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Abstract— A reconfigurable intelligent surface (RIS) aided
air-to-ground uplink non-orthogonal transmission framework is
investigated for next generation multiple access. Occupying the
same spectrum resource, unmanned aerial vehicle (UAV) users
and ground users (GUs) are connected to terrestrial cellular
networks via the uplink non-orthogonal multiple access (NOMA)
protocol. As the flight safety is important for employing UAVs
in civil airspace, the collision avoidance mechanism has to be
considered during the flight. Therefore, a joint optimization
problem of the UAV trajectory design, RIS configuration, and
uploading power control is formulated for maximizing the
network sum rate, while ensuring the UAV’s fight safety and
satisfying the minimum data rate requirements of both the UAV
and GU. The resultant problem is a sequential decision making
one across multiple coherent time slots. Besides, the unknown
locations of obstacles bring uncertainties into the decision making
process. To tackle this challenging problem, a sample-efficient
deep reinforcement learning (DRL) algorithm is proposed to
optimize the UAV trajectory, RIS configuration, and power
control simultaneously. Moreover, considering the ambiguous
uncertainties in the environment, a distributionally robust DRL
algorithm is further proposed to provide the worst-case perfor-
mance guarantee. Numerical results demonstrate that the two
proposed DRL algorithms outperform the conventional ones in
terms of learning efficiency and robustness. It is also shown
that the network sum rate is significantly improved by the
proposed RIS-NOMA scheme compared to the conventional
RIS-orthogonal multiple access (OMA) scheme and the case
where no RIS is deployed.

Index Terms— Air-to-ground communications, next generation
multiple access, non-orthogonal multiple access, reconfigurable
intelligent surface, distributionally robust deep reinforcement
learning.

Manuscript received August 18, 2021; revised November 14, 2021; accepted
December 17, 2021. Date of publication January 14, 2022; date of current
version March 17, 2022. This work was supported in part by the Funds of
the National Natural Science Foundation of China under Grant 61822102 and
Grant U2033215, in part by the U.S. National Science Foundation under Grant
CNS-2128368 and Grant CNS-2107216, in part by Toyota, and in part by
Amazon. (Corresponding author: Kaiquan Cai.)

Jingjing Zhao is with the Research Institute for Frontier Science, Beihang
University, Beijing 100191, China, and also with the National Key Laboratory
of CNS/ATM, Beijing 100191, China (e-mail: jingjingzhao@buaa.edu.cn).

Lanchenhui Yu and Kaiquan Cai are with the School of Electronics and
Information Engineering, Beihang University, Beijing 100191, China, and
also with the National Key Laboratory of CNS/ATM, Beijing 100191, China
(e-mail: yulanchenhui@buaa.edu.cn; caikq@buaa.edu.cn).

Yanbo Zhu is with the School of Electronics and Information Engineering,
Beihang University, Beijing 100191, China, and also with Aviation Data Com-
munication Corporation, Beijing 100191, China (e-mail: zyb@adcc.com.cn).

Zhu Han is with the Electrical and Computer Engineering Department, Uni-
versity of Houston, Houston, TX 77004 USA, and also with the Department
of Computer Science and Engineering, Kyung Hee University, Seoul 446-701,
South Korea (e-mail: hanzhu22 @gmail.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2022.3143230.

Digital Object Identifier 10.1109/JSAC.2022.3143230

, Fellow, IEEE

I. INTRODUCTION

N THE past several years, the use of unmanned aerial

vehicles (UAVs) as flying communication platforms to
boost the capacity and coverage of current wireless networks
has attracted fast-growing interests [1]—[3]. In contrast to ter-
restrial wireless communications, UAV-aided networks possess
many appealing advantages including high mobility, flexible
deployment, low cost, and line-of-sight (LoS) dominated air-
to-ground (A2G) links [4], [5]. Therefore, UAVs are expected
to bring in promising gains to numerous use cases in next
generation wireless networks. Particularly, UAVs acting as
the aerial users and uploading data to the ground network
is a vital application for use cases such as search and rescue
missions, traffic monitoring, and remote location sensing [6].
A cost-effective approach to achieve high-quality A2G com-
munications is to utilize already existing and accessible tech-
nologies like the ground cellular network, which brings in
the concept of cellular-connected UAV communications [7].
Cellular-connected UAVs are anticipated to realize significant
performance enhancement over the existing A2G communi-
cations based on unlicensed bands, in terms of reliability,
throughput, and coverage [8].

Despite the evident merits of cellular-connected UAVs,
one of the critical issues that has to be resolved is the
limited spectrum resources available in cellular networks.
Meanwhile, to leverage the spectrum resource more efficiently,
power-domain non-orthogonal multiple access (NOMA)! has
been envisioned to be a promising technique for its poten-
tial to enhance spectrum efficiency and massive connec-
tivity by allowing simultaneous transmission of multiple
users in the same resource block [9], [10]. More specifi-
cally, the fundamental concept of NOMA is to facilitate the
access of multiple users in a new dimension-power domain,
by employing superposition coding (SC) and successive inter-
ference cancellation (SIC) at the transmitter and receiver,
respectively [11], [12].

In addition to the limited spectrum resources, another chal-
lenging issue for the efficient facilitation of A2G communi-
cations is the unstable A2G data link, which is caused by
the existence of potential obstacles during flight especially
in low-altitude dense urban airspace. As a remedy, reconfig-
urable intelligent surfaces (RISs) have been recently proposed
to enable a promising new paradigm to achieve smart and
reconfigurable wireless propagation environment [13]. RIS is

"In the rest of this paper, we use “NOMA” to refer to “power-domain
NOMA” for simplicity.
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a thin surface inlaid with numerous sub-wavelength elements,
each of which is able to induce a controllable amplitude and
phase-shift change to the incident signal independently via
simple programmable PIN diodes [14]. By deploying RISs in
wireless system and intelligently configuring their reflection
coefficients, the communication quality can be improved by
reconfigured wireless channels at an extremely low cost of
power and hardware [15].

A. State-of-the-Art

1) UAV Communications With NOMA: To reap the bene-
fits of NOMA in terms of spectrum efficiency, integration
of NOMA into UAV-based wireless networks has attracted
some research contributions recently [2], [16]-[20]. In [2],
the authors proposed a novel framework for UAV networks
with massive access capability supported by NOMA, where
the joint UAV trajectory design and power control problem
was comprehensively studied. The authors of [16] studied the
max-min rate optimization problem under total power, total
bandwidth, UAV altitude, and antenna beamwidth constraints
in a downlink NOMA UAV network. The joint UAV placement
design, admission control, and power control optimization
problem was studied in [17] for the NOMA-based UAV down-
link system to maximize the number of connected users with
satisfied quality-of-service (QoS) requirements. The authors
of [18] jointly optimized the resource allocation, the NOMA
decoding order, and the deployment location of the UAVs to
maximize the system sum rate. The authors of [19] studied
the UAV-supported cluster-based NOMA system, where a
synergetic scheme for UAV trajectory design and subslot
allocation was proposed to maximize the uplink average sum
rate. In [20], considering the cellular-connected UAYV, the
authors aimed to minimize the UAV mission completion time
by jointly optimizing the UAV trajectory as well as the UAV
and ground based station association order.

