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Abstract— Using RF signals for wireless sensing has gained
increasing attention. However, due to the unwanted multi-path
fading in uncontrollable radio environments, the accuracy of
RF sensing is limited. Instead of passively adapting to the
environment, in this paper, we consider the scenario where
an intelligent metasurface is deployed for sensing the existence
and locations of 3D objects. By programming its beamformer
patterns, the metasurface can provide desirable propagation
properties. However, achieving a high sensing accuracy is chal-
lenging, since it requires the joint optimization of the beamformer
patterns and mapping of the received signals to the sensed
outcome. To tackle this challenge, we formulate an optimization
problem for minimizing the cross-entropy loss of the sensing
outcome, and propose a deep reinforcement learning algorithm
to jointly compute the optimal beamformer patterns and the
mapping of the received signals. Simulation results verify the
effectiveness of the proposed algorithm and show how the size
of the metasurface and the target space influence the sensing
accuracy.

Index Terms— RF 3D sensing, metasurface, deep reinforcement
learning, policy gradient algorithm, beamformer pattern design.

I. INTRODUCTION

RECENTLY, leveraging widespread radio-frequency (RF)
signals for wireless sensing applications has attracted

growing research interest. Different from methods based on
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wearable devices or surveillance cameras, RF sensing tech-
niques need no direct contact with the sensing targets [1].
The basic principle behind RF sensing is that the influence
of the target objects on the propagation of wireless signals
can be potentially recognized by the receivers [2]. RF sensing
techniques can be widely applied to many scenarios of daily
life, such as surveillance [3], crowd sensing [4], ambient
assisted living [5], and remote health monitoring [6]. In these
applications, it is crucial to have high sensing accuracies.

Many RF-based sensing methods based on WiFi sig-
nals or millimeter wave signals have been proposed for
sensing and recognizing human being and objects. In [7],
the authors designed an RF sensing system that can
detect the location and type of moving objects by using
WiFi signals. In [8], the authors proposed a deep learn-
ing based RF sensing framework that can remove envi-
ronmental and subject-specific information and can extract
environmental/subject-independent features contained in the
sensing data. In [9], the authors designed a low-power RF sens-
ing system that automatically collects the behavioral patterns
of people.

In addition, using RF sensing to capture human beings and
indoor scenes has being explored. In [10], [11], the authors
used wide-band RF transceivers with multiple-input-multiple-
output (MIMO) antennas to capture images of human skele-
tons and showed that it is possible to reconstruct the human
skeleton even when the RF signals are blocked by walls.
In [12], the authors proposed to use mutually orthogonally
coded millimeter wave signals to image the scenes including
human beings and objects. However, using RF signals for
sensing usually encompasses a signal collection and analysis
process that assumes the radio channel environment to be
fixed. The radio environment is unpredictable and usually
unfavorable, and thus the sensing accuracy of conventional RF
sensing methods is usually affected by unwanted multi-path
fading [13], [14], and/or unfavorable propagation channels
from the RF transmitters to the receivers.

Intelligent metasurfaces have been proposed as a promising
solution for turning unwanted propagation channels into favor-
able ones [15], [16]. A metasurface is composed of a large
number of electrically reconfigurable elements, which applies
different phase-shifts to the RF signals that impinge upon
it [17], [18]. By programming the reconfigurable elements,
a metasurface deployed in the environment can change the
RF propagation channel and create favorable signal beams
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for sensing [19]. We refer to the coding of the reconfig-
urable elements as the beamformer patterns of the metasur-
face. Through dynamically designing the beamformer patterns,
a metasurface can actively control the RF signal beams in
the sensing process, which potentially improves the sensing
accuracy. Instead of employing complex and sophisticated
RF transmitters and receivers [20], metasurface-assisted RF
sensing paves a new way of developing RF sensing methods,
which have the capabilities of controlling, programming, and
hence customizing the wireless channel. The authors of [21]
explored the use of metasurfaces to assist the RF sensing and
to obtain 2D images for human beings. In [22], the authors pro-
posed a metasurface-assisted RF system to obtain localization
information of mobile users. Nevertheless, no research works
have tackled the analysis and design of metasurface-assisted
3D RF sensing, which is more challenging to analyze and
optimize than 2D RF sensing.

In this paper, we consider a metasurface-assisted RF 3D
sensing scenario, which can sense the existence and locations
of 3D objects in a target space. Specifically, by programming
the beamformer patterns, the metasurface performs beam-
forming and provides desirable RF propagation properties for
sensing. However, there are two major challenges in obtaining
high sensing accuracy in metasurface-assisted RF sensing
scenarios.

• First, the beamformer patterns of the metasurface need
to be carefully designed to create favorable propagation
channels for sensing.

• Second, the mapping of the received signals, i.e., the
mapping from the signals received at the RF receiver to
the sensing results of the existence and locations of the
objects, needs to be optimized as well.

Nevertheless, the complexity of finding the optimal
beamformer patterns is extremely high because the associated
optimization problem is a discrete nonlinear programming
with a large number of optimization variables. Besides,
the optimization of the beamformer patterns and the mapping
of the received signals are closely coupled together, which
makes optimizing the sensing accuracy in metasurface-assisted
RF sensing scenarios even harder.

To tackle these challenges, we formulate an optimization
problem for sensing accuracy maximization by minimizing the
cross-entropy loss of the sensing results with respect to the
beamformer patterns and the mapping of the received signals.
In order to solve the problem efficiently, we formulate a
Markov decision process (MDP) for the optimization problem
and propose a deep reinforcement learning algorithm. The
proposed deep reinforcement learning algorithm is based on
the policy gradient algorithm [23] and is referred to as the
progressing reward policy gradient (PRPG) algorithm, since
the reward function of the MDP is consistently improved
during the learning process. The computational complexity and
the convergence of the proposed algorithm are analyzed. More-
over, we derive a non-trivial lower-bound for the sensing accu-
racy for a given set of beamformer patterns of the metasurface.
Simulation results verify the effectiveness of the proposed
algorithm and showcase interesting performance trends about
the sensing accuracy with respect to the size of the metasurface

Fig. 1. Illustration of the metasurface-assisted RF sensing scenario.

and the target space. In particular, the contributions of this
paper can be summarized as follows.

• We consider a metasurface-assisted RF sensing scenario
which can sense the existence and locations of objects
in a 3D space. Then, we formulate an optimization
problem to minimize the cross-entropy loss of the sensing
results through optimizing the beamformer patterns and
the mapping of the received signals. To this end, we adopt
an MDP-based framework.

• We propose a deep reinforcement learning algorithm
named PRPG to solve the formulated MDP. The com-
plexity and the convergence of the proposed algorithm are
analyzed, and a non-trivial lower-bound for the sensing
accuracy is derived.

• We use simulation results to verify that the proposed algo-
rithm outperforms other benchmark algorithms in terms
of training speed and sensing accuracy. The simulation
results unveil trends about the sensing accuracy as a
function of the size of the metasurface and the target
space, which gives insights on the implementation of
practical metasurface-assisted RF sensing systems.

The rest of this paper is organized as follows. In Section II,
we introduce the model of the metasurface-assisted RF sens-
ing scenario. In Section III, we formulate the optimization
problem to optimize the sensing accuracy by minimizing the
cross-entropy loss of the sensing results. In Section IV, we for-
mulate an MDP for the optimization problem and then propose
the PRPG algorithm to solve it. In Section V, the complexity
and convergence of the PRPG algorithm are analyzed, and a
lower-bound for the sensing accuracy is derived. Simulation
results are provided in Section VI and conclusions are drawn
in Section VII.

II. SYSTEM MODEL

In this section, we introduce the metasurface-assisted 3D
RF sensing scenario, which is illustrated in Fig. 1. In this
scenario, there exists a pair of single-antenna RF transceivers,
a metasurface, and a target space where the objects are
located. The metasurface reflects and modifies the incident
narrow-band signals at a certain frequency fc. The Tx unit
and Rx unit of the transceiver transmits and receives at fc,
respectively. The target space is a cubical region that is
discretized into M equally-sized space grids. Each space grid
is of size Δlx × Δly × Δlz .

The sensing process adopted in the considered scenario can
be briefly described as follow. The signals transmitted by the

Authorized licensed use limited to: Princeton University. Downloaded on July 03,2022 at 21:01:58 UTC from IEEE Xplore.  Restrictions apply. 



