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ABSTRACT

We developed convolutional neural networks (CNNs) to rapidly and directly infer the planet mass from radio dust continuum
images. Substructures induced by young planets in protoplanetary discs can be used to infer the potential young planets’
properties. Hydrodynamical simulations have been used to study the relationships between the planet’s properties and these disc
features. However, these attempts either fine-tuned numerical simulations to fit one protoplanetary disc at a time, which was
time consuming, or azimuthally averaged simulation results to derive some linear relationships between the gap width/depth
and the planet mass, which lost information on asymmetric features in discs. To cope with these disadvantages, we developed
Planet Gap neural Networks (PGNets) to infer the planet mass from two-dimensional images. We first fit the gridded data in
Zhang et al. as a classification problem. Then, we quadrupled the data set by running additional simulations with near-randomly
sampled parameters, and derived the planet mass and disc viscosity together as a regression problem. The classification approach
can reach an accuracy of 92 per cent, whereas the regression approach can reach lo as 0.16 dex for planet mass and 0.23 dex for
disc viscosity. We can reproduce the degeneracy scaling o MS found in the linear fitting method, which means that the CNN
method can even be used to find degeneracy relationship. The gradient-weighted class activation mapping effectively confirms
that PGNets use proper disc features to constrain the planet mass. We provide programs for PGNets and the traditional fitting

method from Zhang et al., and discuss each method’s advantages and disadvantages.

Key words: hydrodynamics — waves — planet—disc interactions — protoplanetary discs.

1 INTRODUCTION

Detecting young planets in protoplanetary discs is essential to infer
where and when planets form and how massive they are, putting
stringent constraints on planet formation theory. Unfortunately,
despite thousands of exoplanets having been discovered, only a few
of them are around young stars within 10 million years old. There
are even fewer young forming planets found in dusty protoplanetary
discs. One notable example is PDS 70 system, where two young
planets with several Jupiter mass have been discovered within the
dusty cavity of 80 au (Keppler et al. 2018; Miiller et al. 2018; Wagner
et al. 2018; Christiaens et al. 2019; Haffert et al. 2019; Isella et al.
2019; Hashimoto et al. 2020; Wang et al. 2020). However, such firm
detection seems to be rare (e.g. Zurlo et al. 2020), and we are not
expecting to directly detect a planet whose mass is less than one
Jupiter mass (Ruane et al. 2017). There are other promising methods
to detect young planets in discs, such as using disc kinematic features
influenced by the planet (Perez et al. 2015; Pinte et al. 2018; Teague
et al. 2018; Izquierdo et al. 2021; Rabago & Zhu 2021). However,
all these methods can only detect planets that are more massive than
Jupiter. The only method that can detect planets less massive than
Jupiter is to use gaps in the dust continuum images (e.g. Zhang et al.
2018). Since dust particles drift to the local pressure maximum, even
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small gas perturbations by a low-mass planet can lead to observable
dust gaps (Paardekooper & Mellema 2006; Zhu et al. 2014; Rosotti
et al. 2016; Dipierro & Laibe 2017; Dong et al. 2018).
Hydrodynamical simulations with dust particles have been carried
out to infer the planet properties from radio observations. At
early times when Atacama Large Millimeter/submillimeter Array
(ALMA) high-resolution observations were scarce, numerical simu-
lations were fine-tuned to fit one source at a time (e.g. Dipierro et al.
2015; Dong, Zhu & Whitney 2015; Picogna & Kley 2015; Dipierro
et al. 2018). However, when high-angular resolution surveys became
available (e.g. Andrews et al. 2018; Long et al. 2018; Cieza et al.
2021), it was impractical to run direct numerical simulations for each
source. Thus, relationships between the gap and planet properties
have been solved. For gaseous gaps, such relationships have been
well characterized (Fung, Shi & Chiang 2014; Kanagawa et al. 2015,
2016). However, the relationships are less clear for dusty gaps mainly
because the gap width/depth can vary significantly with different
sized particles in discs. Lodato et al. (2019) assumed that the dusty
gap width is scaled with the planet Hill radius to derive the masses of
planets in the Taurus survey (Long et al. 2018). Rosotti et al. (2016)
carried out simulations to derive the relationship between the planet
mass and the distance between the planet and the pressure maximum
at the outer gap edge. However, Rosotti et al. (2016) did not consider
the effects of particle size and disc viscosity, both of which can
change the gap-planet relationship significantly. A detailed study
was done by Zhang et al. (2018), who carried out a large grid of
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planet—disc interaction simulations with dust particles, generated
synthetic observations, and derived relationships between the planet
mass, the disc scale height, the disc viscosity, and the particle size in
disc.! Such relationships have been used to derive the young planet
population from the DSHARP survey (Andrews et al. 2018; Zhang
et al. 2018).

However, the approach in Zhang et al. (2018) still suffers several
shortcomings. First, the procedures to derive the planet mass are
relatively complicated. Disc viscosity, scale height, and particle size
need to be constrained by other methods and specified beforehand.
Based on these parameters, different fitting formulae need to be
adopted. To make the method in Zhang et al. (2018) easier to use,
parallel to the method presented in this paper, we provide new
PYTHON programs for the Zhang et al. (2018) linear fitting method,”
which can automatically find the planet mass after the parameters are
specified. The second shortcoming, which is intrinsic to the method
itself, is that the synthetic images generated from simulations were
azimuthally averaged before deriving the relationship between the
planet mass and gap widths/depths. Thus, all information from non-
axisymmetric features was lost. These features have rich information
on disc and planet properties. For example, an eccentric gap suggests
a massive planet. A lopsided disc with a large intensity asymmetry
indicates a low viscosity or large particles.

To directly extract information from two-dimensional (2D) im-
ages, in this work, we adopted machine learning techniques. Machine
learning techniques have been widely used across the astronomical
community for decades, and here we briefly describe several works
related to computer vision image tasks, using convolutional neural
networks (CNNs), specifically.

