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Abstract—Intelligent reflecting surface (IRS) can enhance the
capacity and cost-effectiveness in future wireless networks sub-
stantially. However, the configuration optimization of IRS in an
energy-efficient way is still a challenging work. In this paper,
we propose a solution to the problem of maximizing the total
throughput of a multiple IRSs assisted multi-user communica-
tion system. A federated deep learning (FDL) based algorithm
is designed to obtain the optimal reflection configurations of all
IRSs in parallel, where the model parameters are transmitted
instead of the dataset itself as in deep learning (DL). Specifically,
a deep neural network (DNN) is formulated to fit the coupling
relationship between the coordinate information of users and
the optimal reflecting vector of IRS. Meanwhile, the analysis of
transmission and computation overhead is performed to establish
an accurate energy consumption model. For performance evalua-
tion, we conduct a series of simulations to verify the effectiveness
of the FDL framework. The simulation results demonstrate that
the test accuracy of the FDL framework is as high as 95.22%
with only 1/36 of the transmission energy consumption compared
with the DL. Moreover, the total throughput can achieve 93% of
the theoretical performance.

Index Terms—Intelligent reflecting surfaces, energy efficiency,
federated learning, deep learning.

I. INTRODUCTION

THE FUTURE wireless communication networks focus on
two issues, i.e., user experience and cost-effectiveness.

As a revolutionary technique, intelligent reflecting surfaces
(IRSs) improve the transmission capacity and the rate of
existing wireless networks as a reflective device without
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changing the standardization and hardware of existing wire-
less communications [1]–[3]. Specifically, IRS can reshape
the propagation environment by adjusting electromagnetic
responses (e.g., amplitude, phase, frequency, etc.). The combi-
nation of IRSs and wireless communication technologies, e.g.,
beamforming [4]–[7], millimeter-wave (mmWave) communi-
cation [8], [9], channel estimation [10], [11], source alloca-
tion [12], [13] and secure wireless communication [14], [15],
provides a promising solution with high user experience
and cost-effectiveness in the future wireless communications.
Due to the obstacles of non-line-of-sight (NLoS) links and
the uncontrollability of wireless channel in the communica-
tion scenarios, the IRSs are integrated into existing networks
because of its passive array, reflective mechanisms, flexible
deployment, and cost-effectiveness.

For the IRS enabled scenarios, such as secure communi-
cation, throughput improvement, and the virtual line-of-sight
(LoS) link construction, the optimization of reflection coef-
ficient is indispensable. Remarkably, there are already some
positive results based on convex optimization, both in the
design of IRS reflection coefficient and the joint optimization
with beamforming. However, a single IRS is not enough to
support the needs of task-intensive scenarios (e.g., stadium,
concert), when an IRS group needs to be considered. At this
point, the optimization task is transformed into computation-
ally intensive, in other words, the computational overhead
of convex optimization-based methods becomes unaffordable,
which poses a great challenge to the real-time performance
and robustness of IRS-assisted communication systems.

In this context, deep learning (DL) is introduced into IRS-
assisted wireless communication system design due to its
compelling end-to-end mapping properties. Nevertheless, the
training process of DL requires that all training data be gath-
ered and stored on a specific device, which is called a central
server. Concurrently, the generally large volume of training
data means that when the communication environment is not
ideal, it may cause an unexpected transmission burden or even
congestion or interruption, which can greatly affect the training
effect of the network. In addition, this centralized collection
pattern will cause the risk of privacy leakage in some cases.

Therefore, how to find a satisfactory compromise between
computing-intensive and transmission-intensive is a challeng-
ing problem. Federated learning (FL) is a solution, i.e., instead
of sending raw data to the central server, each participant
trains the local model by utilizing their own data and sends the
updated model parameters for aggregation. This is the reason
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that FL can significantly reduce the transmission burden and
the risk of privacy leakage. At the same time, FL keeps the
aforementioned advantages of DL.

In this paper, we aim at indoor mmWave downlink com-
munications where a wireless access point (AP) is assisted
by multiple IRSs to ensure frequent services for high-
density single-antenna users. Based on the indoor scenario,
an energy efficient federated DL (FDL) framework is estab-
lished to implement the parallel configuration of multiple
IRSs. The FDL framework trains multiple neural networks
in parallel, which guarantees seamless and instant connec-
tion of high-mobility users with corresponding IRS. Besides,
the proposed algorithm performs lower computational com-
plexity and higher energy efficiency compared with some
classic methods. Specifically, the encrypted local models are
uploaded to the federated central server, and then the global
model is trained in the federated central server by integrating
the uploaded local models virtually. To establish an accu-
rate energy consumption model, the analysis of transmission
and computation overhead under different schemes is also
performed.

