Electronic Landscape of the f-electron Intermetallics with the ThCr₂Si₂ Structure

You Lai^{1,2}, Julia Y. Chan³ and Ryan E. Baumbach^{1,2*}
¹National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
²Department of Physics, Florida State University, Tallahassee, FL 32306, USA and
³Baylor University, Waco, TX 76706, USA
(Dated: June 10, 2022)

Although strongly correlated f-electron systems are well known as reservoirs for quantum phenomena, a persistent challenge is to design specific states. What is often missing are simple ways to determine whether a given compound can be expected to exhibit certain behaviors and what tuning vector(s) would be useful to select the ground state. In this review, we address this question by aggregating information about Ce, Eu, Yb, and U compounds with the ThCr₂Si₂ structure. We construct electronic/magnetic state maps that are parameterized in terms of unit cell volumes and d-shell filling, which reveals useful trends including that (i) the magnetic and nonmagnetic examples are well separated, and (ii) the crossover regions harbor the examples with novel states. These insights are used to propose structural/chemical regions of interest in these and related materials, with the goal of accelerating discovery of the next generation of f-electron quantum materials.

PACS numbers: PACS

I. INTRODUCTION

Interest in strongly correlated f-electron intermetallics is periodically renewed by discoveries of exemplary materials with truly unique behaviors (e.g., hidden order and superconductivity in URu₂Si₂, [1] anomalously high temperature superconductivity in PuCoGa₅, [2] topological insulating behavior in SmB₆ [3], strongly correlated Weyl-Kondo semimetallic behavior in Ce-based compounds, [4] and heavy fermion superconductivity in many Ce- and U-based systems, [5, 6]). The vitality of this cycle was recently seen in the emergence of unconventional spin triplet superconductivity in UTe₂, [7, 8] which features anomalously large upper critical fields and magnetic field driven reentrant superconductivity. Even amongst the heavily studied variants of the ThCr₂Si₂ structure, this trend towards serendipitous discovery is alive and well. For example, CeRh₂As₂ (CaBe₂Ge₂type structure) was recently shown to exhibit unconventional superconductivity, anomalously large upper critical fields, and evidence for several superconducting order parameters. [9, 10] Both of these materials may even feature nontrivial electronic topologies.

These types of discoveries clearly invite continued efforts to develop f-electron intermetallics, but the field is hampered by a lack of clarity regarding where to look for examples with enhanced properties. This is largely because (i) the relative strengths of interactions (e.g., Kondo, RKKY, valence instability, spin orbit, crystal electric field splitting, etc.) vary widely between different materials, (ii) unusual states often emerge as a result of finely balanced or cumulative interactions, and (iii) calculations to quantify the relative importance of different interactions often have limited success. Historically, this has necessitated systematic experimental surveys of

What is often missing in this process is a simple way to determine whether a given compound can reasonably be expected to exhibit novel behavior (either intrinsically or under modest tuning) and what tuning vector(s) would be useful. Herein, we address this challenge by reexamining the families of materials with the AT_2X_2 composition [12, 13], where we show that for the A = Ce, Eu, Yb, and U-based subsets with the ThCr₂Si₂-type structure, (i) the magnetic and nonmagnetic examples are well separated. (ii) the crossover region that separates them follows a simple but nontrivial trajectory, and (iii) the crossover region hosts the examples that exhibit attractive behavior such as unconventional superconductivity and non-Fermi-liquid behavior. These observations are consistent with earlier organizing principles (e.g., the Doniach phase diagram [14], the Hill plot [15], and surveys of Ce and U based 122 compounds [16–18] that emphasize electronic hybridization strength), but have the benefit that (i) they clarify chemical strategies to search for new examples with novel behavior and and (ii) provide a concise summary of behaviors in this structural family. We also suggest that this approach is well suited to elementary data mining of electronic databases that can be used to investigate many other structural families.

II. STRUCTURE, CHEMISTRY, AND GENERIC PHASE DIAGRAMS

The ThCr₂Si₂ structure (Fig. 1a) was first reported by Ban and Sikirica in Ref. [12], and since then it has proven

the chemical/structural phase space to uncover materials with novel electronic and magnetic states. [11] However, it is also widely held that these resource intensive surveys are not optimal - at least in the sense that the discovery of examples with remarkable physics requires sifting through a large number of related examples, most of which show conventional behavior that fails to drive the field forward.

^{*} baumbach@magnet.fsu.edu

to be one of the most ubiquitous structural arrangements for ternary combinations of elements. There are many detailed reviews that address trends in this family, and several are listed in Ref. [13]. To summarize, it is a ternary variant of the BaAl₄ prototype (space group I4/mmm), and is generically expressed as AT_2X_2 , where the A, T, and X atoms are located on the Wyckoff sites 2a (0,0,0), 4d (0,0.5,0.25), and 4e (0,0,z), respectively. This provides distinct high symmetry environments around the A, T, and X atoms which influence the physical properties of the chemical variants. This structure also exhibits pronounced chemical flexibility, where the A site can be populated by alkali metal, alkaline earth, rare earths, first column transition metals, lanthanide, and actinide elements, the T site can be occupied by transition metal, light alkali metals and alkaline earths, and p-block elements, and the X site can be occupied by p-block elements and some transition metals. Importantly, there are many other closely related structures (e.g., CaBe₂Ge₂-, CeNiSi₂-, BaNiSi₃-, and U_2 Co₃Si₅-types [19–22]), and there even are hybrid examples that combine this family and other prototypes (Figs 1b-f) [23–25] which opens the prospect of developing design principles that span families of materials.

A multitude of behaviors emerge from these simple crystal structures when f-elements are introduced into them, including local moment and complex magnetism, [26] charge instabilities, [27] structural instabilities, [28] unconventional superconductivity, [29, 30] hidden order, [1] multipolar order, [31], and topologically protected electronic states, [9, 10]. For the Ce-, Yb-, and U based systems, the behavior is especially rich, and is often understood in terms of the Ruderman-Kittel-Kasuva-Yosida (RKKY) and Kondo interactions [14, 32– 35], where (i) the RKKY interaction provides an indirect magnetic exchange between localized f-spins through the conduction electrons and favors magnetic ordering while (ii) the Kondo interaction drives hybridization between the conduction electron and f-states that results in screening of the f-spin and strongly reduces the effective magnetic moment. The connection between these parameters has been discussed extensively in terms of the Doniach model, and is summarized in Refs. [5, 6]. The resulting generic phase diagrams are shown schematically in Figs. 2a,b for Ce and Yb, where a tuning parameter δ (e.g., pressure or chemical substitution) varies the ground state. For the case of Ce, at small δ the valence is close to 3+, hybridization between the f- and conduction electrons is weak, and there typically is a magnetically ordered ground state at $T_{\rm N,C}$. As δ increases, $T_{\rm N,C}$ may initially increase as the RKKY interaction strengthens, but eventually it tends to be suppressed towards zero temperature at δ_c . Under some conditions, this results in a quantum critical point that is surrounded by a fan-like region of non-Fermi-liquid behavior. For many CeT_2X_2 compounds the quantum critical point is also surrounded by a dome of unconventional superconductivity. At larger δ the hybridization strength increases further, Fermi liquid behavior is observed below a crossover temperature $T_{\rm FL}$, and eventually intermediate valence or a tetravalent state emerges. Importantly, the Ce and Yb phase diagrams are related, but are inverted with respect to each other owing to how Hund's rules determine the total angular momentum J: for Ce³⁺ (J = 5/2), Ce⁴⁺ (J = 0), whereas Yb 2+ (J = 0), and Yb 3+ (J = 7/2).

Some lanthanide and actinide based materials with multiple f-orbitals exhibit related phase diagrams, but additional complexities are involved. For example, a semi-universal phase diagram has been proposed for Eubased intermetallics [36, 37], which resembles the Doniach picture but also includes distinct features relating to the valence transition between the Eu^{2+} (J=7/2)and Eu^{3+} (J=0) states (Fig. 2c). Interestingly, there is also an ongoing debate about the importance of valence instabilities in Ce and Yb based materials, their role in determining classes of quantum criticality, and impact on superconductivity [38–40]. We point out that related behavior might even be expected in families containing Pr, Sm, and Tm where multiple valence states are available. [41, 42] Amongst actinide based materials, the situation is even more complicated due to the greater tendency towards f-state itinerancy, the potential impact of relativistic effects, and the presence of multiple f-electron orbitals which could experience differing degrees of hybridization. [43] Nonetheless, phase diagrams that resemble those shown in Figs. 2a-c are sometimes observed [44, 45]. Finally, all of these behaviors should be contrasted with those of the remaining lanthanides, where (i) the valence is rigidly fixed to be trivalent and (ii) hybridization between the conduction electron and f-states is weak.

Based on these observations, it is appealing to suggest that although there are wide ranging behaviors in this family of materials, the QCP scenario provides a powerful design principle for producing examples with attractive behaviors. However, even with these insights, it remains unclear (i) which ones are best suited to further investigations because they are near a magnetic or valence instability and (ii) for a given material (or family of materials) what is the best tuning strategy to access regions of interest. In order to address this, we assemble maps in the chemical-structural phase space for the compounds (Ce,Yb,Eu,U) T_2X_2 with the ThCr₂Si₂ structure and identify regions of interest. We also comment on related structures and prospects for uncovering novel phenomena in them.

