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Abstract—To achieve the joint active and passive beamforming
gains in the reconfigurable intelligent surface assisted millimeter
wave system, the reflected cascade channel needs to be accurately
estimated. Many strategies have been proposed in the literature to
solve this issue. However, whether the Cramér-Rao lower bound
(CRLB) of such estimation is achievable still remains uncertain.
To fill this gap, we first convert the channel estimation problem
into a sparse signal recovery problem by utilizing the properties
of discrete Fourier transform matrix and Kronecker product.
Then, a joint typicality-based estimator is utilized to carry out the
signal recovery task. We show that, through both mathematical
proofs and numerical simulations, the solution proposed in this
letter can asymptotically achieve the CRLB.

Index Terms—Reconfigurable intelligent surface, cascade chan-
nel estimation, millimeter wave, Cramér-Rao lower bound, noisy
sparse signal recovery, joint typicality-based channel estimator.

I. INTRODUCTION

RECONFIGURABLE intelligent surface (RIS) technology
is a very promising and cost-effective solution to improve

the spectrum and energy efficiency of wireless communication
systems [1]–[4]. With the assistance of a smart controller, the
RIS can adjust its reflection coefficients such that the desired
signals are added constructively. The joint active and passive
beamforming design has been studied in many existing works
with continuous phase shifts (e.g., [5], [6]) or discrete phase
shifts (e.g., [7], [8]) at reflecting elements. Moreover, the RIS
also can be used in millimeter wave (mmWave) systems [9].

To achieve the above joint active and passive beamforming
gains, the cascade channel should be estimated efficiently and
accurately. However, in the scenario of mmWave channels, it is
difficult to establish a scheme that can simultaneously achieve
high accuracy and efficiency. In consequence, efficiency is the
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priority in the existing work. Several novel strategies have been
proposed to efficiently make such estimations. Authors in [10]
utilized the generalized approximate message passing (GAMP)
algorithm to find the entries of the unknown mmWave channel
matrix. Similarly, in [11], authors adopted the message passing
(MP) based algorithm to estimate the cascade channels. The
orthogonal matching pursuit (OMP) method was used in [12].
Nevertheless, the existing schemes cannot achieve the optimal
estimation accuracy, i.e., the Cramér-Rao lower bound (CRLB)
of channel estimation for RIS-aided mmWave systems.

Contrary to these efficient algorithms, we intend to estab-
lish a scheme which can achieve the CRLB. For this purpose,
we first convert the channel estimation task into a noisy sparse
signal recovery problem through utilizing the properties of the
discrete Fourier transform (DFT) matrix and the Kronecker
product. Then, a joint typicality-based estimator is proposed
to carry out the recovery task and establish the asymptotic
achievability of the CRLB when the product of the number
of receiver antennas and the number of time slots approaches
infinity. The correctness of our result is verified through both
mathematical proofs and numerical simulations. In addition,
based on the sparsity structure established in this letter, our
analysis result can also be applied to the conventional point-to-
point mmWave system which is a special case of RIS-assisted
systems. However, it should be noted that although it is the
first result establishing the achievability of the CRLB of chan-
nel estimation for RIS-assisted mmWave systems, our scheme
is complex and costs a lot of overhead. Thus, finding a
lower-complexity estimator that can simultaneously achieve
the CRLB is the future important work.

II. SYSTEM AND CHANNEL MODEL

A. System Model

We consider an RIS-assisted mmWave system, as illustrated
in Fig. 1, where the base station (BS) and the mobile station
(MS) are equipped with Ns and Nd antennas, respectively, and
the RIS is equipped with Nr reflecting elements. Although the
BS and the MS are equipped with a large number of antennas,
they can fit within the compact form because of the small
wavelength of mmWave. In this letter, to better illustrate our
results, we neglect the direct link from the BS to the MS.
Nevertheless, the extension to the scenario with the direct link
is straightforward. In addition, due to the inherent sparsity of
mmWave channels [13], there exists only a dominant line-of-
sight path and very few non-line-of-sight paths in the BS-RIS
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Fig. 1. The RIS-assisted mmWave communication system with an
Ns-antenna BS, an Nd-antenna MS, and an RIS comprising Nr reflecting
elements.

link and the RIS-MS link. Then, the elevation (azimuth) angle-
of-departure (AoD) of the i th path at the BS and the RIS are
denoted as θi (φi ) and γ′i (μ′i ), respectively, and the elevation
(azimuth) angle-of-arrival (AoA) of the i th path at the RIS
and the MS are denoted as γi (μi ) and ϑi (ϕi ), respectively.