The contributions in this paper are summarized as follows.
1) This paper establishes an energy-efficient FDL frame-

work for the configuration optimization of multiple IRSs
in high-density networks. In the FDL framework, each
IRS transmits the neural network model after local train-
ing rather than the raw local dataset. By this means, the
system can significantly reduce the communication bur-
den and the energy consumption, while keeping the total
throughput close to the performance limit obtained by
exhaustive search.

2) To find the optimal configuration efficiently, we design a
deep neural network (DNN) model to establish the map-
ping relationship from the users’ coordinate information
to the optimal configuration of an IRS. Compared
to exhaustive search, the designed DNN is able to
obtain sufficiently accurate IRS configurations for max-
imizing system performance, without huge computation
cost.

3) Moreover, we construct a general energy consumption
model for evaluating the energy efficiency of DL and
FDL. The energy consumption is analyzed in detail in
terms of transmission and computation.

4) Finally, a series of simulations are conducted to ver-
ify the effectiveness of the proposed FDL framework.
The simulation results indicate that with an extremely
low energy consumption, the FDL algorithm can still
achieve approximately 93% of the theoretical throughput
limit. Consequently, the FDL framework is verified to be
highly energy-efficient for the configuration optimization
of multiple IRSs in high-density networks.

The rest of the paper is organized as follows. In Section II,
the related works are discussed in the literature. Section III
introduces the system model of the indoor communication
network with an AP assisted by multiple IRSs. Section IV
presents the energy consumption model, composition and gen-
eration of the training dataset, and the specific process of FDL
in detail. To evaluate the performance of the FDL network,

TABLE I
THE LIST OF MAIN NOTATIONS

Section V conducts a series simulations. Finally, the conclu-
sion is drawn in Section VI. Moreover, we list the adopted
notations throughout this paper in Table I for clarity.

II. RELATED WORK

Energy efficiency is a critical performance indicator in
IRS-assisted wireless communications [16]–[18]. And there
has been some priors work about the energy efficiency
maximization of the IRS-assisted communication system. In
the past decade, some classic optimization methods and learn-
ing techniques are sufficiently attractive for configuring the
IRS to explore the field of maximizing energy efficiency. In
this section, we will review and discuss them in detail and
these studies are concluded in Table II.

Jia et al. [19] placed an IRS to aid device-to-device (D2D)
communication network. An energy efficiency maximization
problem was investigated in the above scenario, which
was decoupled into two subproblems and optimized alter-
nately. It was demonstrated that the algorithm could signif-
icantly improve the energy efficiency of the D2D network.
Sun et al. [20] deployed multiple IRSs to assisted multi-
user multiple-input single-output (MISO) downlink cellular
network. They took the circuit power of the IRS into con-
sideration on the condition that the number of the reflecting
elements is large. The phase of the IRSs and the beamform-
ing vectors of the base station (BS) were jointly optimized
to maximize energy efficiency. Zhou et al. [21] showed that
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TABLE II
SUMMARY OF EXISTING WORKS

the maximization of energy efficiency may lead to a loss
of spectral efficiency. They analyzed the spectral and energy
efficiency of an IRS-assisted MISO downlink system with
hardware impairments at both the BS and IRS. For maximizing
the energy efficiency, the optimal solution of transmit power
was obtained and increased with the radio-frequency (RF)
impairments. Xiong et al. [22] aimed at multiuser multiple-
input multiple-output (MIMO) uplink transmission aided by
an IRS equipped with discrete phase shifters, in which the
tradeoff between energy efficiency and spectral efficiency was
considered. Yang et al. [23] pointed out a method to maximize
the energy efficiency by jointly optimizing the on-off sta-
tus of each IRS and the corresponding reflection coefficients
matrix, the successive convex approximation (SCA) method
and the greedy searching are utilized to solve the optimization
problem for single user case and multi-user case, separately. To
maximize the energy efficiency, they presented a framework
that jointly optimized users’ transmit precoding and IRS reflec-
tive beamforming. You et al. [24] investigated the non-trivial
tradeoff between the energy efficiency and the spectral effi-
ciency in IRS-assisted MIMO communications. Nonetheless,
with the increase of the number of IRS elements, the com-
plexity of these proposed algorithms will be unaffordable.
Consequently, new approaches are required to improve the
energy efficiency in IRS-assisted wireless communications
while ensuring practicality and robustness.