III. ELECTRONIC-MAGNETIC MAPS FOR $(Ce, Yb, Eu, U)T_2X_2$ WITH THE $ThCr_2Si_2$ STRUCTURE

Figure 3a presents the phase map for the compounds CeT_2X_2 (T = transition metal and X = Si,Ge) by providing the lattice constants and f-state as reported in literature [16–18, 29, 40, 46–69]. By organizing these

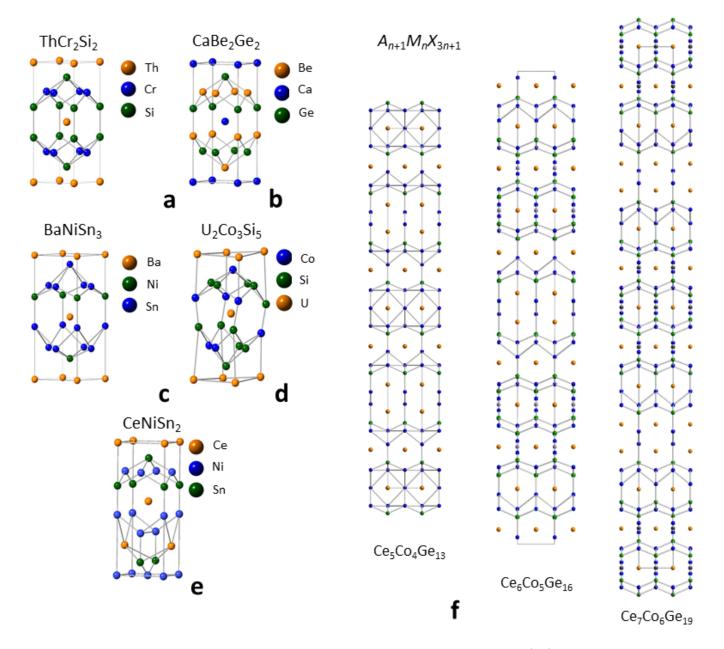


FIG. 1. Summary of crystalline structures that relate to the ThCr₂Si₂ prototype (a-e) The ThCr₂Si₂, CaBe₂Ge₂, BaNiSn₃, U₂Co₃Si₅, and CeNiSi₂, structures taken from Refs. [12, 13, 19–22]. (f) The structure for the $A_{n+1}M_nX_{3n+1}$ (A = lanthanide, M = transition metal, X = tetrels) n = 4-6 compounds, composed of complex layering of sub-units. Ce, Co, and Ge are represented as orange, green, and blue spheres. Structural details obtained from Ref. [23–25]

compounds based on their transition metal column and unit cell volume, it is seen that (i) there is a clear separation between those with trivalent Ce and tetravalent or intermediate valence Ce, (ii) the crossover region includes all of the examples that exhibit Kondo lattice heavy fermion, quantum criticality, non-Fermi-liquid, and superconducting behavior, and (iii) that the crossover region depends on a nearly linear relationship between shell filling and unit cell volume. Points (i) and (ii) are illustrated by the evolution from a strongly hybridized

Kondo lattice (CeCu₂Si₂) towards weakened hybridization and strengthened magnetism as the unit cell volume increases. [29] This is also noticeable for the other isovalent transition metal series, which all go from tetravalent examples (e.g., CeNi₂Si₂ [61]) through strongly hybridized Kondo lattices (e.g., CeNi₂Ge₂ [60, 61]) to trivalent cerium magnetism (CePd₂Ge₂ [59, 60]). Supporting evidence for this evolution is seen by examining the unit cell volume lanthanide contractions for each family of materials, where reductions from the trivalent lan-

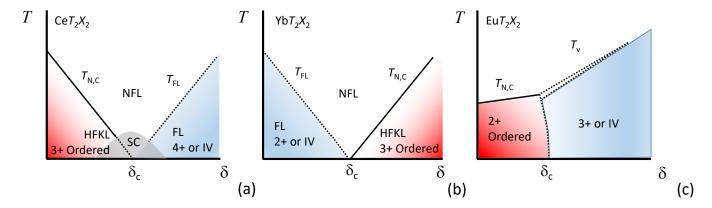
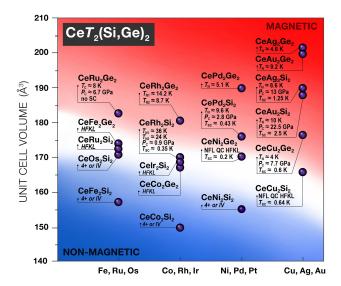


FIG. 2. Schematic phase diagrams for strongly correlated f-electron intermetallics. Temperature T vs. control parameter δ phase diagram for the compounds CeT_2X_2 , [5, 6] YbT_2X_2 , [5, 6] and EuT_2X_2 [36, 37], where T = transition metal and X = p-block element. Here, δ is the chemical composition x or pressure P. The trends for the magnetic ordering temperatures $T_{N,C}$, superconducting transition temperatures T_c , valence change transition temperatures T_V , and Fermi liquid crossovers T_{FL} that are observed in these phase diagrams are described in the text. The solid lines represent phase boundaries, whereas the dotted lines represent crossover regions: e.g., temperature ranges over which a system enters a Fermi liquid or intermediate valence (IV) ground state. The f-electron valences are also indicated (3+ or 4+ for cerium, 2+ or 3+ for ytterbium, and 2+ or 3+ for europium). Note that these diagrams focus on the critical regions near δ_c , but the more general Doniach phase diagram includes a region where the ordering temperatures increase with δ as the RKKY interaction strengthens, before collapsing towards T = 0 at δ_c [14]. This trend is seen in the ordering temperatures presented in Fig. 3.


thanide contraction are seen for tetravalent or intermediate valence examples. Related behavior is observed for many other cerium-based intermetallics, and is generally understood in the context of the Doniach picture or in terms empirical frameworks such as Hill plots (Fig. 2a). [6, 14, 15]

The effect of non-isoelectronic tuning is less easily anticipated, but is clarified by earlier studies showing that the hybridization strength between the f-electron and conduction electron states tends to decrease going from the iron column towards the copper column. [16–18]. Within the Ce-map, the importance of this is seen for the group of materials with unit cell volumes near 170 Å³, where there is a progression from intermediate valence or tetravalent behavior (CeOs₂Si₂ [51]) to heavy fermion Kondo lattice behavior (CeIr₂Si₂ [56]), to quantum critical non Fermi liquid behavior and superconductivity (CeNi₂Ge₂ [60, 61]), and finally trivalent magnetic ordering (CeCu₂(Si_{1-x}Ge_x)₂ at $x \approx 0.2$ [66]). This illustrates that weakening hybridization causes the boundary between magnetic (Ce³⁺) and nonmagnetic (Ce⁴⁺ or intermediate valence) behavior to shift towards smaller unit cell volumes with increasing d-shell filling. Outside of this crossover region, horizontal lines always traverse either intermediate valence or tetravalent cerium states (small volumes) or trivalent cerium states with magnetic ordering (large volumes).

Importantly, the examples that exhibit heavy Fermi liquid Kondo lattice behavior, superconductivity, or non-Fermi-liquid behavior (e.g., CeRu₂Si₂ [50], CeCu₂Si₂ [29] and CeNi₂Ge₂ [60, 61]) appear at the boundary between the two regions and are readily tuned through

it by changing either the unit cell volume or the dshell filling. For example, in the cases of CeCu₂Si₂ and CeNi₂Ge₂, applied pressure drives the ambient pressure superconducting transition through a dome-like region. [29, 60] Fermi liquid behavior that is consistent with the system entering either an intermediate valence or tetravalent cerium state emerges at large pressures, where a second dome of superconductivity is ob-In contrast, isoelectronic chemical substitution that expands the lattice drives these compounds into magnetic ground states where the hybridization strength is reduced. It is also seen that the examples with magnetically ordered ground states that are near the boundary (e.g., CePd₂Si₂ [60] and CeRh₂Si₂ [54]) are readily moved into it using applied pressure, while larger pressures are needed to move more distant examples (e.g., CeAu₂Si₂, [40] and CeCu₂Ge₂ [67]) into the crossover region. Non-isoelectronic chemical substitution series reveal related trends: e.g., when antiferromagnetic $Ce(Cu_{1-x}T_x)_2Ge_2$ (x=0) is chemically substituted by T = Ni or Co the boundary region is crossed and critical behavior is observed over a limited x-range. [47, 69]

Thus, it is clear that for the entire $CeT_2(Si,Ge)_2$ series the region that separates the magnetic and nonmagnetic members varies systematically with both the unit cell volume and the electronic shell filling, which each tune the hybridization strength in a distinct way. This perspective is reinforced by considering the related maps for the compounds CeT_2X_2 (T = transition metal and X = P,As) (Fig. 3b) [70–77]. Although it is less clear in this case, we infer from these data and the trends that are seen for the Si/Ge analogues that there is a similar non-

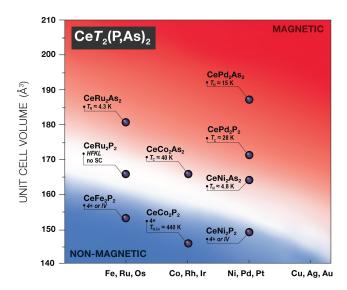


FIG. 3. Phase map for the valence and ground state behavior of the compounds CeT_2X_2 (T = transition metal and <math>X = Si/Ge and P/As) that crystallize in the $ThCr_2Si_2$ -type structure. [16–18, 29, 40, 46–77]. The axes that control the ground state are the unit cell volume (V) and the d-shell filling going from the Cu column to the Fe column. The white band that traverses the center of the phase diagram is a guide to the eye that approximately separates the examples with tetravalent or intermediate valence cerium (lower left hand side (blue background)) from those with trivalent cerium (upper right hand side (red background)). Ordering temperatures are labeled (Neel temperature T_N and Curie temperature T_C). Also shown in some cases are the critical pressures where magnetism collapses (P_c) and the associated superconducting transition temperature (T_c). These values and their associated references are summarized in Table S1.

trivial vector separating the magnetic and nonmagnetic regions. As before, the examples that exhibit strongly correlated electron physics (e.g., $CeRu_2P_2$ [71]) are on the boundary.

Given the success of this simple scheme in describing the Ce based ThCr₂Si₂ compounds, we next examine the maps for the Yb examples (Fig. 4) [30, 31, 78–97]. Note that few prictide analogues have been reported, so a map is not included. For the Si/Ge series, there is a strong resemblance between the Yb and Ce maps, but the magnetic and nonmagnetic regions are inverted. This is due to Hund's rules producing J = 7/2 for trivalent ytterbium $(4f^{13})$, while divalent Yb has a full f-shell $(4f^{14})$ and J = 0). In the intermediate volume region there are several nearly critical Kondo lattice systems, as well as the well-known quantum critical material YbRh₂Si₂ [30, 84]. Chemical substitution studies have been performed for many of these examples: e.g., (i) $Rh \rightarrow Co$ substitution in YbRh₂Si₂ stabilizes magnetism, weakens the hybridization strength, and leads to magnetic ordering [97], (ii) applied pressure drives YbFe₂Ge₂ from being a heavy fermion Kondo lattice through a quantum critical point with non-Fermi-liquid behavior, into an antiferromagnetically ordered ground state [80], and (iii) applied pressure drives divalent YbCu₂Ge₂ towards intermediate valence behavior [94]. Similar behavior is seen for tuning studies of other examples such as YbIr₂Si₂ [83], YbCu₂Si₂ [95], and YbPd₂Si₂ [96]. These observations suggest that the hybridization strength for the Yb compounds is strongly controlled by a combination of lattice contraction and dshell filling in a manner that resembles what is seen for the Ce analogues.

It is also of interest to examine other Pr, Sm, Eu, and Tm based compounds that potentially could exhibit valence instabilities. [41, 42] Amongst this group, those with Pr, Sm, and Tm so far show no evidence in their bulk properties for crossover regions. This is supported by inspection of the evolution of their unit cell volumes, where all examples conform to the trivalent lanthanide contraction. This leads us to expect that although these families might, in principle, include interface regions they are not within the chemical phase space of the naturally occurring examples in this structure.

