IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 12, DECEMBER 2021

7743

Metal.ocalization: Reconfigurable Intelligent
Surface Aided Multi-User Wireless
Indoor Localization

Haobo Zhang™, Graduate Student Member, IEEE, Hongliang Zhang™, Member, IEEE,

Boya Di

, Member, IEEE, Kaigui Bian

, Senior Member, IEEE,

Zhu Han™, Fellow, IEEE, and Lingyang Song™, Fellow, IEEE

Abstract— The received signal strength (RSS) based technique
is extensively utilized for localization in the indoor environments.
Since the RSS values of neighboring locations may be similar,
the localization accuracy of the RSS based technique is limited.
To tackle this problem, in this paper, we propose to utilize recon-
figurable intelligent surface (RIS) for the RSS based multi-user
localization. As the RIS is able to customize the radio channels
by adjusting the phase shifts of the signals reflected at the
surface, the localization accuracy in the RIS aided scheme can
be improved by choosing the proper phase shifts with significant
differences of RSS values among adjacent locations. However, it is
challenging to select the optimal phase shifts because the decision
function for location estimation and the phase shifts are coupled.
To tackle this challenge, we formulate the optimization problem
for the RIS-aided localization, derive the optimal decision func-
tion, and design the phase shift optimization (PSO) algorithm to
solve the formulated problem efficiently. Analysis of the proposed
RIS aided technique is provided, and the effectiveness is validated
through simulation.

Index Terms—Indoor localization, reconfigurable intelligent
surface, received signal strength.

I. INTRODUCTION

UTURE 6G wireless systems will be highly intelli-
gent and support a wide range of applications such as
human-centric mobile communications [1], personal naviga-
tion [2], and healthcare monitoring [3]. To this end, the 6G
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wireless system has to not only realize enhanced ubiquitous
communications but also provide accurate and reliable local-
ization service, resulting in an increasing interest on wireless
based localization techniques [4]. Based on the utilized infor-
mation for localization, these techniques can be categorized
into several types such as the angle of arrival (AoA), time
of arrival (ToA), or received signal strength (RSS) based tech-
niques. Since the RSS information can be easily extracted from
the widespread Wi-Fi compatible devices without additional
hardware requirements, the RSS based localization method
is widely used nowadays and is also expected to play an
important role in future 6G wireless systems [5].

In literature, different types of RSS based wireless local-
ization methods have been discussed [6]- [19]. For example,
authors in [6] proposed a deterministic method that exploited
the RSS information of the nearest neighborhood to estimate
the location. The Bayesian network approach and the stored
RSS distributions were adopted in [7] to infer the user’s
location. In [8], authors considered the localization in a cellular
system based on RSS measurements, and the localization
accuracy was estimated by analyzing the Carmer-Rao bound,
the concentration ellipse, and the circular error probability. The
authors in [11] studied the noncooperative and cooperative
localization for a large number of wireless sensor nodes,
and convex RSS estimators were utilized for localization.
In [17], a novel approach based on the empirical bayes and
iterative least squares were proposed to improve the accuracy
of RSS-based localization. The authors in [18] and [19] studied
the localization problem with imprecise location information
of sensors, and utilized the compressive sensing method to
effectively solve this problem. However, the localization per-
formances in the aforementioned works are highly related
to the RSS distribution. In the unfavorable RSS distribution
where the RSS values of neighboring locations are similar,
these locations become difficult to be distinguished, leading
to the degradation of the localization accuracy.

Fortunately, reconfigurable intelligent surfaces (RISs) were
recently developed to actively customize the radio environ-
ment [20], [21], which become a promising solution to address
this problem. To be specific, an RIS consists of a massive
number of homogeneous elements in the form of a planar
sheet [22]. By electrically tuning the state of each element,
we can control its electromagnetic response (such as phase
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shifts), rendering different phases of the reflection signal given
the incident signal [23]. Consequently, the RSS distribution in
the surrounding radio environment can be customized, which
shows the potential of the RIS to improve the localization
accuracy of the RSS based technique by creating favorable
RSS distributions.

Several localization schemes aided by the RIS has been
discussed in the literature. In [24], large intelligent surfaces
composed of active antenna elements were adopted to emit
signals, and the received signal of the user was utilized for
location estimation. The work [25] investigated the RIS aided
millimeter-wave (mmWave) multiple-input multiple-output
(MIMO) positioning system, and the location was calculated
based on the estimated channel gains, the angle of arrival
(AoA), the angle of departure (AoD), and the time of arrival
(ToA). The multiple-input single-output (MISO) counterpoint
is considered in [26]. The authors in [27] proposed an RIS
aided localization scheme which minimized the Carmer-Rao
lower bound for high accuracy location estimation. However,
since the RSS information is not utilized in the aforementioned
schemes, these schemes are not applicable for RSS based
localization.

In this paper, we consider an RIS aided multi-user localiza-
tion scenario based on the RSS. An access point (AP) emits
signals which are reflected by the RIS to create favorable
RSS distribution. Users can locate themselves by analyzing
the measured RSS values, or cooperate with the RIS and
the AP to iteratively improve the accuracy of the estimated
locations. Compared with traditional RSS based techniques,
the localization accuracy can be improved in the proposed
scheme by carefully designing the RSS distributions with
larger RSS differences.

However, several challenges need to be addressed for the
proposed localization scheme. First, different from traditional
RSS based techniques without RIS, the operations of RIS in
the proposed scheme are required to coordinate with those of
AP and users to achieve high accuracy, which complicates the
design of the RIS aided localization scheme. Second, the opti-
mization of RIS phase shifts is challenging because the deci-
sion function for location estimation and the RSS distribution
determined by the RIS phase shifts are coupled with each
other. Besides, due to the discrete phase shifts of the RIS
elements, the optimization of all the phase shifts is a non-linear
integer program, which is NP-hard.

To tackle these challenges efficiently, we design the RIS
aided localization protocol, and formulate the optimization
problem to minimize the weighted probabilities of false
localization, which is referred to as the localization loss.
To solve the formulated problem efficiently, we first derive
the optimal decision function given phase shifts, and then
find the optimal phase shifts utilizing the derived decision
function and the proposed phase shift optimization (PSO)
algorithm. Overall, our contributions can be summarized
below.

e We propose to utilize the RIS for the RSS based
multi-user localization in an indoor environment, and
introduce a localization protocol to coordinate the
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Fig. 1.

System model for the RIS aided multi-user localization.

operations of the AP, the RIS, and users during the
localization process.

o We formulate the optimization problem for the multi-user
localization, where the weighted probabilities of false
localization is minimized by optimizing the decision
function and the RIS phase shifts.

o We derive the optimal decision function for location
estimation, and propose the PSO algorithm to obtain the
RIS phase shifts. Unlike most existing RIS optimization
algorithms which are designed to maximize the sum-rate
in communication systems, the PSO algorithm has differ-
ent forms and is able to efficiently tackle the localization
loss minimization problem.

o We analyse the convergence, complexity, and the opti-
mality of the PSO algorithm, and discuss the localization
performance of the proposed localization scheme. The
effectiveness of the proposed scheme is also verified
through simulations.

