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A B S T R A C T 

We developed convolutional neural networks (CNNs) to rapidly and directly infer the planet mass from radio dust continuum 

images. Substructures induced by young planets in protoplanetary discs can be used to infer the potential young planets’ 
properties. Hydrodynamical simulations have been used to study the relationships between the planet’s properties and these disc 
features. Ho we ver, these attempts either fine-tuned numerical simulations to fit one protoplanetary disc at a time, which was 
time consuming, or azimuthally averaged simulation results to derive some linear relationships between the gap width/depth 

and the planet mass, which lost information on asymmetric features in discs. To cope with these disadvantages, we developed 

Planet Gap neural Networks (PGNets) to infer the planet mass from two-dimensional images. We first fit the gridded data in 

Zhang et al. as a classification problem. Then, we quadrupled the data set by running additional simulations with near-randomly 

sampled parameters, and derived the planet mass and disc viscosity together as a regression problem. The classification approach 

can reach an accuracy of 92 per cent, whereas the regression approach can reach 1 σ as 0.16 dex for planet mass and 0.23 dex for 
disc viscosity. We can reproduce the de generac y scaling α ∝ M 

3 
p found in the linear fitting method, which means that the CNN 

method can even be used to find de generac y relationship. The gradient-weighted class acti v ation mapping ef fecti vely confirms 
that PGNets use proper disc features to constrain the planet mass. We provide programs for PGNets and the traditional fitting 

method from Zhang et al., and discuss each method’s advantages and disadvantages. 

Key words: hydrodynamics – waves – planet–disc interactions – protoplanetary discs. 
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 INTRODUCTION  

etecting young planets in protoplanetary discs is essential to infer 
here and when planets form and how massive they are, putting 

tringent constraints on planet formation theory . Unfortunately , 
espite thousands of exoplanets having been discovered, only a few 

f them are around young stars within 10 million years old. There
re e ven fe wer young forming planets found in dusty protoplanetary
iscs. One notable example is PDS 70 system, where two young 
lanets with several Jupiter mass have been disco v ered within the
usty cavity of 80 au (Keppler et al. 2018 ; M ̈uller et al. 2018 ; Wagner
t al. 2018 ; Christiaens et al. 2019 ; Haffert et al. 2019 ; Isella et al.
019 ; Hashimoto et al. 2020 ; Wang et al. 2020 ). Ho we ver, such firm
etection seems to be rare (e.g. Zurlo et al. 2020 ), and we are not
xpecting to directly detect a planet whose mass is less than one
upiter mass (Ruane et al. 2017 ). There are other promising methods
o detect young planets in discs, such as using disc kinematic features
nfluenced by the planet (Perez et al. 2015 ; Pinte et al. 2018 ; Teague
t al. 2018 ; Izquierdo et al. 2021 ; Rabago & Zhu 2021 ). Ho we ver,
ll these methods can only detect planets that are more massive than
upiter. The only method that can detect planets less massive than 
upiter is to use gaps in the dust continuum images (e.g. Zhang et al.
018 ). Since dust particles drift to the local pressure maximum, even
 E-mail: shangjia.zhang@unlv.edu 
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mall gas perturbations by a low-mass planet can lead to observable
ust gaps (Paardekooper & Mellema 2006 ; Zhu et al. 2014 ; Rosotti
t al. 2016 ; Dipierro & Laibe 2017 ; Dong et al. 2018 ). 

Hydrodynamical simulations with dust particles have been carried 
ut to infer the planet properties from radio observations. At 
arly times when Atacama Large Millimeter/submillimeter Array 
ALMA) high-resolution observations were scarce, numerical simu- 
ations were fine-tuned to fit one source at a time (e.g. Dipierro et al.
015 ; Dong, Zhu & Whitney 2015 ; Picogna & Kley 2015 ; Dipierro
t al. 2018 ). Ho we v er, when high-angular resolution surv e ys became
v ailable (e.g. Andre ws et al. 2018 ; Long et al. 2018 ; Cieza et al.
021 ), it was impractical to run direct numerical simulations for each
ource. Thus, relationships between the gap and planet properties 
av e been solv ed. F or g aseous g aps, such relationships have been
ell characterized (Fung, Shi & Chiang 2014 ; Kanagawa et al. 2015 ,
016 ). Ho we ver, the relationships are less clear for dusty gaps mainly
ecause the gap width/depth can vary significantly with different 
ized particles in discs. Lodato et al. ( 2019 ) assumed that the dusty
ap width is scaled with the planet Hill radius to derive the masses of
lanets in the Taurus surv e y (Long et al. 2018 ). Rosotti et al. ( 2016 )
arried out simulations to derive the relationship between the planet 
ass and the distance between the planet and the pressure maximum

t the outer gap edge. Ho we ver, Rosotti et al. ( 2016 ) did not consider
he effects of particle size and disc viscosity, both of which can
hange the gap–planet relationship significantly. A detailed study 
as done by Zhang et al. ( 2018 ), who carried out a large grid of
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lanet–disc interaction simulations with dust particles, generated
ynthetic observations, and derived relationships between the planet
ass, the disc scale height, the disc viscosity, and the particle size in

isc. 1 Such relationships have been used to derive the young planet
opulation from the DSHARP surv e y (Andrews et al. 2018 ; Zhang
t al. 2018 ). 

Ho we ver, the approach in Zhang et al. ( 2018 ) still suffers several
hortcomings. First, the procedures to derive the planet mass are
elatively complicated. Disc viscosity, scale height, and particle size
eed to be constrained by other methods and specified beforehand.
ased on these parameters, different fitting formulae need to be
dopted. To make the method in Zhang et al. ( 2018 ) easier to use,
arallel to the method presented in this paper, we provide new
YTHON programs for the Zhang et al. ( 2018 ) linear fitting method, 2 

hich can automatically find the planet mass after the parameters are
pecified. The second shortcoming, which is intrinsic to the method
tself, is that the synthetic images generated from simulations were
zimuthally averaged before deriving the relationship between the
lanet mass and gap widths/depths. Thus, all information from non-
xisymmetric features was lost. These features have rich information
n disc and planet properties. For example, an eccentric gap suggests
 massive planet. A lopsided disc with a large intensity asymmetry
ndicates a low viscosity or large particles. 

