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Two-Stage Resource Allocation in Reconfigurable
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Abstract— This paper considers a resource allocation problem
where several Internet-of-Things (IoT) devices send data to a
base station (BS) with or without the help of the reconfigurable
intelligent surface (RIS) assisted cellular network. The objective
is to maximize the sum rate of all IoT devices by finding the
optimal RIS and spreading factor (SF) for each device. Since
these IoT devices lack prior information of the RISs or the
channel state information (CSI), a distributed resource allocation
framework with low complexity and learning features is required
to achieve this goal. Therefore, we model this problem as a two-
stage multi-player multi-armed bandit (MPMAB) framework
to learn the optimal RIS and SF sequentially. Then, we put
forth an exploration and exploitation boosting (E2Boost) algo-
rithm to solve this two-stage MPMAB problem by combining
the �-greedy algorithm, Thompson sampling (TS) algorithm,
and non-cooperation game method. We derive an upper regret
bound for the proposed algorithm, i.e., O(log1+δ

2 T ), increasing
logarithmically with the time horizon T . Numerical results show
that the E2Boost algorithm has the best performance among
the existing methods and exhibits a fast convergence rate. More
importantly, the proposed algorithm is not sensitive to the
number of combinations of the RISs and SFs thanks to the two-
stage allocation mechanism, which can benefit the high-density
networks.

Index Terms— Reconfigurable intelligent surface (RIS), Inter-
net of Things (IoT), multi-player multi-armed bandit (MPMAB),
Thompson sampling (TS), exploration and exploitation boosting
(E2Boost) algorithm.
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I. INTRODUCTION

RECONFIGURABLE intelligent surface (RIS), which
enhances the communication quality by adjusting the

amplitude and the phase shift of the incident signal on a
2D planar surface with massive low-cost passive reflecting
elements, has drawn increasing attention in future commu-
nication networks [1]–[3]. There have existed some works
accounting for this vision by studying the performance of the
RIS-assisted cellular network [4], [5], RIS-assisted unmanned
aerial vehicle network [6], and RIS-assisted secure wireless
communications [7].

Meanwhile, the cellular Internet-of-Things (C-IoT) with RIS
is regarded as one of the paradigms in future communica-
tion networks, providing the capabilities of low-cost, large-
scale, and ultra-durable connectivity for everything [8]–[10].
By employing the LoRa (short for Long Range) technology,
C-IoT can operate on the unlicensed band since the resulting
signal has substantial anti-interference properties [11]. On the
other hand, C-IoT can achieve the rate adaptation by employ-
ing the chirp spreading spectrum modulation at the physical
layer with different spreading factors (SFs) [12]. However, the
study of the network-level performance of these C-IoT devices
in the RIS-assisted hybrid cellular network still needs more
research.

In light of this, we consider a hybrid uplink network where
several C-IoT devices transmit data to a base station (BS) by
opportunistically accessing the RIS-assisted cellular network.
The goal is to maximize the sum rate of all C-IoT devices by
finding the best RIS and SF for each device. Although these
C-IoT devices can directly send data to the BS, a higher SF
that corresponds to a lower data rate will be assigned to combat
the harsh channel environment or to enable a long-range
transmission [13]. As pointed out in [9], the low data rate will
result in high data latency and security problems. Therefore,
these C-IoT devices may opportunistically access the vacant
RISs to improve their data rate by reflecting their signal to
the BS. However, finding the optimal RIS and collecting the
exact channel state information (CSI) are challenging for these
C-IoT devices. On the one hand, the C-IoT device has no
information (e.g., the phase shifts) about the RISs since they
are deployed for cellular users (UEs). On the other hand, there
is no communication among C-IoT devices in such distributed
network. These features render most traditional optimization
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methods infeasible in this resource allocation problem, such as
the convex optimization methods [14] and the combinatorial
optimization methods [15].

To overcome the above impediments, the learning theory
has been considered in [8], [11], [16]–[18] to address this
problem by sequentially exploring all actions and automat-
ically exploiting the best action. Refs. [16], [17] study the
distributed resource allocation problem in wireless networks
by formulating ir as a Markov decision processing (MDP)
problem. Then, the authors propose the multi-agent reinforce-
ment learning (RL) based method to solve this MDP problem.
Unfortunately, these solutions often suffer from the issues of
the curse of dimensionality, lack of performance guarantee
(e.g., the unknown convergence rate), and high computational
complexity [18]. As pointed out in [8], [11], low complexity
and fast convergence resource allocation algorithms are crucial
for the energy-constrained IoT devices in future communica-
tion networks.

This inspires us to consider the multi-armed bandit (MAB)
technique. MAB is a basic framework for the sequential
decision-making problem [19]. In the classic MAB setting,
at each time round, a decision-maker (or player) must select
an arm from a set of arms (or arm space) with unknown
distribution. After that, the player will observe a reward from
the environment (or the unknown distribution). The goal is
to minimize the pseudo-regret that is defined as the differ-
ence between the mean rewards of the optimal arm and the
currently selected arm. During this process, the player faces
an exploration and exploitation (EE) dilemma. On the one
hand, the player needs to explore the arm space sufficiently to
ensure its long-term performance (i.e., not miss the optimal
arm); on the other hand, it needs to exploit the current
best arm as many times as possible to maximize its total
rewards. Compared with the other learning-based methods,
MAB has a theoretical guarantee (i.e., regret bound) and low
computational complexity, and it is easy to implement.

Recently, the multi-player MAB (MPMAB) framework has
gained much attention in wireless communications [20]–[23].
Ref. [20] studies the SF allocation problem in the LoRa
network by devising a fully distributed MPMAB framework.
It solves this MPMAB problem by using the Exponential-
weight algorithm for Exploration and Exploitation (Exp3) [24]
algorithm. However, the solution of the Exp3 algorithm is
selfish in that it cannot guarantee the optimal allocation for
each device. The optimal MPMAB framework is considered
in [21], where different players contend for the same set
of channels in an ad-hoc network. Based on the Hungarian
algorithm [25], the authors propose a probably approximately
correct (PAC) based MPMAB algorithm to estimate the
CSI matrix sequentially. However, the PAC-based MPMAB
algorithm requires players to exchange messages, leading to
extra signaling in the system. The fully distributed resource
allocation framework with the optimal solution is investigated
in [22] and [23]. Ref. [22] aims to maximize the sum rate of
all users by combining the MAB algorithm and the auction
algorithm. A more general version of the distributed MPMAB
framework named the game-of-thrones (GoT) algorithm has
been proposed in [23]. The authors intend to find the optimal

assignment for each player by combining the MAB algorithm
and the game theory. However, algorithms in [22] and [23]
suffer from low convergence rate, especially when the arm
space is large.

In this paper, we propose a two-stage MPMAB framework
to attack this resource allocation problem in the hybrid uplink
network. In this two-stage MPMAB framework, players are
the IoT devices; arms are the RISs in the first stage and the
SFs in the second stage, respectively. We assume that two or
more players who select the same RIS will observe a collision
and receive zero reward. This resource allocation problem
is quite different from that in [21] and [22], because it not
only needs to learn the CSI but also the phase shifts of the
RISs. Moreover, the ascending order in the set of SFs and the
corresponding descending order in the successful transmission
probabilities enable us to devise a two-stage MPMAB frame-
work. To address this two-stage MPMAB problem, we put
forth an exploration and exploitation boosting (E2Boost) algo-
rithm by combining the game theory and the MAB algorithm.
The E2Boost algorithm proceeds in epochs and has three
phases, i.e., ε-greedy EE phase, non-cooperation game phase,
and Thompson sampling (TS) EE phase. Each phase contains
a specific mechanism to tradeoff the EE dilemma. That is
why we call it the E2Boost algorithm. In addition, we derive
an upper pseudo-regret bound for the E2Boost algorithm,
i.e., O(log1+δ

2 T ) where 0 ≤ δ < 1, indicating that the
per-round regret will trend to 0 when the time horizon T is
sufficiently large. More importantly, this upper regret bound is
about M times lower than that in the GoT algorithm, where M
is the number of SFs. In other words, the proposed algorithm
is not sensitive to the number of combinations of the RISs and
SFs, which can benefit high-density networks.

The difference between this work and the existing ones and
the main contributions of this work are summarized as follows.

• The E2Boost algorithm embeds the ε-greedy algo-
rithm [26] in the first phase to reduce the regrets gen-
erated from the uniform exploration. Specifically, we use
the Wasserstein distance (WD) [27] to measure the
convergence rate of the second phase. In return, this
measurement is regarded as a criterion to optimize the
parameter ε.

• The E2Boost algorithm adopts the TS algorithm [28],
[29] in the third phase to determine the best SF. Since
the only observed information is the success or failure
transmission feedback, the TS algorithm maintains a Beta
distribution on the successful transmission probability of
each SF. For the Bernoulli reward processing, the TS
algorithm accounts for the best performance among the
existing stochastic MAB algorithms [29].

• The E2Boost algorithm has a smaller arm space to
explore than the GoT algorithm. Thanks to the two-stage
allocation mechanism, the E2Boost algorithm only needs
to explore the sets of the RISs or the SFs. In contrast,
the GoT algorithm requires exploring the combinations
of the RISs and SFs.

The remainder of this paper is organized as follows.
In Section II, we introduce the channel model and the
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Fig. 1. A RIS-assisted hybrid uplink network.

achievable data rate. The problem formulation is given in
Section III. In Section IV, we introduce the two-stage
MPMAB framework for this joint resource assignment prob-
lem. The E2Boost algorithm is presented in Section V. Numer-
ical results are given in Section VI to evaluate the proposed
algorithm. This paper is concluded in Section VII.

II. SYSTEM MODEL

We consider a hybrid uplink cellular network, as shown in
Fig. 1, where several UEs and N IoT devices are located in an
area. Both UE and IoT device need to transmit data to the BS.
Since there may exist some obstacles (e.g., buildings) between
UEs and the BS, the signal will experience deep-fading. Thus,
K RISs are deployed to reflect the UEs’ signals to the BS by
adjusting the RISs’ phase shifts. These RISs are operated over
different frequencies.1 The N IoT device has no information
about these RISs, but it may opportunistically access these
RISs to improve its data rate. In this hybrid network, UE is
the legal user to communicate with the BS through the RIS;
while the IoT device requires to perform spectrum sensing2

before access to the vacant RIS. Time is slotted in t =
1, 2, . . . , T . At each time slot, we assume that one RIS can
serve multiple UEs but can be exploited by only one IoT
device. The reason is that the BS requires the precoding and
beamforming vectors to maintain communication quality in
this multi-user RIS-assisted system [30]. These vectors often
contain the information of the CSI and the RISs’ phase shifts
determined by the UEs. As a result, a RIS can only support
one IoT device since the IoT device lacks these precoding and
beamforming vectors.