In contrast, the Eu compounds show trends that are related to the Ce- and Yb- analogues (Fig. 5) [36, 37, 98– 131]. The compressed volume examples all exhibit either trivalent $(4f^6, J = 0)$ or intermediate valence behavior while the expanded volume examples exhibit divalent $(4f^7, J = 7/2)$ behavior. Examples close to the crossover region are readily tuned through it: e.g., the Eu valence and unit cell volume of EuCu₂Si₂ varies between 2+ and 3+ depending on synthesis method [115, 116] while EuIr₂Si₂ exhibits behavior that is similar to what is seen in Kondo lattice systems with modest hybridization strength [104]. When the antiferromagnets EuNi₂Ge₂ [108] and EuRh₂Si₂ [102] are compressed using hydrostatic pressure they evolve towards Kondo latticelike behavior similar to that of EuIr₂Si₂. Remarkable behavior is seen for EuPd₂Si₂, which is nearly divalent at room temperature but its temperature dependent vol-

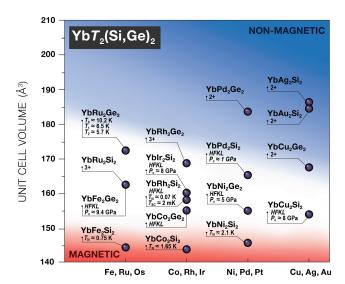
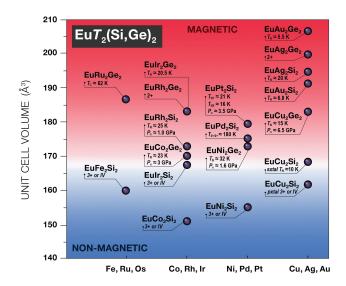


FIG. 4. Phase map for the valence and ground state behavior of the compounds YbT_2X_2 (T= transition metal and X= Si/Ge) that crystallize in the ThCr₂Si₂-type structure [30, 31, 78–97]. The white band that traverses the center of the phase diagram is a guide to the eye that approximately separates the examples with trivalent (bottom (red background)) from those with divalent ytterbium (upper right hand side (blue background)). Ordering temperatures are labeled (Neel temperature T_N and Curie temperature T_C). Critical pressures P_c are labeled. These values and their associated references are summarized in Table S2.


ume contraction is sufficient to drive a phase transition into the trivalent state [36, 107]. Amongst the pnictides, it is noteworthy is that although most of them exhibit a divalent state, the heavy fermion Kondo lattice ${\rm EuNi_2P_2}$ appears to be in a crossover region where the critical unit cell volume is substantially smaller than that of the Si/Ge analogues [130, 131]. These maps also reveal an important distinction from the Ce and Yb analogues, since here the electronic shell filling has a negligible impact on the location of the crossover region.

Finally, Fig. 6 summarizes results for the compounds UT_2X_2 [1, 79, 132–146]. There are a limited number of pnictide examples, so we focus on the Si/Ge group. Again there is a separation between the magnetic and nonmagnetic examples, but in this case the latter group are clustered around the Fe/Ru/Os transition metal group. Most of these compounds are Pauli paramagnets (e.g., UFe₂Si₂ [134], UFe₂Ge₂ [133], and UOs_2Si_2 [132]) where strong hybridization between the f- and conduction electron states causes the f-state to become delocalized. It is interesting to note that the hidden order compound, URu₂Si₂ is located in close vicinity to these examples, which is consistent with the view that strong hybridization plays an important role in this material [1]. Similar to what is seen for the lanthanides, the hybridization strength weakens going towards the

Cu/Ag/Au column [16, 17]. The result is that the remainder of the compounds all exhibit magnetic ground states with large ordering temperatures. Some of these examples host complex magnetism (e.g., spin glass behavior in URh₂Ge₂ [135] and multiple phase transitions in many others) and are susceptible to disorder effects, but these behaviors do not appear to be associated with the crossover region. Decreases in the unit cell volume tend to slowly suppress the ordering temperature, but in contrast to the Ce, Yb, and Eu analogues there is no volume driven crossover region for this family. Instead large pressures are needed to access it, as demonstrated for UCo₂Si₂ which has a critical pressure near 8 GPa [140]. For UNi₂Si₂ and UCu₂Si₂ even larger pressures would be needed, as experiments have so far been unsuccessful in fully suppressing the magnetism [141, 146]. Thus it is clear that the U series is distinct from the Ce, Yb, and Eu analogues in terms of the conditions that would be useful for driving critical behavior. This has been remarked upon previously, [146] and likely reflects differences between the 5f and 4f states. Such information is of high importance in developing tuning strategies to access the critical region.

IV. OUTLOOK FOR FUTURE EFFORTS

These insights are immediately useful for focusing investigations of materials with the ThCr₂Si₂ structure. For example, although the Ce-series has already been extensively studied, there remain some attractive examples that have not received close attention. CeCo₂As₂ [73] is of interest because it is simultaneously near the crossover region and may also exhibit strong d-electron magnetism similar to what is seen for CeCo₂P₂. [74] Indeed, preliminary results reveal ferromagnetic ordering at $T_{\rm C} \approx 40$ K [73], and we speculate that the ordered state would be readily suppressed using applied pressure, As \rightarrow P substitution, or Co \rightarrow Fe or Ni substitution. Examination of the Eu and Yb families reveals other opportunities. Both EuFe₂Ge₂ and EuRu₂Si₂ have not been reported, although the related compounds RFe₂Ge₂ (R = Y, Pr, Nd, Sm, Gd-Tm, Lu) and EuT_2Ge_2 (T = transportedsition metal) are described in Refs. [147, 148]. Here it was inferred that EuFe₂Ge₂ is not a stable phase under conventional growth conditions. This leads us to propose that this phase, and others that are 'missing' from the maps, might be accessible as metastable phases where modest amounts of applied or chemical pressure might be sufficient to stabilize them. If they can be formed they might exhibit complex phase diagrams involving valence instability physics similar to what is seen in EuPd₂Si₂, [36, 107], EuRh₂Si₂ [102] or EuCo₂Ge₂, [103] where modest lattice contractions are sufficient to access the valence change region. The heavy fermion Kondo lattice EuNi₂P₂ appears to be within the crossover region and exhibits Kondo-lattice-like behavior [130, 131]. This invites efforts to traverse the crossover region using chem-

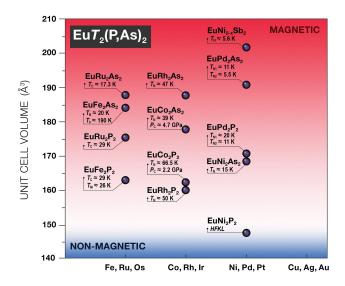


FIG. 5. Phase map for the valence and ground state behavior of the compounds $\operatorname{Eu} T_2 X_2$ ($T = \operatorname{transition}$ metal and $X = \operatorname{Si}/\operatorname{Ge}$ and $\operatorname{P}/\operatorname{As}$) that crystallize in the $\operatorname{ThCr_2Si_2}$ -type structure [36, 37, 98–131]. The white band that traverses the center of the phase diagram is a guide to the eye that separates the examples with trivalent or intermediate valence europium (lower half (blue background)) from those with divalent europium (upper half (red background)). Ordering temperatures are labeled (Neel temperature $T_{\rm N}$ and Curie temperature $T_{\rm C}$). Critical pressures $P_{\rm c}$ are labeled. These values and their associated references are summarized in Table S3.

ical substitution. Finally, for the Yb-based examples we note that there have already been substantial efforts, where the focus has been on the prototypical quantum critical point material YbRh₂Si₂. [30, 84] Nonetheless, there are several other remarkable materials in this family including YbRu₂Ge₂, [31] which exhibits quadrupolar order and strongly correlated electron behavior. This is unique amongst all other lanthanide based materials with the ThCr₂Si₂ structure and motivates chemical substitution studies that span the crossover region.

The U-based examples show distinct trends which draw attention towards d-shell filling as being the only viable route for entering the crossover region. This perspective has already been explored for URu₂Si₂, [149, 150] where electronic shell filling produces a semi-universal T-x phase diagram with three main regions: (1) the hidden order state is rapidly suppressed towards zero temperature for $x \lesssim x_{\rm cr,1}$, (2) paramagnetism with a heavy-Fermi-liquid ground state is seen for $x_{\rm cr,1} \lesssim x \lesssim x_{\rm cr,2}$, and (3) new types of complex antiferromagnetic order appears for $x_{cr,2} \lesssim x$. Surprisingly, this behavior is induced regardless of the type of chemical substitution (e.g., Ru \rightarrow Rh, Ir and Si \rightarrow P), as long as it effectively adds electrons. This motivates further studies of the nearby Pauli paramagnetic analogues, where non-isoelectronic chemical substitution can be used to tune towards the magnetic region (e.g., $U(Fe_{1-x}T_x)_2Ge_2$ where T = Co, Rh, Ir).

Finally, it will be valuable to use these insights to cast a wider net into the structural variants with the CaBe₂Ge₂-, CeNiSi₂-, BaNiSn₃-, and U₂Co₃Si₅- structure types, where a preliminary survey indicates that they exhibit maps that are similar to those presented

here. Recent work has also shown that there are complex hybrid structure that combine standard building blocks with other structural elements. An example of this is seen for the homologous series $A_{n+1}M_nX_{3n+1}$ (A = lanthanide, M = transition metal, X = tetrels, and n =1-6), which are constructed from basic structural subunits such as AlB₂, AuCu₃, and BaNiSn₃ (Fig. 1f). Examples spanning n = 1 - 6 for the A =Ce series have already been uncovered, [23–25] where complex magnetism and Kondo lattice physics is observed. For example, $Ce_7Co_{6+x}Ge_{19-y}Sn_y$ (n=6), with four crystallographically unique lanthanide sites, was recently shown to have five magnetic transitions of 5, 6, 7.2, 12.4, and 16.5 K. It was also shown that three of the n = 6 magnetic transitions are also found in the n=5 member. [24] This opens the possibility that magnetic/electronic behaviors can be controlled using varied stacking arrangements. The diversity of this behavior invites further investigations, where we expect (i) additional n variation and (ii) chemical flexibility on all of the crystallographic sites. Indeed, it is easy to look forward to (i) the Eu, Yb, and U analogues being hosts for many different novel electronic/magnetic behaviors and (ii) the transition metal and tetrel sites accommodating isoelectronic replacement, and possibly even nonisoelectronic substitution. While a brute force examination of the chemical phase space is not feasible, our maps offer a route forward. For example, all of the Ce-based examples that have been uncovered so far exhibit local f-moment magnetism. Taking inspiration from the maps for the ThCr₂Si₂ Ce-based materials, this implies that efforts should be made to increase the hybridization strength by compressing the unit cell

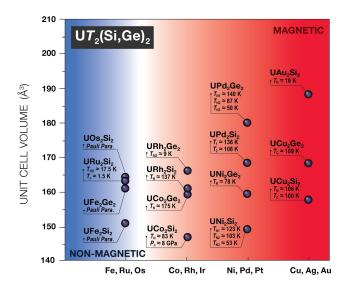


FIG. 6. Phase map for the valence and ground state behavior of the compounds UT_2X_2 (T= transition metal and X= Si/Ge) that crystallize in the ThCr₂Si₂-type structure [1, 79, 132–146]. The white band separates the examples with Pauli paramagnetism (left hand side (blue background)) from those with magnetically ordered ground states (right hand side (red background)) is a guide to the eye. Ordering temperatures are labeled (Neel temperature $T_{\rm N}$, Curie temperature $T_{\rm C}$, hidden order temperature $T_{\rm HO}$, spin glass temperature $T_{\rm sg}$, and superconducting transition temperature $T_{\rm c}$). Critical pressures $P_{\rm c}$ are labeled. These values and their associated references are summarized in Table S4.

volume (e.g., using applied pressure or $Ge \to Si$ substitution) and undertaking chemical substitution studies that point towards the iron column.