2184 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 7, JULY 2021

Tx unit are reflected and modified by the metasurface before
entering into the target space. The modified signals are further
reflected by the objects in the target space and received by the
Rx unit. Then, the Rx unit maps the received signals to the
sensing result, which indicates whether an object exists in each
space grid.

In the following, we introduce the metasurface model in
Subsection A, the channel model accounting for the metasur-
face in Subsection B, and the sensing protocol in Subsection C.

A. Metasurface Model
A metasurface is an artificial thin film of electromagnetic

reconfigurable material, which is composed of uniformly dis-
tributed reconfigurable elements [24]. As shown in Fig. 1,
the reconfigurable elements of the metasurface are arranged in
a two-dimensional array. By controlling the positive-intrinsic-
negative (PIN) diodes coupled with each reconfigurable ele-
ment, the reconfigurable element can adjust its electromagnetic
response to the incident RF signals. For each reconfigurable
element, we refer to the different responses to incident RF
signals as the reconfigurable element’s configuration as in [25].
By changing the configuration of each reconfigurable element,
the metasurface is able to modify the reflected signals and
perform beamforming [26].

We assume that each reconfigurable element has NS con-
figurations, and each configuration of an element has a unique
reflection coefficient for the incident RF signals. To be specific,
we assume that each row and column of the metasurface
contain the same number of reconfigurable elements, and the
total number of reconfigurable elements is denoted by N .
Based on [27], we denote the reflection coefficient of the
n-th reconfigurable element corresponding to the incident
signal from the TX unit and the reflected signal towards the
m-th space grid by rn,m(cn). Here, cn ∈ [1, NS ] denotes the
configuration of the n-th reconfigurable element and cn ∈ Z,
where Z denotes the set of integers.

B. Channel Model

In the considered metasurface-assisted RF sensing scenario,
the Tx unit and Rx unit are equipped with a single antenna
to transmit and receive RF signals. The Tx antenna is a
directional antenna, which points towards the metasurface
so that most of the transmitted signals are reflected by the
metasurface and propagate into the target space. The signals
reflected by the metasurface are reflected by the objects in the
target space and then reach the Rx antenna. The Rx antenna
is assumed to be omni-directional and located right below the
metasurface, as shown in Fig. 1. This setting ensures that the
signals reflected by the metasurface are not directly received
by the Rx antenna, and thus most of the received signals
contain the information of the objects in the target space.

As shown in Fig. 1, the transmission channel from the Tx
antenna to the Rx antenna comprises three types of paths,
i.e., the line-of-sight (LoS) path, the reflection paths, and the
environmental scattering paths. The LoS path is referred to
the direct signal path from the Tx antenna to the Rx antenna.
The reflection paths are the paths from the Tx antenna to the

Rx antenna via the reflections from the metasurface and the
objects in the target space. The environmental scattering paths
account for the signals paths between the Tx antenna and the
Rx antenna which encompass complex reflection and scat-
tering in the surrounding environment. Then, the equivalent
baseband representation of the received signal containing the
signals from all these three types of paths is denoted by y and
can be expressed as

y = hlos ·
√
P · x+

M∑
m=1

N∑
n=1

hn,m(cn, νm) ·
√
P · x

+hrl ·
√
P · x+ σ, (1)

where P is the transmit power, and x denotes the transmitted
symbol.

The terms in (1) can be explained in detail as follows. The
first term, i.e., hlos · P · x, corresponds to the signal received
in the LoS path, where hlos denotes the channel gain. Based
on [28], hlos can be expressed as

hlos =
λ

4π
·
√
gT gR · e−j2πdlos/λ

dlos
, (2)

where λ is the wavelength of the signal, gT and gR denote
the gains of the Tx and Rx antennas, respectively, and dlos is
the distance from the Tx antenna to the Rx antenna.

The second term in (1) corresponds to the signals that reach
the Rx antenna via N ·M reflection paths. In the second term,
hn,m(cn, νm) denotes the gain of the reflection path via the
n-th reconfigurable element in configuration cn and the m-th
space grid with reflection coefficient νm. Based on [26], [29],
hn,m(cn, νm) can be formulated as follows

hn,m(cn, νm)=
λ2 ·rn,m(cn)·νm ·√gTgR ·e−j2π(dn+dn,m)/λ

(4π)2 · dn · dn,m
,

(3)

where dn denotes the distance from the Tx antenna to the n-th
reconfigurable element and dn,m denotes the distance from the
n-th reconfigurable element to the Rx antenna via the center
of the m-th space grid.

Finally, the third and fourth terms in (1) correspond to
the signals from the environmental scattering paths and the
additive noise at the Rx antenna, respectively. The symbol
hrl ∈ C denotes the equivalent gain of all the environmental
scattering paths, and σ is a random signal that follows the
complex normal distribution, σ ∼ CN (0, ε) with ε being the
power of the noise.

Moreover, we refer to the vector of configurations selected
for the N reconfigurable elements as a beamformer pattern
of the metasurface, which can be represented by an N ×
NS-dimensional binary row vector c = (ô(c1), . . . , ô(cN )).
Specifically, ô(i) (∀i ∈ [1, NS ]) denotes the NS-dimensional
row vector whose i-th element is 1 and the other elements
are 0. Based on the definition of the beamformer pattern,
the received signal in (1) can be reformulated as

y = hlos ·
√
P · x+ cAν ·

√
P · x+ hrl ·

√
P · x+ σ, (4)

where ν = (ν1, . . . , νM ) denotes the vector of reflection coef-
ficients of the M space grids, A = (α1, . . . ,αM ) is referred
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Fig. 2. A cycle of the RF sensing protocol.

to as the projection matrix, and αm = (α̂m,1, . . . , α̂m,N )T

with α̂m,n = (α̂m,n,1, . . . , α̂m,n,NS). Also, for all m ∈
[1,M ], n ∈ [1, N ], and i ∈ [1, NS ], α̂m,n,i denotes the
channel gain of the reflection path via the n-th reconfigurable
element in configuration i and the m-the space grid with a
unit reflection coefficient, which can be expressed as follows
based on (3).

α̂m,n,i =
λ2 · rn,m(i) · √gT gR

(4π)2dndn,m
· e−j2π(dn+dn,m)/λ. (5)

C. RF Sensing Protocol

To describe the RF sensing process in the metasurface-
assisted scenario clearly, we formulate the following RF sens-
ing protocol. In the protocol, the timeline is slotted and divided
into cycles, and the Tx unit, the Rx unit, and the metasurface
operate in a synchronized and periodic manner. As shown
in Fig. 2, each cycle consists of four phases: a synchronization
phase, a calibration phase, a data collection phase, and a data
processing phase. During the synchronization phase, the Tx
unit transmits a synchronization signal to the metasurface and
to the Rx unit, which identifies the start time of a cycle.

Then, in the calibration phase, the Tx unit transmits a
narrow band constant signal, i.e., symbol x, at frequency
fc. The metasurface sets the beamformer pattern to be
c0 = (ô(1), . . . , ô(1)), i.e., the N reconfigurable elements are
in their first/default configuration. Besides, the received signal
of the Rx unit is y0.

The data collection phase is divided into K frames that
are evenly spaced in time. During this phase, the Tx unit
continuously transmits the narrow band RF signal, while the
metasurface changes its beamformer pattern at the end of each
frame. As shown in Fig. 2, we denote the beamformer patterns
of the metasurface corresponding to the K frames by the
binary row vectors c1, . . . cK . Specifically, the K beamformer
patterns of the metasurface during the data collection phase
constitutes the control matrix, which is denoted by C =
(cT

1 , . . . , c
T
K)T . Besides, as ck is a binary row vector, control

matrix is a binary matrix.
To remove the signal from the LoS path which contains no

information of the target space, the received signals in the K
frames are subtracted by y0. The K differences constitute the
measurement vector, which is a noisy linear transformation of
ν by the matrix Γ , i.e.,

ỹ = y − y0 = Γν + σ̃, (6)

where Γ =
√
P ·x · (C−C0)A with C0 = (cT

0 , . . . , c
T
0 )T , y

is a K-dimensional vector consisting of the sampled received
signals during the K frames that can be calculated by (4), y0

is a K-dimensional vector with all the elements being y0,
and σ̃ is the difference between the noise signals and the
environmental scattering signals, i.e., y and y0. We assume
that the environment in the considered scenario is static or
changing slowly. In this case, the signals from the environ-
mental scattering paths, i.e., hrl ·

√
P · x is subtracted in (6),

and σ̃ contains the difference between the Gaussian noise
signals of y and y0.1 Specifically, the k-th element of σ̃ is
σ̃k ∼ CN (0, 2ε). We refer to ỹ as the measurement vector.
Since Γ determines how the reflection characteristics of the
objects are mapped to the measurement vector, we refer to Γ
as the measurement matrix.

