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Consider a market with identical firms offering a homogeneous good.
For any given ex ante distribution of the price count (the number of
firms from which a consumer obtains a quote), we derive a tight up-
per bound on the equilibrium distribution of sales prices. The bound
holds across all models of firms’ common-prior higher-order beliefs
about the price count, including the extreme cases of full information
and no information. One implication of our results is that a small ex
ante probability that the price countis equal to one can lead to a large in-
crease in the expected price. The bound also applies in a large class of
models where the price count distribution is endogenously determined.

I. Introduction

When two or more identical firms engage in Bertrand competition, the
standard prediction of economic theory s that the price of a homogenous
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good will be competed down to cost. The model of Bertrand competition
is therefore consistent with the “law of one price.” But as Varian (1980,
651) noted 40 years ago, “the law of one price is no law at all,” and price
dispersion, even for homogenous goods, seems to be a ubiquitous feature
of the market economy.'

Since the time of Varian’s writing, a large literature on imperfect price
competition and consumer search has developed numerous models of
equilibrium price dispersion. A central objectin these models is the num-
ber of price quotes that a consumer receives, which we refer to as the price
count. The price countand the firms’ strategies induce a distribution over
the sales price, that is, the price at which trade occurs. The sales price (or
equivalently transaction price) is the lowest price offered by the quoted
firms. This distribution of the sales price determines the consumer and
producer welfare. In the classical Bertrand model, firms have full infor-
mation about the price count, which leads to the law of one price. In mod-
els with price dispersion, the noise in prices is driven by firms’ uncertainty
about the price count and, in particular, the failure of common knowl-
edge of whether there are at least two firms competing for a given con-
sumer. Many explanations have been proposed for this failure of common
knowledge, including unobserved consumer search, advertising, and in-
formational frictions due to market intermediaries.

The equilibrium price distribution depends on two critical features of
the model: the distribution of the price count and the firms’ information
about the price count.” Significantly, most existing models make a strong
simplifying assumption about firms’ information, namely, that firms have
no information beyond the ex ante distribution of the number of firms
competing for a given consumer. While the no-information assumption
leads to anondegenerate price distribution in equilibrium, it places strong
restrictions on the range of welfare outcomes that can arise. In particular,
in symmetric and simultaneous-search models, the no-information assump-
tion implies that the expected sales price is the same as it would be if firms
had full information about the number of competing firms. Thus, while
these models are consistent with failure of the law of one price, they pre-
dict the same welfare outcome as if the law of one price held.

' Asubstantial empirical literature has studied cross-sectional price dispersion; see Baye,
Morgan, and Scholten (2006) for an early survey. A conclusion of this literature is that
price dispersion has persisted and sometimes increased in the internet age.

* These objects are sufficient to determine the equilibrium price distribution in models
in which firms’ realized prices do not directly affect price counts or other firms’ prices,
such as in models of simultaneous consumer search. If search is sequential or if firms play
a Stackelberg game, then the equilibrium price distribution can depend on further strate-
gic considerations. For example, in the sequential search model of Stahl (1989), prices are
lower than in a simultaneous-search model with the same price count distribution. This is
discussed in greater detail in sec. V.
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This paper develops new predictions for equilibrium prices that do not
depend on how the price count is determined or on firms’ information
about price counts. In particular, we take as given a particular distribution
of the price count. (We subsequently give conditions for our results to
hold when price counts are endogenized.) At the same time, we are agnos-
tic about firms’ information, and we consider the full range of equilibrium
outcomes that might obtain for all common-prior beliefs that firms might
have about the price count. Our main result, theorem 1, is a tight upper
bound on the equilibrium sales price distribution, in the sense of first-
order stochastic dominance.? This bound holds across all informational
models of firms’ beliefs that are consistent with the given price count dis-
tribution. This theorem immediately implies a tight upper bound on pro-
ducer surplus and a tight lower bound on consumer surplus.

The bound we construct is based on the following logic. If the sales
price distribution were too high—for example, if all firms priced at the
monopoly level—then firms would obviously have an incentive to under-
cut and thereby gain more sales. This suggests that there are nontrivial
bounds on how high the sales price distribution can go and that the crit-
ical equilibrium constraints are those associated with cutting prices. We fo-
cus on a particular class of such deviations, wherein, for some fixed price, a
firm deviates by setting the minimum of that fixed price and whatever
price they would have set in equilibrium. We refer to this as a uniform price
cut. We show that the requirement that firms do not want to adopt a uni-
form price cut can be expressed as a constraint on the sales price distribu-
tion. We further show that there is a highest sales price distribution that
satisfies all of the uniform price cut incentive constraints and is associated
with firms being indifferent to all price cuts (uniform or otherwise).

To show that the bound is tight, we explicitly construct a model of be-
liefs and equilibrium pricing strategies for firms that attain the bound.
The critical beliefs are induced by signals of the following form. Each
firm observes a positive integer that is alower bound on the realized price
count, and at least one firm’s signal is equal to the true price count. An
interpretation of this information structure is that firms are quoted in
a random order, and each firm observes a subset of the firms that were
quoted before them, with firms that are quoted last seeing all other quoted
firms. In equilibrium, firms randomize prices over intervals that are de-
creasing in the number of other firms they observe, so that the sale is always

* Our analysis is focused on the distribution of the sales price, rather than the distribu-
tion of prices posted by firms. Posted prices are necessarily higher than the sales price and
can be considerably so. For example, if there is common knowledge that there are at least
three firms, then there is an equilibrium outcome in which two firms price at cost and the
remaining firms set arbitrary higher prices. The study of informationally robust predic-
tions for posted prices will require new assumptions or analytical techniques and is an im-
portant direction for future work.
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made by a firm that observes the true price count. This information struc-
ture pushes prices up, because firms that think that the price count is low
price high and firms that know that the price count is higher are willing to
price higher because they anticipate that other firms believe that the price
countis lower. By carefully tuning the distribution of firms’ signals, itis pos-
sible to make firms indifferent to all price cuts, thereby attaining the max-
imal sales price distribution.

Theorem 1 can be interpreted as providing an empirical test for collu-
sion: if the observed sales price distribution is not below the theoretical
bound generated by the observed price count distribution, then prices
cannot be explained by Bertrand competition under incomplete infor-
mation. This test for collusion is informationally robust, as its validity
does not depend on the nature of the information held by the market
participants.* As the bound is expressed in terms of first-order stochastic
dominance, it simultaneously contains information about many moments
of the price distribution. This is a feature shared with previously suggested
screens for collusion, such as Abrantes-Metz et al. (2006), where competition
is identified by lower means and higher variances in the price distribution.”

Theorem 1 also gives a global upper bound on the effect of monopoly
power on prices, as we depart from the benchmark of perfect competition:
if the probability of monopoly (i.e., a price count of one) is p, then revenue
can reach a proportion [u(2 — )]"* of monopoly revenue. Thus, if we al-
low for firms to have partial information about the price count, producer
surplus is nonlinear in the probability of monopoly, and in fact, marginal
revenue in the probability of monopoly is unbounded at p = 0. Thus, a
small amount of monopoly power may translate into rents for firms that
are much larger than what would obtain under the benchmarks of no in-
formation and full information, in which revenue is linear in p. This find-
ing complements the conclusion of Diamond (1971) and others thatsmall
search frictions can translate into a large degree of monopoly power.

Theorem 1 takes the price count distribution as given. A critical question
is whether our bounds remain valid when price counts are endogenously
determined in equilibrium. Among the various models of price count for-
mation that have been suggested in the literature, it is useful to distinguish
two classes. First, there are models in which price counts and firms’ prices
depend on expectations of firms’ equilibrium pricing behavior but price
counts and other firms’ prices do not react when a firm deviates from their

* Of course, the bound on the sales price distribution cannot account for features that
are outside of our model, such as bounded rationality, product differentiation, or hetero-
geneous production costs.

®> By contrast, Bajari and Ye (2003) use notions of statistical independence to distinguish
between competition and collusion in bidding games. In our setting, these notions could
not distinguish between competition and collusion, as private information can lead to cor-
related prices even under competition.



SEARCH, INFORMATION, AND PRICES 2279

equilibrium strategy. In this case, we say that the model has no feedback.
This category includes any model in which price counts and prices are si-
multaneously determined, such as Butters (1977), Varian (1980), Burdett
and Judd (1983), Baye and Morgan (2001), Ellison and Wolitzky (2012),
and de Clippel, Eliaz, and Rozen (2014). Our bounds immediately apply
to any model with no feedback. In contrast, models with feedback have
the feature that firms’ deviations can affect price counts or other firms’
prices. Whether the bounds hold on the presence of feedback depends
on details of the model. The bounds need not be satisfied in Stackelberg
games, wherein firms price sequentially and observe past prices. In con-
trast, theorem 2 shows that the bounds must be satisfied in models of se-
quential search, such as Stahl (1989, 1996), in which a consumer solicits
price quotes one at a time and the decision of whether to solicit more
quotes depends on past prices. The reason is that consumer search makes
price cuts more attractive, compared to the benchmark with fixed price
counts, and this reinforces the logic that leads to the bound in theorem 1.

Our main results concern a model where consumers have unit demand
and firms are all equally likely to be quoted, conditional on the price
count. Both assumptions can be relaxed. First, we generalize the upper
bound on sales prices to the case where consumers have downward-sloping
demand. Second, we argue that the bounds still hold if firms are heteroge-
neous in their probabilities of being quoted, although the bound is not
necessarily tight.

We interpret our results as applying to a market in which many firms
sell to a single consumer with an unknown price count. A mathematically
equivalent interpretation is that there is a continuum of consumers with
heterogeneous price counts, and firms can imperfectly price discrimi-
nate on the basis of characteristics that are statistically linked to the price
count. Armstrong and Vickers (2019) study such a model, with an empha-
sis on the case where quotation probabilities are asymmetric across firms.
They compare welfare under price discrimination with what would ob-
tain if firms had to set the same price for all consumers. Myatt and Ro-
nayne (2019) offer a two-stage version of the shopper and captive-consumer
model that attains price dispersion in pure strategy equilibria and thus “sta-
ble” price dispersion.

As mentioned above, theorems 1 and 2 could be used to test whether
the empirical distributions of price counts and sales prices are consistent
with Bertrand competition under incomplete information. This exercise
would complement the approach taken by Hong and Shum (2006), who
postulate that prices are generated by an equilibrium under the standard
sequential consumer search model with constant cost per search and no
information. Under these assumptions, they show that it is possible to
identify the price count distribution and consumers’ search costs from
the empirical price distribution. The virtue of our approach is that it
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makes weaker assumptions about firms’ information, although we no lon-
ger have a one-to-one relationship between the price count and sales
price distributions. There are two challenges in bringing our results to
the data. First, we assume throughout that goods are homogenous. While
this is an important benchmark, there are many markets of interest in
which firms offer heterogeneous goods, and generalizing our results to
allow for such heterogeneity is an important direction for future work.
Second, in order to compute our bounds, the analyst needs to have data
on the price count distribution. Recent work by De los Santos, Hortacsu,
and Wildenbeest (2012) has leveraged browser history data to provide
such direct evidence on price counts.