V. SUMMARY AND CONCLUSION

In this review, we have constructed structural/chemical maps for intermetallics with the $ThCr_2Si_2$ structure, which reveal distinct regions where classes of f-state behaviors emerge. In particular, amongst the Ce, Eu, Yb, and U families, the cases with

magnetic f-states are separated from those with strongly hybridized nonmagnetic f-states by a well contained crossover region that depends both on unit cell volume and electron shell filling. Importantly, the examples that exhibit emergent behavior that is associated with quantum criticality are found in the crossover region. This agrees with earlier perspectives (e.g., Doniach and Hill), but clarifies the role of chemical composition without resorting to computational methods. insights will be useful to pinpoint regions of interest in families of materials related to the ThCr₂Si₂ prototype and have the potential to accelerate discoveries of novel phenomena. This approach may even be applicable to other structural families, where mining of electronic databases could be used to accelerate progress.

VI. ACKNOWLEDGEMENTS

Funding R. B. acknowledges support from the National Science Foundation through NSF DMR-1904361. YL was supported in part by the Center for Actinide Science and Technology, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award Number DE-SC0016568. JYC acknowledges NSF DMR-2209804 and Welch Grant number AT-2056-20210327 for partial support. The National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF DMR-1644779 and the State of Florida. We acknowledge Juan Ortega for drawing the crystal structures. We thank Caroline McNiel (NHMFL) for essential contributions in designing figures 3-6. Author Contributions R.B. conceived of the project. All authors contributed equally to the compilation of data from the literature, its interpretation, and writing. J.C. is primarily responsible for studies of composite structures that are referenced. Competing Interests The authors declare that they have no competing interests. Data Availability All data needed to evaluate the conclusions in the paper are present in the paper and are available in the references.

J. A. Mydosh, P. M. Oppeneer, and P. S. Riseborough, Hidden Order and Beyond: an Experimental-Theoretical Overview of the Multifaceted Behavior of URu₂Si₂ Journal of Physics Condensed Matter 32(January), 143002 (2020). DOI:10.1088/1361-648x/ab5eba

^[2] J. L. Sarrao, L. A. Morales, J. D. Thompson, B. L. Scott, G. R. Stewart, F. Wastin, J. Rebizant, P. Boulet, E. Colineau, and G. H. Lander, *Plutonium Based Superconductivity with a Transition Temperature Above 18 K*, Nature 420(November), 297-299 (2002).

DOI:https://doi.org/10.1038/nature01212

^[3] M. Dzero, K. Sun, V. Galitski, and P. Coleman, Topological Kondo Insulators, Physical Review Letters 104(March), 106408 (2010). DOI:https://doi.org/10.1103/PhysRevLett.104.106408

^[4] H.- H. Lai, S. E. Grefe, S. Paschen, and Q. Si, Weyl-Kondo semimetal in heavy-fermion systems, Proceedings of the National Academy of Sciences 115(January), 93-97 (2018). DOI:https://doi.org/10.1073/pnas.1715851115

- [5] C. Pfleiderer, Superconducting Phases of felectron Compounds, Reviews of Modern Physics 81(November), 1551-1624 (2009).
 DOI:https://doi.org/10.1103/RevModPhys.81.1551
- [6] M. B. Maple, R. E. Baumbach, N. P. Butch, J. J. Hamlin, and M. Janoschek. Non-Fermi Liquid Regimes and Superconductivity in the Low Temperature Phase Diagrams of Strongly Correlated d- and f-Electron Materials. Journal of Low Temperature Physics 161(August), 4-54 (2010). DOI:https://doi.org/10.1007/s10909-010-0212-5
- [7] S. Ran, C. Eckberg, Q. -P. Ding, Y. Furukawa, T. Metz, S. R. Saha, I-L. Liu, M. Zic, H. Kim, J. Paglione, N. P. Butch, Nearly Ferromagnetic Spin-Triplet Superconductivity Science 365(August), 684-687 (2019). DOI:10.1126/science.aav8645
- [8] S. Ran, I.-L. Liu, Y. S. Eo, D. J. Campbell, P. M. Neves, W. T. Fuhrman, S. R. Saha, C. Eckberg, H. Kim, D. Graf, F. Balakirev, J. Singleton, J. Paglione, and N. P. Butch, Extreme Magnetic Field-Boosted Superconductivity Nature Physics 15(October), 1250-1254 (2019). https://doi.org/10.1038/s41567-019-0670-x
- [9] S. Khim, J. F. Landaeta, J. Banda, N. Bannor, M. Brando, P. M. R. Brydon, D. Hafner, R. Kuchler, R. Cardoso-Gil, U. Stockert, A. P. Mackenzie, D. F. Agterberg, C. Geibel, and E. Hassinger, Field-Induced Transition Within the Superconducting State of CeRh₂As₂, Science 373(August), 1012-1016 (2021). DOI: 10.1126/science.abe7518
- [10] K. Nogaki, A. Daido, J. Ishizuka, and Y. Yanase, Topological Crystalline Superconductivity in Locally Noncentrosymmetric CeRh₂As₂, Physical Review Research 3(September), L032071 (2021). DOI:https://doi.org/10.1103/PhysRevResearch.3.L032071
- [11] P. Canfield, New Materials Physics, Reports on Progress in Physics 83(November), 016501 (2020). DOI:10.1088/1361-6633/ab514b
- [12] Z. Ban and M. Sikirica, The Crystal Structure of Ternary Silicides ThM₂Si₂ (M = Cr, Mn, Fe, Co, Ni, and Cu, Acta Crystallogr. 18(May), 594-599 (1965). DOI: https://doi.org/10.1107/S0365110X6500141X
- [13] M. Shatruk. ThCr₂Si₂ Structure Type: The "Perovskite" of Intermetallics. Journal of Solid State Chemistry **272(April)**, 198-209 (2019). DOI:https://doi.org/10.1016/j.jssc.2019.02.012
- [14] S. Doniach, The Kondo Lattice and Weak Antiferromagnetism, Physica B+C 91(July), 231-234 (1977). DOI: 10.1016/0378-4363(77)90190-5
- [15] H. H. Hill, in *Plutonium in 1970 and other Actinides*, edited by W. N. Miner (Metallurgical Society of AIME, New York, 1970), p. 2.
- [16] T. Endstra, G. J. Nieuwenhuys, and J. A. Mydosh, Hybridization Model for the Magnetic-Ordering Behavior of Uranium- and Cerium-based 1:2:2 Intermetallic Compounds. Physical Review B 48(October), 9595-9605 (1993). DOI: 10.1103/PhysRevB.48.9595
- [17] T. T. M.Palstra, A. A. Menovsky, G. J. Nieuwenhuys, and J. A. Mydosh, Magnetic Properties of the Ternary Compounds CeT₂Si₂ and UT₂Si₂. Journal of Magnetism and Magnetic Materials 54(February), 435-436 (1986). DOI: 10.1016/0304-8853(86)90654-2
- [18] R. A. Niefeld, M. Croft, T. Mihalisin, C. U. Segre, M. Madigan, M. S. Torikachvili, M. B. Maple, and L. E. DeLong, Chemical environment and Ce valence:

- Global Trends in Transition-Metal Compounds Physical Review B **32(November)**, 6928-6931 (1985). DOI: 10.1103/PhysRevB.32.6928
- [19] B. Eisenmann, N. May, W. Muller, and H. Schafer, Eine Neue Strukturelle Variante des BaAl₄-Typs: Der CaBe₂ Ge₂-Typ, Z. Naturforsch. B 27, 1155-1157 (1972).
- [20] W. Dörrscheidt and H. Schäfer, Die Struktur Des BaPtSn₃, BaNiSn₃ und SrNiSn₃ und ihre Verwandtschaft Zum ThCr₂Si₂-Strukturtyp, Journal of the Less Common Metals 58, 209-216 (1978).
- [21] O. I. Bodak and E. I. Gladyshevskii, System Cerium-Nickel-Silicon in the Region of 0-33 at. % Ce, Inorganic Materials 5(June), 1754-1758 (1969). DOI:https://doi.org/10.1515/znb-1972-1008
- [22] L. G. Akselrud, Y. P. Yarmolyuk, and E. I. Glady-shevskii, Crystal Structure of the Compound U₂Co₃Si₅, Sov. Phys. Crystallogt. 22, 492-493 (1977).
- [23] J. B. Felder, A. Weiland, H. Hodovanets, G. T. McCandless, T. G. Estrada, T. J. Martin, A. V. Walker, J. Paglione, and J. Y. Chan, Law and Disorder: Special Stacking Units Building the Intergrowth Ce₆ Co₅ Ge₁₆, Inorganic Chemistry 58(April), 6037–6043 (2019). DOI:https://doi.org/10.1021/acs.inorgchem.9b00350
- [24] A. Weiland, K. Wei, G. T. McCandless, J. B. Felder, L. J. Eddy, R. E. Baumbach, and J. Y. Chan, Strongly Correlated Electron Behavior in a New Member of the A_{n+1}B_nX_{3n+1} Homologous Series: Ce₇Co₆Ge₁₉, Physical Review Materials 4, 074408 (2020). DOI:https://doi.org/10.1103/PhysRevMaterials.4.074408
- [25] A. Weiland, K. Wei, G. T. McCandless, R. E. Baumbach, J. Y. Chan, and $tastic \quad n = 4:$ $Ce_5 Co_{4+x} Ge_{13-y} Sn_y$ of the $A_{n+1}M_nX_{3n+1}$ Homologous Series, The Journal of Chemical Physics 154(July), 114707 (2021). DOI:https://doi.org/10.1103/PhysRevMaterials.4.074408
- [26] N. D. Khanh, T. Nakajima, X. Yu, S. Gao, K. Shibata, M. Hirschberger, Y. Yamasaki, H. Sagayama, H. Nakao, L. Peng, K. Nakajima, R. Takagi, T. Arima, Y. Tokura, and S. Seki, Nanometric Square Skyrmion Lattice in a Centrosymmetric Tetragonal Magnet, Nature Nanotechnology 15(May), 444-449 (2020). DOI:https://doi.org/10.1038/s41565-020-0684-7
- [27] J. Lee, K. Prokes, S. Park, I. Zaliznyak, S. Dissanayake, M. Matsuda, M. Frontzek, S. Stoupin, G. L. Chappell, R. E. Baumbach, C. Park, J. A. Mydosh, G.E. Granroth, and J. P. C. Ruff, Charge Density Wave with Anomalous Temperature Dependence in UPt₂Si₂, Physical Review B 102(July), 041112(R) (2020). DOI:https://doi.org/10.1103/PhysRevB.102.041112
- [28] Y. Lai, K. Wei, G. Chappell, J. Diaz, T. Siegrist, P. J. W. Moll, D. Graf, and R. E. Baumbach, Tuning the Structural and Antiferromagnetic Phase Transitions in UCr₂Si₂: Hydrostatic Pressure and Chemical Substitution, Physical Review Materials 4(July), 075003 (2020). DOI:https://doi.org/10.1103/PhysRevMaterials.4.075003
- [29] H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, F. Steglich, Observation of Two Distinct Superconducting Phases in CeCu₂Si₂, Science 302(December), 2104-2107 (2003). DOI: 10.1126/science.1091648
- [30] E. Schuberth, M. Tippmann, L. Steinke, S. Lausberg, A. Steppke, M. Brando, C. Krellner, C. Geibel, R. Yu Q. Si, F. Steglich, Emergence of Superconductivity