Finally, during the data processing phase, the receiver
maps the measurement vector obtained in the data collection
phase to the sensing results, which is a vector indicating the
probabilities that some objects exist in the M space grids.
Given the control matrix C, the mapping is modeled through
a parameterized function, i.e., p̂ = fw(ỹ) with w being
the parameter vector that is referred to as the mapping of
the received signals. Moreover, the result of the mapping,
i.e., p̂, is an M -dimensional real-valued vector. Specifically,
its m-th element, i.e., p̂m ∈ [0, 1], indicates the probabil-
ity that an object exists at the m-th space grid. Therefore,
(1 − p̂m) indicates the probability that the m-th space grid is
empty.

III. PROBLEM FORMULATION

In this section, we formulate the optimization problem for
maximizing the sensing accuracy for the considered scenario.
We adopt the cross-entropy loss as the objective function to
measure the sensing accuracy, as minimizing the cross-entropy
loss function can significantly improve the accuracy of clas-
sification and prediction [31]. In other words, the sens-
ing accuracy is inversely proportional to the cross-entropy
loss.

We define the cross-entropy loss in the considered scenario
as

LCE = −Eν∈V
[ M∑

m=1

pm(ν) · ln(p̂m)

+(1 − pm(ν)) · ln(1 − p̂m)
]
, (7)

where V denotes the set of all possible reflection coefficient
vectors corresponding to the existence of objects in the target
space, and pm(ν) is a binary variable indicating the object
existence in the m-th space grid. Specifically, pm(ν) can be
expressed as

pm(ν) =

{
0, if |νm| = 0,
1, otherwise.

(8)

1If the environment is changing rapidly, hrl ·
√

P · x can be considered
as an additional complex Gaussian noise [30], and σ̃ in (6) is composed of
the difference of the noise signals at the Rx and that of the environmental
scattering signals, and thus its variance is 2ε + 2εhl.
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In (7), p̂ is determined by fw(ỹ). Generally, the parameter-
ized function fw(ỹ) can take any form. For example, it can
be a linear function, i.e., fw(ỹ) = Wỹ + w′, where W and
w′ are determined by w and obtained by minimizing the mean
squared error of the sensing results [32]. Besides, fw(ỹ) can
also be a nonlinear decision function, which determines the
sensing results of ỹ by using conditional probabilities [33]. In
this paper, we consider that fw(ỹ) is nonlinear and is modeled
as a neural network, where the elements of w stand for the
weights of the connections and the biases of the nodes. We
refer to the neural network for fw(ỹ) as the sensing network.

The optimization problem for the considered metasurface-
assisted scenario that maximizes the sensing accuracy can
be formulated as the following cross-entropy minimization
problem, where the control matrix and the mapping of the
received signals parameter are the optimization variables, i.e.,

(P1) : min
C,w

LCE(C,w), (9)

s.t. (p̂1, . . . , p̂M ) = fw(ỹ), (10)

ỹ =
√
P · x · (C − C0)A + σ̃, (11)

C = (cT
1 , . . . , c

T
K)T , (12)

ck = (ô(ck,1), . . . , ô(ck,N )), ∀k∈ [1,K], (13)

ck,n ∈ [1, NS ], ∀k∈ [1,K], n∈ [1, N ]. (14)

In (P1), (9) indicates that the objective is to minimize the
cross-entropy loss by optimizing C and w. As p̂ is determined
by fw(ỹ) and ỹ is determined by the control matrix C, LCE

defined in (7) can be expressed as a function of C and w.
Constraint (10) indicates that the probabilities for the M space
grids to contain objects are calculated from the mapping of the
received signals, i.e., fw(ỹ). Constraint (11) indicates that the
measurement vector is determined by the control matrix C as
in (6). Besides, constraints (12)-(14) are due to the definition
of the control matrix in Section II-C. Since the control matrix
is a binary matrix and w is a real-valued vector, (P1) is a
mixed-integer optimization problem and is NP-hard.

To tackle it efficiently, we decompose (P1) into two sub-
problems, i.e., (P2), and (P3), as follows:

(P2) : min
w

LCE(C,w), s.t. (10). (15)

(P3) : min
C

LCE(C,w), s.t. (11) to (14). (16)

In (P2), we minimize the cross-entropy loss by optimizing w
given C, and in (P3), we minimize the cross-entropy loss by
optimizing C given w. Based on the alternating optimization
technique [34], a locally optimal solution of (P1) can be solved
by iteratively solving (P2) and (P3). Nevertheless, given w,
(P3) is still hard to solve due to the large number of integer
variables in the control matrix. Moreover, the number of itera-
tions for solving (P2) and (P3) can be large before converging
to the local optimum of (P1). If traditional methods, such
as exhaustive search and branch-and-bound algorithms, are
applied, they will result in a high computational complexity.
To solve (P2) and (P3) efficiently, we develop an MDP frame-
work and solve it by proposing an PRPG algorithm, which are
discussed in the next section. Furthermore, the convergence of
the proposed algorithm to solve (P1) is analyzed in Section V.

IV. ALGORITHM DESIGN

In this section, we formulate an MDP framework for (P2)
and (P3) in Subsection A and propose a deep reinforcement
learning algorithm named PRPG to solve it in Subsection B.

A. MDP Formulation

In (P3), the optimization variable C is composed of a large
number of binary variables satisfying the constraints (12)-(14),
which makes (P3) an integer optimization problem which is
NP-hard and difficult to solve. Nevertheless, the metasurface
can be considered as an intelligent agent who determines the
configuration of each reconfigurable element for each beam-
former pattern sequentially, and is rewarded by the negative
cross-entropy loss. In this regard, the integer optimization
problem (P3) can be considered as a decision optimization
problem for the metasurface, which can be solved efficiently
by the deep reinforcement learning technique, since it is effi-
cient to solve highly-complexed decision optimization prob-
lems for intelligent agents [35], [36]. As deep reinforcement
learning algorithms require the target problem to be formulated
as an MDP, we formulate (P2) and (P3) as an MDP, so that
we can solve them by proposing an efficient deep learning
algorithm.

An MDP encompasses an environment and an agent, and
consists of four components: the set of states S, the set of
available actions A, the state transition function T , and the
reward function R [23]. The states in S obey the Markov
property, i.e., each state only depends on the previous state and
the adopted action. Suppose the agent takes action a in state s,
and the consequent state s′ is given by the transition function
T , i.e., s′ = T (s, a). After the state transition, the agent
receives a reward that is determined by the reward function
R, i.e., R(s′, s, a).

To formulate the MDP framework for (P2) and (P3),
we view the metasurface as the agent, and the RF sensing
scenario including the surroundings, the RF transceiver, and
the objects in the target space are regarded, altogether, as the
environment. We consider the state of the metasurface the
current control matrix, i.e., C and the action of the metasurface
as selecting the configuration of a reconfigurable element for
a beamformer pattern. Thus, the actions of the metasurface
determine the elements in the control matrix C. Therefore,
the next state of the MDP is determined by the current state
and the action, and the Markov property is satisfied. In the
following, we describe the components of the MDP framework
in detail.

1) State: In the MDP of the metasurface-assisted RF sens-
ing scenarios, the state of the environment is defined as

s = (k, n,C), (17)

where k ∈ [1,K] and n ∈ [1, N ] are the row and column
indexes for the control matrix indicating the configuration that
the metasurface aims to select. Besides, C in (17) denotes the
current control matrix of the metasurface in state s. The initial
state of the MDP framework is denoted by s0 = (1, 1,C0),
where C0 is the control matrix of the metasurface whose
reconfigurable elements are in the first/default configuration.
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Fig. 3. Example of the state transition in the formulated MDP, with K = 2,
N = 1, and NS = 2.

We refer to the states with indices (k, n) = (K + 1, 1) as the
terminal states. When the terminal states are reached, all the
configurations in the control matrix have been selected.