To directly extract information from two-dimensional (2D) im-
ges, in this work, we adopted machine learning techniques. Machine
earning techniques have been widely used across the astronomical
ommunity for decades, and here we briefly describe several works
elated to computer vision image tasks, using convolutional neural
etworks (CNNs), specifically. 
CNNs have been used widely in galactic and extragalactic studies.

ieleman, Willett & Dambre ( 2015 ) is one of the first works that
se modern CNN networks. It originated from an international
ompetition Galaxy Challenge that aimed to build automated tools
or galaxy morphology classification based on annotated images from
he Galaxy Zoo project. They applied CNNs to the morphological
lassification of crowd-sourcing annotated images and achieved
 99 per cent accuracy, which would benefit analysis in future

arge galaxy surv e ys such as Vera C. Rubin Observatory. Hezav eh,
erreault Le v asseur & Marshall ( 2017 ) used CNNs to automate
nalysis of strong gravitational lenses. The traditional method
ith maximum likelihood modelling requires human expertise and

s time consuming. The network can quantify image distortions
aused by strong gravitational lensing and estimate these structures’
orresponding matter distribution with comparable accuracy as the
raditional method, but 10 million times faster. Non-experts can
uickly obtain lensing parameters for a large sample of data. Hassan
t al. ( 2019 ) utilized CNNs to identify reionization sources from
1 cm maps. Active galactic nuclei and star-forming galaxies are two
eading sources that reionized our Universe. CNNs were trained to
istinguish the sources on the 21 cm images. The technique would aid
o wer-spectrum observ ations and pro vide e xtra information to break
egeneracies between a broad range of reionization models. The
lassification accuracy is between 92 and 100 per cent, depending on
he redshift and neutral fraction range. 

CNNs have also been used in the Solar system study. Lieu et al.
 2019 ) trained CNNs on simulated observations of an upcoming
ission Euclid for Solar system objects’ identification. They used
 We use ‘the linear fitting method’ to denote this method throughout this 
aper. 
 The code is available at ht tps://github.com/zhangsj96/DSHARPVII.git . 
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ransfer learning (i.e. training on several established CNN archi-
ectures with some modifications) on a relatively small data set.
heir best model correctly identified objects with a top accuracy of
4 per cent, successfully separating Solar system objects from other
stronomical sources. 

In the field of star formation, identifying signatures of stellar feed-
ack in molecular clouds used to mainly rely on visual inspection.
an Oort et al. ( 2019 ) ran three-dimensional (3D) magnetohydrody-
amic (MHD) simulations with stellar feedback and produced 2D
ynthetic CO continuum images. They trained CNNs on synthetic
ata and identified shells in real observations. Later, they extended
he work to 3D so that they could make full use of molecular
ine spectrum datacube. They found stellar feedback bubbles and
redicted feedback properties (Xu et al. 2020a ), and identified 20
e w outflo ws (Xu et al. 2020b ) that were missed by pre vious visual
nspections. 

While CNNs have not been applied to the planet–disc interaction
tudy, general machine learning techniques are receiving more atten-
ion in the field. Recently, Auddy & Lin ( 2020 ) used fully connected
eural networks to fit the relationship between the planet mass and
arameters such as gap width, aspect ratio, viscosity, dust-to-gas
atio, Stokes number, and density profile. Compared to previous
tting methods, the work is the first to fit the relationship non-

inearly. Since a deep neural network is good at fitting problems that
re intrinsically non-linear, their estimated planet mass follows closer
o the simulation data given a multidimensional input. Nevertheless,
sers still need to provide inputs that are barely constrained from
bservations, and asymmetric information is still lost when 2D
mages are converted to one-dimensional (1D) radial profiles. While
e were modifying this paper after the first referee report, Auddy

t al. ( 2021 ) published a CNN approach for the 2D images, which
lleviated some of these shortcomings. Compared with this paper,
hey used similar neural networks with hydrodynamical simulations.
heir models allow additional disk parameters as inputs. However,

he models were trained on disk density contours in simulations
nstead of synthetic observational images. 

Our aim in this paper is to infer the planet mass from the 2D
bservational images directly. 3 In Section 2, we briefly introduce
he background and the basic glossary of CNNs. In Section 3,
e describe the simulation set-up, synthetic observation produc-

ion, prepossessing, augmentation, and the neural network set-
p and training. In Section 4, we analyse the results, apply the
etworks to several gaps in DSHARP observations, and compare
he derived planet masses to those from the previous method.
fter a short discussion in Section 5, we conclude our paper in
ection 6. 

 B  ACKGR  OUND  

.1 Regular neural network 

he most common subset of deep learning is regular neural networks
or fully connected neural networks). Neural networks receive a
ector and transform it through a series of hidden layers. Each
idden layer is made up of a set of neurons, where each neuron
s fully connected to all neurons in the previous layer. The last fully
onnected layer is called the ‘output layer’. For classification prob-
ems, it gives scores for different classes. For regression problems, it
redicts continuous values. 
 The code is available at ht tps://github.com/zhangsj96/PGNet s.git . 

https://github.com/zhangsj96/DSHARPVII.git
https://github.com/zhangsj96/PGNets.git
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/PGNet s.git . 
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Each neuron has some parameters to be tuned, which can be 
ccomplished by training the model. The training is a process of
inimizing the loss function and updating parameters through 

ack-propagation. The data are separated as training, validation, 
nd testing sets. The training data are used to feed into the neural
etwork. The validation data are not used in training the model but
re used as a metric to monitor the training result at every epoch.
he testing data are used to e v aluate the model accuracy after the

raining is completed. 

.2 CNN 

 or re gular neural networks, the input vector could be extremely
arge if the input is an image that is represented by either a flattened

atrix (e.g. a greyscale image) or a flattened tensor (e.g. an RGB-
oloured image). There are correlations between neighbouring pixels 
nd different colour channels in an image, but a vector representation 
oses such correlations. Thus, regular neural networks are not ideal 
or training image data. The convolutional operation naturally takes 
he local connections into account. To that end, CNNs are powerful 
n fitting image data. As a variation of regular neural networks, their
rimary unit of computation is the convolutional operation instead of 
imple matrix multiplication. A layer of a convolutional network has 
eurons arranged in three dimensions: width, height, and depth. A 

onvolutional kernel will be operated on this 3D tensor, and the output
ecomes the next layer. Usually, the network’s width and height 
ecome smaller for later layers, while the depth becomes deeper. 
he process of downsampling the feature map is called pooling. 
eCun et al. ( 1998 ) introduced LeNet to recognize hand-written 
igit characters. It reached a very high performance and brought 
rtificial neural networks into popularity. 

.3 Residual neural network 

 residual neural network (ResNet) is a kind of CNN that has
onnections even between skipping (non-neighbouring) layers (He 
t al. 2016b ). It has shortcuts to jump o v er some layers. Typical
esNet models are implemented with double or triple skips that 
ontain Rectification Linear Unit (ReLU) and batch normalization 
Ioffe & Szegedy 2015 ) in between. Skipping effectively simplifies 
he networks and reduces the parameters. It also a v oids the problem of
anishing gradients so that the network can go deeper than traditional 
NNs while still improving the performance. 