On the other hand, DL or reinforcement learning (RL) is
considered as the tool to solve the optimization problem of
reflecting coefficients configuration for IRS independently or
jointly [25]–[29]. Lee et al. [25] considered an IRS-assisted
cellular network endowed with an IRS reflector powered via
energy harvesting technologies. The author proposed a deep
reinforcement learning (DRL) approach to maximize the aver-
age energy efficiency, which demonstrated outstanding energy
efficiency performance with the increase of IRS elements.
Khan and Shin [26] proposed a DL approach to estimate
channels and phase angles of the reflected signal via an
IRS, in which the network utilizes fully connected layers.
This method achieved improvements in terms of the bit error
rate and was proved to be able to reduce the transmission

Fig. 1. Multiple IRSs-assisted AP for the indoor communication network.

overhead. Zhang et al. [27] presented a joint optimization
problem with respect to the location and reflection coefficients
of an unmanned aerial vehicle (UAV) in a UAV-assisted
ground BS mmWave network, where the Q-leaning and neural
network-based RL method was adopted to model the prop-
agation environment for maximizing downlink transmission
capacity. To this effect, it was demonstrated that the use of
RL-based deployment of the UAV-IRS achieved outstanding
performance. Huang et al. [28] designed an effective online
wireless configuration problem in the single IRS-assisted AP
indoor communication environment, in which the authors
utilized DL to output the optimal phase configurations for
maximizing system throughput. Ma et al. [29] developed the
distributed rate optimization with FL in an IRS-assisted BS,
which demonstrated significant performance improvement in
terms of achievable system rate. Nonetheless, those above prior
works have been studied on single IRS-assisted point-to-point
communications by ground BS, and the achievements in the
previous literature cannot be simply extended to the wireless
networks assisted by multiple IRSs.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As illustrated in Fig. 1, we consider a two-dimensional (2D)
top view of the three-dimensional (3D) indoor environment
with multiple IRSs that are installed on the wall. The test
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Fig. 2. Single IRS-assisted AP for the indoor mmWave communication
model.

points represent the possible location coordinates of mobile
users. Due to the complex indoor environment, there are some
obstacles blocking direct links between the AP and the users.
Consequently, the deployment of multiple IRSs creates vir-
tual line-of-sight (LoS) links between the AP and the users to
maintain connection by bypassing obstacles.

A. Signal Model

In Fig. 1, there are S IRSs identified by the index
S = {1, 2, . . . ,S} and each of them is assumed to be capable
of covering the entire area, which means that each user will
be assisted by all IRSs. In the indoor communication network,
the total number of users is K.

As shown in Fig. 2, a single IRS-assisted AP serving a
group of indoor users is regarded as an object for detailed
analysis from Fig. 1. Note that the analysis of single IRS-
assisted communication can be extended to the case multiple
IRSs. Specifically, an AP with M transmitting antennas serves
K single-antenna ground users, and the IRS s with N reflecting
elements is deployed. Besides, each IRS is connected with a
smart controller, responsible for data storage, model training,
and IRS reconfiguration. In practice, the computing server can
meet the above requirements. The channel from AP and user
k to s-th IRS are denoted as hs

t ∈ C
N×M and hs,k

r ∈ C
N×1,

respectively. H k ∈ C
1×M represents the direct channel from

AP to user k. Thus, the received signal at user k can be
expressed as

yk ,a =

(
S∑

s=1

(
hs,k
r

)H
Θshs

t +H k

)
x + nk , (1)

(h)H stands for the conjugate transpose of h. nk ∼ N (0, σ2)
models the additive white Gaussian noise (AWGN) vector. x
denotes the transmitting signal from the AP, which can be
further written as

x =

K∑
k=1

ωk sk , (2)

ωk ∈ C
M×1 is the beamforming vector at the AP. sk stands

for the encoded symbol transmitted to user k.
We define Θ= diag(μ1e

jθ1 , μ2e
jθ2 , . . . , μN ejθN ) ∈

C
N×N as the reflection coefficient diagonal matrix at the

IRS, where μn ∈ [0, 1] and θn ∈ [0, 2π) (n = 1, 2, . . . ,N )
are the corresponding amplitude coefficient and phase shift
of the n-th reflecting element, respectively. For the sake of
simplicity, the effect of amplitude coefficient is normalized in
this paper (i.e., μ1 = μ2 = · · · = μN = 1).