CNNs have been used widely in galactic and extragalactic studies.
Dieleman, Willett & Dambre (2015) is one of the first works that
use modern CNN networks. It originated from an international
competition Galaxy Challenge that aimed to build automated tools
for galaxy morphology classification based on annotated images from
the Galaxy Zoo project. They applied CNNs to the morphological
classification of crowd-sourcing annotated images and achieved
>99 percent accuracy, which would benefit analysis in future
large galaxy surveys such as Vera C. Rubin Observatory. Hezaveh,
Perreault Levasseur & Marshall (2017) used CNNs to automate
analysis of strong gravitational lenses. The traditional method
with maximum likelihood modelling requires human expertise and
is time consuming. The network can quantify image distortions
caused by strong gravitational lensing and estimate these structures’
corresponding matter distribution with comparable accuracy as the
traditional method, but 10 million times faster. Non-experts can
quickly obtain lensing parameters for a large sample of data. Hassan
et al. (2019) utilized CNNs to identify reionization sources from
21 cm maps. Active galactic nuclei and star-forming galaxies are two
leading sources that reionized our Universe. CNNs were trained to
distinguish the sources on the 21 cm images. The technique would aid
power-spectrum observations and provide extra information to break
degeneracies between a broad range of reionization models. The
classification accuracy is between 92 and 100 per cent, depending on
the redshift and neutral fraction range.

CNNs have also been used in the Solar system study. Lieu et al.
(2019) trained CNNs on simulated observations of an upcoming
mission Euclid for Solar system objects’ identification. They used

'We use ‘the linear fitting method’ to denote this method throughout this

paper.
The code is available at https://github.com/zhangsj96/DSHARPVILgit.
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transfer learning (i.e. training on several established CNN archi-
tectures with some modifications) on a relatively small data set.
Their best model correctly identified objects with a top accuracy of
94 per cent, successfully separating Solar system objects from other
astronomical sources.

In the field of star formation, identifying signatures of stellar feed-
back in molecular clouds used to mainly rely on visual inspection.
Van Oort et al. (2019) ran three-dimensional (3D) magnetohydrody-
namic (MHD) simulations with stellar feedback and produced 2D
synthetic CO continuum images. They trained CNNs on synthetic
data and identified shells in real observations. Later, they extended
the work to 3D so that they could make full use of molecular
line spectrum datacube. They found stellar feedback bubbles and
predicted feedback properties (Xu et al. 2020a), and identified 20
new outflows (Xu et al. 2020b) that were missed by previous visual
inspections.

While CNNs have not been applied to the planet—disc interaction
study, general machine learning techniques are receiving more atten-
tion in the field. Recently, Auddy & Lin (2020) used fully connected
neural networks to fit the relationship between the planet mass and
parameters such as gap width, aspect ratio, viscosity, dust-to-gas
ratio, Stokes number, and density profile. Compared to previous
fitting methods, the work is the first to fit the relationship non-
linearly. Since a deep neural network is good at fitting problems that
are intrinsically non-linear, their estimated planet mass follows closer
to the simulation data given a multidimensional input. Nevertheless,
users still need to provide inputs that are barely constrained from
observations, and asymmetric information is still lost when 2D
images are converted to one-dimensional (1D) radial profiles. While
we were modifying this paper after the first referee report, Auddy
et al. (2021) published a CNN approach for the 2D images, which
alleviated some of these shortcomings. Compared with this paper,
they used similar neural networks with hydrodynamical simulations.
Their models allow additional disk parameters as inputs. However,
the models were trained on disk density contours in simulations
instead of synthetic observational images.

Our aim in this paper is to infer the planet mass from the 2D
observational images directly.’ In Section 2, we briefly introduce
the background and the basic glossary of CNNs. In Section 3,
we describe the simulation set-up, synthetic observation produc-
tion, prepossessing, augmentation, and the neural network set-
up and training. In Section 4, we analyse the results, apply the
networks to several gaps in DSHARP observations, and compare
the derived planet masses to those from the previous method.
After a short discussion in Section 5, we conclude our paper in
Section 6.

2 BACKGROUND

2.1 Regular neural network

The most common subset of deep learning is regular neural networks
(or fully connected neural networks). Neural networks receive a
vector and transform it through a series of hidden layers. Each
hidden layer is made up of a set of neurons, where each neuron
is fully connected to all neurons in the previous layer. The last fully
connected layer is called the ‘output layer’. For classification prob-
lems, it gives scores for different classes. For regression problems, it
predicts continuous values.

3The code is available at https:/github.com/zhangsj96/PGNets.git.
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Each neuron has some parameters to be tuned, which can be
accomplished by training the model. The training is a process of
minimizing the loss function and updating parameters through
back-propagation. The data are separated as training, validation,
and testing sets. The training data are used to feed into the neural
network. The validation data are not used in training the model but
are used as a metric to monitor the training result at every epoch.
The testing data are used to evaluate the model accuracy after the
training is completed.

2.2 CNN

For regular neural networks, the input vector could be extremely
large if the input is an image that is represented by either a flattened
matrix (e.g. a greyscale image) or a flattened tensor (e.g. an RGB-
coloured image). There are correlations between neighbouring pixels
and different colour channels in an image, but a vector representation
loses such correlations. Thus, regular neural networks are not ideal
for training image data. The convolutional operation naturally takes
the local connections into account. To that end, CNNs are powerful
in fitting image data. As a variation of regular neural networks, their
primary unit of computation is the convolutional operation instead of
simple matrix multiplication. A layer of a convolutional network has
neurons arranged in three dimensions: width, height, and depth. A
convolutional kernel will be operated on this 3D tensor, and the output
becomes the next layer. Usually, the network’s width and height
become smaller for later layers, while the depth becomes deeper.
The process of downsampling the feature map is called pooling.
LeCun et al. (1998) introduced LeNet to recognize hand-written
digit characters. It reached a very high performance and brought
artificial neural networks into popularity.

2.3 Residual neural network

A residual neural network (ResNet) is a kind of CNN that has
connections even between skipping (non-neighbouring) layers (He
et al. 2016b). It has shortcuts to jump over some layers. Typical
ResNet models are implemented with double or triple skips that
contain Rectification Linear Unit (ReLU) and batch normalization
(Ioffe & Szegedy 2015) in between. Skipping effectively simplifies
the networks and reduces the parameters. It also avoids the problem of
vanishing gradients so that the network can go deeper than traditional
CNNs while still improving the performance.