 METHOD  

 schematic view of our method from input to output is summarized
n Fig. 1 . We first introduce how we convert the simulations to
ynthetic observations (Section 3.1), and then discuss the pre- 
ossessing (Section 3.2) and augmentation (Section 3.3) steps to 
ak e the netw ork robust. We layout the Planet Gap neural network

PGNet) structures (VGG-like or ResNet classification, Section 3.4; 
egression, Section 3.5) and finally obtain the output prediction. 

At the output layer, we tried both classification and regression 
roblems. At first, we treated the fitting of the planet mass as a
lassification problem, since the data set of Zhang et al. ( 2018 ) is too
parse (only five discrete planet masses) to return continuous-valued 
redictions. They were used to demonstrate that CNNs can success- 
ully predict planet masses on discrete grids. Then, we ran additional 
50 simulations to provide more sampling between these grids, and 
uilt regression model that predicts continuous planet mass and disc 
iscosity at the same time. The samples were drawn using the Latin
ypercube sampling (LHS; McKay, Beckman & Cono v er 1979 ). 
.1 Simulations 

or the classification problem, we used the results of the planet–
isc interaction simulations in Zhang et al. ( 2018 ) on the gridded
arameter space (five planet masses, M p , three aspect ratios, h / r ,
nd three disc viscosities, α). We denote a model with an { M p , h / r ,
} pair as a generic model, as this model can be used to generate
odels with different surface densities and maximum particle sizes. 
 or the re gression problem, we added additional 150 simulations
ith near-randomly generated M p , h / r , and α. We briefly summarize

he simulations here. The simulations were carried out with 2D 

ydrodynamic code FARGO-ADSG (Baruteau & Masset 2008a , b ; 
aruteau & Zhu 2016 ). Dust grains were represented by 200 000

uperparticles with different sizes. The Stokes number ( St ) of the
articles at r p ranged from 1.57 × 10 −5 to 1.57. The simulations in
he gridded parameter space co v ered three disc viscosities α = 10 −4 ,
0 −3 , and 10 −2 , three disc aspect ratios at r p with h / r = 0.05, 0.07,
nd 0.1, and five planet masses with the planet–star mass ratios ( q )
f 3.3 × 10 −5 , 10 −4 , 3.3 × 10 −4 , 10 −3 , and 3.3 × 10 −3 (which are
qui v alent to the planet masses of 11 M ⊕, 33 M ⊕, 0.3 M J , 1 M J , and
 M J if the central star is a solar-mass star). The parameters for the
HS were drawn from α ∈ [10 −4 , 10 −2 ], h / r ∈ [0.05, 0.1], and M p 

 [11 M ⊕, 3 M J ]. They were near-uniformly drawn in the interval of
 / r , log ( α), and log ( M p ). 4 We initialized the gas surface density as 

 g ( r) = � g , 0 ( r/r 0 ) 
−1 , (1) 

here r 0 is the position of the planet and we set r 0 = r p = 1. Our
umerical grid extended from 0.1 r 0 to 10 r 0 in the radial direction
nd 0 to 2 π in the θ direction. The data sets used in this paper are
t 1000 planetary orbits. We assumed locally isothermal equation of 
tate. The temperature at radius r follows T ( r ) = T 0 ( r / r 0 ) −1/2 . 

To convert superparticle distributions to optical depth maps, we 
sed a subset of particles and gave them different weights depending
n their opacity, sizes, and surface density at their locations. We
dopted DSHARP opacity (Birnstiel et al. 2018 ) and neglected 
cattering. These particles were interpolated on to 1200 × 1200 
egular grid with physical dimensions as 10 r p × 10 r p . Then, we
moothed the gridded data with a Gaussian kernel similar to the
esolution of ALMA. Gaussian σ = 2 pixels, which is 0.03 r p . If the
lanet is at 20 au, this is the same as the resolution of a circular beam
ith full width at half-maximum (FWHM) = 1.4 au. Finally, we

alculated the brightness temperature or intensity for each grid cell as 

 b ( x , y ) = T d ( r)(1 − e −τ ( x ,y ) ) , (2) 

nd we assumed that the mid-plane temperature follows 

 d ( r) = T d ( r 0 ) 

(
r 

r 0 

)−0 . 5 

. (3) 

or more details, please see Zhang et al. ( 2018 ). 
In principle, the real synthetic image should be calculated with 

ssumptions of detailed observational set-ups (e.g. antenna array 
onfiguration and integration time) and CLEAN methods. Ho we ver, 
his is unrealistic since (a) they depend on specific observational set-
ps and data reduction methods, which cannot be co v ered thoroughly,
nd (b) these time-consuming steps need to be applied on each
ugmented image (Section 3.3), which cannot be realized within 
ur computational power. Instead, in Section 5.1 we will use one
MNRAS 510, 4473–4484 (2022) 
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Figure 1. A schematic view of our work from input to output. There are five steps. First, we prepared the input from simulations or observations. Secondly, 
the image was prepossessed and normalized. Thirdly, the image was augmented for different inclinations, rotations, and translational shifts. Then, it flowed into 
the neural network. Finally, we obtained class scores and chose the label with the highest score for the classification problem. A planet mass, viscosity pair was 
returned for the regression problem. 

Figure 2. 1.3 mm dust continuum intensity maps for the M p = 1 M J , α = 10 −3 , and h / r = 0.07 case with different a max and � g,0 . In each row, a max is the same 
with increasing surface density from left to right. The Stokes number at the planet’s location is the same at each column and decreasing from left to right. 
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ase to demonstrate that neglecting these steps does not affect the
orrectness of the prediction. 

To generate synthetic radio continuum images of discs having
arious dust size distributions and disc surface densities, we chose
ve different maximum particle sizes a max = 0.1 mm, 0.3 mm,
 mm, 3 mm, and 1 cm and seven different gas surface densities
 g,0 = 0.1, 0.3, 1, 3, 10, 30, and 100 g cm 

−2 . These combinations
f a max and � g,0 correspond to nine different characteristic Stokes
umbers (St ∝ a max / � g,0 ). Fig. 2 shows dust continuum intensity at
.3 mm for a case with M p = M J , α = 10 −3 , and h / r = 0.07, with
ll combinations of a max and � g,0 . Note that for a max = 3 mm (and
 cm), the lowest (tw o) surf ace density case(s) exceeds the upper
NRAS 510, 4473–4484 (2022) 
imit of the particles’ Stokes number in our simulation. In total,
ifferent a max and � g,0 lead to 32 combinations (7 + 7 + 7 + 6 + 5)
or each generic model. Since no dust growth and back-reaction are
ncluded, the dust drift velocity only depends on the Stokes number.
his is why the gaps look similar for a given Stokes number. They
re still different in that (a) the opacity is dependent on the maximum
article size and (b) the dust surface density is different. Thus, the
adial profile of the optical depth is different. When the disc changes
rom the optically thin to thick regime (from top to bottom panels),
he intensity maps become smoother. 