2) Action: In each state s = (k, n,C), the metasurface
selects the state of the n-th reconfigurable element in the
k-th frame. The action set of the metasurface in each state
can be expressed as A = {1, . . . , NS}, where the j-th action
(i ∈ [1, NS]) indicates that the metasurface selects the target
configuration to be the j-th configuration. In other words,
the metasurface sets (C)k,n = ô(a), a ∈ A.

3) State Transition Function: After the metasurface selects
the action, the MDP framework transits into the next state,
s′ = (k′, n′,C ′), if (k, n) �= (K,N). If (k, n) = (K,N) on
the other hand, the agent enters the terminal state of the MDP.
For the non-terminal states, the elements of state s′ given s
and a can be expressed as follows

k′ = k + 1, n′ = mod(n+ 1, N) + 1, (18)(
C′)

k′′,n′′ =

{
(C)k′′,n′′ , if (k′′, n′′) �= (k, n),
ô(a) if (k′′, n′′) = (k, n),

∀k′′ ∈ [1,K], n′′ ∈ [1, N ]. (19)

An example of the state transition is illustrated in Fig. 3,
where NS = 2, K = 2, and N = 1. In Fig. 3, the red
dotted box indicates the element of C that is determined by
the action in the current state. If (k, n) = (3, 1), it can be
observed that all the configurations of the control matrix have
been determined, and the MDP transits into the terminal states,
where control matrix is denoted by Ct.

4) Reward Function: In general MDP frameworks,
the reward is a value obtained by the agent from the environ-
ment and quantifies the degree to which the agent’s objective
has been achieved [23]. The reward for the agent is defined as
the negative cross-entropy loss of the mapping of the received
signals given the control matrix determined in the terminal
states. If the terminal state has not been reached, the reward
for the state transition is set to be zero. Specifically, given the

parameter w, the reward in state s is defined as

R(s|w) =

{
−LCE(Ct,w), if s is a terminal state,

0, otherwise.
(20)

In the formulated MDP, the metasurface aims for obtaining
an optimal policy to obtain the maximum reward in the
terminal states. To be specific, the policy of the agent is
a mapping from the state set to the available action set,
i.e., π : S → A. To define the optimal policy π∗, we first
define the state-value function given the policy π and the
parameter vector w, which indicates the accumulated reward
of the agent via a certain state. Based on (20), the state-value
function can be expressed as

V (s|π,w) =

{
−LCE(C,w), if s is a terminal state,

V (s′|π,w)|s′=T (s,π(s)), otherwise,
(21)

The state-value function for π in state s indicates the accu-
mulated rewards of the agent after state s. Based on (21),
the state-value function for the initial state can be expressed
as

V (s0|π,w) = −LCE(Cπ
t ,w), (22)

where Cπ
t denotes the terminal state of the metasurface

adopting policy π.
Therefore, given the parameter vector w, the optimal policy

of the agent in the MDP framework is given by

π∗(w) = argmax
π

V (s0|π,w) ⇐⇒ argmin
C

LCE(C,w).

(23)

In (23), it can be observed that finding the optimal policy of the
agent in the formulated MDP framework is equivalent to solv-
ing the optimal control matrix for (P3). Besides, solving (P2)
is equivalent to solving the optimal w given the policy π.

B. Progressing Reward Policy Gradient Algorithm

To jointly solve (P2) and (P3) under the formulated MDP
framework, we propose a novel PRPG algorithm. The pro-
posed algorithm can be divided into two phase, i.e., the
action selection phase and the training phase, which proceed
iteratively.

1) Action Selection Process: In the proposed algorithm,
the agent, i.e., the metasurface, starts from the initial state s0

and adopts the policy for selecting an action in each state until
reaching the terminal state. To select the current action in each
state, the metasurface uses the policy π that maps the current
state to a probability vector. To be specific, for a given state
s, the policy results in an NS-dimensional probability vector
denoted by π(s|w), which we refer to as the policy function.
The i-th element of π(s|w) (i ∈ [1, NS]), i.e., πi(s|w), is in
the range [0, 1] and denotes the probability of selecting the
action ai in state s. Besides, π(s|w) (i ∈ [1, NS]) satisfies
the constraint

∑NS

i=1 πi(s|w) = 1.
However, since the state contains the current control matrix

that has K ·N ·NS binary variables, the agent faces a large
state space, and the policy function is hard to be modeled
by using simple functions. To handle this issue, we adopt a
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Fig. 4. Network structure of the policy network used in the proposed
algorithm.

neural network to model the policy function as neural networks
are a powerful tool to handle large state spaces [37]. The
adopted neural network is referred to as the policy network,
and we train the policy network by using the policy gradient
algorithm [35]. Specifically, the policy network is denoted
by πθ(s|w), where θ denotes the parameters of the policy
network and comprises the connection weights and the biases
of the activation functions in the neural network.

The structure of the policy network is shown in Fig. 4.
In state s, k and n are embedded as a K-dimensional and
an N -dimensional vectors, respectively, where the k-th and
n-th elements in the vectors are ones and the other elements
are zeros. Specifically, we refer to the resulting vectors as the
one-hot vectors. As for C, since the RF sensing for the target
space is determined by CA as shown in (4), we first divide
C to its real and imaginary parts and right-multiply them by
the real and imaginary parts of A, respectively. Then, driven
by the concept of model-based learning [38], we process the
result, i.e., CA, by multi-layer perceptrons (MLPs). Besides,
since the K beamformer patterns are symmetric in their
physical meaning and changing their order does not impact
the sensing performance, the MLPs that extract feature vectors
from c1 to cK need to be symmetric. This can be achieved
by utilizing two symmetric MLP groups, each containing K
MLPs with shared parameters. This significantly reduces the
number of parameters and thus facilitates the training of the
policy network. The sizes of the MLPs are labeled in Fig. 4.
For example, (2M, 512, 256) indicates that each MLP in a
symmetric group that has three layers whose sizes are 2M ,
512, and 256, respectively. Then, the one-hot vectors and the
2K extracted feature vectors are connected and input to the
final MLP. The result of the final MLP is fed into the softmax
layer which produces an NS-dimensional vector indicating the
probability of selecting the NS actions.

2) Training Process: The purpose of the training process is
two fold: (a) To make the policy network improves the current
policy in the action selection based on (23). (b) To make the
mapping of the received signals incurs lower cross-entropy
loss. Accordingly, the training process consists of two parts,
i.e., training the policy network and training the sensing
network. In the training of the policy network, we adopt the
policy gradient method [23]. Besides, between two consecutive

Fig. 5. Sensing network of the metasurface.

policy network updates, the sensing network is trained, which
makes the rewards for the metasurface change progressively
larger. Due to these characteristics, the proposed algorithm is
named as progressing reward policy gradient algorithm.

a) Training of the policy network: To collect the training
data for the policy network, a replay buffer is adopted in
order to store the experiences of the agent during the state
transitions. The replay buffer of the agent is denoted by
B = {e}. The stored experience in the replay buffer is
given by e = (s, a). It is worth noting that, differently from
the replay buffer in traditional deep reinforcement learning
algorithms [35], the experience in the replay buffer does not
record the reward obtained during the state transitions. This
is because the rewards are determined by the current mapping
of the received signals, which changes as w being updated.
Thus, we propose that the rewards are calculated when the
training process is invoked, instead of being recorded in the
replay buffer.

We define a training epoch (or epoch in short) as the state
transition process from the initial state to a terminal state.
The experience of the agent within an epoch is stored into the
replay buffer and used for training, which is discarded after
being used. Based on the policy gradient theorem [23], in the
training process, the gradient of V (s0|π,w) with respect to
θ satisfies

∇θV (s0|π,w)∝EB,πθ

[
V (T (St, At)|θ,w)

∇θπ
θ
At

(St|w)
πθ

At
(St|w)

]
,

(24)

where (St, At) ∈ B are the samples of the state and action
in the replay buffer of an agent following the policy πθ , and
Q(St, At|θ,w) denotes the reward for the agent after selecting
the action At in St and then following the policy πθ .

