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Abstract. High-dimensional statistical learning (HDSL) has wide applications in data analy-
sis, operations research, and decision making. Despite the availability of multiple theoretical
frameworks, most existingHDSL schemes stipulate the following two conditions: (a) the spar-
sity and (b) restricted strong convexity (RSC). This paper generalizes both conditions via the
use of the folded concave penalty (FCP).More specifically, we consider anM-estimation prob-
lem where (i) (conventional) sparsity is relaxed into the approximate sparsity and (ii) RSC is
completely absent.We show that the FCP-based regularization leads to poly-logarithmic sam-
ple complexity; the training data size is only required to be poly-logarithmic in the problem
dimensionality. This finding can facilitate the analysis of two important classes of models that
are currently less understood: high-dimensional nonsmooth learning and (deep) neural net-
works (NNs). For both problems, we show that poly-logarithmic sample complexity can be
maintained. In particular, our results indicate that the generalizability of NNs under overpar-
ameterization can be theoretically ensuredwith the aid of regularization.
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1. Introduction
This paper is concerned with high-dimensional statisti-
cal learning (HDSL), which refers to the problems of
estimating a large number of parameters with few
training data. The HDSL problems are found in wide
applications ranging from imaging and bioinformatics
to deep learning. A standard setup of the HDSL is
summarized here: We are given a sequence of n-many
independent and identically distributed (i.i.d.) sample
observations, denoted Zi, i � 1, : : : ,n. Those observa-
tions are copies of a random vector Z, which has
unknown support W ⊆Rq (for some positive integer
q) and an unknown probability distribution. In addi-
tion to the sample observations above, we are also
given a function L(b, Zi), where L : Rp ×W→R
measures the statistical loss with respect to the data
point Zi and the vector of fitting parameters
b :� (βj) ∈Rp. Here, the positive integer p is called the
problem dimensionality (which is equal to the number
of fitting parameters). Throughout this paper, we
assume that L is measurable and deterministic, the

expectation E[L(b, Z)] over Z is well defined for all
b ∈Rp, and infb E[L(b, Z)] > −∞. Although no con-
vexity assumption is imposed explicitly, many of our
results are mainly useful when L(·, z) is convex. Given
the previously stated setup, it is often essential to esti-
mate the solution to the following population-level prob-
lem in many applications:

b∗ ∈ arg inf
b∈Rp

L(b) :� E[L(b, Z)]{ }
: (1)

Here, b∗ is intuitively the vector of fitting parameters
that yields the smallest population-level statistical loss
(a.k.a., population risk). Therefore, b∗ is considered
the target of estimation and referred to as the vector
of “true parameters.” The HDSL problem of interest is
then how to estimate (or approximate) b∗, given the a
priori knowledge of the samples Zn

1 :� (Z1,Z2, : : : ,Zn)
and the formulation of L, when p ≥ n. We are espe-
cially interested in the more challenging case where
the sample size n is much smaller than the dimension-
ality p (i.e., p	 n). In measuring the approximation
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quality (a.k.a., recovery quality) of an estimator
b̂ ∈Rp, we consider a metric of generalization error
calculated as L(b̂) − infb L(b). This metric is the same
as the excess risk, which is discussed by Bartlett et al.
(2006), Koltchinskii (2010), and Clémençon et al.
(2008), among others, as an important, if not the pri-
mary, measure of generalization performance for their
results.

Most traditional schemes are not applicable to the
HDSL. For example, one popularly adopted scheme is
to construct a surrogate for the population-level for-
mulation in (1) through the sample average approxi-
mation (SAA):

bSAA ∈ arg inf
b

Ln(b,Zn
1) :� 1

n

∑n
i�1

L(b, Zi)
{ }

, (2)

where the objective function Ln(b,Zn
1) is often also

called the empirical risk function in the context of statis-
tical and machine learning. The SAA entails desirable
computational and statistical properties (many of
which are discussed by Shapiro et al. 2014 and refer-
ences therein) but is not designed for handling high
dimensionality. Indeed, the best known upper bound
on the approximation error of the SAA solution is of
the order O( �����

p=n
√ ), where O(·) hides some quantities

independent of, or poly-logarithmic in, “·”. Conse-
quently, the estimator of the true parameters generated
by solving the SAA, as well as by most other tradi-
tional statistical learning approaches, may incur non-
trivial errors when p	 n.

To address high dimensionality, several statistical
schemes are available. (See Bühlmann and van de
Geer 2011 and Fan et al. 2014 for excellent reviews.)
Among them, this paper follows and generalizes one
of the most successful HDSL techniques introduced
by Fan and Li (2001) and Zhang (2010) as in the fol-
lowing formulation:

inf
b∈Rp

Ln,λ(b, Zn
1) :� Ln(b, Zn

1) +
∑p
j�1

Pλ(|βj |)
{ }

, (3)

where Pλ : R+ →R+ is a term of sparsity-inducing
regularization in the form of a folded concave penalty
(FCP). One mainstream special case of the existing
FCPs, called the minimax concave penalty (MCP)
(Zhang 2010), is of particular consideration. The MCP
is formulated as

Pλ(θ) �
∫ θ

0

[aλ− t]+
a

dt, θ ≥ 0, (4)

with [·]+ :�max{0, ·} and tuning parameters a,λ > 0.
(Hereafter, we use the term FCP to refer to the MCP
exclusively.) Equation (3) is nonconvex, to which the
local and/or global solutions have been shown to
entail desirable statistical properties (Zhang and

Zhang 2012; Wang et al. 2013, 2014; Loh and Wain-
wright 2015; Loh 2017). To understand the roles of the
tuning parameters a and λ to the FCP, we may
observe that its first derivative, P′

λ(θ), is a nonincreas-
ing function with P′

λ(0) � λ and P′
λ(θ) � 0 for all

θ ≥ aλ. This means that λ determines how intense the
penalty is to induce a fitting parameter that is almost
zero to be exactly zero. The effect of this penalty
becomes smaller as the magnitude of the corresponding
fitting parameter increases. Once the absolute value of
that parameter is beyond the threshold aλ, the penalty
becomes a constant and thus (locally) ineffective. Fur-
thermore, we also observe that P′′

λ (θ) � − 1
a for all θ ∈

(0, aλ) and P′′
λ (θ) � 0 for all θ > aλ. Therefore, a deter-

mines the curvature of the FCP near the origin.
Alternative sparsity-inducing penalties, such as the

smoothly clipped absolute deviation (SCAD) introduced
by Fan and Li (2001), the least absolute shrinkage and
selection operator (Lasso) proposed by Tibshirani (2011),
and the bridge penalty (a.k.a., the ℓq penalty with
0 < q < 1) as discussed by Frank and Friedman (1993),
have all been shown to be very effective in HDSL by
many results from Fan and Li (2001), Bickel et al. (2009),
Fan and Lv (2011), Fan et al. (2014), Loh andWainwright
(2015), Raskutti et al. (2011), Negahban et al. (2012),
Wang et al. (2013, 2014), Zhang and Zhang (2012), Zou
(2006), Zou and Li (2008), Liu et al. (2017, 2019), and Loh
(2017), to name only a few. Many of those results pro-
vide oracle inequalities, which “relates the performance of
a real estimator with that of an ideal estimator” (Candes
2006, p. 278). Ndiaye et al. (2017), Ghaoui et al. (2010),
Fan and Li (2001), Chen et al. (2010), and Liu et al.
(2017) have presented thresholding rules and bounds
on the number of nonzero dimensions for a high-
dimensional linear regression problem with different
penalty functions.

Despite the availability of several analytical frame-
works for HDSL in the current literature, most
existing HDSL theories require the following two
assumptions, which are sometimes overly critical, to
guarantee any generalization performance.

A. The satisfaction of the (conventional) sparsity condition,
written as ‖b∗‖0 � p, where ‖ · ‖0 denotes the number of
nonzero entries of a vector.

B. The satisfaction of regularity conditions on the eigenvalues
of the Hessian matrix of L(·,Z) in the form of the restricted
strong convexity (RSC) (Negahban et al. 2012), the
restricted isotropic property (RIP) (Candes and Tao 2007),
or the restricted eigenvalue (RE) condition (Bickel et al.
2009).

The sparsity assumption essentially means that few
dimensions “matter” despite that the total number of
dimensions is very high. Meanwhile, the RSC, RIP,
and RE can all be interpretable as the stipulation that
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L(·,Zn
1) is strongly convex everywhere in some subset

of Rp. The RSC is implied by the RE and RIP for some
choices of parameters (van de Geer et al. 2009, Negahban
et al. 2012). Except for some special cases of the general-
ized linearmodels (Bickel et al. 2009), when both Assump-
tions A and B mentioned previously are violated, little is
known about the performance of (3) or that of most other
HDSL schemes in terms of their generalization perform-
ance in general. Negahban et al. (2012) has considered
HDSL under weak sparsity, but the RSC is still assumed
for establishing the generalization error bounds.

In contrast to the literature, this paper is concerned
with the effectiveness of (3) in addressing the HDSL
problems when the RSC is completely absent, and the
traditional sparsity is relaxed into the approximate
sparsity (A-sparsity) in the following.

Assumption 1. The A-sparsity holds; that is, L(b∗
εA
)−

infbL(b) ≤ εA and s :� ‖b∗
εA
‖0 � p for some εA ≥ 0,

b∗
εA

: ‖b∗
εA
‖∞ ≤ R, and R ≥ 1.

Intuitively, Assumption 1 means that, although b∗
can be dense, replacing most of the nonzero entries of
b∗ by zero does not cause the population risk to
increase too much. It is evident that, if εA � 0,
Assumption 1 is reduced to the (traditional) sparsity.

In certain applications of HDSL (e.g., the deep neu-
ral networks to be discussed subsequently), it is more
convenient to consider a (slight) generalization to
Assumption 1 in the following.

Assumption 2. There exists L∗g : L∗g ≤ infb L(b) such that
L(b∗

εA
) − L∗g ≤ εA and s :� ‖b∗

εA
‖0 � p for some εA ≥

0, b∗
εA

: ‖b∗
εA
‖∞ ≤ R, and R ≥ 1.

Apparently, Assumption 2 is more general than Ass-
umption 1, and the two are equivalent when L∗g �
infb L(b). Hereafter, both Assumptions 1 and 2 are
referred to as A-sparsity when there is no ambiguity.With-
out loss of generality, we let s > 1 throughout this paper.

The assumption of ‖b∗
εA
‖∞ ≤ R is noncritical. It is

comparable to, if not less restrictive than, some com-
mon assumptions in the literature. For example, in
addressing HDSL under (the conventional) sparsity,
Loh (2017) and Loh and Wainwright (2015) both
assume the estimator and the vector of true parame-
ters to be contained within a convex and bounded set
of {b : |b|≤ Rℓ1} for some Rℓ1 > 0. Verifiably, under
their assumptions, ‖b∗

εA
‖∞ ≤ R holds with some

R ≤ Rℓ1 . Furthermore, we later show that our general-
ization error bounds depend only logarithmically on
R. Thus, it is flexible to pick the value of R in practice;
we only need to have a coarse estimation of an upper
bound on ‖b∗

εA
‖∞. Even if R overestimates ‖b∗

εA
‖∞ too

much, the performance of the proposed scheme
would probably not be impacted significantly.

We believe that the flexibility of A-sparsity and the
relaxation of the RSC can allow the HDSL theories to

cover a more comprehensive class of applications. Indeed,
as we are to articulate later, our results on HDSL under
A-sparsity can facilitate the comprehension of two impor-
tant classes of problems whose theoretical underpinnings
are currently lacking from the literature: (i) a high-
dimensional nonsmooth learning problem (nonsmooth
HDSL), that is, an HDSL problem with a nonsmooth
empirical risk function, and (ii) a (deep and over parame-
terized) neural network (NN)model.