B. Channel Model

Due to the inherent sparse nature of mmWave channels, the
number of paths between the BS and RIS is small relative to
the dimensions of BS-RIS channel matrix G′, and we assume
it is at most L′. Then, G′ can be modeled as follows:

G′ =

√
NsNr

ρ′
L′∑
i=1

αiar(γi , μi )a
H
s (θi , φi ), (1)

where ρ′ denotes the average path-loss between the BS and the
RIS, αi is the propagation gain associated with the i th path,
and ar(γi , μi ) and as(θi , φi ) are the array response vectors at
the BS and RIS, respectively. We assume that the RIS deployed
here is an Nr,h × Nr,w uniform planar array. Then, we have

as(θi , φi ) = [ej (1−1)us , ej (2−1)us , . . . , ej (Ns−1)us ]T, (2)

ar(γi , μi ) = ar,h(γi , μi )⊗ ar,w(γi , μi )

= [ej (1−1)ur,h , ej (2−1)ur,h , . . . , ej (Nr,h−1)ur,h ]T

⊗ [ej (1−1)ur,w , ej (2−1)ur,w , . . . , ej (Nr,w−1)ur,w ]T,

(3)

where ⊗ represents the Kronecker product, the directional
parameters: us = 2πd

λ sin(θi ) cos(φi ), ur,h = 2πd
λ cos(γi ),

and ur,w = 2πd
λ sin(γi ) cos(μi ), d is the separation between

antennas (reflecting elements) at the BS (RIS), and λ is the
wavelength of transmitted signal. Similarly, we assume that
the number of paths between the RIS and MS is at most L′′.
Then, the RIS-MS channel matrix G′′ is modeled as follows:

G′′ =

√
NrNd

ρ′′
L′′∑
i=1

βiad(ϑi , ϕi )a
H
r (γ

′
i , μ

′
i ), (4)

where ρ′′ denotes the average path-loss between the RIS and
the user, βi is the propagation gain associated with the i th

path, and ad(ϑi , ϕi ) is the array response vector at the MS,
which can be written as

ad(ϑi , ϕi ) = [ej (1−1)ud , ej (2−1)ud , . . . , ej (Nd−1)ud ]T, (5)

where ud = 2πd
λ sin(ϑi ) cos(ϕi ). Based on the BS-RIS and

RIS-MS channel models established in (1) and (4), the overall
Nd × Ns channel matrix H can be expressed as

H = G′′ΦG′, (6)

where the diagonal matrix Φ = diag [ej�] is the response at
the RIS,1 and the Nr dimensional vector � = [�1, . . . , �Nr

]T

represents the phase shifts of reflecting elements at the RIS.
Then, the received signals Y ∈ C

Ns×K at the BS over K
time slots can be expressed as

Y = UH
s

[
HH(UdX) +N

]
= UH

s H
HUdX+ Ñ, (7)

where Ud and UH
s are the transmit beamforming and receive

combining matrices, respectively, X represents the pilot signal
transmitted by the MS, Ñ is the additive white Gaussian noise
with the elements independently drawn from CN (0, σ2). The
i th columns of X and Ñ are corresponding to the i th time slot,
and we denote the transmit power as pMS = E{xH[i ]x [i ]}.

III. SPARSE STRUCTURE OF CASCADE CHANNEL

Before estimating the cascade channel H, the first problem
we are facing now is how to convert the estimation task into a
noisy sparse signal recovery problem since the representation
of H in (6) is not visibly sparse. To this end, pre-discretized
grids can be utilized to establish the sparse representation [12].
However, this method may cause grid mismatch and estimation
accuracy reduction. Another issue we should note is that even
mildly ill-conditioned sensing matrices can lead to estimation
failure in a compressed sensing problem [14], [15]. In order
to prevent these issues, we give the sparse representation by
expressing the cascade channel in the angular domain based
on suitable DFT bases. Thus, the beamforming matrices Ud
and UH

s are set as the Nd × Nd and Ns × Ns spatial unitary
DFT matrices, respectively. A given path with the directional
parameters us and ud, which are defined under (3) and (5), has
almost all of its energy along the particular vectors [Us]:,m
and [Ud]:,n , and very little along all the others, if m and n
satisfy [10]: ∣∣∣∣us − 2π(m − 1)

Ns

∣∣∣∣ < 2π

Ns
, (8)∣∣∣∣ud − 2π(n − 1)

Nd

∣∣∣∣ < 2π

Nd
. (9)

In order to illustrate visually, Fig. 2 plots a specific realization
for the channel magnitude in the angular domain. As seen from
it, the true channel is indeed sparse in the angular domain, i.e.,
it exhibits a few dominant coefficients. Consequently, the RIS-
assisted mmWave channel is inherently sparse in the angular
domain if expressed in suitable DFT bases.