- in the Canonical Heavy-Electron Metal YbRh₂Si₂, Science **351(January)**, 485-488 (2016). DOI: 10.1126/science.aaa9733
- [31] H. S. Jeevan, C. Geibel, and Z. Hossain, Quasiquartet Crystal-Electric-Field Ground State with Possible Quadrupolar Ordering in the Tetragonal Compound YbRu₂Ge₂, Physical Review B 73(January), 20407 (2006). DOI:10.1103/PhysRevB.73.020407
- [32] M. A. Ruderman and C. Kittel, Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons, Physical Review 96(October), 99-102 (1954). DOI: 0.1103/PhysRev.96.99
- [33] T. Kasuya, A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model, Progress of Theoretical Physics 16(July), 45-47 (1956). DOI: 10.1143/PTP.16.45
- [34] K. Yosida, Magnetic Properties of Cu-Mn Alloys, Physical Review 106(June), 893-898 (1957). DOI: 10.1103/PhysRev.106.893
- [35] J. Kondo, Resistance Minimum in Dilute Magnetic Alloys, Progress of Theoretical Physics 32(July), 37-49 (1964). DOI: 10.1143/PTP.32.37
- [36] C. U. Segre, M. Croft, J. A. Hodges, V. Murgai, L. C. Gupta, and B. D. Parks, Valence Instability in Eu(Pd_{1-x}Au_x)₂Si₂. The Global Phase Diagram, Physical Review Letters 49(December), 1947-1950 (1982). DOI: 10.1103/PhysRevLett.49.1947
- [37] Y. Ōnuki, M. Hedo, and F. Honda, *Unique Electronic States of Eu-based Compounds*, Journal of the Physical Society of Japan **89(September)**, 102001 (2020). DOI: 10.7566/JPSJ.89.102001
- [38] Y. Komijani and P. Coleman, Emergent Critical Charge Fluctuations at the Kondo Breakdown of Heavy Fermions, Physical Review Letters 122(May), 217001 (2019). DOI: 10.1103/PhysRevLett.122.217001
- [39] L. Prochaska, X. Li, D. C. MacFarland, A. M. Andrews, M. Bonta, E. F. Bianco, S. Yazdi, W. Schrenk, H. Detz, A. Limbeck, Q. Si, E. Ringe, G. Strasser, J. Kono, S. Paschen, Singular Charge Fluctuations at a Magnetic Quantum critical point, Science 367(January), 285-288 (2020). DOI: 10.1126/science.aag1595
- [40] Z. Ren, L. V. Pourovskii, G. Giriat, G. Lapertot, A. Georges, and D. Jaccard, Giant Overlap between the Magnetic and Superconducting Phases of CeAu₂Si₂ under Pressure, Physical Review X 4(September), 031055 (2014). DOI: 10.1103/PhysRevX.4.031055
- [41] K. A. Gschneidner and L. Eyring, Handbook on the Physics and Chemistry, Volume 1: Metals North-Holland Publishing Company, New York, (1979).
- [42] K. A. Gschneidner and L. Eyring, Handbook on the Physics and Chemistry, Volume 2: Alloys and Intermetallics North-Holland Publishing Company, New York, (1979).
- [43] K. T. Moore and G. van der Laan, Nature of the 5f States in Actinide Metals, Reviews of Modern Physics 81(February), 235-298 (2009). DOI: 10.1103/RevModPhys.81.235
- [44] S.S. Saxena, P. Agarwal, K. Ahilan, F.M. Grosche, R.K. Haselwimmer, M. Steiner, E. Pugh, I.R. Walker, S.R. Julian, P. Monthoux, G.G. Lonzarich, A.D. Huxley, I. Sheikin, D. Braithwaite, J. Flouquet, Superconductivity on the Border of Itinerant-Electron Ferromagnetism in UGe₂, Nature (London) 406(August), 587-592 (2000). DOI: 10.1038/35020500

- [45] T. C. Kobayashi, A. Hori, S. Fukushima, H. Hidaka, H. Kotegawa, T. Akazawa, K. Takeda, Y. Ohishi, and E. Yamamoto, Pressure-Temperature Phase Diagram and Superconductivity in UIr, Journal of the Physical Society of Japan 76(May), 051007 (2007). DOI: 10.1143/JPSJ.76.051007
- [46] A. Szytula and J. Leciejewicz, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 12, edited by K.A. Gschneidner, Jr. and L. Eyring (North-Holland, Amsterdam, 1989), p. 133.
- [47] E. V. Sampathkumaran and R. Vijayaraghavan, Evidence for 4f-Ligand Dehybridization in the Evolution of Heavy-Fermion Behavior in the Series CeCu_{2-x}Ni_xSi₂, Physical Review Letters 56, 2861 (1987). DOI:https://doi.org/10.1103/PhysRevLett.56.2861
- [48] S. Süllow, M. C. Aronson, B. D. Rainford, and P. Haen, Doniach Phase Diagram, Revisited: From Ferromagnet to Fermi Liquid in Pressurized CeRu₂Ge₂, Physical Review Letters 82(April), 2963-2966 (1999). DOI: 10.1103/PhysRevLett.82.2963
- [49] M. B. Fontes, M. A. Continentino, S. L. Bud'ko, M. El-Massalami, L. C. Sampaio, A. P. Guimarães, E. Baggio-Saitovitch, M. F. Hundley, and A. Lacerda, *Physical Properties of the Ce(Ru_{1-x}Fe_x)₂Ge₂ Series, Physical Review B 53(May), 11678-11684 (1996). DOI: 10.1103/PhysRevB.53.11678*
- [50] L. C. Gupta, D. E. MacLaughlin, Cheng Tien, C. Go-dart, M. A. Edwards, and R. D. Parks, Magnetic Behavior of the Kondo-Lattice System CeRu₂Si₂. Physical Review B 28(October), 3673-3676 (1983). DOI: 10.1103/PhysRevB.28.3673
- [51] K. Hiebl, C. Horvath, and P. Rogl, Magnetic Behaviour of Ternary Silicides CeT₂Si₂ (T = Ru, Rh, Pd, Os, Ir, Pt) and Boron Substitution in Ce(Ru,Os)₂Si_{2-x}B_x. Journal of the Less Common Metals 117(March), 375-383 (1986). DOI: 10.1016/0022-5088(86)90063-9
- [52] M. Mihalik, M. Mihalik, and V. Sechovsky, Electrical Transport and Magnetism in CeFe₂Si₂ Single Crystal. Physica B 359(April), 163-165 (2005). DOI: 10.1016/j.physb.2005.01.023
- [53] H. Abe, K. Yoshii, and H. Kitazawa, Complex Magnetic Phase Diagram of CeRh₂Ge₂, Physica B 312(March), 253-255 (2002). DOI: 10.1016/S0921-4526(01)01506-X
- [54] R. Movshovich, T. Graf, D. Mandrus, J. D. Thompson, J. L. Smith, and Z. Fisk, Superconductivity in Heavy-Fermion CeRh₂Si₂, Physical Review B 53(April), 8241-8244 (1996). DOI: 10.1103/PhysRevB.53.8241
- [55] R. Settai, A. Misawa, S. Araki, M. Kosaki, K. Sugiyama, T. Takeuchi, K. Kindo, Y. Haga, E. Yamamoto, and Y. Ōnuki, Single Crystal Growth and Magnetic Properties of CeRh₂Si₂, Journal of the Physical Society of Japan 66(August), 2260-2263 (1997). DOI:10.1143/jpsj.66.2260
- [56] M. Mihalik, M. Diviš, V. Sechovský, *Electronic* and *Crystal Structure of* α and β -*CeIr*₂ Si_2 , Physica B **404(October)**, 3191-3194 (2009). DOI: 10.1016/j.physb.2009.07.052
- [57] H. Fujii, E. Ueda, Y. Uwatoko, and T. Shigeoka, Magnetic Properties of CeCo₂Ge₂ and NdCo₂Ge₂ Single Crystals, Journal of Magnetism and Magnetic Materials 76(December), 179-181 (1988). DOI: 10.1016/0304-8853(88)90358-7
- [58] B. Chevalier, J. Etourneau, J. Rossat-Mignod, R. Calemczuk and E. Bonjour, Evolution from the An-