More general forms of sparsity, such as the weak
sparsity assumption (Negahban et al. 2012), have been
discussed previously. However, the only existing dis-
cussions on simultaneously relaxing both the sparsity
and the RSC assumptions are from Liu et al. (2019) to
our knowledge. Their results imply that the excess
risk of an estimator b̂ ∈Rp generated as a certain sta-
tionary point to Formulation (3) can be bounded by

O
�����
lnp

√
n1=4

· 1+ ����
εA

√( )+ εA

( )
:

This bound is reduced to

O
�����
lnp

√
n1=4

( )
when εA � 0. In contrast, our findings in the current
paper can strengthen the previous results. More specifi-
cally, we relax the subgaussian assumption stipulated
by Liu et al. (2019) and impose the weaker, subexpo-
nential, condition instead. In addition, the assumption
of twice-differentiability made by Liu et al. (2019) is
also weakened. In the more general settings, we further
show that sharper error bounds can be achieved at a
stationary point that (a) satisfies a set of significant sub-
space second-order necessary conditions (S3ONC) to be
formalized subsequently and (b) has an objective func-
tion value no worse than that of the solution to the
Lasso problem, formulated as follows:

min
b∈Rp

Ln(b, Zn
1) +

∑p
j�1

λ· |βj|
{ }

: (5)

We discuss some S3ONC-guaranteeing algorithms to
meet the first requirement soon afterward. To meet the
second requirement, wemay always initialize the S3ONC-
guaranteeing algorithm with a solution to (5), which is
often polynomial-time solvable ifLn(·,Zn

1) is convex.
Our new bounds on those S3ONC solutions are

summarized here. First, in the case where εA � 0, we
can bound the excess risk by

O
lnp
n2=3

+
�����
lnp

√
n1=3

( )
,

which is better than the aforementioned result by
Liu et al. (2019) in terms of the dependance on n.
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Second, when εA is nonzero, the excess risk is then
bounded by

O
lnp
n2=3

+
�����
lnp

√
n1=3

+
������
εA
n1=3

√
+ εA

( )
: (6)

Third, if we further relax the previous requirement
and consider an arbitrary S3ONC solution, then the
excess risk becomes

O
lnp
n2=3

+
�����
lnp
n

√
+ 1
n1=3

+
��������
Γ+εA
n1=3

√
+Γ+εA

( )
, (7)

where Γ ≥ 0 is (an underestimation of) the suboptimal-
ity gap that this S3ONC solution incurs in minimizing
Ln,λ(·, Zn

1) (as defined in (3)).
Admittedly, our excess risk bounds are less appeal-

ing than the generalizability results made available in
some important previous works by Loh (2017), Ras-
kutti et al. (2011), and Negahban et al. (2012), and so
on, under the assumption of the RSC. In contrast,
we argue that our results are established under a
more general set of conditions and can complement
the existing results in the HDSL problems beyond the
RSC. It is also worth noting that (7) is in the parame-
terization of Γ, which can only be explicitly controlled
when Ln(·, Zn

1) is convex in general. Nonetheless, we
argue that, in some interesting special cases, one may
still control Γ despite the absence of convexity. One of
such examples is presented in this paper as we discuss
the theoretical applications of HDSL under A-sparsity
to the NNs in Sections 6 and EC.1 of the e-companion.

The S3ONC is a necessary condition for local mini-
mality. Compared with the second-order Karush-
Kuhn-Tucker (KKT) conditions, the S3ONC is weaker
and potentially easier computable. To generate a solu-
tion that satisfies the S3ONC admits pseudo-polyno-
mial-time algorithms, such as the variants of Newton’s
method proposed by Haeser et al. (2019), Bian et al.
(2015), Ye (1992, 1998), and Nesterov and Polyak (2006).
All those algorithms provably ensure a γopt-approxima-
tion (with a user-specified error tolerance γopt > 0) to
the second-order KKT conditions at the best-known
iteration complexity of the rate O(1=γ3

opt). The second-
order KKT conditions then imply the S3ONC. To add
to the current solution schemes, we derive a new
gradient-based method that provably guarantees the
S3ONC. In contrast to the literature, the iteration com-
plexity of this new algorithm is O(1=γ2

opt), which
improves on the existing alternatives. Because of the
gradient-based nature of the proposed algorithm, it
does not access the Hessian matrix or its inverse. There-
fore, we think that this gradient-based algorithm may
be of some independent interest.

1.1. Some Theoretical Applications
As mentioned, our results on HDSL under A-sparsity
can be used in the analysis of two important classes of
statistical and machine learning models: (a) non-
smooth HDSL and (b) deep NNs. We provide some
additional details are provided in this subsection.

1.1.1. Nonsmooth HDSL. Although several special cases
of HDSLwith nonsmoothness, such as high-dimensional
least absolute regression, high-dimensional quantile
regression, and high-dimensional support vector machine
(SVM) have been discussed by Wang (2013), Belloni and
Chernozhukov (2011), Zhang et al. (2016b, c), and Peng
et al. (2016), there exist few theories that apply to scenarios
without an everywhere differentiable loss function in gen-
eral, especially when nondifferentiability may occur at, or
in a near neighborhood of, the vector of true parameters.

In contrast, our theories on HDSL under A-sparsity
can be used to understand the generalization perform-
ance of a flexible set of nonsmooth HDSL problems.
Indeed, their nonsmooth statistical loss functions can
be approximated by another formulation that pre-
serves the continuous differentiability, and the result-
ing approximation error can be handled through the
notion of A-sparsity. Analyzing this approximation
leads to the following bound on the excess risk at an
S3ONC solution when the vector of true parameters is
A-sparse in the sense of Definition 1:

O
ln p
n3=4

+
�����
ln p

√
n1=4

+
������
εA
n1=4

√
+ εA

( )
: (8)

In particular, under the conventional sparsity assump-
tion (i.e., when εA � 0), the previous rate becomes

O
lnp
n3=4

+
�����
lnp

√
n1=4

( )
:

To our knowledge, this is perhaps the first generic
theory for the high-dimensional M-estimation prob-
lems in which the empirical risk function may not be
everywhere differentiable.

1.1.2. Regularized NN. The NNs have been frequently
discussed and widely applied in recent literature
(LeCun et al. 2015, Schmidhuber 2015, Yarotsky 2017).
Despite the frequent and exciting advancements in
the NN-related algorithms, models, and applications,
the development of their theoretical underpinnings is
seemingly lagging behind. DeVore et al. (1989), Yarot-
sky (2017), Mhaskar and Poggio (2016), and Mhaskar
(1996), and so on, have explicated the expressive
power of the NNs in the approximation of different
types of functions. As for the generalizability of NNs,
one of the focuses of this paper, effective theoretical
frameworks have been discussed by Cao and Gu
(2019), Li and Liang (2018), Brutzkus et al. (2017),
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Allen-Zhu et al. (2019), Wang et al. (2019), Daniely (2017),
Neyshabur et al. (2015), Bartlett et al. (2017), Hardt et al.
(2016), Zhang et al. (2016a), Li et al. (2018), and Jakubo-
vitz et al. (2019), among others. However, for the vast
majority of the existing results on the deep NNs, the
generalization error bounds grow polynomially in the
dimensionality (which is equal to the number of fitting
parameters and is also called the network size) and
sometimes even increase exponentially in the depth of
the network. Such a high sensitivity to dimensionality
and depth is inconsistent with the empirical perform-
ance of the NNs in many practical applications, where
overparameterization and deep architectures are com-
mon and often preferred by practitioners.

In contrast, we analyze the NNs through the lens of
HDSL under A-sparsity and consider an FCP-
regularized NN training formulation as a special case of
(3) in binary classification. Our results indicate that the
NN’s generalization errors at local solutions can be
both poly-logarithmic in the number of fitting parame-
ters and polynomial in the network depth. Thus, we
think that the results herein can facilitate understanding
the powerful performance of the NNs in practice, espe-
cially for the overparameterized and deep models. Bar-
ron and Klusowski (2018) have shown the existence of
fitting parameters for an NNwith ramp activation func-
tions to achieve the poly-logarithmic sample complex-
ity. Compared with Barron and Klusowski (2018), our
analysis may present better flexibility in the choice of
activation functions and provide more insights toward
the computability of the desired fitting parameters in
training a deep NN to ensure the proven error bounds.

More specifically, we show that the generalization
error incurred by an S3ONC solution to the FCP-
regularized training formulation of an NN is bounded by

O
sA ·D · ln p

n2=3
+

���������������
sA ·D · ln p

n

√
+ 1
n1=3︸������������������︷︷������������������︸

O n−1=3+n−1=2D·ln p( )
+ Γ︸︷︷︸
Suboptimality gap

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+ Ω(sA)︸︷︷︸
Representability gap

+
�������������
Γ +Ω(sA)

n1=3

√
︸����︷︷����︸
Interaction term

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (9)

for any fixed sA : 1 ≤ sA ≤ p, with overwhelming prob-
ability. Here, D is the number of NN layers, Γ ≥ 0 is
the suboptimality gap incurred by the S3ONC solution
of consideration, and Ω(p′), for any p′ : 1 ≤ p′ ≤ p, is
the architecture-dependent representability gap
(a.k.a., the model misspecification error or the expres-
sive power) of an NN with p′-many nonzero fitting
parameters. By (9), the generalization error of an NN
consists of four terms: (i) a generalization error term of
the order O n−1=3 + n−1=2Dlnp

( )
; (ii) the suboptimality

gap; (iii) a term that measures the NN’s representability;

and (iv) a term that is dependent on suboptimality gap,
sample size, and representability, simultaneously. It is
worth noting that (9) is obtained with little restriction on
the NN architecture and the data generation process.
Combining (9) with the existing results on the represent-
ability analysis of NNs, we further derive more explicit
generalization error bounds. For example, we show
that the error yielded by an NN with smooth activa-
tion functions can be bounded by

O
D · lnp
n1=3

+
������
Γ

n1=3

√
+ Γ

( )
,

when we assume that data from different categories
are separable by a polynomial function (as well as a
couple of other conditions on the NN architecture).

The error bound in (9) depends on Γ, the subopti-
mality gap. To explicitly bound its value is challeng-
ing in general because of the nonconvexity of an NN’s
training formulation. Nonetheless, we show that some
pseudo-polynomial-time computable solutions gener-
ated with the aid of an efficient initialization provably
ensure the explicit control of Γ in the same settings
considered by Cao and Gu (2020). In such a case, the
generalization error is further explicated into

O
D

n1=3
· ln p

( )
, (10)

which becomes independent of Γ. In achieving this result,
our settings seem more general than Wang et al. (2019),
and our rates on both D and p are perhaps more appeal-
ing than most of the existing results. In particular, Wang
et al. (2019) focus on ReLU-NNs (that is, the NNs where
the activation functions are ReLU, as discussed by Glorot
et al. 2011) with one hidden layer, but our approach can
handle deep NNs under more general hyper-parameters.
For deep and wide NNs, Cao and Gu (2020) have estab-
lished generalization error bounds, which, however,
increase exponentially in the number of layers in the same
settings of our discussion. In contrast, our bound is both
poly-logarithmic in dimensionality and polynomial in the
number of layers. The computational complexity of train-
ing an NN with the claimed error bound is in pseudo-
polynomial time.

In obtaining our results, we do not artificially impose
any condition on sparsity or alike. As we articulate in Sec-
tion 6.2, our findings are based on the observation that the
A-sparsity (as in Assumption 2) is an intrinsic property
implied by the NN’s expressive power.

1.2. Summary of Results
Table 1 summarizes the sample complexity results pro-
ven in this paper. In contrast to the literature, we claim
that our results could lead to the following contributions:

1. We provide the first HDSL theory for problems
where the three conditions—the twice-differentiability,
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the RSC or alike, and the sparsity—are simultaneously
relaxed. In the more general settings, we show that HDSL
is still possible even if the sample size is only poly-
logarithmic in the dimensionality. In Table 1, the results
are presented in the rows for “HDSL under A-sparsity”.

2. We have derived a pseudo-polynomial-time
gradient-basedmethod to compute an S3ONC solution.
Even though the S3ONC is a set of second-order neces-
sary conditions, the proposed algorithm does not need
to access the Hessian matrix. Furthermore, the iteration
complexity of the proposed method is provably O

( 1
γ2
opt

)
in achieving a γopt-approximation to the S3ONC, which
is sharper than the more generic algorithms such as the
variations of Newton’s method.

3. As theoretical applications of our error bounds for
HDSL under A-sparsity, we derive generalizability
results for nonsmooth HDSL problems and deep NNs.
More specifically, for a flexible class of high-dimensional
nonsmooth M-estimation problems, we prove perhaps
the first poly-logarithmic sample complexity bound
without the RSC assumption. The corresponding result
is summarized in Table 1 in the rows for “Nonsmooth
HDSL under A-sparsity.” As for the NNs, our sample
requirement is only poly-logarithmic in the network size
and polynomial in the number of layers, providing theo-
retical underpinnings for the generalizability of an NN
under overparameterization. These results are summar-
ized in the rows for “Neural Network” of Table 1.

1.3. Organization of the Paper
The rest of the paper is organized as follows. Section 2
summarizes the settings and assumptions. Section 3 intro-
duces the S3ONC. Section 4 states our main results con-
cerning HDSL under A-sparsity. A pseudo-polynomial-

time solution scheme that guarantees the S3ONC is dis-
cussed in Section 5. Section 6 discusses the theoretical
applications to nonsmooth HDSL and the regularized
(deep) NNs. Some numerical experiments are presented
in Section 7. Sections EC.1 and EC.2 of the e-companion,
respectively, present some additional theoretical results
on the NN and supplementary numerical results on both
the SVM and the NN. Section 8 concludes the paper.