We explored different dust size distributions by choosing three
if ferent po wer-law indices [ p ; n (a) ∝ a −p ] being 3.5, 3, and 2,

art/stab3502_f1.eps
art/stab3502_f2.eps
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ut their intensity maps are very similar. This could lead to some
uplication between training and testing sets. For this reason, we 
nly used one power-law index p = 3.5. 
An image with too man y pix els takes a large amount of memory,

oes not help the training, and even leads to o v erfitting. Thus, we
owngraded the image size and found that a 64 × 64 image is
ood enough to preserve features and help the training. Note that 
he real observation image will also be fed into the network using
his resolution. To convert an observation to the input format, a 
imple linear interpolation suffices. For our models, we selected the 
entral squared 3 r p × 3 r p region. Outside of this region, there is
ittle emission from our simulations. The data are 2D (grey colour, 
 × 64 × 64) images of disc emission. There are 5 × 3 × 3 × 32
 1440 models for the classification problem and (45 + 150) ×

2 = 6240 models for the regression problem. 

.2 Pr e-pr ocessing 

e found that adding some noise to images helped the training, so
e added 10 per cent RMS noise to each image. The initial value of

he intensity in the image can be different by orders of magnitude. In
eural networks, it is essential to normalize the input data. We found
hat taking the logarithm of the value works best for the training. We
caled the image values from 0 to 1. We also set an emission floor as
 per cent of the maximum emission intensity, so that values below
hat became zero. In expression, 

ixel value = 

{ log 10 ( I ) −log 10 ( I max ) + 2 
2 if log 10 ( I ) > log 10 ( I max − 2) , 

0 elsewhere . 

his choice of the floor value can also be justified for observational
ata since the sensitivity limit for these high-resolution ALMA 

bservations is usually between 1 and 0.1 per cent. The gap region
as lo w v alues, and the ring region has high values. Considering that
revious studies used gap shapes to infer the planet mass, we reversed
he value as (1-value) so that the gap had high values. It turned out
hat this procedure had little effect on the results. Since this procedure
s well defined, it is also simple to apply it to the real observation and
apidly convert that to the network input. Note that our main focus
s on the gap shape (width and depth, and asymmetric features). The
ormalization process we adopted remo v ed the information of the 
bsolute value of the emission. Ideally, the absolute value of the 
mission can provide extra information and can be considered in 
uture works. 

.3 Data augmentation 

n real observations, discs are hardly to be exactly face-on (e.g. the
onfiguration in Fig. 2 ). As long as the gap is spatially resolved and
he disc is not too edge-on, we should still obtain information from
he image. Thus, we inclined the disc from the initial data from 0 ◦

o 60 ◦, spacing every 15 ◦. This was simply done by stretching the y -
irection of the optical depth map, τ ( x , y ), while fixing the x -direction
ize. The optical depth is increased accordingly. This can be justified 
onsidering that mm dust is highly settled in protoplanetary discs 
Pinte et al. 2016 ). With this data augmentation, the observational 
ata for discs with any inclinations can be directly used as an input
or our networks. 

To explore the rotational symmetry (Dieleman et al. 2015 ), we 
otated the disc every 15 ◦, from 0 ◦ to 360 ◦ (0 ◦ and 360 ◦ are only
ounted once). The degree of rotation is also called position angle. 
ote that the rotation and inclination variations were done on the 
riginal 1200 × 1200 (10 r p × 10 r p ) data to a v oid the sharp edges
ue to missing values, but whether including this step did not affect
he results. 

We also explored translational symmetry by randomly shifting 
he image in x- and y -directions from 0 to 10 per cent. Even though
NNs should conserve translational symmetry by themselves, the 
tting result was slightly impro v ed. This is also helpful for the
repossessing of observational data since the disc does not need 
o be perfectly centred when they are fed into the networks. 

Every one of the face-on images can generate thousands of 
ugmented data. Ho we ver, we still separated the training, v alidation,
nd testing sets with those original data. Otherwise, if we separate
ll the data after the augmentation, the fitting accuracy will actually
ncrease since different augmented data generated from a single 
odel can look very similar. Ho we ver, this increase of the accuracy

s unreal due to the similar data in training, validation, and tests.
hus, we separated the data sets before the augmentation. 

.4 Classification models 

e first tested out CNN models as a classification problem on the
ridded data set in Zhang et al. ( 2018 ). We set up the network
s a classification problem instead of a regression problem since 
ur original simulations only have five discrete planet masses. We 
uilt two neural networks for comparison, one architecture similar to 
 GG-16 (Simon yan & Zisserman 2014 ) and the other adapted from
esNet (He et al. 2016b ). We chose not to use the original VGG-16
rchitecture since it introduced more parameters but did not impro v e
he performance. 

Fig. 3 shows the architecture of VGG-lik e netw ork. As mentioned
n the previous section, the input data are grey colour images
1 × 64 × 64), with values ranging from 0 to 1. Then, it follows
wo convolutional layers with 16 channels (depth = 16). In this
pecific neural network, the convolutional filter size is al w ays 3 × 3
ith 1 stride. The padding is on image edges so that the tensor
eeps the same number of points (64) in both x - and y -directions.
e also used ReLU (i.e. max[0, x ]), as the acti v ation function for all

ayers. After a 2 × 2 max-pooling operation, the image dimension 
ecomes 32 × 32. Then, it follows two convolutional layers with 
4 channels and another max-pooling. The last two convolutional 
ayers have 256 channels before a max-pooling. Then, it connects 
o three fully connected layers, two with 512 nodes and one with
28 nodes. These fully connected layers all have 20 per cent dropout
ates to a v oid o v erfitting. Finally, the output layer has five nodes that
tand for five different planet masses. There are 9504 565 trainable
arameters in total. We found that adding more layers did not increase 
he accuracy. 