We also contribute to a growing literature on informationally robust
predictions in Bayesian games (Bergemann and Morris 2013, 2016). Berge-
mann, Brooks, and Morris (2017) have applied a similar methodology to
first-price auctions, where bidders do not necessarily know their values
of the object being sold. We discuss the connection to this literature in
greater detail in section VI.

The rest of this paper proceeds as follows. Section II describes our model.
Section III presents a two-firm example that illustrates our results. Sec-
tion IV describes our main result. Section V extends the analysis to se-
quential search. Section VI discusses further extensions and the connec-
tion to the literature on first-price auctions. Section VII is a conclusion.

II. Model

A single consumer has a willingness to pay v > 0 for a single unit of a ho-
mogeneous good.® There are n firms, indexed by i e N={1, ..., n}, who
can produce the good at zero cost. The consumer receives price quotes
from a subset K of those firms. The price count is the number of price
quotes k = |K| that the consumer receives. We write p € A(N) for the
ex ante distribution of the price count. Given a price count k, the condi-
tional probability that the firms K € N are quoted is denoted »(K|k),
where v(K|k) > 0 onlyif |K| = k. We assume that all firms are equally likely
to be quoted conditional on k; thatis, forall i € N, 2k c yex1v(K|k) = k/n.”

We focus on the single-consumer interpretation of our model, but as
mentioned in the introduction, there is an alternative interpretation in
which there is a continuum of consumers and u (k) is the proportion of

® The value v > 0 plays no specific role in the analysis and could be normalized to 1. We
have made it explicit merely to clarify the units in our formulas. The assumption of single-
unit demand can be easily relaxed, and in sec. VI we report how the analysis extends to a
setting with general downward-sloping demand for a homogenous good.

7 An earlier version of this paper made the stronger assumption that conditional on &,
all sets K € N with |[K| = k were equally likely. We thank Mark Armstrong for suggesting
this weaker condition.
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consumers who obtain % price quotes. We reference this interpretation
occasionally in discussing our results.

An information structure (T, ) consists of measurable sets of signals 7;
for each firm and a mapping 7 that associates with each set of quoted
firms a joint probability over their signals. More specifically, when the
set of quoted firms is K, the quoted firm observe signals tx = (#),.x. Each
firm’s signal represents characteristics of the consumer that are infor-
mative about the number of price quotes obtained by the consumer.
The distribution of these signals is given by the joint probability measure
m(dtx|K) on the measurable set Tx = ][« Ti- Note that firms that are not
quoted do not receive signals (as the firm is not active). This is without
loss; see footnote 8 below.

Given an information structure, firms choose prices conditional on their
signals. Thus, each firm is quoting a price only when prompted by a signal.
In particular, no firm offers a standing or posted price independent of any
signal. The pricing strategy of firm i, conditional on observing signal ¢, is
described by the likelihood that firm i sets a price p; greater than x:

Fi(x|t) = Pr(p; = xlt).

We use such upper cumulative distribution functions (also known as decu-
mulative functions) for all price distributions throughout the paper. We let
E(dp,|t;) denote the measure over firm 7's price and Fx(dpy|tx) denote the
independent joint measure over prices of firms in K, given their respective
signals 4.* When clear from the context, we write Fx(dp|t) for Fx(dpg|ix),
and similarly we write 7(¢|K) for 7(#|K) and simply drop the subscript
when referring to the entire set N, so that F(dp|t) represents Fy(dpy|ix).

The consumer will buy from one of the firms offering the lowest price,
with ties broken uniformly.® Given a realized tuple of prices p € R¥ among
a set of firms K, let K(p) be the set of firms that offer the lowest price:

K(p) £ arg minp;.

ieN

The revenue of firm iat given price profile p € R is plx(,) /| K(p)|, where
the indicator function Iicx,) = 1if firm ¢ is among the selling firms and is

% In the definition of the information structure, we specify only the distribution of sig-
nals for firms that are quoted. We could have made explicit the distribution of signals for
firms that are not quoted. But since the firms’ payoff are always zero when they are not
quoted, it is without loss for firms to condition on the event that they are quoted when de-
termining the price they should set. As a result, the distribution of signals for firms that are
not quoted is strategically irrelevant and can be omitted in our notation.

¢ The uniform tie-breaking assumption is for simplicity of exposition. An asymmetric tie-
breaking rule will not alter the fundamental inequality (9) that drives our results.
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0 otherwise. Given the strategy profile I = (R,..., F,), the expected rev-
enue of firm ¢ is

= ]Iie <

R0 = 3u0 S ok (| [ g m@lonaln). @)
=1 KCSN e |[K(p)|

The strategy profile Fis a (Bayes-Nash) equilibrium if and only if Ri(F) >

R(F, F_,) for each iand strategy F;.

III. A Two-Firm Example

We first illustrate our approach and results for the case of two firms,
n = 2. We normalize v = 1 and let the price count be 1 with probability
p and 2 with probability 1 — u. The consumer collects a single (monop-
oly) quote with probability p € (0, 1) and two (competitive) quotes with
probability 1 — u. Thus, the consumer gets a quote from only firm 1 with
probability p/2, from only firm 2 with probability u/2, and from both
firms with probability 1 — p. In the continuum interpretation of the model,
a proportion pu/2 are “captive” consumers of firm 1, a proportion /2 are
captives of firm 2, and a proportion p of consumers are “contested” and
can purchase from either firm."

A.  Full Information

First, suppose that there is full information about the price count. If there
is one quote, the quoted firm is a monopolist and charges the monopoly
price of 1. If there are two quotes, both firms charge the competitive price
of 0. Thus, the sales price is 1 with probability u, and itis 0 with probability
1 — . The ex ante (upper cumulative) distribution of the sales price is
denoted by S(-); that is, S(x) is the probability that the lowest price is at
least x. This function is depicted as the thin solid curve in figure 3 for
p = 1/2: the price is at least 0 with probability 1, and the price is at least
x for any 0 < x < 1 with probability 1/2. In the continuum interpretation,
this corresponds to the case where the firms can see whether a customer
is captive or contested and price discriminate accordingly.

B.  No Information

Now suppose that the firms have no information about the price count.
In the continuum interpretation, this corresponds to the assumption
that firms cannot price discriminate and must offer a uniform price. A
firm asked to quote a price will therefore assign conditional probability

' This terminology follows Armstrong and Vickers (2019).
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/2 _
p/2+(1—p) 2-np
to being the monopolist.

This model has a unique mixed-strategy equilibrium where firms ran-
domize over prices in the interval [u/(2 — p), 1]. Both firms use the same
mixing probabilities, wherein the price is at least p; € [p/(2 — u), 1] with
probability

p(1 = p)
2(1 = wpi
To verify that this is an equilibrium, observe that the expected profit from
quoting price p; in the support of Fis
poo 20w
2—nu 2—u

E(p) =

Ep)|p = ﬁ

Prices outside the support of F; yield a weakly lower payoff, and we con-
clude that these strategies are an equilibrium. The resulting ex ante sales
price distribution is

S(x) =

e R

(F(x) + B(x) + (1 — B (x)F(x)

NI=

forx e [p/(2 — p), 1],and S(x) = 1for x < u/(2 — u). The no-information
sales price distribution is the dotted curve in figure 3, again for p = 1/2.
Note that the monopoly price is a best response for each firm, and by set-
ting the monopoly price, a firm would sell only when they are the monop-
olist. Thus, each firm’s ex ante payoff must be u/2, and producer surplus
is u. As aresult, the no-information and full-information sales price distri-
butions have the same expectation.

In section IV.D, we return to the comparison between no information
and full information. It is a general result that when the price count dis-
tribution is held fixed, expected sales prices are the same under no in-
formation and full information. A key message of our paper is that these
two extreme cases are not representative. Indeed, these two information
structures minimize the expected sales price across all information struc-
tures and equilibria.

C.  Maximum Prices with Public Information

Now suppose that firms observe a public signal about the price count (by
which we mean that quoted firms observe the same signal with probability
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one). In particular, firms observe the same signal ¢, = ¢ € {7, j}. If firm ¢ is
amonopolist, the signal is 7 if the marketis competitive, the signal is equally
likely to be ¢ or j. This information structure is depicted in figure 1, where
1, = O represents the case where a firm is not quoted (and hence does not
receive a signal).

We now describe firms’ equilibrium strategies. If the public signal is 4,
both firms know that firm ¢ is a monopolist with probability u and that the
market is competitive with probability 1 — u. In this case, the firms mix
over the interval [u, 1]. Firm ¢’s strategy is

= £

bi
which has a mass point of size p on the monopoly price p = 1, while firm j
follows strategy without a mass point

E(p)

’ (1T —wp
As we did with our analysis of the no-information equilibrium, it is
straightforward to verify that, given the pair of strategies (I, F)), each firm
is indifferent across all prices in the common support [, 1] and strictly
prefers them to any price outside the support, so that these strategies
are an equilibrium.

The resulting ex ante sales price distribution is

(p) = 201

S(x) = u(F(x)) + (1 — p)F(x)E(x) = (E)g’

X

for x € [u, 1], and S(x) = 1for x < p. Itis depicted as the dashed curve in
figure 3, again for p = 1/2. The expected sales price is pu(2 — p).

In the continuum interpretation, Armstrong and Vickers (2019) la-
beled the ex post markets (where only one firm has captive consumers) as
“nested.” They show that the expected price is higher, compared to the sit-
uation with no information. Indeed, even the “weak” firm that knows that
it has no captive customers charges a higher average price than it does un-
der no information. In ashort note (Bergemann, Brooks, and Morris 2020),
we show that the expected sales price under the above public information

™ (¢ = {i}) m(t| K = {j}) m (¢ = {i,j})
i/t ti=0 ti=1i t;j=7 t/t; ;=0 t;=1 t;=7 t/t; t;=0 t;=1 t;=j
ti=0 0 0 0 ti=0 0 0 1 ti=0 0 0 0
ti=1i 1 0 0 ti=i 0 0 0 ti=i 0 1/2 0
ti=j3 0 0 0 ti=j5 0 0 0 ti=j 0 0 1/2

Fic. 1.—Public signal distribution with two firms.
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structure is indeed higher than that under any other public signal struc-
ture, using a standard concavification argument. The intuition is that we
maximize the probability that one firm assigns to being a monopolist by
considering nested markets. This firm will price less aggressively, which al-
lows the rival to raise prices too.

D.  Maximum Prices with Private Information

The expected price can be driven even higher with private signals. To see
why, observe that under the nested public information structure, both
the firm that thinks thatit might be a monopolist and the firm that knows
thatitis not a monopolist follow mixed strategies with the same support.
The common support is a necessary feature of models with public infor-
mation. With private signals, however, we can similarly have a firm that
thinks that it may be a monopolist always competing with a firm that
knows that it is not, but with distinct supports. In particular, we describe
in this paper a class of information structures and equilibria where a firm
that thinks that it may be a monopolist always charges price 1 and a firm
that knows that it not a monopolist always charges a price less than 1. It
turns out that this class contains an information structure whose equilib-
rium sales price distribution first-order stochastically dominates not only
the previous three examples but also any equilibrium sales price distribu-
tion under any information structure.