Our notations are summarized here. We use p and n
to represent the numbers of dimensions (fitting
parameters) and the sample size. We let ‖ · ‖p
(1 ≤ p ≤∞) be the p-norm, except that 1- and 2-norms
are denoted by | · | and ‖ · ‖, respectively. When there
is no ambiguity, we also denote by | · | the cardinality
of a set, if the argument is a finite set. Let ‖ · ‖F of a
matrix be its Frobenius norm and let ‖ · ‖0 of a vector
be the number of its nonzero entries. For a random
vector v � (vj) ∈Rp, we denote that ‖v‖∞ ≤ R if
P[|vj| ≤ R, ∀j � 1, : : : ,p] � 1. For a random variable X,
its subexponential and subgaussian norms are
denoted by ‖X‖ψ1

and ‖X‖ψ2
, respectively. ‖A‖1,2 :�

maxx∈Rm1 ,u∈Rm2 {u�Ax : ‖x‖1 � 1, ‖u‖2 � 1} for integers
m1, m2 and a matrix A ∈Rm2×m1 . For a function f,
denote by ∇f its gradient, whenever it exists. For a
vector b � (βj) ∈Rp and a set S ⊂ {1, : : : ,p}, let bS �
(βj : j ∈ S) be a subvector of b. For any vector v � (vj),
the notation diag(v) represents the diagonal matrix
whose jth diagonal entry is vj. We denote by
vec(M1,M2, : : : ,Mm) the vector that collects all the
entries of the matrices M1, M2, … , Mm. The vector ej is
the jth standard basis. �x� (or �x�) for any x ≥ 0 is the
smallest (or largest) integer that is greater (or smaller,
respectively) than or equal to x. Finally, we denote by
O(·) s and O(·) s, respectively, the complexity rates that

Table 1. Summary of Sample Complexities

Type of solutions Complexity results

HDSL under A-sparsity

S3ONC initialized with Lasso lnp
n2=3 +

����
lnp

√
n1=3 +

����
εA
n1=3

√
+ εA

S3ONC with suboptimality gap Γ
lnp
n2=3 +

����
lnp
n

√
+ 1

n1=3 +
������
Γ+εA
n1=3

√
+ Γ+ εA

Nonsmooth HDSL under A-sparsity

S3ONC initialized with Lasso lnp
n3=4 +

����
lnp

√
n1=4 +

����
εA
n1=4

√
+ εA

Neural network (with D-many layers
and p-many fitting parameters)

S3ONC to a general NN with suboptimality
gap Γ and any sA : 1 ≤ sA ≤ p

sA ·D·lnp
n2=3 +

���������
sA ·D·lnp

n

√
+ 1

n1=3 +Ω(sA) + Γ+
���������
Γ+Ω(sA)

n1=3

√
S3ONC to an NN for a flexible choice of

activation functions with suboptimality gap
Γ, when the target function is polynomial

D
n1=3 · lnp+

����
Γ

n1=3

√
+ Γ

A pseudo-polynomial-time computable
solution in training a ReLU-NN in the same
settings by Cao and Gu (2020)

D
n1=3 · lnp

Note. εA denotes a parameter for A-sparsity as in Assumption 1; p and n, sample size and the dimensionality, respectively; ReLU-NN, NN with
ReLU activation.
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hide (potentially different) universal constants and
quantities at most logarithmically dependent on “·”

2. Settings and Assumptions
In this section, we summarize our assumptions in
addition to the aforementioned settings. We assume

that the gradient ∇L(b, z) :�
(
∂L(b,z)

∂βj
: j � 1, : : : ,p

)
of

L(b,z) with respect to (w.r.t.) b is well defined for all
b ∈Rp and almost every z ∈W. Furthermore, we also
suppose that ∂L(b,z)

∂βj
is Lipschitz continuous for all

b ∈Rp; that is, there exists a scalar UL > 0 such that

∂L(b, z)
∂βj

[ ]
b�̃b+δ·ej

− ∂L(b, z)
∂βj

[ ]
b�̃b

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤UL· |δ| , (11)

for almost every z ∈W and for all b̃ ∈Rp, δ ∈R,
j � 1, : : : ,p. These regularities are to be relaxed when
we later discuss the nonsmooth HDSL problems and
the ReLU-NNs. Apart from the previous assumptions,
two additional assumptions are imposed as below.

Assumption 3. For all b ∈Rp : ‖b‖∞ ≤ R and i � 1,
: : : ,n, it holds that E[L(b, Zi)] is finite-valued and
L(b, Zi) − E[L(b, Zi)] follows a subexponential distribution;
that is, ‖L(b, Zi) − E[L(b, Zi)]‖ψ1

≤ σ, for some σ ≥ 1.

Remark 1. As an implication of Assumption 3, for all
b ∈Rp : ‖b‖∞ ≤ R (combined with the assumption
that Zi, i � 1, : : : ,n, are i.i.d.), a well-known Bernstein-
like inequality holds as follows:

P
∑n
i�1

ai L(b, Zi) − E[L(b, Zi)]{ }
∣∣∣∣∣

∣∣∣∣∣ > σ · ‖a‖ ��
t

√ + ‖a‖∞t
( )( )

≤ 2exp −ct( ), ∀t ≥ 0, a � (ai) ∈Rn, (12)

for some absolute constant c ∈ (0, 0:5]. Interested read-
ers are referred to Vershynin (2012) for more detailed
discussions on the subexponential distributions.

Assumption 4. For some measurable and deterministic
function C : W→R+, the random variable C(Zi) satisfies
that ‖C(Zi) − E C(Zi)[ ]‖ψ1

≤ σL, for all i � 1, : : : ,n, for
some σL ≥ 1. Furthermore, |L(b1, z) − L(b2, z)|≤ C(z)‖b1 −b2‖,
for all b1, b2 ∈Rp ∩ {b : ‖b‖∞ ≤ R} and almost every z ∈W.

Hereafter, we let E[C(Zi)] ≤ Cμ for all i � 1, : : : ,n for
some Cμ ≥ 1.

Remark 2. Assumptions 3 and 4 are general enough to
cover a wide spectrum of M-estimation problems. More
specifically, Assumption 3 requires that the underlying dis-
tribution is subexponential, and Assumption 4 essentially
imposes the Lipschitz(-like) continuity onLn(·,Zn

1). Exam-
ples of subexponential distributions include uniform,
Gaussian, exponential, and χ2 distributions, as well as any
distribution that has a bounded support set. As for the

Lipschitz continuity, it is a condition satisfied by many
statistical learning problems, such as linear regression,
Huber regression, SVM, and NNs. We are to show that
the generalization error bounds only grow logarithmically
in the Lipschitz constant. The combination of our
assumptions is nontrivially weaker than the settings in
Liu et al. (2017, 2019). It is also worth mentioning that
the stipulations of σ ≥ 1, Cμ ≥ 1, and σL ≥ 1 can be
easily relaxed and are needed only for notational sim-
plicity in presenting our results.

3. Significant Subspace Second-Order
Necessary Conditions

Because the FCP is nonconvex, so is Equation (3). Thus,
computing the global solution to (3) is intractable.
Nonetheless, our theories concern only local stationary
points. We show that these local solutions are good
enough to ensure the promised statistical performance.

In particular, we consider the stationary points that are
characterizedby the satisfactionof the significant subspace
S3ONC, which are closely similar to the necessary condi-
tions discussed by Chen et al. (2010) for linear regression
with bridge regularization and by Liu et al. (2017, 2019)
under the assumption that the empirical risk function is
everywhere twice differentiable. This paper generalizes
the characterizations of the S3ONC to scenarios where the
twice-differentiabilitymaynot hold everywhere.

Definition 1. Given Zn
1 ∈Wn, a vector b̂ ∈Rp is said to

satisfy the S3ONC (denoted by S3ONC(Zn
1)) of Problem

(3) if both of the following sets of conditions are satisfied:
(a) The first-order KKT conditions are met at b̂ :� (̂βj);

that is, there exists κj ∈ ∂(|̂βj|), for all j � 1, : : : ,p, such that

∇Ln(b̂, Zn
1) + (P′

λ(|̂βj|) · Kj : j � 1, : : :p) � 0, (13)

where ∇Ln(b̂, Zn
1) is the gradient of Ln(·, Zn

1) as
defined in (2), ∂(|̂βj|) is the subdifferential of | · | at β̂j,
and P′

λ(·) is the first derivative of Pλ(·).
(b) The following inequality holds at b̂: for all

j � 1, : : : ,p, if |̂βj| ∈ (0, aλ), then
UL +P′′

λ (|̂βj|) ≥ 0, (14)

where P′′
λ is the second derivative of Pλ(·), the quan-

tity UL is defined as in (11), and a and λ are (hyper-)
parameters of the FCP as in (4).

It is worth noting that the S3ONC is verifiably implied
by the conventional second-order KKT conditions when
they are well defined. We show in Section 5 that an
S3ONC solution (i.e., a solution that satisfies the S3ONC)
can be computed by the proposed gradient-based
method at pseudo-polynomial-time complexity.

4. Statistical Performance Bounds
This section presents the promised sample complexity
results for a generic HDSL problem under A-sparsity.
More specifically, Proposition 1 shows the most
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general result of this paper. In that proposition, a
hyper-parameter � is left to be determined in different
special cases. One of those cases is then presented in
Theorem 1. For convenience, we adopt a short-hand
notation as follows: ζ̃ :� ln

(
3eR · (σL +Cμ)).

Proposition 1. Suppose that Assumptions 2–4 hold. For
any � : 0 < � < 1

2 and the same c in (12), let a < 1
UL

and

λ :�
������������������������
8σ

c·a·n2� [ln (n�p) + ζ̃]
√

. Consider any random vector b̂ ∈
Rp such that ‖b̂‖∞ ≤ R and the S3ONC(Zn

1) to (3) is satis-
fied at b̂ almost surely. The following statements hold:

(i) For any fixed Γ ≥ 0 and some universal constant
C1 > 0, if

n > C1 · Γ+ εA
σ

( ) 1
1−2�

+ s · ln (n�p) + ζ̃
( )[ ]

, (15)

andLn,λ(b̂, Zn
1) ≤Ln,λ(b∗

εA
, Zn

1) + Γ almost surely, then

L(b̂) − L∗g ≤ C1 ·
s · ln (n�p) + ζ̃

( )
n2�

+

��������������������
s · ln (n�p) + ζ̃

( )
n

√√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+ 1
n�

+ 1
n1−2�

+ 1
n(1−�)=2

)
· σ+C1

·
������������
σ(Γ+ εA)
n1−2�

√
+ Γ+ εA, (16)

with probability at least 1− 2(p+ 1)exp (−n=C1) − 6exp
−2cn4� − 1
( )

, where L is defined in Equation (1) and L∗g is
defined in Assumption 2.

(ii) For almost every Zn
1 ∈Wn, assume that the minimiza-

tion problem in (5) admits a finite optimal solution denoted

by b̂
ℓ1
:� b̂

ℓ1(Zn
1). For some universal constant C2 > 0, if

n > C2 · εA
σ

( ) 1
1−2� + C2 · a−1 · [ln (n�p) + ζ̃]

· smax 1, 1
2−4�,

1
2�

{ }
max 1, ‖b∗

εA
‖∞

{ }( )max 1
2−4�,

1
2�

{ }
, (17)

andLn,λ(b̂, Zn
1) ≤Ln,λ(b̂ℓ1

, Zn
1) almost surely, then

L(b̂) − L∗g ≤ C2 ·
s ln (n�p) + ζ̃
( )

n2�
+ 1
n�

+ 1
n1−2�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ · σ

+ C2 ·
s ·max 1, ‖b∗

εA
‖∞

{ }
· σ3=4

min a1=2n�, a1=4n
1−�
2

{ } ln (n�p) + ζ̃
[ ]1=2

+ C2 ·
�������
σεA
n1−2�

√
+ εA, (18)

with probability at least 1− 2(p+ 1)exp (−n=C2)−
6exp −2cn4� − 1

( )
.

Proof. See Section EC.5.1 of the e-companion. w

Remark 3. Proposition 1 is the most general result in
this paper. It does not rely on convexity, RSC, or alike,

although to ensure Ln,λ(b̂, Zn
1) ≤Ln,λ(b̂ℓ1

, Zn
1) almost

surely in part (ii) usually requires Ln,λ(·, Zn
1) to be

convex.

Remark 4. The assumption that ‖b̂‖∞ ≤ R is compara-
ble to, or less restrictive than, some similar conditions
in the literature. For example, Loh (2017) and Loh and
Wainwright (2015) require that the estimator is within
the set of {b : |b| ≤ Rℓ1}. Under the same requirement,
we may have Rℓ1 ≥ R. Because the error bounds in (15)
and (18) are logarithmic in R (with ζ̃ :�O lnR( )), one
may let the value of R to be a coarse overestimation of
‖b̂‖∞.
Remark 5. Because L(b̂) − infb L(b) ≤ L(b̂) − L∗g, the
first part of this proposition indicates that, for all the
S3ONC solutions, the excess risk can be bounded by a
function in the parameterization of the suboptimality
gap Γ. (Technically speaking, Γ is an underestimation
of the suboptimality gap in this proposition.) This
bound on the excess risk explicates the consistency
between the statistical performance of a stationary point
to an HDSL problem and the optimization quality of
that stationary point in minimizing the objective func-
tion of Problem (3). The second part of Proposition 1
concerns an arbitrary S3ONC solution b̂ that has an

objective function value smaller than that of b̂
ℓ1
. The

corresponding error bound becomes independent of Γ.