3 METHOD

A schematic view of our method from input to output is summarized
in Fig. 1. We first introduce how we convert the simulations to
synthetic observations (Section 3.1), and then discuss the pre-
possessing (Section 3.2) and augmentation (Section 3.3) steps to
make the network robust. We layout the Planet Gap neural network
(PGNet) structures (VGG-like or ResNet classification, Section 3.4;
regression, Section 3.5) and finally obtain the output prediction.

At the output layer, we tried both classification and regression
problems. At first, we treated the fitting of the planet mass as a
classification problem, since the data set of Zhang et al. (2018) is too
sparse (only five discrete planet masses) to return continuous-valued
predictions. They were used to demonstrate that CNN's can success-
fully predict planet masses on discrete grids. Then, we ran additional
150 simulations to provide more sampling between these grids, and
built regression model that predicts continuous planet mass and disc
viscosity at the same time. The samples were drawn using the Latin
hypercube sampling (LHS; McKay, Beckman & Conover 1979).

CNN for PPDs 4475

3.1 Simulations

For the classification problem, we used the results of the planet—
disc interaction simulations in Zhang et al. (2018) on the gridded
parameter space (five planet masses, M, three aspect ratios, h/r,
and three disc viscosities, r). We denote a model with an {M,, h/r,
a} pair as a generic model, as this model can be used to generate
models with different surface densities and maximum particle sizes.
For the regression problem, we added additional 150 simulations
with near-randomly generated M, h/r, and a. We briefly summarize
the simulations here. The simulations were carried out with 2D
hydrodynamic code FARGO-ADSG (Baruteau & Masset 2008a, b;
Baruteau & Zhu 2016). Dust grains were represented by 200 000
superparticles with different sizes. The Stokes number (S?) of the
particles at r, ranged from 1.57 x 107> to 1.57. The simulations in
the gridded parameter space covered three disc viscosities o = 1074,
1073, and 1072, three disc aspect ratios at r, with h/r = 0.05, 0.07,
and 0.1, and five planet masses with the planet—star mass ratios (q)
of 3.3 x 107, 1074, 3.3 x 107*, 1073, and 3.3 x 10~ (which are
equivalent to the planet masses of 11 Mg, 33 Mg, 0.3 Mj, 1 M;, and
3 Mj if the central star is a solar-mass star). The parameters for the
LHS were drawn from « € [107*, 1072], h/r € [0.05, 0.1], and M,
€ [11 Mg, 3 Mj]. They were near-uniformly drawn in the interval of
hir, log (), and log (Mp).4 We initialized the gas surface density as

To(r) = Bgo(r/ro)™", (€]

where r is the position of the planet and we set rg = r, = 1. Our
numerical grid extended from 0.1ry to 107y in the radial direction
and O to 27 in the @ direction. The data sets used in this paper are
at 1000 planetary orbits. We assumed locally isothermal equation of
state. The temperature at radius r follows T(r) = Ty(r/ry) 2.

To convert superparticle distributions to optical depth maps, we
used a subset of particles and gave them different weights depending
on their opacity, sizes, and surface density at their locations. We
adopted DSHARP opacity (Birnstiel et al. 2018) and neglected
scattering. These particles were interpolated on to 1200 x 1200
regular grid with physical dimensions as 107, x 10r,. Then, we
smoothed the gridded data with a Gaussian kernel similar to the
resolution of ALMA. Gaussian o = 2 pixels, which is 0.03r,. If the
planet is at 20 au, this is the same as the resolution of a circular beam
with full width at half-maximum (FWHM) = 1.4 au. Finally, we
calculated the brightness temperature or intensity for each grid cell as

Ty(x, y) = Ta(r)(1 — e ™), @)

and we assumed that the mid-plane temperature follows

PREE
Tu(r) = Ty(ro) (%) . (3)

For more details, please see Zhang et al. (2018).

In principle, the real synthetic image should be calculated with
assumptions of detailed observational set-ups (e.g. antenna array
configuration and integration time) and CLEAN methods. However,
this is unrealistic since (a) they depend on specific observational set-
ups and data reduction methods, which cannot be covered thoroughly,
and (b) these time-consuming steps need to be applied on each
augmented image (Section 3.3), which cannot be realized within
our computational power. Instead, in Section 5.1 we will use one

“We used pyDOE (https:/github.com/tisimst/pyDOE) to generate parame-
ters. The generated parameters can be found at https://github.com/zhangsj96
/PGNets.git.
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Figure 1. A schematic view of our work from input to output. There are five steps. First, we prepared the input from simulations or observations. Secondly,
the image was prepossessed and normalized. Thirdly, the image was augmented for different inclinations, rotations, and translational shifts. Then, it flowed into
the neural network. Finally, we obtained class scores and chose the label with the highest score for the classification problem. A planet mass, viscosity pair was

returned for the regression problem.
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Figure 2. 1.3 mm dust continuum intensity maps for the My = 1 Mj, @ = 1073, and h/r = 0.07 case with different amay and g 0. In each row, amay is the same
with increasing surface density from left to right. The Stokes number at the planet’s location is the same at each column and decreasing from left to right.

case to demonstrate that neglecting these steps does not affect the
correctness of the prediction.

To generate synthetic radio continuum images of discs having
various dust size distributions and disc surface densities, we chose
five different maximum particle sizes dm,x = 0.1 mm, 0.3 mm,
1 mm, 3 mm, and 1 cm and seven different gas surface densities
o0 =0.1,0.3, 1, 3, 10, 30, and 100 gecm™2. These combinations
of amax and X, correspond to nine different characteristic Stokes
numbers (St & ama/Xgp). Fig. 2 shows dust continuum intensity at
1.3 mm for a case with My, = Mj, o = 1073, and h/r = 0.07, with
all combinations of ap, and X . Note that for ay,x = 3 mm (and
1 cm), the lowest (two) surface density case(s) exceeds the upper

MNRAS 510, 4473-4484 (2022)

limit of the particles’ Stokes number in our simulation. In total,
different ay,x and X, lead to 32 combinations (7 +7 + 7 + 6 + 5)
for each generic model. Since no dust growth and back-reaction are
included, the dust drift velocity only depends on the Stokes number.
This is why the gaps look similar for a given Stokes number. They
are still different in that (a) the opacity is dependent on the maximum
particle size and (b) the dust surface density is different. Thus, the
radial profile of the optical depth is different. When the disc changes
from the optically thin to thick regime (from top to bottom panels),
the intensity maps become smoother.