The rest of this paper is organized as follows. In Section II,
we introduce the localization scenario and present the models
of the RIS and the RSS. In Section III, a localization protocol
is proposed. We formulate a optimization problem for the
RIS-aided multi-user localization in Section IV. To solve
the formulated problem, the optimal decision function is
derived, and the PSO algorithm is designed in Section V. The
analysis of the proposed scheme is provided in Section VI.
In Section VII, we present the simulation results and discus-
sions. Finally, the conclusions are drawn in Section VIIL

II. SYSTEM MODEL

In this section, we first present the scenario of RIS aided
multi-user localization in Section II-A. Then, we introduce the
RIS model in Section II-B and the RSS model in Section II-C.

A. Scenario Description

As shown in Fig. 1, we consider a wireless indoor local-
ization scenario which is composed of an AP, an RIS, and
multiple users requiring their own indoor location informa-
tion. The AP connects to the RIS controller which is able
to regulate the operation of the RIS. During the localization
process, the AP sends single-tone signal over frequency f.
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to the RIS and mobile users, and the RIS reflects the signals
from the AP to the users. Each user measures the RSS for
localization.

Specifically, all the mobile users are assumed to move in
the space of interest (SOI), which is a cubic region with size
lg x Iy x 1,. We discretize the SOI into /N blocks with the
same size, and the set of blocks in the SOI is denoted by
N ={1,..., N}. The location of each user can be represented
by the index of the block where it is. By creating the favorable
RSS distribution by the RIS, users at different blocks can
be better distinguished comparing with traditional RSS based
techniques.

B. RIS Model

The RIS is an artificial planar material consisting of a large
number of elements made of metal and dielectric [28], as illus-
trated in Fig. 1. In each element, several subwavelength-scale
metal patches are printed on the dielectric substrate which
are connected by PIN diodes [29]. Each PIN diode can be
electrically adjusted into two different states, i.e., the ON and
OFF states [30]. The states of PIN diodes in an RIS element
are referred to as the state of the RIS element. The signal
reflected by the RIS element in different states has different
phase shifts [31].

Let M = {1,..., M} denote the set of elements in the RIS,
where M is the number of RIS elements. We assume that each
element has C' states with same amplitude ratio and uniform

2
phase shift interval Af = ] [32]. Therefore, the reflection
coefficient of the m-th element can be expressed as

rm(em) = re oA, e

where the amplitude ratio » € [0,1] is a constant and
¢m € {1,...,C} [33]. For convenience, we use ¢, to
represent the phase shift of the m-th element in this paper.
Therefore, the vector of all the RIS elements’ phase shifts can

be expressed as ¢ = (¢1,...,Cmy -+, CM)-

C. RSS Model

In this subsection, we model the probability distribution of
RSS in the SOI. As shown in Fig. 1, the signal received
by the user contains M + 1 components: a direct line-
of-sight (LOS) component and M reflection components. The
m-th reflection component is the transmission signal reflected
off the m-th RIS element to the user. Since the transmitted
signal is narrowband, the path loss in dB between the AP and
the user at the n-th block can be expressed as'

L,(c) = sn(c) — s' =20logyq | o+ Z Bomn(Cm)

meM

+&

)

'In model (2), the first term denotes the mean path loss at the
n-th block [34], and this term is derived using the analytical model [35].
Besides, the second term £ is the log-normal shadowing component which
represents the multipath effects in the NLOS paths. Note that the path loss
model (2) is different from the classical path loss model where the mean path
loss is derived using the simplified path loss model.
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where s’ is the transmitted signal power of AP, s,(c) is

the RSS at the n-th block under phase shift vector ¢, hy, is the
channel gain of the direct LOS component, Ay, n (¢ ) is the
gain of the m-th reflection channel, and ¢ is the log-normal
shadowing component which follows Gaussian distribution
N(0,02) [36]. For convenience, we define the mean RSS
value at the n-th block under phase shift vector ¢ as

pin(c) = s"+2010g10 (Mot > hmn(cm)

meM

= sn(c) — &
3)

Based on [34], the LOS channel gain hj, can be expressed
as

A Jglgr e~ 2mln/X
hio = £ Inn l : )

where ) is the wavelength of the transmitted signal, g’ is the
power gain of the AP antenna towards the n-th block, g;, is
the power gain of the user antenna at the n-th block towards
the AP, and [,, is distance between the AP and the user at the
n-th block. Besides, the reflection channel gain Ay, (¢, can
be expressed as [37]

n (C )_i AV gfirtngrntn'rm(cm)'eij 27r(lfn,+l:n)n)/)\ (5)
monlem) = i ’

m'm,n

where ¢! is the power gain of the AP antenna towards the
m-th RIS element, gy, ,, is the power gain of the user antenna
at the n-th block towards the m-th RIS element, 7, (c;,) is
the reflection coefficient of the m-th element in the state c,,,
[;,, is the distance between the AP and the m-th RIS element,
and [, ,, is the distance between the m-th RIS element and
the user at the n-th block.

Consequently, the probability distribution of RSS value at
the n-th block under phase shift vector ¢ can be expressed as

L o mp

e 202 ,  (6)
V2mo?

where o is the standard deviation of the RSS.

P(sn(c) = s)=P(sle,n) =

III. RIS-AIDED MULTI-USER LOCALIZATION PROTOCOL

In this section, we propose an RIS-aided multi-user localiza-
tion protocol consisting of two operating phases: the coarse-
grained and the fine-grained localization phases. In the
coarse-grained localization phase in Section III-A, each user
can locate itself using its measured RSS values within a short
period of time. If any user requires location information with a
higher precision, it will send a localization request to the AP,
and the system will convert to the fine-grained localization
phase, which is introduced in Section III-B. This phase relies
on the cooperation among the AP, the RIS, and multiple users,
and each user will be informed of its estimated location by the
AP when the fine-grained localization phase terminates. The
process of the RIS-aided multi-user localization protocol is
illustrated in Fig. 2.
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Fig. 2. The RIS-aided multi-user localization protocol.
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A. Coarse-Grained Localization Phase

In this phase, the phase shift vector is fixed, which is
denoted by c”. Based on (2)-(5), the phase shift vector ¢’
can be utilized to calculate the mean RSS values in the
SOI, which is referred to as the radio map. Let ;LO =
{11(c?), ..., un(c®)} denote the radio map under phase shift
vector ¢’. The timeline in this phase is divided into cycles,
and users can conduct self-localization in every cycle. Three
steps are conducted sequentially in each cycle for the coarse
localization of multiple users.

1) Broadcast: In the first 6 g seconds in each cycle, the AP
broadcasts the starting signal to all users. The starting
signals contains the information of the phase shift vector
which can be used by the users to derive the radio map
and locate themselves. Besides, The starting signal is
also utilized to synchronize the AP and users.