- tiferromagnetic to the Intermediate Valence State in the $Ce(Rh_{1-x}Co_x)_2Si_2$ system, Journal of Physics Condensed Matter **3(March)**, 1847-1854 (1991). DOI: 10.1088/0953-8984/3/12/015
- [59] H. Wilhelm and D. Jaccard, Calorimetric and Transport Investigations of $CePd_{2+x}Ge_{2-x}$ (x=0 and 0.02) up to 22 GPa, Physical Review B 66(August), 064428 (2002). DOI: 10.1103/PhysRevB.66.064428
- [60] F. M. Grosche†, P. Agarwal, S. R. Julian, N. J. Wilson, R. K. W. Haselwimmer, S. J. S. Lister, N. D. Mathur, F. V. Carter, S. S. Saxena and G. G. Lonzarich, Anomalous Low Temperature States in CeNi₂Ge₂ and CePd₂Si₂, Journal of Physics Condensed Matter 12(July), L533-L540 (2000). DOI: 10.1088/0953-8984/12/32/101
- [61] G. Knebel, M. Brando, J. Hemberger, M. Nick-las, W. Trinkl, and A. Loidl, Magnetic, Calorimetric, and Transport Properties of Ce(Pd_{1-x}Ni_x)₂Ge₂ and CeNi₂(Ge_{1-y}Si_y)₂, Physical Review B 59(May), 12390-12397 (1999). DOI: 10.1103/PhysRevB.59.12390
- [62] A. Thamizhavel, R. Kulkarni, and S. K. Dhar, Anisotropic Magnetic Properties of CeAg₂Ge₂ Single Crystals, Physical Review B 75(April), 144426 (2007). DOI: 10.1103/PhysRevB.75.144426
- [63] C. L. Huang, V. Fritsch, W. Kittler, and H. v. Löhneysen, Low-Temperature Properties of CeAu₂Ge₂ Single Crystals Grown from Au-Ge and Sn flux, Physical Review B 86(December), 214401 (2012). DOI: 10.1103/PhysRevB.86.214401
- [64] C S Garde and J Ray, Antiferromagnetism in CeAu₂Si₂and CeAg₂Si₂-based Kondo-Lattice Systems, Journal of Physics Condensed Matter 6(October), 8585-8598 (1994) DOI: 10.1088/0953-8984/6/41/020
- [65] G. W. Scheerer, Z. Ren, G. Lapertot, G. Garbarino, D. Jaccard, Heavy-Fermion Superconductivity in CeAg₂Si₂ Interplay of Spin and Valence Fluctuations, Physica B 536(May), 150-154 (2018). DOI: 10.1016/j.physb.2017.09.120
- [66] O. Trovarelli, M. Weiden, R. Müller-Reisener, M. Gómez-Berisso, P. Gegenwart, M. Deppe, C. Geibel, J. G. Sereni, and F. Steglich, Evolution of Magnetism and Superconductivity in CeCu₂(Si_{1-x}Ge_x)₂, Physical Review B **56(July)**, 678-685 (1997). DOI: 10.1103/Phys-RevB.56.678
- [67] D. Jaccard, K. Behnia, J. Sierro, Pressure Induced Heavy Fermion Superconductivity of CeCu₂Ge₂, Physics Letters A 163(March), 475-480 (1992). DOI:10.1016/0375-9601(92)90860-O
- [68] T. Ooshima, and M. Ishikawa, Anomalous Magnetic Phase Diagram of $Ce(Rh_{1-x}Co_x)_2Ge_2$, Journal of the Physical Society of Japan **67(April)**, 3251-3255 (1998). DOI: 10.1143/JPSJ.67.3251
- [69] R. Tripathi, D. Das, C. Geibel, S. K. Dhar, and Z. Hossain, Non-Fermi-Liquid Behavior at the Antiferromagnetic Quantum Critical Point in the Heavy-Fermion System Ce(Cu_{1-x} Co_x)₂ Ge₂, Physical Review B 98(October), 165136 (2018). DOI: 10.1103/Phys-RevB.98.165136
- [70] K. Cheng, X. He, H. Yang, B. Zhou, Y. Li, and Y. Luo, Synthesis and Physical Properties of CeRu₂As₂ and CeIr₂As₂, Physical Review B 100(November), 205121 (2019). DOI: 10.1103/PhysRevB.100.205121
- [71] T. Fujiwara, K. Kanto, K. Matsubayashi, Y. Uwatoko and T. Shigeoka, Electrical Transport Properties of Ternary Phosphides RRu_2P_2 (R=La, Ce,Pr and

- Eu) with $ThCr_2Si_2$ Type Crystal Structure, Journal of Physics Conference Series **273(January)**, 012112 (2011). DOI: 10.1088/1742-6596/273/1/012112
- [72] M. Reehuis and W. Jeitschko, Structure and Magnetic Properties of the Phosphides $CaCo_2P_2$ and LnT_2P_2 with $ThCr_2Si_2$ Structure and LnTP with PbFCl Structure (Ln = Lanthanoids, T = Fe, Co, Ni), Journal of Physics and Chemistry of Solids $\mathbf{51}(\mathbf{January})$, 961-968 (1990). DOI: 10.1016/0022-3697(90)90039-1
- [73] C. M. Thompson, Magneto-Structural Correlations in Rare Earth-Cobalt Pnictides, PhD Thesis Florida State University (2012).
- [74] M. Reehuis, W. Jeitschko, G. Kotzyba, B. Zimmer, and X. Hu, Antiferromagnetic Order in the ThCr₂Si₂ Type Phosphides CaCo₂P₂ and CeCo₂P₂, Journal of Alloys and Compounds 266(February), 54-60 (1998). DOI: 10.1016/S0925-8388(97)00486-6
- [75] T. Shang, Y. H. Chen, W. B. Jiang, Y. Chen, L. Jiao, J. L. Zhang, Z. F. Weng, X. Lu and H. Q. Yuan, Tunable Magnetic Orders in CePd₂As_{2-x}P_x, Journal of Physics Condensed Matter 26(December), 045601 (2014). DOI: 10.1088/0953-8984/26/4/045601
- [76] Y. Lai, S. E. Bone, S. Minasian, M. G. Ferrier, J. Lezama-Pacheco, V. Mocko, A. S. Ditter, S. A. Kozimor, G. T. Seidler, W. L. Nelson, Y.-C. Chiu, K. Huang, W. Potter, D. Graf, T. E. Albrecht-Schmitt, and R. E. Baumbach, Ferromagnetic Quantum Critical Point in CePd₂P₂ with Pd → Ni Substitution, Physical Review B 97(June), 224406 (2018). DOI: 10.1103/Phys-RevB.97.224406
- [77] Y. Luo, J. Bao, C. Shen, J. Han, X. Yang, C. Lv, Y. Li, W. Jiao, B. Si, C. Feng, J. Dai, G. Cao, and Z.-an Xu, Magnetism and Crystalline Electric Field Effect in ThCr₂Si₂-Type CeNi₂As₂, Physical Review B 86(December), 245130 (2012). DOI: 10.1103/Phys-RevB.86.245130
- [78] A. Prasad, H. S. Jeevan, C. Geibel, and Z. Hossain, Suppression of quadrupolar order on Si doping in $YbRu_2(Ge_{1-x}Si_x)_2$, Journal of Physics Condensed Matter **22(March)**, 126004 (2010). DOI: stacks.iop.org/JPhysCM/22/126004
- [79] K. Hiebl, C. Horvath, P. Rogl, M.J. Sienko, Magnetic Properties and Structural Chemistry of Ternary Silicides (RE, Th, U)Ru₂Si₂ (RE = rare earth), Journal of Magnetism and Magnetic Materials 37(July), 287-296 (1983). DOI: 10.1016/0304-8853(83)90058-6
- [80] J. Larrea, M. B. Fontes, E. M. Baggio-Saitovitch, J. Plessel, M. M. Abd-Elmeguid, J. Ferstl, C. Geibel, A. Pereira, A. Jornada, and M. A. Continentino, *Phase Diagram of the Heavy Fermion System YbFe₂Ge₂ Under Pressure*, Physical Review B **74(October)**, 140406 (2006). DOI: 10.1103/PhysRevB.74.140406
- [81] J. A. Hodges, Magnetic Ordering of Ytterbium in $YbCo_2Si_2$ and $YbFe_2Si_2$, Europhysics Letters **4(September)**, 749–753 (1987). DOI: 10.1209/0295-5075/4/6/018
- [82] M. Francois, G. Venturini, J. F. Marêché, B Malaman, B. Roques, De Nouvelles Séries de Germaniures, Isotypes de U₄Re₇Si₆, ThCr₂Si₂ et CaBe₂Ge₂, dans les Systèmes Ternaires R T Ge où R est un Elément des Terres Rares et T = Ru, Os, Rh, Ir: Supraconductivité de LaIr₂Ge₂, Journal of the Less Common Metals 113(November), 231-237 (1985). DOI: 10.1016/0022-5088(85)90281-4

- [83] H. Q. Yuan, M. Nicklas, Z. Hossain, C. Geibel, and F. Steglich, Quantum Phase Transition in the Heavy-Fermion Compound YbIr₂Si₂, Physical Review B 74(December), 212403 (2006). DOI: 10.1103/Phys-RevB.74.212403
- [84] J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, and P. Coleman, The Break-Up of Heavy Electrons at a Quantum Critical Point, Nature 424(July), 524-527 (2003). DOI: 10.1038/nature01774
- [85] O. Trovarelli, C. Geibel, M. Grosche, R. Schleser, R. Borth, G. Sparn, and F. Steglich, *Low-Temperature Properties of YbCo₂Ge₂*, Physica B **259-261(January)**, 140-141 (1999). DOI: 10.1016/S0921-4526(98)01022-9
- [86] M. Kolenda and A. Szytula, The Valence State of Yb in YbCo₂Si₂ and YbCo₂Ge₂ Compounds on the Basis of Magnetic Susceptibility Measurements, Journal of Magnetism and Magnetic Materials 79(April), 57-60 (1989). DOI: 10.1016/0304-8853(89)90291-6
- [87] C. Klingner, C. Krellner, M. Brando, C. Geibel and F. Steglich, Magnetic Behaviour of the Intermetallic Compound YbCo₂Si₂, New Journal of Physics 13(August), 083024 (2011). DOI: 10.1088/1367-2630/13/8/083024
- [88] Yu. D. Seropegin, O. L. Borisenko, O. I. Bodak, V. N. Nikiforov, M. V. Kovachikova, Yu. V. Kochetkov, *Investigation of Phase Relationships and Physical Properties of Yb Pd Ge Compounds*, Journal of Alloys and Compounds 216(January), 259-263 (1995).
- [89] S. K. Dhar, E. V. Sampathkumaran, R. Vijayaraghavan, R. Kuentzler, YbPd₂Si₂, A Moderate Heavy Fermion System, Solid State Communications 61(February), 479-481 (1987). DOI: 10.1016/0038-1098(87)90495-9
- [90] G. Knebel, D. Braithwaite, G. Lapertot, P. C. Canfield and J. Flouquet, Magnetically Ordered Kondo Lattice in YbNi₂Ge₂ at High Pressure, Journal of Physics Condensed Matter 13(November), 10935–10946 (2001). DOI: 10.1088/0953-8984/13/48/318
- [91] P. Bonville, J. A.Hodges, P. Imbert, G. Jéhanno, D. Jaccard, and J. Sierro, Magnetic Ordering and Paramagnetic Relaxation of Yb3+ in YbNi₂Si₂, Journal of Magnetism and Magnetic Materials 97(June), 178-186 (1991). DOI: 10.1016/0304-8853(91)90178-D
- [92] A. Grytsiv, D. Kaczorowski, V. -H. Tran, A. Leithe-Jasper, P. Rogl, Crystal Structure and Physical Properties of Yb-based Intermetallics $Yb(Cu,Ag)_2(Si,Ge)_2$, $Yb(Cu_{1-x}Zn_x)_2Si_2$ ($x=0.65,\ 0.77$) and $Yb(Ag_{0.18}Si_{0.82})_2$, Journal of Alloys and Compounds $\mathbf{504(August)}$, 1-6 (2010). DOI: $10.1016/\mathrm{j.jallcom.}2010.05.051$
- [93] J. Kaštil, M. Míšek, J. Kamarád, Z. Arnold, K. Vlášková, J. Prchal M.Diviš, P. Doležal, J. Prokleška, J. Valenta, J.Fikáček, A. Rudajevová, D. Kriegner, Properties of the Divalent-Yb Compound YbAu₂Si₂ Under Extreme Conditions, Physica B 505(January), 41-44 (2017). DOI: 10.1016/j.physb.2016.10.030
- [94] A. Miyake, F. Honda, R. Settai, K. Shimizu, Y. Onuki, Development of the Valence Fluctuation in the Nearly Divalent Compound YbCu₂Ge₂ under High Pressure, Journal of the Physical Society of Japan 81(January), SB054 (2012). DOI: 10.1143/JPSJS.81SB.SB054
- [95] A. Fernandez-Panella, V. Baledent, D. Braithwaite, L. Paolasini, R. Verbeni, G. Lapertot, and J.-P. Rueff, Valence Instability of YbCu₂Si₂ through its Mag-