A. Channel Models

There are two transmission patterns for each IoT device in
this hybrid network. The first one is RIS-assisted transmission
pattern (Pattern I), where the IoT device transmits to the BS
through the RIS when the target RIS is detected in an idle
state. The second one is non-RIS-assisted transmission pattern
(Pattern II), where the IoT device directly transmits to the BS
with a low data rate if the target RIS is detected in a busy
state.

Pattern I: Assume that each element on the RIS is equipped
with b PIN diodes, producing 2b phase shifts in [0, 2π)

1The RIS can operate at different frequencies by changing the location and
the wave-number of each element [5].

2If the received signal strength (RSS) exceeds a threshold, the IoT device
marks this RIS with the busy state; otherwise, the state of the RIS is idle.

by controlling the ON/OFF state of each diode. Hence, the
available phase shift at the (l1, l2)-th element is

τl1,l2 =
πρl1,l2
2b−1

, (1)

where (l1, l2) is the index of the RIS elements’ matrix and
ρl1,l2 is an integer in [0, 2b − 1]. Let Al1,l2 be the reflection
factor at the l1-th row and l2-th column of the RIS elements’
matrix, which is defined as

Al1,l2 = Ae−jτl1,l2 , (2)

where A is a reflection amplitude with a constant value
among (0, 1].3

By taking advantage of the directional reflections of the RIS,
the BS - RIS - IoT device link is usually stronger than other
multi-path as well as the deep-fading direct link between the
BS and the IoT device [7]. Therefore, we model the channel
between the BS and the IoT device as a Ricean model. In this
way, the BS - (RIS k) - (IoT device n) link acts as the dominant
“LoS” component; while all the other paths together form
the “non-LoS (NLoS)” component. Hence, the RIS-assisted
channel model hn,kl1,l2 is defined as

hn,kl1,l2 =

√
ζ

ζ + 1
h̃n,kl1,l2 +

√
1

ζ + 1
ĥn,kl1,l2 , (3)

where h̃n,kl1,l2 and ĥn,kl1,l2 are the LoS component and the NLoS
component with the k-th RIS and the n-th IoT device through
the (l1, l2)-th element, respectively. Symbol ζ is the Rician
factor, indicating the ratio of the LoS component to the NLoS
component. In the following, we omit the IoT device index n
and the RIS index k in the superscript if no confusion occurs.

Let Dl1,l2 be the distance between the BS and the (l1, l2)-th
RIS element, and let dl1,l2 be the distance between the
(l1, l2)-th RIS element and the IoT device. The transmission
distance of BS - ((l1, l2)-th RIS element) - (IoT device n) link
is Ll1,l2 = Dl1,l2+dl1,l2 . According to [4], the LoS component
of this link is given by

h̃l1,l2 =
√
GD−ι

l1,l2
d−ιl1,l2e

−j 2π
λ Ll1,l2

=
√
G
[√

D−ι
l1,l2

e−j
2π
λ Dl1,l2

] [√
d−ιl1,l2e

−j 2π
λ dl1,l2

]
,

(4)

where ι is the path-loss exponent. Symbol G is the antenna
gain and λ is the wave length of the signal. Meanwhile, the
NLoS component is given by

ĥl1,l2 =
√
PLNLoS(Ll1,l2)gl1,l2 , (5)

where gl1,l2 is the small-scale NLoS component, following the
i.i.d. complex Gaussian distribution, i.e., gl1,l2 ∼ CN (0, 1).
Term PLNLoS(·) is the NLoS channel power gain that we
adopt the urban macro (UMa) path-loss model4 [32] in the
simulation.

3The reflection amplitude can be a function of the phase shift as in [31].
4The calculation of PLNLoS(·) in dB form is 10 log10 PLNLoS(d) =

13.54 + 39.08 log10(d) + 20 log10(fc)− 0.6(hIoT − 1.5), where d is the
Euclidean distance between the device and the BS, and h is the height of the
device. Symbol fc is the central frequency.
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Pattern II: In non-RIS-assisted transmission pattern, the IoT
device directly transmits to the BS without the help of the RIS.
Since there are some obstacles, the signal may experience deep
fading. Thus, we use the shadow fading model to describe the
channel between IoT device n and the BS [33], i.e.,

hn =
√

ngn, (6)

where 
n is the channel power gain, following the i.i.d. log-
normal distribution with mean μn and standard deviation σn
of ln (
n). The typical value of σn is between 6 and 12 dB
for practical radio channels [32]. In addition, gn is a small-
scale NLoS component, following i.i.d. complex Gaussian
distribution, i.e., gn ∼ CN (0, 1).

B. Signal Model and Achievable Data Rate

The received signal from IoT device n to the BS through
RIS k is given by⎧⎨
⎩�n,k =

∑
l1,l2

Akl1,l2h
n,k
l1,l2

√
Ωnx+ y + ω, Pattern I,

�n = hn
√

Ωnx+ y + ω, Pattern II,
(7)

where x is the transmission signal with |x|2 = 1 and y is the
received interference signal5 which can be modeled as a log-
normal distribution [34], i.e., y ∼ LogN (μy, σ2

y). In addition,
ω ∼ CN (0, σ2

ω) is the i.i.d. additive complex Gaussian noise
and Ωn is the transmit power. Then, the received signal-to-
interference-plus-noise ratio (SINR) can be calculated by⎧⎪⎪⎪⎨
⎪⎪⎪⎩
γn,k=

Ωn
(∑

l1,l2
Akl1,l2 h̃

n,k
l1,l2

∑
l1,l2

(
Akl1,l2

)∗ (
h̃n,kl1,l2

)∗)
exp

(
2μy + 2σ2

y

)
+ σ2

ω

,

γn =
Ωnhnh∗n

exp
(
2μy + 2σ2

y

)
+ σ2

ω

,

(8)

where (·)∗ is the conjugate operation.
In a practical system, each IoT device can only support

a finite number of data rates according to the available SFs.
Let M = {c1, c2, · · · , cM} and S = {s1, s2, · · · , sM} be the
set of data rates and SFs, respectively. According to [12], the
relationship between data rate and SF is given by

cm =
Bsm
2sm

× CR, (9)

where B is the bandwidth in Hz and CR is the code rate. It can
be seen that a higher SF is associated with a lower data rate.
In other words, if S is in ascending order s1 < s2 < · · · < sM ,
M will be the descending order c1 > c2 > · · · > cM .

The achievable data rate not only corresponds to the selected
modulation and coding scheme but also depends on the
received SINR [35]. Thus, according to the instantaneous
received SINR, the successful transmission probability of data
rate cm is given by{

θnk,cm
� Pr{γ′n,k ≥ Ψm}, Pattern I,

θncm
� Pr{γ′n ≥ Ψm}, Pattern II,

(10)

5Notice that the interference y may come from the neighboring cellular
networks or the local UEs when the UEs’ signals are missed detection by the
IoT devices.

where Ψm is the minimum required SINR for the BS
to demodulate the received signal when the data rate is
cm. Note that SINR γ′n,k (or γ′n) is a random vari-
able with mean γn,k (or γn) due to the small-scale NLoS
components and the received interference signal. Accord-
ing to the Shannon formula, the better received SINR,
the higher successful transmission probability when given
a data rate. In other words, a descending data rates
(c1 > c2 > · · · > cM ) will lead to an ascending successful
transmission probabilities (θc1 < θc2 < · · · < θcM ).

III. PROBLEM FORMULATION

The system’s goal is to maximize the sum rate of all IoT
devices at each time slot by finding the optimal RIS and
SF for each device under Pattern I, as well as determining
the optimal SF for each device under Pattern II. Let �ϑt =
{ϑt1, ϑt2, . . . , ϑtK} be the state vector of the RISs at time slot
t, where ϑtk = 1 means that the k-th RIS is vacant; otherwise,
it is occupied. Note that this information is known prior to
each IoT device with the spectrum sensing operation. Then,
the resource allocation problem is given by

max
φn

k,cm
,ψn

cm

T∑
t=1

N∑
n=1

M∑
m=1

⎛
⎜⎜⎜⎜⎝

K∑
k=1

cmϑ
t
kθ
n
k,cm

φnk,cm︸ ︷︷ ︸
Pattern I

+ cmθ
n
cm
ψncm︸ ︷︷ ︸

Pattern II

⎞
⎟⎟⎟⎟⎠

s.t.
M∑
m=1

K∑
k=1

ϑtkφ
n
k,cm

+
M∑
m=1

ψncm
= 1, ∀n ∈ N ,

N∑
n=1

φnk,cm
≤ 1, ∀cm ∈ M, and ∀k ∈ K, (11)

where φnk,cm
and ψncm

are the binary variables, where φnk,cm
=

1 denotes that IoT device n transmits on the k-th RIS with SF
sm to reflect its signal to the BS; otherwise, φnk,cm

= 0. The
symbol ψncm

= 1 denotes that IoT device n directly transmits
to the BS with SF sm; otherwise, ψncm

= 0. Thus, the first
constraint indicates that each IoT device either transmits on
Pattern I or Pattern II. If IoT device n transmits on Pattern I,
then

∑M
m=1

∑K
k=1 ϑ

t
kφ

n
k,cm

= 1 means that each IoT device

can only select a pair of RIS and SF; if IoT device n transmits
on Pattern II, then

∑M
m=1 ψ

n
cm

= 1 denotes that each IoT
device can only select a SF. The second constraint means that
the number of IoT devices that select the k-RIS and the m-th
SF is subject to 0 or 1. In addition, N = {1, 2, · · · , N} and
K = {1, 2, · · · ,K} are the sets of IoT devices and RISs,
respectively. The symbol θnk,cm

is the successful transmission
probability that IoT device n transmits on the k-th RIS and the
m-th SF; while θncm

is the successful transmission probability
that IoT device n directly sends data to the BS with SF m.