2) Measurement: Then, in the next dp; seconds, the AP
sends single-tone signal with frequency f., and each
user records the RSS during this period of time and
computes the average RSS. Let s denote the average
RSS for user i. With the average RSS s? and the radio
map p, user i can estimate its location using the
decision function £, which will be introduced in the
next section.

3) Response: In the last ér seconds in this cycle, if any
user requires for location information with a higher
precision, it will send out a response signal to the AP
which contains the average RSS value in this cycle,
as illustrated in Fig. 2. To support multi-user communi-
cations, the time division multiplex (TDM) technique is
adopted. Specifically, in the last ¢ — dp — dps seconds
in every cycle, each user is assigned a time slot which
is not overlapped with the time slots of other users. It is
required to send the response signal during the assigned

2The duration of the measurement step s needs to be less than the coherent
time T'p since the channel decorrelates after about T'p seconds. According
to [34], the coherent time of the channel Tp &~ 0.4\/v, where X is the
wavelength of the single-tone signal and v is the speed of the user.
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time slot. After receiving the response signal, the system
will convert to the fine-grained localization phase.

B. Fine-Grained Localization Phase

We still divide the timeline into cycles in this phase. The
fine-grained localization phase will automatically terminate
after K cycles, and then the fine-grained localization results
will be sent to users.

Different from the process in the coarse-grained localization
phase, each cycle in the fine-grained localization phase con-
tains four steps. Specifically, the optimization step is executed
before the broadcast step, where the radio map and the phase
shift vector in this cycle are carefully selected in order to
promote the localization accuracy. Details of the four steps in
this phase are introduced as follows.

1) Optimization: At the beginning of each cycle, AP selects
the optimal phase shift vector for this cycle based
on the RSS information collected in previous cycles.
For the first cycle in the fine-grained localization
phase, we use the RSS information collected in the
coarse-grained localization phase. The optimization step
lasts for 04 seconds. Let c¥ and pu” denote the phase
shift vector and the corresponding radio map in the
k-th cycle, respectively.

2) Broadcast: In the following dp seconds, the optimized
phase shift vector c* is sent to all the users and the
RIS controller. The RIS controller will change the phase
shifts of the RIS accordingly.

3) Measurement: For the next dp; seconds, users will
record the RSS while the AP emits signals with fre-
quency f., which is similar to the measurement step in
the coarse-grained localization phase. The average RSS
of user 4 in the k-th cycle is denoted by sF.

4) Response: In this step, users are required to send the
information of the average RSS to the AP in the assigned
time slots. These average RSS values received by the AP
will be utilized for the optimization in the next cycle.

IV. PROBLEM FORMULATION

In this section, we formulate the optimization problems
for both the coarse-grained and the fine-grained localization
phases, where the decision function and the RIS phase shift
vector are optimized to improve the localization accuracy.

A. Problem Formulation for the Coarse-Grained Localization
Phase

To promote the localization accuracy in the coarse-grained
localization phase, we minimize the localization loss caused
by false localization. Specifically, the localization loss is
defined as the sum of expected localization error of all the
users in one cycle, which can be expressed as

l(cov L:) = Z Z pgn’)/n,n’

€L nn'eN
n#n’

y /P(sg|c0,n)c(n'|c0,s?,{pg{n}) A4S0, (7)
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where Z = {1,...,I} denotes the set of all the mobile
users, p?’n is the prior probability that user ¢ is located at the
n-th block, and 7, ,, is the loss parameter when the estimated
location is the n’-th block while the user is actually at the
n-th block. The integral in (7) denotes the probability of false
localization when we estimate the n’-th block as the location
of user ¢ given that the ground truth of user is location
is the n-th block. The decision function £(n’|c” ,s {r?,.})
estimates whether the location of user i is the n/-th block
given phase shift vector ¢’, RSS s?, and prior probabilities
{p,.}. Specifically, we have

1, the estimated location of

user 7 is the n’ — th block, (8)

L(n'|c’, 87, {pn})=

0, otherwise.

Since there is no prior knowledge about the locations of
users, we assume that users are uniformly distributed in the
SOI. That is, pi’n = —,Vi € Z,Yn € N. The loss parameter
is defined as the distance between the correct block and the
misjudged block, which can be expressed as

©)

where 7, is the location of the n-th block’s center, and || - ||
denotes the Euclidean distance.

Therefore, the optimization problem for the coarse-grained
localization phase can be formulated as

(Pl):g}%g 1(c%, L),

Yt = [P0 — o],

(10a)

st L(n'[cs) {p) 1) €{0.1}, VieI n,n'eN,
(10b)
Z L(n'|c,s) {p),}) =1, VieI,neN,
n'eN
(10c)
&L e{l,...,C}, YmeM, (10d)
Yo = ||Pn —rurll, Vn,n €N. (10e)

Here, constraints (10b) and (10c) are the properties of the
decision function, constraint (10d) restricts the available states
of the RIS elements, and constraint (10e) corresponds to the
definition in (9).

B. Problem Formulation for the Fine-Grained Localization
Phase

As mentioned in Section III-B, in the fine-grained localiza-
tion phase, the optimization needs to be conducted in every
cycle based on the information collected in the previous cycles.
In the k-th cycle, the optimization problem can be formulated

as
Z Z pz nIn.n’

€L nn'eN
n#n’

x / B(stleh mpL(n'let o (vl ) ds, (1)

s.t. ﬁ(n'|ck,sf,{p§n}) €{0,1}, VieZInn eN,
(11b)

(P2): mm l(c
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Z E(n’|ck,sf’,{pﬁn}) =1, VieIneN,

n’eN

(l1c)
&k e{1,...,C}, VmeM, (11d)
Yo = [P0 —rorll, Vn,n' €N, (11e)

where pz’n denote the prior probability in the k-th cycle,

L(n'|ck, sk {p},}) is the decision function which
estimates Whether the location of user ¢ is the n'-th block
in the k-thcycle, and the localization results in
the fine- grained localization phase can be given by

L(n'|cX, 5K {pf,}),¥n,n/. Constraints  (11b)-(11e) are
similar to those in (P1).

The prior probabilities in the k-th cycle imply our belief
about the probability distribution of users’ locations based
on the radio maps and RSS values in the previous cycles.
According to Bayes’ theorem, the prior probability that user ¢
is at the n-th block in the k-th cycle can be expressed as [38]

Py Py bt )
ZnEsznl]P( " 1| k=1 TL)

0 . . . .
Here, p;, is the prior probability in the coarse-grained
localization phase.

k—1
i ):

P ~P(n|c" s (12)

V. ALGORITHM DESIGN

In this section, we design the algorithm for the
above-mentioned optimization problems. We can observe that
(P1) is a special case of (P2), and thus we only elaborate
on the algorithm to solve problem (P2) in the following.
We first optimize the decision function in Section V-A, and
then propose the phase shift optimization (PSO) algorithm to
select the most suitable phase shift vector in Section V-B. For
simplicity, we omit the superscript k& for cycles in this section.