- netic Quantum Critical Point, Physical Review B **86(September)**, 125104 (2012). DOI: 10.1103/Phys-RevB.86.125104
- [96] T. Nakano, M. Hedo, Y. Uwatoko, E. V. Sampathkumaran, High Pressure Effects on the Electrical Resistivity Behavior of the Kondo Lattice, YbPd₂Si₂, Solid State Communications 132(November), 325-328 (2004). DOI: 10.1016/j.ssc.2004.07.064
- [97] S. Lausberg, A. Hannaske, A. Steppke, L. Steinke, T. Gruner, L. Pedrero, C. Krellner, C. Klingner, M. Brando, C. Geibel, and F. Steglich, *Doped YbRh₂Si₂: Not Only Ferromagnetic Correlations but Ferromagnetic Order*, Physical Review Letters 110(June), 256402 (2013). DOI: https://doi.org/10.1103/PhysRevLett.110.256402
- [98] J. A. Hodges, G. Jehanno, and J. M. Friedt, Hyperfine Interactions on ¹⁵¹Eu and ⁵⁷Fe in Amorphous EuFe₂Si₂, Hyperfine Interactions 27(March), 365-368 (1986). DOI: 10.1007/BF02354782
- [99] I. Nowik and I. Felner, Large Crystalline Fields and Anisotropic Vibrational Modes of ¹⁵¹Eu²⁺ in Metallic EuRu₂Ge₂, Physica B+C 130(May), 433-435 (1985). DOI: 10.1016/0378-4363(85)90273-6
- [100] A. Prasad, V. K. Anand., Z. Hossain, P. L. Paulose and C. Geibel, Anisotropic Magnetic Behavior in EuIr₂Ge₂ Single Crystal, Journal of Physics Condensed Matter 20(June), 285217 (2008). DOI:10.1088/0953-8984/20/28/285217
- [101] R.E. Gladyshevskii and E. Parthe, Crystal Structure of Europium Dirhodium Digermanium, EuRh₂Ge₂ with ThCr₂Si₂ Type, Zeitschrift für Kristallographie 198(January), 173-174 (1992). DOI: 10.1524/zkri.1992.198.1-2.173
- [102] A. Mitsuda, S. Hamano, N. Araoka, H. Yayama, and H. Wada, Pressure-Induced Valence Transition in Antiferromagnet EuRh₂Si₂, Journal of the Physical Society of Japan 81(February), 023709 (2012). DOI:10.1143/JPSJ.81.023709
- [103] Y. Ashitomi, M. Kakihana, F. Honda, A. Nakamura, D. Aoki, Y. Uwatoko, M. Nakashima, Y. Amako, T. Takeuchi, T. Kida, T. Tahara, M. Hagiwara, Y. Haga, M. Hedo, T. Nakamah, Y. Ōnuki, Magnetic Properties and Effect of Pressure on the Electronic State of EuCo₂Ge₂, Physica B 536(May), 192-196 (2018). DOI: 10.1016/j.physb.2017.09.063
- [104] S. Seiro, Y. Prots, K. Kummer, H. Rosner, R. C. Gil, and C. Geibel, Charge, Lattice and Magnetism Across the Valence Crossover in EuIr₂Si₂ Single Crystals, Journal of Physics Condensed Matter 31(May), 305602 (2019). DOI:10.1088/1361-648X/ab1509
- [105] P. Maślankiewicz and J. Szade, Valence Instability of Europium in EuCo₂Si₂, Journal of Alloys and Compounds 423(October), 69-73 (2006). DOI:10.1016/j.jallcom.2005.12.045
- [106] T. Takeuchi, T. Yara, Y. Ashitomi, W. Iha, M. Kakihana, M. Nakashima, Y. Amako, F. Honda, Y. Homma, D. Aoki, Y. Uwatoko, T. Kida, T. Tahara, M. Hagiwara, Y. Haga, M. Hedo, T. Nakama, and Y. Ōnuki, Effects of Magnetic Field and Pressure on the Valence-Fluctuating Antiferromagnetic Compound EuPt₂Si₂ Journal of the Physical Society of Japan 87(July), 074709 (2018). DOI: 10.7566/JPSJ.87.074709
- [107] E. V. Sampathkumaran, L. C. Gupta, R. Vijayaraghavan, K. V. Gopalakrishnan, R. G. Pillay and H. G. De-

- vare, A New and Unique Eu-based Mixed Valence System: EuPd₂Si₂ Journal of Physics C: Solid State Physics **14(March)**, L237-L241 (1981). DOI: 10.1088/0022-3719/14/9/006
- [108] H. Wada, Y. Goki, and A. Mitsuda, Transport Properties of EuNi₂Ge₂ Under High Pressure, Journal of the Physical Society of Japan 87(March), 034707 (2018). DOI: 10.7566/JPSJ.87.034707
- [109] R. Nagarajan, S. Patil, L. C. Gupta, and R. Vija-yaraghavan, ⁵¹Eu Mössbauer Studies in EuNiSi₂ A New Mixed Valence System and in EuNi₂Si₂ and EuNiSi₃, Journal of Magnetism and Magnetic Materials **54-57(February)**, 349-350 (1986). DOI: 10.1016/0304-8853(86)90614-1
- [110] I. Schellenberg, W. Hermes, S. Lidin, and R. Pottgen, Structure and Properties of the 5.5 K Antiferromagnet EuAu₂Ge₂, Zeitschrift für Kristallographie 226(March), 214-218 (2011). DOI: 10.1524/zkri.2011.1317
- [111] H. –J. Hesse and G. Wortmann, ¹⁵¹ Eu-Mossbauer Study of Pressure Induced Valence Transitions in EuM₂ Ge₂ (M = Ni, Pd, Pt), Hyperfine Interactions **91(December)**, 1499-1504 (1994). DOI: 10.1007/BF02072899
- [112] E. R. Bauminger, I. Felner, D. Froindlich, D. Levron, I. Nowik, S. Ofer, and R. Yanovsky, Mossbauer Effect Studies of Interconfiguration Fluctuations in Metallics Rare Earth Compounds, Journal of Physics Colloques 35(December), C6-C6-70 (1974). DOI: 10.1051/jphyscol:1974606
- [113] G. Bulk and W. Nolting, Antiferromagnetism in 4fsystems with Valence Instabilities, Zeitschrift für Physik B Condensed Matter 70(December), 473-483 (1988). DOI: 10.1007/BF01312122
- [114] J. Gouchi, K. Miyake, W. Iha, M. Hedo, T. Nakama, Y. Onuki, and Y. Uwatoko, Quantum Criticality of Valence Transition for the Unique Electronic State of Antiferromagnetic Compound EuCu₂Ge₂, Journal of the Physical Society of Japan 89(May), 053703 (2020). DOI: 10.7566/JPSJ.89.053703
- [115] B. C. Sales and R. Viswanathan, Demagnetization Due to Interconfiguration Fluctuations in the RE-Cu₂Si₂ Compounds, Journal of Low Temperature Physics 23(May), 449–467 (1976). DOI: 10.1007/BF00116933
- [116] P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, M. F. Hundley, M. S. Sercheli, R. R. Urbano, C. Rettori, Z. Fisk, and S. B. Oseroff, Antiferromagnetic Ordering of Divalent Eu in EuCu₂Si₂ Single Crystals Physical Review B 63(February), 092406 (2001). DOI: 10.1103/PhysRevB.63.092406
- [117] W. H. Jiao, I. Felner, I. Nowik, and G. H. Cao, EuRu₂As₂: A New Ferromagnetic Metal with Collapsed ThCr₂Si₂-Type Structure, Journal of Superconductivity and Novel Magnetism **25(September)**, 441-445 (2012). DOI:https://doi.org/10.1007/s10948-011-1287-1
- [118] T. Terashima, M. Kimata, H. Satsukawa, A. Harada, K. Hazama, S. Uji, H. S. Suzuki, T. Matsumoto, and K. Murata, EuFe₂As₂ under High Pressure: An Antiferromagnetic Bulk Superconductor, Journal of the Physical Society of Japan 78(April), 083701 (2009). DOI:10.1143/JPSJ.78.083701
- [119] P. Proschek, J. Prchal, M. Diviš, J. Prokleška, K. Vlášková, J. Valenta, J. Zubáč, J. Kaštil, M. Hedo, T. Nakama, Y.Ōnuki, F. Honda, Weakly Anisotropic Ferromagnet EuRu₂P₂: Ambient and Hy-