We explored different dust size distributions by choosing three
different power-law indices [p; n(a) o« a”] being 3.5, 3, and 2,
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but their intensity maps are very similar. This could lead to some
duplication between training and testing sets. For this reason, we
only used one power-law index p = 3.5.

An image with too many pixels takes a large amount of memory,
does not help the training, and even leads to overfitting. Thus, we
downgraded the image size and found that a 64 x 64 image is
good enough to preserve features and help the training. Note that
the real observation image will also be fed into the network using
this resolution. To convert an observation to the input format, a
simple linear interpolation suffices. For our models, we selected the
central squared 3r, x 3r, region. Outside of this region, there is
little emission from our simulations. The data are 2D (grey colour,
1 x 64 x 64) images of disc emission. There are 5 x 3 x 3 x 32
= 1440 models for the classification problem and (45 + 150) x
32 = 6240 models for the regression problem.

3.2 Pre-processing

We found that adding some noise to images helped the training, so
we added 10 per cent RMS noise to each image. The initial value of
the intensity in the image can be different by orders of magnitude. In
neural networks, it is essential to normalize the input data. We found
that taking the logarithm of the value works best for the training. We
scaled the image values from 0 to 1. We also set an emission floor as
1 per cent of the maximum emission intensity, so that values below
that became zero. In expression,

if 10g10 (1) > 1OgIO (Imax - 2)»
0 elsewhere.

logjo (1)—logio (/max)+2
2

pixel value = {

This choice of the floor value can also be justified for observational
data since the sensitivity limit for these high-resolution ALMA
observations is usually between 1 and 0.1 per cent. The gap region
has low values, and the ring region has high values. Considering that
previous studies used gap shapes to infer the planet mass, we reversed
the value as (1-value) so that the gap had high values. It turned out
that this procedure had little effect on the results. Since this procedure
is well defined, it is also simple to apply it to the real observation and
rapidly convert that to the network input. Note that our main focus
is on the gap shape (width and depth, and asymmetric features). The
normalization process we adopted removed the information of the
absolute value of the emission. Ideally, the absolute value of the
emission can provide extra information and can be considered in
future works.

3.3 Data augmentation

In real observations, discs are hardly to be exactly face-on (e.g. the
configuration in Fig. 2). As long as the gap is spatially resolved and
the disc is not too edge-on, we should still obtain information from
the image. Thus, we inclined the disc from the initial data from 0°
to 60°, spacing every 15°. This was simply done by stretching the y-
direction of the optical depth map, 7(x, y), while fixing the x-direction
size. The optical depth is increased accordingly. This can be justified
considering that mm dust is highly settled in protoplanetary discs
(Pinte et al. 2016). With this data augmentation, the observational
data for discs with any inclinations can be directly used as an input
for our networks.

To explore the rotational symmetry (Dieleman et al. 2015), we
rotated the disc every 15°, from 0° to 360° (0° and 360° are only
counted once). The degree of rotation is also called position angle.
Note that the rotation and inclination variations were done on the
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original 1200 x 1200 (107, x 10r,) data to avoid the sharp edges
due to missing values, but whether including this step did not affect
the results.

We also explored translational symmetry by randomly shifting
the image in x- and y-directions from O to 10 per cent. Even though
CNNs should conserve translational symmetry by themselves, the
fitting result was slightly improved. This is also helpful for the
prepossessing of observational data since the disc does not need
to be perfectly centred when they are fed into the networks.

Every one of the face-on images can generate thousands of
augmented data. However, we still separated the training, validation,
and testing sets with those original data. Otherwise, if we separate
all the data after the augmentation, the fitting accuracy will actually
increase since different augmented data generated from a single
model can look very similar. However, this increase of the accuracy
is unreal due to the similar data in training, validation, and tests.
Thus, we separated the data sets before the augmentation.

3.4 Classification models

We first tested out CNN models as a classification problem on the
gridded data set in Zhang et al. (2018). We set up the network
as a classification problem instead of a regression problem since
our original simulations only have five discrete planet masses. We
built two neural networks for comparison, one architecture similar to
VGG-16 (Simonyan & Zisserman 2014) and the other adapted from
ResNet (He et al. 2016b). We chose not to use the original VGG-16
architecture since it introduced more parameters but did not improve
the performance.

Fig. 3 shows the architecture of VGG-like network. As mentioned
in the previous section, the input data are grey colour images
(1 x 64 x 64), with values ranging from O to 1. Then, it follows
two convolutional layers with 16 channels (depth = 16). In this
specific neural network, the convolutional filter size is always 3 x 3
with 1 stride. The padding is on image edges so that the tensor
keeps the same number of points (64) in both x- and y-directions.
We also used ReLLU (i.e. max]O0, x]), as the activation function for all
layers. After a 2 x 2 max-pooling operation, the image dimension
becomes 32 x 32. Then, it follows two convolutional layers with
64 channels and another max-pooling. The last two convolutional
layers have 256 channels before a max-pooling. Then, it connects
to three fully connected layers, two with 512 nodes and one with
128 nodes. These fully connected layers all have 20 per cent dropout
rates to avoid overfitting. Finally, the output layer has five nodes that
stand for five different planet masses. There are 9504 565 trainable
parameters in total. We found that adding more layers did not increase
the accuracy.

The learning rate is a hyperparameter that controls the step size
in an optimization process while it is minimizing the loss function.
An analogy of it is the step size in solving differential equations.
We adopted the initial learning rate as 0.001. We chose the sparse
categorical cross-entropy as the loss function and ADAM as the
optimizer (Kingma & Ba 2015). We defined accuracy of the method
as

TP + TN
TP + TN + FP + FN’

where TP, TN, FP, and FN stand for true positive, true negative, false
positive, and false negative, respectively.