1Since the RIS is a passive device, each reflecting element is usually
designed to maximize the signal reflection. Thus, we set the amplitude of
reflection coefficient equal to one for simplicity in this letter.
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Fig. 2. Angular-domain channel for Ns = 50, Nd = 50, and Nr = 40.
BS-RIS channel has 2 paths and RIS-MS channel has 2 paths.

Utilizing the DFT beamforming matrices Ud and UH
s and

vectorizing the received signals Y at the BS yields

y = vec
{
UH
s H

HUdX+ Ñ
}
= vec(H̃HX) + vec(Ñ)

(a)
=
(
XT ⊗ INs

)
vec(H̃H) + vec(Ñ) = Υυ + n , (10)

where H̃H = UH
s H

HUd is the cascade channel represented in
the angular domain, υ = vec(H̃H) is the sparse signal that
we need to recover, Υ = XT ⊗ INs

denotes the measurement
matrix, n = vec(Ñ) is the additive Gaussian noise, and the
equality (a) follows from the relation of the vectorization of
the matrix product to the Kronecker product [16]. We assume
that υ is sparse with at most L ∝ L′ × L′′ non-zero entries
in unknown locations. The sparse-level L is actually a prior
information and is related to the number of paths. Once υ is
recovered, an estimate of H is readily obtained as follows:

Ĥ = Ud
ˆ̃HUH

s , (11)

where ˆ̃HH = unvec(υ̂) and υ̂ is an estimate of υ. Moreover,
the estimate of vec(H) = (G′T ⊗G′′) vec(Φ) [16] is enough
to configure the phase shifts at RIS because the beamforming
problem can be converted to an optimization problem which
maximizes ‖H‖2F = ‖ vec(H)‖22 with respect to vec(Φ).

IV. ASYMPTOTIC ACHIEVABILITY OF THE CRAMÉR-RAO

LOWER BOUND VIA JOINT TYPICALITY ESTIMATOR

Many classical compressed sensing algorithms such as basis
pursuit (BP) [17] and orthogonal matching pursuit (OMP) [18]
can be utilized to recover the sparse signal υ. However, these
algorithms always choose the locally optimal approximation to
the actual sparse signal [17]–[21]. Thus, in this section, we uti-
lize the Shannon theory and the notion of joint typicality [22]
to asymptotically achieve the CRLB of the channel estimation
for RIS-assisted mmWave systems where the estimator has no
knowledge of the actual locations of the non-zero entries in υ.
To prove the asymptotic achievability of the CRLB, we first
state the following lemma.

Lemma 1: Let the set J ⊂ {1, . . . ,NdNs} such that
|J |=L and ΥJ be the sub-matrix of the measurement matrix
Υ with the columns corresponding to the index set J . Then,
we have rank(ΥJ ) = L with probability 1.

Proof: First, we consider the rank of XT. The (m,n)th

entry of it represents the pilot symbol transmitted by the nth

antenna at the mth time slot. Thus, all of the entries in it are
independent and designable. For simplicity, we set them as
independent and identically distributed (i.i.d.) and distributed
according to CN (0, 1). Let x i and x j be two columns of XT.
Utilizing the law of large numbers yields

xH
i x j =

∑
k

x∗k ,ixk ,j → 0, i �= j , (12)

as K goes to infinity. Thus, the columns of XT are mutually
orthogonal with probability 1, i.e., XT is a full column rank
matrix when K > Nd. Then, due to INs

is a unit matrix,
it has a full column rank. By utilizing the rank property of
the Kronecker product: rank(Υ) = rank(XT) rank(INs

), we
prove the statement of this lemma.

Then, to establish the joint typicality-based channel estima-
tor, we need to define the notion of joint typicality. We adopt
the definition from [22] which is given as follows.

Definition 1 (δ-Jointly Typicality): The received signal y
collected over K time slots, and the set of indices J ⊂
{1, 2, . . . ,NdNs} with |J | = L are δ-jointly typical, if
rank(ΥJ ) = L and∣∣∣∣ 1

KNs
‖Π⊥

ΥJ y‖2 − KNs − L

KNs
σ2
∣∣∣∣ < δ, (13)

where ΥJ is the sub-matrix of the measurement matrix Υ with
the columns corresponding to the index set J , and Π⊥

ΥJ =

I−ΥJ (ΥH
JΥJ )−1ΥH

J is the orthogonal projection matrix.
Next, we establish the following proposition to show that the

proposed estimator can be applied to the considered problem.
Proposition 1: The joint typicality-based estimator can be

utilized to estimate the cascade channel in an RIS-assisted
mmWave system, i.e., solve the noisy sparse signal recovery
problem in Eq. (10). The detailed channel estimation steps are
illustrated in Algorithm 1.