It is difficult to solve problem (11) in this distributed hybrid
network, especially in Pattern I. First, cm and θnk,cm

are
discrete values,6 resulting in a non-convex problem. Second,

6According to (9), cm is discrete since the number of SFs is limited in
practice. In addition, according to (8) and (10), θn

k,cm
is a function of the

RIS’s phase shifts, which are discrete values in range [0, 2π).
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it requires the exact value of θnk,cm
. This information is difficult

to obtain since the channel characteristic is determined by
the UE-controlled RISs. Third, it needs some communications
among IoT devices to share the information of θnk,cm

so as
to determine the optimal available RIS for each IoT device.
In addition, problem (11) in Pattern II can be regarded as a rate
adaptation problem [28] since the SF allocation is independent
for each IoT device, but it still requires the exact CSI (or the
value of θncm

), which is hard to estimate from the time-varying
channel.

To overcome these challenges, we adopt the online learning
method to learn the values of θncm

and θnk,cm
sequentially

and to allocate the optimal RIS and SF to each IoT device
adaptively. During this process, the IoT device not only needs
to explore the combinations of the RISs and SFs sufficiently
but also needs to exploit the current best RIS and SF as many
times as possible at each time slot. To better tradeoff this EE
dilemma, we introduce the MPMAB framework to solve this
problem, where players are the IoT devices, and arms are the
combinations of the RISs and SFs.

However, the MPMAB framework still suffers from a slow
convergence rate due to the large arm space (i.e., the com-
binations of the RISs and SFs) under Pattern I. Therefore,
we decouple the MPMAB problem into a two-stage MPMAB
framework to shrink the feasible arm space. The reason is
that, on the one hand, a descending data rates will result in an
ascending successful transmission probabilities; on the other
hand, an IoT device with different data rates will experience
the same channel-fading under a particular RIS. These features
indicate that the average successful transmission probabilities
of the ordered data rates over different RISs have the same
trend. Therefore, we can explore these RISs by arbitrarily
assigning a data rate to the IoT device. In other words, the SF
allocation and the RIS allocation processes are independent of
each other under Pattern I.

IV. TWO-STAGE MPMAB-BASED RESOURCE

ALLOCATION FRAMEWORK

In this two-stage MPMAB framework, players are the IoT
devices; arms are the RISs and the SFs in the first and second
stages, respectively. The first-stage MPMAB problem is to
determine the best RIS for each IoT device; while the second-
stage MPMAB problem is to find the optimal SF based on the
state of the determined RIS.

A. First-Stage MPMAB Framework

We first introduce the transmission feedback model and
the collision model. In the transmission feedback model, the
IoT device can receive the transmission feedback from the
BS when it transmits on Pattern I or Pattern II. Specifically,
let I ′n,t be the selected arm by the n-th IoT device at time
slot t. After transmitting on the I ′n,t-th , the IoT device n
will receive a transmission feedback XI′n,t

(t) from the BS.
If the transmission is successful, XI′n,t

(t) = 1; otherwise,
XI′n,t

(t) = 0.
The collision model only exists in the first stage, referring

to that two or more IoT devices that choose the same RIS

will receive no rewards. We assume that each IoT device can
deduce this collision information by observing the timeout
feedback flag. Specifically, let η be the collision indicator.
If an IoT device does not receive any feedback from the BS
in the current time slot, then a collision happens, i.e., η = 0;
otherwise, η = 1. Therefore, IoT device can distinguish the
collision and the transmission failure events by checking it
whether or not receives transmission feedback from the BS.
Moreover, this collision model also works in some extreme
situations. For example, when the received SINR in Pattern I
is too low to be recognized by the BS, the IoT device can
always set η = 0 (i.e., the reward is 0) since the target RIS is
suboptimal to it.

Denote I ′
t = {I ′1,t, I ′2,t · · · , I ′N,t} by the strategy profile at

time slot t. The collision indicator of RIS k is defined as

ηk
(
I ′
t

)
=

{
0, |Nk| > 1,
1, otherwise,

(12)

where Nk is the set of players that select the k-th RIS in
strategy profile I′

t. The reward that IoT device n transmits on
the k-th RIS is given by

rn,I′n,t=k
(t) � ηk

(
I′
t

)
XI′n,t=k

(t). (13)

Then, the estimated average successful transmission probabil-
ity that the n-th IoT device transmits on the k-th RIS is given
by

θ̂n,k = E

[
rn,I′n,t=k

(t)
]
, (14)

where E[·] is the expectation operator.

B. Second-Stage MPMAB Framework

In this stage, each player has a targeted RIS after the first-
stage allocation. Thus, the IoT device transmits directly or on
a targeted RIS to the BS at each time slot. Note that there
is no collision in this stage since two or more players can
choose the same SF. Therefore, this stage can be regarded as
a single-player MAB framework.

Let I ′′n,t be the currently selected arm at the second-stage
allocation. The reward that the IoT device n chooses the m-th
data rate is defined as

rn,I′′n,t=m
(t) � cmηk

(
I ′
t

)
XI′′n,t=m

(t), (15)

where cm is the m-th data rate and I ′
t is the strategy profile

of all players’ target RISs at the first stage. The instantaneous
rewards rn,I′′n,t

(t) are independently and identically distributed
w.r.t. player n and time slot t. Therefore, the estimated average
reward is given by

μ̂n,m = E

[
rn,I′′n,t=m

(t)
]

= cmθ̂n,m, (16)

where θ̂n,m is the estimated average successful transmission
probability that the n-th IoT device transmits on the m-th data
rate.
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C. Performance Metric for the Two-Stage MPMAB
Framework

In the following, we design a criterion to quantify the
performance loss that players select the suboptimal arms rather
than the optimal arm in this two-stage MPMAB problem.
According to (11), the objective function consists of Pattern I
and Pattern II. For Pattern I, we define the joint RIS and SF
selection profile by a = {a1, a2, . . . , aN}, where an ∈ K⊗M
and ⊗ is the Cartesian product of the RIS set and the data rate
set. However, for Pattern II, the selection profile a is the set of
data rates, i.e., an ∈ M. Therefore, the two-stage allocation
aims to solve the following problem,

a∗ = arg max
a

N∑
n=1

μ̂n,an

= arg max
a

N∑
n=1

E [caηk (a)Xa(t)] , (17)

where a∗ = {a∗1, a∗2, · · · , a∗N} is the optimal strategy profile.
Then, we define the difference between the optimal arm

and the currently selected arm as the performance metric,
also known as regret. According to [23], the expression of
accumulated regrets is given by

Reg �
T∑
t=1

N∑
n=1

rn,a∗n(t) −
T∑
t=1

N∑
n=1

rn,an(t), (18)

where a∗n ∈ a∗ and T is the total time slots. For mathematical
analysis, we further define the pseudo-regret [19] w.r.t. the
stochastic rewards and the randomly selected arms as

Reg =
N∑
n=1

(
T × μn,a∗n − E

T∑
t=1

μn,an

)

=

⎧⎪⎨
⎪⎩
∑N

n=1

∑K×M
i=1

Δn,iE[Wn,i], Pattern I,∑N

n=1

∑M

i=1
Δn,iE[Wn,i], Pattern II,

(19)

where Δn,i = μn,a∗n − μn,i and Wn,i is the number of times
that arm i has been selected up to time T . Term μn,i is the
real expected throughput of player n at arm i.

V. E2BOOST ALGORITHM

In this section, we propose an E2Boost algorithm to solve
this two-stage MPMAB problem by combining the game
theory and the MAB algorithms. The structure of the E2Boost
algorithm is shown in Fig. 2. Since time horizon T is unknown
to each player, the E2Boost algorithm proceeds in epochs
(i.e., z = 1, · · · , Z). Each epoch consists of three phases:
ε-Greedy EE, non-cooperation game, and Thompson sampling
EE phases. Each phase contains several time slots and specific
mechanism to balance the EE dilemma.

A. The Exploration and Exploitation Boosting Algorithm

The E2Boost algorithm is shown in Algorithm 1. The first
two phases are designed to find the optimal RIS for each IoT
device by solving the first-stage MPMAB problem; while the

Fig. 2. The structure of the E2Boost algorithm.

last phase is to determine the best SF by solving the second-
stage MPMAB problem. In the following, we elaborate on the
above three phases in detail.

1) ε-Greedy EE Phase: There are ν1zδ rounds in this phase
for epoch z = 1, · · · , Z , where ν1 > 0 and δ > 0 are
two constants. It aims to estimate the average successful
transmission probability of each RIS. The SF is randomly
chosen from the set S when z = 1; otherwise, it uses the
SF determined in the last epoch of the third phase. We the
ε-greedy algorithm to balance the EE dilemma. Specifically,
if z = 1, we set ε = 1 to uniformly explore all RISs; otherwise,
we update the parameter ε according to Lemma 1, as given in
the next paragraph. Hence, when the players’ strategy profile
deviates from a∗, Algorithm 1 tends to uniformly explore all
actions; otherwise, it inherits the last epoch’s action with a
high probability.

2) Non-Cooperation Game Phase: This phase has a length
of ν2zδ rounds, which is the core step of Algorithm 1 to
allocate the optimal RIS for each player. By adopting the
estimated average successful transmission probability θ̂zn,k in
the first phase as a utility, players in this phase will play a
non-cooperation game.

Specifically, let the utility of player n in strategy profile I ′

be

un(I ′) � ηk(I ′)θ̂zn,k, ∀k ∈ K, (20)

where θ̂zn,k is the estimated successful transmission probability
that the n-th IoT device transmits on the k-th RIS from
epoch 1 to z at the first phase. Let un,max = max

I′
un(I ′)

be the maximum utility of player n. has a private state
STn = {C,D}, ∀n ∈ N , where C and D represent content
and discontent state, respectively. In addition, each player
maintains a baseline RIS k̄.

