann and Pesendorfer [5]. Here, we are allow

for, and importantly show the optimality of private and correlated

information structures. The role of correlated signals for the rev-

enue maximizing mechanism has been observed earlier in Cremer

and McLean [8, 9]. They establish that correlation in the private

values among bidders can be used in an optimal mechanism to ex-

tract the full surplus. While our results also highlight the increased

power of correlated signals relative to independent signals, the

setting and arguments differ substantially. In Cremer and McLean

[8, 9], the auctioneer is free to choose the optimal mechanism,

while we take the generalized second-price auction as given. We

choose the information structure so that the signals are sufficiently

informative, yet yield competitive interim expectations. Thus, the

correlation of the signals achieves very different objectives in these

two settings, and accordingly the construction differs significantly.

In particular, Cremer and McLean [8, 9] take as given the signals

and then design the optimal transfer function. We take as given the

transfer function, namely the payment rules, and then design the

signals to maintain competition.

Hartline et al. [17] suggest a class of dashboard mechanism that

shares some of the themes with our contribution in a very distinct

setting. They offer dashboards as an instrument for platforms to

offer bid recommendation in mechanism when truthtelling does

not form an equilibrium strategy. The leading examples are first

price auction and all pay auctions. The dashboard converts the

initial information of the bidders into bid recommendation and then

asks which allocation and bid recommendations lead to obedient

behavior by the bidders.

B PROOFS OMITTED FROM SECTION 4
Proof of Corollary 4.3. Treat bidders i and j as the high/low

pair in Lemma 4.2 and do full-disclosure for any other bidder. The

signal is still calibrated and only i and j win the item since their

signals will be above the signals of any other bidder. Hence, the

revenue bound in Lemma 4.2 still holds. □

Proof of Lemma 4.4. The r -marginal of F is clearly G and it

holds that Rev(F ) = λRev(F ′) + (1 − λ)Rev(F ′′). The only non-

trivial part is to check that F is calibrated, which we do below:

E
F
[ri |si = s

′
i ] =

EF[ri1{si − s ′i }]

PrF(si = s
′
i )

=
λ EF′[ri1{si − s ′i }] + (1 − λ)EF′′[ri1{si − s ′i }]

λ PrF′(si = s
′
i ) + (1 − λ) PrF′′(si = s

′
i )

=
λ EF′[s ′i1{si − s ′i }] + (1 − λ)EF′′[s ′i1{si − s ′i }]

λ PrF′(si = s
′
i ) + (1 − λ) PrF′′(si = s

′
i )

= s ′i

This concludes the proof. □

C PROOF OF THEOREM 5.2
We provide the proof of Theorem 5.2. The main tool in the proof is

the following lemma.

Lemma C.1 (Chebyshev’s sum ineqality [16]). Given two se-

quences a1 ≥ a2 ≥ . . . an ≥ 0 and b1 ≥ b2 ≥ . . .bn ≥ 0 that are

monotone in the same direction, and a set of non-negative weights

wi ≥ 0 (not necessarily monotone), then:(∑
i
wiaibi

)
·

(∑
i
wi

)
≥

(∑
i
wiai

)
·

(∑
i
wibi

)
.

If {ai } and {bi } sequences are monotone in different directions (one

increasing and one decreasing), the inequality holds in the opposite

direction.

(Aside: The probabilistic interpretation of Lemma C.1 is that

if A and B are two positively-correlated random variables, then

E[AB] ≥ E[A] · E[B].)

Proof of Theorem 5.2. We will start with a generic solution

x(r , s) and show that using two applications of Chebyshev’s sum

inequality (Lemma C.1) we can bound it with respect to

p · r1 ·
r2
µ1
+ (1 − p) · r ′

1
·
r ′
2

µ1
, (3)

which is the revenue obtained from leaving the loser unbundled

and bundling the winner. We will proceed in three steps.

Step 1: Bounding the revenue. Consider any information structure

defined by x(r , s). For each signal s = (s1, s2), the revenue in the

event that bidder 1 wins is (x(r , s)r1 + x(r
′, s)r ′

1
) · s2/s1. If bidder 2
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wins, the revenue is (x(r , s)r2 +x(r
′, s)r ′

2
) · s1/s2. In the second case,

observe that since s2 ≥ s1 we have
s1
s2 < 1 < s2

s1 , and since we are

in the uniform winner case, we know that x(r , s)r1 + x(r
′, s)r ′

1
≥

x(r , s)r2 + x(r
′, s)r ′

2
. Hence, we can bound:

(x(r , s)r2 + x(r
′, s)r ′

2
) ·

s1
s2

≤ (x(r , s)r1 + x(r
′, s)r ′

1
) ·

s2
s1
,

and write:

Rev ≤
∑
s
(x(r , s)r1 + x(r

′, s)r ′
1
) ·

s2
s1
.