The information structure is as follows. Each quoted firm i receives a
signal ¢ € {1, 2}. This signal can be interpreted as conveying to firmi a
lower bound on the total number of quoted firms—including firm . If
only a single firm i is quoted, that is K = {i}, then only firm i receives
a signal and ¢ = 1 with probability one. If both firms are quoted, that
is, K = {1, 2}, then with probability 1 — 2« both firms receive the signal
t; = 2, with probability « the signals 4 = 1 and % = 2, and with probabil-
ity a the signals 4 = 2 and & = 1."" These probabilities are summarized
in figure 2, where again the null signal is used to represent an event where
a firm is not quoted.

In effect, signal #; = 1 means that there is at least one quoted firm, and
signal {; = 2 means that there are two quoted firms. Note that when both
firms are quoted, there is a positive probability of 2c that one of the two
firms receives signal #; = 1 and believes that it is possible that only one firm
was quoted. The parameter « € [0, 1/2) therefore controls the dispersion in
the beliefs of the market participants. If « is close to 0, then the information

"' We note that the signals carry a different meaning in the public and private informa-
tion environments. In the case of public information, the signal identifies the firm that is
possibly a monopolist, thus 7 or j. In the case of private information, the signal identifies a
lower bound on the number of competitors in the market.
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m (K ={1}) T (K ={2}) m(t|K ={1,2})
Lty ta=0 ta=1 ty=2 ti/ty to=0 ta=1 t,=2 tifts to=0 ta=1 t,=2
t=0 0 0 0 ti=0 0 1 0 t = 0 0 0
t=1 1 0 0 t=1 0 0 0 t= 0 0 a
th=2 0 0 0 t=2 0 0 0 t= 0 a 1-2a

F1G. 2.—Private signal distribution with two firms.

structure is close to full information, and with high probability both of the
firms learn that they are in a competitive environment. If ¢ is close to 1/2,
then the information structure is close to that we constructed with public
signals, and with high probability exactly one firm learns that the environ-
ment is competitive.

We now describe an equilibrium where the firm that has received signal
t; = 1 charges the monopoly price, p; = 1, and the firm that receives the
signal #; = 2 mixes according to the upper cumulative distribution

o 1—=9p
1 — 2« pi

E(plt; = 2) = E(p) = ; (2)
with support p; € [a/(1 — «), 1]. We refer to the firm that receives the sig-
nal ; = 2as “informed,” as such a firm knows the price count. Conversely,
a firm that receives the signal ; = 1is “uninformed,” as the firm is uncer-
tain whether it is in a monopoly or a competitive environment.

We claim that these strategies are an equilibrium if « is sufficiently
small. To see this, observe that the informed firm’s profit from charging
price p; is generated by two events: with probability o the other firm ob-
served signal #; = 1, and with probability 1 — 2« the other firm observed
; = 2. Interim expected profit from setting a price p; in the support of I;
is therefore

(a +1_2aF7(pi)>pf= -

1l -« 1«

so that firm ¢ with signal ¢, = 2 is indeed willing to randomize. Similarly,
the uninformed firm either is a monopolist with probability u/2 orisin a
competitive environment with probability (1 — p)a. We need to ensure
that the uninformed firm receives a higher revenue from posting the mo-
nopoly price 1 rather than choosing a price p; € [0/ (1 — o), 1), which re-
duces to the following inequality:

p/2 o /24 (1~ paki(p)
p/2+ (1 —pa™ p/2+ (1 - pa

After inserting the mixed strategy F;(-) given by equation (2), the above
inequality reduces to

b
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p/2
p/2+ (1= po

We can cancel terms and rearrange to obtain

*Al /"(2_ >_V'
SC I R (3)

_ (I = po o
(1 pi)zp/?ﬁ-(l—u)al—Qa

a <«
We note for future reference that since [u(2 — u)]"/* < 1, it must be that
o <1/2, so that equation (3) is not redundant with the requirement
that a < 1/2. Moreover,

Vi@ —p) = Vet —p) > >,

so that a® > 0. Thus, the proposed strategies are an equilibrium as long
as equation (3) holds, and this equation is satisfied for a nontrivial interval
of a’s.

Itis straightforward to calculate the expected sales price and sales price
distribution in this equilibrium. When a single firm is quoted, that firm
receives signal 1, and the resulting sales price is 1. Thus, there is an atom
of size p on a sales price of 1. If two firms are quoted, then either one or
two firms receive the signal 2, and they randomize according to F}, given
above. The sales price distribution is therefore

s<x>=u+<1—u>lf‘22a[21_x+ (1_)}

X X

forx € [a/(1 — @), 1],and S(x) = 1forx < /(1 — «). Asfor the expected
price, that is even easier to calculate: firms are always indifferent to pricing
arbitrarily close to 1. A firm setting such a price would always sell the good
when a monopolist and would also sell when they are the only informed
firm. Equilibrium producer surplus is therefore p + (1 — p)20c.

Note that the sales price distribution is increasing in « for every x, that
is, in the first-order stochastic dominance order. Thus, sales prices are in-
creasing in the noise in firms’ signals about whether the consumer is con-
tested, and the sales price distribution is maximized at @« = «*. The high-
est expected sales price is [u(2 — )]'*, which is the upper bound on
revenue that we referenced in the introduction. We observe that this is
the square root of the expression of the sales price under public informa-
tion. Indeed, theorem 1 below shows that this information structure and
equilibrium maximize both the expected sales price and the sales price
distribution. When g = 1/2, then the corresponding sales price distribu-
tion is the thick solid curve in figure 3.

Theorem 1 below establishes that a generalization of this construction
delivers the highest possible sales price distribution for any number of
firms and for any price count distribution. The analyses of this section