• A content player has a very high probability to stay at
the current baseline RIS:

Pn,k =

⎧⎨
⎩

εν

K − 1
, k 	= k̄;

1 − εν , k = k̄.
(21)

• A discontent player selects a RIS following a uniform
distribution, i.e.,

Pn,k =
1
K
, ∀k ∈ K. (22)

The transition between content state C and discontent state D
is given by:

• If k = k̄, un > 0, and STn = C, then a content player
keeps state C with :

(k̄, C) → (k̄, C). (23)
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Algorithm 1 E2Boost Algorithm Run by Player n

1: Initialization: δ > 0, ε > 0 and ν, ν1, ν2, ν3 > 0. Let ε = 1, Vn,k(0) = 0, Qn,k(0) = 0, αn,m(0) = 0, βn,m(0) = 0, ∀k ∈ K,
∀m ∈ M.

2: for each epoch z = 1, 2, · · · , Z do
3: i) ε-Greedy EE Phase: For the next ν1zδ time slots.
4: a) Pick up a data rate I ′n,t = m uniformly from set M if z = 1, otherwise I ′n,t = c∗n;
5: b) Select a RIS I ′n,t = k uniformly from set K with probability ε or I ′n,t = k∗n with probability 1 − ε;
6: c) Detect the selected RIS: jump to Phase iii if busy; otherwise, continue the following steps:
7: d) Observe the transmission feedback Xn,I′n,t

. Set ηk = 0 if timeout and ηk = 1 otherwise;
8: e) If ηk = 1 then update Vn,I′n,t

(t) = Vn,I′n,t
(t− 1) + 1 and Qn,I′n,t

(t) = Qn,I′n,t
(t− 1) +Xn,I′n,t

(t);
9: At the end of this phase, compute the successful transmission probabilities of RISs by

θ̂zn,k =
Qn,k
Vn,k

, ∀k ∈ K.

10: ii) Non-cooperation Game Phase: For the next ν2zδ time slots, play with the dynamics. Set STn = C, and let k̄ be
the last RIS chosen in the z − � z2� − 1 Game phase, or a random choice if z = 1, 2.

11: a) If STn = C choose a RIS I ′n,t using (21) and if STn = D select I ′n,t at random (22);
12: b) Detect the selected RIS: jump to Phase iii if busy; otherwise continue the following steps:
13: c) If I ′n,t 	= k̄ or un = 0 or STn = D then set STn = C or D according to (24);
14: d) Record the number of times each RIS been selected within the content state using (25);
15: e) Adjust parameter ε according to Lemma 1 when z ≥ 2.
16: At the end of this phase, determine the current best RIS by

k∗n = arg max
k∈K

� z
2 �∑
j=0

F z−jn (k).

17: iii) Thompson Sampling EE Phase: For the next ν32z time slots, run the Thompson sampling algorithm based on the
current state of the best RIS, as well as the corresponding collision indicator.

18: a) Draw θ̂n,m ∼ Beta (αn,m(t) + 1, βn,m(t) + 1);
19: b) Select a data rate I ′′n,t = argmaxm∈M cm × θ̂n,m;
20: c) Detect the target RIS: device directly transmits to the BS if busy, otherwise continue the following steps:
21: d) Transmit on the selected data rate and observe the random transmission feedback XI′′n,t

(t);
22: e) Posterior update: Set αn,I′′n,t

(t) = αn,I′′n,t
(t− 1) +XI′′n,t

(t) and βn,I′′n,t
(t) = βn,I′′n,t

(t− 1) + 1 −XI′′n,t
(t).

23: At the end of this phase, determine the current best data rate by

c∗n = arg max
m∈M

cmαn,m
αn,m + βn,m

.

24: end for

• If k 	= k̄ or un = 0 or STn = D, then transitions of
baselines and states are given by

(
k̄, C/D

)
=

⎧⎪⎨
⎪⎩

(k, C) ,
un

un,max
εun,max−un ;

(k,D) , 1 − un
un,max

εun,max−un .
(24)

Eq. (24) indicates that, when a RIS or in a busy state
(i.e., ηk = 0), the player will transfer to the discontent state
D with un = 0. On the other hand, when a RIS is optimal
to the player, it will transfer to the content state C with
un = un,max.

Assume that all players’ actions and states constitute a
strategy profile a1. where the vertex is the strategy pro-
file, and an edge exists if the players can switch from one
strategy to the other. Actually, this strategy graph forms a
perturbed time-reversible Markov process over state space∏N
n=1 (Kn × (C,D)). As pointed out in [23], [36], [37], there

exists an optimal strategy profile that players will visit many

times than other strategy profiles. As a result, each player can
agree on optimal arm by recording the number of times that
each arm has been selected, i.e.,

F zn(k) �
∑
t∈Gz

I
(
I ′n,t = k, STn = C

)
, ∀k ∈ K, (25)

where F zn(k) is the number of times that the k-th RIS has been
played by the n-th player at the z-th epoch . The symbol Gz
represents in the z-th epoch and I(·) is an indicator function.
Finally, we can determine the best RIS by using the recent
�z/2�+ 1 epochs’ F zn , i.e.,

k∗n = arg max
k∈K

� z
2 �∑
j=0

F z−jn (k). (26)

The reason is that it is unnecessary to uniformly explore all
RISs when the non-cooperation game phase asymptotically
approaches the optimal RIS. This asymptotical behavior can
be quantified by the distance between two adjacent vectors
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of F zn and F z−1
n , which can be measured by the WD.7 As

a result, the distance between the probability mass functions
(PMFs)8 of F zn and F z−1

n is regarded as a criterion to adjust
the parameter ε. Thus, we have the following lemma.

Lemma 1: For the n-th player, given z > 1, the parameter
of the ε-greedy algorithm in the first phase can be chosen
according to

ε � min{1,DWD
(
P(F zn) || P(F z−1

n )
)},

where DWD (·||·) is the calculation of the WD in [38]. Terms
P(F zn) and P(F z−1

n ) are the PMFs of (25) at epochs z and
z − 1 of the second phase, respectively.

3) Thompson Sampling EE Phase: The last phase has a
length of ν32z rounds where ν3 > 0 is a constant. The
objective is to find the best SF for each player based on the
busy or idle state of the determined RIS in the second phase.

As mentioned before, the second-stage MPMAB problem
can be regarded as a single-player MAB problem. Therefore,
we can adopt the TS algorithm [29] to solve the second-stage
MPMAB problem to track the Bernoulli distribution rewards
(i.e., transmission success or failure). The TS algorithm first
maintains a Beta prior distribution9 for each SF. Thus, the
objective of this phase is equivalent to estimating the parameter
in the Beta distribution, which will converge to the true
value of θnk,cm

or θncm
. Based on the transmission feedback,

TS algorithm is able to update the posterior distribution by:
α = α+ 1 if transmission is successful, otherwise β = β+ 1.
Notice that the value function (i.e., cmθ̂n,m) is the current data
rate, instead of the successful or failed transmission feedback.
At the end of this phase, it can determine the current best SF
for each IoT device by using the , i.e.,

c∗n = arg max
m∈M

cmαn,m
αn,m + βn,m

. (27)

B. Complexity and Feasibility Analysis

We first give a brief discussion on the computational
complexity of the proposed algorithm. In Algorithm 1, the
computational complexity of the first phase is O(ν1zδLED),
where LED is the length of samples in the energy detector of
the spectrum sensing operation. Meanwhile, the computational
complexity of the second phase is O(ν2zδ + zK log2K),
where the second term comes from the WD in the calculation
of parameter ε [27]. In addition, the computational complexity
of the third phase is O(ν32zM log2M), where the complexity
comes from the ‘argument maximum’ operation in the TS
algorithm [29]. Therefore, the total computational complexity
is O(ν1zδLED + ν2z

δ + zK log2K + ν32zM log2M), which
increases linearly logarithmically with the number of RISs K
and SFs M . As the time epoch z increases, the complexity of
the third phase will become the dominant factor in the total

7Wasserstein distance, also known as earth mover’s distance, is a measure
to calculate the distance between two probability distributions on a metric
space. In the simulation, we compute it using the corresponding function in
Matlab.

8The PMF is computed by P(F z
n(i)) = F z

n(i)/
�

i F z
n(i), ∀i ∈ K.

9Beta(α, β) is the beta distribution with probability density function (pdf):

fα,β(y) =
yα−1(1−y)β−1

B′(α,β)
, y ∈ [0, 1], where B′(α, β) =

Γ(α)Γ(β)
Γ(α+β)

.

complexity. Therefore, the total complexity of Algorithm 1 is
about O(ν32zM log2M).

Next, we discuss the feasibility of the proposed algorithm
in practical applications, e.g., B5G/6G networks. First, the
proposed algorithm performs in real-time and automatically
converges to the optimal solution (i.e., the online learning
feature). Second, its distributed feature can reduce the com-
munication overhead and make it easy to apply to the other
network scenarios. Third, the complexity of the proposed
algorithm increases linearly logarithmically with the number
of RISs K and the SFs M . These features demonstrate that
the proposed algorithm has great potential to be applied in
B5G/6G networks with different requirements of the rate,
delay, scalability, and reliability.

However, the proposed algorithm can also handle the case
of K < N by dividing into K clusters using the k-means
clustering method [39] according to their geographic locations.
We assume that the IoT devices in the same cluster prefer
the same RIS and communicate with the BS using the round-
robin method. Therefore, one of the clustering IoT devices can
transmit on the RIS; while others directly transmit data to the
BS at each time slot. In other words, Algorithm 1 still works
in the case of K < N by allocating the optimal RIS to each
cluster rather than each IoT device.

Algorithm 2 Modified E2Boost Algorithm Run by Player n
for the Case K < N
1: Initialize: Parameters in Algorithm 1
2: for each time slot t = 1, 2, · · · , T do
3: Check the round-robin flag
4: If the flag is equal to 1, run the E2Boost algorithm in

Algorithm 1
5: Otherwise, run the TS algorithm in the third phase of

Algorithm 1
6: end for

Therefore, we give a modified E2Boost algorithm to handle
the case of K < N , as shown in Algorithm 2. At the beginning
of each time slot, If the flag is equal to 1, the IoT device runs
the E2Boost algorithm in Algorithm 1 to find the optimal RIS
and SF; otherwise, it runs the TS algorithm in the third phase
of Algorithm 1 to find the optimal SF.

C. An Upper Pseudo-Regret Bound

We derive an upper pseudo-regret bound for the E2Boost
algorithm. Since each IoT device has two transmission pat-
terns, the pseudo-regret also consists of the RIS-enabled regret
and the non-RIS-enabled regret parts.