The learning rate is a hyperparameter that controls the step size
n an optimization process while it is minimizing the loss function.
n analogy of it is the step size in solving differential equations.
e adopted the initial learning rate as 0.001. We chose the sparse

ategorical cross-entropy as the loss function and ADAM as the 
ptimizer (Kingma & Ba 2015 ). We defined accuracy of the method
s 

ccuracy = 

TP + TN 

TP + TN + FP + FN 

, (5) 

here TP, TN, FP, and FN stand for true positive, true negative, false
ositive, and false negative, respectively. 
To balance the trade-off between rate of convergence and over- 

hooting, we adopted an adaptive learning rate. The learning rate 
arying as the training epoch is a cosine function so that the learning
MNRAS 510, 4473–4484 (2022) 
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Figure 3. The architecture of VGG-like network. The image as an input is the log 10 of the intensity, scaled between zero and one with only one channel. The 
example image is pre-processed image of GW Lup (Andrews et al. 2018 ). Then, there are six convolutional layers and three fully connected layers. 
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ate becomes much smaller at later training stages. The batch size is
28. The training, validation, and testing sets were split as 60 per cent,
0 per cent, and 20 per cent of the 1440 models that were randomly
huffled. We also included different inclinations and rotations for the
esting set, so there are total 1440 × 0.2 × 5 × 24 = 34 560 testing
mages. The training was done on a single NVIDIA GPU GeForce
TX 2080 Ti 12GB. We used Tensorflow v2 (Abadi et al. 2015 )

o build the network. The VGG-like network took less than 1 h, while
he ResNet model took 2 h. 

For the residual network, our network was adopted from ResNet v2
He et al. 2016a ) with three skips. It has a bottleneck layer with stacks
f batch normalization, acti v ation (ReLU) and convolutional layers.
he batch normalization can make ANN faster and more stable. The
rst shortcut connection per layer is 1 × 1 convolution and the second
nd onward shortcut connection is identity. At the beginning of each
tage, the feature map size is halved by a convolutional layer with
 strides, while the number of filter maps is doubled. Within each
tage, the layers have the same number of filters and the same filter
ap sizes. There are 22 convolutional layers in total, but with only

76 357 parameters, an order of magnitude smaller than the VGG-
ike model. The initial learning rate is 0.005. Other set-ups are the
ame as the VGG-like model. 

.5 Regression 

fter carrying out additional simulations with the randomly gen-
rated parameters from the LHS, we were able to fit the planet
ass in a continuous space. Thus, we fitted the combined data set

s a regression problem. We used mean square error (MSE) as the
oss function. We made the output layer as an M p –α pair, as MSE
an e v aluate vectors (e.g. Alibert & Venturini 2019 ). In this way,
he planet mass and disc viscosity can be predicted together. We
ade viscosity as an output since a direct measurement of gas
NRAS 510, 4473–4484 (2022) 
urbulence is difficult (e.g. Flaherty et al. 2018 ). We adopted the
esNet architecture as mentioned in the previous subsection. 
Slightly different from Section 3.4, we split 195 generic models

nto 175 and 20. The selection was random but can be reproduced in
ur repository. We then separated the first 175 models, together with
heir generated models with combinations of surface densities and

aximum particle sizes into 60 per cent, 20 per cent, and 20 per cent
plits as training, validation, and test data. Finally, we used the rest
0 generic models as a ‘genuine test’, as the input parameters of
hese models are completely outside the parameter space of { M p ,
 / r , α} pairs in the training. This additional step can test whether
he o v erfitting happens in the { M p , h / r , α} space. This is a more
igorous test than that in Section 3.4 since we separate the data even
efore generating the face-on images with different a max and surface
ensities. We used callback function ReduceLROnPlateau to
educe learning rate when the loss had stopped improving. We kept
ther hyperparameters the same as what were mentioned in previous
ubsections. 

 RESULTS  

.1 Classification 

he accuracy of VGG-like model reached a plateau after 10 training
pochs but still slowly increased up to 40 epochs. The accuracy of
he ResNet model reached a plateau after 90 epochs. The ResNet has
lightly higher accuracy than the VGG-like model on the validation
et. This is also the case for the testing set. The VGG-like model can
each an accuracy of 89 per cent, and the ResNet model can reach an
ccuracy of 92 per cent. Note that the accuracy reported is the micro
ccuracy [i.e. applying equation (5) for the whole sample, instead of
alculating accuracies for each class and averaging them, which is the
acro accurac y]. Ev en though each class (planet mass) has the same

mount of sample in the whole data set, in each subset (training,
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Figure 4. The confusion matrix for the ResNet model. The x -axis is the 
prediction from the neural network. The ground truth is on the y -axis. The 
upper number in a box shows the counts of planets with certain prediction and 
ground truth. The lower percentage shows the fraction of the prediction o v er 
the total number of the sample with certain ground truth (sum of a row). The 
rightmost numbers are total counts of testing data with certain class labels 
(sum of a given row) and the percentage among all testing data (sum of the 
rightmost column). 
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alidation, and testing sets), the data are slightly imbalanced due 
o the shuffling process to separate them. Nevertheless, macro and 
icro metrics are similar here. 
Fig. 4 shows the confusion matrix of planet mass prediction, and 

heir ground truth for all testing data set applied to the ResNet
etwork. The y -axis shows the true planet masses, whereas the x -
xis shows the most likely planet masses predicted by the network. 
f the data point falls on the matrix diagonal, the prediction is correct.
he accuracy is the sum of diagonal counts over the total counts. The
lanet mass is underestimated if it is on the left and o v erestimated if
n the right. The upper number in each box shows the counts of a
ertain prediction given a ground truth. The lower percentage shows 
he fraction of it among all the images within that class. When the
lanet mass is small, i.e. the gap is narrow, the prediction accuracy is
ow. If the planet is 11 M ⊕, only 87 per cent of the samples account
or correct predictions within that class. The planet mass is al w ays
 v erestimated giv en this set-up. Ho we ver, we caution that the planet
ass can also be underestimated in reality, since this neural network 

annot find planet with mass lower than this limit. The prediction 
ccuracy increases with higher planet masses. If the planet mass is
 M J , 97 per cent of the predictions within that class are correct.
ikewise, 3 M J is the upper mass limit in this network, so any real
lanet mass with higher value will be underestimated. 

.2 Regression 

he loss of the regression model reached a floor after 70 training
pochs. Fig. 5 shows histograms for the deviation of the predicted 
lanet masses and disc viscosities from the true values in dex. 2D
istograms of the joint distribution between M p and α are plotted at 
entre, whereas the 1D distributions of the planet mass and viscosity
ifferences are shown on the top and right. Panel (a) shows the result
f the test set among the 175/195 generic models that were used
n the training. The distributions of M p and α are all centred close
o zero, with uncertainties of 0.16 and 0.23 de x, respectiv ely. The y
re symmetric with almost zero means. Planet masses and the disc 
iscosities tend to be o v er(under)estimated at the same time and
ollow α ∝ M 

3 
p , which has also been found in Zhang et al. ( 2018 ).

anel (b) shows the result of 20/195 generic models that are not
sed in the training. The o v erall distributions are similar to those in
anel (a). The exception is that the deviation of α is skewed towards
ositi ve v alues (i.e. α tends to be o v erpredicted). This is because
ost of the viscosities among these randomly generated 20 generic 
odels have low α (close to 10 −4 ), where it is more likely to be
 v erestimated (see Fig. 6 ). The similarity between panels (a) and
b) demonstrates that the fitting is robust and can also be applied to
imulations not used in the training. 