To balance the trade-off between rate of convergence and over-
shooting, we adopted an adaptive learning rate. The learning rate
varying as the training epoch is a cosine function so that the learning

(&)

accuracy =

MNRAS 510, 4473-4484 (2022)
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Figure 3. The architecture of VGG-like network. The image as an input is the logjo of the intensity, scaled between zero and one with only one channel. The
example image is pre-processed image of GW Lup (Andrews et al. 2018). Then, there are six convolutional layers and three fully connected layers.

rate becomes much smaller at later training stages. The batch size is
128. The training, validation, and testing sets were split as 60 per cent,
20 per cent, and 20 per cent of the 1440 models that were randomly
shuffled. We also included different inclinations and rotations for the
testing set, so there are total 1440 x 0.2 x 5 x 24 = 34560 testing
images. The training was done on a single NVIDIA GPU GeForce
RTX 2080 Ti 12GB. We used Tensorflow v2 (Abadietal.2015)
to build the network. The VGG-like network took less than 1 h, while
the ResNet model took 2 h.

For the residual network, our network was adopted from ResNet v2
(He et al. 2016a) with three skips. It has a bottleneck layer with stacks
of batch normalization, activation (ReLU) and convolutional layers.
The batch normalization can make ANN faster and more stable. The
first shortcut connection per layeris 1 x 1 convolution and the second
and onward shortcut connection is identity. At the beginning of each
stage, the feature map size is halved by a convolutional layer with
2 strides, while the number of filter maps is doubled. Within each
stage, the layers have the same number of filters and the same filter
map sizes. There are 22 convolutional layers in total, but with only
576 357 parameters, an order of magnitude smaller than the VGG-
like model. The initial learning rate is 0.005. Other set-ups are the
same as the VGG-like model.

3.5 Regression

After carrying out additional simulations with the randomly gen-
erated parameters from the LHS, we were able to fit the planet
mass in a continuous space. Thus, we fitted the combined data set
as a regression problem. We used mean square error (MSE) as the
loss function. We made the output layer as an M,—« pair, as MSE
can evaluate vectors (e.g. Alibert & Venturini 2019). In this way,
the planet mass and disc viscosity can be predicted together. We
made viscosity as an output since a direct measurement of gas
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turbulence is difficult (e.g. Flaherty et al. 2018). We adopted the
ResNet architecture as mentioned in the previous subsection.

Slightly different from Section 3.4, we split 195 generic models
into 175 and 20. The selection was random but can be reproduced in
our repository. We then separated the first 175 models, together with
their generated models with combinations of surface densities and
maximum particle sizes into 60 per cent, 20 per cent, and 20 per cent
splits as training, validation, and test data. Finally, we used the rest
20 generic models as a ‘genuine test’, as the input parameters of
these models are completely outside the parameter space of {M,,
hir, o} pairs in the training. This additional step can test whether
the overfitting happens in the {M,, h/r, @} space. This is a more
rigorous test than that in Section 3.4 since we separate the data even
before generating the face-on images with different a,,,x and surface
densities. We used callback function ReduceLROnPlateau to
reduce learning rate when the loss had stopped improving. We kept
other hyperparameters the same as what were mentioned in previous
subsections.

4 RESULTS

4.1 Classification

The accuracy of VGG-like model reached a plateau after 10 training
epochs but still slowly increased up to 40 epochs. The accuracy of
the ResNet model reached a plateau after 90 epochs. The ResNet has
slightly higher accuracy than the VGG-like model on the validation
set. This is also the case for the testing set. The VGG-like model can
reach an accuracy of 89 per cent, and the ResNet model can reach an
accuracy of 92 per cent. Note that the accuracy reported is the micro
accuracy [i.e. applying equation (5) for the whole sample, instead of
calculating accuracies for each class and averaging them, which is the
macro accuracy]. Even though each class (planet mass) has the same
amount of sample in the whole data set, in each subset (training,
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Figure 4. The confusion matrix for the ResNet model. The x-axis is the
prediction from the neural network. The ground truth is on the y-axis. The
upper number in a box shows the counts of planets with certain prediction and
ground truth. The lower percentage shows the fraction of the prediction over
the total number of the sample with certain ground truth (sum of a row). The
rightmost numbers are total counts of testing data with certain class labels
(sum of a given row) and the percentage among all testing data (sum of the
rightmost column).

validation, and testing sets), the data are slightly imbalanced due
to the shuffling process to separate them. Nevertheless, macro and
micro metrics are similar here.

Fig. 4 shows the confusion matrix of planet mass prediction, and
their ground truth for all testing data set applied to the ResNet
network. The y-axis shows the true planet masses, whereas the x-
axis shows the most likely planet masses predicted by the network.
If the data point falls on the matrix diagonal, the prediction is correct.
The accuracy is the sum of diagonal counts over the total counts. The
planet mass is underestimated if it is on the left and overestimated if
on the right. The upper number in each box shows the counts of a
certain prediction given a ground truth. The lower percentage shows
the fraction of it among all the images within that class. When the
planet mass is small, i.e. the gap is narrow, the prediction accuracy is
low. If the planet is 11 Mg, only 87 per cent of the samples account
for correct predictions within that class. The planet mass is always
overestimated given this set-up. However, we caution that the planet
mass can also be underestimated in reality, since this neural network
cannot find planet with mass lower than this limit. The prediction
accuracy increases with higher planet masses. If the planet mass is
3 Mj, 97 percent of the predictions within that class are correct.
Likewise, 3 Mj is the upper mass limit in this network, so any real
planet mass with higher value will be underestimated.

4.2 Regression

The loss of the regression model reached a floor after 70 training
epochs. Fig. 5 shows histograms for the deviation of the predicted
planet masses and disc viscosities from the true values in dex. 2D
histograms of the joint distribution between M), and « are plotted at
centre, whereas the 1D distributions of the planet mass and viscosity
differences are shown on the top and right. Panel (a) shows the result
of the test set among the 175/195 generic models that were used
in the training. The distributions of M, and « are all centred close
to zero, with uncertainties of 0.16 and 0.23 dex, respectively. They
are symmetric with almost zero means. Planet masses and the disc
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viscosities tend to be over(under)estimated at the same time and
follow a Ms, which has also been found in Zhang et al. (2018).
Panel (b) shows the result of 20/195 generic models that are not
used in the training. The overall distributions are similar to those in
panel (a). The exception is that the deviation of « is skewed towards
positive values (i.e. @ tends to be overpredicted). This is because
most of the viscosities among these randomly generated 20 generic
models have low « (close to 10~*), where it is more likely to be
overestimated (see Fig. 6). The similarity between panels (a) and
(b) demonstrates that the fitting is robust and can also be applied to
simulations not used in the training.