A. Decision Function

Given phase shift vector ¢, RSS s; and prior probabilities
{pin}. the optimal decision function £*(n’|¢, s;, {pin}) for
problem (P2) is given by the following proposition:

Proposition 1: The optimal decision function £*(n/|c, s;,
{pin}) for problem (P2) can be expressed as

1, si€Rin
L*(n|e,si {pin}) =14 B 13
( | ' {pzn}) {07 Si ¢ Ri,n/v ( )
where the decision region R; ;- is defined as
Ri,n’ = {S'L . Z pi,n(’}/n,n’ - ’Yn,n”)IP(S'Llc; ’I’L) <0,
neN
x v¥n" € N/{n'}} (14)
Proof: See Appendix A. [ ]
Therefore, the localization loss can be expressed as
(e, L7) Z Z PinIn, n// P(sile,n) - ds;. (15)
S;ER;

i,n’

1€Inn'eN
n;ﬁn’
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However, since the decision region is irregular, the inte-
gration in (15) is hard to tackle. An approximation of the
localization loss is provided by the following proposition:

Proposition 2: An approximation for the localization loss
can be expressed as

Za(C) = Z Z PinTnmn - Q(di,n,n’) 2 Z(C, ‘6*)7 (16)
€L nn'eN
n#n'

where ()(-) is the Gaussian Q function [39], and d; ;s can
be expressed as
(kn = pn)? = 20% In Dot
Pin
20 pinr — fin|
Proof: See Appendix B. [ |
In the following, we use the approximated localization loss
l, to replace the original localization loss [ in order to solve
the original problem more efficiently.

A7)

di,n,n’ =

B. Phase Shift Optimization Algorithm

Based on the approximated localization loss [, the phase
shift optimization problem can be formulated as

(P3):min [,(c), (18a)
st.ck e{1,...,C}, Vme M, (18b)
Y = ||Tn — T, VYn,n" € N.  (18c)

Due to the non-convex objective function, problem (P3) can
be proved to be NP-hard [40]. Besides, problem (P3) is an
integer optimization problem, which is more difficult to deal
with compared to the continuous optimization problem [41].

To solve this problem efficiently, we propose a PSO algo-
rithm based on the global descent method [42]. The PSO
algorithm consists of two phases: initialization phase and
global search phase. In the initialization phase, we use the
local search method to generate a set of local minimum phase
shift vector. The definition of the local minimum phase shift
vector is provided as follows.

Definition 1: The vector c¢* is referred to as a local mini-
mum phase shift vector if

lo(c") <lu(c)+e€, Yeel(ch), (19)
where € is a small but nonzero constant, and U/ (c*) is the unit
neighborhood of phase shift vector ¢*, which can be expressed
as

U(c*)={c| (c—c") mod C = te,,m € M}, (20)
where mod is the modulo operator, and the vector e,, is a
unit vector. Specifically, the m-th element in e,, is 1, and
other elements in e,, is 0.

In the global search phase, the generated local minimum
phase shift vectors will be utilized to conduct global search to
approach the global minimum of the localization loss.
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1) Initialization Phase: In this phase, we first use the local
minimum phase shift vector search (LMVS) algorithm to
obtain Z'! different local minimum phase shift vectors. The
set of Z! local minimum phase shift vectors is denoted by C.
The phase shift vectors in C are then sorted in an increasing
order according to their localization loss.

The LMVS algorithm can find a local minimum phase
shift vector from an initial phase shift vector input using the
alternating optimization method [43]. Specifically, if the input
phase shift vector ¢ is not a local minimum phase shift vector,
the algorithm will find a phase shift vector ¢' which is the
phase shift vector in (c") with the minimum positioning
loss. If ¢! is a local minimum phase shift vector, the LMVS
algorithm terminates and the output phase shift vector is c'.
Otherwise, the algorithm will search in the unit neighborhood
U(c') to find a new phase shift vector ¢? and decide whether
c? is a local minimum phase shift vector. The procedures of
the LMVS algorithm is summarized as Algorithm 1.

Algorithm 1 Local Minimum Phase Shift Vector Search
Algorithm

Input: Inital phase shift vector ¢’;

Output: Local minimum phase shift vector c*;

Initial z =0, ¢® = ¢;

while c* is not a local minimum phase shift vector do
Set c*T! as the phase shift vector with the minimum
loss in U(c*);
Update z = z 4 1;

end

Set ¢* = ¢7;

2) Global Search Phase: In this phase, the algorithm will
iteratively infer other local minimum phase shift vectors using
the phase shift vectors in the set C. The method to infer other
local minimum phase shift vectors is inspired by the steepest
descent method for the continuous optimization problems [44].
In each iteration, three steps are conducted sequentially.

o The descent ratios between the first phase shift vector and

other phase shift vectors in the set C is computed first.
The descent ratio between phase shift vectors ¢/ and ¢
is defined as

la(e) —la(cf)

f _
rehe) = e a

; (2D
where ¢/ is the first phase shift vector in C, and phase
shift vector ¢ € C/{c/}. Let ¢™ denote the phase shift
vector with the maximum descent ratio with ¢/. Conse-
quently, the steepest descent direction can be expressed
as d = (™ — ¢f) mod C.

o Next, we enumerate the step size ¢ € {1,...,C} to find a
new phase shift vector ¢* = ((¢/ + (d) mod C) with the
minimum localization loss. Using the LMVS algorithm,
we can find a new local minimum phase shift vector ¢’
with input c®.

o If ¢’ ¢ C, the phase shift vector ¢’ will be inserted into
the sorted set C according to the value of its localization
loss I,(c’). Otherwise, we use the LMVS algorithm with
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random inputs to a new local minimum phase shift vector
¢’ with is not in C, and then phase shift vector ¢” will
be inserted into the sorted set C.

The iteration terminates when the number of phase shift
vectors in the set C is greater than Z“, and we have Z% > Z L
After the iteration ends, the algorithm will output the first
phase shift vector in the set C. The procedures of the PSO
algorithm is summarized as Algorithm 2.

Algorithm 2 Phase Shift Optimization Algorithm

Input: Parameter Z%;

Output: Phase shift vector c*;

Initial a set of Z' different local minimum phase shift
vectors denoted by C using the LMVS algorithm and
random phase shift vector inputs.;

Sort phase shift vectors in C in increasing order of their
localization loss;

while |C| < Z* do

For the first phase shift vector ¢/ in C, compute the
descent ratios r(c’, ¢), Ve € C/{c'};

Sort the descent ratios in a descending order, and
choose the phase shift vector ¢ with the maximum
descent ratio r(cf, c™);

Calculate the steepest descent direction
d=(c™—¢c’) mod C,

Enumerate ¢ € {1,---,C?} to find phase shift vector
c® = (¢! +¢d) mod C with the minimum localization
loss, and calculate the local minimum phase shift
vector ¢’ using the LMVS algorithm with input ¢*;
if ¢’ ¢ C then

| Insert ¢’ into sorted set C according to I,(c’);

else
Generate a new local minimum phase shift vector

¢” which is not in C using the LMVS algorithm,
and insert ¢” into the sorted set C according to
la(c//);

end

end

Set ¢* as the first phase shift vector in the set C;

VI. PERFORMANCE ANALYSIS

In this section we analyse the convergence, complexity,
and optimality of the proposed algorithms, and discuss the
localization performance of the proposed scheme.