2) RIS-Aided UAV Communications: The potential benefits
of RISs motivate researchers to investigate the RIS-aided UAV
communications [21]-[27]. In [21], the authors investigated
the average rate optimization problem by jointly optimiz-
ing the UAV trajectory and the RIS phase shifts. In [22],
an RIS-enhanced multi-UAV NOMA network was consid-
ered, where the three-dimensional placement of UAV, the
reflection-coefficient matrix of the RIS, and the NOMA decod-
ing orders among users were jointly optimized for maximizing
the network sum rate. The UAV trajectory, RIS configuration,
and power allocation were jointly designed in [23] for the
minimization of energy consumption. The authors of [24]
exploited both the significant beamforming gain brought by
the RIS and the high mobility of UAV for improving sys-
tem sum rate. In [25], the joint optimization of the UAV
trajectory, RIS configuration, terahertz sub-bands allocation,
and power control was investigated for the maximization
of the minimum average sum rate. The authors of [26]
addressed the coverage and link performance problems of
the aerial-terrestrial communication system and designed an
adaptive RIS-assisted transmission protocol. Moreover, in [27],
the authors investigated the scenario where the UAV and
RIS delivered short ultra-reliable and low-latency instruction
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packets between Internet-of-Things devices on the ground, and
studied the joint beamforming and UAV deployment problem.

B. Motivation and Contributions

Although the aforementioned works have studied the
benefits of applying NOMA and RIS in UAV communica-
tions, whether the NOMA-RIS scheme is still able to provide
performance gain in cellular-connected UAV uplink commu-
nications remains to be further discussed in the open litera-
ture. Moreover, the previous works mainly ignore the flight
safety constraint on the UAV trajectory design, which should
be imposed in practical UAV-based communication systems.
The main challenges for solving the above issues lie in the
following three aspects: First, the introduction of NOMA
protocol brings in more complicated interference environment
and channel condition-based decoding order design [28]. This
leads to a highly coupled UAV movement, RIS configuration
and uplink power control problem, rendering the optimal
scheme hard to obtain. Second, as the reflection coefficients
are shared by both the UAV and ground user (GU), the
optimal shaping of reflected signals is not just to get aligned
with the direct signals. Thus, the RIS configuration becomes
more complicated due to the existence of co-channel inter-
ference. Third, due to the unknown locations of obstacles,
resilient UAV trajectory, RIS configuration, and power control
decisions should be made under an uncertain environment.
Besides, as the uncertainty can not be accurately modelled,
how to utilize efficient mathematical methods to improve the
robustness of decision making process in face of ambiguous
uncertainties is another challenge.

To address the above issues, in this paper, we study the
RIS aided air-to-ground uplink NOMA cellular network where
the direct links between the UAV/GU to the ground base sta-
tion (GBS) suffer from deep shadowing. To be more specific,
the UAV and GU simultaneously upload data to a GBS via the
NOMA protocol with the assistance of RIS to provide concate-
nated virtual LoS links. The proposed framework introduces
the new paradigm of flexibility on efficient spectrum sharing
between the UAV and GU by taking advantage of the UAV’s
high mobility, reconfigurable wireless environment as well as
power-domain multi-user access. Our main contributions can
be summarized as follows:

o We propose a novel RIS aided air-to-ground communica-
tion framework, where the NOMA protocol is employed
for facilitating flexible multiple access scheme. Given
the proposed framework, we formulate the sum rate
maximization problem by jointly optimizing the UAV
trajectory, RIS configuration, and uplink power control,
while guaranteeing the flight safety and the minimum data
rate requirements of both the UAV and GU.

e We propose a distributionally robust DRL algorithm
based on the soft actor-critic framework to jointly opti-
mize the UAV trajectory, RIS configuration, and power
control under uncertainties brought by the unknown
locations of obstacles. The ambiguity set is constructed
endogenously to capture the uncertainty by integrating
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the partial distribution information, thereby guaranteeing
the worst-case performance under uncertain environment.

o We prove that the proposed DRL algorithm improves the
learning efficiency and robustness compared to conven-
tional DRL algorithms both theoretically and numerically.
Simulation results reveal that the designed RIS aided air-
to-ground uplink non-orthogonal transmission framework
can achieve distinct sum rate improvement over the
traditional RIS-OMA case and the case where no RIS
is deployed.

C. Organization and Notation

The rest of this paper is organized as follows. In Section II,
we introduce the model of the RIS-aided air-to-ground uplink
NOMA communication system, and formulate the sum rate
maximization problem. In Section III, a sample-efficient DRL
algorithm is proposed for solving the formulated problem.
In Section IV, a novel distributionally robust DRL algorithm
is further proposed to enhance the robustness of the DRL
algorithm with respect to (w.r.t.) uncertainties. Numerical
results are presented in Section V to verify the effectiveness
of the proposed algorithms compared to other benchmarks.
Finally, conclusions are drawn in Section VI.

Notation: Scalars, vectors and matrices are denoted by italic
letters, bold-face lower-case, and bold-face upper-case, respec-
tively. CV*! denotes the set of N x 1 complex-valued vectors.
For a complex-valued vector a, ||a|| denotes its Euclidean
norm, diag(a) denotes a diagonal matrix with the elements of
vector a on the main diagonal, and af denotes its conjugate
transpose. A x denotes the set of probability distributions over
a finite set X. (a,b) denotes the Frobenius inner product of
vectors a and b.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

Consider an A2G communication system where a fixed-
wing? UAV acts as the aerial user (AU) to upload data
to the GBS, as shown in Fig. 1. Due to limited spectrum
resources, the UAV is enabled to reuse the cellular spectrum
by employing NOMA with GUs. To obtain the fundamental
insight on the system performance, we consider the simple
model where only one GU is served by the GBS.? Assume that
the UAV, GU and GBS are all equipped with a single omni-
directional antenna.* Due to the complicated and dynamic
wireless environment including potential obstacles, the direct
links between the UAV/GU and the GBS may be blocked.

’In this paper, we consider the fixed-wing UAV with the advantage of a
considerable long flight duration (i.e., up to several hours) for accomplishing
given tasks, while for the rotary-wing UAYV, the corresponding flight duration
is quite limited (i.e., 20-30 minutes) [1].

3The considered scenario can be extended to the multi-GUs and multi-UAVs
case by deploying hybrid NOMA and OMA scheme [29]. Specifically, dif-
ferent UAV-GU pairs can occupy orthogonal sub-carriers, where the efficient
user clustering problem needs to be solved. This is out of the scope of this
treatise, which will be left for our future work.

4The proposed algorithm is also applicable to the case with directional
beamforming at the GBS/GU/UAV by considering their specific antenna
radiation patterns.
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Reconfigurable
intelligent surface (RIS)

RIS controller

Ground base station Obstacle

—— = Direct link —— Reflection link —>Control link

Fig. 1. System model.

Therefore, an RIS having K reflecting elements is deployed
upon highrises to provide high-quality reflection links.