Fig. 6 shows distributions of the difference of the prediction and
ground truth in different mass and viscosity regimes. The data are
from the test set of 175/195 generic models. The distributions are
normalized to have the same height, and the inner box follows
the convention of the box plot. The standard deviation of each
distribution is listed on the right of each violin plot. The planet
masses are divided into five bins in comparison with the classification
problem (Fig. 4). Similar to the classification problem, the error of the
fitting becomes smaller as the planet mass increases. A small fraction
of samples have large errors except at the highest mass bin. At the
lower mass end, the planet mass is more likely to be overestimated.
At the higher mass end, the uncertainty of the estimate can be as low
as 0.1 dex (a factor of 1.3). The viscosity is divided into four bins.
When « is less than 3 x 1073, it tends to be overestimated. When it
is large and close to 1072, it is more likely to be underestimated. In
any viscosity regimes, a small fraction of the predictions would have
large deviations from their true values.

4.3 Grad-CAM

While deep neural networks are difficult to interpret, some visual-
ization tools help make sense of them. Gradient-weighted Class Ac-
tivation Mapping (Grad-CAM; Selvaraju et al. 2017) is a technique
for making CNN-based models more transparent by visualizing the
regions of input that are important for predictions from these models.
It uses the class-specific gradient information flowing into the final
convolutional layer of a CNN to provide a coarse localization map of
the important regions in the image. It is a generalization of the Class
Activation Mapping (Zhou et al. 2016), but requires no retraining.

Fig. 7 shows both images and the activation map derived from
the Grad-CAM of the ResNet regression network. The disc is
inclined and rotated. Here, the true planet mass is 2.28 Mj, and o
= 1.4 x 1073, The gap region has high values in the activation
map, which means that it is important in predicting the planet
mass. This lends confidence to the network’s reliability since the
traditional method also focuses on the gap’s properties. This is why
we named these neural networks as PGNets. One should be cautious
that not every activation map of testing data shows such a good
correspondence, and the activation map is a great tool if any result is
in doubt.

4.4 Application to observational data

After testing against the synthetic observations, we applied our
trained PGNets to real DSHARP observations (AS 209, Andrews
et al. 2018; Guzman et al. 2018; Elias 24, GW Lup, and Sz 114,
Andrews et al. 2018) to infer planet masses and compared them
with what was found in Zhang et al. (2018). The designation follows
Huang et al. (2018), where the integer of gap location in au follows
‘D’ (for dark gaps). There are several degeneracies if one wants to
infer the planet mass. In the previous fitting of Zhang et al. (2018), the
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Figure 5. 1D and 2D histograms for the differences between predicted and true values of M}, (horizontal) and « (vertical). The 2D joint distributions are colour
coded. (a) The test data set among 175/195 of the generic models. (b) The 20/195 data set that has not been used in the training process. Most of the predictions
have small deviations. The horizontal and vertical bars represent the standard deviation of each distribution. Dashed lines represent o o< Ms’.
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Figure 6. The violin plots of logarithmic-scaled deviation between predicted
and true values of M}, and « in different mass and viscosity regimes. The data
are from the test set of 175/195 generic models. The colour-shaded regions
show the distribution with normalized height, whereas the inner box follows
the convention of a box plot, which shows distribution’s 25 percentile, 50
percentile (white dot), and 75 percentile. The decimals marked on the right
are the standard deviation of each distribution.

gap width depends on not only the planet mass but also the viscosity
« and Stokes number S7 (0r @y and X,). Thus, in comparison with
Zhang et al. (2018), we picked the median value as a reference point.
The median value is the case with & = 1073 and @pa = 1 mm. It
is difficult to estimate the uncertainty in these models. For the linear
fitting method, two known uncertainties come from « and apmax. A
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difference of 10 in « leads to around 0.33 dex change of M}, whereas
a change of 10 in @y, leads to around 0.2 dex change of M. For
classification models, an error of reference can be 0.4 dex, since
two neighbouring planet masses are spaced at that value. For the
regression model, the uncertainty of M, and « can be estimated as
0.16 and 0.23 dex, respectively, as shown in Fig. 5, or read in specific
regimes as shown in Fig. 6. For AS 209 and Elias 24, fine-tuned planet
masses are available from detailed case-by-case modellings. While
the central stars of these discs have different masses, what matters
is the planet—star mass ratio M,/M.. Thus, we will report M,/M,, in
units of the M;/Mg, in the next paragraph. Notice that the radius of
the semiminor axis of the gap should be placed around one-sixth of
the image size. However, the disc does not need to be centred nor
scaled perfectly, since the images were randomly shifted during the
training process.

AS 209 is a disc with many gaps. With the linear fitting method,
the median value of AS 209 D99° is 0.45 M;/Mg (Zhang et al.
2018). The detailed modelling infers 0.1 M;/Mg. The VGG-like
model predicts 0.1 M;/Mg, whereas the ResNet classification model
predicts 0.3 Mj/Mg. The regression model predicts 0.52 M;/Mg and
a =2 x 107*. With 64 x 64 resolution, gaps inside 40 au have
been smoothed out. The secondary gap (a shallower gap inside the
major gap) has already been considered since there are also many
low-viscosity simulations with secondary gaps in our training data
set.