To calculate the gradient in (24), the rewards for the agent
in (20) need to be calculated. If s is a terminal state, the reward
R(s|w) is calculated by using Monte Carlo methods [39], i.e.,

R(s|w) = −
∑
ν∈V

Nmc∑
i=1

( M∑
m=1

pm(ν) ln(p̂m)

+(1 − pm(ν)) ln(1 − p̂m)
)∣∣∣

p̂=fw(Γν+σ̃i)
. (25)

Otherwise, R(s|w) = 0. In (25), Nmc indicates the number
of sampled noise vectors, and σ̃i is the i-th sampled noise
vector. As the rewards in the non-terminal states are zero,
V (T (St, At)|θ,w) is equal to the reward at the final state for
St, At, and policy πθ .

Specifically, in (25), p̂ is generated by the sensing network,
which is shown in Fig. 5. The sensing network consists of
two parts, i.e., the model-aided decoder and an MLP. Firstly,
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the received vector is left-multiplied by the pseudo inverse of
Γ , which is denoted by Γ+, which can be calculated based
on [40]. According to the least-square method [32], the model-
aided decoder, i.e., ν̂ = Γ+y, is the optimal linear decoder
that results in the minimum mean square error (MSE) for the
actual reflection vector ν, and thus can potentially increase
the sensing accuracy of the sensing network. Then, ν̂ is fed
into a fully-connected MLP, which reconstructs the probability
vector p̂.

In each process, θ is updated as follows

θ = θ + α · Ee∈B

[
V (T (St, At)|θ,w)

∇θπ
θ
At

(St|w)
πθ

At
(St|w)

]
,

(26)

where the gradient ∇θπ
θ
At

(St|w) is calculated by using the
back-propagation algorithm [41], and α denotes the training
rate.

b) Training of the sensing network: After updating θ,
the training of the sensing network is executed. The calculated
rewards from (25) are used to train the sensing network which
reduces the cross-entropy loss. To be specific, the loss function
used to train the sensing network can be expressed as follows,
which is in accordance with the objective function in the
optimization problem (P2), i.e.,

LI(w) = E(s,a)∈B[R(s|w)]. (27)

In each training process, w is updated by

w = w + α∇wLI(w), (28)

where the gradient ∇wLI(w) is calculated by using the
back-propagation algorithm.

In summary, the proposed PRPG algorithm is summarized
in Algorithm 1.

Remark: Using the proposed deep reinforcement learning
technique enables our proposed algorithm to handle the com-
plicated scenarios where multiple metasurfaces are deployed.
Specifically, when multiple metasurfaces are on the same
plane, they can be considered as a whole, and thus the
channel model in (1) needs no changes. When the multiple
metasurfaces are on different planes, the channel model needs
to be modified to adapt to the correlation between different
metasurfaces, which is left for future work. Nevertheless,
since the problem formulation and the proposed algorithm
are independent of the specific channel model, the proposed
problem formulation and algorithm can also be applied to
general RF sensing scenarios with multiple metasurfaces.

V. ALGORITHM ANALYSIS

In this section, we analyze the computational complexity
and the convergence of the proposed algorithm in Subsec-
tions A and B, respectively. In addition, in Subsection C,
we derive a non-trivial lower-bound for the sensing accuracy
based on an upper-bound for the cross-entropy loss given a
control matrix.

Algorithm 1 Proposed PRPG Algorithm
Input: Random initial network parameter vectors θ

and w;
Empty replay buffer B = ∅;
Maximum number of training epochs Nep;
Set of reflection coefficient vectors V ;
Number of Monte Carlo samples for noise Nmc;
Initial learning rate α0;
Maximum number of training epochs Nep

Output: Optimized sensing network parameter vector w∗

and the optimized policy network parameter θ∗.
for nep = 1 to Nep do

Set the current state to be the initial state,
i.e., s = s0;

# Action selection phase
while s is not a terminal state do

Select the configuration of the n-th
reconfigurable element in the k-th frame following
the probability distribution given by πθ(s|w).

Set action a as the selected configuration, and
enter into the transited state s′ = T (s, a);

Store experience e = (s, a) into replay
buffer B;

# Training phase
Collect all the experiences from B, and calculate

the reward for each sampled experience by using (25);
Update parameter θ and w by (26) and (28),

respectively, where the learning rate α = α0
1+nep·10−3 ;

A. Computational Complexity

Since the PRPG algorithm consists of two main phases,
i.e., the action selection phase and the training phase, we ana-
lyze their respective computational complexities. The compu-
tational complexities are analyzed with regard to the number
of beamformer patterns, K , the number of reconfigurable
elements, N , the number of available configuration, NS , and
the number of space grids, M .

1) Complexity of the Action Selection Phase: In the pro-
posed algorithm, the computationally most expensive part is
the estimation of the action probabilities of the policy network.
For each action selection phase, the computational complexity
is given in Theorem 1.

Theorem 1 (Computational Complexity of the Action Selec-
tion Phase): In the PRPG algorithm, for the agent in each
state, the complexity to calculate the action probabilities and
determine the action is O(KNNSM).

Proof: See Appendix I.
2) Complexity of the Training Process: The computational

complexity of (25) is provided in Lemma 1.
Lemma 1: The computational complexity of the reward

calculation in (25) is O
(
KNNSM +K2M +M2

)
.

Proof: See Appendix II
The computational complexities of training the policy net-

work and the sensing network are given in Lemma 2.
Lemma 2: After calculating the rewards, the complexity

of training the sensing network and the policy network are
O(M2) and O(NS(K + N + M)), respectively. If a single
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MLP is used to substitute the symmetric MLP group,
the computational complexity of training the policy network
is O(KMNS +NNS).

Proof: See Appendix III.
It can be observed from Lemma 2 that using a symmetric

MLP group instead of a single large MLP in the policy
network can reduce the complexity of the training process.

Based on Lemmas 1 and 2, the total computational com-
plexity of each training process is provided in Theorem 2.

Theorem 2: (Computational Complexity of the Training
Process) The computational complexity of each training phase
of the PRPG algorithm is O

(
KNNSM +K2M +M2

)
.

Proof: See Appendix IV.

B. Convergence Analysis

The detailed convergence analysis of the PRPG algorithm
is based on the convergence analysis of the block stochastic
gradient (BSG) algorithm. We denote w by x1 and denote θ
by x2, and thus the objective function in (P1) can be denoted
by F (x1,x2) = LCE(Cπθ

t ,w), where Cπθ

t indicates the
control matrix in the terminal state for the metasurface with
policy πθ . Based on [42], a BSG algorithm for solving (P1)
is formulated as Algorithm 2, whose convergence analysis is
given by Lemma 3.

Lemma 3: Algorithm 2 converges to a locally optimal x∗
1

and x∗
2 as the number of iterations Nitr → ∞, given that the

following conditions are satisfied:
1) There exist a constant c and a constant ε such

that, for each iteration indexed by j, the inequalities
‖E[g̃j

i −∇xi
F (x1,x2)]‖2 ≤ c ·maxi(α

j
i ) and E[‖g̃j

i −
∇xiF (x1,x2)‖2] ≤ ε2, i = 1, 2 are fulfilled.

2) There exists a uniform Lipschitz constant 	 > 0 such
that∑
i=1,2

‖∇xi
F (x1,x2)−∇xi

F (x′
1,x

′
2)‖2

2

≤	2
∑

i=1,2

‖xi − x′
i‖2

2.

3) There exists a constant ψ such that E[‖xj
1‖2

2+‖xj
2‖2

2] ≤
ψ2, ∀j.

Proof: Please refer to Corollary 2.12 in [42], where the
assumptions required in Corollary 2.12 in [42] are equivalent
to the three conditions in Lemma 3.

Comparing Algorithms 1 and 2, we can observe that the
only difference between the two algorithms is in the functions
for updating the parameters. Nevertheless, solving the mini-
mization problem (30), we can derive that (30) is equivalent
to

xj
i = xj−1

i − αj
i g̃

j
i . (29)

As the learning rate sequence {αj
i}j in Algorithm 2 can be

arbitrarily selected, the parameter update of Algorithms 1
and 2 are essentially equivalent. In this regard, the proposed
PRPG algorithm can be categorized as an BSG algorithm,
whose convergence analysis follows Lemma 3.

However, since neural networks are used in the mapping of
the received signals and the policy function, the conditions

Algorithm 2 BSG Algorithm for Solving (P1)

Input: Starting point x0
i , i = 1, 2;

Learning rate sequence {αj
i ; i = 1, 2}j=1,2,...;

Maximum number of iterations Nitr;
Monte Carlo sampling size of the random noise Nmc.