To proceed further, we assume that the considered network
operates on a discrete-time basis where the total flight duration
T is partitioned into M equal non-overlapped time slots. The
communication parameters are assumed to remain constant
during each time slot m, ie., m € M = {1,...,M},
with duration §,,. Without loss of generality, a 3D Cartesian
coordinate system is considered. The locations of the GBS,
the GU, and the center of the RIS’ are fixed at (p,yp, 25),
(Zgu,Ygu,0), and (x5, ys, zs), respectively. Assume that the
UAV flies at constant height of z, with constant speed
V. The trajectory of the UAV is denoted as q[m| =
(x[m],y[m], z,), m € M. Since the UAV-RIS-GU cascaded
links suffer from substantial path loss, a large number of RIS
elements are required for achieving favorable reflected com-
munications. However, the massive number of RIS elements
result in excessive reflection coefficients design complexity
[31]. To solve this problem, as in [32], [33], the K RIS
elements are partitioned into N sub-surfaces, denoted by
the set N’ = {1,...,N}, each consisting of K = K/N
(assumed to be an integer) adjacent elements that share
the same reflection coefficients for reducing the implemen-
tation complexity. In this work, we consider the narrow-
band transmission, where the RIS reflection coefficients are
assumed to be approximately constant over the entire signal
bandwidth. Specifically, denote the reflection coefficients of
the n-th sub-surface at the m-th time slot by 6,[m| =
Bnlm]e?®nlm, where ¢,[m] € [0,27) and B,[m] € [0,1]
represent the phase shift and amplitude reflection coefficient,
respectively. Then, the diagonal reflection coefficient matrix
can be denoted by ©[m] = diag (8[m] ® 15,,) € CK*K,

where 8[m] = [01[m],....0,[m],...,0x[m]]". To maximize
the signal power reflected by the RIS and reduce hard-
ware cost, we set O,m] = 1,¥n € N,m € M, and

consider the practical discrete phase-shift values [31], i.e.,
dnlm] € {0,Ad, ..., (L —1)A¢},Vn € N,m € M, where

SIn practice, the location of the RIS can be either optimized or selected
according to the geographical environment [30].

Authorized licensed use limited to: Princeton University. Downloaded on July 03,2022 at 20:57:06 UTC from IEEE Xplore. Restrictions apply.



1290

A¢ = 2mw/L and L represents the number of discrete phase-
shift levels.

Due to the limited spectrum resources in cellular net-
works, uplink NOMA communication is considered to enable
spectrum sharing between the UAV and GU. The received
signal at the GBS consists of four parts: the UAV-GBS direct
link, UAV-RIS-GBS reflection link, GU-GBS direct link and
GU-RIS-GBS reflection link. Let h,, € C, hff, € C'*V, and
h,, € CN*1 represent the channels from the GU/UAV to the
GBS, that from the RIS to the GBS, and that from the GU/UAV
to the RIS, respectively, where € {gu,u}. The UAV-GBS
and GU-GBS links are modelled as Rayleigh fading channels
due to the blocked LoS links and potential extensive scattering.
The UAV-RIS, GU-RIS and RIS-GBS links are modelled as
Rician fading channels due to the existence of LoS compo-
nents.® Let hgy[m] = hgyp[m] + hl[m]@[m]hg, .[m] and
hum] = hy p[m] + 0l [m]@[m]h, ;[m] denote the effective
channels from the GU and UAV to the GBS, respectively. It is
assumed that the Doppler effect caused by the UAV’s high
mobility can be compensated at the receiver [36]. Therefore,
the received signal at the GBS at the m-th time slot can be
represented by

yb[m] = hgu [m] Pgu [m]xgu [m] +hy [m] V Pu [m]xu [m]

GU’s signal UAV’s signal
+ np[m] , VmeM, (1)
——

noise signal

where py,, [m] and p, [m] denote the transmit powers of the GU
and UAV, respectively, x4, [m] and x,[m] are the transmitted
signals of the GU and the UAV, respectively, and ny[m] ~
CN(0,0%) is the additive white Gaussian noise (AWGN).
For uplink NOMA, the signals of the users having better
channel conditions are usually detected first and then sub-
tracted from the received signal, while other signals can be
detected suffering from less interference. In the proposed
model, the effective channels for the UAV and GU may
vary w.r.t. the UAV trajectory, q[m], and the RIS reflection-
coefficient matrix, ®[m]. Hence, the uplink NOMA detection
order in this paper can not be previously determined based on
the effective channels. However, in order to impose no negative
effect on the GU due to the spectrum sharing, we enable the
GBS to first detect the UAV’s signal by treating the GU’s
signal as noise. Then, the GBS detects the GU’s signal by
subtracting the remodulated UAV’s signal from the received
composite signal via the successive interference cancellation
(SIC). By doing so, despite the UAV uses the same spectral
resource as the GU, the signal of the GU can still be detected in
a interference-free manner as in the system without the UAV,
thus guaranteeing the performance of the GU and improving
the spectral efficiency. To ensure that SIC can be successfully
carried out at the GBS, the following constraint has to be

%We assume that the perfect channel state information (CSI) is known to
the GBS via communications with the RIS controller. Similar approaches as
presented in [34], [35] can be deployed in our work for channel estimation
with acceptable complexity and overhead, which is out of the scope of this
treatise.
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satisfied [37]:
|, [m]|2pu [m] > [hgu [m]|2pgu [m], ¥Ym e M. (2)

Remark 1: In contrast to conventional uplink NOMA sys-
tems, where the users’ channels are passively determined by
the wireless environment, the proposed transmission frame-
work is capable of beneficially modifying the users’ chan-
nels via both the RIS phase-shift configuration and the UAV
trajectory design. As a result, the SIC constraint (2) can
be satisfied in a more flexible manner as compared to the
conventional system. This provides a promising air-to-ground
non-orthogonal transmission strategy for NGMA.

For the given UAV-GU decoding order, the received signal-
to-interference-plus-noise ratio (SINR) of the UAV’s signal at
the GBS at time slot m is given by

Ym € M. 3)

ho[m]|? pulm
] = bl ol
|hgu[m]|” pgulm] + o3
After subtracting the UAV’s signal from the received compos-

ite signal via SIC, the signal-to-noise ratio (SNR) of the GU
at the GBS at time slot m can be expressed as follows

2
gulml poulm] ¢ pg. “)

You [m] = po
b

Accordingly, the achievable communication rate of the UAV
and GU at the m-th time slot are given by R,[m] =
logy (14 yu[m]) and Rg,[m] = log, (1 + v4u[m]), respec-
tively. Then, the sum rate at time slot m is given by

R[m] = logy (1 + v, [m]) + logy (1 + v4u[m])
— log, <1 n P[] | pu[m] + |hgu[m]|2pgu[m]>7

2
T%

Vm e M. 5)

B. Collision Avoidance Model

Considering the dynamic urban environment where unex-
pected surrounding obstacles’ in low altitude airspace may
threaten the UAV’s flight safety, we need to take into account
of the collision avoidance mechanism to facilitate a safe flight
operation. The UAV needs to detect surroundings in carrying
out missions to perceive the surrounding information (i.e.,
locations of obstacles) via onboard sensors. Let Rs denote
the sensing range of onboard sensors. Then, we can define
the perceptual range of the UAV as a circular region centered
at the UAV, and R, is the radius in the 3D space. Due to
the limited sensing scope, the collision avoidance mechanism
needs to be carried out in an online manner, which leads to
stringent requirements on the decision speed.