Fig. 6 shows distributions of the difference of the prediction and
round truth in different mass and viscosity regimes. The data are
rom the test set of 175/195 generic models. The distributions are
ormalized to have the same height, and the inner box follows
he convention of the box plot. The standard deviation of each
istribution is listed on the right of each violin plot. The planet
asses are divided into five bins in comparison with the classification

roblem (Fig. 4 ). Similar to the classification problem, the error of the
tting becomes smaller as the planet mass increases. A small fraction
f samples have large errors except at the highest mass bin. At the
ower mass end, the planet mass is more likely to be o v erestimated.
t the higher mass end, the uncertainty of the estimate can be as low

s 0.1 dex (a factor of 1.3). The viscosity is divided into four bins.
hen α is less than 3 × 10 −3 , it tends to be o v erestimated. When it

s large and close to 10 −2 , it is more likely to be underestimated. In
ny viscosity regimes, a small fraction of the predictions would have
arge deviations from their true values. 

.3 Grad-CAM 

hile deep neural networks are difficult to interpret, some visual- 
zation tools help make sense of them. Gradient-weighted Class Ac- 
i v ation Mapping (Grad-CAM; Selvaraju et al. 2017 ) is a technique
or making CNN-based models more transparent by visualizing the 
egions of input that are important for predictions from these models.
t uses the class-specific gradient information flowing into the final 
onvolutional layer of a CNN to provide a coarse localization map of
he important regions in the image. It is a generalization of the Class
cti v ation Mapping (Zhou et al. 2016 ), but requires no retraining. 
Fig. 7 shows both images and the activation map derived from

he Grad-CAM of the ResNet regression network. The disc is 
nclined and rotated. Here, the true planet mass is 2.28 M J , and α
 1.4 × 10 −3 . The gap region has high values in the activation
ap, which means that it is important in predicting the planet
ass. This lends confidence to the network’s reliability since the 

raditional method also focuses on the gap’s properties. This is why
e named these neural networks as PGNets. One should be cautious

hat not e very acti v ation map of testing data shows such a good
orrespondence, and the acti v ation map is a great tool if any result is
n doubt. 

.4 Application to obser v ational data 

fter testing against the synthetic observations, we applied our 
rained PGNets to real DSHARP observations (AS 209, Andrews 
t al. 2018 ; Guzm ́an et al. 2018 ; Elias 24, GW Lup, and Sz 114,
ndrews et al. 2018 ) to infer planet masses and compared them
ith what was found in Zhang et al. ( 2018 ). The designation follows
uang et al. ( 2018 ), where the integer of gap location in au follows

D’ (for dark gaps). There are several degeneracies if one wants to
nfer the planet mass. In the previous fitting of Zhang et al. ( 2018 ), the
MNRAS 510, 4473–4484 (2022) 
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Figure 5. 1D and 2D histograms for the differences between predicted and true values of M p (horizontal) and α (vertical). The 2D joint distributions are colour 
coded. (a) The test data set among 175/195 of the generic models. (b) The 20/195 data set that has not been used in the training process. Most of the predictions 
have small deviations. The horizontal and vertical bars represent the standard deviation of each distribution. Dashed lines represent α ∝ M 

3 
p . 

Figure 6. The violin plots of logarithmic-scaled deviation between predicted 
and true values of M p and α in different mass and viscosity regimes. The data 
are from the test set of 175/195 generic models. The colour-shaded regions 
show the distribution with normalized height, whereas the inner box follows 
the convention of a box plot, which shows distribution’s 25 percentile, 50 
percentile (white dot), and 75 percentile. The decimals marked on the right 
are the standard deviation of each distribution. 
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ap width depends on not only the planet mass but also the viscosity
and Stokes number St (or a max and � g ). Thus, in comparison with
hang et al. ( 2018 ), we picked the median value as a reference point.
he median value is the case with α = 10 −3 and a max = 1 mm. It

s difficult to estimate the uncertainty in these models. For the linear
tting method, two known uncertainties come from α and a max . A
NRAS 510, 4473–4484 (2022) 
ifference of 10 in α leads to around 0.33 dex change of M p , whereas
 change of 10 in a max leads to around 0.2 dex change of M p . For
lassification models, an error of reference can be 0.4 dex, since
wo neighbouring planet masses are spaced at that value. For the
egression model, the uncertainty of M p and α can be estimated as
.16 and 0.23 de x, respectiv ely, as shown in Fig. 5 , or read in specific
egimes as shown in Fig. 6 . For AS 209 and Elias 24, fine-tuned planet
asses are available from detailed case-by-case modellings. While

he central stars of these discs have different masses, what matters
s the planet–star mass ratio M p / M ∗. Thus, we will report M p / M ∗ in
nits of the M J /M � in the next paragraph. Notice that the radius of
he semiminor axis of the gap should be placed around one-sixth of
he image size. Ho we ver, the disc does not need to be centred nor
caled perfectly, since the images were randomly shifted during the
raining process. 

AS 209 is a disc with many gaps. With the linear fitting method,
he median value of AS 209 D99 5 is 0.45 M J /M � (Zhang et al.
018 ). The detailed modelling infers 0.1 M J /M �. The VGG-like
odel predicts 0.1 M J /M �, whereas the ResNet classification model

redicts 0.3 M J /M �. The regression model predicts 0.52 M J /M � and
= 2 × 10 −4 . With 64 × 64 resolution, gaps inside 40 au have

een smoothed out. The secondary gap (a shallower gap inside the
ajor gap) has already been considered since there are also many

ow-viscosity simulations with secondary gaps in our training data
et. 