However, compared with the GoT algorithm, the proposed
algorithm has the following features. First, it is a two-stage
MPMAB framework that has a small arm space (i.e., K) to
explore. Its total pseudo-regret only depends on the number of
RISs, instead of the whole arm space (i.e., K⊗M) as that in
the GoT algorithm. Second, we embed the ε-greedy algorithm
into the first phase to further tradeoff the EE dilemma. Thus,
the accumulated regrets of this phase will trend to 0 when all
players agree on their optimal RISs. Third, we incorporate the
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TS algorithm into the third phase to determine the best SF.
Similarly, only a few accumulated regrets will be accrued in
this phase when the optimal RIS is determined. enable us to
achieve a tighter pseudo-regret bound than the GoT algorithm.

The E2Boost algorithm only has the third phase, i.e., the
second-stage MPMAB problem. Since two or more play-
ers that select the same arm (or SF) will not collide, this
MPMAB problem is reviewed as a single stochastic MAB
problem. In Algorithm 1, we use the modified TS (MTS)
algorithm [28] to solve this single stochastic MAB problem.
Therefore, we adopt the theoretical results in [28] to derive
the non-RIS-enabled regret.

To conclude, we have the following theorem.
Theorem 1: Let Γmax = maxn,i μn,i be the maximum real

expected rewards among all players’ arms. For any hybrid
uplink network, given ν1 > 0, ν2 > 0, ν3 > 0, δ ≥ 0, 0 <
� < 1 and a small enough ε, the total upper pseudo-regret
bound obtained by the E2Boost algorithm is

Reg ≤ NΓmax(1 − Pa)
(

2(ν1 + ν2) log1+δ
2

(
T

ν3
+ 2

)
+ (6NK + 1)ν3 log2

(
T

ν3
+ 2

))

+Pa(1 +�)
N∑
n=1

∑
an∈M

log2 T

DKL(an, a∗n)
Δn,an , (28)

where log1+δ
2 (T/ν3 + 2) denotes log2 (T/ν3 + 2) to the

power of (1 + δ) and DKL(·) is the Kukkback-Leibler diver-
gence. Term Pa is the active probability of the UE.

Proof: See Appendix A.
Remark 1: The first two terms of the upper pseudo-regret

bound accounts for the RIS-assisted regret part; while the third
term is the non-RIS-assisted regret part. We can see that the
weights of these two parts rely on the active probability of
the UE.

Remark 2: The total upper pseudo-regret bound increases
logarithmically with T , i.e., Reg = O(log1+δ

2 T ), indicating
that Algorithm 1 will converge and the per-round regret
approaches zero when T is sufficiently large.

Remark 3: The total upper pseudo-regret bound in the
E2Boost algorithm is much tighter than the GoT algorithm.

RegGoT ≤ 4NΓmax(ν1 + ν2) log1+δ
2

(
T

ν3
+ 2

)
+NΓmax(6NKM + 1)ν3 log2

(
T

ν3
+ 2

)
= O(log1+δ

2 T ). (29)

For example, when ν1 = ν2 = ν3, δ = 0, we have

Reg ≤ (5 + 6NK) ν1NΓmax log2

(
T

ν3
+ 2

)
, (30)

and

RegGoT ≤ (9 + 6NKM)ν1NΓmax log2

(
T

ν3
+ 2

)
. (31)

It can be seen that Reg is about M times lower than RegGoT.
This observation can be verified by the numerical results in
the following section.

TABLE I

THE TRANSMISSION PARAMETERS FOR THE C-IOT DEVICE

VI. SIMULATION RESULTS

We conduct extensive simulations to evaluate the perfor-
mance of the proposed algorithms. The simulation para-
meters are chosen according to the 3GPP standard [32]
and refs. [4], [5]. All results are obtained from 103 Monte
Carlo (MC) trials.

A. Parameter Configuration and Baseline Algorithms

1) Parameter Configuration: The transmit power at each
IoT device is Ωn = 20 dBm, ∀n ∈ N . The background noise
plus interference power is −95 dBm, and the wavelength λ
is set according to the central carrier frequency 5.9 GHz.
The bandwidth B is 40 MHz. The Rician factor is ζ = 4,
and the antenna gain G is set to 1. Each IoT device has 6
SFs to choose from, as shown in TABLE I. The data rates
are determined by (9) and the thresholds are the minimum
required SINR to demodulate the received signal. Assume that
the active probability of each RIS (i.e., occupied by the legal
UEs) is P ka = 0.2. In addition, we adopt the UMa model [32]
to describe the path loss of both LoS and NLoS components.

The RIS is placed perpendicular to the ground, and the
number of elements is 101 × 101. The direction of the RIS
in the XY -plane is shown in Fig. 3. The angle ∠ϕ and
all elements’ locations in RIS are determined according to
Appendix B. Each element contains b = 8 PIN diodes with the
refection amplitude A = 1. We consider two types of phase
shift settings, i.e., the optimal phase shift and the constant
phase shift. For the optimal phase shift setting, each RIS’s
phase shifts are set to be optimal to the UEs (see Proposition 2
of [4]), i.e.,

τl1,l2 =
⌊(

Π − 2π
λ
Lkl1,l2

)
2b

2π

⌋
2π
2b
, (32)

where Π is an arbitrary constant and Lkl1,l2 is the distance
between the BS, and the UEs through the k-th RIS’s (l1, l2)
element. For the constant phase shift setting, we assume that
the phase shifts on all RISs’ elements are equal. That is, all
integers ρl1,l2 in (1) are simply set to a constant (we set to
170 in the following simulations). Note that ρl1,l2 can be an
arbitrary integer in the range of [0, 2b − 1].

2) Baseline Algorithms:

• Optimal Solution: The optimal solution is obtained by
solving the two-stage MPMAB problem in a centralized
form. In the simulation, we obtain this information by
recording the received SINR γn,k and γn with the above
simulation parameters over 105 MC trails. Then, θ̂nk,cm

and θ̂ncm
can be estimated by comparing these SINRs

with a given threshold Ψm. Note that θ̂nk,cm
and θ̂ncm

can approach the true values of θnk,cm
and θncm

arbitrarily
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Fig. 3. A schematic diagram of the UE-RIS-BS link (top view).

as long as the number of MC trials is sufficiently large.
Based on this information and the data rate cm in Table I,
can be obtained by using the Hungarian algorithm
(i.e., the munkres function in Matlab). we determine the
optimal SF for each IoT device using the genie-aided
solution (i.e., from God’s perspective) as the θ̂ncm

and cm
are known.

• GoT Algorithm: The GoT algorithm in [23] is a fully
distributed algorithm to solve the decentralized resource
allocation problems. However, it lacks the ε-greedy
algorithm and the TS algorithm in the first and third
phases to further balance the EE dilemma. In addition,
it needs to explore the combinations of RISs and SFs;
while the proposed algorithm explores the RISs and SFs
separately.

• Q-learning method: For the Q-learning method, The
state transition probability is the RIS’s active or passive
probability P ka or 1 − P ka . The actions are the set of
SFs M if the target RIS is in a busy state; other-
wise, the actions are the combinations of SFs and RISs,
i.e., K ⊗M.

• Random Selection: For the random selection method,
each IoT device uniformly chooses an arm from the arm
space K⊗M in Pattern I or the arm space M in Pattern II
at each time slot. There is no EE mechanism inside.

• E2Boost without TS: Compared with the E2Boost algo-
rithm, it removes the TS algorithm from the third phase.
Moreover, it requires exploring the combinations of the
RISs and SFs in the first phase with the ε-greedy
algorithm.

• E2Boost without WD: Compared with the E2Boost algo-
rithm, the only difference is that it maintains a constant
exploration rate ε for the ε-greedy algorithm,

It is worth noting that there is a performance gap between
the solutions of the two-stage MPMAB problem and the orig-
inal problem (11). Specifically, the solution of problem (11)
is to allocate the optimal available RIS and SF to each
IoT device at each time slot t; while the solution (i.e., the
optimal solution) of the two-stage MPMAB problem is to
assign the optimal RIS and SF to each IoT device average
over the time horizon T . As a result, the performance of
the two-stage MPMAB problem is slightly than that of
problem (11). However, Theorem 1 shows that the proposed
algorithm can converge to the optimal solution when T is suffi-
ciently large. The following simulation results will also verify
this.

Fig. 4. A fixed network scenario in a 200 × 200 m square area with K =
3, N = 3 (top view).

B. Fixed Network Scenario

We first consider a fixed network scenario in a 200 m ×
200 m square area, as shown in Fig. 4, where N = 3 cellular
IoT devices are located in a 45 m × 45 m circle area. For
simplicity, we assume that all UEs are centered in the point
(x, y) = (150, 150) m. Outside this circle are the BS and
K = 3 RISs. The distances between the BS and the center of
the RIS, as well as the IoT device and the center of the RIS,
are calculated by the Euclidean distances w.r.t. their locations
(i.e., Dli,lj and dli,lj in Fig. 3), respectively. The RIS and the
BS heights are 10 m and 20 m, respectively.

Fig. 5 shows the allocation results of the E2Boost algorithm
for the optimal phase shift setting. The simulation parameters
for the E2Boost algorithm are ν = 1.4, δ = 0, ε = 0.01,
Z = 10, ν1 = ν2 = 1000 and ν3 = 100. The average
throughput is computed by 1

t

∑T
t=1 μn,In,t . It can be seen from

Fig. 5 (b-d) that each player will converge to its own optimal
SF and RIS, i.e., player 1 → (RIS3, SF1), player 2 → (RIS1,
SF1) and player 3 → (RIS2, SF1). All players prefer SF1 with
the highest data rate of 1.09 Mbps in Table I. The average
throughput of all players is 2.3859 Mbps, which is slightly
less than the optimal solution’s 2.4315 Mbps. In addition,
IoT device 3 accounts for the lowest average throughput by
0.4971 Mbps due to the long transmission distance between
IoT 3-RIS2-BS links. The IoT device 3 does not choose RIS3
because the direction (or the phase shifts) of RIS2 is more
suitable for IoT 3 than RIS3, i.e., RIS2-UEs-IoT3 in a line.