To facilitate the collision avoidance mechanism, We define
a forbidden zone around the obstacle as shown in Fig. 2. The
UAV is not allowed to fly over this zone to keep a safe distance
to threats. Denote any obstacle may appear during the UAV’s

"Here, unexpected obstacles denote objects that are not characterized in the
geography map, such as other UAVs and helikite. For simplicity, we assume
the obstacles are static in this treatise. Collision avoidance with moving objects
will be considered in our future work.
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Fig. 2. UAV collision avoidance model.

flight by o; € O, where O represents the set of all potential
obstacles. To achieve the flight safety, the following constraint
needs to be satisfied:

> dmin )

la[m] — qo, Yo, € O, m € M, (6)

where q,, represents the location of obstacle o; and dmin
denotes the minimum separation distance. We make the
assumption that dp, < Rs.

C. Problem Formulation

Let Q £ {q[m|,m € M}, ® £ {®[m],m € M}, and
P £ {p.[m],pgu[m],m € M}. Our objective in this work
is to maximize the network sum rate over the total flight
time 7" by jointly optimizing the trajectory of the UAV, the
reflection-coefficient matrix of the RIS, and the power control
of both the UAV and GU, subject to the constraints on the UAV
flight safety and the instantaneous rate requirements of both
the UAV and GU. The optimization problem is formulated as
follows:

M
Juax, mzz:l R[m], (7a)
s.t. Ry[m] > R, Rgy[m] > R, Ym € M, (7b)
0 < pu[m] < PF™, 0 < pgulm] < PR,
Ym € M, (7¢)
onm] € {0,A¢,...,(L—1)A¢}, ¥Yme M,
newn, (7d)
(2),(6), (7e)

where (7b) represents the minimum data rate requirements for
the UAV and the GU, (7c¢) is the maximum allowed transmit
power of the UAV and the GU, and (7d) is the discrete
phase-shift constraint of RIS elements. From the sum rate
expression in (5), one can observe that the UAV and GU can
just transmit in full power in each time slot for maximizing the
sum rate. However, due to the instantaneous communication
constraint (7b) and the SIC constraint (2), such a full power
transmission is generally not the optimal solution. Therefore,
the power control has to be jointly optimized with the UAV
trajectory and the RIS reflection-cofficent matrix.

The main challenges of solving problem (7) lie in the
following two aspects. First, the involved variables are highly
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coupled and the objective function is not concave w.r.t. the
optimization variables. Second, the locations of unexpected
obstacles are unknown, which causes substantial uncertainties
for the UAV trajectory design. Such uncertainties make it hard
for the conventional convex optimization-based approaches to
solve this problem. To tackle the above challenges, we adopt
RL algorithm, which is well known for its capability to
address sequential decision making problems under uncertain-
ties, to solve the joint problem (7). RL works with offline
training and online deployment, and thus the online com-
putational time can be distinctly saved. Specifically, due to
the high complexity of the formulated problem, we opt to
apply soft actor-critic (SAC) algorithm based on the maximum
entropy RL framework to provide sample-efficient learning in
Section III. Moreover, to offer robustness w.r.t. uncertainties
during learning process, a novel distributionally robust DRL
algorithm is proposed in Section I'V.

IIT1. SAMPLE-EFFICIENT DRL FOR UAV TRAJECTORY
DESIGN, RIS CONFIGURATION AND POWER CONTROL

In this section, we first formulate the joint UAV trajec-
tory design, RIS configuration, and power control problem
as a single-agent Markov Decision Process (MDP). Then,
an off-policy actor-critic DRL algorithm with high sample
efficiency is proposed to maximize the expected long-term
reward of the considered network.

A. MDP Formulation

Problem (7) can be designed as a sequential decision making
process on the time span, i.e., decision at a single time step is
determined based on the current situation. In this sense, MDP
that aims at finding the best policy, i.e., a mapping function
from the current situation to the best decision, is suitable for
solving this problem. We define a tuple (S, A, P,R,v) to
model the MDP, where S is the set of environment states, A is
the set of actions available to the agent, P is state transition
probability matrix, R is a real-valued reward function for the
agent taking an action based on present state, and y is the
discount factor. The agent takes action a € A in state s € S
at each time step m with the policy. A policy 7 is a distribution
over actions given states, i.e., w(a|s) = P[4y =a | Sy = 8],
m(als) € [0,1]. After taking the action a, the agent will move
to the next state s’ and receive the reward R. The agent’s
objective is to find the optimal policy m to maximize the
state-value function. The state-value function is defined as
the expected accumulated discounted reward, for which the
Bellman expectation equation can be expressed as

Ur (5) = Eﬂ' [Rm—i-l + 'YRm-l—Q + 'YQRHH-B +... | Sm, = 5}
=E, [Rm+1 + ’va(Serl) | Sm = 5]

= Z m(als) <RZ +7 Z ’P;‘”S,vw(s’)>7 (8)
acA s'eS

where the discount factor v € [0,1] indicates the
present value of future rewards. + close to 0 leads to
“myopic” evaluation, while v close to 1 leads to “far-
sighted” evaluation. Furthermore, R¢ is the reward func-
tion with R? = E[Rpy1 | Sm=35,4n =al, and PZ,
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is the state transition probability matrix with Pg, =
P[Smt1 =8| Sm =58, Am =a]. In the formulated MDP,
we consider the central controller as the agent to explore
the unknown environment. The state, action and reward are
defined in the following.

1) State: The environment state at time step m, i.e., Sy,
includes three parts: i) the location of the UAV, i.e., Q[m];
ii) the distance from the UAV to the center of obstacles, i.e.,
Dim] = {du0,[m],Yo;, € O}; and iii) the sum rate of the
UAV and GU from time step 1 to m — 1, i.e., Rym[m — 1] =
Sy (Rulm/] + Rgu[m)).

Sm = {Q[m], D|m], Rsum|m — 1]}. ©)]

2) Action: The action space of the formulated MDP
includes the UAV’s maneuver direction, the phase shift of each
RIS sub-surface, as well as the power control for both the UAV
and GU. Considering the discrete phase-shift value settings of
RIS elements, the action space is a hybrid of discrete and
continuous spaces, which makes the proposed MDP problem
non-trivial to solve. To tackle this challenge, we need to dis-
cretize the UAV’s maneuver direction and the transmit power
of both the UAV and GU. Specifically, the discrete action space
contains three parts: i) the maneuver direction of UAV with
(—1,0),(0,1),(1,0), (0, —1) representing left, forward, right,
and backward, respectively; ii) the phase shift of each RIS
sub-surface, i.e., ¢,[m] € {0,A¢,...,(L—1)A¢},Vn €
N; and iii) the power control for the UAV and GU, i.e.,
pulm] € {p¥,....0%} ,pgulm] € {p{",.... 0%}, where X
is the number of power control levels.

3) Reward: As shown in (7), the objective of the joint
UAV trajectory design, RIS configuration and power control
problem is to maximize the sum rate over time span 7' with
given constraints. The reward that guides the learning should
be consistent with the objective. In response to the sum rate
maximization objective, we simply include the instantaneous
sum rate of UAV and GU, i.e., C[m] = R,[m]+Rgy,[m], in the
reward at each time step. In response to constraints (7b)-(7e),
we set a penalty if any of these constraints are not satisfied
and terminate the episode. As such, we define the reward as

if S, =NS,

w,
R, = ' 10
! {C [m], otherwise, 10

where NS denotes the negative state when any of the con-
straints in (7b)-(7e) is unsatisfied. W is a positive constant
which is set large enough to avoid the dissatisfaction of any
of these constraints.