Proof: The measurement matrix Υ in (10) is proved to be
full column rank in Lemma 1, which ensures that the sub-
spaces spanned by different L column vectors chosen from the
measurement matrix Υ are different. Based on Definition 1,
if L column vectors are chosen correctly, there exists only
additive white Gaussian noise in the orthogonal complement.
Thus, the joint typicality-based estimator can be utilized to
solve the noisy sparse signal recovery problem in (10).

In order to further prove that we can asymptotically achieve
the CRLB on the estimation error where the estimator has no
knowledge of the locations of the non-zero entries in υ, we
state the following lemmas.

Lemma 2: For any unbiased estimate υ̂ of υ, the Cramér-
Rao lower bound on the MSE is given as

E

{
‖υ̂ − υ‖2

}
≥ σ2Tr

[
(ΥH

IΥI)−1
]
. (14)

Proof: The likelihood function of the random vector y
conditioned on υ is

p(y ;υ) =
exp
(
− 1

2σ2 ‖y −ΥIυI‖2
)

(2π)KNs/2σKNs
, (15)

where υI is the subvector of υ with elements corresponding
to the index set I. Then, by using (6) in [23], the CRLB can
be written as (14).
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Algorithm 1 Joint Typicality-Based Channel Estimator
1: Input: The numbers of antennas Ns at the BS and Nd at

the MS, the pilot signal X, the received signal vector y,
and the maximal sparse-level L.

2: while the index set Ji−1 is not δ-jointly typical with y
do

3: i th iteration of all the possible
(NdNs

L

)
L-dimensional

sub-spaces:
4: Determine whether the following inequality is satisfied.∣∣∣∣ 1

KNs
‖Π⊥

ΥJi
y‖2 − KNs − L

KNs
σ2
∣∣∣∣ < δ

5: If it is satisfied, compute the estimate υ̂ by projecting
the received signal y onto the sub-space spanned by
ΥJi

.
υ̂ = (ΥH

Ji
ΥJi

)−1ΥH
Ji
y

6: end while
7: If there exists no set that is δ-jointly typical to y, it outputs

the zero vector.
8: Output: The channel estimate ĤH = Us unvec(υ̂)U

H
d .

Lemma 3 [24, Lemma 2.3]: Let I = supp(υ) and
rank(ΥI) = L. Then, for δ > 0, it holds that

P

(∣∣∣∣ 1

KNs
‖Π⊥

ΥJ y‖2 − KNs − L

KNs
σ2
∣∣∣∣ > δ

)

≤ 2 exp

(
− δ2

4σ4
K 2N 2

s

KNs − L+ 2δ
σ2KNs

)
. (16)

Let J be an index set such that |J | = L, |I ∩ J | < L, and
rank(ΥJ ) = L. Then, for δ > 0, it holds that

P

(∣∣∣∣ 1

KNs
‖Π⊥

ΥJ y‖2 − KNs − L

KNs
σ2
∣∣∣∣ < δ

)

≤ exp

⎛
⎝L−KNs

4

( ∑
k∈I\J |υk |2 − δ′∑
k∈I\J |υk |2 + σ2

)2
⎞
⎠, (17)

where υk is the k th entry in υ and

δ′ = δ
KNs

KNs − L
. (18)

Proof: Please refer to [24] for the proof.
Finally, based on the above lemmas, we establish the asymp-

totic achievability of the CRLB in the following theorem.
Theorem 1: By utilizing the joint typicality-based channel

estimator given in Algorithm 1, the MSE of cascade channel
estimation in an RIS-assisted mmWave system asymptotically
achieves the CRLB as the product of the number of receiver
antennas and the number of time slots tends to infinity. This
bound can be asymptotically achieved whether the estimator
knows the location of the non-zero entries.