A. Algorithm Convergence

1) Convergence of the LMVS Algorithm: In the
z-th iteration, a phase shift vector denoted by c* with
the minimal localization loss among 20/ different phase shift
vectors is obtained. If [, (c*) < l,(c) +¢€, Ve € U(c?), a local
minimum phase shift vector is found, and the algorithm
converges. Otherwise, a phase shift vector ¢**! can be
obtained in the (z + 1)-th iteration with lower localization
loss comparing to ¢* because [, (c*) > l,(c) +¢€,3c € U(c?).
Therefore, we have l,(c*™!) 4+ ¢ < l,(c?), which indicates
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that the localization loss decreases when the number of
iteration increases. Since the localization loss is greater than
0 for any phase shift vector, the algorithm is guaranteed to
converge.

2) Convergence of the PSO Algorithm: Since the PSO
algorithm terminates after (Z“ — Z! + 1) iterations, it will
converge if each iteration of the PSO algorithm converges.
In each iteration, the algorithm needs to find a new local
minimum phase shift vector which is not in the set C. Since
the number of possible phase shift vectors C* > Z* which
implies that the number of local minimum phase shift vectors
is far greater than Z*, the algorithm can always obtain a
new local minimum phase shift vector by randomly choosing
initial phase shift vectors for the LMVS algorithm. Therefore,
the convergence of the PSO algorithm is guaranteed.

B. Algorithm Complexity

1) Complexity of the LMVS Algorithm: Since the localiza-
tion loss is reduced by at least € in each iteration, the LMVS
Algorithm has at most [! /e iterations, where [! is the upper
bound of the localization loss. In Proposition 3, an upper
bound is provided for the localization.

Proposition 3: An upper bound of localization loss [} can
be expressed as

lo(e) < 1% =IN\[I2+ 12412, Ve. (22)

Proof: See Appendix C. [ ]

In each iteration of the LMVS Algorithm, the localization
loss is calculated for 2M times. According to (16), the com-
plexity to calculate the localization loss for one phase shift
vector is O(IN?). Therefore, the time complexity of each
iteration is O(I M N?), and the time complexity of the LMVS
algorithm is O(I1? M N3).

2) Complexity of the PSO Algorithm: In the initialization
phase, the LMVS algorithm is first conducted Z'! times, and
the complexity of this step is O(Z'1? M N?3). As for the phase
shift vector sorting in the set C, we assume its complexity
is O((Zh)?).

In the global search phase, there are Z* + 1 — Z! itera-
tions. In each iteration, the phase shift vector with maximum
descent ratio is chosen. Since there are at most Z" phase
shift vectors, the time complexity of this step is O(Z").
Next, the localization loss of C' — 1 phase shift vectors is
calculated to determine the optimal step size, which has the
time complexity O(CIN?). Note that we assume that the
phase shift vector obtained by the LMVS algorithm with
random initial phase shift vector is not in the set C because
the number of possible phase shift vector C™ > Z*. Thus,
the LMVS algorithm is conducted at most twice to find a
local minimum phase shift vector which can be inserted into
the set C, and the time complexity of this step is O(I? M N?3).
To sum up, the time complexity of the global search phase is
O((Z* +1— ZH(I* MN?)).

C. Optimality

In this subsection we analyse the optimality of the PSO
algorithm.
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Proposition 4: In each iteration of the global search phase
in the PSO algorithm, we have

E(la(c')) < E(la(c”)) < E(la(c")), (23)

where E(-) is the expectation operator, ¢’ is the phase shift
vector generated using the steepest descent method, ¢/ is the
phase shift vector with the minimum localization loss in C,
and ¢” is the phase shift vector generated using the LMVS
algorithm with random phase shift vector input.

Proof: See Appendix D. [ |

According to proposition 4, we can show that E(l,(cf?))
decreases when z increases. Specifically, let C* and C**!
denote the sorted set in the z-th and (z + 1)-th iteration,
respectively. Besides, let ¢/* and ¢/>**1 denote the first vector
in the sorted set C* and C*1!, respectively. In the z-th iteration
of the PSO algorithm, the vector ¢’ or ¢”” will be added in the
sorted set C* to generate C**1. According to proposition 4,
we have E(l,(c/**1)) < E(l,(c/#)), which indicates that
when z increases, E(l,(c’#)) will decrease.

For each realization, we have I,(c/**1) < [,(c*) based
on the proof of proposition 4, which means that [,(c’>*) is
non-increasing when z increases. However, since the expec-
tation of [,(cf#) decreases when z increases, [,(c/*) will
decrease after sufficient number of iterations, and thus each
realization will approach the global optimality when Z" is
sufficiently large.

D. Localization Performance

In this subsection, we analyse the localization perfor-
mance in the coarse-grained and fine-grained localization
phase. To evaluate the performance of multi-user localization,
we define the localization error as

1 €
le = fZ”Tz =7l

i€l

(24)

where r¢ is the location of the estimated block’s center for
user 7, and rf is the ground truth.

1) Localization Performance of the Coarse-Grained Local-
ization Phase: According to (9), (16), and (24), the expectation
of the localization error is proportional to the localization loss,
which can be expressed as

e, £%)  la(e) 1
Ele = X = n,n’ ° dinn/v
-1 B S S QM)
:rz;én'
(25)
|Mn_:un’|

1
where d; . = because p; ., = N,Vn cN.

20
The expression of (25) shows that the expectation of local-

ization error E(l.) is negatively related to the RSS differences
|ten — pons|- As a result, the performance of traditional RSS
based schemes are degraded if the RSS differences are small.
However, by integrating the RIS into the RSS based scheme,
the RSS differences |1, — t,,/| can be enlarged to reduce the
expectation of localization error E(l.).

Let d™"™ denote the minimum di e for all blocks.
Therefore, an upper bound of the localization error can
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be expressed as

1 § § min
E(Ze) S m . Yn,n' Q(d " I)- (26)
€L nn'eN
n#n’

Note that the value of mean RSS is limited. Let p™?* and
©™" denote the maximum and minimum possible mean RSS
values, respectively. The corresponding maximum d™"" is

) I _ Mmin
qmin —
20(N —1)

max
(27
The maximum mean RSS value p™%" is realized when the
phases of the signals reflected by the RIS elements are aligned
with the phase of the LOS signal, which can be expressed as

Mmax = +20 10g10 |h10| + Z |hm,n* (Cm)| , (28)
meM

where n* denotes the block that maximizes (28). Since the
| n= (€m )| is positive given any m and n, ™" is positively
related to the number of RIS elements. Besides, ™" is
negatively related to the distances among AP, RIS, and users
according to (4) and (5). As for ™™, it can be achieved when
the LOS signal and the reflection signals are cancelled, which
rely on the precise adjustment of the phase shifts of the RIS
elements.