B. Channel Model

In this paper, the Saleh-Valenzuela (SV) channel is
adopted [30]. The S-V channel model is a statistical model of
multi-path channels that accurately reflects the indoor electro-
magnetic distribution characteristics, which is adopted in the
IEEE standard 802.15.3c and it can describe the space-time
characteristics of the MIMO communication or IRS-assisted
communications. Furthermore, the AP and IRS are modeled as
uniform linear array (ULA) and uniform planar array (UPA),
respectively.

Then, the channel hs,k
r and H k can be written as

hs
t =

√
NM

L

L∑
l=0

αlαr ,l (φ
s , ϕs)αH

t ,l (ψ
s), (3)

H k =

√
M

L

L∑
l=0

αlα
H
t ,l

(
ϑk
)
. (4)

The path number is L. αr ,l and αt ,l are beam steering vec-
tors of IRS and AP over l-th path. ψs , ϑs ∈ [−π

2 ,
π
2 ] are

the angle-of-departure (AoD) at the AP to s-th IRS and user
k, respectively. The azimuth and elevation of angle-of-arrival
(AoA) at s-th IRS are denoted as φs and ϕs .

Under a fixed coordinate system, αr ,l (φ
s , ϕs ) can be further

derived as the combination of the array response along y-axis
and z-axis:

αr ,l (φ
s , ϕs) = αy,l (φ

s , ϕs)⊗ αz ,l (ϕ
s), (5)

where ⊗ stands for the Kronecker product, and

αz ,l (ϕ
s) =

√
1

Nz

[
1, ej

2π
λ d cos(ϕs), . . . ,

× ej
2π
λ d(Mz−1) cos(ϕs)

]H
, (6)

αy,l

(
φs , ϕs) =

√
1

Ny

[
1, ej

2π
λ d sin(φs) sin(ϕs), . . . ,

× ej
2π
λ d(My−1) sin(φs) sin(ϕs)

]H
, (7)

λ is the wave length and d is the antenna spacing of IRS.

C. Problem Formulation

Based on (1)-(7), the signal-to-interference-plus-noise ratio
(SINR) at the intended user k can be expressed as

γk =

∣∣∣∣
[∑S

s=1

(
hs,k
r

)H
Θshs

t +H k

]
ωk

∣∣∣∣2
∑K

j �=k

∣∣∣∣
[∑S

s=1 (h
s,k
r )

H
Θshs

t +H k

]
ωj

∣∣∣∣2 + σ2

. (8)

Consequently, the total throughput of this communication
system is presented by

R =
K∑
k=1

log2(1 + γk ). (9)
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Fig. 3. Federated deep learning framework for multiple IRSs.

In this paper, our goal is to optimize multiple IRSs in
an energy-efficient way to further realize the throughput
maximization. In other words, these IRSs are optimized in par-
allel by utilizing FDL. Specifically, a DNN model is jointly
established by all IRSs to map the relationship between user
distribution and the optimal phase shift configuration of IRS.
Therefore, the objective function is given by

max (R,−E )

s .t . E = E t + E c ,

{Θ1,Θ2, . . . ,ΘS}opt = argmax
Θ1,Θ2,...,ΘS

K∑
k=1

log2(1 + γk ).

(10)

The objective function is a binary bundle consisting of
two parts: 1) maximization of the total throughput R and
2) minimization of the energy consumption E. The total energy
consumption includes the transmission energy consumption
E t and the computation energy consumption E c , which is
analyzed in detail in Section IV.

Besides, the energy consumption model, composition and
generation of the training dataset, and the specific process of
FDL will be introduced in Section IV.

IV. ENERGY-EFFICIENT CONFIGURATION OPTIMIZATION

OF MULTIPLE IRSS

In this section, we establish an FDL framework to realize the
optimal configuration of multiple IRSs in the indoor mmWave
downlink communication system. Therefore, the DNN for IRS
and FDL algorithm for multi-IRS based on the FDL framework
is proposed to perform the configuration of IRSs in parallel.
Then, the training dataset is introduced detailedly with the
aspect of composition and generation. Meanwhile, the analy-
sis of transmission and computation overhead under different
schemes is also performed to establish an accurate energy
consumption model.

A. FDL Framework

The overall FDL framework is depicted in Fig. 3, where the
IRSs fetch each local model update from the federated cen-
tral server in parallel. The detailed model updating process
is described as follows. To begin with, each IRS trains its

local model by using the local dataset. Subsequently, all IRSs
upload local updated models to the federated central server
in order to perform the model aggregation. Finally, the IRSs
download and update the model from the federated central
server, and then start the next round of training. Specifically,
we adopt the FedAvg algorithm [31] in this paper. The FDL
framework consists of three main parts: 1) local model train-
ing; 2) encryption mechanism; and 3) model aggregation, of
which the details are introduced as follows.