Similarly, Fig. 6 shows the allocation results of the E2Boost
algorithm for the constant phase shift setting. We can see that
the average throughput of all players is just about 0.5782,
which is much lower than the optimal phase shift setting.
In addition, player 1 and player 2 disagree on the optimal RIS
since there is a collision between them. The reason is that the
time horizon of the second phase in Algorithm 1 is too short
(i.e., ν2 = 1, 000) to resolve this collision. As a result, the
highest SF for Pattern II is chosen frequently, resulting in low
average throughput. To conclude, Figs. 5 and 6 demonstrate
that the channel gains between the IoT device and the BS not
only rely on the path-loss gain but also depend on the settings
of phase shifts and direction in the RIS.

Fig. 7 depicts the total pseudo-regret of the E2Boost
algorithm, the E2Boost algorithm without TS, and the
GoT algorithm in the cases of ν1 = ν2 = 1, 000 and
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Fig. 5. (a) Average throughput of three IoT devices, (b-d) The number of selected times at each arm for each player, by running the E2Boost algorithm
with optimal phase shift setting in the fixed network scenario Fig. 4.

Fig. 6. (a) Average throughput of three IoT devices, (b-d) The number of selected times at each arm for each player, by running the E2Boost algorithm
with constant phase shift setting in the fixed network scenario Fig. 4.

Fig. 7. The total pseudo-regret via time slot in the cases of ν1 = ν2 =
1, 000 and ν1 = ν2 = 2, 000 with optimal phase shift setting in the fixed
network scenario Fig. 4.

ν1 = ν2 = 2, 000, when Z = 10 under the optimal
phase shift setting. Other parameters are the same as those in
Fig. 5. We can see that the proposed algorithm has the lowest
expected total pseudo-regret in both cases since it has a small
arm space (i.e., due to the two-stage allocation mechanism) to
explore. In addition, the total pseudo-regrets of all algorithms
in the case of ν1 = ν2 = 1, 000 are lower than those in
the ν1 = ν2 = 2, 000 case. The reason is that a larger
value of ν1 and ν2 indicates that a longer time is needed to
explore all arms, leading to more performance loss. However,
when ν1 = ν2 = 1, 000, the GoT algorithm and the E2Boost
algorithm without TS will not converge since the value of
ν2 is too small for the second phase to resolve the collisions
among IoT devices. More importantly, Fig. 7 validates our
theoretical analysis of Theorem 1, where the total pseudo-
regret of the E2Boost algorithm increases logarithmically w.r.t.
the time horizon T and is about four times better than the GoT
algorithm.

Fig. 8 compares the average total throughput of the E2Boost
algorithm, the E2Boost algorithm with ε = 0 and ε = 1

Fig. 8. The performance of different algorithms versus time slot with optimal
phase shift setting when ν1 = ν2 = 2, 000, Z = 10 in a fixed network
scenario of Fig. 4.

(without WD), the E2Boost algorithm without TS, the GoT
algorithm, and the random selection method in the optimal
phase shift setting with ν1 = ν2 = 2, 000, Z = 10. It can
be seen that the proposed algorithm outperforms the other
algorithms and is close to the optimal solution. By con-
trast, the proposed algorithm with ε = 0 accounts for the
worst performance since there is no exploration in the first
phase. Meanwhile, the E2Boost algorithm with ε = 1 and
the E2Boost algorithm without TS is better than the GoT
algorithm, indicating that the E2Boost algorithm with WD can
effectively tradeoff the EE dilemma by sequentially optimiz-
ing the parameter ε. More importantly, since the two-stage
allocation mechanism, the E2Boost algorithm has a faster
convergence rate than the GoT algorithm and the E2Boost
algorithm without TS.

Next, we evaluate the impact of the RIS-enabled channel
on the performance of the proposed algorithm. Fig. 9 depicts
the performance of the E2Boost algorithm under the optimal
and constant phase shift setting for different Rice factors
(ζ = 0.5, 1, 4, 10) when ν1 = ν2 = 2, 000, Z = 10.
We can see that the performance of the optimal phase shift
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Fig. 9. The performance of E2Boost algorithm for different phase shift
settings and Rice factors in a fixed network scenario of Fig. 4.

setting is much better than the constant phase shift setting
for different Rice factors. This is because the optimal phase
shift is designed for the centralized UEs. Thus, IoT devices
close to the UEs will also have better performance. On the
other hand, a bigger ζ will result in a higher average total
throughput. This phenomenon can be explained by (3), where
a big ζ means that the channel gain is dominated by the LoS
component, i.e., the directional reflection link of IoT-RIS-BS.
Therefore, the channel gain is dominated by the RIS when ζ
trends to +∞; while ζ trends to 0 mean that the IoT device
only transmits on Pattern II.

C. Random Network Scenario

In the following, we evaluate the proposed algorithm under
the random network scenario. At each MC trial, we regenerate
the locations of the IoT devices uniformly in the circle area of
Fig. 4. Meanwhile, the distance of any two devices is subject
to no less than 5 m. The locations of RISs, UEs, and BS are
set the same as those in Fig. 4.

Fig. 10 compares the average total throughput of different
algorithms in the optimal phase shift setting with ν1 = ν2 =
2, 000, Z = 11 over 103 random network scenarios. It can
be observed that the performance of all algorithms except the
random selection method increases with time slot t. Again,
the E2Boost algorithm has the best performance and a fast
convergence rate. The Q-learning method also exhibits a fast
convergence rate, but it suffers from some performance loss
due to the lack of the non-cooperation game phase to resolve
the collisions among players. Moreover, the gaps between the
optimal solution and these algorithms compared with Fig. 8 in
the fixed network case. The reason is that these algorithms fail
to find the optimal RIS for each player under some extreme
network scenarios with the constant parameter ν2 and the
limited time horizon T .

Moreover, we study the performance of the proposed algo-
rithm by considering the case that the number of IoT devices
is larger than that of RISs, i.e., N > K . We first generate
a new random network scenario, as shown in Fig. 11a,
where N = 11, K = 3, and the other parameters are the
same as those in Fig. 4. We can see from Fig. 11a that
N = 11 IoT devices are divided into three clusters by using
the k-means clustering method according to their geographic
locations. Fig. 11b compares the performance of the modified
E2Boost algorithm (i.e., Algorithm 2) with different settings of

Fig. 10. The performance of different algorithms versus time slot with
optimal phase shift setting when ν1 = ν2 = 2000, Z = 10 over 103 random
network scenarios.

Fig. 11. (a) A random network scenario in a 200× 200 m square area with
K = 3, N = 11. (b) The performance of different algorithms versus time
slot with optimal phase shift setting over 103 random network scenarios.

Fig. 12. (a) A random network scenario in a 200 m × 200 m square area
with K = 10. (b) The performance of the optimal solution, the E2Boost
algorithm, the original GoT algorithm, and the random selection method
versus the number of IoT devices at 103 random network scenarios of the
left figure.

ν1 = ν2 = {1000, 2000, 3000}, and the random selection
method in the optimal phase shift setting over 103 random
network scenarios of Fig. 11a. It can be seen that the modified
E2Boost algorithm with ν1 = ν2 = 1, 000 has the best
performance, and all the algorithms except for the random
selection method can converge to the optimal allocation. Com-
pared with the results in Fig. 10, the average total throughput
in the network scenario of Fig. 11a is about 2.4350 Mbps,
which is slightly better than 2.0784 Mbps in Fig. 4. This
demonstrates that, although the number of IoT devices ,
the performance gain from the non-RIS-assisted transmission
pattern is insignificant.

At last, we investigate the influence of the number of IoT
devices on the proposed algorithm. The number of RISs is set
to 10 and is placed on a semicircle with a radius of 55 m from
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3π/4 to 5π/4, as shown in Fig. 12a. The distances between
two neighboring RISs are equal except for the two pairs that
are located in the middle and both ends. Fig. 12b shows the
performance of the optimal solution, the E2Boost algorithm,
the original GoT algorithm, and the random selection method
versus the number of IoT devices in the optimal phase shift
setting where ν1 = ν2 = 2, 000,K = 10, Z = 10 over
103 random network scenarios of Fig. 12a. It can be seen
that the performance of these algorithms increases with the
number of IoT devices. However, the proposed algorithm
is better than the GoT algorithm and the random selection
method since it has a small arm space to explore. In addition,
the performance gaps between the optimal solution and these
algorithms increase with the number of IoT devices. The
reason is that among players increase with the number of
IoT devices, resulting in more performance loss.

VII. CONCLUSION AND DISCUSSION

This paper studied the resource allocation problem in a
RIS-assisted hybrid uplink network where several IoT devices
transmit data to the BS. The objective is to maximize the
sum rates of all IoT devices by finding the optimal RIS and
SF for each device. We modeled this problem as a two-
stage MPMAB framework, Then, we proposed an E2Boost
algorithm to tackle this problem by combining the ε-greedy
algorithm, TS algorithm, and non-cooperation game method.
Therefore, it can efficiently balance the EE dilemma. Further-
more, we provided an upper regret bound for the algorithm,
i.e., O(log1+δ

2 T ), indicating that the per-round regret will
trend to 0 when T is sufficiently large. In addition, simulation
results demonstrated the effectiveness of the proposed algo-
rithm. More importantly, it is not sensitive to the joint arm
space thanks to the two-stage allocation mechanism, which
can benefit practical applications.

APPENDIX A
PROOF OF THEOREM 1

At each time slot, IoT device the Pattern II. For the
Pattern I, the total pseudo-regret term Reg

(1)
can be expanded

by investigatingRegz , where z is the epoch. Thus, we begin to
bound Regz by computing the probability of event Ez , which
is the event that the optimal assignment a∗ is not adopted in.
We have

Pr(Ez) = Pr
(
Ek

∗
z , Em

∗
z

)
+ Pr

(
Ek

∗
z , Em∗

z

)
+ Pr

(
Ek∗z , Em

∗
z

)
= Pr

(
Ek

∗
z

)
+ Pr

(
Ek∗z , Em

∗
z

)
, (33)

where Ek
∗
z is the event that the optimal RIS is not used at the

end of the z-th epoch of the second phase, and Em
∗

z is the
event that the optimal SF is not used at the end of the z-th
epoch of the third phase.