Consequently, we have the following remark for the local-
ization error in the coarse-grained localization phase:

Remark 1: The localization error in the coarse-grained
localization phase is: 1) positively related to the standard
deviation of RSS and the distances among AP, RIS, and users;
2) negatively related to the number of RIS elements and the
number of element states.

2) Localization Performance of the Fine-Grained Local-
ization Phase: The localization loss in each cycle of the
fine-grained localization phase is related to the prior probabil-
ities. Based on (16) and (17), we have the following remark:

Remark 2: If p; , pi n > 0, the RSS difference |4, — fn/|
needs to minimized to reduce the localization loss. If p; ,, or
Pins & 0, |, — pnr| can take any value.

Different from the coarse-grained localization phase where
the RSS difference needs to be enlarged among all the blocks,
in the fine-grained localization phase, we only need to increase
the RSS differences among blocks with large prior probabil-
ities, which implies that the RSS differences of these blocks
in the optimized phase shift vector is larger than those in the
coarse-grained localization phase. Therefore, the localization
error in this phase is smaller than that in the coarse-grained
localization phase.

The following proposition provides the localization error
after multiple cycles.

Proposition 5: Suppose the phase shift vector in each cycle
is randomly selected, and E(s,,) = p,, where E(s,,) is the
expectation of RSS measured by the user at the n-th block.
When the number of cycles in the fine-grained localization
phase increases, the expectation of localization error E(l,)

converges to zero.
Proof: See Appendix E. [ ]
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TABLE I
SIMULATION PARAMETERS

Parameters ‘ Values ‘
Location of the RIS’s center v (0,0,0)m

Size of the SOI Iy X Iy X L. Ix1x1m3
Number of blocks in the SOI N 125

Location of the AP r4 (—=0.5,0.5,0)m
Power of signal emitted by the AP s? 30dBm
Frequency of signal emitted by the AP f. 2.4GHz

Number of elements in the RIS M 25

Separation between adjacent elements d*® 0.06m

Number of an element’s states C' 4

Amplitude ratio of the reflection coefficient | 1

Power gain of the AP antenna towards the

n-th block g%, !
Power gain of the user antenna at the n-th 1
block towards the AP g;,

Power gain of the AP antenna towards the 1
m-th RIS element g,

Power gain of the user antenna at the n-th 1

block towards the m-th RIS element g, ,,

This proposition implies that a sufficient number of cycles
and an accurate RSS model are necessary for fine-grained
localization. If E(s,,) # fin, which means that the RSS model
deviates from the actual RSS distribution and may occur in
practice, the localization error cannot converge to zero.

VII. SIMULATION RESULTS

In this section, we present the performance of the RIS aided
localization scheme in both the coarse-grained localization
phase and the fine-grained localization phase. The layout of the
localization scheme is shown in Fig. 1, and the corresponding
simulation parameters are listed in Table I. The RIS is on the
plane y = 0, and the RIS center is at the origin (0,0, 0)m. The
SOI with size 1 x 1 x 1m? is divided into 125 blocks with size
0.2 x 0.2 x 0.2m?, and the center of the SOI is at (0,d,0).
The AP is at (—0.5,0.5,0)m, and the signal emitted by the
AP has power s = 30dBm and frequency f. = 2.4GHz.
The RIS consists of 64 elements, and the separation between
neighboring elements is 0.06m. Each element has 4 states with
uniform phase shift and ideal amplitude ratio, i.e., r = 1.
We assume that the AP and the users equip omnidirectional
antennas, and the power gains of the antennas g/, g%, g%, and
G, are equal to 1. The constant € = 1, and parameters Z
and Z" are 2 and 5, respectively. The localization error in the
simulation part is calculated through a Monte Carlo process,
which is given by

(29)

.
b= 30 Dl =l

ne=11€Z

where N is the number of Monte Carlo runs. In each Monte
Carlo run, the user’s position are randomly chosen from all
the blocks in the SOI with equal probability.
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Fig. 3. The localization error [, versus the standard deviation o for different
schemes.

A. Performance Comparison

To evaluate the performance of the proposed scheme,
we provide the performance of the random phase shift scheme
and some state-of-art (SOA) RSS based schemes including the
LLS [45], SOCP-C [46], SOCP-T [47], DEOR [48] schemes.
In the random phase shift scheme, the phase shift vectors are
randomly set in different cycles, while the optimal decision
function is adopted for location estimation.

Fig. 3 presents the localization error [, versus the standard
deviation o for different schemes when d = 1.5m and I = 1.
The number of cycles in the random phase shift scheme
and the proposed schemes in the fine-grained localization
phase is 5. We can observe that for all standard deviations,
the proposed schemes in the fine-grained phase has the lowest
localization error, which shows the superiority of the proposed
scheme over other schemes.?® For example, when o = 4dB,
the localization error of the proposed scheme (I = 0.0479m)
in the fine-grained localization phase is more than 8 times
smaller than that of the SOCP-T scheme (I, = 0.4381m).
Besides, we can also observe that the proposed scheme in the
coarse-grained localization phase has comparable localization
accuracy with the SOA schemes, which indicates the effective-
ness of customizing RSS distributions for localization accuracy
improvement.

B. Simulation for the Coarse-Grained Localization Phase

Fig. 4 shows the localization error [, versus the distance
from the RIS to the SOI d when o = 2dB. It can be
observed that the localization error [, increases with dis-
tance d, which is in accordance with Remark 1. Besides,
we can observe that the localization error [, remains almost
unchanged when the number of users increases. This is
because in the coarse-grained localization phase, the phase
shift vector is fixed, and each user will not influence the
localization processes of other users.

3Since the proposed scheme can provide high precision location information
in 3D space, it can be used for a variety of applications such as tracking of
wearable devices and indoor navigation of mobile vehicles.
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Fig. 5 depicts the localization error [, versus the number of
elements M when o = 2dB and dg = 1.5m. We can observe
that the localization error [, decreases when the number of
elements M and the number of states C increases, which is
also consistent with Remark 1. This indicates the trade-off
between the implementation cost of RIS and the localization
accuracy. Specifically, the ability of RIS to customize the
RSS distribution increases with the number of elements and
states, thus decreasing the localization accuracy, while the
implementation cost of RIS will increase.

C. Simulation for the Fine-Grained Localization Phase

Fig. 6 illustrates the localization loss [, and error [, versus
the number of cycles K when d = 1.5m, I = 1, and 0 = 2dB.
We can observe that the localization errors and the localization
losses of the random and proposed schemes converge to zero,
which is in accordance with Proposition 5. Besides, although
the difference between the localization loss and the localization
error is significant in the first few cycles due to the approxi-
mation when calculating the localization loss, by minimizing
the localization loss in every cycle, the localization error of
the proposed scheme declines faster than that of the random
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Fig. 6. The localization loss l, & error [ versus the number of cycles K
in the fine-grained localization phase.
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Fig. 7. The localization error [ for different number of users / and distance
from the RIS to the SOI dg.

phase shift scheme, which shows the effectiveness of using
the approximated localization loss to evaluate the localization
error.