1) Local model training: Each local device s (i.e., smart con-
troller, s = 1, 2, . . . ,S ) trains a local DNN model W i

s
by utilizing its local dataset Os in the i-th training round.

2) Encryption mechanism: The Gaussian mechanism [32]
is adopted to protect the local dataset by adding the
Gaussian noise to the gradient of the local models during
the training process.

3) Model aggregation: As shown in Fig. 3, all local model
parameters W i

1,W
i
2, . . . ,W

i
S are transmitted to the

central server via an extra link. Then, the global model
W i+1 for (i + 1)-th training round is generated by
aggregating all local models.

Concretely, the local training process can be given by

W i
s = W i − ρ∇Ds

(
W i

)
, (11)

Ds

(
W i
)
=

1

|Os |
∑
j∈Os

dj (ω), (12)

dj (ω) = �
(
x j ,y j ,ω

)
. (13)

In (11), ρ is the learning rate and ∇Ds(W
i ) is the average

gradient on the local data of device s at the current model
W i . The data scale of device s is indicated by |Os | and
dj represents the loss of the prediction on the data sample
(x j ,y j ), where � is the loss function.

As a typical scheme of differential privacy, the Gaussian
mechanism can ensure that the output of the model has
no significant statistical difference on the premise of effec-
tively protecting the local dataset. Specifically, the original
local model is protected by injecting Gaussian noise into the
gradients of hidden layers during the training phase as follows

∇D̂s

(
W i

)
= ∇Ds

(
W i

)
+ N

(
0, σ2s

)
, (14)

where ∇D̂s(W
i ) is the encrypted average local gradient and

σ2s is the power of random noise for device s, which is
independent and identically distributed (i.i.d.).

After the local training and encryption, all local models will
be transmitted to the AP for model aggregation by

W i+1 =
1

|Os |
S∑

s=1

|Os |W i
s . (15)

W i+1 is the global model for (i + 1)-th training round, which
will be downloaded to device s = 1, 2, . . . ,S as the initial
configuration for round i + 1, that is, W i+1

1 = W i+1
2 =

· · · = W i+1
S = W i+1. The above process is repeated at

each communication round until the converges, and finally the
optimal DNN model W opt can be obtained.
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Algorithm 1: The FDL Algorithm for the Parallel
Optimization of Multiple IRSs

Training Phase:

for IRS s = 1, 2, ...,S do
Initialization of local models:

W 1
1,W

1
2, ...,W

1
S

end

// Repeat until convergence

for IRS s = 1, 2, ...,S do

Train the lcoal models W i
1,W

i
2, ...,W

i
S according

to the local datasets O1,O2, ...,OS as (11)-(13);

Local models encryption as (14);

Upload local models and aggregating as (19);

Broadcast the global model W i+1 to all IRS as the
initial configuration for next training round;

end

Inference Phase:

for user k = 1, 2, ...,K do
Send the current coordinates to AP;

end

AP: broadcast the coordinates bundle to all IRSs:

Ω = {(x1, y1), (x2, y2), ..., (xK , yK )}
for IRS s = 1, 2, ...,S do

Load the optimal DNN model W opt ;

Predict the optimal reflecting vector Θ̃s with the
input Ω;

Configure each elements according to Θ̃s ;
end

In summary, the FDL algorithm for multiple IRSs to
make the optimal IRS reflecting coefficients configuration is
provided in Algorithm 1.

B. DNN and Training Dataset

In order to maximize the throughput of the system, each
IRS needs to be adjusted to realize the optimal phase shift
configuration {Θ1,Θ2, . . . ,ΘS}opt . Hence, it is necessary to
establish a mapping relationship between the user and the
reflection coefficient matrix of IRS.

In detail, the input of DNN is a bundle of coor-

dinate information with respect to K users, i.e., Ω
Δ
=

{(x1, y1), (x2, y2), . . . , (xK , yK )}. Actually, the coordinate
information is related to the channel state information (CSI)
as mentioned in Section III, which is highly correlated with
the spatial location of the transceiver. In practical terms, these
users’ location coordinates are randomly selected from a set
that contains all possible location points. As for the output of
the DNN, i.e., the label of the training data, Θopt is the optimal
reflection coefficient matrix of IRS. In order to facilitate the
model design and reduce the computational redundancy, Θ
is vectorized to Θ̃, i.e., Θ = diag(Θ̃). Therefore, the local

Fig. 4. The proposed DNN structure for configuration optimization of IRS.

dataset of s-th IRS can be represented as

Ψs =
{(

Ω1, Θ̃1
)
,
(
Ω2, Θ̃2

)
, . . . ,

(
Ω|Os |, Θ̃|Os |

)}
. (16)

For Ψs , it cotains |Os | times random selection of
coordinates.