2288 JOURNAL OF POLITICAL ECONOMY

T T T T

0 1 1 1 1 -

0 0.2 0.4 0.6 0.8 1
T

Maximum distribution
— — Public Information
~~~~~~~~ No information

Full information

Fi6. 3.—Sales price distributions with two firms, v = 1, p = 1/2.

and the next take the price count distribution as exogenous, as in Varian
(1980). We continue the two-firm example in section V, where we extend
the analysis to endogenous price count distributions.

IV. Bounds on Equilibrium Sales Prices

We now present our general results. We begin by stating our main result,
theorem 1, which describes a tight upper bound on the equilibrium sales
price distribution. The proof immediately follows. We then show a simple
comparative static: the maximal sales price distribution is increasing in
the price count distribution, where both distributions are ordered by
first-order stochastic dominance. We use this observation to give a tight
bound on the expected price as a function of the probability that the
price count is one. Finally, we show that the minimum expected sales
price is attained under both full information and no information.

A, Maximal Sales Price Distribution
Let us define a decreasing sequence of cutoff prices:
U= X T X X > > Xy,

where for k> 1,
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k (m—1)/m
A in) )
(11 ,
m=1 QJ"

m

Q= 2 1u(l), (4)

where

for m > 0 and Q, = 1. We also define, for each k > 1, an upper cumula-
tive distribution S(+|k) whose support is [x;, x,-1]. In particular, S(:|1) puts
probability one on v, and for k> 1,

. (xk/x)k/(kfl) _ (xk/xk_l)k/wﬂ)
1 — (xk/xkil)k/(kfl)

for x € [x, x:-1), S(x|k) = 1 for x < x;, and S(x) = 0 for x > x,_,. We then
define S(x) according to

S(xc| )

(5)

S(x) = Su(0)S(x|0), (6)

or equivalently,

when x € [x, x,-,]. Finally, given sales price distributions S(-) and §'(-), we
say that S first-order stochastically dominates S' if S(x) > §'(x) for all x.

THEOREM 1 (First-order stochastic dominance). Fix a price count
distribution p. In any information structure {7, 7} and equilibrium Fcon-
sistent with g, the distribution of sales prices must be first-order stochas-
tically dominated by S, given by equations (5) and (6). Moreover, there
exists an information structure and equilibrium consistent with p for
which § is the equilibrium sales price distribution.

An immediate corollary of theorem 1 is the following characterization
of welfare.

CoOROLLARY 1 (Maximum producer surplus and minimum consumer sur-
plus). Maximum producer surplus across all information structures and
equilibria consistent with the price count distribution g is R = [ xS(dx).
Minimum consumer surplus across all information structures and equilibria
consistent with the price count distribution p is v — R.

Proof of corollary 1.—Clearly, producer surplus is the expected sales
price, and since S is an equilibrium sales price distribution and first-order
stochastically dominates every equilibrium sales price distribution, max-
imum expected producer surplus is the expected sales price under S.
Since the good is always sold, total surplus is always v, and hence mini-
mum consumer surplus is v — R. QED
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To visualize the maximal sales price distribution, consider the case
where v = 1 and there is a uniform distribution on the price count, so
that p(k) = 1/n for all k, that is, where the price count is uniformly dis-
tributed. We studied this example in the case where n = 2 in the previ-
ous section. Figure 4 plots S(x|k) in the case where n = 5. In figure 5, we
plot the ex ante sales price distribution for »n between 2 and 10.

B.  Proof of Theorem 1

The proof of theorem 1 is divided into propositions 1-3, the formal
proofs of which are in the appendix. Proposition 1 presents an integral
inequality that any equilibrium sales price distribution must satisfy. Prop-
osition 2 shows that any equilibrium sales price distribution that satisfies
this inequality must be first-order stochastically dominated by S. Finally,
proposition 3 constructs an information structure and equilibrium for
which the equilibrium sales price distribution is precisely S.

Let us establish notation for the sales price distribution induced by an
information structure (7, w) and a strategy profile . Let S;(x|k) denote
the conditional probability that the good is sold by firm Zat a price greater
than or equal to x, conditional on there being k firms quoting prices. This
is the expression

HiEK
&umeg%mm@L“Lukmgﬁﬂ@mﬂmm)

that appeared earlier in the expected revenue formula (eq. [1]). Also, let

ﬂﬂmeéxwm

denote the conditional sales price distribution, given a price count of k.
Finally, let

n

S(x) = S u(k)S(x|k)
k=1
denote the ex ante sales price distribution.
The sales price distributions S;(x| k) are sufficient to determine reve-
nue. In particular, firm ¢’s revenue is

xS;(dx|k), (7

0

éu(k)r:

X

and total revenue is

J” xS(dx). (8)

x=0
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F16. 4.—Conditional and unconditional sales price distributions for » = 5 and uni-
formly distributed price counts.

Our first result is an integral inequality that must be satisfied by any equi-
librium conditional sales price distribution.

ProrosiTioN 1 (Upper bound on sales price distribution). In any
equilibrium, the sales price distributions must satisfy, for all x € [0, v],
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v

W(RKS(xk) < J ¥S(dy). ©)

y=x

n
k=1

To develop some intuition for the above inequality, consider the case
where there is zero ex ante probability that xis the sales price; that s, S(-)
does not have an atom at x. Suppose that we first select a firm at random,
and then the selected firm deviates by setting a price of x whenever they
would have set a price greater than xin equilibrium. We refer to this as a
uniform price cut to x. We claim that the expected profit resulting from
such a deviation (where we also take expectation with respect to which
firm is the deviator) is precisely

St (£ x5(af0) + |

y=0

X

yS(dy|k)). (10)

Expression (10) can be understood as follows: conditional on the price
count being k, there is a k/n chance that the firm we picked to deviate
is quoted. Conditional on being quoted, there is a probability S(x| k) that
the equilibrium sales price would have been above x (with zero mass on x
itself), so that all firms set a price strictly greater than x. As a result, the
deviating firm will set the lowest price, which is equal to x, and make a
sale. Butif the equilibrium sales price would have been less than x, either
(1) the deviating firm would have set a price less than x, in which case they
do not change their price, or (2) another firm has the lowest price. which
is less than x. As a result, the deviation does not affect which firms have
the lowest price, and the deviating firm’s surplus is simply what they
would have received in equilibrium. There is a 1/k likelihood of having
the lowest price conditional on being quoted and hence a 1/7 ex ante
likelihood of having the lowest price, which is distributed according to
S(dy| k). If no firm wants to deviate in this manner, than it must be that
the average surplus from this deviation across firms, given in expression
(10), is less than the firms’ average equilibrium revenue, which is 1/n of
expression (8). Multiplying this inequality by n yields inequality (9).

Inequality (9) is central to our subsequent analysis. For future refer-
ence, we can integrate the right-hand side of (9) by parts and rearrange
it into the following form:

v

SSuk = DS < | s0)a (an

y=x

Here we have used the facts that Sis an upper cumulative distribution
function, so S(dx) = —dS(x)/dx, and that S(x) = 0 for x > v.

To simplify terminology, we say that an ex ante sales price distribution
S(+) deters uniform price cuts if there exist conditional sales price distribu-
tions {S(:|k)} whose expectation is S(-) and that satisfy inequality (9).
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ProrosiTiON 2 (First-order stochastic dominance). If the ex ante
sales price distribution S deters uniform price cuts, then S first-order sto-
chastically dominates S.

The three main steps in proving this proposition are as follows. First, we
argue that when maximizing the ex ante sales price distribution, it is with-
out loss to consider distributions that have ordered supports, meaning that
the supports of S(-|k) are intervals of the form [y, y.—1], where {y},-, is
an increasing sequence. In other words, the sales price is perfectly “nega-
tively correlated” with the price count. The reason is that holding fixed S(-),
it is always possible to define new conditional distributions so that kand x
are countermonotonic, which leaves the righthand side of inequality (9)
unchanged but decreases the lefthand side, thereby relaxing the con-
straint. Second, we argue that it is without loss to consider distributions
for which (9) holds as an equality. If not, it is possible to push up the sales
price distribution everywhere, while still satisfying (9). Third, we show that
the ordered-supports property, together with (9) as an equality, reduce to a
firstorder differential equation whose unique solution is the distribution S.

Finally, we construct an information structure and equilibrium that at-
tain the upper-bound distribution of sales prices. Each firm receives sig-
nalsin 7,2 {1,...,n}. For k> 1 and k > [ > 1, we define

/(-1 _
(1K) = Qs [(va /) 1] , and (12)

Qk—lxk—l (xkfl/xk)l/(kil)

. Qv
a(1]k) = —— . and
Qk—lxk—l(xk—l/xk)

Bi=1— (1 — a(klk))".

The signals are then generated according to the following distribution:

LHZ,EKOL(LHKD if |{ie K|, =|K|}| >0,
w(t|K) 24 Pix (13)

0 otherwise.

Thus, when the realized price countis £, the signals are generated by tak-
ing independent draws from «(:|k) and throwing out realizations where
all firms draw numbers less than k. An interpretation is that each firm’s
signal ¢; is a lower bound of the realized price count. Significantly, at least
one firm observes the true price count, while the others observe numbers
that are weakly lower. A key feature is that each firm receives a signal that
is a hard lower bound on the price count. This is natural if we assume that
the consumer collects prices sequentially and each firm sees a subset of
the firms from whom the consumer has previously solicited prices.
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Finally, firms use the pricing strategy in which conditional on receiving
a signal &, the firm mixes on [x;, x,_;] according to

NV 1(h-1)
L/ ) (M<f;ﬁ : (14)
1-— (Xk/xk_l)

The pricing strategy of the individual firm mirrors the ex ante sales price
distribution S(-|k) given in equation (5) and simply lowers every exponent
fromk/(k — 1) to1/(k — 1). We are now ready to state the following result.

ProposITION 3 (Maximal information and equilibrium). The strate-
gies F defined by equation (14) are an equilibrium for the information
structure (7, ), and the resulting ex ante sales price distribution is S.

To prove proposition 3, we first verify that 7 as defined in equation (13)
is in fact a conditional probability distribution. We then show that this in-
formation structure and these strategies induce the upper-bound ex ante
sales price distribution S. This is essentially an application of the bino-
mial theorem: when the price countis k, the number of firms that observe
asignal of kis a truncated binomial, where at least one firm must observe
k. We then compute the expectation of (G(x|k))' over the number of
firms [ that observe a signal k, which is exactly S(x|k).

Finally, we show that the strategies in equation (14) are an equilibrium.
This is established by separately considering price increases and price
cuts. For price increases, it is shown that a firm with signal #; = k strictly
prefers any price in [x,, %] to any price greater than x,—;. For price cuts,
we show that firms are actually indifferent between all prices in [%5 2-1].
In fact, this is necessary in order to attain the bound on the price distri-
bution: constraint (11) says that for each x, firms on average do not ben-
efitfrom a uniform price cut to x. The critical distribution S satisfies these
constraints as equalities, meaning that firms are on average indifferent to
uniform price cuts. Of course, in equilibrium, firms cannot want to devi-
ate in any manner, so it must be that all firms are indifferent to uniform
price cuts; otherwise, if some firm had a strict preference not to uniformly
cut prices, some other firm would have a strict preference to uniformly
cut. By a similar logic, if firms do not benefit on average by cutting prices
to x from all equilibrium prices above x, they must in fact be indifferent to
a price cut from any given price above x. Thus, firms must be indifferent
to all price cuts. As we argue in the formal proof, this is precisely the case
for the information structure and strategies we constructed.

We can now complete the proof of theorem 1.

Proof of theorem 1.—Suppose that S is the sales price distribution in-
duced by an information structure {7, 7} and equilibrium F consistent
with u. By proposition 1, $ must deter uniform price cuts. Proposition 2
then implies that S is firstorder stochastically dominated by S. This
proves the first part of the theorem, while the second part follows imme-
diately from proposition 3. QED

E(pilk) = G(pil k) =