Output: Optimized x∗
1 and x∗

2 for (P1).
for j = 1, 2, . . . , Nitr do

for i = 1, 2 do
Compute sample gradient for the w in the j-th

iteration by g̃j
i = ∇xi

F (xj
<i,x

(j−1)
≥i )

Update parameter xi by

xj
i = argmin

xi

(g̃j
i )

T (xi − xj−1
i ) +

1
2αj

i

‖xi − xj−1
i ‖2

2.

Output (xNitr
1 ,xNitr

2 ) as (x∗
1,x

∗
2);

in Lemma 3 are hard to be proven theoretically. There-
fore, in addition to the theoretical analyses provided above,
we also analyze the convergence through practical simulations
in Section VI.

Moreover, the obtained solution by the proposed deep learn-
ing algorithm is a locally optimal solution of (P1). As shown
in Algorithm 1, we iteratively solve (P2) and (P3) by updating
θ using (26) and updating w using (28), respectively. Based
on the Q-learning algorithm [23], updating θ with the aim
to maximize the total reward is equivalent to finding C
minimizing LCE given w. Besides, it can be observed that
updating w directly minimizes LCE given C. When the itera-
tion terminates, updating the variables C or w will not lead to
a lower objective function value, i.e., the cross-entropy loss.
Therefore, the solution obtained by the proposed Algorithm 1
is a locally optimal solution of the original problem (P1).

C. Lower Bound for Sensing Accuracy

In this section, we compute a lower-bound for the sensing
accuracy in (P2) given the control matrix C. To derive a
lower-bound, we assume that the received RF signals are
mapped to the sensing results by using an optimal linear
decoder and a threshold judging process. In the following,
we first provide the detection criterion for sensing, and then
derive a lower-bound for the sensing accuracy by leveraging
an upper-bound for the cross-entropy loss.

1) Detection Criterion for Sensing: The reconstructed
reflection coefficient vector from the linear decoder can be
expressed as

ν̂ = Γ+ỹ = Γ+Γν + Γ+σ̃. (30)

Based (30), we analyze the probability distribution of the
random variable ν̂m, i.e., the m-th element of ν̂. We denote
the m-th row vectors of Γ+ and Γ+Γ as γm and ξm,
respectively. Then, ν̂m = ξmν + γmσ̃. The emptiness of
the space grids other than the m-th space grid is modeled
by the vector q−m, where q−m,m′ = 0 and 1 indicate that
the m′ space grid is empty and nonempty, respectively, (m′ ∈
[1,M ], m′ �= m). When the m-th space grid is empty (or
nonempty), we denote the probability density functions (PDFs)
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of the real and imaginary parts of ν̂m, i.e., ν̂R,m and ν̂I,m,
by P0

R,i(x) and P0
I,i(x) (or P1

R,i(x) and P1
I,i(x)), respectively.

We judge the emptiness of the m-th space grid according
to the sum of ν̂R,m and ν̂I,m, i.e., μm = ν̂R,m + ν̂I,m.
When the m-th space grid is empty, given q−m, the sum
of ν̂R,m and ν̂I,m, i.e., μm, follows a normal distribution,
i.e., μm ∼ N (0, ε0m(q−m)), where

ε0m(q−m) =
∑

m′ �=m,
m′∈M

q−m,m′ · εref,m′ · (‖ξR,m′‖2 + ‖ξI,m′‖2)

+
∑

m′∈M
ε · (‖γR,m′‖2 + ‖γI,m′‖2).

(31)

where M is the set of indexes of M space grids, and the
subscripts R and I indicate the real and imaginary parts of
a vector, respectively. The first summand in (31) corresponds
to the variance due to the reflection coefficients at the space
grids other than the m-th space grid, and the second addend
in (31) corresponds to the variance due to the noise at the Rx
unit.

On the other hand, when the q-th space grid is nonempty,
the variance due to reflection coefficient of the m-th space
grid needs to be added. Denoting the variance of the reflection
coefficient of the m-th space grid by εref,m, we can express
the variance of μm as

ε1m(q−m) = ε0m(q−m) + εref,m · (‖ξR,m‖2 + ‖ξI,m‖2). (32)

Given the emptiness of the m-th space grid, the PDF of μm

can be written as follows

P i
m(x)=

∑
q−m∈Q−m

Pm(q−m)Pnorm(x; 0, εim(q−m)), i = 0, 1

(33)

where Q−m indicates the set of all possible q−m,
Pnorm(x; 0, εim(q−m)) (i = 0, 1) denotes the PDF of a nor-
mal distribution with zero mean and variance εim(q−m), and
Pm(q−m) denotes the probability for the existence indicated
by q−m to be true, i.e.,

Pm(q−m) =
∏

m′ �=m,m′∈M
Prm′(q−m,m′), (34)

where Prm′(x) with x being 0 and 1 indicates the proba-
bilities that the m′-th space grid are empty and nonempty,
respectively.

We use the difference between P1
m(q−m) and P0

m(q−m) as
the judgement variable to determine whether the m-th space
grid is empty or not. To facilitate the analysis, we adopt
the log-sum as a substitute for the sum in (33). Therefore,
the judgement variable can be calculated as

τm =
∑

q−m∈Q−m

ln
(
pm(q−m)Pnorm(x; 0, ε1m(q−m))

)
−

∑
q−m∈Q−m

ln
(
pm(q−m)Pnorm(x; 0, ε0m(q−m))

)
.

(35)

It can be observed from (35) that τm increases as P1
m(μm)

increases, and that it decreases as P0
m(μm) increases. There-

fore, we can judge the emptiness of the m-th space grid
through the value of τm. Specifically, the sensing result of
the m-th space grid is determined by comparing the judging
variable τm with the judging threshold, which is denoted
by ρm. If τm ≤ ρm, the sensing result of the m-th space
grid is “empty”, which is denoted by the hypothesis H0.
Otherwise, if τm > ρm, the sensing result is “non-empty”,
which is denoted by the hypothesis H1. After simplifying (35),
the detection criterion for H0 and H1 can be expressed as

τm = μ2
m

∑
q−m∈Q−m

ε1m(q−m) − ε0m(q−m)
2ε1m(q−m)ε0m(q−m)

−1
2

∑
q−m∈Q−m

ln
(
ε1m(q−m)
ε0m(q−m)

)
H1

≶
H0

ρm. (36)

Since μ2
m > 0, the range of ρm can be expressed

[− 1
2

∑
q−m∈Q−m

ln( ε1m(q−m)

ε0m(q−m) ),∞].
2) Upper Bound of Cross Entropy Loss: We analyze the

cross-entropy loss incurred by the detection criterion in (36),
which can be considered as a non-trivial upper-bound for the
cross-entropy loss defined in (7). As the sensing result given
by (36) is either 0 or 1, if the sensing result is accurate,
the incurred cross-entropy loss will be − ln(1) = 0; otherwise,
the incurred cross-entropy loss will be − ln(0) → ∞. In prac-
tice, the cross-entropy loss due to an inaccurate sensing result
is bounded by a large number CIn0. Given H0 (or H1) being
true, the probability for the sensing result to be inaccurate
is the probability of τm > ρm, i.e., Pr{τm > ρm|H0} (or
Pr{τm ≤ ρm|H1}). Denote the probability for an object to be
at the m-th space grid by p̃m, and the cross-entropy loss of
the m-th space grid can be calculated as

Lm = CIn0 · (1 − p̃m) · Pr{τm > ρm|H0}
+CIn0 · p̃m · Pr{τm ≤ ρm|H1}, (37)

where Pr{τm > ρm|H0} and Pr{τm ≤ ρm|H1} can be
calculated by using Proposition 1.