The final issue is the acquisition of the training label Θ̃.
The exhaustive search of discrete fourier transform (DFT)
codebook is adopted. The DFT matrix of IRS along y-axis
(similarly for z-axis) is defined as

DFTNy

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1

ejπ sin(ξ0) ejπ sin(ξ1) · · · e
jπ sin(ξNy−1)

ejπ2 sin(ξ0) ejπ2 sin(ξ1) . . . e
jπ2 sin(ξNy−1)

.

.

.
.
.
.

. . .
.
.
.

ejπ(Ny−1) sin(ξ0) ejπ(Ny−1) sin(ξ1) . . . e
jπ(Ny−1) sin(ξNy−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(17)

Ny is the number of IRS elements that distributed on the
y-axis. Each ξ represents an AoA at y-axis of IRS and it varies
between the interval [−π

2 ,
π
2 ], i.e., ξ0 = −π

2 and ξNy−1 = π
2 .

Thus, the difference between the sine values of two adjacent
incident angles is 2

Ny
and the angle resolution of this DFT

matrix can be obtained as

ξres = arcsin

(
2

Ny

)
. (18)

It is worth noting that the antenna spacing in (17) is set as λ
2 .

According to the above description, the DFT codebook
ΛIRS can be expressed as

ΛIRS = DFTNy
⊗DFTNz

. (19)

The process of exhaustive search over ΛIRS can be
described as

Θ̃ = vec

(
argmax
Θ∈ΛIRS

K∑
k=1

log2(1 + γk )

)
, (20)

where vec(·) is the vectorization operation.
Since the input and the output are both vectors, the multi-

layer-perceptron (MLP) is chosen as the basic DNN structure.
Specifically, a five-layer MLP shown in Fig. 4 is adopted,
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which consists of an input layer, three hidden layers, and
an output layer. For the dimension of the input layer, it
can be determined according to K. All hidden layers are
fully connected layers, and the output layer is a regression
layer. The neurons number of the i-th layer is denoted as
Z = {Zi}i=1,2,3,4,5. Moreover, tanh(·) is selected as the
activation function. In the forward propagation stage, the coor-
dinate combinations of K users and the corresponding optimal
reflecting vector Θ̃ are used as input and output respectively.
Furthermore, the root mean squared error (RMSE) criterion is
adopted to measure the error between the real output and the
label, i.e.,

� =

⎛
⎝1

ς

ς∑
j=1

∥∥∥Θ̃j
out − Θ̃j

∥∥∥
⎞
⎠

1
2

, (21)

in which ς is the scale of test set and Θ̃out denotes the real
output of DNN. Meanwhile, the stochastic gradient descent
(SGD) algorithm is employed for gradient descent.

In the inference phase, each IRS controller s , s =
1, 2, . . . ,S loads the optimal model W opt and the optimal
reflecting combination {Θ̃1, Θ̃2, . . . , Θ̃S} can be obtained.
Then, all IRSs can adjust the phase shift of each element to
realize the throughput maximization as (10).

C. Energy Consumption Model

Energy consumption is another major concern in this paper.
Specifically, the energy consumption of two different schemes
based on DL and FDL is analyzed, respectively. The total
energy consumption is denoted as

E = E t + E c , (22)

which mainly includes two parts: 1) the transmission energy
consumption E t and 2) the computation energy consump-
tion E c .

For simplicity and generality, we assume that the data rate of
the control link between each IRS and AP is the same, which
is recorded as rt . Then, the transmission energy consumption
under two different schemes can be written as

E t
DL =

PtrQDL

rt
, (23)

E t
FDL =

PtrQFDL

rt
. (24)

Ptr is the maximum transmit power of AP via the control link.
Q represents the total transmitted symbols during the training
process which can be further expressed as

QDL =

(
S∑

s=1

|Os |
)
|
(
Ω, Θ̃

)
|+ |W |S , (25)

QFDL = 2|W |TFDLS . (26)

For the QDL, the first term indicates the dataset transmission
task from all IRSs to the AP, while the second term represents
the download task after the model training. |(Ω, Θ̃)| and |W |
denote the parameter number of W and one data point in
Os , which will be accurately calculated in Section VI. TFDL

represents the number of communication rounds required for
the model convergence based on FDL.