With the traditional fitting method, Elias 24 D57 is 0.51 M J /M �.
t is 0.2 M J /M � using the fine-tuned model. Both VGG-like and
esNet classification models predict 0.1 M J /M �. The regression
odel predicts M p / M ∗ = 0.21 M J /M �, and α = 2 × 10 −4 . 
The inferred planet mass from the traditional fitting method

or GW Lup D74 is 0.065 M J /M �. Both VGG-like and ResNet
lassification models predict 0.03 M J /M �. The regression model
redicts M p / M ∗ = 0.05 M J /M �, and α = 1 × 10 −4 . 
Sz 114 is a disc with a very narrow gap. It is too narrow to use the

inear fitting method. The mass was obtained by directly comparing
ith simulations (Zhang et al. 2018 ). That value for Sz 114 D39

s 0.12 M J /M �. Both VGG-like and ResNet models predict 0.03

art/stab3502_f5.eps
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(a) (b) (c) (d)

Figure 7. Grad-CAM for the ResNet regression problem. The image is among 20 generic models not in the training set. The true planet mass is 2.28 M J and 
α = 1.4 × 10 −3 . (a) Log-scaled image without putting into CASA , (b) log-scaled synthetic image using CASA , (c) acti v ation map of the synthetic image (b), and 
(d) synthetic image o v erlaid by the acti v ation map (filled contour). In this case, the acti v ation map successfully focuses on the gap region. The beam size of 
panel (b) is shown as an ellipse in the bottom left. 
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 J /M �. The regression model predicts M p / M ∗ = 0.11 M J /M �, and
= 6 × 10 −4 . 
Ov erall, the V GG-like and ResNet classification models predict 

imilar planet masses. The regression model predicts higher planet 
asses. It predicts lower viscosities for these discs. 
There are many other gaps that can be compared between the linear

tting method and PGNets. Instead of doing e xtensiv e co v erage
f all available gaps, we made our code available online so that
sers can apply these methods to any new or archi v al data. With a
uperresolution technique, Jennings et al. ( 2021 ) even found many 
ore gaps inside 30 au for DSHARP observations. Those images 

nd radial profiles can also be inputs for our models using either the
GNets or the linear fitting tools. 

 DISCUSSION  

.1 Synthetic obser v ation 

o test whether predictions from CNN models are affected by the way 
e produce synthetic observations, we picked the case in Fig. 7 (a),
ut it into CASA (McMullin et al. 2007 ) version 6.1.0, and used the
imobserve task to generate observations with angular resolutions 
nd sensitivities comparable to those of the DSHARP observations. 
e assumed that the planet is at 40 au, a max = 1 cm, � g,0 = 30
 cm 

−2 , and L ∗ = 2 L �. The synthetic observations consist of 12
in of on-source integration time with the Cycle 5 C43-5 antenna 

onfiguration, 35 min on-source in the C43-8 configuration, and 35 
in on-source in the C43-9 configuration. A precipitable water vapor 

evel of 1.0 mm was adopted. The synthetic visibility was imaged in
he same manner as the DSHARP sources using the tclean task, 
s described in Andrews et al. ( 2018 ). 

In Fig. 7 , panel (a) shows the intensity map converted from the
imulation and panel (b) shows the intensity from the synthetic 
LMA observation. The scales of them were normalized as discussed 

n Section 3.2. The angular resolution is ∼5 au in FWHM and is
arked in the lower left corner of the panel. As shown in panels

c) and (d), the acti v ated regions correctly focus on the gap. The
redicted masses are 1.92 M J and 2.39 M J , with and without CASA
perations, all comparable to the true value, 2.28 M J . The predicted
viscosities are 1.3 × 10 −3 and 1.2 × 10 −3 , with and without CASA

perations, also comparable to the true value, 1.4 × 10 −3 . Thus,
e conclude that our models can be used to predict real ALMA
bserv ations e v en though the y were trained on the data without doing
imobserve tasks. 
.2 Advantages 

ompared to the traditional method, CNNs have many advantages. It 
s quick and convenient. The 2D images do not need to be converted
o 1D profiles. Deriving 1D profiles seems to be a simple task but
t takes time since one needs to run Markov chain Monte Carlo
o find a disc’s centroid, inclination, and position angle. Once the
NN model is trained, one can obtain a prediction within a second
irectly from the image plane. For this reason, it can be applied to
 large disc sample. The training is one time and only takes 1 h.
sing a traditional method, one needs to search for the best-fitting
arameters. For instance, one parameter combining viscosity, h / r ,
nd planet mass is enough to fit the gaseous gap depth and width
Kanagawa et al. 2015 , 2016 ). Ho we ver, if the dust is included, we
lso need to find several fitting formulae for different a max and gas
urface density (Zhang et al. 2018 ). This is not the case for CNNs.

ith more data or new physics included, the network can be retrained
uickly by providing more training data. 
Asymmetric information is lost when a 2D image is converted to a

D radial profile. CNNs can preserve this information. For instance, 
 low-mass planet in an inviscid disc can have the same gap width as
 high-mass planet in a viscous disc. The traditional method cannot
reak this de generac y. Ho we ver, the viscosity of the disc can be
nferred from a 2D image. If the disc looks more asymmetric, it
hould be more inviscid. The planet mass can be better constrained
ccordingly. 

In a regression problem, the model can provide planet mass and
isc viscosity at the same time. With the linear fitting method, one
an only get a planet mass by assuming a disc viscosity, since both a
igher planet mass and a more inviscid disc help open a wider gap.
he CNN regression model partially breaks the de generac y between

hem. 
The CNN methods can handle very shallow or narrow gaps, which

s of great difficulty for the traditional fitting method. In Zhang et al.
 2018 ), to make sure most of the data points fall on to the fitting line,
arrow gaps with 	 below 0.15 were treated as outliers. One thus
eeds to compare with individual simulations to estimate a planet 
ass (e.g. inferring the potential planet in Sz 114’s narrow gap),
hich is extremely time consuming. 

.3 Limitations 

he first limitation of the CNN models is that training with the same
ata set but different architectures would lead to different predictions, 
ven though their accuracy is similar statistically. Even given the 
MNRAS 510, 4473–4484 (2022) 
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ame architecture, different random seeds or data augmentation
ould also result in different predictions. On the contrary, the

raditional linear fitting method provides a definite planet mass as
ong as a gap width and other disc parameters are pro vided. Man y
etails of fitting are empirical, but they are transparent to the user. 
Compared to the linear fitting method, it is difficult to understand

ow CNN methods derive the results, even though the Grad-CAM
an qualitatively inform us the important features the network uses.
n the traditional fitting method, the gap width is proportional to
ome powers of planet mass, disc viscosity, and h / r at a given St .
e can use some other ways to constrain some parameters and