Remark 6. To compute b̂ in part (ii) of this proposi-
tion, we can adopt a two-step approach: In the first
step, we solve for b̂

ℓ1
, which is often polynomial-time

computable if Ln,λ(·,Zn
1) is convex given Zn

1. Then, in
the second step, we invoke an S3ONC-guaranteeing
algorithm (such as the gradient-based method to be
discussed in Section 5). This algorithm should be ini-
tialized with b̂

ℓ1
.

Remark 7. We may as well let a−1 � 2UL to satisfy the
stipulation on a in Proposition 1. Here, UL can be con-
sidered as the largest diagonal of the Hessian matrix
of L(·, z), if it exists. In many applications of HDSL,
this quantity can satisfy UL ≤O(1)lnp with high prob-
ability under data normalization. For example, in the
special case of high-dimensional linear models, UL ≤
1 is implied by the common assumption of column
normalization (Raskutti et al. 2011, Negahban et al.
2012).

Remark 8. The proof of Proposition 1 makes use of
the coincidence that, at the S3ONC solutions, the FCP
behaves similarly as the ℓ0 penalty (Shen et al. 2013).
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Thus, it is possible that adopting the ℓ0 penalty instead
of the FCP in our Formulation (3) may lead to similar
results on the generalization errors with less technical
difficulty. Nonetheless, the ℓ0 penalty introduces dis-
continuity to the formulation and thus may usually
lead to higher computational ramification. We leave
for the future research the study of the tradeoffs
between computational and sample complexities for
the formulations with alternative regularization terms.

Remark 9. For any fixed � : 0 < � < 1
2, each of the two

parts of Proposition 1 has already established the poly-
logarithmic sample complexity. Based on this proposition,
polynomially increasing the sample size can compensate
for the exponential growth in the dimensionality. Wemay
further pick a reasonable value for � and obtain more
detailed bounds as in Theorem 1, which confirms the
promised complexity rates as previously mentioned in (6)
and (7) for a general HDSL problem under A-sparsity.

Theorem 1. Let a < 1
UL

and λ :�
��������������������������
8σ

c·a·n2=3 [ln (n2=3p) + ζ̃]
√

for
the same c in (12). Suppose that Assumptions 1, 3, and 4
hold. For any random vector b̂ ∈Rp such that ‖b̂‖∞ ≤ R
and S3ONC(Zn

1) to (3) is satisfied at b̂ almost surely, the
following statements hold:

(i) For any fixed Γ ≥ 0 and some universal constant
C3 > 0, if

n > C3 · Γ+ εA
σ

( )3
+ s · ln (np) + ζ̃

( )[ ]
, (19)

and Ln,λ(b̂, Zn
1) ≤Ln,λ(b∗

εA
, Zn

1) + Γ almost surely, then
the excess risk is bounded by

L(b̂) − inf
b

L(b) ≤ C3σ

·
s · ln (np) + ζ̃

( )
n2=3

+

�������������������
s · ln (np) + ζ̃

( )
n

√√
+ 1
n1=3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+C3 ·
������������
σ(Γ+ εA)

n1=3

√
+ Γ+ εA (20)

with probability at least

1− 2(p+ 1)exp − n
C3

( )
− 6exp −n1=3

C3

( )
:

(ii) For almost every Zn
1 ∈Wn, assume that the minimiza-

tion problem in (5) admits a finite optimal solution denoted

by b̂
ℓ1
:� b̂

ℓ1(Zn
1). For some universal constant C4 > 0, if

n > C4 · εA
σ

( )3 +C4 · a−1 · [ln (np) + ζ̃] · s32max 1, ‖b∗
εA
‖32∞

{ }
,

(21)

and Ln,λ(b̂, Zn
1) ≤Ln,λ(b̂ℓ1

, Zn
1) almost surely, then the

excess risk is bounded by

L(b̂)−inf
b

L(b)≤C4 ·a−1=2 ·s·σ

·
ln(np)+ζ̃
( )

n
2
3

+max{1,‖b∗
εA
‖∞}·

�������������
ln(np)+ζ̃

√
n

1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ C4 ·
������
σεA
n1=3

√
+εA (22)

with probability at least

1−2(p+1)exp − n
C4

( )
−6exp −n

1=3

C4

( )
:

Proof. Invoking Proposition 1 with � � 1
3 and noticing

that Assumption 1 implies Assumption 2 with L∗g :�
infb L(b), we obtain both parts of the desired results. w

Theorem 1 ensures the desired poly-logarithmic sam-
ple complexity for HDSL under A-sparsity. Our remarks
concerning Proposition 1 also apply to Theorem 1,
because the latter is a special case when � � 1

3 and
Lg :� infb L(b). We would like to point out that, if εA � 0,
then A-sparsity is reduced to the conventional sparsity. In
such a case, the excess risk in (22) is simplified into

L(b̂) − infb L(b) ≤O
lnp
n2=3

+
�����
lnp

√
n1=3

( )
:

5. S3ONC-Guaranteeing Algorithm
This section presents a pseudo-polynomial-time
S3ONC-guaranteeing algorithm. For convenience, we
consider a slightly more abstract optimization prob-
lem than (3) as follows:

min
b:�(βj) ∈Rp

f̃ λ(b) :� f̃ (b) + ∑p
j�1

Pλ(|βj |), (23)

where f̃ : Rp →R is a continuously differentiable
function with ‖∇̃f (b1) − ∇̃f (b2)‖ ≤ ŨL,2 · ‖b1 −b2‖ for
some ŨL,2 ≥ 1 and all b1, b2 ∈Rp. Consequently, the

partial derivative ∂̃f (b)
∂βj

, for all j � 1, : : : ,p, is also globally

Lipschitz continuous in the sense that | ∂̃f (b)
∂βj

[ ]
b�̃b+δ·ej− ∂̃f (b)

∂βj

[ ]
b�̃b | ≤ ŨL,∞· |δ| for every b̃ ∈Rp, any δ ∈R, and

some 1 ≤UL,∞ ≤UL,2. (Note that UL in (11) becomes
ŨL,∞ here.) The pseudo-code of the proposed algorithm
is summarized in the following.

Algorithm 1 (S3ONC-Guaranteeing Gradient-Based
Algorithm)

Step 1. Fix parameters γopt, M,λ, and a such that
a <M−1. Initialize k � 0 and b0 ∈Rp.

Step 2. Compute bk+1
2 by solving the following problem:

bk+1
2 ∈argmin

b

〈∇̃f (bk), b−bk〉 +M

2
‖b−bk‖2

+∑p
j�1

P′
λ(|βkj |)· |βj| : (24)
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Step 3. Computebk+1 by solving the following problem:

bk+1 ∈argmin
b

〈∇̃f (bk+1
2), b−bk+1

2〉 +M

2
‖b−bk+1

2‖2

+∑p
j�1

Pλ(|βj|): (25)

Step 4. Algorithm terminates and outputs bk if the
stopping criteria are met. Otherwise, let k :� k+ 1 and
go to Step 2.

We design the termination criterion to be that the
algorithm stops when the following is satisfied for the
first time:

f̃ λ(bk+1) > f̃ λ(bk) − γ2
opt

2M
, (26)

where M > 0 and γopt > 0 are specified in Step 1 of
Algorithm 1. Intuitively, M−1 can be interpreted as
the step size of the algorithm, and γopt, as the error tol-
erance in approximating the S3ONC. At termination,
the iteration count is denoted by k∗.

To our analysis, Algorithm 1 relies on solving two
per-iteration subproblems (24) and (25), repetitively.
Subproblem (24) in Step 2 ensures that a nontrivial
reduction in the objective function value can be
achieved whenever the first-order KKT conditions are
not met. This step is essential to the promised
O(1=γ2

opt)-rate of the algorithm. Meanwhile, the pres-
ence of Subproblem (25) in Step 3 leads to a solution
sequence that approaches a desired S3ONC solution
without affecting the convergence rate. We may for-
malize the previous analysis to prove the following
theorem on the iteration complexity of Algorithm 1 in
computing an S3ONC solution.

Theorem 2. Suppose that f̃
∗
λ :� infb f̃ λ(b) > −∞, M ≥ ŨL,2,

and a < 1
M. For any γopt : 0 < γopt < aλ ·M, the following

statements hold true:
(a) Algorithm 1 terminates at iteration

k∗ ≤
⌊
2M · f̃ λ(b0)−̃f

∗
λ

γ2
opt

⌋
+ 1:

(b) At termination, bk∗ � (βk∗j ) is a γopt-S
3ONC solution

to (23); that is, there exists Kj ∈ ∂(|βk∗j |), for all j � 1, : : : ,p,
such that

‖∇̃f (bk∗ ) + (P′
λ(|βk∗j |) · Kj : j � 1, : : :p)‖ ≤ γopt, (27)

and, for all j � 1, : : : ,p, if |βk∗j |∈ (0, aλ), then ŨL,∞ +
P′′
λ (|βk

∗
j |) ≥ 0, where a and λ are defined in (4).

(c) At termination, f̃ λ(bk∗ ) ≤ f̃ λ(b0).
Let βkj be the jth entry of bk. Then, βkj ∉ (0, aλ) for all

k � 1, : : : , k∗.

Proof. See proof in Section EC.5.4 w

Remark 10. We would like to make a few remarks on
Theorem 2 in the following.

• The assumptions of this theorem include the stipu-
lation of a < 1

M, which is consistent with the requirement
on a in the generalizability results in the previous sec-
tion. More specifically, we may let a <min{Ũ−1

L,∞, M
−1}

to satisfy the conditions for both Theorem 2 and Propo-
sition 1 simultaneously. This observation can be gener-
alized to almost all our main sample complexity results.
Another important assumption we have made is that f̃
is smooth; that is, ∇̃f is (globally) Lipschitz continuous.
Although many machine learning problems satisfy
such a condition, it is violated by a nonsmooth HDSL
problem and a ReLU-NN. Nonetheless, as we show in
Section 6, the nonsmooth learning problems, including
the SVM, can be analyzed through a smooth approxi-
mation. As for a ReLU-NN, we demonstrate that Algo-
rithm 1 can still be effective with the aid of a tractable
initialization scheme.

• From part (b) of the result, the γopt-S3ONC solution
is an γopt-approximation to the S3ONC as in Definition 1,
if we letLn(·, Zn

1) :� f̃ (·). One may see that (27) is a γopt-
approximation to the first-order KKT conditions in (13).
Meanwhile, the second set of conditions in (14) are met
exactly.

• It is easy to reorganize the results from parts (a)
and (b) of Theorem 2 to see that the algorithm runs for
O(γ−2

opt)-many iterations to generate an γopt-S3ONC sol-
ution. This iteration complexity is polynomial in the
problem dimensionality and the numeric value of the
problem data input. Because the per-iteration problems
admit closed forms, we can then see that Algorithm 1 is
among the class of pseudo-polynomial-time algo-
rithms. It is worth noting that many existing alternatives
are more generic and can compute stronger necessary
conditions than the S3ONC. Nonetheless, the new algo-
rithm can still be of independent interest. Compared
with O(γ−3

opt), the best-known rate to ensure an γopt-
approximation to the second-order necessary conditions
in the literature, our proposed gradient-based method
yields a significantly better computational complexity.

• Part (c) indicates that the output of the algorithm is
no worse than the initial solution in terms of minimiz-
ing the objective function f̃ λ. This property ensures

conditions like Ln,λ(b̂, Zn
1) ≤Ln,λ(b̂ℓ1

, Zn
1) in the sam-

ple complexity results in, for example, part (ii) of Theo-

rem 1, if Algorithm 1 is initialized with b̂
ℓ1
.

• Part (d) is useful for our subsequent analysis. One
may verify that the proof of this part holds even if f̃ (·)
is not continuously differentiable.

We observe that both the per-iteration problems
(24) and (25) admit closed-form solutions. To see this,
we note that (24) is essentially a soft thresholding
problem, whose closed form is well known. As for
(25), we observe that it can be decomposed into p-
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many one-dimensional problems. Enumerating all the
KKT solutions to each of these decomposed problems
and noticing that a <M−1, one may verify that, for all
j � 1, : : : ,p,

βk+1j �

β
k+1

2
j − 1

M
· ∂̃f (b)

∂βj

[ ]
b�bk+12

if βk+
1
2

j − 1
M

· ∂̃f (b)
∂βj

[ ]
b�bk+12

∣∣∣∣∣∣
∣∣∣∣∣∣≥ aλ;

0 otherwise:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
6. Theoretical Applications
In this section, we discuss two important theoretical
applications of Proposition 1 and Theorem 1. Section 6.1
presents our results for a flexible class of nonsmooth
HDSL problems. Section 6.2 then considers the generaliz-
ability of an FCP-regularized (deep) NN.