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C. Comparative Static in Price Count Distribution p

We now report a simple and intuitive comparative static. Given two price
count distributions p and y’, we say that p first-order stochastically dom-
inates ' it /-, u(l) > 2 w'(l) forallk = 1,..., n.

ProprosITION 4 (Price count and equilibrium sales price distribution).
Let g and ' be price count distributions, with corresponding maximal
sales price distributions S and §'. If ¢’ first-order stochastically dominates
u, then S first-order stochastically dominates S'.

The proof of proposition 4 in the appendix actually shows an even
stronger result: any ex ante sales price distribution that deters uniform
price cuts under p’ also deters uniform price cuts under p. A fortiori, the
maximal sales price distribution under p’ also deters uniform price cuts
under p and hence is dominated by the maximal distribution for p.

We illustrate this with our uniform example in which v = 1and p(k) =
1/n for all k. In figure 5, we display the ex ante sales price distribution as
we vary the expected number of price quotes (and the maximal number
of price quotes). As we increase the number of firms, the maximum sales
price distribution decreases in the sense of first-order stochastic dominance.

Proposition 4 implies that holding fixed the probability of a single price
count, u(1), the upper bound on equilibrium sales price distribution is
maximized when p(2) = 1 — p(1), that is, when the price count is either
1 or 2. In that case, the maximum expected sales price is v[u(1)(2—pu(1))]"*.
In contrast, under either full information or no information (see sec. IV.D),

S(x)

F1G. 5.—Sales price distributions for different n» and uniform price counts. Kinks occur
at the cutoffs x;, which are boundaries between the supports of conditional sales price dis-
tributions, as depicted in fig. 4.
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the expected sales price is u(1). Figure 6 contrasts the resulting expected
revenue as we vary the probability u(1). Thus, in the presence of incomplete
information, maximum revenue grows very quickly in the probability u(1)
of there being a monopoly. In particular, the marginal growth of maximum
revenue is unbounded when p(1) = 0. This analysis does, however, show
that the expected sales price converges to zero as u(l) goes to zero, and
we recover the competitive outcome as beliefs converge to common knowl-
edge that there are at least two firms (in the product topology on higher-
order beliefs). We formalize this result as the following corollary.

CoroLLARY 2 (Competitive limit). Among all price count distribu-
tions with probability u(1) of a price count of 1, a tight upper bound
on the expected sales price is v[u(1)(2 — u(1))]"*. Marginal maximal rev-
enue with respect to the probability of being a monopolist is (1 — v)/
[0(1)(2 — u(1))]"*, which is unbounded at u(1) = 0, where the market
is fully competitive.

Conversely, holding fixed p(1), proposition 4 implies that S is mini-
mized when u(n) = 1 — u(1). In this case, constraint (11) becomes

Maximal revenue
Full information revenue

0 1 1 1 1

0 0.2 0.4 0.6 0.8 1
p(1)

F1c. 6.—Maximal revenue versus full-/no-information revenue, consistent with a given
probability of monopoly. As proposition 5 shows, the straight line is also a lower bound
on revenue, given p(1), so that all possible revenues are between the two curves.
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v

(1= W) = DS(l) < | SO)ay

Since the right-hand side is bounded above by v — «x, this equation im-
plies that S(x| n) converges to zero pointwise as n goes to infinity. Thus,
when the expected number of firms grows large, revenue converges to
the full-information benchmark, and firms obtain positive revenue only
when they are monopolists. The upshotis thatin order to lift prices above
the full-information level, it is insufficient for firms to have partial infor-
mation about whether they are monopolists; it is also necessary for price
counts to be bounded.

D.  Minimum Expected Price and No Information

We have shown that there is an equilibrium sales price distribution that
first-order stochastically dominates any equilibrium sales price distribu-
tion arising under any information structure. A fortiori, we have also
characterized the highest expected sales price across all equilibria and in-
formation structures. The following proposition provides a correspond-
ing characterization of the minimum equilibrium expected sales price.

ProposITION b (Minimum expected price). The minimum expected
sales price across all information structures and equilibria is yu(1). The
maximum consumer surplus across all information structures and equi-
libria is v — p(1)v. Minimum revenue and maximum consumer surplus
are attained under full information and no information.

Proof.  In any information structure and equilibrium, each firm i can
always seta price p = v. This strategy guarantees firm ¢ revenue of vwhen
the consumer receives only one price quote, so that each firm’s ex ante
expected equilibrium revenue is bounded below by vu(1) /7, so that pro-
ducer surplus is at least yu(1). Clearly, this is producer surplus under full
information, in which case firms price at v when the price count is one,
and otherwise, Bertrand competition forces the price down to cost, which
is zero. For the no-information environment, lemma 2 of Burdett and
Judd (1983) established that there is a unique symmetric equilibrium.
In this equilibrium, firms use nonatomic mixed strategies with support
of the form [p, v]. As a result, each firm is indifferent to setting a price
of p = v, in which case their ex ante profit is vu(1)/n. Finally, as we ob-
served in the proof of corollary 1, total surplus is always v, so that consumer
surplus is maximized when producer surplus is minimized. QED

Note that in many cases, the no-information setting has other asymmet-
ric equilibria, although they must have weakly higher revenue than vu(1)."

¥ Narasimhan (1988) identifies the unique equilibrium when there are only two firms.
Baye, Kovenock, and de Vries (1992) construct all equilibria in the model of Varian (1980),
where the price count is either k = 1 or k = N.
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For example, when n = 3 and the price count is either k = 1 or k = 2,
there are asymmetric equilibria in which two of the three firms essentially
play the n = 2 equilibrium and the third firm prices at the monopoly level.
Note thatin this equilibrium, all firms are indifferent to setting the monop-
oly price and selling only to captive consumers, so that the expected sales
price is the same. We do not know of any asymmetric equilibria with differ-
ent expected price.

We close this section with a few remarks on the implications of pro-
position b. First, a failure of common knowledge of the price count alone
cannot explain an increased expected price, unless firms have partial and
private information about the price count. In addition, price discrimina-
tion weakly increases the expected price relative to uniform pricing (which
corresponds to the no-information case). Proposition 4 of Armstrong and
Vickers (2019) showed this to be true for any public signal structure. We
show that price discrimination weakly increases the expected price relative
to the no-information case under any information structure, including pri-
vate information structures.'® Finally, since the equilibrium sales price dis-
tributions under full information and no information are distinct, we can
see that there is no lower bound on equilibrium sales price distribution
analogous to the upper bound in theorem 1.

V. Endogenizing the Price Count
A.  Feedback versus No Feedback

We have thus far studied equilibrium sales price distributions holding the
price count distribution fixed. As discussed in the introduction, there is a
plethora of models of how the price count distribution is determined.
An important question is whether our bounds still apply when we en-
dogenize price counts, for example, with a dynamic model of consumer
search. In this section, we explore this issue in detail by considering var-
ious ways of endogenizing price counts that have been proposed in the
literature. In all of these models, the firms’ prices and the price count are
jointly determined in equilibrium. There is an important distinction, how-
ever, as to how a firm’s price affects the price count and other firms’ behav-
ior. In many of these models, price counts and prices depend only on beliefs
about how firms will price in equilibrium. In particular, there is no feedback
from realized prices to price counts and to other firms’ prices.'* When there
is no feedback, our analysis in the previous section immediately applies to

'* Proposition 4 of Armstrong and Vickers (2019) assumes that there are two firms. They
allow a general demand function, while we assume single-unit demand, but our lower bound
on the expected price extends easily, as discussed below.

' These models, including the seminal contributions of Butters (1977), Varian (1980),
Burdett and Judd (1983), and Baye and Morgan (2001), share two significant features:
(1) the price counts are determined before or simultaneous with the prices, and (2) the
prices are determined simultaneously by the firms. As a result, there is no feedback from
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whatever price count distribution is realized in equilibrium. The reason is
that the critical uniform price cut that drives our bounds is still available to
firms. From the perspective of a deviating firm, changing their price has no
effect on the price count or the prices set by other firms. As a result, the
equilibrium sales price distribution must still satisfy the critical inequality
(9), and proposition 2 shows that the equilibrium distribution is bounded
by S.

There are other models, however, that exhibit feedback, meaning that
a firm’s realized price can directly affect price counts and/or other firms’
prices. Whether our bounds hold in such models depends on the par-
ticular form of feedback. To illustrate the possibilities, we give one sim-
ple example in which our bounds are violated and another rich example
for which our bounds apply. For the former, consider a two-firm, full-
information Stackelberg game. This game has an equilibrium in which,
on the equilibrium path, both firms price at or above the monopoly level
and the second firm makes the sale. This is supported by off-path play
in which the following firm undercuts any price set by the leader. This
equilibrium obviously violates our bounds. The reason is that when firms
move sequentially and observe one another’s prices, the strategic response
can lower the payoff from price cuts, so that the equilibrium sales price
distribution need not satisfy inequality (9).

Another prominent example of feedback is sequential consumer search,
in which a consumer iteratively solicits price quotes and, after observing
the quoted price, decides whether to purchase or continue searching.
Firms’ realized prices feed back directly into the price count through the
consumer’s decision of when to stop. While observable prices can make
price cuts less attractive, sequential search generally has the opposite ef-
fect and makes price cuts more attractive. The reason is that price cuts
tend to make consumers stop searching sooner, so that a deviating firm
faces less competition relative to the benchmark with fixed price counts.
Hence, constraint (9) will still hold in equilibrium, and the rest of our
bounding argument goes through.

The remainder of this section formally develops the analogue of theo-
rem 1 for sequential search. In particular, theorem 2 shows that for a fairly
large class of sequential search models, where we vary both firms’ infor-
mation and the consumers’ search costs, the distribution S is a tight up-
per bound on the equilibrium ex ante sales price distribution.

B. A Model of Sequential Search

Time is discrete. At each period, a consumer decides whether to pur-
chase at the lowest price found thus far or continue searching. If they

firms’ pricing decisions to the price count or to other firms’ prices. Numerous other exam-
ples in this class are described in a survey by Baye, Morgan, and Scholten (2006).
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choose to search, a new firm is drawn without replacement and quotes a
price. The latent order in which firms will be searched is denoted by a
permutation £ : N — N, where & denotes the set of permutations. The
interpretation is that if the consumer searches at least £ firms, then firm
& (k) provides the kth quote. All orders are equally likely.

As in our baseline model, the consumer has value v for a single unit,
which can be produced at zero cost by each of the firms. In addition,
the consumer has a type 0 in a measurable set ©, which is distributed ac-
cording to g € A(©). The consumer chooses a number k > 1 of firms to
search. If a consumer searches k firms, then they pay a cost ¢(k, ). The
parameter 6 allows for heterogeneity in search costs among consumers.
We make the simplifying assumption that for all 6, k, and %, c(k, 0) #
¢(K,0).” If the consumer purchases at price p after visiting k firms, their
payoff is v — p — ¢(k, 0). The payoff to the firm that makes the sale is p,