On the other hand, the computation energy consumption
based on DL and FDL can be given as

E c
DL = TDLPcom , (27)

E c
FDL = tloTFDLSPcom , (28)

where TDL is the total time required for model convergence
under the DL scheme. The training time for a single round
that executed on a local device is denoted as tlo . Besides,
the total power of a device is Pcom when performing train-
ing task. In (27) and (28), all IRS controllers are assumed to
be homogeneous (i.e., the same computing performance). In
addition, the energy consumed by model aggregation at the
AP is ignored, because it only involves a small number of
linear operations.

D. Computational Complexity

In this subsection, the computational complexity of the
proposed algorithm is first calculated. Specifically, the time
complexity of the FDL based algorithm at the inference phase
can be represented as

O
(

4∑
i=1

ZiZi+1 + Zi+1

)
, (29)

It is worth noting that the time complexity of the DL based
and FDL based algorithm at the inference phase is the same.
However, the computation complexity of semi-definite relax-
ation (SDR) based algorithm and the lagrange dual decom-
position (LDD) are in the order of O(N 6) [7], [33]. For
alternating direction method of multipliers (ADMM) based
algorithm [33], the time complexity is O(N 3). The N denotes
the number of IRS elements.

By comparison, it is easy to see that the proposed FDL
based algorithm has remarkable superiority in terms of com-
putational complexity.

V. SIMULATION AND DISCUSSION

In this section, the simulation settings are first demonstrated,
including the local dataset, the calculation of |(Ω, Θ̃)|, |W |
and other parameters. Then, the rationality of FDL is revealed
through the test accuracy and the comparison of convergence
effects between DL and FDL. In addition, the simulation
results verify the superiority of FDL over DL in terms of
energy efficiency, and the effectiveness of FDL in the aspect
of throughput maximization.

A. Simulation Settings

In this paper, the open dataset DeepMIMO [34] is used
to generate the local dataset O1,O2, . . . ,OS and the ‘O1’
scenario is selected. DeepMIMO is an open real-world
dataset and it precisely describes the authentic electromag-
netic interaction characteristics in a given area. Besides, the
DeepMIMO is based on the ray-tracing technology, which
means it is 3D modeling and it is widely used in many prior
works [35], [36]. Specifically, BS 7, 9, 10 are utilized as IRS
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Fig. 5. The dataset construction based on the ray tracing scenario ‘O1’.

TABLE III
THE PARAMETERS OF THE LOCAL DATASET

and the user grid is composed of the user point from R1650
to R2200 as illustrated in Fig. 5. For each data point (Ω, Θ̃),
the K coordinates of Ω are randomly selected in the user grid,
which means it obeys i.i.d. for these data points. The trans-
mitter at (R2000,90) is considered as an AP. Meanwhile, each
data point in DeepMIMO includes two aspects: 1) coordi-
nate information and 2) CSI (i.e., hs

r ,h
s
t and H k ). Hence,

the optimal reflecting vector Θ̃ can be obtained according
to (19) and (20). The elements number of all IRSs is set to
N = 400 (i.e., Ny = Nz = 20), and the number of users is
K = {2, 4, 6, 8, 10, 12}. Suppose that the scale of each local
dataset is the same, i.e., |O1| = |O2| =, . . . , |OS | = 5000,
80% of which is the training set and 20% is the test set,
the test set did not participate in the training process com-
pletely. Besides, the transmitting power of the AP over the
control link is set to Ptr . The data rate of the control link
is rt = 0.5Mbps. The rest of local dataset parameters are
summarized in Table III.

As for |(Ω, Θ̃)| and |W |, they can be calculated as
2K + N and

∑4
i=1 (κZiZi+1 + 1), respectively. κ = 0.5

denotes the dropout probability between two layers and
Zi is the neurons number of i-th layer which is set as
Z = {2K , 64, 256, 512,N }. ZiZi+1 and Zi+1 represent the
number of symbols for weight and bias.

B. Simulation Results

The test accuracy of the FDL algorithm for multiple IRSs
is demonstrated in Fig. 6. In this simulation, we perform 1000

Fig. 6. The test accuracy versus communications rounds based on FDL
framework.

Fig. 7. The test loss versus communication rounds based on DL and FDL.

communication rounds. During a single communication round,
each client executes 20 epochs to makeover the local dataset.
The batch size of local updates is 200, and the learning rate
is set to 0.01. The proposed FDL framework reaches 95.22%
test accuracy after 200 communication rounds.