6.1. Nonsmooth HDSL Under A-Sparsity
The nonsmooth HDSL problem of our consideration
is formulated as follows:

min
b

1
n

∑n
i�1

Lns(b,Zi):�f1(b,Zi)+max
u∈U u�A(Zi)b−φ(u,Zi){ }[ ]

,

(28)

where A(·) : W→Rm×p is deterministic and measura-
ble (and may be nonlinear in “·”), U ⊆Rm is a convex
and compact set with a diameter D :�max{‖u1 −u2‖
: u1,u2 ∈ U}, and f1 : Rp ×W→R and φ : U ×W→
R are deterministic, measurable functions. Let f1(·, z)
be continuously differentiable with

∂f1(b,z)
∂βj

[ ]
b�̃b+δ·ej

− ∂f1(b,z)
∂βj

[ ]
b�̃b

| ≤Uf1 · |δ|
∣∣∣∣∣∣

for almost every z ∈W and for all b̃ ∈Rp, δ ∈R, and
j � 1, : : : ,p. Let φ(·, z) be convex and continuous for
almost every z ∈W. As some standard and noncriti-
cal regularity conditions, it is assumed that
E n−1

∑n
i�1Lns(b,Zi)[ ]

is well defined for all b ∈Rp

with infbE n−1
∑n

i�1Lns(b,Zi)[ ]
> −∞, and there exists

some vector b∗
ε′A

∈Rp : ‖b∗
ε′A
‖∞ ≤ R, such that E n−1

[
∑n

i�1Lns(bε′A
,Zi)]− infb E n−1

∑n
i�1Lns(b,Zi)[ ] ≤ ε′A for

some ε′A ≥ 0. In the foregoing settings, A-sparsity (in
the sense of Assumption 1) holds with εA :� ε′A, and
we are again interested in estimating the vector
of true parameters b∗ ∈ arg infbE n−1

∑n
i�1Lns(b,Zi)[ ]

.
Such a problem is general enough to cover some
important nonsmooth learning problems, such as
the least quantile linear regression, the least absolute
deviation regression, and the SVM.

Compared with our results in Section 4, a nuance
here is that Problem (28) has an empirical risk

function that is not everywhere differentiable because
of the presence of a maximum operator. The nondif-
ferentiable point may reside anywhere, such as at, or
in some near neighborhood of, the vector of true
parameters. In view of this subtlety, we propose the
following FCP-based formulation:

min
b

L̃n,δ,λ(b,Zn
1) :� 1

n

∑n
i�1

f1(b,Zi)
[

+∑n
i�1

1
n
max
u∈U u�A(Zi)b − φ(u, Zi) − ‖u − u0‖2

2nδ

{ }

+∑p
j�1

Pλ(|βj |)
]
, (29)

for a user-specific u0 ∈ U and δ > 0 (which is chosen to
be δ � 1

4 later in our theory).
The proposed formulation in (29) is not an immedi-

ate instantiation of (3) for the population-level prob-
lem infb E n−1∑n

i�1Lns(b,Zi)[ ]
. Indeed, apart from the

FCP-based regularization term, an additional quad-

ratic function −‖u−u0‖2
2nδ is also included in (29). The pur-

pose of this extra term is to add regularities to facili-
tate our analysis; although L̃n(b,Zn

1) :� 1
n
∑n

i�1Lns(b,Zi) is
not everywhere differentiable,

L̃n,δ(b,Zn
1) :� 1

n

∑n
i�1

f1(b,Zi)

+∑n
i�1

1
n
max
u∈U

u�A(Zi)b−φ(u, Zi) − ‖u−u0‖2
2nδ

{ }
, (30)

is verifiably a continuously differentiable approxima-
tion to L̃n(b,Zn

1). The error incurred by this approxi-
mation can be controlled by properly determining the
hyper-parameter δ. Furthermore, invoking theorem 1
by Nesterov (2005) (restated as Theorem EC.2 in the
e-companion for completeness), one may derive the
Lipschitz constant of the gradient of L̃n,δ(·,Zn

1). This
observation is formalized in part (a) of Theorem 3.

With this approximation, the nonsmooth HDSL
problem can now be analyzed via the framework of
HDSL under A-sparsity; we can consider the approxi-
mation error as a component of εA in the definition of
A-sparsity. Via this perspective, we may easily apply
results from Proposition 1 or Theorem 1 to (30) after
some conversions of the settings. In doing so, we
impose the following two assumptions, which are
instantiations of Assumptions 3 and 4, respectively.

Assumption 5. For all b ∈Rp : ‖b‖∞ ≤ R and i � 1, : : : ,n,
it holds that ‖Lns(b, Zi) − E[Lns(b, Zi)]‖ψ1

≤ σ, for some
σ ≥ 1.
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Assumption 6. For some measurable and deterministic func-
tion C : W→R+, the random variable C(Zi) satisfies that

(i) for all i � 1, : : : ,n and some σL ≥ 1, ‖C(Zi)−
E C(Zi)[ ]‖ψ1

≤ σL, and
(ii) For all i � 1, : : : ,n for someCμ ≥ 1, E[C(Zi)] ≤ Cμ.
Furthermore, |Lns(b1, z) − Lns(b2, z)|≤ C(z)‖b1 −b2‖,

for all b1, b2 ∈Rp ∩ {b : ‖b‖∞ ≤ R} and almost every
z ∈W.

Remark 11. Similar to Assumptions 3 and 4, the fore-
going two conditions ensure that the underlying dis-
tribution is subexponential and that a Lipschitz-like
inequality holds for Lns(·,z).

We are now ready to present our results on non-
smooth HDSL in the following theorem, which leads
to what is claimed in Equation (8). Similar to Section
4, we adopt the shorthand ζ̃ :� ln (3eR · (σL +Cμ)).
Theorem 3. Suppose that ‖A(z)‖21,2 ≤UA for some UA ≥ 0
and for almost every z ∈W. Let Assumptions 1, 5, and 6
hold (where εA and L(·) from Assumption 1 become ε′A and
E[Lns(·, Z)], respectively). The following statements hold:

(a) For any δ > 0, all j � 1, : : : ,p, every b̃ ∈Rp, and

almost every Zn
1 ∈Wn, the partial derivative ∂L̃n,δ (̃b, Zn

1 )
∂βj

is

well defined and Lipschitz continuous with

| ∂L̃n,δ(b,Zn
1)

∂βj

[ ]
b�̃b+h·ej

− ∂L̃n,δ(b,Zn
1)

∂βj

[ ]
b�̃b

| ≤ (Uf1 + nδUA)· |h|

for any h ∈R.
(b) Let δ � 1

4 , a � 1
2(Uf1+n1=4UA), and λ :�

������������������������
8σ

c·a·n3=8 [ln (n
3
8p) + ζ̃]

√
for the same c in (12). For almost every Zn

1 ∈Wn, assume
that the minimization problem minbL̃n,δ(b,Zn

1) +λ |b|
admits a finite optimal solution denoted by b̂

ℓ1,δ
:�

b̂
ℓ1,δ(Zn

1). Consider any random vector b̂ ∈Rp such that
‖b̂‖∞ ≤ R, L̃n,δ,λ(b̂,Zn

1) ≤ L̃n,δ,λ(b̂ℓ1,δ
,Zn

1) almost surely,
and b̂ satisfies the S3ONC(Zn

1) to (29) with probability one
(w.p.1.). For some universal constant C5 > 0, if

n > C5 ·D
4

σ2
+C5 · (ε

′
A)4
σ4

+C5 · (Uf1 +UA)4=3

· [ln (np) + ζ̃]4=3 · s8=3max 1, ‖b∗
εA
‖8=3∞

{ }
, (31)

where D :�max{‖u1 −u2‖ : u1,u2 ∈ U}, then
L(b̂) − inf

b
L(b)

≤ C5 · σ · s · (ln (np) + ζ̃)
n3=4

+C5 ·
������
σε′A
n1=4

√
+ ε′A

+
C5 · s · σ ·max 1, ‖b∗

εA
‖∞

{ }
· (Uf1 +UA)1=2

��������������
ln (np) + ζ̃

√
+max

��
σ

√ ·D, D2
{ }

n1=4

(32)

with probability at least 1− 2(p+ 1)exp (−n=C5) − 6exp −2cn1=2( )
.

Proof. See Section EC.5.2 in the e-companion. w

Remark 12. It is possible to generalize part (b) of
the previous theorem to obtain an error bound in the
parameterization of any δ > 0. Nonetheless, the optimal
choice to balance all the error terms would be δ � 1=4.

Remark 13. Theorem 3 is general enough to cover a
flexible class of nonsmooth HDSL problems under
A-sparsity. Particularly, in the case of the high-
dimensional SVM, Problem (28) becomes

min
b

ρ‖b‖2+ 1
n

∑n
i�1

1−yix�i b
[ ]

+

�min
b

ρ‖b‖2+ 1
n

∑n
i�1

max
ui:0≤ui≤1

ui · 1−yix�i b
( ){ }

,
(33)

where (xi,yi), for i � 1, : : : ,n, are i.i.d. random pairs of
the feature values and the categorial labels with sup-
port {x ∈Rp : |x| ≤ 1} × {−1, + 1}, and ρ ≥ 0 is a user-
specific constant. (The assumption that |xi| ≤ 1, almost
surely (a.s.), can always be ensured by normalization.)
We may enable the SVM to handle high dimensional-
ity via the following formulation:

min
b

ρ‖b‖2 + 1
n

∑n
i�1

max
ui:0≤ui≤1

ui · 1− yix�i b
( )− (ui − u0)2

2nδ

{ }

+∑p
j�1

Pλ(|βj|), (34)

where the value of u0 ∈ [0, 1] can be specified arbitra-
rily. As a special case to (29), Problem (34) satisfies
both Assumptions 5 and 6. For example, when
ρ � 0:01, both of the assumptions are met with σ ≤
O(1), R ≤O(1), σL � 0, and Cμ ≤O(1) · ��

p
√ . (More detailed

derivations are provided in Section EC.4 of the e-com-
panion.) Also observe that we may let f1, Uf1 , D, and
A(Zn

i ) from Theorem 3 to be

f1(b,Zn
1) :� ρ‖b‖2, Uf1 :� 2ρ,

D :�max{(u1 − u2)2 : u1,u2 ∈ [0, 1]}, and
A(Zn

i ) :� yi · x�i ,
respectively, in the SVM. Thus, Uf1 ≤O(1), D � 1, and

UA ≤maxy,x ‖y · x�‖21,2 : y ∈ {−1, 1}, |x| ≤ 1
{ }

≤ 1 in this

special case. Recall here that the error bound in, for
example, (32) is poly-logarithmic in Cμ. Theorem 3 then
implies that the poly-logarithmic sample complexity
can also be achieved for the FCP-regularized SVM.

In contrast to (34), an alternative formulation as fol-
lows has been previously discussed in the literature:

min
b

ρ‖b‖2 + 1
n

∑n
i�1

1 − yix�i b
[ ]

+ + ∑p
j�1

P̃λ(|βj |), (35)

where P̃λ(| · |) : R→R is some sparsity-inducing reg-
ularization function, such as SCAD and Lasso.
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Compared with (34), this alternative does not incorpo-
rate the smoothing term of − (ui−u0)2

2nδ . Such a formulation
has been shown to be successful in multiple realistic
classification problems (Zhang et al. 2006). Furthermore,
recovery theories in different high-dimensional settings
have been established by Zhang et al. (2016b, c) and
Peng et al. (2016). Nonetheless, the existing results com-
monly stipulate a strictly positive lower bound on the
eigenvalues of some principal submatrices of X�X or
E[X�X], where X :� (x�i : i � 1, : : : ,n). Some of these
conditions are the instantiations of the RE condition in
the SVM problem. In contrast, our bound on the excess
risk is established without these eigenvalue conditions.

6.2. Regularized Deep NNs
This section presents a generalization error bound for
a flexible set of NN architectures. Additional results
are provided in Section EC.1 of the e-companion,
where we derive more explicit error bounds under
additional regularities.

Although NNs can be applied to a wide spectrum
of data-driven tasks, our analysis herein is focused on
a binary classification problem in the following set-
tings. For some X :� {x ∈Rd : ‖x‖ � 1} and Y ∈ {−1, 1}
(where d > 0 is some integer), let (x, y) ∈X ×Y be a
random pair that follows an unknown probability dis-
tribution D on X ×Y with support supp(D). Here, x is
the vector of random feature values and y is the corre-
sponding class label. We assume that there exists an
unknown, deterministic, and measurable separating
function g : X→R such that inf(x,y)∈supp(D) y · g(x){ } ≥ v
for some v ∈ (0, 1); that is, the two categories of data
are separable by function g. Also assume that
E |g(x)|[ ]

<∞. The learning problem of interest here, as
a special case of (1), is to train a classifier using the
knowledge of a sequence of i.i.d. random samples,
(xi, yi), i � 1, : : : ,n, of (x, y).