and other firms’ payoffs are zero. As before, ties for lowest price at the
time the consumer stops searching are broken uniformly.

We continue to model the firms’ beliefs using an information structure.
Each firm has a set of signals 7;. For this section, we assume for simplicity
that the signal sets are finite. Conditional on 6 and &, there is a joint distri-
bution over signals denoted by w(¢]6, £). We further assume that after
searching k firms, the consumer sees the history (6, {(£(1), &), ) }i1)-
The set of such histories of length kis denoted H,, and the set of all histo-
ries is H. These sets are endowed with their natural product measurable
structure. Thus, firms have partial information about both the consumer’s
type and the order in which firms are searched. The consumer, on the other
hand, knows their own type and the identities, signals, and quoted prices of
the firms that were searched.

The strategy of firm ¢ is a pricing kernel

F: T, — A(]0, v)).

As before, F(-|¢;) is an upper cumulative function. The strategy of the con-
sumer is a measurable function o : H — [0, 1], where a(#) is the probabil-
ity that the consumer continues searching at history k. With the comple-
mentary probability, the consumer buys from one of the firms with the
lowest price quoted thus far, breaking ties uniformly. We further impose
that for & € H,, o(k) = 0; that is, the consumer must buy after searching
all of the firms. Note thata strategy profile for the firms and the consumer
induces a distribution over the number of firms the consumer searches,
that is, the price count, as well as a distribution over the sales price.

' Our results can be readily generalized to allow for any cost function, if we assume that
the consumer breaks ties in favor of searching more firms if doing so does not increase the
search cost.



SEARCH, INFORMATION, AND PRICES 2301

We analyze perfect Bayesian equilibria (Fudenberg and Tirole 1991).
That is, we analyze Nash equilibria where players are also sequentially ra-
tional off the equilibrium path, relative to beliefs off the equilibrium path
that are consistent with Bayes rule where possible. In particular, we re-
quire that the consumer’s strategy continues to be optimal even if firms
deviate in their prices. The remaining and complete description of the
extensive-form game is in the appendix.

To summarize, the parameters of the sequential search model are
{©,n, ¢, T, w}. This class of sequential search models generalize Stahl
(1989, 1996) , where the consumer simply has a constant cost per search.'

C. Extending the Upper Bound to Sequential Search

The following result shows that S is a tight upper bound on the equilibrium
sales price distribution for the sequential search model just described.

THEOREM 2 (Sequential search and upper bound). Fix a price count
distribution u € A({1, .., n}). For any sequential search model {6, , ¢,
T, 7} and equilibrium (F, o) such that the equilibrium price count dis-
tribution is p, the induced sales price distribution is first-order stochas-
tically dominated by S, given by equations (5) and (6). Moreover, there
exists a sequential search model and equilibrium that induce g, and the
equilibrium sales price distribution is S.

The full proof'is in the appendix. We here provide a sketch. First, it is
straightforward to adapt the construction preceding proposition 3 to se-
quential search, so that the strategies F are an equilibrium and induce
the ex ante sales price distribution S. We simply set 6 = {1,..., N},
1(0) = p(k), and"”

(k.6) 0 ifk=28,
c(k,6) =
v + k otherwise.

With this model, itis a strictly dominant strategy for the consumer of type
6 to search 6 firms. As a result, the equilibrium price count distribution
must be p, regardless of firms’ strategies. In addition, the information
is again given by 7; = {1, ..., n} and

'* While our formal model is one of sequential search, our bounds will also apply for any
pricing game that ends in sequential search, but where firms and the consumer can take
earlier actions that influence the endogenous determination of the price count distribu-
tion without adding feedback beyond that in the sequential search model. For example,
Ellison and Ellison (2009) and Ellison and Wolitzky (2012) have shown empirically and
theoretically that firms have an incentive to increase search costs strategically to raise prices,
and our bounds will apply in the case of the latter theoretical model as well.

7 The purpose of the +k term is merely to satisfy our genericity assumption that
c(k,0) # ¢(k,0) for all k, ¥, and 6.
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(10, ) = 7(d|[{i£() < 6}]).

By the same argument as for proposition 3, we conclude that firms’ strat-
egies are an equilibrium that induce the sales price distribution S.

The rest of the proof generalizes proposition 1 by showing that the equi-
librium sales price distribution in any sequential search model must deter
uniform price cuts. Recall that in the proof of proposition 1, we showed
that the expected payoff from a uniform price cut (averaged across firms)
is given by expression (10). This expression presumes that price counts are
unaffected by the deviation. With sequential search, it turns out that this is
a lower bound on the average payoff from the uniform price cut. The rea-
son is that the price cut may cause the consumer to search less and hence
may result in a higher probability of the deviator making a sale. This step
requires careful argument. Because the consumer sees all the signals of
previously searched firms, the consumer’s beliefs about future prices do
not depend on past prices. As a result, consumers will adopt simple cutoff
strategies in equilibrium, whereby they purchase the good as soon as the
lowest price encountered is below a cutoff that depends on previously
searched firms’ signals and the consumer’s own type. Once we know that
consumers use cutoff strategies, it is easy to see that price cuts will lead to
lower price counts and a weakly higher payoff for the deviating firm, rela-
tive to a benchmark in which price counts are held fixed.

As an illustration, consider a version of Stahl’s model in which there
are two firms. With probability 1/2, the consumer is a “shopper” who ob-
serves both firms’ prices for free, but with probability 1/2, the consumer
is a nonshopper who observes one quote and can then choose (after ob-
serving the price) to pay ¢ > 0 to observe the second price. In equilib-
rium, the nonshopper gets only one quote. Firms follow a mixed strategy

r—p
2p

F(p) =

>

with support [7/3, r], where

1- (1/2} In(3)/2

In figure 7, we add the equilibrium sales price distribution for the se-
quential search model for ¢ = 1/2 (for which r = 0.74) to the uniform
price count distribution in section III. Sales price distributions for this ex-
ample under various informational assumptions are depicted in figure 3.
We can see that sequential search lowers the sales price distribution relative
to simultaneous search with the same equilibrium price count distribution.

Thus, we conclude that our bounds will extend to a nontrivial class of
models with sequential search. Importantly, we have assumed that each

1>

r
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—— Full information

Fic. 7.—Equilibrium sales price distribution under sequential search.

firm does not observe other firms’ prices before setting their own price.
We have also assumed that firms have no information that is unobserv-
able to the consumer, so that consumers do not learn from realized prices
about firms’ beliefs. These assumptions cannot be easily dispensed with.
Generalizing our bounds to allow for richer learning by firms and con-
sumers is an important direction for future work.

VI. Further Topics

We now consider three additional topics. We first discuss how our results
can be generalized to allow for downward-sloping demand. We then dis-
cuss how our results can be extended when firms have different probabil-
ities of being quoted. Finally, we discuss the relationship between the
pricing game analyzed here and the first-price auction.

A.  Beyond Single-Unit Demand

We derived our results on the maximal sales price distribution under the
assumption of single-unit demand. This assumption is easily relaxed at
the cost of extra notation, with our tight upper bound on the sales price
distribution continuing to hold.
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Suppose that the consumer has multiunit demand. We maintain the as-
sumption that firms produce homogeneous goods and quote a single price
for all units, so that the consumer purchases only from a low-price firm. If
the lowest price is p, the consumer purchases D(p) units. With this addi-
tional structure the uniform downward incentive constraint (9) becomes

v

DEZUAS(I0) < | 30)S()

y

We assume without loss that firms use only prices in the set

P* = A{pl #p' < psuchthat p'D(p') = pD(p)}-

Using a price poutside of P is weakly dominated, in that there is another
price that induces weakly more revenue and is lower than p, so that it is
more likely to be the lowest price and attract consumers. Firms never
price above the monopoly price

PV = arg max pD(p).
peP*

Under the further assumption that D(p) is continuous, the set of possi-
ble revenue levels {pD(p)|p € P*} is convex and in fact is the interval
[0, pMD(pM)]. We can then treat the associated revenue levels as the prices
in the baseline model, with p™D(p™) being the analogue of the consum-
er’s value v. All the derivations from section IV go through as before to
obtain an equivalent result for theorem 1, which would state that the
equilibrium distribution of min pD(min p) is bounded above by S, where
S(x) = S(y), where y € P* is such that yD(y) = x.

The single-unit-demand assumption does deliver the result that the al-
location is always efficient, and therefore the sum of producer surplus
(the price) and consumer surplus is always v. This allows us to report
straightforward implications of our pricing results for consumer surplus.
It might be possible to derive implications for consumer surplus under
downward-sloping demand using the additional structure assumed in
Armstrong and Vickers (2019) in their analysis of the two-firm case.

More generally, theorem 1 can be adapted to other settings in which
firms sell an abstract set of goods and offer menus of good/price bun-
dles and consumers purchase the bundle offering them the most sur-
plus. Under fairly general conditions, such a model is strategically equiv-
alent to the Bertrand pricing game with unit demand, as has been noted

by Armstrong and Vickers (2001).

B.  Beyond a Symmetric Quote Distribution

We derived our results on the maximal sales price distribution under the
assumption thatall firms are equally likely to be quoted, as in classic search
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models, such as Varian (1980) and Burdett and Judd (1983). A number of
asymmetric generalizations of the incomplete-information Bertrand game
have since been analyzed: see Armstrong and Vickers (2020) for a recent
analysis of this problem (in the no-information case) as well as a review of
this literature. Their findings suggest that even under no information, the
equilibrium analysis with asymmetric distributions can be quite complicated.
We argue here that our construction continues to yield an upper bound
on the sales price distribution even if quotation probabilities differ across
firms, although the bound may no longer be tight.

Recall that u denotes the ex ante distribution of the price count and that
v(K|k) is the distribution over the set of quoted firms conditional on the
price count. We assumed that, conditional on the price count k, all firms
are equally likely to be quoted. Suppose that we instead allowed an arbi-
trary conditional distribution »(K|), so that firms need not be equally likely
to be quoted. What would happen to our results? Suppose that the sales
price distribution S can be attained in an equilibrium under some informa-
tion structure, given ». Now, imagine that we generated a new distribution »'
by permuting the identities of the bidders. Then clearly, there is an informa-
tion structure and equilibrium under which Sis the sales price distribution
when the distribution of the set of quoted firms is ¥, where we just push the
permutation of firms’ identities through the information and strategies. Fi-
nally, consider the distribution 7, which is obtained from » by taking an av-
erage over all permutations of bidders’ identities. Then again, Sis an equi-
librium sales price distribution of this model. But » has the property that
firms are equally likely to be quoted, so that Sis less than the maximal sales
price distribution S corresponding to p.

Thus, we conclude that S is still an upper bound on the equilibrium
sales price distribution, even with asymmetric quotation probabilities.
Importantly, the bound may no longer be tight, and the construction
in proposition 3 uses the fact that firms are equally likely to be quoted.
Note that the bound is tight if we actually started with the “symmetrized”
distribution ». But while the previous paragraph shows that if Sis attain-
able under » then it is also attainable under », the converse does not hold.
The reason is that if bidders learned their permuted identities, then this