The test loss of the FDL framework is shown in Fig. 7.
It is obvious that the proposed FDL algorithm can converge
after 150 rounds of communication. The training loss of FDL
stabilizes to 0.18 as demonstrated. Meanwhile, the rationality
of the proposed FDL algorithm is verified based on the com-
parison of convergence performance with DL. It is clear that
FDL can effectively approximate DL in terms of convergence
speed and the final convergence value.

For the FL coupled with the real wireless network, we pay
more attention to transmission energy consumption and spec-
trum occupancy. Therefore, the transmission overhead and the
transmission energy consumption are recorded to verify the
superiority of the proposed FDL over DL in terms of energy
efficiency as illustrated in Fig. 8 and Fig. 9. In Fig. 8, multiple
sets of experimental data under different numbers of IRS and
users are plotted, respectively. Taking the experiment with
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Fig. 8. The transmission overhead of DL and FDL.

Fig. 9. The transmission energy consumption of DL and FDL.

K = 100, S = 10 as an example, the number of transmitted
symbols increases linearly with the number of IRS, and the
slope depends on the number of users. The reason is that with
the increase of the user number K, the transmitted symbols for
each data point |(Ω, Θ̃)| increases accordingly. Instead, there
is no significant change for the FDL in terms of transmission
overhead. Although the transmission burden will be heavier
as the number of local devices increases, the number of com-
munication rounds will also decrease accordingly, which will
offset the negative effect. As shown in Fig. 9, the lowest trans-
mission energy consumption of FDL is only 1/36 of that of
DL when K = 500.

Besides, the superiority of the proposed FDL-based algo-
rithm in computation energy consumption is also proved in
Fig. 10. Specifically, the total energy consumption during a
complete inference phase of the FDL approach is calculated.
Meanwhile, this result is compared with some state-of-the-art

Fig. 10. The computation energy consumption versus the number of IRS
(each IRS with N = 40 elements).

Fig. 11. The total throughput performance versus the number of users.

methods according to their computational complexity, includ-
ing the ADMM, the block coordinate descent (BCD), and the
SCA [33]. The power and frequency of the controller’s CPU
are set to 100W and 3GHz. As shown in Fig. 10, the energy
required for the FDL-based algorithm to complete an inference
process is extremely low compared with other algorithms. The
reason is that the number of required CPU cycles increases
linearly with the number of IRS elements as we analyzed
in (29). The computational complexity is reduced by orders
of magnitude compared with other algorithms. Accordingly, to
demonstrate more clearly the trend of the energy consumption
of the FDL-based algorithm, a subplot is inserted in Fig. 10.
As depicted in the subfigure, the FDL-based algorithm takes
only 0.018 kJ to perform a complete optimization process for
a scenario with 20 IRSs, which proves its great superiority in
terms of energy efficiency.

Finally, Fig. 11 shows how the total network throughput
changes with the number of users under different schemes.
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Specifically, a benchmark using the label Θ̃ for calculation
is presented for comparison, which also represent the upper
bound of the learning scheme. Besides, the strategy of ran-
domly updating and the SDR based algorithm [7] are also
performed for comparison. It can be observed that the total
system throughput achieved based on the proposed FDL algo-
rithm can reach 93% of the upper bound, and it can effectively
approach the result based on the DL algorithm and SDR
method. However, the total throughput will no longer increase
or even decrease when K exceeds 100. There are two main rea-
sons: 1) the angle resolution ξres of the DFT codebook ΛIRS
is not precise enough for such a large user group and 2) the
intra-cell interference is too severe. In addition, the results
obtained from the SDR algorithm will not present a downward
trend owing to the infinite state space of the reflecting vector
Θ̃, which is different from the DFT codebook with discrete
values.

VI. CONCLUSION

This paper proposes a novel FDL framework and algorithm
to solve the optimal configuration problem for multiple IRSs
assisted wireless communication networks. A DNN model
is formulated to establish the mapping function between the
coordinate information of users and the optimal reflecting vec-
tor of IRS. In the FDL framework, the model parameters
are transmitted instead of the original dataset as in the DL
scheme, which can effectively reduce the transmission over-
head and the energy consumption. The simulation results have
verified that the proposed algorithm can effectively reduce the
energy consumption with attractive test accuracy. In addition,
the total throughput of the communication system based on
the proposed FDL algorithm can reach 93% of the theoretical
performance.
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