In the proposed MDP model, due to the uncertain locations
of obstacles, the state transition probability matrix Pg,, is
unknown to the agent. Therefore, approaches like dynamic
programming (DP), which are based on a known MDP, is not
suitable for solving our problem. Nevertheless, RL is promis-
ing since it enables the agent to control its action without the
prior knowledge on the environment. In the proposed model,
the locations of obstacles in the wireless environment are
randomly generated by the simulator.
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B. Sample-Efficient DRL Algorithm Design

It is known that the widespread adoption of model-free DRL
frameworks (e.g., deep Q-learning, DDPG, etc.) in practice has
remained slow primarily due to the poor sample efficiency and
brittle convergence as stated in [38]: “a dominant concern in
RL.” To overcome this issue, a novel off-policy actor-critic
DRL algorithm, called soft actor-critic (SAC), which is based
on the maximum entropy framework, was firstly proposed
by Haarnoja et al. [39] to realize sample-efficient training.
Compared to prior state-of-the-art RL algorithms, SAC has the
following advantages: 1) the policy is encouraged to explore
more widely during the training process; 2) the policy can
capture multiple modes of near-optimal trajectories; 3) the
learning speed is improved for complicated tasks. However,
one challenge of directly applying the SAC algorithm proposed
in [39] into our work is that our work is based on discrete
action settings, while [39] focused on continuous action space.
Therefore, in order to reap the benefits of the SAC algorithm,
some relevant modifications should be taken into consideration
for constructing the discrete SAC algorithm. In the remaining
context of this section, we will discuss in details about the
main principles of the discrete SAC algorithm for solving our
formulated problem.

The objective of the conventional RL framework is to
maximize the long-term return starting from the initial state.
Let 7. denote the state-action trajectory distribution following
the policy 7, then the objective is denoted by

M
m—1mpAm
max Y Es,, 4,)~r 7" RS
m=1

(1)

In the maximum entropy framework, an entropy term is
included in the objective to favor exploration with the loss
of upcoming avenues. Specifically, the objective is expressed
as follows:

max F'(7), (12)

T

where

MR + aH (7 (A |Sm)|

m

I
M=~

E(Sm,Am)~rs [v

3
£

1
NE

E(Sm,7A7n)NT‘rr [vm_lem -« log (ﬂ— (Am|5m))i| .

m

3
£

13)

The new objective function (13) takes into account of the
term oM (7 (:|Sy,)), where H (7 (-[Sim)) = —E(s,., 4, )~r
log (7 (A |Sm)) is the entropy of the policy distribution,
which denotes the stochasticity of policy 7, and the temper-
ature parameter « denotes the weight of the entropy. Note
that (13) is the same as (11) when « is set to 0. The optimal
setting of temperature « is closely related to different tasks
as well as the reward magnitude during training. In order to
generate a flexible tuning of the entropy weight, a transforma-
tion of the objective function in (13) by treating the average
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entropy as a constraint can be made as follows [40]:

M
III7ETLX Z E(Sm,Am)NTTr [’ymfle:/}’

(14a)
m=1
s.t. E(S,,,L,Am)w-rw [— 10g (TF(Am|Sm))] > Hmin, Vm,
(14b)

where H,,;, 1s the minimum entropy constraint at
each time step. By applying the recursive expression of

E(s,. A ) {,meRg‘::} and the strong duality property,
the optimal dual variable o, at each time step is given by

ay, = argminBa, r: [ — om 1og(m], (Am|Sm; aim))

Qm

*

where 7%, (A |Sm; ) denotes the optimal policy corre-
sponding to temperature «,,. The dual gradient descent [41]
is a promising solution for problem (15), where the objective
is defined by

ﬁ(a) =EA,,~mm [_ alog (7Tm (Am |Sm)) - aHmin} . (16)

Remark 2: One can observe that the optimal temperature
depends on the optimal policy at each time step. Meanwhile,
the optimal policy is also influenced by the temperature setting,
which means that the policy and temperature update should
be carried out iteratively.

The basic structure of SAC is based on the policy iteration
algorithm which consists of policy evaluation and policy
improvement. For policy evaluation, the goal is to evaluate
the action values (i.e., Q-values) for a given policy 7 based
on the Bellman expectation equation, which is given by

Qn(s,a) =R +7 > Plova(s)).

s'eS

A7)

Different from the conventional state-value function, by taking
the entropy into consideration, the soft state-value function for
the maximum entropy framework is given by

U (8) = Eanr [Qr(s, a) — alog (m(als))].-

For continuous state space, the policy evaluation is not
supported by tabular settings, and thus neural networks can
be applied for practical approximation. The soft Q-network
parameter w is trained to minimize the following soft Bellman
residual:

1 A 2
£ () =E(s, a0 | 5 (QulSm An) = QS A) |
(19)

(18)

where
QSm, Am) = R +9Vz (Smi1)
= R4 + 7B imn | Qo (Smts Ame)
~ alog (7 (Ansa|Sisn) |

Here, D is the
Am

(Sm; Am; RSm ) Sm,+1

is the parameter for a target Q-network and duplicated from

(20)

replay buffer storing transitions

following previous policies. w
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w periodically. The terms R? and S, +1 in (20) are fetched
from replay buffer given .S, and A,,.

Remark 3: For continuous action space, the calculation
of Viy (Sm1) relies on the monte-carlo samples of actions
following a policy distribution (such as the Gaussian distrib-
ution). For discrete action settings, however, the expectation
can be directly derived employing discrete action probabilities,
which makes the target value more tractable. Specifically,
for discrete action settings in our work, the calculation of
Q(Sm,Am) in (20) can be rewritten as (21), where (21) is
shown at the bottom of the next page.

For the policy improvement step, the aim is to improve
the policy w.r.t. up-to-date Q-values obtained in the policy
evaluation step. In [39], the continuous action space was
considered. To make the policy tractable, i.e., following a type
of distribution, the authors proposed to restrict the updated
policy to some set of policies. It was proved that Q-values of
the new policy increase when the policy is updated towards
the exponential of current Q-values. Therefore, the policy is
updated according to the following principle:

eXp (é@ﬂ'old (va )) )

Xﬂ'nld (Sm)

Thew = arg min Dy <7r' (-|Sm)
7/ ell

(22)

where Dyp is to calculate the Kullback-Leibler (KL) diver-
gence which is to measure the similarity of two distributions.
Here, the KL divergence is applied to project the improved pol-

. oxp(Qryy (Smy0))
Y TaX )

is the normalization parameter which is dependant on the state
S Since X1, (Si) does not contribute to the gradient w.r.t.
the new policy, the derivation of X, (S,,) can be ignored.

Aiming for the objective in (22), the loss function for policy
network is defined in (23), as shown at the bottom of the
next page. Since X, (Sp) depends only on the state, the
loss function can be reduced to (multiplied by «) (24). For
discrete action space, the expectation over actions in (24) can
be calculated based on action probabilities. Therefore, (24)
can be rewritten as (25), where (24) and (25) are shown at the
bottom of the next page, respectively.