hen narrow down the planet mass. In classification or single-output
egression CNN models, we can only get a single prediction for
hese parameters when we apply them to observations. Deep neural
etworks are intrinsically highly non-linear. For an input image,
hese models are more of methods that help pick up an image in a
raining set with the most similar feature than methods of finding
ntrinsic relationships. The user can use their own knowledge to
nterpret why the planet mass returned by a CNN model is as
uch (e.g. if the planet mass is low, the user can make sense of it
y noticing that the gap is narrow), but the network itself cannot
nform this to the user. Instead of using a linear fitting with many
ssumptions, it helps the user to find the most closed-match model
or an input. In some sense, the classification and single-output
egression models can be seen as another way to present all the
imulations in Zhang et al. ( 2018 ) by providing an automated tool to
nd a closed match. Surprisingly, multi-output regression models can
ossibly solve this problem. For instance, the multi-output regression
GNets can help us find the exact relation of the degeneracy
etween planet mass and disc viscosity among simulations (Fig. 5 ).
here are hopes that we can learn valuable insights from CNN
odels. 
Finally, compared to a detailed modelling, the prediction can only

e as good as the physics included in the simulations. While our
imulations span a large parameter space, they cannot co v er ev ery
ossible situation. For instance, we cannot predict planet masses
elow 11 M ⊕ or abo v e 3 M J . A planet with a lower mass than 11
 ⊕ can only be predicted as massive as that. Only one planet is put

nto the simulation, and its orbit is fixed. Thus, the model cannot
e used to study multiple planets carving a common gap. Ho we ver,
f planets lead to several gaps and they do not influence each other,
e can treat them as individual single gaps by masking others. Note

hat if we assume that one planet can carve two gaps (Bae & Zhu
018a , b ; Dong et al. 2018 ) and the secondary gap is at 0.5–0.7 r p ,
e can input all the gaps into CNN models since our CNN models
ave been trained with data that have these secondary gaps generated
y a single planet. The model does not consider migration, which
an lead to a different gap shape (Nazari et al. 2019 ; Kanagawa et al.
020 ). The gap substructure can also change with time. The discs
re at 1000 orbits, which is 1 Myr for a planet at 100 au or 0.1 Myr
or a planet at 20 au. We used 2D simulations, but the situation in
D might be different. We neglected the self-gravity of the disc and
he thermodynamic processes. These effects will also change the
hape of the gap (Miranda & Rafikov 2020a , b ; Rowther et al. 2020 ;
hang & Zhu 2020 ; Ziampras, Kley & Dullemond 2020 ). The dust

n our simulations was treated as passive test particles. In reality,
he dust’s back-reaction on to the gas is important (Kanagawa et al.
018 ; Hsieh & Lin 2020 ; Huang et al. 2020 ; Yang & Zhu 2020 ).
hen producing the synthetic image, we neglected scattering, but it

an affect the images when the disc is optically thick (Liu 2019 ; Zhu
t al. 2019 ). The dust was also assumed to be settled. Not to mention
hat it is very likely that some substructures can have non-planet
NRAS 510, 4473–4484 (2022) 
rigins (e.g. snowline and MHD effects). On the other hand, with
ore physical processes understood and included in simulations,
NNs can be used to make predictions. 

.4 Future perspecti v es 

his line of work can also be applied to infer the Stokes number St
f particles in the discs. The Stokes number is highly correlated to
he gap width and depth. Measuring St can help us understand the
article size and dust settling. 
The gas component is more massive and has a larger radial and

 ertical e xtent than the dust in protoplanetary discs. The (sub)mm
olecular line observations also contain velocity information at

ifferent disc positions, leading to a 3D datacube. One can infer
lanet mass from kinematic features in channel maps, such as the
ink and the deviation from Keplerian velocity (Pinte et al. 2018 ;
eague et al. 2018 ). In star formation, CNN models have already
een used on the whole 3D datacube (Xu et al. 2020a , b ). This can
ossibly be applicable in protoplanetary discs as well. 

 CONCLUSIONS  

ubstructures are found to be ubiquitous in protoplanetary discs.
f some of them are induced by planets, the increasing number
f high-resolution protoplanetary disc observations is revealing the
opulation of young forming planets. 
The properties of these substructures (e.g. the width and depth

f the gap) are related to the planet mass. Previous works used
ither fined-tuned models or linear fitting on a large parameter space
o infer the planet mass. Instead, we used CNNs to predict the
lanet mass directly from radio dust continuum images. To train
he CNNs, we use data from synthetic observations in Zhang et al.
 2018 ) and some new simulations. We built both classification and
egression models. The classification models can predict five planet
asses ranging from 11 M ⊕ to 3 M J . The VGG-like model can

each 89 per cent accuracy, whereas the ResNet model can reach
2 per cent accuracy. The accuracies for less massive planets are
ower. They are higher for more massive planets. The regression

odel can predict planet mass and disc viscosity at the same time.
imilar to the classification model, it predicts more massive planets
ith higher accuracy. The standard deviation of the prediction is

round 0.16 dex. The prediction of α has uncertainty around 0.23
ex, and can be used to constrain the disc turbulence. 
CNN models cannot fully break the de generac y between the

lanet mass and disc viscosity. It tends to o v er(under)predict them
t the same time. Ho we ver, it is surprising that this de generac y
elationship can be easily found in CNNs without the need of
heoretical knowledge (Kanagawa et al. 2016 ) and detailed fitting
nd tuning (Zhang et al. 2018 ). This shows the potential of CNNs as
iagnostic tools. 
Using Grad-CAM, we showed that the networks indeed catch the

mportant feature, i.e. gaps, in predicting the planet mass. We also
pplied the networks to several DSHARP gaps and found that the
redictions are reasonable compared with the traditional method in
hang et al. ( 2018 ). The code, along with that of the traditional
ethod, is also provided. 
The CNN methods are fast compared to fined-tuned models. It

s more convenient than the linear fitting method since one can
et a prediction instantaneously as long as an image is provided.
he network can also be easily updated with more data or physical
rocesses. It preserves the 2D information that should help break the
e generac y between planet mass and disc properties. The regression
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odel can predict several quantities at the same time. Unlike the 
raditional method, predicting shallow and narrow gaps takes the 
ame amount of effort using CNNs, even though the prediction still
as higher uncertainty in this regime. 

There are also several shortcomings for CNN models. Different ar- 
hitectures or training procedures might lead to different predictions. 
he CNNs are not transparent, and it is difficult to kno w ho w exactly

he netw orks w ork. Lastly, in contrast to the detailed modelling, the
obustness of our CNNs ultimately is limited by our training data 
simulations), i.e. the physical processes included. 

The methods are more suitable for a large disc sample to obtain
tatistical trends of a young planet population. For individual disc, 
e can use this method to narro w do wn the parameter space for
etailed simulations. Overall, the traditional linear fitting method 
e.g. Zhang et al. 2018 ) still provides users more control on the
nput disc parameters, while the wide choice of tools in CNNs (e.g.
lassification and regression) and diagnostic tools (Grad-CAM) start 
o make CNNs more robust. 
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