Step 2: Unbundling the loser. Substituting s2 by the calibration con-

straint we obtain:

Rev ≤
∑
s2

∑
s1

(
x(r , (s1, s2))

r1
s1
+ x(r ′, (s1, s2))

r ′
1

s1

)
·

∑
s1 x(r , (s1, s2))r2 + x(r

′, (s1, s2))r
′
2∑

s1 x(r , (s1, s2) + x(r
′, (s1, s2))

≤
∑
s2

∑
s1

(
x(r , (s1, s2))

r1r2
s1
+ x(r ′, (s1, s2))

r ′
1
r ′
2

s1

)
,

where the second inequality follows from Chebyshev’s sum inequal-

ity with

{ai }i =

(
r1

s1
1

, . . . ,
r1
sn
1

,
r ′
1

s1
1

, . . . ,
r ′
1

sn
1

)
, {bi }i = (r2, . . . , r2, r

′
2
, . . . , r ′

2
).

Congruence implies that the sequence {bi } is sorted. The sequence
{ai } is sorted because r ′

1
≤ s1

1
≤ . . . ≤ s1 ≤ r1, and hence

r1
s1 ≥ 1 ≥

r ′
1

s1 . Now that the loser is unbundled, there is no longer any need to

keep track of s2. To simplify notation we will define:

x̃(r , s1) =
∑
s2

x(r , (s1, s2))

and re-write our current bound on the objective as:

Rev ≤
∑
s1

x̃(r , s1)r1r2 + x̃(r
′, s1)r

′
1
r ′
2

s1
.

Step 3: Bundling the winner. We will replace s1 according to the

calibration constraint in the expression above and replace:

λ(s1) =
x̃(r , s1)

x̃(r , s1) + x̃(r ′, s1)
and λ′(s1) =

x̃(r ′, s1)

x̃(r , s1) + x̃(r ′, s1)
.

We obtain:

Rev ≤
∑
j
(x̃(r , s1)r1r2 + x̃(r

′, s1)r
′
1
r ′
2
) ·

x̃(r , s1) + x̃(r
′, s1)

r1x̃(r , s1) + r
′
1
x̃(r ′, s1)

=
∑
j

λ(s1)r1r2 + λ
′(s1)r

′
1
r ′
2

λ(s1)r1 + λ′(s1)r
′
1

· (x̃(r , s1) + x̃(r
′, s1)).

Now we can apply Chebyshev’s sum inequality one more time

with:

a(s1) =
λ(s1)r1r2 + λ

′(s1)r
′
1
r ′
2

λ(s1)r1 + λ′(s1)r
′
1

, b(s1) = λ(s1)r1 + λ
′(s1)r

′
1
,

w(s1) = x̃(r , s1) + x̃(r
′, s1).

Note that we can reorder signals s1 in any order we wish. Let us

reorder the signals so that λ(s1) is increasing. This immediately

implies that b(s1) is increasing. Namely, b(s1) = λ(s1)r1 + (1 −
λ(s1))r

′
1
= λ(s1)(r1 − r ′

1
) + r ′

1
. For a(s1), we can take the derivative

in λ,
d

dλ
a(s1) =

r1 · r
′
1
· (r2 − r ′

2
)

(r1λ − r ′
1
(1 − λ))2

> 0.

Thus,a(s1) is also increasing in λ, allowing us to apply the inequality
to obtain:∑

s1

w(s1)a(s1) ≤

(∑
s1

w(s1)a(s1)b(s1)

) ∑
s1 w(s1)∑

s1 w(s1)b(s1)
,

which translates to (since

∑
s1 w(s1) = 1):

Rev ≤

∑
s1 x̃(r , s1)r1r2 + x̃(r

′, s1)r
′
1
r ′
2∑

s1 x̃(r , s1)r1 + x̃(r
′, s1)r

′
1

=
∑
s1

x̃(r , s1)r1
r2
µ1
+ x̃(r ′, s1)r

′
1

r ′
2

µ1
= pr1

r2
µ1
+ (1 − p)r ′

1

r ′
2

µ1
.

This is the revenue obtained by bundling thewinner and unbundling

the loser as desired. □
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