Based on the loss functions for the Q- and policy networks
analyzed above, the weights w and ¢ can be updated with
stochastic gradients. The detailed workflow and pseudocode
of SAC are shown in Fig. 3 and Algorithm 1, respectively.
The algorithm contains two main parts: 1) the interaction with
environment following the current policy; 2) the update of
neural networks using stochastic gradients with data generated
by previous policies, which is the core idea of off-policy
RL. Compared to on-policy learning, off-policy learning has
been proven to be more efficient by learning from the experi-
ence following policies other than the target one [42]. The
pseudocode reflects the main idea of SAC by taking the
entropy term into consideration in the loss function of critic
and actor networks. From the aspect of the neural network
structure, one trick used in the SAC algorithm is to adopt two
Q-networks for critic and target networks, respectively. When
optimizing the loss functions (19) and (24), the minimum of

into the desired policy set IT. X, (Sy)
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the Q-functions is utilized. In this way, the training rate can
speed up, especially for harder tasks. Since SAC follows the
typical policy iteration framework, the SAC algorithm can be
proved to converge to the optimal policy in the same way
as given in [42] for the analysis of policy iteration, which is
omitted here given the page limitation.

IV. DISTRIBUTIONALLY ROBUST SAC FOR UAV
TRAJECTORY DESIGN, RIS CONFIGURATION
AND POWER CONTROL

As stated in Section III, the SAC algorithm enables
sample-efficient learning via off-policy maximum entropy
framework with a stochastic policy. However, due to the finite
samples of data in practice, the inexact computation of policy
state-values, 1i.e., estimation errors, may cause catastrophic
policy outcome. Especially for our problem where the flight
safety in environment with unexpected obstacles is taken into
consideration, it is essential to train a policy with enhanced
worst-case performance and support safe exploration. There-
fore, to lower the risk in face of uncertain estimations, a novel
distributionally robust DRL scheme is first proposed, followed
by the distributionally robust SAC (DRSAC) algorithm design.

A. Distributionally Robust DRL

Recall that the policy iteration algorithm is an iterative
process that alternates between the policy evaluation and the
policy improvement, which can be expressed as follows:

{'/TiJrl — g(%‘ﬂ),

v (26)
Vig1 — T+,

where 7; and v; denote the updated policy and state-value
function at the ¢-th iteration, respectively. 77™+! denotes the
Bellman operator applied for policy evaluation, which can be
expressed as follows:

T™0(s) = Equn(s) [RE + VEs mp(sr1s,0)0(s)], (27
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and G(v;) is the greedy policy improvement approach, which
is given by

G(v) = argmax 7 "v. (28)
The objective of a RL framework is given by
M
max Y B, a,)~r )" T RET = maxG(n).  (29)
m=1

Since the policy improvement step follows ;11 «— G(v;),
estimation error ¢ for state value v; will be reflected on
the policy 7; 1. Let € € RS denote the error sequence
for the policy, then we can define the RL objective considering
the robustness w.r.t. estimation error as follows:

(30)

max min G (7z).
s €
In [43], the authors introduced the KL-divergence to quantize
the error on policy. To be more specific, given a policy 7 and
an error sequence ¢ € RS, the uncertainty set of policies is
given by [43, Definition 2]

Uz (m)={n" € AS|Dxy (7' (-]s) || m(|s)) <é&(s),Vs € S},
(3D
where Aj denotes the set of probability distributions over a

finite set A for all s € S. Then, the robust objective can be
rewritten as

max min G (m)
T me€U(T)
= max min IE(Sm’Am)NTW”’ym_lem, (32)
T mwe€Ue(m) © "

which follows the typical distributionally robust optimiza-
tion (DRO) format [44], [45]. To solve the DRO problem under
a RL framework, we need to again refer to the policy iteration

Q(Sm, Am) = Ré:: + Z m (A’m+1|5m+1) |:Q&J (Sm+1; Am+1) - Oélog (’/T (Am+1|Sm+1)) . (21)
Am41€A
1 w Sma )
L (19) = ESme’D lDKL <7'r19 (|Sm) exp g?Q(é )) )]
1

~Esyen | [0 (AnlSn) x (108 (Ro(AnlSin)) = 5Qu (S ) + 108 Xy (1) )|
= Es,,epEa,,~my (1og (9 (Am|Sm)) — éQw (S, Am) + log Xm(sm)) o3)
Ly (V) =Es, epEa,, r, (log (my(Am|Sm)) — Qu (Sm, Am))- o0
£r(9) = Bspep 3 mo(AnlSm) (@108 (To(An[Si)) = Qu (S Ar) ). 05)

Am€A
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Fig. 3. Workflow of the proposed SAC framework.

Fig. 4. Uncertainty set of policies Uz ().

process in (26). For the inner minimization problem in (32),
an adversarial Bellman operator T™ is defined as follows:

T™ev(s) = min T v(s).

FeU: () (33)
By applying 77¢ for policy evaluation, the minimal state
values achieved by policies in the uncertainty set Iz (7) can be
obtained, as shown in Fig. 4. Therefore, the policy evaluation
with 77 can be named as distributionally robust policy
evaluation. To derive the computation scheme of adversarial
Bellman operator, apply Lagrangian duality to (31) and (33).
Then, the problem can be rewritten in (34), as shown at the
bottom of the next page, where A(s) is the Lagrange multiplier.
The inner maximization problem can be expressed as

max (=77 v(s) — A(s)Dxr (7(:|s) |7 (:|s)))

FEAS,
= max X6) (55 T"0(6) ~ D (1) (1))
- A9 <<—Q;Ez’)'),ﬁ(-|s)>—DKL (#(]s) ||7r(-|s)>>

(Sm’Amef: St ]’7

Loss F unction £, (@, )

where Q* —% is the Fenchel duality of Q(7(+|s)) =

Dxp(7(+|s)||7(:|s)). The Fenchel duality of Dy, is given by
Qv(s7') Qv(sva)
Q| ————= | =logEqex ———, (36
(-5 =~ emeren (-5505%). 0
and the solution for problem (35) is

ot ey (229 i

For outer minimization problem, the optimal solution \*(s) is

given by
(oo (-Z2) + a0,

(37)

A*(s) = argmin
A(s)>0
(38)

which is a typical convex optimization problem. The construc-
tion of policy error €(s) is in the form é(s) = Cn(s)~" with
constants C' > 0 and n > 0. n(s) denotes the visitation count
of state s. This construction implies that the estimation error
should decrease with the amount of collected experience.

B. Distributionally Robust Soft Actor-Critic

The difference of SAC from the regular RL framework
is the introduction of per-state entropy bonus. As stated in
Section III, the policy improvement for discrete action setting
is based on the following principle:

wlals) x exp (2,05,

where « is the entropy temperature. Substituting (39) into (37),
we can obtain the adversarial policy in SAC as follows:

72 o exp [(é - %()) Qv(s,a>}

where A\*(s) is given in (38).