Proposition 1: The conditional probability for sensing the
m-th space grid inaccurately can be calculated as follows

Pr{τm > ρm|H0} = Pr{μ2
m > ρ̂m|H0}

= 1−
∑

q−m∈Q−m

Pm(q−m)

·erf
(√

ρ̂m

2ε0m(q−m)

)
, (38)

Pr{τm ≤ ρm|H1} = Pr{μ2
m ≤ ρ̂m|H1}

=
∑

q−m∈Q−m

Pm(q−m)

·erf
(√

ρ̂m

2ε1m(q−m)

)
, (39)

where erf(·) denotes the error function [33], and

ρ̂m =
1
2

∑
q−m∈Q−m

ln(ε1m(q−m)/ε0m(q−m)) + ρm∑
q−m∈Q−m

ε1m(q−m)−ε0m(q−m)

ε1m(q−m)·ε0m(q−m)

. (40)
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Proof: Based on (36), the judging condition τm
H1

≶
H0

ρm

is equivalent to μ2
m

H1

≶
H0

ρ̂m. Therefore, Pr{μ2
m > ρ̂m|H0} =

Pr{τm > ρm|H0} and Pr{μ2
m ≤ ρ̂m|H1} = Pr{τm ≤

ρm|H1}. Also, given q−m, μ2
m follows a chi-squared distrib-

ution with one degree of freedom. Therefore, the cumulative
distribution function of μ2

m is a weighted sum of error func-
tions, and thus the conditional probabilities can be calculated
by using (38) and (39).

Besides, we can observe in (37) that Lm is determined
by the judgment threshold ρm. Then, based on (37) to (40),
∂Lm/∂ρm can be calculated as

∂Lm/∂ρm = −2CIn0√
π

· ∂ρ̂m

∂ρm

·
∑

q−m∈Q−m

Pm(q−m) · φm(q−m), (41)

φm(q−m) =
(1−p̃m)·e−ρ̂m/2ε0m(q−m)√

8ε0m(q−m)ρ̂m

− p̃m · e−ρ̂m/2ε1m(q−m)√
8ε1m(q−m)ρ̂m

. (42)

Then, the optimal ρ∗m can be obtained by solving ∂Lm/∂ρm =
0. Denoting the minimal Lm corresponding to ρ∗m as L∗

m,
the upper-bound for the cross-entropy loss in (7) can be
calculated as

Lub =
∑

m∈M
L∗

m. (43)

When the emptiness of the space grids other than the m-
th is given, the upper-bound of the cross-entropy loss can be
calculated from Proposition 2. Since the sensing accuracy is
inversely proportional to the cross-entropy loss, a lower-bound
for the sensing accuracy is derived.

Proposition 2: When the emptiness of the space grids other
than the m-th is given, i.e., Q−m = {q−m}, the optimal
judging threshold for the m-th space grid in (44), as shown at
the bottom of the next page.

Proof: The sign of ∂Lm/∂pm is determined by φm(q−m).
We calculate the ratio between the two terms of φm(q−m),
which can be expressed as

ιm(q−m) =
1 − p̃m

p̃m
·
√
ε1m(q−m)
ε0m(q−m)

·e−ρ̂m· ε1m(q−m)−ε0m(q−m)

2ε0m(q−m)·ε1m(q−m) . (45)

Since ε1m(q−m) > ε0m(q−m) and ρ̂m ∝ ρm, ιm(q−m) is
a monotonic decreasing function with respect to ρm and
ιm(q−m) ≥ 0. Also, φm(q−m) ≥ 0 ⇐⇒ ιm(q−m) ≥ 1, and
thus, ∂Lm/∂pm ≥ 0 if and only if ιm(q−m) ≥ 1. Therefore,
the minimal Hm is obtained when ρm satisfies the condition
ιm(q−m) = 1. Then, we can prove Proposition 2 by solving

ιm(q−m) = 1 and considering that ρm ≥ − 1
2 ln( ε1m(q−m)

ε0m(q−m) ).
However, since the number of possible q−m can be

large, (typically, |Q−m| = 2M−1), calculating the exact
∂Lm/∂ρm in (41) is time-consuming, which makes it hard to

Fig. 6. Simulation layout.

find the exact ρ∗m and L∗
m. Therefore, in practice, we approxi-

mate Hub by using a random sampled subset of Qsam
−m, which

is denoted by Qsam
−m ⊂ Q−m.

Moreover, since the sign of ∂Lm/∂ρm is determined by
the sum of φm(q−m), and φm(q−m) has a zero point, which
can be calculated by (44). If ρm is less than the zero point
of φm(q−m), φm(q−m) ≥ 0; and otherwise φm(q−m) < 0.
Therefore, we use the mean of the optimal ρ∗m(q−m) for
each q−m ∈ Qsam

−m to estimate ρ∗m, and approximate the
upper-bound accordingly. The estimated ρ∗m is denoted by ρ̃∗m,
which can be formulated as follows

ρ̃∗m =
1

|Qsam
−m |

∑
q−m∈Qsam

−m

ρ∗m(q−m), (46)

where ρ∗m(q−m) can be obtained by Proposition 2. When
|Qsam

−m | is large enough, ρ̃∗m in (46) can approximate ρ∗m.
Finally, given the approximated upper-bound of the

cross-entropy loss as L̃ub, it can be observed from (37) that
the upper-bound of average probability of sensing error for
a space grid is Perr,ub = L̃ub/CIn0. Therefore, the lower-
bound of the average sensing accuracy for a space grid is
Pacc,lb = 1 − Perr,ub.

VI. SIMULATIONS AND EVALUATION

In this section, we first describe the setting of the sim-
ulation scenario and summarize the simulation parameters.
Then, we provide simulation results to verify the effective-
ness of the proposed PRPG algorithm. Finally, using the
proposed algorithm, we evaluate the cross-entropy loss of
the metasurface-assisted RF sensing scenario with respect to
different numbers of sizes of the metasurface, and numbers of
space grids. Besides, we also compare the proposed method
with the benchmark, i.e., the MIMO RF sensing systems.

A. Simulation Settings

The layout of the considered scenario is illustrated in Fig. 6.
The metasurface adopted in this paper is the same as the
one used in [27], and the reflection coefficients of the recon-
figurable element in different configurations are simulated
by using the CST software, Microwave Studio, Transient
Simulation Package [43], by assuming 60◦ incident RF signals
with vertical polarization. Besides, to increase the reflected
signal power in the simulation, we combine G reconfigurable
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TABLE I

SIMULATION PARAMETERS

Fig. 7. Cross-entropy loss versus the number of training epochs for different
algorithms.

elements as an independently controllable group. The recon-
figurable elements of an independently controllable group are
in the same configuration, and thus they can be considered as
a single element. Therefore, the proposed algorithm is suitable
for this case. The number of independently controllable group
is denoted by NG.

The origin of the coordinate is at the center of the meta-
surface, and the metasurface is in the y-z plane. In addition,
the z-axis is vertical to the ground and pointing upwards, and
the x- and y-axes are parallel to the ground. The Tx and Rx
antennas are located at (0.87,−0.84, 0) m and (0, 0,−0.5) m,
respectively. The target space is a cuboid region located at 1 m
from the metasurface, and is divided into M space blocks each
with size 0.1 × 0.1 × 0.1 m3. The simulation parameters are
summarized in Table I.

B. Results

In Fig. 7, we compare the training results for different
algorithms. Specifically, the first algorithm in the legend is the

Fig. 8. Illustrations of ground-truth and the sensing results of different
training epochs for a target object.

Fig. 9. Illustrations of the ground-truth and the sensing results of objects
with different shapes for different algorithms.

proposed PRPG algorithm where a sensing network (SensNet)
and a policy network (PolicyNet) are adopted. The second
algorithm adopts a sensing network but adopt a random control
matrix. The third algorithm adopts both a sensing network and
a policy network, but the sensing network does not contain
a model-aided decoder as in the proposed algorithm. The
fourth algorithm only uses the model-aided decoder to map
the received signals to the sensing results.

It can be observed that the proposed PRPG algorithm
converges with high speed and it results in the lowest
cross-entropy loss among all the considered algorithms. In
particular, Fig. 8 shows a ground-truth object and the corre-
sponding sensing results versus the number of training epochs.
As the number of training epochs increases, the sensing result
approaches the ground truth and becomes approximately the
same after 104 training epochs.

In Fig. 9, it shows the ground-truth and the sensing results
for different algorithms and the target objects with different
shapes. Comparing the sensing results with the ground truth,
we can observe that the proposed algorithm outperforms other
benchmark algorithms to a large extent. Besides, by comparing
the sensing results of the proposed algorithm in the second col-
umn with the ground truth in the first column, we can observe
that the proposed algorithm obtains the accurate sensing results
despite the different shapes of the target objects.

ρ∗m(q−m)=

⎧⎪⎪⎨
⎪⎪⎩

1
2

ln(
ε0m(q−m)
ε1m(q−m)

), if p̃m>

√
ε1m(q−m)

ε0m(q−m)+ε1m(q−m) ,

2 ln(
1 − p̃m

p̃m
) − 1

2
ln(

ε0m(q−m)
ε1m(q−m)

), otherwise.
(44)
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Fig. 10. Cross-entropy loss of the mapping of the received signals in high,
normal, and low learning rate cases.