First, we bound the probability that event Ek
∗
z holds, i.e.,

Pr
(
Ek

∗
z

)
≤ Pr

(� z
2 �∪
j=0

Pe,z−j

)
+ Pg,z , (34)

where Pe,z is the probability that and Pg,z is the probability
that . Then, we need to calculate the probabilities of Pe,z and
Pg,z before bounding Regz . In the first phase, we estimate
the average successful transmission probabilities θ̂n,k of all
RISs. Assume i.i.d. rewards Xn,k and each player uniformly
explores all K RISs when event Ek

∗
z holds. By adopting the

result in [23] (see Lemma 8), we have

Pe,z ≤ 2NKe−wν1(
z
2 )

δ
z +NKe−

ν1( z
2 )

δ

36K2 z, (35)

where w is a predefined positive constant. Therefore,
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36K2 ( z
2 )

δ .

(36)

In the second phase, we investigate the probability that the
optimal strategy profile is not visited frequently. Let vz∗ =
[ak∗, CN ] be the optimal strategy profile in the z-th game
phase and Fz(v∗) be the number of times the optimal strategy
profile has been visited at the last � z2� + 1 game phases.
According to [23] (see Lemma 16), we have

Fz(v∗) �
z∑

i=z−� z
2 �

∑
t∈Gz

I
(
v(t) = vi∗

)
, ∀k ∈ K. (37)

Denote the stationary distribution of the optimal strategy
profile by πv∗ = min

z−� z
2 �≤j≤z

πvi∗ . If 0 < η < 1
2 , then

πv∗ >
1

2(1−η) for a sufficiently large z, we have

Pg,z � Pr

⎛
⎝Fz(v∗) ≤ 1

2

z∑
i=z−� z

2 �
ν2i

δ

⎞
⎠

≤
(
C0e

− ν2η2
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2(1−η) )( z

2 )
δ
)z
, (38)

where C0 is a constant independent of z, πv∗ and η.

Second, we bound the probability that event
(
Ek∗z , Em

∗
z

)
holds. The method is based on the regret analysis of the TS
algorithm [29]. Here, event Ek∗z means that the player found
the optimal RIS at the end of the z-th game phase. Let Pnt,z
be the probability that player n fails to find the best SF. Since
players can find the optimal SF in the third phase only when
event Ek∗z holds, we have
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where Dkl is the KL-divergence and W j
n,m∗ is the number of

times that the m-th suboptimal SF has been selected by player
n up to the j-th epoch. Inequality (a) holds by using the large
deviation theory [40]. Inequality (b) follows from the Pinsker’s
inequality, i.e., Dkl(p‖q) ≥ 2(p − q)2. Therefore, by using

Pr
(
Ek∗z , Em

∗
z

)
= Pr

(
Em

∗
z |Ek∗z

)
Pr
(
Ek∗z

)
, we have (40),

as shown at the bottom of the page.
Then, we continue to bound Regz based on (36), (38)

and (40). For z > z0, we have
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where Γmax = maxn,i μn,i is the maximum real expected
reward among all players’ arms. The first inequality holds
since we consider the worst case that each player contributes
the maximum regret Γmax. The second inequality follows by
using (36) and (38). The last inequality establishes on the facts
that, for z > z0,

max
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and

2−
(M−2)2(2z−1)ν3

M2 ≤ 2−ν3(2
z−1). (43)

Finally, let Z be the total number of epochs. The total
pseudo-regret Reg

(1)
in Pattern I can be bounded as

Reg
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Inequality (d) follows from
∑Z

z=1 z
δ ≤ Z1+δ and the fact

that T ≥ ∑Z−1
z=1 ν32

z ≥ ν3(2Z − 2), which gives Z1+δ ≤
log1+δ

2 (T/ν3 + 2).
For the Pattern II, the total pseudo-regret Reg

(2)
can be

bounded according to the regret analysis of the MTS algorithm
in [28], i.e.,

Reg
(2) ≤ Pa(1 +�)

N∑
n=1

∑
an∈M

log2 T

DKL(an, a∗n)
Δn,an , (45)

where � ∈ (0, 1) and DKL(·) is the KL-divergence. Term Pa
is the active probability of the .

To sum up, the total pseudo-regret Reg of Algorithm 1 is
given by

Reg = Reg
(1)

+Reg
(2)
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APPENDIX B
RIS’S DIRECTION AND ELEMENT’S LOCATION

We first determine the direction of the RIS in XY -plane
by computing the angle ∠ϕ between X-axis and the RIS,
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as shown in Fig. 3. Given the coordinates of B = (xB, yB),

R = (xR, yR), U = (xU, yU), we have two vectors
−→
RB =

(xB − xR, yB − yR) and
−→
RU = (xU − xR, yU − yR). Accord-

ing to the plane analytical geometry theory, we can obtain the

direction vector
−→
RC, i.e., the bisector of angle ∠BRU, as

1) If cos〈−→RB,
−→
RU〉 ≥ 0, then

−→
RC = (xRC, yRC) = −

−→
RB

|−→RB|
+

−→
RU

|−→RU|

=

(
xR − xB

|−→RB|
+
xU − xR

|−→RU|
,
yR − yB

|−→RB|
+
yU − yR

|−→RU|

)
;

2) If cos〈−→RB,
−→
RU〉 < 0, then

−→
RC = (xRC, yRC) =

−→
RB

|−→RB|
+

−→
RU

|−→RU|

=

(
xB − xR

|−→RB|
+
xU − xR

|−→RU|
,
yB − yR

|−→RB|
+
yU − yR

|−→RU|

)
.

Thus, the direction of the RIS in XY -plane (i.e., the normal

vector
−→
AR of line RC) is

−→
AR = (−yRC, xRC). It is easy to

obtain the angle ∠ϕ by

∠ϕ = − arctan
(
xRC

yRC

)
. (47)

Next, based on the angle ∠ϕ, we can compute the location
of each element in the RIS, i.e.,⎧⎪⎨

⎪⎩
x(l1, l2) = (l1 − 51) dv cos∠ϕ+ xR,

y(l1, l2) = (l1 − 51)dv sin ∠ϕ+ yR,

z(l1, l2) = (l2 − 51)dh + 10,
(48)

where dv = dh = 0.01 are the offsets in RIS’s horizontal and
vertical planes, respectively. Constant 51 is the 51-th row or
column elements in the RIS and constant 10 is the height of
the RIS. Symbol (l1, l2) are the integers in [0, 101], standing
for the index ceil of the RIS elements’ matrix.

REFERENCES

[1] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,” IEEE Commun.
Mag., vol. 58, no. 1, pp. 106–112, Nov. 2019.

[2] M. Di Renzo et al., “Smart radio environments empowered by reconfig-
urable intelligent surfaces: How it works, state of research, and the road
ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525,
Nov. 2020.

[3] M. A. El Mossallamy, H. Zhang, L. Song, K. G. Seddik, Z. Han, and
G. Y. Li, “Reconfigurable intelligent surfaces for wireless communi-
cations: Principles, challenges, and opportunities,” IEEE Trans. Cogn.
Commun. Netw., vol. 6, no. 3, pp. 990–1002, Sep. 2020.

[4] H. Zhang, B. Di, L. Song, and Z. Han, “Reconfigurable intelligent
surfaces assisted communications with limited phase shifts: How many
phase shifts are enough?” IEEE Trans. Veh. Technol., vol. 69, no. 4,
pp. 4498–4502, Apr. 2020.

[5] B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and H. V. Poor, “Hybrid
beamforming for reconfigurable intelligent surface based multi-user
communications: Achievable rates with limited discrete phase shifts,”
IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1809–1822, Aug. 2020.

[6] S. Li, B. Duo, X. Yuan, Y.-C. Liang, and M. Di Renzo, “Reconfigurable
intelligent surface assisted UAV communication: Joint trajectory design
and passive beamforming,” IEEE Wireless Commun. Lett., vol. 9, no. 5,
pp. 716–720, Jan. 2020.

[7] H. Zhang, B. Di, L. Song, and Z. Han, Reconfigurable Intelligent
Surface-Empowered 6G. New York, NY, USA: Springer, 2021.

[8] O. Liberg, M. Sundberg, E. Wang, J. Bergman, and J. Sachs, Cel-
lular Internet of Things: Technologies, Standards, and Performance.
New York, NY, USA: Academic, 2017.

[9] Q. Qi and X. Chen, “Wireless powered massive access for cellular
Internet of Things with imperfect SIC and nonlinear EH,” IEEE Internet
Things J., vol. 6, no. 2, pp. 3110–3120, Apr. 2019.

[10] S. Dama, V. Sathya, K. Kuchi, and T. V. Pasca, “A feasible cellular
Internet of Things: Enabling edge computing and the IoT in dense
futuristic cellular networks,” IEEE Consum. Electron. Mag., vol. 6, no. 1,
pp. 66–72, Jan. 2017.

[11] M. Elsaadany, A. Ali, and W. Hamouda, “Cellular LTE—A technologies
for the future Internet-of-Things: Physical layer features and chal-
lenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2544–2572,
4th Quart., 2017.

[12] A. Waret, M. Kaneko, A. Guitton, and N. El Rachkidy, “LoRa through-
put analysis with imperfect spreading factor orthogonality,” IEEE Wire-
less Commun. Lett., vol. 8, no. 2, pp. 408–411, Apr. 2019.

[13] J. Lyu, D. Yu, and L. Fu, “Achieving max-min throughput in LoRa
networks,” in Proc. Int. Conf. Comput., Netw. Commun. (ICNC),
Big Island, HI, USA, Feb. 2020, pp. 471–476.

[14] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[15] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity. Chelmsford, MA, USA: Courier Corporation,
1998.

[16] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning for
dynamic power allocation in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 10, pp. 2239–2250, Oct. 2019.

[17] B. Gu, X. Zhang, Z. Lin, and M. Alazab, “Deep multiagent
reinforcement-learning-based resource allocation for internet of control-
lable things,” IEEE Internet Things J., vol. 8, no. 5, pp. 3066–3074,
Mar. 2021.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[19] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and non-
stochastic multi-armed bandit problems,” Found. Trends Mach. Learn.,
vol. 5, no. 1, pp. 1–122, 2012.

[20] D.-T. Ta, K. Khawam, S. Lahoud, C. Adjih, and S. Martin, “LoRa-MAB:
Toward an intelligent resource allocation approach for LoRaWAN,” in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA,
Dec. 2019, pp. 1–6.