(39)

(40)
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Algorithm 1 Soft Actor-Critic Algorithm

Initialize environment;

Initialize w; (i = 1, 2) for critic networks, ¥ for actor
network;

Initialize target networks w; «— w;, 7 = 1, 2;

Initialize entropy level Hyn, replay buffer D = (), step
length for gradient descent of the critic network, actor
network and temperature parameter, i.e., AQ, Ar, Aa;
for each iteration do

for each environment step do

Execute action based on current policy A,, ~ my;
Observe reward RA’” and next state Sy,+1;
Store transition (Sm,Am,RS , Sm41) in D;

m

for each gradient step do
Sample a random minibatch of transitions

(Sm,Am,R’;::',Serl) from D ;

Update critic networks by minimizing loss function
L (w) with stochastic gradients:

wi — w; — AoV, Lo (wi), Vi € {1,2} ;

Update the actor network by minimizing loss
function L, (9): 9 «— 9 — A\ VyLr(9);

Update temperature parameter by minimizing
L(a): a— a—AVoL(a);

Update target network parameters periodically:

Wi — w;, Vi € {1,2}

return optimal policy 7*

Based on the adversarial policy expression given in (40)
for policy evaluation and the policy improvement principle
based on (39), the detailed algorithm for DRSAC is given
in Algorithm 2. The main difference between DRSAC and
SAC is in the policy evaluation step. Instead of updating
the critic network towards the true action-value function for
the current policy , the adversarial policy 7} is adopted
for action-value estimation (as shown in the pseudocode
for the update of Q(S,,, A,,)) to provide the lower-bound
performance guarantee.

Next we will analyze the properties of the proposed DRSAC
algorithm in terms of convergence and optimality. Starting
from the construction of policy error €(s) in the form é(s) =
Cn(s)~" with C > 0 and n > 0, one can observe that the
error gets smaller with accumulated experience. To make the
explanation more intuitive, as can be observed in Fig. 4,
the radius of the uncertainty set shrinks with the learning
process. Therefore, with m — 400, the adversarial policy
7% converges to the policy 7. In other words, the algorithm
performs conservatively in a short-term and acts optimistically
in a long run. The convergence and optimality can then be
guaranteed similarly to SAC.

Algorithm 2 Distributionally Robust Soft Actor-Critic
Algorithm

Initialize environment;
Initialize critic network, actor network, replay buffer
D = 0,
Set Huin» C, m, n(s) =0,Vs € S;
for each iteration do
for each environment step do
Execute action based on the current policy;
Store transition (Sy,, Am, R?x,SmH) in D;
for each gradient step do
Sample a random minibatch of transitions
(Sm,; Am; Rg::; Sm,-i—l) from D;
é(s) «— Cn(s)™";

Solve convex optimization problem (38) to obtain

A*(s) ;

. (G ) CALCD)
Te(als) [P | Em—— )
Q(SnuAm) —

R . +7EA7”+1~ * [Qw( m+17Am+1) -

alog( ( m+1|5m+1))] 5
Update actor, critic networks and « as in

Algorithm 1.

return optimal policy 7*

V. NUMERICAL RESULTS

In this section, numerical results are provided to validate
the effectiveness of the proposed RIS-aided air-to-ground
uplink NOMA communication framework. We consider
a system where the initial location of the UAV is
(0,0,60) meters, while the locations of GU, GBS and
RIS are (—100,—100,0) meters, (300, —50,40) meters, and
(200, 80, 60) meters, respectively. The speed of the UAV is
set to 20 m/s. The GU-RIS, UAV-RIS, and RIS-GBS links are
modelled as Rician fading channels. Therefore, hgy, s[m] can

be expressed as
LoS /
gu s 1+

where £ is the Rician factor, ho% [m] is the LoS component,

and hL°S[1] is the NLoS component. h%5 [m] is given by

NLoS
gu s

gu 9 m ) (41)

1+

gu,s gu,s
70‘1
1 27r (1)
hlg;zss \/ﬁo d_S]u s |:€ x Ay, b[m]
T
27\' (k) 2n J(K)
L dguislml eI gl q[mq , (42)

where () is the path loss at the reference distance dy =
1 m, «; is the corresponding path loss exponent, dg;),s is

T eu(s) =

max min
A(s)>0 €A

= min max
A(8)>07€AG

(770(s) + A(9) D (7(Cls) [ (-]3)) = A(s)é(s))
— T7u(s) = M) Dw (7(1s) [ 7(-15)) + A()e(5))

(34)
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TABLE I
SYSTEM PARAMETERS

@ Path loss parameter for LoS transmissions 2.1

ag Path loss exponent for NLoS transmissions 3.5

K Rician factor 10

Bo Path loss at 1 m —20 dB

o7 Noise power —80 dBm

o Duration of each time slot 1s

M Number of time slots 10

L Number of discrete phase-shift levels 2

K Number of reflecting elements in each RIS sub-surface 10

dmin Minimum separation distance 20 m

TABLE II
DRL HYPERPARAMETERS

Number of training episodes 200000
Replay memory size 5000
Mini-batch size 64
Gradient descent step length A, Ar, Ao 0.00001
Constant C' 1
Constant 7 0.5
Optimizer Adam
Activation function ReLU

the distance from the GU to the k-th RIS element, and
A is the carrier wavelength. Due to the fact that the dis-
tance between the RIS and UAV is much bigger than that
among RIS elements, we use the 1-st RIS element as the
reference point for path loss calculation. hN-°5[m] is given

qgu,s
by BSm] = /60 (dhsfm)
CN*1 is the small-scale fading component where elements are
independently drawn from the circularly symmetric complex
Gaussian (CSCG) distribution with unit variance. h,, ; and hg b
can be generated similarly as (41).

The UAV-GBS and GU-GBS links are modelled as Rayleigh
fading channels. Then, Ay, »[m] and h,, ;[m] are given by

(oD N ~
hgy s, where hy, , €

hu,b[m] =V ﬁO (du,b[m])_a2ﬁ’zt,b[m]7 (43)
and
hguplm] = \/Bo (dgup[m]) ™ hgu s[m], (44)

respectively. Here, d, 5[m] and d g, »[m| represent the distance
between the UAV and GBS and that between the GU and GBS,
respectively, as denotes the corresponding path loss exponent,
and £ is the small-scale NLoS component. The specific values
of adopted system parameters and DRL hyperparameters are
summarized in Table I and Table II, respectively.

A. Performance Comparison Among DON, SAC, and DRSAC

In Fig. 5, we compare the performance of SAC and DRSAC
against the benchmark algorithm DQN. For DQN, we consider
the following setup:

o Benchmark 1 (DQN): conventional DQN algorithm
that does not maximize the entropy. We set the initial
exploration probability as 0.9, the minimum exploration
probability as 0.05, and the learning rate v as 0.00001.

We train five instances of each algorithm with different random
seeds, with each performing one evaluation rollout every
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Fig. 5. Performance comparison among DQN, SAC and DRSAC.

100 episodes. Here different seeds mean running algorithm
with various random initialization of the actor and critic
networks.