constitutes a lower bound on their information that the construction of
proposition 3 does not satisfy."®

C. Connection to First-Price Auctions

The pricing game that we analyze here is strategically related to a first-
price auction where each bidder has either a low or a high value for a
good and each bidder knows their private value but is uncertain about

¥ Bergemann, Brooks, and Morris (2013) report some preliminary results on tight
bounds for the asymmetric quote distribution case when there are two firms.
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the values of the other bidders. In the equilibrium of the first-price auc-
tion, low-value bidders will always bid the low value, and high-value bid-
ders follow mixed strategies that depend on their beliefs about the num-
ber of other bidders with high values. The pricing game studied in this
paper can be viewed as a procurement auction, where bidders quote prices
at which they are willing to sell and the auctioneer buys at the lowest price.
Quoted firms are analogous to low-cost bidders, while nonquoted firms are
like high-cost bidders.

Fang and Morris (2006) analyzed the two-bidder first-price auction in
which bidders have known binary private values and also observe addi-
tional information about the other bidder’s value. Fang and Morris (2006)
restricted attention to conditionally independent binary noisy signals
about the opponent’s value and noted that the expected price is necessar-
ily higher with partial information than with either no information or full
information, a result that this paper generalizes. Azacis and Vida (2015)
allowed many conditionally independent signals and also considered the
possibility of correlated signals, and they noted that the critical informa-
tion structure we identify in section III gives rise to a higher expected
price than any conditionally independent signal structure. Our unpub-
lished working paper, Bergemann, Brooks, and Morris (2013), initiated
the study of what can be said in first-price auctions under all information
structures and showed that the highest expected price in the two-bidder
binary-value case is attained in the critical information structure identi-
fied in section III. Bergemann, Brooks, and Morris (2013) also provided
results on two-bidder auctions with binary private values in asymmetric
environments that are not reported in this paper.

In subsequent work, Bergemann, Brooks, and Morris (2017) character-
ized what can happen in first-price auctions under general information
structures. Lemma 1 of Bergemann, Brooks, and Morris (2017) estab-
lished bounds on the equilibrium bid distribution in the first-price auc-
tion, when bidders are allowed to have arbitrary common prior informa-
tion about all bidders’ values. Proposition 1 in this paper establishes
similar bounds when bidders know their own values. This is a different,
and in general much harder, problem to solve, as there are more con-
straints on bidders’ higher-order beliefs. We are able to completely solve
this case only because there are only two values (in the standard auction
interpretation of the problem). The proof of theorem 1—establishing
that the bound in proposition 1 is tight and showing that a single sales
distribution bounds all possible equilibrium sales distributions—has no
analogue in our earlier published work."

' In Bergemann, Brooks, and Morris (2015), an early version of Bergemann, Brooks,
and Morris (2017), we reported further initial steps for the known private-value environ-
ment with binary values and many players. In particular, theorem 11 there gives an implicit
and incomplete characterization of maximal bid distributions.
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VII. Conclusion

We have revisited the standard model of price dispersion in homogenous-
goods markets, in which firms randomize over prices because of a failure
of common knowledge of whether the consumer has quoted at least two
prices. The novelty of our analysis is that rather than trying to fully explain
the origins of the price count, we simply take it as a primitive, and from it
we derive a tight upper bound on the equilibrium distribution of sales
prices. The bound holds across a rich family of models that endogenize
the price count and for all common-prior beliefs that firms might have
about the price count.

A primary application of the bound is to test whether prices in a given
market can be rationalized by competitive behavior, given the distribu-
tion of the number of prices quoted by consumers. This test does not re-
quire the analyst to know what motivated the observed price count, such
as consumers’ perceived costs of searching for price quotes.

An important direction for future research is to further relax our mod-
eling assumptions by allowing for more complicated forms of feedback
from prices to price counts and partial observability of prices by other
firms. Moreover, we have assumed that firms produce homogenous goods
and have symmetric and publicly known costs of production. These as-
sumptions played an important role in our analysis. Generalizing the the-
ory to allow for heterogeneous goods and private information about costs
are important goals for making this theory more empirically relevant.

Appendix

Proofs
Al.  Proofs for Section IV
Al.1. Proof of Proposition 1

Fix x. Let {€,} /2, be a sequence of positive numbers, converging to zero, such that
Sdoes not have an atom at x — ¢, for all /. Such a sequence exists because § has at
most countably many atoms. Suppose that firm 7 deviates in the following man-
ner: whenever firm i would have set a price p; > x — ¢, it sets a price of x — ¢ in-
stead. This deviation affects the outcome only when the lowest price would have
been greater than x — ¢, and in particular, the deviator’s surplus is

N . Hie[\'(p)

Suk) S V(K|k)J J ((x = €)Lin ppr—e, T MmN PLoin pere, —)

k=1 KSN €T Jpel0,0]* K(p)l

Fy(dp|t)m(dl|K).

Note that this expression must be less than firm ¢’s equilibrium surplus, given in
expression (7). As [ goes to infinity, the dominated-convergence theorem im-
plies that the deviator’s surplus converges to
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. e
Eu ) > v(K Ik)J J (x]I ok + MNPl poy —or )Fk(dplt) (di|K),
KSN eTx J p |K( )‘

which is necessarily also less than (7). Summing the deviation surplus across i, we
obtain

<[0,0]*

n

Suk) S V(K|k)LT LE[O . (kxLin e+ L pes) Fi (dp0) m(dt | K)

k=1 KCEN

= b (ka”LEM S u(K|R)Fe(dpl ) w( | K)

K
KCN

+J J min pl e S, v(K|k)FK(dp\t)7r(dt\K))
€Ty J pel0,0]*

KEN

n

= Sutn (kxs<x|k> ol mmp:ﬂ%vmk)FK<dp|t>vr<dr|K>)

k= =

n X

= Su(k) (ka(x|k) 4 [

k=1 Jy=0

yS(dylk))

This must be less than the sum of the firm’s equilibrium revenues, which is ex-
actly inequality (9). QED

Al.2. Proof of Proposition 2

Fix x € [0, v]. Consider the problem of maximizing S(x) over all {S(-|k)};-, that
satisfy inequality (9) and where the functions S(+|k) are measurable functions that
map [0, v] into [0, 1]. Note that the set of conditional distributions is compact in the
weak-" topology (which is the topology of pointwise convergence on {S(:|k)}i—),
constraint (11) is closed, and the objective S(x) is continuous, so that an optimal
conditional distribution exist. We show here that §(x) is the optimal value. This is
established in three steps.

Step 1—When maximizing S(x), it is without loss to restrict attention to
{S(-|k)}i-: that satisfy the following ordered-supports property:

S(ylk) <1 SOHIK) =0 VK >k

Indeed, given any {S(-|k)} and associated ex ante distribution S(-), we can define
anew {S(:|k)} with the same ex ante distribution, but where there is negative as-
sortative matching between k and x. In particular, noting that S(1) < p(1) from
constraint (11), for each k, we define 5ck as the infimum y such that S(y) >
Shoip(m). We then set S(y|k) = (S(y) — 2t iu(m))/u(k) on [%., %]. For each

v, this correlation structure minimizes
Eu )(k = 1)SOlk),

and hence the left-hand side of (11). For future reference, note that for condi-
tional distributions satisfying ordered supports, (11) is, for all y < v and k > 1,
equivalent to
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s < max{o. s (s - Sum-n) | @n

Step 2—Among distributions with the ordered-supports property, it is obviously
without loss to set S(v|1) = 1 (since S(v|1) is unconstrained except for $(v|1) < 1).
Now, if a solution does not satisfy condition (Al) as an equality when S(y|k) <1,
we can define a new solution, which is

3(ylk) = max{O, min{l,m G Ls(z) dz + Zz:u(m)(m - 1)) }}

which satisfies ordered supports, necessarily satisfies S(y|k) > S(y|k) (strictly
whenever [11] is strict), and therefore induces a higher ex ante distribution S.
Thus, it is without loss to restrict attention to solutions for which (11) holds as
an equality whenever S(y|k) < 1.

Step 3.—We now show that the ordered-supports property and condition (Al)
holding as an equality uniquely define the distributions {S(-|k)}. It is immediate
that S(y| k) will have a support that is an interval [y, y—1], with yo = 3 = v, and it
is strictly increasing on its support. In addition, since the right-hand side of (Al)
is continuous, we conclude that the only mass point of Sis at v. Now, suppose
inductively that we have defined S(y| m) and y,, for m < k. Then S(y) must satisfy
the boundary conditions S(y,,) = Z;u(l) for all m < k. On [y, y—1], (A1) holds
as an equality, and moreover

S(y) = u(kR)S(OHIk) + Eu

m=1
As a result, (Al) with equality rearranges to

v

3k = 1)S(y) — J S(2) dz = y 3 u(m)(k — m).

2=y m=1

Multiplying both sides by y~*~2/¢"1 /(k — 1), we obtain

1/(k—1) y (k ) (v yl/(’t ) k=1
y S(y) — ﬁj S(z) dz = e S u(m)(k — m).
2=y -1

m

Integrating both sides, we obtain

o k/(k=1) -1
— yl/(kfl)J S(Z) dz = C, + E“‘ k — m)
m=1

==y

where C, is a constant of integration. Thus,

_ J‘v S(2) de = y—l/(k*”Ck + y(gu(m) — % Q,H),

2=y m=1

where Q- is defined above in equation (4). Differentiating both sides again, we
obtain

" B B k—1 1
SO) = = =7y "+ Zulm) =4 Qe
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The boundary condition S(y,—;) = 24 u(m) then implies that

k-1 G, 1) k-1 1
>u(m) = _ﬁ(}’k—l) + >u(m) — %Q!H

m=1

k—1 _
@G =" Y Q.

As a result,

s =3 [(5) " - 1]an + Suom,

The next boundary condition, S(y,) = =} u(m), is equivalent to

e\
k[.l.(k) = T Q}c—l - Qk*l
k
1/ (k1)
s (y) e
(k=1)/k
Together with the initial condition y; = v, this implies that y, = x;, the bound-
aries that define S. Finally, it must be that for y € [y, yi-1] = [%, %-1],
S(y) = SO-1)
S(ylk) = ———FF——
ity = 22—
_ Qe /)" = i fy) Y
k u(k)
— 0 /)" = On/ype)™ Y
ku(k)
_ /" = /)Y
1= (Q1/Q) '

which is precisely S(y|k). QED
Al.3. Proof of Proposition 3

We first verify that the information structure is well defined, that is, that 7 is a
conditional probability distribution. Clearly, o(I|k) > 0. Also, using the formula
for x,, we can rewrite the numerator in equation (12) as

1/(-1 1/(1-2
Q N (x;ﬂ) /(=1) B Q N (M—l) /(1-2)
-1 X-1| —— -1 %-1| ——
Xy Xi-1
/(-1 1/(1-2
3 Q N (Xz—l) /(=1) Q . (x]ﬂ) /(1-2)
= U\ — — UoXi—2 .
X; X1-1

The sum of these terms across /is precisely the denominator in the definition of
a(l|k). Together with the remarks after the definition of 7, this proves that the
information structure is well defined.
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We next verify that this information structure and these strategies induce S.
When the price count is k, the probability that the highest price is at least x is

k
( )(G(xk)a(klk))’(l — a(k[k)"

HM»

1
Bi7

=3 [(1 — a(klk) + a(klk)G(x|k)" = (1 = a(k[k))].

This follows from the binomial theorem: note that

1/(k-1)
Xk
alklk) =1— | — s
i =1- ()
H(=1)
Br=1- (xi) .
k—1

As aresult, the conditional probability that the lowest price is at least x reduces to

@) e @) @)
Bs Xk—1 X Xr—1 Xp—1

1 [ /s /0D % \ V6D
R Co |

which is §(x), as desired.

Finally, we show that these strategies are an equilibrium. We first consider a firm
iwho receives a signal kand sets a price p; > x,. Then p; could be the lowest price
only if the price countis k = k; for the price count must be atleast k, and if it were
strictly greater, then some firm would have a signal greater than % and be pricing
strictly less than x;,. Note also that conditional on getting a signal k, the other firms’
signals are conditionally independent draws from {1, ..., k} according to proba-
bilities o, so that the others’ prices are conditionally independent draws from

and so

A k )
G(pilk) = 2 a(K|k)G(p]K).
Thus, if p; € [xy, x¢—1], then this reduces to
- / ~ / k)
G(plk) = aKIG(pIK) + Sa(llk)
=1

_ Qe [(en/5) Y 1] (/) N 1 Qe
- 1/(k=1) ) AVET 1/(k=1)
Qk—lxk—l(xk—l/xk) (Xk—l/xh) Qk—l(xk—l/xk) Xp—1

_ Qp-1%-1 (Xh 1/[7])1/k !
Qk—lxk—l(xk—l/xh)l/(k Y

As a result, expected revenue from offering p; € [xy, xy_1] for ¥ < kis
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N k=1 (- i
[L(G([?]‘k)) o (ﬁi)l (k=1)/(K 1)’

which is constant in p; when k' = k and decreasing in p, for k' < k.

The last step is to verify that firm i does not want to cut prices to p; € [xy, xy—1]
with k' > k. Note that conditional on being quoted, the conditional likelihood
that the price count is /is

> K|Du(l)

{K S N|ieK} _ (l/n)u(l)
2 2 '}V(Kll/)u(l’) g(l//n)p.(l’)
Iu()

El/‘u(l/)
=1

Now, a firm makes a sale in that event only if the equilibrium sales price is at least
p:and they are quoted. The ex ante likelihood of this happening and firm i get-