Fig. 7 depicts the localization error /. for different number
of users I and distance from the RIS to the SOI d when
o = 3dB and the number of cycles K = 3. We can observe
that the localization error [, increases with the distance d and
the number of users /. For each user, the RSS differences
between its location and the neighboring blocks need to be
enlarged in the optimization problem. When more users need
to be considered simultaneously, the RSS differences among
more blocks needs to be enlarged, rendering the increase of
localization error. However, the increased value of localization
error decreases when the number of users increases. This is
because the neighboring blocks of users are more likely to
overlap with those of others users for a larger number of users,
and thus the number of these blocks does not increases linearly
with the number of users.

Fig. 8 shows the localization error [, versus the number of
elements M when o = 3dB and the number of cycles K = 3.
We can observe that the localization error [, increases with
the number of blocks N. When N increases, the RIS has to
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customize the radio environment in a larger range, and thus the
corresponding performance will degrade. Besides, the localiza-
tion error [, decreases when the number of elements increases,
which is similar to the results in the coarse-grained localization
phase.

D. Complexity

To test the complexity of the PSO algorithm, we use a
computer with Intel Core i7-7700 CPU (3.6GHz), 16 GB
RAM, and Matlab 2019b. The simulation time ¢ in each cycle
versus the number of elements M is shown in Fig. 9. It can
be observed that the simulation time of the proposed scheme
roughly linearly increases with the number of elements M,
and quadratically increases with the number of blocks N,
which matches the complexity analysis in Section VI-B.2.
The running time of the random phase shift scheme remains
almost unchanged when the number of elements increases.
This is because we do not need to optimize the phase shifts
in this scheme.

The proposed scheme is also simulated in a SOI with
the size of a typical indoor environment (i.e., I X I, X
I, = 10 x 10 x 3m3® and N = 37500 [49], [50]). Since
the algorithm complexity grows cubically with the number
of blocks, the running time of the PSO algorithm becomes
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extremely long when N = 37500. To address this issue,
we propose an acceleration method for the PSO algorithm.
Specifically, when calculating the localization loss [,(c¢) in
the PSO algorithm, we only consider N,,,, < N blocks
with the largest probabilities, and eliminate other blocks. Let
lo(€, Npmaz) denote the localization loss calculated using the
corresponding N, 4. blocks. Therefore, the time complexity of
calculating I, (¢, Npnaz) is O(IN2,,.), and the time complex-

max

ity of the PSO algorithm becomes O((Z* +1)I?MNN?2, . +
(Z4 41— Z")CIN?), which is much smaller than the original
complexity O((Z* + 1)(I?M N3)).

To estimate the performance of the proposed acceleration
method, in Fig. 10, we show the localization error /. obtained
by the SOA RSS based schemes with 6 APs, the random
scheme, and the proposed scheme using the acceleration
method with N,,,, = 5 versus the overall running time ¢,
in the SOI with size 10 x 10 x 3m?3. The overall running time
of the SOA schemes is t, = dp; + 04, where dp; = 0.1s is
the duration of the RSS measurement [6], [52], and d 4 is the
algorithm running time. Besides, the overall running time of
the random and proposed schemes is t, = K(04+dp+ 0 +
dr), where K is the number of cycles, and 0 and 0 denote
the durations of the broadcast and response steps, respectively.
The durations d4 and dg are set as bms. It can be observed
that the overall running times of SOA schemes are around
0.1s, and the corresponding localization errors are in the range
[1.7,1.9]m. As for the random and proposed schemes, their
overall running times are longer, while the localization errors
can be much smaller compared with the SOA schemes. For
the same overall running time, the localization error obtained
by the proposed scheme is lower than that obtained by the
random scheme, which shows the superiority of the proposed
scheme in terms of the localization accuracy and the overall
running time. Fig. 10 indicates that the SOA schemes and
the proposed scheme can be used for different application
scenarios with different requirements of running time and
localization accuracy. Specifically, the SOA schemes are suit-
able for applications with high requirements of real-time
performance, and the proposed scheme can be an alternative
for applications requiring high localization accuracy.
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VIII. CONCLUSION

In this paper, we have studied the RIS-aided multi-user
wireless indoor localization using the RSS based technique.
We have proposed an RIS-aided multi-user localization pro-
tocol to regulate the localization process, and formulated the
optimization problem for the multi-user localization. To solve
the formulated problem, we have derived the optimal decision
function and designed the PSO algorithm. The effectiveness
of the proposed scheme has been analysed theoretically and
shown by the simulation results. According to theoretical
analysis and simulation, it can be concluded that: 1) compared
with traditional RSS based schemes, the localization error of
the proposed scheme can be degraded by at least 3 times;
2) the localization error of the proposed scheme increases with
the standard deviation of the RSS or the distance between the
RIS and the SOI; 3) the localization error decreases when the
number of RIS elements, the number of element states, or
the number of cycles increases.

APPENDIX A
PROOF OF PROPOSITION 1

The average localization loss can be expressed as

‘C) = Z Z Pin Z Yn,n'

i€Z neN n’eN

X /P(si|c, n) - L(n'|e, si, {pin}) - ds;
- Z/ <n % < Z Pin Yo P(si]c, n)>

€T neN

[’(n/|c7 Sis {pi,n})) . dSz‘

XSt

i€ n’'eN

|C Sla{pz n})) ds;, (30)

where Nin' (S’L) Zne/\/’pi,n’)/n,n’P(sﬂcv n) Since DPins
Yn,n'» and P(s;|e,n) are nonnegative, we have 7; ,,/(s;) > 0.
To minimize the average loss /(c, £), we need to choose the
n/-th block with the minimum 7; ,,/ as the estimated location
for user 7 with RSS s;. Consequently, the decision function £
can be expressed as

]-a S; € Ri,n’

(3D
Oa Si ¢ Ri,n’a

L(n'le, si, {pin}) = {

where Vs; € R; s satisfies

Ni,n’ ( Si)— M, n” Z Pin ’)/n n' — In, n”) (Si|07 n) S 0;
neN
xvn" e N/{n'}. (32)
APPENDIX B
PROOF OF PROPOSITION 2
First, the decision region R;, defined by (14) is

first approximated using a simpler expression. Specifically,
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we divide the set of all the non-negative real numbers into
N subsets, and the n-th subset is defined as

RS, ={si:pinP(si|le,n) > pi nwP(sile,n’),Yn' e N /{n}}.
(33)

Suppose the signal-to-noise ratio (SNR) is high and s; € R} ,,,
the probability P(s;|e,n’) is close to 0 if n' # n. Since
S nen Pin (Y — Yo )P(sile,n) in (14) is the weighted
sum of Gaussian functions with same standard deviation and
different means, we can keep the term with p; ,P(s;|c, n) and
ignore other terms if s; € R; , which can be expressed as