Proof: The MSE of the joint typicality estimator (averaged
over all possible measurement matrices) can be upper-bounded
as follows:

εδ(KNs) = E

{
‖υ̂ − υ‖2

}
≤
∫
Υ
‖υ‖2P(E0)dP(Υ)

+

∫
Υ
En |Υ

{
‖(ΥH

IΥI)−1ΥH
I y − υ‖2

}
× P(I ∼ y)dP(Υ)

+

∫
Υ

∑
J �=I

En |Υ
{
‖(ΥH

JΥJ )−1ΥH
J y − υ‖2

}
× P(J ∼ y)dP(Υ), (19)

where P(·) represents the event probability defined over the
noise density, the event E0 represents the estimator does not
find any set δ-jointly typical to y, dP(Υ) represents the prob-
ability measure of the matrix Υ, and the inequality follows
from the Boole’s inequality. The second term is correspond-
ing to I and is the MSE of a genie-aided estimation where
the estimator knows supp(υ). We rewrite it as follows:∫

Υ
En |Υ

{
‖(ΥH

IΥI)−1ΥH
I y − υ‖2

}
P(I ∼ y)dP(Υ)

= En ,Υ

{
‖(ΥH

IΥI)−1ΥH
I n‖2

}
= EΥ

{
σ2Tr(ΥH

IΥI)−1
}
.

(20)

By using Lemma 2, we obtain that the second term in (19) is
the CRLB of the genie-aided cascade channel estimation.

Next, we show that the first and third term in (19) converge
to zero when KNs → ∞. By using Lemma 3, the first term
can be upper-bounded as∫

Υ
‖υ‖2P(E0)dP(Υ)

≤ 2‖υ‖2 exp
(
− δ2

4σ4
K 2N 2

s

KNs − L+ 2δ
σ2KNs

)
. (21)

This term approaches to zero as KNs → ∞, since ‖υ‖2 grows
polynomially in Ns and the exponential term tends to negative
infinity as KNs → ∞. By using Lemma 3, the third term can
be upper-bounded as∫

Υ

∑
J �=I

En |Υ
{
‖(ΥH

JΥJ )−1ΥH
J y − υ‖2

}
× P(J ∼ y)dP(Υ)

≤ (Lσ2 + ‖υ‖2)
∫
Υ

∑
J �=I

En |ΥP(J ∼ y)dP(Υ)

≤ (Lσ2 + ‖υ‖2)

×
∑
J �=I

exp

⎛
⎝L−KNs

4

(∑
k∈I\J |υk |2 − δ′∑
k∈I\J |υk |2 + σ2

)2
⎞
⎠. (22)

This term tends to zero as KNs → ∞, since (Lσ2 + ‖υ‖2)
grows polynomially in Ns and (L − KNs) tends to negative
infinity as KNs → ∞.

V. NUMERICAL RESULTS

In this section, we numerically illustrate the result given in
Theorem 1. To verify whether the CRLB of cascade channel
estimation for RIS-assisted mmWave communication systems
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Fig. 3. The performance of joint typicality-based channel estimator versus
the time slot number with different SNRs.

can be asymptotically achieved when the product of time slot
number and receiver antenna number KNs tends to infinity,
Fig. 3 simultaneously plots the curves of the CRLB, the MSE
upper bound, and the performance of joint typicality estimator
versus the time slot number K with different signal-to-noise
ratios (SNRs) selected from the set of {20 dB, 30 dB, 40 dB}.

In this figure, the numbers of antennas at the BS and the MS
are both set as 5, and the number of reflecting elements at the
RIS is set as 10. The path numbers in the BS-RIS channel and
the RIS-MS channel are both set as 1. In addition, the numer-
ical results in Fig. 3 are obtained through 1, 000 Monte Carlo
trials. It is observed that the CRLB can be achieved as the
time slot number tends to infinity, which confirms the result
in Theorem 1. When we fix the time slot number K and change
receiver antenna number Ns, the curves are similar to Fig. 3,
and we omit it due to the space limitation. It is encouraging
not only because the CRLB of cascade channel estimation for
RIS-assisted mmWave systems can be asymptotically achieved
but also because we can decrease the number of time slots con-
sumed in channel estimation through increasing the number of
receiver antennas.

VI. CONCLUSION

In this letter, we consider the estimation of the cascade
channel in an RIS-assisted mmWave communication system.
By utilizing the joint typicality-based channel estimator, the
MSE of estimation can asymptotically achieve the CRLB as
the product of the number of receiver antennas and the number
of time slots tends to infinity, and this bound can be asymp-
totically achieved whether the estimator knows the locations
of the non-zero entries. To the best of our knowledge, it is
the first research which establishes the asymptotic achievabil-
ity of the CRLB of the cascade channel estimation for the
RIS-assisted mmWave systems. Our result also reveals that
the training overhead can be reduced through deploying more
receiver antennas. However, there is an important issue that
our established scheme is complex and costs a lot of overhead,
thus finding a lower-complexity estimator that can simultane-
ously achieve the CRLB for RIS-assisted mmWave systems is
an important work in future studies.
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