In applying an NN to solving this learning problem,
we narrow down the search of the optimal classifier to
the determination of the best fitting parameters for the
NN. Some relative details are below. Denote by Ψ :
R→R an activation function, such as the ReLU,
ΨReLU(x) �max{0, x}, the softplus, Ψsoftplus(x) � ln (1+ ex),
and the sigmoid, Ψsigmoid(x) � ex

1+ex : The NN model is
then a network that consists of multiple layers (groups)
of neurons (or units). Each neuron is a computing unit
that performs the operations of the chosen activation
function on the input signals. Architectures among those
layers are formed in the sense that the signals are passed
from the layer of input neurons to the layer of output
units, transversing a predetermined collection of candi-
date paths. Each path may comprise multiple neurons
and connections. Fitting parameters often exist in the
forms of connection weights and biases to (dis)amplify
and offset the signals, respectively. A layer that is neither
the input layer nor the output layer is called a hidden

layer. Throughout our discussions on the NNs, we let
D ≥ 2 be the number of layers (excluding the input layer
but including the output layer). A neuron in a hidden
layer is called a hidden neuron.

We denote this NN by FNN(x,b), where FNN : X ×
Rp →R is a deterministic, measurable function that
captures the output of an NN given input x and fitting
parameters b. We also assume that there exists a
deterministic functionΩ : {1, : : : ,p}→R+ such that

Ω(p′) ≥ inf
b:‖b‖0≤p′

E |FNN(x,b)−g(x)|[ ]
, ∀p′ : 1≤ p′ ≤ p:

(36)

Intuitively,Ω(p′) measures the model misspecification
error incurred by the NN in representing g, when
only p′-many fitting parameters are nonzero (active).

In training the NN, we focus on the following for-
mulation as a special case to (3):

inf
b

Tn,λ(b) :�n−1
∑n
i�1

F yi ·FNN(xi,b)( )+∑p
j�1

Pλ(|βj|),

(37)

where we follow Cao and Gu (2020, 2019) in defining
F : R→R+ to be F z( ) :� ln (1+ exp (−z)). If we drop
the regularization term

∑p
j�1Pλ(|βj|), then (37) is

reduced to the conventional training formulation for
an NN. Hereafter, we assume that E |FNN(x,b) |[ ] <∞
for all b : ‖b‖∞ ≤ RΩ for some RΩ > 0. This quantity
should be properly large to ensure the satisfaction of
the following assumption.

Assumption 7. For all 1 ≤ sA ≤ p, it holds that ∅≠ [−RΩ ,

RΩ]p ∩ b ∈Rp : E |g(x) − FNN(x, b)|[ ] ≤Ω(sA), ‖b‖0 ≤ sA}:{
Intuitively, Assumption 7 means that the NN can

represent the separating function g with a model mis-
specification error of no more than Ω(sA) when (a) no
more than sA-many fitting parameters are nonzero
and (b) the absolute values of these fitting parameters
are bounded from above by RΩ > 0.

We also impose the following noncritical condition
on the architecture of an NN.

Assumption 8. For any constants C ∈R, RΩ > 0, p′ ≥ 1,
and fitting parameters b1 ∈Rp : ‖b1‖∞ ≤ RΩ, ‖b1‖0 ≤ p′,
it holds that FNN(x,b1) ·C � FNN(x,b2) for some
b2 ∈Rp : ‖b2‖∞ ≤ C ·RΩ, ‖b2‖0 ≤ p′, for every x ∈X.

It can be verified that Assumption 8 holds for many
NN architectures, including many convolutional NNs
and residual networks that have linear or ReLU acti-
vation functions in the output layer.

Remark 14. By the satisfaction of Assumptions 7 and 8,
we argue that the generalizability of an NN trained by
solving (37) can be analyzed through the framework of
HDSL under A-sparsity. Based on the existing results
on the representability of NNs (DeVore et al. 1989,

Liu, Ye, and Lee: High-Dimensional Learning Under Approximate Sparsity
Operations Research, Articles in Advance, pp. 1–22, © 2022 INFORMS 13



Mhaskar 1996, Mhaskar and Poggio 2016, Yarotsky
2017), an NN with a reasonably small network size sA
may well represent g (such that Ω(sA) is small) under
some plausible conditions. These representability
results imply the innate presence of A-sparsity in an
NN model. Observe that F is 1-Lipschitz continuous.
Thus,

E

[
F

(
y · lnn

2v
· FNN(x,b1)

)]
− E

[
F

(
y · lnn

2v
· g(x)

)]
≤ lnn

2v
· E |FNN(x,b1) − g(x)|[ ]

for any b : ‖b‖∞ ≤ RΩ. Invoking Assumption 7 and
the fact that infuF(u) � 0, we obtain that

min
b : ‖b‖0≤ sA,
‖b‖∞ ≤RΩ

E F y · lnn
2v

·FNN(x,b)
( )[ ]

− inf
u
F(u)

≤ min
b : ‖b‖0≤ sA,
‖b‖∞ ≤RΩ

E
lnn
2v

|FNN(x,b)−g(x)|
[ ]

+E F y · lnn
2v

·g(x)
( )[ ]

≤ lnn
2v

·Ω(sA)+E F y · lnn
2v

·g(x)
( )[ ]

≤ lnn
2v

·Ω(sA)+ 1��
n

√ ,

where the last inequality is due to the assumption
that, for all (x,y) ∈ supp(D), it holds that y · g(x) ≥ v⇒
E F y · lnn2v · g(x)

( )[ ]
≤ ln 1+ exp (−0:5lnn)( ) ≤ 1��

n
√ . By Assump-

tion 8, lnn
2v · FNN(x,b) can be represented by the same

NN architecture; that is, lnn
2v · FNN(x,b) � FNN(x,b′) for

some new fitting parameters b′ : ‖b′‖∞ ≤ lnn
2v RΩ. Thus,

we may have

min
b : ‖b‖0≤sA,
‖b‖∞≤ lnn

2v
·RΩ

E F y·FNN(x,b)( )[ ]−inf
u
F(u)≤lnn

2v
·Ω(sA)+ 1��

n
√ ,

(38)
which matches the statement of Assumption 2 with
s :� sA, R :� lnn

2v ·RΩ, εA :� lnn
2v ·Ω(sA) + 1��

n
√ , and L∗g :� infu

F(u) � 0. As mentioned, explicit forms of Ω(·) have
been provided by DeVore et al. (1989), Yarotsky (2017),
Mhaskar and Poggio (2016), and Mhaskar (1996). With
the previous discussion, the generalizability of an NN
can then be derived using the same machinery for
HDSL under A-sparsity, under one more flexible
assumption on the NN’s architecture as follows.

Assumption 9. For almost every x ∈X, it holds that the
gradient ∇bFNN(x,b) and Hessian ∇2

bFNN(x,b) of
FNN(x, ·) are everywhere well defined and satisfy that
max ess sup

x∈X
‖∇bFNN(x,b)‖, ess sup

x∈X
‖∇2

bFNN(x,b)‖
{ }

≤ exp UNN ·D · ln UNN · ‖b‖ +UNN( )[ ]
for all b ∈Rp and someUNN ≥ 1.

Assumption 9 essentially allows the norms of gradient
and Hession to grow exponentially in the number of
layers D. Such an assumption is satisfied by a wide
spectrum of NN architectures, especially when the
activation functions are smooth. Some NNs with non-
smooth activation functions, such as the ReLU, may
still be analyzed. We discuss such a case later in Sec-
tion EC.1.2 of the e-companion.

We are now ready to present our result on the gen-
eralizability of a regularized NN. With some abuse of
notations, the S3ONC(Zn

1), in this special case, is
referred to as the S3ONC(X, y) to Problem (37), where
X :� (x�i ) and y :� (yi).
Theorem 4. Consider any random vector b̂ such that
‖b̂‖∞ ≤ lnn

2v ·RΩ and the S3ONC(X,y) holds at b̂ almost
surely. Suppose that Assumptions 7–9 hold. For any fixed
Γ ≥ 0, assume that Tn,λ(b̂) − infbTn,λ(b) ≤ Γ, w.p.1.,
where Tn,λ is as defined in (37). There exists a universal
constant C6 > 0, such that, for any sA : 1 ≤ sA ≤ p, if
a < 1

2 · exp −2UNN ·D · ln 2p · v−1 ·UNN ·RΩ · lnn[ ]{ }
,

λ :�
�������������������������������������������������������������������������

8σ
c · a · n2=3 ln (3e

2v
·RΩpn4=3) +UNN ·D · ln UNNRΩpnv−1

( )[ ]√

and

n > C6 · Γ+ v−1 ·Ω(sA) · lnn
( )3[

+ sA ·D ·UNN · ln UNN · (1+ npRΩv−1)
( )]

,
(39)

then it holds that

E I y · FNN(x, b̂) < 0
( )[ ]
≤ C6 · sA ·D ·UNN · ln UNN · (1+ npRΩv−1)( )

n2=3

(

+
�������������������������������������������������
sA ·D ·UNN · ln UNN · (1+ npRΩv−1)( )

n

√
+ 1
n1=3

)

+v−1 ·Ω(sA) · lnn+ Γ+C6 ·
��������������������������
Γ+ v−1 ·Ω(sA) · lnn

n1=3

√
(40)

with probability at least

1−C6pexp − n
C6

( )
−C6exp −n1=3

C6

( )
:

Here,Ω(·) is defined as in (36).

Proof. See Section EC.5.3.1 of the e-companion. w

Remark 15. We would like to make a few remarks on
the results presented in this theorem.

(i) In Equation (40), E[I(y · FNN(x, b̂) < 0)] � P[y · FNN
(x, b̂) < 0] is also referred to as the expected 0-1 loss
and is a commonly adopted measure of generalization
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performance, such as by Cao and Gu (2020, 2019), in a
binary classification problem.

(ii) This theorem provides the promised poly-
logarithmic dependence between the sample size n and
the dimensionality p; polynomially increasing n can
compensate for the exponential growth in p. With this
result, the generalizability of an overparameterized
NN is ensured, and the promised result in (9) is pro-
ven. The error bound can be made more explicit under
some additional conditions as discussed in Section
EC.1.1 of the e-companion.

(iii) Although Assumption 9 allows the Lipschitz con-
stant to grow exponentially in the number of layers D,
the generalization error increases no more than linearly
inD.

(iv) Many sparsity-inducing regularization schemes
have been discussed in the literature, including Drop-
out (Srivastava et al. 2014), sparsity-inducing penaliza-
tion (Han et al. 2015, Wen et al. 2016, Louizos et al. 2017,
Scardapane et al. 2017), DropConnect (Wan et al. 2013),
randomDrop (Huang et al. 2016), and pruning (Alford
et al. 2018). Many of these studies are focused on the
numerical aspects, yet the theoretical guarantees on the
effectiveness of regularization are still largely lacking.
Although Wan et al. (2013) presented generalization
error analyses for DropConnect, the dependence among
the dimensionality, the generalization error, and the
sample size are not explicated therein. It is our conjec-
ture that our results could be extended to and combined
with the alternative regularization schemes to facilitate
the analysis of the regularized NNs.

(v) Theorem 4 informs us that the generalization per-
formance of the NNs is consistent with the optimiza-
tion quality. If all other quantities are fixed, the general-
ization error can be bounded by O( ��

Γ
√ + Γ), where we

recall that Γ ≥ 0 is the suboptimality gap. Admittedly,
how to control Γ is still an open question. The tradi-
tional training formulation of an NN is usually noncon-
vex. Thus, it is generally prohibitive to compute a
global solution. The challenge is further increased by
the incorporation of the FCP, which is also nonconvex.
Fortunately, despite the current theoretical challenge, it
has been observed empirically that some local optimi-
zation algorithms could well approximate a global
optimum in NN training, for example, in the experi-
ments reported by Wan et al. (2013) and Alford et al.
(2018). To explain these observations, several theoreti-
cal paradigms have already been provided by Du et al.
(2019), Liang et al. (2018), Haeffele and Vidal (2017),
and Wang et al. (2019). Based on those results, it is
promising that the structures of an NN (even with
regularization) can often be exploited to facilitate
global optimization. An excellent review of this topic is
provided by Sun (2019). To add to the literature,
we present an interesting special case where a

suboptimality-independent generalization error bound
for the FCP-regularized NN can be achieved at a
pseudo-polynomial-time computable solution in Sec-
tion EC.1.2 of the e-companion.

7. Numerical Experiments
We report in this section several numerical experi-
ments. In Sections 7.1 and 7.2, we consider the high-
dimensional Huber regression under A-sparsity and
the NNs, respectively. Then, Section EC.2 of the
e-companion presents our test results on the high-
dimensional SVM (as a special nonsmooth learning
problem) and some additional numerical examples on
the NNs. Unless otherwise stated explicitly, most of
our experiments, including those in the e-companion,
were implemented in Matlab 2014b and run with a
single thread on a PC with 40 Intel (R) Xeon (R) E5-
2640-v4 CPU cores (2.40 GHz, 64 bits), and 128 GB
memory. A different implementation environment
was involved in the tests on some larger-scale NN
models, as presented in Section 7.2.