- drostatic Pressure Characterization, Journal of Alloys and Compounds **864(May)**, 158753 (2021). DOI:https://doi.org/10.1016/j.jallcom.2021.158753
- [120] C. Feng, Z. Ren, S. Xu, S. Jiang, Z. Xu, G. Cao, I. Nowik, I. Felner, K. Matsubayashi, and Y.Uwatoko, Magnetic Ordering and Dense Kondo Behavior in EuFe₂P₂, Physical Review B 82(September), 094426 (2010). DOI:https://doi.org/10.1103/PhysRevB.82.094426
- [121] Y. Singh, Y. Lee, B. N. Harmon, and D. C. Johnston, Unusual Magnetic, Thermal, and Transport Behavior of Single-Crystalline EuRh₂As₂, Physical Review B 79(June), 220401(R) (2009). DOI:https://doi.org/10.1103/PhysRevB.79.220401
- [122] M. Bishop, W. Uhoya, G. Tsoi, Y. K. Vohra, A. S. Sefat, and B. C. Sales, Formation of Collapsed Tetragonal Phase in EuCo₂As₂ Under High Pressure, Journal of Physics, Condensed Matter 22, 425701 (2010).
- [123] M. Reehuis, W. Jeitschko, M. H. Möller, and P. J. Brown, A Neutron Diffraction Study of the Magnetic Structure of EuCo₂P₂, Journal of Physics and Chemistry of Solids 53(May), 687-690 (1992). DOI:https://doi.org/10.1016/0022-3697(92)90208-U
- [124] D. Nakamura, M. Hedo, K. Uchima, Y. Takaesu, T. Nakama, K. Yagasaki, T. Fujiwara, T.Shigeoka, T. Matsumoto, and Y. Uwatoko, Effects of Pressure and Magnetic Field on Transport Properties of EuCo₂P₂, Japanese Physical Society Conference Proceedings 3(September), 011036 (2014). DOI:https://doi.org/10.7566/JPSCP.3.011036
- [125] G. Michels, M. Roepke, T. Niemöller, M. Chefki, M. M. Abd-Elmeguid, H. Micklitz, E. Holland-Moritz, W. Schlabitz, C. Huhnt, B. Buchner, A. Wurth, A. Mewis, and V. Kataev, The Anomalous Valence State of Eu and Magnetic Order in EuRh₂P₂, Journal of Physics: Condensed Matter 8(May), 4055-4062 (1996). 10.1088/0953-8984/8/22/009
- [126] W. L. Nelson, A. S. Jayasinghe, D. Graf, S. Latturner, and R. E. Baumbach, Electronic and Magnetic Properties of EuNi_{2-δ}Sb₂ Structural Variants, Journal of Physics: Condensed Matter 32(May), 315801 (2020). DOI:10.1088/1361-648X/ab849c
- [127] V. K. Anand and D. C. Johnston, *Physical Properties of EuPd₂As₂ Single Crystals*, Journal of Physics: Condensed Matter **26(June)**, 286002 (2014). DOI:10.1088/0953-8984/26/28/286002
- [128] G. Drachuk, A. E. Bohmer, S. L. Bud'ko, and P. C. Canfield, Magnetization and transport properties of single crystalline RPd₂P₂ (R = Y, La-Nd, Sm-Ho, Yb), Journal of Magnetism and Magnetic Materials 417(May), 420-433 (2016). DOI:http://dx.doi.org/10.1016/j.jmmm.2016.05.089
- [129] W. T. Jin, N. Qureshi, Z. Bukowski, Y. Xiao, S. Nandi, M. Babij, Z. Fu, Y. Su, and Th. Brückel, Spiral magnetic ordering of the Eu moments in EuNi₂As₂, Physical Review B 99(January), 014425 (2019). DOI:10.1103/PhysRevB.99.014425
- [130] Y. Hiranaka, A. Nakamura, M. Hedo, T. Takeuchi, A. Mori, Y. Hirose, K. Mitamura, K. Sugiyama, M.Hagiwara, T. Nakama, and Y. Ōnuki, Heavy Fermion State Based on the Kondo Effect in EuNi₂P₂, Journal of the Physical Society of Japan 82(July), 083708 (2013). DOI:https://doi.org/10.7566/JPSJ.82.083708

- [131] S. Danzenbächer, D. V. Vyalikh, Yu. Kucherenko, A. Kade, C. Laubschat, N. Caroca-Canales, C. Krellner, C. Geibel, A. V. Fedorov, D. S. Dessau, R. Follath, W. Eberhardt, and S. L. Molodtsov, Hybridization Phenomena in Nearly-Half-Filled f-Shell Electron Systems: Photoemission Study of EuNi₂P₂, Physical Review Letters 102(January), 026403 (2009). DOI:10.1103/PhysRevLett.102.026403
- [132] K. Hiebl, C. Horvath, P. Rogl, M. J. Sienko, Magnetic Properties and Structural Data of Ternary Silicides: (RE, Th, U)Os₂Si₂ (RE= rare earth), Solid State Communications 48(October), 211-215 (1983). DOI: 10.1016/0038-1098(83)90272-7
- [133] H. M. Duh, I. S. Lyubutin, I. M. Jiang, G. H. Hwang, K. D. Lain, *Magnetic Properties of* $U(Pd_{1-x}Fe_x)_2Ge_2$, Journal of Magnetism and Magnetic Materials **153(February)**, 86-96 (1996). DOI: 10.1016/0304-8853(95)00534-X
- [134] A. Szytuła, L. Gondek, M. Ślaski, B.Penc, A. Jezierski, Non-Magnetic Behaviour of UFe₂Si₂ Compound, Journal of Alloys and Compounds 442(September), 275-278 (2007). DOI: 10.1016/j.jallcom.2006.09.160
- [135] S. Süllow, G. J. Nieuwenhuys, A. A. Menovsky, J. A. Mydosh, S. A. M. Mentink, T. E. Mason, and W. J. L. Buyers, *Spin Glass Behavior in URh₂Ge₂*, Physical Review Letters **78(January)**, 354-357 (1997). DOI: 10.1103/PhysRevLett.78.354
- [136] H. Ptasiewicz-Bak, Neutron Diffraction Study of Magnetic Ordering in UPd₂Si₂, UPd₂Ge₂, URh₂Si₂ and URh₂Ge₂, Journal of Physics F: Metal Physics 11(June), 1225–1235 (1981). DOI: 10.1088/0305-4608/11/6/009
- [137] M. Kuznietz, H. Pinto, H. Ettedgui, and M. Melamud, Neutron-Diffraction Study of the Magnetic Structure of UCo₂Ge₂, Physical Review B 40(October), 7328-7331 (1989). DOI: 10.1103/PhysRevB.40.7328
- [138] T. Endstra, G. J. Nieuwenhuys, A. A. Menovsky, and J. A. Mydosh, Structural and Magnetic Properties of UCo₂Ge₂, Journal of Applied Physics 69(April), 4816-4818 (1991). DOI: 10.1063/1.348240
- [139] L. Chełmicki, J. Leciejewicz, A. Zygmunt, Magnetic Properties of UT₂Si₂ and UT₂Ge₂ (T = Co, Ni, Cu) Intermetallic Systems, Journal of Physics and Chemistry of Solids 46(January), 529-538 (1985). DOI: 10.1016/0022-3697(85)90214-8
- [140] M. Mihalik, A. Kolomiets, J. -C. Griveau, A. V. Andreev, and V. Sechovsky, Magnetism of UCo₂Si₂ Single Crystal Studied Under Applied Magnetic Field and Hydrostatic Pressure, High Pressure Research 26(December), 479-483 (2007). DOI: 10.1080/08957950601106067
- [141] G. Quirion, F. S. Razavi, M. L. Plumer, and J. D. Garrett, Pressure-Temperature Phase Diagram of UPd₂Si₂

- and UNi₂Si₂, Physical Review B **57(March)**, 5220-5224 (1998). DOI: 10.1103/PhysRevB.57.5220
- [142] S. B. Roy, A. K. Pradhan and P. Chaddah, Magnetic Properties of Polycrystalline UNi₂Ge₂: Irreversibility and Metastable Behavior, Journal of Physics: Condensed Matter 6(July), 5155–5160 (1994). DOI: 10.1088/0953-8984/6/27/023
- [143] C. Tabata, N. Miura, K. Uhlířová, M. Vališka, H. Saito, H. Hidaka, T. Yanagisawa, V. Sechovský, and H. Amitsuka, Peculiar magnetism of UAu₂Si₂, Physical Review B **94(December)**, 214414 (2016). DOI:https://doi.org/10.1103/PhysRevB.94.214414
- [144] T. D. Matsuda, S. Ikeda, E. Yamamoto, Y. Haga, and Y. Onuki, Magnetic property of a single crystal UCu₂Ge₂, Journal of the Physical Society of Japan 76(July, 074708 (2007). DOI:10.1143/JPSJ.76.074708
- [145] T. D. Matsuda, Y. Haga, S. Ikeda, A. Galatanu, E. Yamamoto, H. Shishido, M. Yamada, J.-I. Yamaura, M. Hedo, Y. Uwatoko, T. Matsumoto, T. Tada, S. Noguchi, T. Sugimoto, K. Kuwahara, K. Iwasa, M. Kohgi, R. Settai, and Y. Ōnuki, *Electrical and Magnetic Properties of a Single Crystal UCu₂Si₂*, Journal of the Physical Society of Japan **74(February)**, 1552-1556 (2005). DOI: 10.1143/jpsj.74.1552
- [146] Z. Fisk, N. O. Moreno and J. D. Thompson, Properties of Cu-flux-grown UCu₂Si₂, Journal of Physics: Condensed Matter 15(July), S1917–S1921 (2003). DOI: 10.1088/0953-8984/15/28/303
- [147] M. A. Avila, S. L. Bud'ko, and P. C. Canfield, Anisotropic Magnetization, Specific Heat, and Resistivity of REFe₂Ge₂ single crystals, Journal of Magnetism and Magnetic Materials 270, 51-76 (2004). DOI:https://doi.org/10.1016/S0304-8853(03)00672-3
- [148] I. Felner and J. Nowik, Magnetism and Hyperfine Interactions in EuM₂Ge₂ and GdM₂Ge₂ (M = Mn, Fe, Co, Ni, Cu), Journal of the Physics and Chemistry of Solids 39, 767 (1978). DOI:https://doi.org/10.1016/0022-3697(78)90012-4
- [149] A. Gallagher, K. -W. Chen, C. M. Moir, S. K. Cary, F. Kametani, N. Kikugawa, D. Graf, T. E. Albrecht-Schmitt, S. C. Riggs, A. Shekhter, and R. E. Baumbach, Unfolding the Physics of URu₂Si₂ through Si → P Substitution Nature Communications 7(February), 10712 (2016). DOI: 10.1038/ncomms10712 (2016).
- [150] Y. Dalichaouch, M. B. Maple, J. W. Chen, T. Kohara, C. Rossel, M. S. Torikachvili, and A. L. Giorgi, Effect of Transition-Metal Substitutions on Competing Electronic Transitions in the Heavy-Electron Compound URu₂Si₂, Physical Review B 41(February), 1829 (1990). DOI: https://doi.org/10.1103/PhysRevB.41.1829