ting a signal k is proportional to

La(RlR) k=1 Ny Y N\ K11
D(pi, k) = B, n(k)K 2 , (@(K|K)G(pilK)) (1 — a(K[K))
) E ak|)[1 - (;— ZUL)S P a(glk)u(k)k

This expression requires some explanation. Itis a sum of probabilities of different
price counts, times the probability that firm i receives a signal k, and times the
probability of making a sale with a price of p; conditional on the number of firms.
Importantly, the signal distribution depends only on the price count and not on
the particular set K of quoted firms. The first line gives the probability that firm ¢
gets a signal kwhen there are k' > k firms and the sales price is at least p,. Note that
the number of firms other than i with a signal of %' is binomially distributed, con-
ditional on that number being at least 1. Conditional on there being / firms with a
signal of ¥, the likelihood of p, being the lowest price is (G(p;|¥))". The second
term is the likelihood that the number of firms /is between £’ and k, firm i gets
a signal of k, and at least one of the other firms gets a signal of k. The final term
is the likelihood that the number of firms is k and firm ¢ gets a signal of k (in this
last event, the signals of the other firms are unrestricted).
We can simplify terms in D(p,, k) as follows. Using the binomial theorem,

K—1

K—1 ,
E( , )(a(k’lk’)G(M'))l(l — a(K[K)"

= (1 = a(k|K) + a(K[K)G(plK) " = (1 = a(k|K)"

Xy
[
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o\ VD

R —1

A(k):Q,,,lxk,lK " ) - 1}.
Xk

Let us define

Then
(MDD _ AK) 0- 0.
B. Q1% (21 /%) TV L = (30 /)]
- A(k) ( Q- )
xl_l(xl_l/xl)l/(lfl)[l _ (Xz-l/x[)l/(m)} Q-
- A(k) X 1(=1) -
" T (6
_ Al
Finally,
1= (1 - alklk)™ =1- xi.

Substituting in these expressions, we can rewrite D(p,, k) as

1 (x ¢ [ | 1
Do) = a0 (- 2) ¢ 5 L (1- )+
Xe \pi X1 o X X1 X
_ Alk)
b
Thus, the payoff from a price cut to p; € [xy, xy—1] for &' > kis p;D(pi, k) = A(k),
thus verifying that the proposed strategies are an equilibrium. QED

Al.4. Proof of Proposition 4

We show the result for the case when p is obtained from p’ by shifting a mass of e
from k + 1 to k, that is,

Wk +e ifk=k
pk) =4 Wk+1) —eifh=k+1,
w (k) otherwise.

Any p that is first-order stochastically dominated by u’ can be obtained via a finite
sequence of such shifts, so that this special case implies the general result in the
statement of the proposition.

To that end, let {S'(:|k) };-, be conditional distributions that satisfy inequality
(9) for the price count distribution p'. Let us define

(k) — e

S(xt) =4 n(k) Stalk) +

€
—S'(x|k + 1) if [ = &k,
iy * Y

S'(x]0) otherwise.
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The induced ex ante distribution is precisely S, so that the right-hand side of (9)
is unchanged. But the left-hand side is now

xzp, )S(x|l) = {Ep. IS'(x|l) — e(k + 1)S'(x|k + 1) + ekS'(x|k + 1)
= <Eu VIS (x|1) — eS'(x|k + 1))
< pr. )iS'(x|1).

The left-hand side has decreased, so that {S(:|k)},-, satisfies inequality (9) for all
x. Thus, any ex ante sales price distribution that deters uniform price cuts for p’
also deters downward uniform deviations for u. A fortiori, the bounding distribu-
tion S for p must first-order stochastically dominate §'. QED

A2, Proofs for Section 5

Before proving theorem 2, we first complete the description of the extensive-
form game from section V.B. Let us define

h(o,0,,1,) = (Ha(e {60, s pen - ))(1—a(e,{s(ﬁ,@m,m}f1))

<k

to be the probability that the consumer buys after searching k firms, when using
the strategy o, conditional on the realized type, prices, signals, and order. Then
firm 7's expected payoff conditional on (0, p, ¢, £), is

Ri(0,0, p, 1, %) pZ‘KZ”‘i'”)!bk(o 0,1, p).

This is the price set by firm ¢ times the probability that at the time the consumer
stops, firm ¢has been searched, has a low price, and wins any tie breaks. Given the
strategy profile (F; o), firm 7's payoff is then

R(F.0) = | LSS[ Rl p, . 5Fpl(0,D)r(a0)

In addition, let

U(o,0,¢,t,p) = E(v — mm{pg ) } — ¢(k, 0))bk(a, 0,&, 6, p)

k=1

be the payoff to the consumer conditional on (o, 0, §, {, p). The consumer’s ex
ante equilibrium payoff is

U(F, o =j EEJ U0, 0. £, t, p)F(dplt)w(1]6, £)n(d).

* teEweT

The price count distribution induced by (F, o) is
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W = [ L S[ blo6. 8t pF (0 En(a).

n! teRIeT

Finally, the induced sales price distributions for every firm ¢ are

Si(x|k) =
1l Lk ) 0,0, ()6 0
u(k) Jen {zs,.\sE k);‘J K(peqy,... )’b"( &, 1, p)F(dp|t)m(t]6, £)n(db),

and, summing up over all firms,
S(xlk) = 2 Si(lk),

i=1

and all price counts,

S(x) §u<k>s<x|k>.

Now, fix a number k € {0, ..., » — 1} and a history % € H,. Given a history

h = (9, {&(k), ts(ma;bak)}f:l)’

we write 5 (h), T(h), and P(%) for the orderings, type profiles, and price profiles
consistent with history 7, respectively:

E(h) ={fcEEWD) =, VI=1..,k}
T(h)y = {{eT|lwqw =ty VI=1,. }
— (P 0.9 Py = pro VI =1, k)

We write U(F; o, h) for the consumer’s payoff, conditional on history 4 being
reached:

D) = ) 2, S )

(eT(h)
X E J P(”U(U’ 0, &, t’l))FE(’f”)v---vE(n)(dpz(kﬂ),.,.,s(n)|t)7r(t|0’E)'
teT(h)J peP(h

Now firm strategy F, is a best response to (F_,, o) if R/(F, F-;,0) > R(F, F-;, 0)
for all F{. The consumer’s strategy o is sequentially rational with respect to Fif
U(F,0,h)> U(F,d,h) for all k= 0,...,N — 1, h€ H,, and ¢. (Note that the
condition on the consumer’s strategy implies, in the case where k = 0, that
the consumer’s strategy must be an ex ante best response.)* The strategy profile
(F, 0) is a perfect Bayesian equilibrium if F;is a best response to (F;, o) for all iand
if o is sequentially rational.

# This definition builds in the restriction on out-of-equilibrium beliefs that the consumer
uses the same distribution (|6, £) over signals and the same conditional distributions F(-|s)
over prices as are used on path. We assumed that signal sets are finite in order to simplify the
statement of these conditional payoffs.
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At a history h € Hj, let

p(h) = min{pea), ..., pew }

denote the lowest price quoted thus far. We further define H, as the set of histo-
ries of length k excluding prices, that is, the set whose elements are of the form
(0, {(£(k), t:))}i=1). The union of the sets F, across k < m is denoted H.

Our first result is the following proposition.

ProrosITION 6 (Reservation price). Given the firms’ strategies F, there exists
a reservation price function r: /f — R, such that a strategy for the consumer is

sequentially rational if and only if a(h) = 0 if p(h) < V(il) and o(h) =1 if
p(h) > r(h).

Proof. The result is established in three steps. First, holding fixed F, the con-
sumer’s payoff is continuous in o, so that there is an optimal strategy. Thus, for

every history A, there is a value
V(h) = max U(F, o, h)

generated by the consumer’s optimal continuation strategy, and the value func-
tion must satisfy the following Bellman equation:

V(h) = max{v — p(h) — c(k, 0), E[V((h, £(k + 1), ey, praen)) | 1] }-

We claim that, in fact, Vdepends only on % and the lowest price quoted thus far,
p(h). The reason is by induction on the length of the history. At histories in H,,
this is obviously true, since V(&) = v — ¢(n,8) — p(h). Now assume that the in-
ductive hypothesis holds for & € H, for [ > k. Then at the history & € H,, the con-
sumer can either stop and receive a payoff v — p — ¢(k, ) or continue and re-
ceive a payoff of

Eetis ) [V (2 E(k + 1), tegueny ), min{ p(h), peceen) }) 5]

where we have used the fact that the next period’s value depends only on the
nonprice history and the lowest price. Critically, the distribution of the next
firm’s price depends only on their identity and signal, and the distribution of
the next firm’s identity and signal depend only on the current nonprice history
& and not on past prices. Thus, it is without loss to condition on % rather than #,
so that V(4) depends only on h and p(h).

Second, we argue that V(, p) is decreasing and convex in p, with a slope at
least —1. It is obvious that V (A, p) is decreasing in p. The reason is that under
the optimal strategy o, each of the terms in U(F, o, &) is decreasing in p. We further
claim that the slope of V (%, p) with respect to pis —1 times the probability that pis
the lowest price at the time the consumer decides to stop, under the optimal con-
tinuation strategy. This is immediate from the fact that p enters the consumer’s
payoff U(F, o, ) only if the consumer purchases at this price. Thus, the slope
is strictly greater than —1, unless there is probability one that the consumer will
purchase at this price. Moreover, we claim that Vis convex in p. This is established by
induction. Clearly, Vis convex in p for histories in f,. Inductively, the expected
payoff from continuing to search is
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[E(S(]H’l>v15\r.»|;y[im+n) [V((il, E(k + 1), tg<k+1>), min{[), Pz(kﬂ)}) |71] (AQ)

Each term in this expectation is clearly convex, since it is decreasing and convex
in p(#) = pwhen p(h) < pyu+1) and is constant when the reverse inequality holds.
Thus, the payoff from continuing is convex, and the payoff from stopping is lin-
ear in p, so that the maximum of these convex functions is also convex. This ex-
tends the inductive hypothesis to k.

Now we argue for the existence of reservation prices for & € H, with k < n. If
thereisa k' > kwith ¢(¥, 0) < ¢(k, 0), then since the consumer can recall past prices,
it is strictly optimal to continue searching, and we can set r(h) = —co. Now sup-
pose that ¢(k,0) > ¢(k, 8) for all £ > k. Clearly, the payoff from stopping has a
slope of —1 in the current lowest price and, since ¢(k, 0) > ¢(k, 0) for k' > k, it is
strictly optimal for the consumer to stop if the lowest price is zero. If the consumer
is ever indifferent between stopping and continuing at some price p, then it must
be because the payoff from stopping and the expected payoff from continuing to
search ([A2]) have crossed. But this can happen only if the slope of (A2) is strictly
greater than —1. As the expected payoff from continuing is convex, we conclude
that for p' > p, the slope of (A2) is also strictly greater than —1. This implies that
the expression (A2) is strictly greater than the payoff from stopping for all p' > p.
As aresult, there is atmost one point where the two payoffs cross, which is denoted
r(h), or if they never cross, we let r(h) be any negative number. QED

Given that the consumer’s equilibrium behavior is characterized by cutoffs
7(h), we now argue that constraint (9) must be satisfied by the equilibrium sales
price distribution. The following result extends proposition 1 to the sequential
search model.

PrROPOSITION 7 (Sequential search and sales price distribution). Suppose
that the sequential search model {6,7,¢, T, 7} and equilibrium (F, o) induce
the price count distribution g € A({1, .., N}). Then the induced ex ante sales
price distribution S(-) deters uniform price cuts.

Note that we have assumed that consumers search at least one firm. If costs
were sufficiently high, the consumer might never search, and the price count dis-
tribution would assign probability 1 to a price count of zero.”" The proposition
remains vacuously true in this case.

Proof.  Fix a terminal history & = (6, £, ¢, p). Suppose that firm ¢ deviates to
pi < pi. The resulting payoff is

zek (B, )

(B -y, )|

ib 2 ‘K( bi(o,0,&, ¢, (pi, p-i))- (A3)

On the other hand, if the firm deviated from p; to p; but the consumer did not
adjust behavior, the payoff would be

'EK (I’ b-i)an, zu)
bk(0> 0? 57 t’ ) (A4)
p E o | K (s s, ew) | !

! Janssen, Moraga-Gonzalez, and Wildenbeest (2005) incorporate this possibility into
the model of Stahl (1989).
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(Note that we have dropped terms where the consumer stops searching before
reaching firm «.) We claim that (A3) is greater than (A4). To see why, observe that
by proposition 6, o(%) is weakly increasing in the lowest price. Let

B.(0,0.£. 1, p) éib,(a, 0,51, p)

denote the probability that the consumer searches at least k firms. Then clearly,

Bi(0,0,,1,p) = [Jo (0. {€0). s e} )
<k
so that By(0,0, £, ¢, p) = Bi(0,0,&, ¢, (pl, p-;)) for k< E7'(i), and By(a,0, &, ¢, p) <
Bi(0,0,&,t, (p}, p-i)) for k> £7'(i). Thus, the distribution of the stopping time
when the consumer responds is first-order stochastically dominated by the
stopping-time distribution when the consumer does not respond. The result then
follows from the fact that

H;el\'((p,’,p sy, .zw)
|K((phs o)) |

is decreasing in k for k > £7'(i).

Thus, firm ¢’s payoff from a price cut is higher when the consumer responds
than when the consumer does not respond, conditional on (0, &, ¢, p). As a result,
the interim payoff from the price cut, taking expectation across (0, £, ¢, p_;), is also
higher when the consumer’s search strategy responds (so that price counts adjust)
than when the consumer does not respond (so that the price count distribution is
the same). Since expression (10) was computed under the premise that price
counts do not respond, it must be that the firm’s surplus from a uniform price
cut is weakly greater than (10). As a result, inequality (9) must still be satisfied
by the conditional price distributions that can be generated in equilibrium. QED
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