7.1. Experiments on HDSL Under A-Sparsity
This section reports our test results on high-
dimensional Huber regression (HR) under A-sparsity
(in the sense of Assumption 1). Our settings for
experiments are summarized below: Denote by
N(0,σ2) a centered normal distribution with variance
σ2 > 0 and by Np(0,Σ) a centered p-variate normal
distribution with covariance matrix Σ � (ςj1,j2) and
ςj1,j2 � 0:3|j1−j2 |. The training data set {(xi,yi) : i �
1, : : : ,n} was generated as per a linear system
yi � x�i b

∗ +ωi, for i � 1, : : : ,n. Here, (xi, yi) denotes a
pair of (observed) design and response, and b∗
denotes the vector of true parameters to be recovered.
Some additional details are summarized here:

• The training sample size was chosen as n � 100.
• Let ωi, for all i � 1, : : : ,n, be i.i.d. white noises such

thatωi ~N(0,σ2).
• Let xi ~Np(0,Σ), for i � 1, : : : ,n, be i.i.d. random

vectors.
• The vector of true parameters was prescribed as

b∗ � b∗
εA

+ E · v · 1
|v | ,

where

b∗
εA

:�
(
3, 5, 0, 0, 1:5, 0,: : : ,0︸�︷︷�︸

(p−5)-many0′s

)�

and E · v · 1
|v| stands for some dense perturbation. Here,

E > 0 denotes a user-specific scalar and v � (vj)
denotes a random vector with i.i.d. entries of uniform
random variables on [−1, 1]. The magnitude of the
perturbation can be calculated as |E · v · 1

|v|| � E.
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Given these, this experiment was focused on the fol-
lowing HR problem:

min
b

1
n

∑n
i�1

LHR(b, xi, yi) :� 1
2
(xib − yi)2 · I |xib − yi | ≤ η

( )[
:

+ η |xib − yi | − η2

2

( )
· I |xib − yi | > η

( )]
:

The corresponding FCP-regularized formulation,
referred to as the HR-FCP, is then given as

min
b

n−1
∑n
i�1

LHR(b, xi, yi) +
∑p
j�1

Pλ(|βj |): (41)

This problem was solved via Algorithm 1, for which
the initial solution was prescribed as b̂

ℓ1 ∈ arg minb n−1∑n
i�1LHR(b,xi,yi) +λ ·∑p

j�1 |βj| for the same λ as in
(41).

The hyper-parameters of Algorithm 1 were set to be
M � 10 and γopt � 10−5. For the FCP, we fixed a � 0.09
(such that a <M−1) and prescribed that λ :� Cfcp ·

����
lnp
n2=3

√
for some Cfcp > 0. In choosing Cfcp, three independent
validation data sets, with 100 data observations for
each, were generated following the same approach as
the previous training data. The dimensions of those
validation sets were p ∈ {500, 750, 1, 000}. The value of
Cfcp was chosen to be the best-performing on the vali-
dation data among the candidate values of
{0:5, 0:75, 1, 1:25, 1:5}. More specifically, a linear
model was trained on the training data when Cfcp and
p were fixed at every combination of their candidate
values listed previously. We let b̂

1,Cfcp
, b̂

2,Cfcp , and b̂
3,Cfcp

be the resultant estimators for a fixed Cfcp when p �
500, 750, and 1,000, respectively. The chosen value of
Cfcp was the one that minimized the average perform-
ance on all the validation sets, calculated as follows:

1
300

∑100
i�1

LHR(b̂1,Cfcp
,xval,1i ,yval,1i )

[

+∑100
i�1

LHR(b̂2,Cfcp
,xval,2i ,yval,2i ) +∑100

i�1
LHR(b̂3,Cfcp

,xval,3i ,yval,3i )
]
:

(42)

Here, (xval,k′i ,yval,k
′

i ), for k′ ∈ {1, 2, 3}, is the ith data from
the k′ th validation set. As it turned out, Cfcp :� 1.

The HR-FCP was compared with two alternative
schemes: (i) the HR without any regularization,
denoted by HR, and (ii) the HR with the ℓ1-norm reg-
ularization, denoted by HR-L1. (The HR-L1 has been
discussed by Owen (2007), among others.) The coeffi-
cient for the ℓ1-norm penalty was chosen to be λℓ1 :�
Cℓ1 ·

����
lnp
n

√
for some Cℓ1 > 0. The dependence of λℓ1 on p

and n is consistent with the theoretical results for the
ℓ1-norm regularization (Negahban et al. 2012). We

determined Cℓ1 :� 0:5 using the same approach as in
choosing Cfcp previously.

To evaluate the out-of-sample performance, 5,000-
many independent test data observations were simu-
lated for each problem instance, following the same
data generation process for the training data above. If
we let (xtesti ,ytesti ), i � 1, : : : , 5, 000 be the test data of a
problem instance, the out-of-sample error of an esti-
mator b̂ was calculated by

1
5, 000

∑5000
i�1

LHR(b̂,xtesti ,ytesti ) − 1
5, 000

∑5000
i�1

LHR(b∗,xtesti ,ytesti ):
(43)

Each experiment was randomly replicated 100 times.
Figure 1 presents the numerical results. We discuss
this figure in relative detail here.

• In (a) through (g) of Figure 1, solid lines, dot-
dashed lines, and dashed lines represent the out-of-
sample errors generated by the HR-FCP, the HR-L1,
and the HR. The dotted lines stand for the estimated
values of εA, a quantity involved in the definition of
A-sparsity. The values of εA were estimated by (43)
with b̂ :� b∗

εA
. The error bars in the plot are all centered

at the average levels out of 100 random replications,
and the radii of the error bars are 1.96 times the corre-
sponding standard errors.

• Panels (a) and (b) show the comparison of the
HR-FCP with the HR-L1 and with the HR, respectively,
when the logarithm of the dimensionality (lnp) was
increased gradually with p ∈ {200,300, : : : , 5, 000} and E
� 0. From both (a) and (b), one can see that the out-of-
sample errors generated by HR-FCP were small for all
the values of lnp, especially when the HR-FCP was
compared with both the HR and the HR-L1. In particu-
lar (as in (b)), the performance of the HR deteriorated
rapidly as lnp grew, whereas the performance of the
HR-FCP remained approximately constant. Because
our error bounds for HR-FCP are polynomial in lnp, it
appears that an even sharper dependence on lnp may
be pursued in our analysis, at least for certain HDSL
special cases.

• Panels (c) and (d) present the performance of all
the three schemes above when the sample size n was
increased from 100 to 1,000 (with E � 10 and p � 1,000).
From both, one can observe that the HR-FCP outper-
formed the HR and the HR-L1. Also shown in these
two panels are the values of εA (denoted by εA in the
figure). It can be observed that the out-of-sample errors
of the HR-FCP matched with the values of εA, espe-
cially when the sample size was relatively large. This
pattern was consistent with our error bounds.

• As shown in (e) and (f), all the three schemes above
were compared again when E was increased gradually
(and, as a result, εA would tend to grow). Consistent
with our theoretical results, the out-of-sample errors
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yielded by the HR-FCP approximately matched the
values of εA (denoted by εA in the plots). Furthermore,
regardless of the values of εA, the HR-FCP achieved
better generalization errors than the HR and the HR-L1
in almost all instances. We can also observe from both
panels that, even if the magnitudes of the perturbation
E were comparable to |b∗

εA
|, the corresponding values

of εA remained to be small and so did the out-of-

sample errors generated by the HR-FCP, especially
compared with the HR’s performance. For example,
when E � 10, the magnitude of perturbation was
larger than |b∗

εA
| � 9:5. Yet, the corresponding εA was

below 0.1, and the out-of-sample error of the
HR-FCP was almost equal to εA. Both values were
significantly lower than the corresponding out-of-
sample error of the HR.

Figure 1. (Color online) Numerical Tests on the Dependence of the Out-of-Sample Errors in High-Dimensional Huber Regres-
sion on Different Quantities
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Notes. This figure shows how the out-of-sample errors changed with different values of the logarithm of dimensionality lnp in (a) and (b), the
sample size n in (c) and (d), the quantities E and εA in (e) and (f), the sparsity level s in (g), and the underestimation of the suboptimality gap Γ in
(h). All the error bars are centered at the average levels out of 100 random replications, and the radii of the error bars are equal to 1.96 times the
standard errors.
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• In (g), the dependence of the HR-FCP and the
HR-L1 on the sparsity level s was evaluated when E �
10, p � 1,000, n � 100, and

b∗
εA

:�
(
3, 5, 0, 0, 1:5, 2,: : : ,2︸�︷︷�︸

(τ)-many 2's

, 0,: : : ,0︸�︷︷�︸ (p − τ − 5)
-many 0's

)�
for all τ � 0, 1, : : : , 13. Thus, the corresponding values
of s were s � 3, 4, : : : , 16. As one may see from (g), the
performance of both the HR-FCP and the HR-L1
deteriorated when s increased. Yet, the HR-L1 seemed
to be more sensitive to the change in s than the HR-
FCP.

• Finally, (h) presents the numerical evaluation of
the dependence of the HR-FCP’s out-of-sample per-
formance on Γ. In the case of HR, Γ :� [

n−1∑n
i�1

LHR(b̂,xi,yi) +∑p
j�1Pλ(|̂βj|)

]− [
n−1∑n

i�1LHR(b∗
εA
,xi,yi)+∑p

j�1Pλ(|β∗εA,j |)
]
is an underestimation of the subopti-

mality gap in minimizing (41). To generate this plot,
we solved for the S3ONC solutions with random initial-
ization for 2,000-many repetitions. A “+” in the plot
corresponds to one of those S3ONC solutions, and the
dot-dashed line stands for the linear function of Y � X.
If a “+” is below the line of Y � X, then the out-of-sam-
ple error of that point was smaller than the correspond-
ing value of Γ. As can be seen from this subplot, almost
all the “+”s are below (but in the proximity of) the
aforementioned linear function. This pattern was con-
sistent with our error bound in (20), which is indeed of
O(Γ)when Γ ≥ 1.

7.2. Experiments on NNs
We report two sets of experiments on the FCP-
regularized NNs. The first set, as presented in this sec-
tion, was focused on image classification using two
mainstream testbeds: the MNIST (LeCun et al. 2013)
and CIFAR-10 data sets (Krizhevsky 2009). Leader-
boards that report the state-of-the-art results can be
found at https://paperswithcode.com/. The second
set of tests, as presented in Section EC.2.2 of the
e-companion, involved the comparison between the
nonregularized NNs and their FCP-regularized coun-
terparts in a task of binary classification with simu-
lated data.

In this experiment of image classification, we consid-
ered a few popular or highly ranked NN architectures
(as well as their regularization and data augmentation
schemes, if applicable) as follows:

(A) For theMNIST data set:
• CNN: A simple convolutional neural network

with two convolutional layers. The codes for this
model are available at https://github.com/
pytorch/examples/tree/master/mnist.
• LN-S: A convolutional neural network called

LeNet5 (LeCun et al. 1995) trained with a sparse

learning strategy by Dettmers and Zettlemoyer
(2019).

• VGG-g: A deep convolutional neural network
(a.k.a., VGG8B) that is trained with global loss
and cutout (DeVries and Taylor 2017) regulariza-
tion. This model is presented by Nøkland and
Eidnes (2019).

(B) For the CIFAR-10 data set:
• VGG19: A deep convolutional neural network

with 19 layers. The architecture was first dis-
cussed by Simonyan and Zisserman (2014), and
the codes for this network were made available
by Li (2019).

• shk-RN: A residual network (He et al. 2016)
with a regularization scheme that combines
shake-shake (Gastaldi 2017), cutout (DeVries and
Taylor 2017), and mixup (Zhang et al. 2017). The
code for this network were made available by Li
(2019).

• FMix (Harris et al. 2020): An NN architecture
that adopts a modified mixed sample data aug-
mentation (MSDA).

We replaced the training algorithms of the previous
NN implementations into Algorithm 1 with γopt � 10−6,
using the outputs of the original implementations as
the initial solutions. Some heuristic modifications were
incorporated into Algorithm 1 for this experiment:
First, the gradient in Algorithm 1 was changed into an
unbiased estimator of the gradient constructed on a
mini-batch of the whole data set. The mini-batch sizes
remained the same as the original implementations.
Second, the values of M could be varying over the iter-
ations and were specified to be the multiplicative
inverse for the learning rates (a.k.a., step sizes) of the
original implementations. Third, a, the parameter in
FCP, was always set to be 0.99 times the current value
of M−1 at each iteration (a.k.a., epoch) during the NN
training. Last, the value of λ, the other parameter of

Table 2. Classification Errors of NN Variants with and
Without the FCP on MNIST Data Set

Model CNN CNN-FCP R. Gap

Test error 0.80% 0.70% 12.50%
Parameter no. 1,199,882 265,517 77.87%

LN-S LN-S-FCP
Test error 0.66% 0.64% 3.03%
Parameter no. 22,000a 14,417 34.47%

VGG-g VGG-g-FCP
Test error 0.25% 0.23% 8.00%
Parameter no. 16,853,584 15,115,902 10.31%

Note. 〈Model Name〉-FCP, FCP-regularized NN; Parameter no.,
number of nonzero fitting parameters after training; R.Gap, relative
gap (i.e., the ratio between the difference and the value obtained
before introducing the FCP).

aThe original LN-S model has 431,080 fitting parameters. The built-
in sparsity-inducing mechanisms of the LN-S led to a model with
22,000 nonzero fitting parameters.