Fig. 5(a) shows the system sum rate with test episodes
during training for DQN, SAC, and DRSAC. Note that the test
episodes mean evaluation rollouts every 100 training episodes.
The solid curves correspond to the mean and the shaded
regions to the minimum and maximum sum rate bounds over
the five trials. One can observe from the results that both
SAC and DRSAC outperform the DQN algorithm with a
large margin in terms of learning rate. Specifically, DRSAC
and SAC converge at around 750 and 1250 test episodes,
respectively, while the DQN algorithm obtains stable outcomes
after 1750 test episodes. This is expected since both the
SAC and DRSAC have a higher sample-efficiency compared
to DQN. In Fig. 5(a), it is also noted that the sum rate
lower bound of DRSAC is clearly higher than that of SAC.
This empirically confirms the safety guarantee provided by
DRSAC. Fig. 5(b) further illustrates the robustness of DRSAC
from the aspect of variance obtained over 5 runs with different
random seeds. As expected, the DRSAC algorithm greatly
reduces the variance thanks to the robustness considered in the
learning process. For the merits of DRSAC mentioned above,
in the following, we adopt results obtained by the DRSAC
algorithm to evaluate the system performance.
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B. Impact of NOMA Protocol and RIS Deployment

In Fig. 6, we investigate the system performance gain
brought by the NOMA protocol and RIS deployment. Specif-
ically, we consider the following three benchmarks.

o Benchmark 2 (NOMA-w/o-RIS case): the case where
communication links from the UAV/GU to the GBS only
include the direct links;

o Benchmark 3 (OMA-RIS case): the case where
time/frequency resources are split equally between
the UAV and GU. Therefore, the sum rate for
the OMA case over time span 7 is given by
St (3 1085(1 + yu[m]) + § logy(1 + ygulm))):

o Benchmark 4 (OMA-w/o-RIS case): the same as
OMA-RIS case except that no RIS is deployed.

It is worth noting that the proposed DRSAC algorithm can be
also applied to the three benchmark schemes. In particular, the
sum rate maximization problem for the NOMA-w/o-RIS case
can be solved with DRSAC by excluding the RIS phase shift
in the action space. For the OMA-RIS case, the optimization
problem can be solved assuming that both of the UAV and
GU occupy half of the total bandwidth and transmit in full
power. For the OMA-w/o-RIS case, the optimization problem
is solved by just optimizing the UAV trajectory. We observe
from Fig. 6 that the sum rate increases with the number of RIS
elements K when the RIS is deployed, which is due to the
fact that larger K leads to higher beamforming gain. Regarding
the performance of the proposed air-to-ground communication
scheme and three benchmarks, the proposed scheme achieves
the highest sum rate. This can be explained by the improved
spectrum efficiency brought by the NOMA protocol as well
as the favorable propagation environment created by the RIS.

C. Impact of Online UAV Collision Avoidance

In Fig. 7, we investigate effectiveness of the proposed
DRSAC algorithm for the UAV collision avoidance mecha-
nism. To visualize performance of the proposed algorithm,
we consider an obstacle appearing in the airspace with random
location, and show the distance between the UAV and obstacle
as well as the accumulated collision rate (ACR) during learn-
ing process in Fig. 7(a) and Fig. 7(b), respectively. Similar
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Fig. 7. Performance analysis on collision avoidance mechanism.

to Section V-A, the evaluation rollout is carried out every
100 episodes, i.e., 1000 time steps.

Fig. 7(a) demonstrates the separation distance between the
UAV and obstacle with test steps during the training process.
Here, the term “test step” is defined as the accumulated time
steps over test episodes. One can observe that the collision
happens with high probabilities at the beginning of the learning
process. With the increment of training episodes, the DRSAC
model learns to keep a safe distance to the obstacle and avoids
collision effectively. Note that the separation distance between
the UAV and obstacle is a discrete value due to the discrete
heading angles and fixed velocity of the UAV. To further prove
that the proposed algorithm can work well under different
environment setups, we depict Fig. 7(b) to show the ACR
with different random seeds. Here we define ACR as

ACR — Number of episodes with collisions

Number of total training episodes 45)
We observe that the ACR first increases with the number of
training episodes due to the reason that the algorithm is still in
the exploration stage. With the increment of number of training
episodes, the ACR gets smaller until converges at around
800 test episodes. We also observe that the algorithm can
converge to a small ACR value under different seeds, which
shows the robustness of the proposed algorithm in terms of
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Fig. 8. Illustration on impact of phase shift configuration.

achieving satisfying performance under various initialization
setups.

D. Impact of Phase Shift Configuration

In this subsection, we compare the performance of the pro-
posed algorithm with two benchmark algorithms as follows:

o Benchmark 5 (Fixed phase shift): the proposed DRSAC
algorithm that only takes the UAV’s movement and power
control into consideration. The phase shifts of all RIS
sub-surfaces at each time slot, i.e., ¢,,[m], are given as 0;

o Benchmark 6 (Random phase shift): similar to the
fixed phase shift scheme except that the phase shift value
of each RIS sub-surface at each time slot is generated
randomly.

Fig. 8 characterizes the performance of the proposed algorithm
against the above two benchmark algorithms. We observe
that the proposed algorithm achieves distinct sum rate
improvement compared to the benchmarks, which indicates
the efficiency of our proposed algorithm to solve the RIS
configuration problem. We also find that the fixed phase shift
algorithm obtains higher sum rate compared to the random
phase shift one. This is due to the fact that the randomness
w.r.t. phase shift increases the difficulty for signal alignment,
and thus leads to some performance loss.

E. Impact of Power Control

Fig. 9 depicts the sum rate versus height of the UAYV,
i.e., z,, obtained by different algorithms with N = 5. The
two benchmarks, i.e., fixed power control and random power
control, are designed as follows:

o Benchmark 7 (Fixed power control): the proposed
DRSAC algorithm that only takes the UAV’s movement
and RIS configuration into consideration. The transmit
powers of the UAV and GU are set as 1 W and 0.4 W,
respectively;

o Benchmark 8 (Random power control): similar to the
fixed power allocation scheme except that the transmit
powers of the UAV and GU are generated randomly
under the maximum transmit power and minimum SINR
constraints.
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We observe that the sum rate grows rapidly with a small
altitude and decreases afterwards. The inflection point of each
curve shows up at around z, = 60 m. This verifies that the
UAV-RIS-GBS link is enhanced when the UAV gets closer to
the RIS which has the altitude of 60 m. We also observe that
the proposed algorithm obtains much better performance com-
pared to the two benchmarks, which implies the effectiveness
of the proposed algorithm for power control.

VI. CONCLUSION

A RIS-aided air-to-ground uplink non-orthogonal transmis-
sion framework has been investigated. The UAV trajectory,
RIS configuration, and uploading power control were jointly
optimized for the maximization of sum rate, subject to the
constraints on the UAV flight safety and the minimum data
rate requirements of both the UAV and GU. A sample-
efficient DRL algorithm was proposed to address the resultant
sequential decision making problem. Considering uncertainties
brought by the unknown locations of obstacles, a distribution-
ally robust DRL algorithm was further proposed to enhance
the robustness of the algorithm. Our numerical results demon-
strated that the two proposed DRL algorithms outperformed
the conventional ones in terms of learning efficiency and
robustness. The results also revealed that the sum rate of air-
to-ground communications can be significantly improved by
optimizing the UAV trajectory, RIS configuration, and power
control. Moreover, this paper considered the single-cell sce-
nario to give fundamental insights on the system performance.
The multi-cell scenario, where the RISs provide both the signal
enhancement and inter-cell interference mitigation, is expected
to be an interesting topic for future work.
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