[21] H. Tibrewal, S. Patchala, M. K. Hanawal, and S. J. Darak, “Distrib-
uted learning and optimal assignment in multiplayer heterogeneous
networks,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Pairs,
France, Apr. 2019, pp. 1693–1701.

[22] S. M. Zafaruddin, I. Bistritz, A. Leshem, and D. Niyato, “Distributed
learning for channel allocation over a shared spectrum,” IEEE J. Sel.
Areas Commun., vol. 37, no. 10, pp. 2337–2349, Oct. 2019.

[23] I. Bistritz and A. Leshem, “Distributed multi-player bandits—A game
of thrones approach,” in Proc. Adv. Neural Inf. Process. Syst., Montreal,
QC, Canada, Dec. 2018, pp. 1–11.

[24] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonsto-
chastic multi-armed bandit problem,” SIAM J. Comput., vol. 32, no. 1,
pp. 48–77, Jan. 2002.

[25] R. Jonker and T. Volgenant, “Improving the Hungarian assignment
algorithm,” Operations Res. Lett., vol. 5, no. 4, pp. 171–175, Oct. 1986.

[26] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[27] B. Arras, E. Azmoodeh, G. Poly, and Y. Swan, “A bound on the
Wasserstein-2 distance between linear combinations of independent
random variables,” Stochastic Processes their Appl., vol. 129, no. 7,
pp. 2341–2375, Jul. 2019.

[28] H. Gupta, A. Eryilmaz, and R. Srikant, “Low-complexity, low-regret
link rate selection in rapidly-varying wireless channels,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Honolulu, HI, USA, Apr. 2018,
pp. 540–548.

[29] S. Agrawal and N. Goyal, “Further optimal regret bounds for Thompson
sampling,” in Proc. Artif. Intell. Statist., Scottsdale, AZ, USA, Apr. 2013,
pp. 99–107.

[30] L. You et al., “Reconfigurable intelligent surfaces-assisted multiuser
MIMO uplink transmission with partial CSI,” IEEE Trans. Wireless
Commun., vol. 20, no. 9, pp. 5613–5627, Sep. 2021.

Authorized licensed use limited to: Princeton University. Downloaded on July 03,2022 at 20:56:08 UTC from IEEE Xplore.  Restrictions apply. 



TONG et al.: TWO-STAGE RESOURCE ALLOCATION IN RIS ASSISTED HYBRID NETWORKS 3541

[31] S. Abeywickrama, R. Zhang, Q. Wu, and C. Yuen, “Intelligent reflecting
surface: Practical phase shift model and beamforming optimization,”
IEEE Trans. Commun., vol. 68, no. 9, pp. 5849–5863, Sep. 2020.

[32] Study on Channel Model for Frequencies From 0.5 to 100 GHz (release
14), 3GPP, document 3GPP TR 38.901, Jan. 2018.

[33] J. Tong, M. Jin, Q. Guo, and Y. Li, “Cooperative spectrum sensing: A
blind and soft fusion detector,” IEEE Trans. Wireless Commun., vol. 17,
no. 4, pp. 2726–2737, Apr. 2018.

[34] J. Tong, M. Jin, Q. Guo, and L. Qu, “Energy detection under interference
power uncertainty,” IEEE Commun. Lett., vol. 21, no. 8, pp. 1887–1890,
Aug. 2017.

[35] J.-G. Choi, C. Joo, J. Zhang, and N. B. Shroff, “Distributed link schedul-
ing under SINR model in multihop wireless networks,” IEEE/ACM
Trans. Netw., vol. 22, no. 4, pp. 1204–1217, Aug. 2014.

[36] A. Menon and J. S. Baras, “Convergence guarantees for a decentralized
algorithm achieving Pareto optimality,” in Proc. Amer. Control Conf.,
Washington, DC, USA, Jun. 2013, pp. 1932–1937.

[37] J. R. Marden, H. P. Young, and L. Y. Pao, “Achieving Pareto optimality
through distributed learning,” SIAM J. Control Optim., vol. 52, no. 5,
pp. 2753–2770, 2014.

[38] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance
as a metric for image retrieval,” Int. J. Comput. Vis., vol. 40, no. 2,
pp. 99–121, Nov. 2000.

[39] A. Likas, N. Vlassis, and J. J. Verbeek, “The global K-means clustering
algorithm,” Pattern Recognit., vol. 36, no. 2, pp. 451–461, Feb. 2003.

[40] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, 2012.

Jingwen Tong (Student Member, IEEE) received the
B.E. degree in electrical engineering from China Jil-
iang University, Hangzhou, China, in 2015, and the
M.S. degree in electrical engineering from Ningbo
University, Ningbo, China, in 2018. He is currently
pursuing the Ph.D. degree with the Department
of Communication Engineering, Xiamen Univer-
sity, Xiamen, China. His current research interests
include multi-armed bandit and game theory.

Hongliang Zhang (Member, IEEE) received the
B.S. and Ph.D. degrees from the School of Electrical
Engineering and Computer Science, Peking Univer-
sity, in 2014 and 2019, respectively. He is currently
a Post-Doctoral Associate with the Department
of Electrical and Computer Engineering, Princeton
University, Princeton, NJ, USA. His current research
interests include reconfigurable intelligent surfaces,
aerial access networks, optimization theory, and
game theory. He has served as a TPC Member for
many IEEE conferences, such as Globecom, ICC,

and WCNC. He received the Best Doctoral Thesis Award from the Chinese
Institute of Electronics in 2019. He was also a recipient of the 2021 IEEE
Comsoc Heinrich Hertz Award for Best Communications Letters and the 2021
IEEE ComSoc Asia-Pacific Outstanding Paper Award. He has served as
a Guest Editor for several journals, such as IEEE INTERNET OF THINGS
JOURNAL and Journal of Communications and Networks. He is currently
an Editor of IEEE COMMUNICATIONS LETTERS, IET Communications, and
Frontiers in Signal Processing. He is also an Exemplary Reviewer of IEEE
TRANSACTIONS ON COMMUNICATIONS in 2020.

Liqun Fu (Senior Member, IEEE) received the
Ph.D. degree in information engineering from The
Chinese University of Hong Kong in 2010.

She was a Post-Doctoral Research Fellow with the
Institute of Network Coding, The Chinese University
of Hong Kong, and the ACCESS Linnaeus Centre,
KTH Royal Institute of Technology, from 2011 to
2013 and from 2013 to 2015, respectively. She
was with ShanghaiTech University as an Assistant
Professor from 2015 to 2016. She is currently a Full
Professor with the School of Informatics, Xiamen

University, China. Her research interests include communication theory, opti-
mization theory, and learning theory, with applications in wireless networks.
She serves as a TPC Member for many leading conferences in communications
and networking, such as the IEEE INFOCOM, ICC, and GLOBECOM. She is
on the Editorial Board of IEEE ACCESS and the Journal of Communications
and Information Networks (JCIN). She served as the Technical Program Co-
Chair for the GCCCN Workshop of the IEEE INFOCOM 2014, the Publicity
Co-Chair of the GSNC Workshop of the IEEE INFOCOM 2016, and the Web
Chair of the IEEE WiOpt 2018.

Amir Leshem (Senior Member, IEEE) received
the B.Sc. degree (cum laude) in mathematics and
physics, the M.Sc. degree (cum laude) in mathe-
matics, and the Ph.D. degree in mathematics from
The Hebrew University of Jerusalem, Jerusalem,
Israel, in 1986, 1990, and 1998, respectively.
From 2003 to 2005, he was the Technical Manager
of the U-BROAD Consortium developing technolo-
gies to provide 100 Mb/s and beyond over copper
lines. He is currently a Professor and one of the
Founders of the Faculty of Engineering, Bar-Ilan

University, where he is also the Head of the Signal Processing Track. His main
research interests include multichannel wireless and wireline communication,
applications of game theory to dynamic and adaptive spectrum manage-
ment of communication networks, array and statistical signal processing
with applications to multiple element sensor arrays and networks, wireless
communications, radio astronomical imaging and brain research, set theory,
and logic and foundations of mathematics. He was an Associate Editor of
the IEEE TRANSACTIONS ON SIGNAL PROCESSING from 2008 to 2011.
He was the Leading Guest Editor of Special Issues on Signal Processing
for Astronomy and Cosmology in the IEEE Signal Processing Magazine and
the IEEE JOURNAL OF SELECTED TOPICS.

Zhu Han (Fellow, IEEE) received the B.S. degree
in electronic engineering from Tsinghua University,
China, in 1997, and the M.S. and Ph.D. degrees in
electrical and computer engineering from University
of Maryland, College Park, MD, USA, in 1999 and
2003, respectively.

From 2000 to 2002, he was a Research and Devel-
opment Engineer at JDSU, Germantown, MD, USA.
From 2003 to 2006, he was a Research Associate at
University of Maryland. From 2006 to 2008, he was
an Assistant Professor at Boise State University,

Boise, ID, USA. He is currently a John and Rebecca Moores Professor with
the Department of Electrical and Computer Engineering and the Department
of Computer Science, The University of Houston, Houston, TX, USA.
His research interests include wireless resource allocation and management,
wireless communications and networking, game theory, big data analysis,
security, and smart grid. He has been an AAAS Fellow since 2019 and an
ACM Distinguished Member since 2019. He received an NSF Career Award
in 2010, the Fred W. Ellersick Prize of the IEEE Communication Society
in 2011, the EURASIP Best Paper Award of the Journal on Advances in
Signal Processing in 2015, the IEEE Leonard G. Abraham Prize in the
field of Communications Systems (Best Paper Award in IEEE JSAC) in
2016, and several best paper awards in IEEE conferences. He was an IEEE
Communications Society Distinguished Lecturer from 2015 to 2018. He is also
the winner of the 2021 IEEE Kiyo Tomiyasu Award, for outstanding early
to mid-career contributions to technologies holding the promise of innovative
applications, with the following citation: “for contributions to game theory
and distributed management of autonomous communication networks.” He
has been 1% highly cited researcher since 2017 according to web of science.

Authorized licensed use limited to: Princeton University. Downloaded on July 03,2022 at 20:56:08 UTC from IEEE Xplore.  Restrictions apply. 