With the traditional fitting method, Elias 24 D57 is 0.51 M;/Mg.
It is 0.2 M;/Mg using the fine-tuned model. Both VGG-like and
ResNet classification models predict 0.1 M;/Mg. The regression
model predicts My/M, = 0.21 M;j/Mg, and o = 2 x 1074,

The inferred planet mass from the traditional fitting method
for GW Lup D74 is 0.065 M;/Mg. Both VGG-like and ResNet
classification models predict 0.03 M;/M. The regression model
predicts My/M,. = 0.05 Mj/Mp, and e = 1 x 1074,

Sz 114 is a disc with a very narrow gap. It is too narrow to use the
linear fitting method. The mass was obtained by directly comparing
with simulations (Zhang et al. 2018). That value for Sz 114 D39
is 0.12 M;/Mg. Both VGG-like and ResNet models predict 0.03

3Tt is actually B99 (‘B’ stands for bright rings). However, that bright ring is
just a shallow peak inside a wide gap.
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Figure 7. Grad-CAM for the ResNet regression problem. The image is among 20 generic models not in the training set. The true planet mass is 2.28 My and
o = 1.4 x 1073, (a) Log-scaled image without putting into CASA, (b) log-scaled synthetic image using CASA, (c) activation map of the synthetic image (b), and
(d) synthetic image overlaid by the activation map (filled contour). In this case, the activation map successfully focuses on the gap region. The beam size of

panel (b) is shown as an ellipse in the bottom left.

M;/M,. The regression model predicts My/M, = 0.11 M;/Mg, and
a=6x 107"

Overall, the VGG-like and ResNet classification models predict
similar planet masses. The regression model predicts higher planet
masses. It predicts lower viscosities for these discs.

There are many other gaps that can be compared between the linear
fitting method and PGNets. Instead of doing extensive coverage
of all available gaps, we made our code available online so that
users can apply these methods to any new or archival data. With a
superresolution technique, Jennings et al. (2021) even found many
more gaps inside 30 au for DSHARP observations. Those images
and radial profiles can also be inputs for our models using either the
PGNets or the linear fitting tools.

5 DISCUSSION

5.1 Synthetic observation

To test whether predictions from CNN models are affected by the way
we produce synthetic observations, we picked the case in Fig. 7(a),
put it into CASA (McMullin et al. 2007) version 6.1.0, and used the
simobserve task to generate observations with angular resolutions
and sensitivities comparable to those of the DSHARP observations.
We assumed that the planet is at 40 au, e = 1 cm, X,0 = 30
gem™2, and L, = 2 Lg. The synthetic observations consist of 12
min of on-source integration time with the Cycle 5 C43-5 antenna
configuration, 35 min on-source in the C43-8 configuration, and 35
min on-source in the C43-9 configuration. A precipitable water vapor
level of 1.0 mm was adopted. The synthetic visibility was imaged in
the same manner as the DSHARP sources using the tclean task,
as described in Andrews et al. (2018).

In Fig. 7, panel (a) shows the intensity map converted from the
simulation and panel (b) shows the intensity from the synthetic
ALMA observation. The scales of them were normalized as discussed
in Section 3.2. The angular resolution is ~5 au in FWHM and is
marked in the lower left corner of the panel. As shown in panels
(c) and (d), the activated regions correctly focus on the gap. The
predicted masses are 1.92 M; and 2.39 M;, with and without CASA
operations, all comparable to the true value, 2.28 M;. The predicted
« viscosities are 1.3 x 1072 and 1.2 x 103, with and without CASA
operations, also comparable to the true value, 1.4 x 1073, Thus,
we conclude that our models can be used to predict real ALMA
observations even though they were trained on the data without doing
simobserve tasks.

5.2 Advantages

Compared to the traditional method, CNNs have many advantages. It
is quick and convenient. The 2D images do not need to be converted
to 1D profiles. Deriving 1D profiles seems to be a simple task but
it takes time since one needs to run Markov chain Monte Carlo
to find a disc’s centroid, inclination, and position angle. Once the
CNN model is trained, one can obtain a prediction within a second
directly from the image plane. For this reason, it can be applied to
a large disc sample. The training is one time and only takes 1h.
Using a traditional method, one needs to search for the best-fitting
parameters. For instance, one parameter combining viscosity, A/r,
and planet mass is enough to fit the gaseous gap depth and width
(Kanagawa et al. 2015, 2016). However, if the dust is included, we
also need to find several fitting formulae for different ay,,x and gas
surface density (Zhang et al. 2018). This is not the case for CNNs.
With more data or new physics included, the network can be retrained
quickly by providing more training data.

Asymmetric information is lost when a 2D image is converted to a
1D radial profile. CNNs can preserve this information. For instance,
a low-mass planet in an inviscid disc can have the same gap width as
a high-mass planet in a viscous disc. The traditional method cannot
break this degeneracy. However, the viscosity of the disc can be
inferred from a 2D image. If the disc looks more asymmetric, it
should be more inviscid. The planet mass can be better constrained
accordingly.

In a regression problem, the model can provide planet mass and
disc viscosity at the same time. With the linear fitting method, one
can only get a planet mass by assuming a disc viscosity, since both a
higher planet mass and a more inviscid disc help open a wider gap.
The CNN regression model partially breaks the degeneracy between
them.

The CNN methods can handle very shallow or narrow gaps, which
is of great difficulty for the traditional fitting method. In Zhang et al.
(2018), to make sure most of the data points fall on to the fitting line,
narrow gaps with A below 0.15 were treated as outliers. One thus
needs to compare with individual simulations to estimate a planet
mass (e.g. inferring the potential planet in Sz 114’s narrow gap),
which is extremely time consuming.

5.3 Limitations

The first limitation of the CNN models is that training with the same
data set but different architectures would lead to different predictions,
even though their accuracy is similar statistically. Even given the
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same architecture, different random seeds or data augmentation
would also result in different predictions. On the contrary, the
traditional linear fitting method provides a definite planet mass as
long as a gap width and other disc parameters are provided. Many
details of fitting are empirical, but they are transparent to the user.

Compared to the linear fitting method, it is difficult to understand
how CNN methods derive the results, even though the Grad-CAM
can qualitatively inform us the important features the network uses.
In the traditional fitting method, the gap width is proportional to
some powers of planet mass, disc viscosity, and A/r at a given St.
We can use some other ways to constrain some parameters and
then narrow down the planet mass. In classification or single-output
regression CNN models, we can only get a single prediction for
these parameters when we apply them to observations. Deep neural
networks are intrinsically highly non-linear. For an input image,
these models are more of methods that help pick up an image in a
training set with the most similar feature than methods of finding
intrinsic relationships. The user can use their own knowledge to
interpret why the planet mass returned by a CNN model is as
such (e.g. if the planet mass is low, the user can make sense of it
by noticing that the gap is narrow), but the network itself cannot
inform this to the user. Instead of using a linear fitting with many
assumptions, it helps the user to find the most closed-match model
for an input. In some sense, the classification and single-output
regression models can be seen as another way to present all the
simulations in Zhang et al. (2018) by providing an automated tool to
find a closed match. Surprisingly, multi-output regression models can
possibly solve this problem. For instance, the multi-output regression
PGNets can help us find the exact relation of the degeneracy
between planet mass and disc viscosity among simulations (Fig. 5).
There are hopes that we can learn valuable insights from CNN
models.