Liu, Ye, and Lee: High-Dimensional Learning Under Approximate Sparsity
18 Operations Research, Articles in Advance, pp. 1–22, © 2022 INFORMS

https://paperswithcode.com/
https://github.com/pytorch/examples/tree/master/mnist
https://github.com/pytorch/examples/tree/master/mnist


FCP, was assigned to be λ :� Cλ ·U−1 heuristically,
where Cλ ≥ 0 was determined as below for each NN:
We first randomly selected 10% of the training data
points to construct a balanced validation set. Then, we
found the 1st, 1.25th, 2.5th, 5th, 10th, and 15th percentile
absolute values of the nonzero fitting parameters in the
initial solution. After rounding these percentile values
to their first significant digits, the resulting numbers
were considered as the candidates for Cλ. From these
candidates, we then selected the one that led to the best
classification result for the validation set, when the NN
model was trained on the rest of the training set. As it
turned out, Cλ was 1 × 10−2, 5 × 10−6, and 2 × 10−4,
respectively, for CNN-FCP, LN-S-FCP, and VGG-g-FCP
in the experiments on the MNIST data set and
1 × 10−3, 3 × 10−2, and 1 × 10−3, respectively, for VGG-
19-FCP, shk-RN-FCP, and FMix-FCP in the experiments
on the CIFAR-10 data set.

The tests in this section were implemented using
Pytorch (Paszke et al. 2017), and most of the tests were
conducted on a single thread on a PC with 40 Intel (R)
Xeon (R) E5-2640-v4 CPU cores (2.40 GHz, 64 bits), 128
GB memory, and one Quadro M4000 GPU (8 GB mem-
ory), except that shk-RN and shk-RN-FCP were imple-
mented using one GPU-enabled thread on Floydhub, a
cloud computing platform with an Intel Xeon CPU (four
cores), 61 GB RAM, and an NVIDIA Tesla K80 GPU (12
GB memory), and FMix and FMix-FCP were tested on
the same cloud computing platformwith different config-
urations (Intel Xeon CPU with eight cores, 61 GB RAM,
and an NVIDIA Tesla V100 GPUwith 16 GBmemory).

The out-of-sample classification errors are reported
in Tables 2 and 3 for results on MNIST and CIFAR-10,
respectively. One may tell from the tables that the per-
formance of all the NN architectures involved in the
test were sharpened by incorporating the proposed
FCP regularization. In particular, the best out-of-sample
classification errors achieved by the FCP-regularized
schemes for MNIST and CIFAR-10 were 0.23% and
1.31%, respectively, both of which were competitive

against some high-performance NNs on the leader-
boards (available at https://paperswithcode.com/),
especially if we notice that no external data were used.

The number of nonzero fitting parameters of the
NNs after training with and without the FCP are also
reported in Tables 2 and 3. One may observe that the
FCP significantly reduced the number of active fitting
parameters. For the case of LN-S, the FCP was able to
further reduce the dimensionality on top of the
sparsity-inducing mechanisms in the original model.

8. Conclusion
In this paper, we provide a theoretical framework for
HDSL under A-sparsity, that is, the high-dimensional
learning problems where the vector of the true parame-
ters may be dense but can be approximated by a sparse
vector. We show that, for a problem of this type, an
S3ONC solution for an FCP-based learning formulation
yields a poly-logarithmic sample complexity: The req-
uired sample size is only poly-logarithmic in the num-
ber of dimensions, even if the common assumption of
the RSC is absent. To compute a solution with the pro-
ven sample complexity, we propose a novel pseudo-
polynomial-time gradient-based algorithm.

Our results on HDSL under A-sparsity can be
applied to the analysis of two important learning prob-
lems that are currently less understood: (i) the non-
smooth HDSL problems, where the empirical risk func-
tions are not necessarily differentiable, and (ii) an NN
with a flexible choice of the network architectures. We
show that, for both problems, the incorporation of the
FCP regularization can ensure the generalization per-
formance, as measured by the excess risk, to be insensi-
tive to the increase of the dimensionality. Particularly,
our results indicate that, with regularization, an over-
parameterized deep NN can be provably generalizable.

Our numerical results are consistent with our theoreti-
cal predictions and point to the interesting potential of
combining the proposed FCPwith some other recent tech-
niques in further enhancing an NN’s performance. For
future research, we will extend the results to other regula-
rization schemes. We will also study how our results can
be adapted to the analysis of HDSL under the assumption
of weak sparsity (Negahban et al. 2012).
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Bühlmann P, van de Geer S (2011) Statistics for High-Dimensional
Data: Methods Theory and Applications (Springer Science & Busi-
ness Media, New York).

Candes E (2006) Modern statistical estimation via oracle inequalities.
Acta Numerics 15:257–325.

Candes E, Tao T (2007) The dantzig selector: Statistical estimation
when p is much larger than n. Ann. Statist. 35(6):2313–2351.

Cao Y, Gu Q (2019) Generalization bounds of stochastic gradient
descent for wide and deep neural networks. Wallach H,
Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R,
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J (2020) Fmix: Enhancing mixed sample data augmentation.
Preprint, submitted February 7, https://arxiv.org/abs/2002.
12047.

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. Proc. IEEE Conf. on Computer Vision and Pat-
tern Recognition (IEEE), 770–778.

Huang G, Sun Y, Liu Z, Sedra D, Weinberger KQ (2016) Deep
networks with stochastic depth. Leibe B, Matas J, Sebe N,
Welling M, eds. Computer Vision – ECCV 2016. Lecture Notes
in Computer Science, vol. 9908 (Springer, Cham, Switzer-
land), 646–661. https://doi.org/10.1007/978-3-319-46493-
0_39.

Jakubovitz D, Giryes R, Rodrigues MR (2019) Generalization error in
deep learning. Compressed Sensing and Its Applications (Springer,
Berlin), 153–193.

Koltchinskii V (2010) Rademacher complexities and bounding
the excess risk in active learning. J. Machine Learn. Res. 11:
2457–2485.

Krizhevsky A (2009) Learning multiple layers of features from tiny
images. Accessed May 1, 2021, https://www.cs.toronto.edu/
~kriz/learning-features-2009-TR.pdf.

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):
436–444.

Liu, Ye, and Lee: High-Dimensional Learning Under Approximate Sparsity
20 Operations Research, Articles in Advance, pp. 1–22, © 2022 INFORMS

https://proceedings.neurips.cc/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf
https://arxiv.org/abs/1809.03090
https://proceedings.neurips.cc/paper/2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf
https://arxiv.org/abs/ 1710.10174
https://proceedings.neurips.cc/paper/2019/file/cf9dc5e4e194fc21f397b4cac9cc3ae9-Paper.pdf.
https://proceedings.neurips.cc/paper/2019/file/cf9dc5e4e194fc21f397b4cac9cc3ae9-Paper.pdf.
https://proceedings.neurips.cc/paper/2019/file/cf9dc5e4e194fc21f397b4cac9cc3ae9-Paper.pdf.
https://ojs.aaai.org//index.php/AAAI/article/view/5736
https://ojs.aaai.org//index.php/AAAI/article/view/5736
https://proceedings.neurips.cc/paper/2017/file/489d0396e6826eb0c1e611d82ca8b215-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/489d0396e6826eb0c1e611d82ca8b215-Paper.pdf
https://arxiv.org/abs/1907.04840
https://arxiv.org/abs/1708.04552
https://proceedings.mlr.press/v97/du19c.html
https://arxiv.org/abs/1705.07485
https://arxiv.org/abs/1009.4219
https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.mlr.press/v48/hardt16.html
https://arxiv.org/abs/2002.12047
https://arxiv.org/abs/2002.12047
https://doi.org/10.1007/978-3-319-46493-0_39
https://doi.org/10.1007/978-3-319-46493-0_39
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


LeCun Y, Cortes C, Burges C (2013) The mnist database of hand-
written digits. Accessed May 1, 2021, http://yann.lecun.com/
exdb/mnist/.

LeCun Y, Jackel L, Bottou L, Brunot A, Cortes C, Denker J, Drucker
H (1995) Comparison of learning algorithms for handwritten
digit recognition. Fogelman F, Gallinari P, eds. Proc. Internat.
Conf. on Artificial Neural Networks, vol. 60 (EC2 & Cie., Paris,
France), 53–60.

Li W (2019) Cifar-zoo: Pytorch implementation of cnns for cifar data
set. Accessed May 1, 2021, https://github.com/BIGBALLON/
CIFAR-ZOO.

Li Y, Liang Y (2018) Learning overparameterized neural networks
via stochastic gradient descent on structured data. Bengio S,
Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett
R, eds. Advances in Neural Information Processing Systems, vol. 31
(Curran Associates, Inc., Red Hook, NY), 8157–8166. https://
proceedings.neurips.cc/paper/2018/file/54fe976ba170c19ebae
453679b362263-Paper.pdf.

Li X, Lu J, Wang Z, Haupt J, Zhao T (2018) On tighter generalization
bound for deep neural networks: CNNs, resNets, and beyond.
Preprint, submitted June 13, https://arxiv.org/abs/1806.05159.

Liang S, Sun R, Lee J, Srikant R (2018) Adding one neuron can elim-
inate all bad local minima. Bengio S, Wallach H, Larochelle H,
Grauman K, Cesa-Bianchi N, Garnett R, eds. Advances in Neural
Information Processing Systems, vol. 31 (Curran Associates, Inc.,
Red Hook, NY), 4350–4360. https://proceedings.neurips.cc/
paper/2018/file/a012869311d64a44b5a0d567cd20de04-Paper.pdf.

Liu H, Yao T, Li R, Ye Y (2017) Folded concave penalized sparse lin-
ear regression: sparsity, statistical performance, and algorithmic
theories on local solutions. Math. Programming Ser. A 166(1-2):
207–240.

Liu H, Wang X, Yao T, Li R, Ye Y (2019) Sample average approxi-
mation with sparsity-inducing penalty for high-dimensional
stochastic programming. Math. Programming 178(1):69–108.

Loh P-L (2017) Statistical consistency and asymptotic normality for high-
dimensional robust mestimators. Ann. Statist. 45(2):866–896.

Loh P-L, Wainwright M (2015) Regularized m estimators with non-
convexity: Statistical and algorithmic theory for local optima.
J. Machine Learn. Res. 16:559–616.

Louizos C, Welling M, Kingma DP (2017) Learning sparse neu-
ral networks through l0 regularization. Preprint, submitted
December 4, https://arxiv.org/abs/1712.01312.

Mhaskar HN (1996) Neural networks for optimal approxima-
tion of smooth and analytic functions. Neural Comput. 8(1):
164–177.

Mhaskar H, Poggio T (2016) Deep vs. shallow networks: An approx-
imation theory perspective. Anal. Appl. 14(6):829–848.

Ndiaye E, Fercoq O, Gramfort A, Salmon J (2017) Gap safe screen-
ing rules for sparsity enforcing penalties. J. Machine Learn. Res.
18(1):4671–4703.

Negahban SN, Ravikumar P, Wainwright MJ, Yu B, et al (2012) A
unified framework for high-dimensional analysis of m-esti-
mators with decomposable regularizers. Statist. Sci. 27(4):
538–557.

Nesterov Y (2005) Smooth minimization of non-smooth functions.
Math. Programming 103(1):127–152.

Nesterov Y, Polyak BT (2006) Cubic regularization of newton
method and its global performance. Math. Programming 108(1):
177–205.

Neyshabur B, Tomioka R, Srebro N (2015) Norm-based capacity
control in neural networks. Grünwald P, Hazan E, Kale S, eds.
Proc. 28th Conf. Learn. Theory, Proceedings of Machine Learning
Research Series, vol. 40 (PMLR), 1376–1401. https://proceedings.
mlr.press/v40/Neyshabur15.html.

Nøkland A, Eidnes LH (2019) Training neural networks with local
error signals. Chaudhuri K, Salakhutdinov R, eds. Proc. 36th
Internat. Conf. Machine Learn., Proceedings of Machine Learning

Research Series, vol. 97 (PMLR), 4839–4850. https://proceedings.
mlr.press/v97/nokland19a.html.

Owen A (2007) A robust hybrid of lasso and ridge regression. Con-
tempory Math. 443(7):59–72.

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, et al.
(2017) Automatic differentiation in pytorch. Accessed May 1, 2021,
https://openreview.net/forum?id=BJJsrmfCZ.

Peng B, Wang L, Wu Y (2016) An error bound for l1-norm support
vector machine coefficients in ultra-high dimension. J. Machine
Learn. Res. 17(1):8279–8304.

Raskutti G, Wainwright MJ, Yu B (2011) Minimax rates of estima-
tion for high-dimensional linear regression over ℓq-balls. IEEE
Trans. Inform. Theory 57(10):6976–6994.

Scardapane S, Comminiello D, Hussain A, Uncini A (2017) Group
sparse regularization for deep neural networks. Neurocomput.
241:81–89.

Schmidhuber J (2015) Deep learning in neural networks: An over-
view. Neural Networks 61:85–117.
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