Fig. 11. Cross-entropy loss versus the number of training epochs for different
sizes of the metasurface.

Figure 10 shows the training results versus the number
of training epochs for the PRPG algorithm are given and
compared for different learning rates are compared. The initial
learning rates in each case are set to be α0 = 10−1, 10−3,
10−5, which then decrease inversely as the number of training
epochs increases. It can be observed that large values of the
learning rates prevent the algorithm to converge, while low
values of the learning rates result in a slow decrease of the
cross entropy loss. The setup α0 = 10−3 outperforms the
others, which verifies our learning rate selection.

In Fig. 11, it can be observed that as the size of the metasur-
face, i.e., NG, increases, the cross-entropy loss after training
decreases. This is because the received energy can be improved
with more reconfigurable elements to reflect the transmitted
signals, as indicated by (4). Besides, more reconfigurable
elements create a larger design space and higher controllability
of the beamforming, and thus beamformer patterns which are
more effective for sensing can be adopted. Therefore, objects
at different space grids can be sensed with a higher precision.
However, the cross-entropy cannot be reduced infinitely. When
NG is sufficiently large, the cross-entropy remains stable. As
shown in Fig. 11, the cross-entropy loss results for NG = 9
and NG = 16 are almost the same. Besides, comparing the
curves for NG = 9 and NG = 16 within the first 2000

Fig. 12. Estimated upper-bound and the results of the proposed algorithm
for the cross-entropy loss versus different numbers of space grids in 2D and
3D scenarios. The drawings at the bottom indicate the arrangement of the
space grids.

training epochs, we can observe that increasing the number
of reconfigurable elements when NG ≥ 9 has a negative
impact on the training speed and convergence rate. This is
because increasing the number of reconfigurable elements
leads to a higher complexity of finding the optimal policy
for the metasurface to determine its control matrix, since
the policy network of the metasurface needs to handle a
higher-dimensional state space.

In Fig. 12, we compare the theoretical upper-bound derived
in (46) and the proposed PRPG algorithm for different values
of M in 2D and 3D scenarios. It can be observed that, in both
2D and 3D scenarios, the probability of sensing error increases
with M . Also, the cross-entropy loss in 3D scenarios is higher
than that for 2D scenarios. This is because the space grids in
the 3D scenarios are more closely spaced to each other, which
make them hard to be distinguished. Finally, it can be observed
that, as M increases, the cross-entropy loss of the proposed
algorithm increases more quickly in 3D scenarios compared
to that in 2D scenarios. This which verifies that 3D sensing is
more difficult than 2D sensing.

In Fig. 13, we show the comparison between the proposed
metasurface-assisted scenario and the benchmark, which is
the MIMO RF sensing scenarios with no metasurface. Both
the metasurface-assisted scenario and the MIMO scenarios
adopted a similar layout described in Section VI-A, and the
result cross-entropy loss is obtained by Algorithm 1. Neverthe-
less, in the MIMO sensing scenarios, a static reflection surface
takes the place of the metasurface, which cannot change the
beamformer pattern for the reflection signals. When the size
of the MIMO array in Fig. 13 is n × n (n = 1, 2, . . . , 5),
it indicates that n Tx antennas and n Rx antennas are
adopted in the scenario. Specifically, the Tx/Rx antennas are
arranged along the y-axis with a space interval of 0.1 m. The
Tx antennas transmit continuous signals with phase interval
2π/n, and the n received signals of the Rx antennas with
suppressed LoS signals are used as the measurement vector.
Comparing the MIMO benchmarks and the proposed method,
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Fig. 13. Comparison between the metasurface-assisted scenario and the
MIMO scenarios with different numbers of Tx/Rx antennas. The bars illustrate
the results for different MIMO scenarios, and the dash lines depict the results
of the metasurface-assisted scenario with different numbers of frames.

we can observe that the proposed method outperforms the
(1 × 1) ∼ (5 × 5) MIMO sensing scenarios in terms of the
resulting cross-entropy loss. This shows the significance of
using metasurface to assisted RF sensing.

VII. CONCLUSION

In this paper, we have considered a metasurface-assisted
RF sensing scenario, where the existence and locations of
objects within a 3D target space can be sensed. To facilitate the
beamformer pattern design, we have proposed a frame-based
RF sensing protocol. Based on the proposed protocol, we have
formulated an optimization problem to design the beamformer
pattern and the mapping of the received signals. To solve the
optimization problem, we have formulated an MDP framework
and have proposed a deep reinforcement learning algorithm
named PRPG to solve it. Also, we have analyzed the com-
putational complexity and the convergence of the proposed
algorithm and have computed a theoretical upper-bound for
the cross-entropy loss given the beamformer patterns of the
metasurface. Simulation results have verified that the proposed
algorithm outperforms other benchmark algorithms in terms of
training speed and cross-entropy loss. Besides, they have also
illustrated the influence of the size of the metasurface and the
target space on the cross-entropy loss, which provides insights
on the implementation of practical metasurface-assisted RF
sensing systems.

APPENDIX I
PROOF OF THEOREM 1

The complexities of embedding K and N as one-hot
vectors is O(K) and O(N), respectively. Based on [44],
the complexity of multiplex the K beamformer patterns that
are N ·NS-dimensional by A ∈ C

NNS×M is O(K ·N ·NS ·M).
For a fully connected neural network with a fixed number
of hidden layers and neurons, the computational complex-
ity of the back-propagation algorithm is proportional to the
product of the input size and the output size [45]. Therefore,
the computational complexities of the symmetric MLP group
and the Q-value MLP are O(K ·M) and O(K · NS + N ·
NS), respectively. As the connecting operation has complexity

O(1) and finding the maximum Q-value is O(NS), the total
computational complexity has complexity O(KNNSM) and
is therefore dominated by the matrix multiplication. �

APPENDIX II
PROOF OF LEMMA 1

We consider the worst case scenario for the computation,
i.e., the former states in all the samples are terminal states.
In this case, the rewards are calculated from (25). The term
inside the second summation consists of two part, i.e., the
cross-entropy calculation which has computational complexity
O(M), and the calculation of p̂ by using the sensing net-
work. The computational complexity of calculating CA is
O(KNNSM).

Based on [46], calculating the pseudo-inverse matrix Γ+,
where Γ is a K×M matrix, has complexity O(K2M). Similar
to the analysis of the computational complexity of MLPs in
the proof of Theorem 1, the computational complexity of the
MLP is O(M2). Therefore, the computational complexity of
calculating p̂ is O(KNNSM +K2M +M2), which proves
Lemma 1. �

APPENDIX III
PROOF OF LEMMA 2

For a fully connected neural network with a fixed number
of hidden layers and neurons, the computational complex-
ity of the back-propagation algorithm is proportional to the
product of the input size and the output size [45]. Therefore,
the computational complexity of using the back-propagation
algorithm for updating the parameter vector of the sensing
network is O(M2).

The policy network can be considered as two connected
MLPs: the first one takes the one-hot embedding vectors
of k and n as the input, and the second one takes the K
measuring vectors with 2M dimensions as the input. More-
over, as a symmetric MLP group is considered, the actual
size of the input vector for the second MLP is 2M instead
of 2KM . Therefore, the computational complexity of train-
ing the first and second MLP of the policy network are
O(NS · (K + N)) and O(NSM), respectively, and the total
computational complexity is thus O(NS · (K +N +M)).

Furthermore, if a single large MLP with layer sizes
(2KM, 64, 32K) is used to substitute the symmetric MLP
group, the computational complexities of training the second
MLP is O(KNSM), and the total computational complexity
of training the policy network is O(KMNS +NNS). There-
fore, Lemma 2 is proved. �

APPENDIX IV
PROOF OF THEOREM 2

Based on (26) and (27), the complexity of calculating the
loss functions are determined by the computation of the reward
and action probabilities. From Theorem 1 and Lemma 2,
it follows that the complexity of calculating the reward is of
higher order than that of calculating the action probabilities.
Therefore, the computational complexity of the training phase
is dominated by the calculation of the Nb rewards, which is
O
(
KNNSM +K2M +M2

)
. Theorem 2 is thus proved. �
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