Finally, compared to a detailed modelling, the prediction can only
be as good as the physics included in the simulations. While our
simulations span a large parameter space, they cannot cover every
possible situation. For instance, we cannot predict planet masses
below 11 Mg or above 3 M;. A planet with a lower mass than 11
Mg can only be predicted as massive as that. Only one planet is put
into the simulation, and its orbit is fixed. Thus, the model cannot
be used to study multiple planets carving a common gap. However,
if planets lead to several gaps and they do not influence each other,
we can treat them as individual single gaps by masking others. Note
that if we assume that one planet can carve two gaps (Bae & Zhu
2018a, b; Dong et al. 2018) and the secondary gap is at 0.5-0.7 ry,
we can input all the gaps into CNN models since our CNN models
have been trained with data that have these secondary gaps generated
by a single planet. The model does not consider migration, which
can lead to a different gap shape (Nazari et al. 2019; Kanagawa et al.
2020). The gap substructure can also change with time. The discs
are at 1000 orbits, which is 1 Myr for a planet at 100 au or 0.1 Myr
for a planet at 20 au. We used 2D simulations, but the situation in
3D might be different. We neglected the self-gravity of the disc and
the thermodynamic processes. These effects will also change the
shape of the gap (Miranda & Rafikov 2020a, b; Rowther et al. 2020;
Zhang & Zhu 2020; Ziampras, Kley & Dullemond 2020). The dust
in our simulations was treated as passive test particles. In reality,
the dust’s back-reaction on to the gas is important (Kanagawa et al.
2018; Hsieh & Lin 2020; Huang et al. 2020; Yang & Zhu 2020).
When producing the synthetic image, we neglected scattering, but it
can affect the images when the disc is optically thick (Liu 2019; Zhu
et al. 2019). The dust was also assumed to be settled. Not to mention
that it is very likely that some substructures can have non-planet
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origins (e.g. snowline and MHD effects). On the other hand, with
more physical processes understood and included in simulations,
CNNs can be used to make predictions.

5.4 Future perspectives

This line of work can also be applied to infer the Stokes number St
of particles in the discs. The Stokes number is highly correlated to
the gap width and depth. Measuring St can help us understand the
particle size and dust settling.

The gas component is more massive and has a larger radial and
vertical extent than the dust in protoplanetary discs. The (sub)mm
molecular line observations also contain velocity information at
different disc positions, leading to a 3D datacube. One can infer
planet mass from kinematic features in channel maps, such as the
kink and the deviation from Keplerian velocity (Pinte et al. 2018;
Teague et al. 2018). In star formation, CNN models have already
been used on the whole 3D datacube (Xu et al. 2020a, b). This can
possibly be applicable in protoplanetary discs as well.

6 CONCLUSIONS

Substructures are found to be ubiquitous in protoplanetary discs.
If some of them are induced by planets, the increasing number
of high-resolution protoplanetary disc observations is revealing the
population of young forming planets.

The properties of these substructures (e.g. the width and depth
of the gap) are related to the planet mass. Previous works used
either fined-tuned models or linear fitting on a large parameter space
to infer the planet mass. Instead, we used CNNs to predict the
planet mass directly from radio dust continuum images. To train
the CNNs, we use data from synthetic observations in Zhang et al.
(2018) and some new simulations. We built both classification and
regression models. The classification models can predict five planet
masses ranging from 11 Mg to 3 M;. The VGG-like model can
reach 89 percent accuracy, whereas the ResNet model can reach
92 percent accuracy. The accuracies for less massive planets are
lower. They are higher for more massive planets. The regression
model can predict planet mass and disc viscosity at the same time.
Similar to the classification model, it predicts more massive planets
with higher accuracy. The standard deviation of the prediction is
around 0.16 dex. The prediction of « has uncertainty around 0.23
dex, and can be used to constrain the disc turbulence.

CNN models cannot fully break the degeneracy between the
planet mass and disc viscosity. It tends to over(under)predict them
at the same time. However, it is surprising that this degeneracy
relationship can be easily found in CNNs without the need of
theoretical knowledge (Kanagawa et al. 2016) and detailed fitting
and tuning (Zhang et al. 2018). This shows the potential of CNNs as
diagnostic tools.

Using Grad-CAM, we showed that the networks indeed catch the
important feature, i.e. gaps, in predicting the planet mass. We also
applied the networks to several DSHARP gaps and found that the
predictions are reasonable compared with the traditional method in
Zhang et al. (2018). The code, along with that of the traditional
method, is also provided.

The CNN methods are fast compared to fined-tuned models. It
is more convenient than the linear fitting method since one can
get a prediction instantaneously as long as an image is provided.
The network can also be easily updated with more data or physical
processes. It preserves the 2D information that should help break the
degeneracy between planet mass and disc properties. The regression
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model can predict several quantities at the same time. Unlike the
traditional method, predicting shallow and narrow gaps takes the
same amount of effort using CNNs, even though the prediction still
has higher uncertainty in this regime.

There are also several shortcomings for CNN models. Different ar-
chitectures or training procedures might lead to different predictions.
The CNNs are not transparent, and it is difficult to know how exactly
the networks work. Lastly, in contrast to the detailed modelling, the
robustness of our CNNs ultimately is limited by our training data
(simulations), i.e. the physical processes included.

The methods are more suitable for a large disc sample to obtain
statistical trends of a young planet population. For individual disc,
we can use this method to narrow down the parameter space for
detailed simulations. Overall, the traditional linear fitting method
(e.g. Zhang et al. 2018) still provides users more control on the
input disc parameters, while the wide choice of tools in CNNs (e.g.
classification and regression) and diagnostic tools (Grad-CAM) start
to make CNNs more robust.
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