= Yo )P(sile,n) <0,
xvn" e N/{n'}}. (34)
When n = n’, the equation p; »,(Yn.n/ — Yn,n ) P(sile,n) <0
always holds because 7,/ ,,» = 0 and 7y, > 0. If 0 # 1/,
we have pin(Vnn — Y )P(sile,n) > 0 when n” = n.
Therefore, (34) can be expressed as

Ri n’

~ Rz n’

= {s; : pinP(sile,n') > pinP(sile,n),Vn € N /{n'}}

P(sile,n’) _ pin }
={s;: ’ > ,neN/{n
{ P(Silca ’I’L) DPin /{ }
_(Si_ﬂn/) _(i_ﬂn)Q _

202 > Pin ,neN/{n'}

7,n’

Z’ﬂ’

~ . S
Ri,n’ ~ {Si 18 € R@nvpi,n(’)/n,n’

= S;.€

Pin’

,m

= {Si : (S'L' _Mn’)Q - (Sz _Mn)Q < 20°In ,’I’LEN/{TZ/}}-

(35)

The union bound method [51] can provide a tight upper

bound for the region R, for high SNR. The decision region

R; . is replaced by a larger decision region R,/ n, which
can be expressed as

Pisn } . 36)

Ri,n’,n = {51 . (Sz _Mn’)Q - (S'L' _Mn) < 2021
i,n

Consequently, the approximation of the localization loss can
be expressed as

:Z sz,n Z ’)/n,n’/
i€EInEN n'eN 5iE€R,

Next, we provide a simpler expression for the integral
in (37). Specifically, according to (36), the region R, ,, can
be expressed as

Ri,n/,n

P(si|e,n)-ds.  (37)

i,n’,n

= {Sz 028 (pn — Nn) Mn +1u > —20% In =% Pint }
Pin
= {51 228 (fpr — Nn)_ZMTLNn"“ZM?Lzﬂi""ﬂi_zﬂnﬂn’
— 202 In 221 Piw }
Pin
1 2 2. Pin
=950 (8i— ) (pnr — pin) > E(Nn’_ﬂn) —o”In — 0
R
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Since s; follows Gaussian distribution with mean p,, and
variance o2, (8; — ftn) (ftns — i) follows Gaussian distribution
N0, (itns — 1r,)?0?). Therefore, the integral in (37) can be
expressed as

1 9 9. Pin’
= (g — i) — 02 In 22
5 (Hn = pin) in

Ol — pinl

/ P(s;|le,n)-ds= @
S;ER; 1

i,n’,n

(Nn’ - Nn)Q — 202 hlpi,n’/pi,n
20|Mn’ - /-ML| .
Therefore, the localization loss can be approximated as

la(c) = Z Z Pin Z Yn,n' Q(di,n,n’)-

i€ neN n’eN

where d; 5, =

(39)

APPENDIX C
PROOF OF PROPOSITION 3

The Gaussian Q function has an upper bound 1 for any value
of d; , ns.As for the loss parameter ,, ,,, its upper bound can
be expressed as

Yn,n! = ||7'n —’I‘n/” < \/l§+l§+l§

Besides, the sum of prior probabilities ) _\ -pin = 1.
Therefore, we have

la(c) = Z Z Pin Z R Q(diyn,n’)

i€Z neN n’eN

< INLJEZ+ 12+ 12

APPENDIX D
PROOF OF PROPOSITION 4

(40)

(41)

Let C* denote the set of all the local minimum phase shift
vectors. When using the LMVS algorithm with random phase
shift vector input, the probability to generate each phase shift
vector in C* is equal. Therefore, we have

E(la(c")) = E*, (42)

where £ denotes the mean localization loss of the phase shift
vector in C“.

In the first iteration of the global search phase, set C with
7! different phase shift vectors are generated using the LMVS
algorithm with random phase shift vector inputs. Let E*
denote the mean localization loss of phase shift vectors in
C in the first iteration, and we have E(E') = E“ because
phase shift vectors in C are randomly selected from C“.
Besides, since ¢/ is the phase shift vector with the minimum
localization loss in C, we have E(l,(¢/)) < E' = E°.
Using the steepest descent method, we can generate the phase
shift vector ¢/ = (¢f 4 ¢d) mod C. If ¢ # ¢/, we have
lo(¢') < la(c’). Otherwise, I,(c') = l,(c’). Thus, we have

E(la(¢) < E(lo(¢)) < E(EY) = E* = E(l,(c")) (43)

In the z-th iteration, z — 1 phase shift vectors are added
into the set C, and the expectations of their localization loss
are not greater than E“. Let E* denote the mean localization
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loss of phase shift vectors in C in this iteration, and we have
E(E#) < E. Similar to proof in the first iteration, we have

E(l,(c)) < E(la(cf)) <E(E?*) < E®= ]E(la(c”)). 44)
APPENDIX E
PROOF OF PROPOSITION 5

Suppose the number of cycles in the fine-grained localiza-
tion phase is K. The phase shift vectors are randomly selected
in different cycles, which is equivalent to randomly choosing
K phase shift vectors at one time. Therefore, the expectation
of localization error can be expressed as

E((C, £7))
I

1
I|Ce| Z Z Z PinVYn,n

CeCe i€l nin'eN
n#n’

></ P(s;|C,n) - ds,
Sj,E'R," ’

i,n

E(le) =

(45)

where C'is a K x M matrix, and C¢ denotes all the possible
phase shift matrices. The k-th row in C' denotes the phase shift
vector in the k-th cycle. Note that the proof in Appendix VIII
can be extended to the circumstance where K cycles are
considered. According to (35), the decision region R;,’ can
be approximated as

~ s
Ri,n’ ~ RLW
0
. 2 2 21, Pins
= {susi—m —|si — o <207,
,n

xne./\//{n'}},

= {si:]si = * <lsi —p,?n e N/{n'}},
(46)

where S; = (57;71, ey Si,K) and M, = (/-‘n,la . 7Mn,K)~
Suppose that user 7 is at the m’-th block, the decision
region R, can be expressed as

Rf,n/ = {Si:|£i|2 S |£’L + Moy — “’n|2ﬂn € N/{TL,}} )
= {S’i : |£'L|2 < |£i|2+|ll’n/_“n|2+2£i(“’n/_“n)a
xneN/{n'}},
= {sitlin — p* + 26 (1 — 1) 20,

xneN/{n'}}, 47)

where &, = s;—p,,,. When K — oo, the first term |p,, — ., |
is greater than O because the mean RSS value at different
blocks cannot be same for all phase shifts. Besides, the second
term 2&,(p,, — ,,) converges to 0 when K — oo because &,
and (p,, — p,,) are independent, and E(&;) = 0. Therefore,
we have limg . P(s; € Rf,,) = 1.

Similarly, if user ¢ is not located at the n'-th block,
we have limg . P(s; € Rin,) = 0. Consequently, when
K increases, the expectation of localization loss converge to
Zero.
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