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ABSTRACT

Spirals in protoplanetary discs have been used to locate the potential planet in discs. Since only the spiral shape from a circularly
orbiting perturber is known, most previous works assume that the planet is in a circular orbit. We develop a simple semi-analytical
method to calculate the shape of the spirals launched by an eccentric planet. We assume that the planet emits wavelets during
its orbit, and the wave fronts of these propagating wavelets form the spirals. The resulting spiral shape from this simple method
agrees with numerical simulations exceptionally well. The spirals excited by an eccentric planet can detach from the planet,
bifurcate, or even cross each other, which are all reproduced by this simple method. The spiral’s bifurcation point corresponds
to the wavelet that is emitted when the planet’s radial speed reaches the disc’s sound speed. Multiple spirals can be excited by an
eccentric planet (more than five spirals when e = 0.2). The pitch angle and pattern speed are different between different spirals
and can vary significantly across one spiral. The spiral wakes launched by high-mass eccentric planets steepen to spiral shocks
and the crossing of spiral shocks leads to distorted or broken spirals. With the same mass, a more eccentric planet launches
weaker spirals and induces a shallower gap over a long period of time. The observed unusually large/small pitch angles of some
spirals, the irregular multiple spirals, and the different pattern speeds between different spirals may suggest the existence of

eccentric perturbers in protoplanetary discs.
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1 INTRODUCTION

Spirals are ubiquitous in astrophysical disc systems. On large scales,
spiral galaxies show spiral structures extending from the centre to the
edge of galactic discs (Binney & Merrifield 1998). The spiral arms are
sites of star formation, and some spirals can be observed from X-ray
all the way to radio wavelengths. On small scales, spirals are found in
Saturn’s rings (Cuzzi, Lissauer & Shu 1981). Spirals with various m
symmetry are found in Cassini images. Spirals have been discovered
in protoplanetary discs thanks to advancements in adaptive optics
and radio interferometry. Some discs show grand-design two spirals
in near-IR polarized images ((Muto et al. 2012; Benisty et al. 2015;
Wagner et al. 2015; Stolker et al. 2017) and submm dust continuum
images (Pérez et al. 2016; Huang et al. 2018), while some discs
show multiple spiral arms (Avenhaus et al. 2014; Follette et al. 2017;
Monnier et al. 2019; Boccaletti et al. 2020).

The universal spiral structure in discs is explained by the density
wave theory (Binney & Tremaine 2008; Shu 2016). Sound waves
(density waves) that propagate in the disc adopt spiral forms (details
in Section 2). These density waves can be excited by perturbers
(Goldreich & Tremaine 1979), turbulence (Heinemann & Papaloizou
2009), disc self-gravity (Baehr & Zhu 2021; Béthune, Latter &
Kley 2021), vortices (Paardekooper, Lesur & Papaloizou 2010), or
the central object’s gravitational potential (e.g. bared galaxies and
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Saturn’s ring seismology; Mankovich et al. 2019). Independent from
the excitation mechanism, the waves will propagate freely after the
excitation.

When the amplitude of a free propagating wave is small, the shape
of the spiral is mainly determined by the disc properties (e.g. disc
temperature) and the wave’s dispersion relationship. The single-
arm spiral excited by a low-mass perturber in a circular orbit is
studied by Ogilvie & Lubow (2002). This spiral is the result of
constructive interference between various m modes. These modes
have small dispersions among them, which leads to the formation of
multiple spirals when the waves propagate far away from the planet
(Bae & Zhu 2018a; Miranda & Rafikov 2019). When the spiral’s
amplitude is large (e.g. excited by a massive planet), the non-linear
wave steepening effect becomes important (Goodman & Rafikov
2001), and a spiral wake becomes a spiral shock. The stronger the
shock is, the larger the spiral’s opening angle is. The multiple spirals
excited by a high-mass planet are well separated, forming the m =
2 grand-design structure in the disc (Fung & Dong 2015; Zhu et al.
2015; Bae & Zhu 2018b).

While the theoretical works with a circularly orbiting perturber
have some success in explaining spirals in protoplanetary disc
observations (Dong et al. 2015a, 2016; Dong & Fung 2017; Baruteau
et al. 2019; Rosotti et al. 2020), there are notable discrepancies
between theory and observations. First, the planets predicted in some
spiral systems have not been discovered/confirmed (e.g. Boccaletti
et al. 2021). Secondly, the pitch angles of observed spirals vary
greatly from less than 5° (Teague et al. 2019) to 30° (Monnier et al.
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Figure 1. Density disturbance in a non-rotating system (the left image) and a Keplerian rotating system (the right image) after the fluid has been disturbed four
times at X = 1, Y = 0. The simulations are carried out using ATHENA+-+ under a R — 6 2D polar coordinate system. Both density and sound speed are constant

throughout the whole region.

2019), which are both difficult to be explained unless the planet is
very far or very close to the spirals. Thirdly, many systems show
multiple spiral arms (Avenhaus et al. 2014; Monnier et al. 2019;
Boccaletti et al. 2020), while the planet-induced spirals normally
show 1 or 2 spirals. Fourthly, the two spiral arms in SAO 206462
may have different pattern speeds (Xie et al. 2021), which cannot be
explained by a circularly moving perturber with a constant pattern
speed. Although these discrepancies can be due to the projection
effect for inclined systems (Follette et al. 2017) or a different spiral
excitation mechanism (Dong et al. 2015b; Bae, Teague & Zhu 2021),
they may also be due to that the planet is in an eccentric orbit. Calcino
et al. (2020) use an eccentric perturber to reproduce several features
of the spirals in MWC 758. The eccentric perturber has also been
proposed to explain observed gap structures (Li et al. 2019; Muley,
Fung & van der Marel 2019; Chen et al. 2021). Theoretical works
also suggest that planets can gain eccentricity by interacting with
protoplanetary discs (Goldreich & Sari 2003; Teyssandier & Ogilvie
2017; Ragusa et al. 2018). For a luminous pebble accreting planet,
the planet’s eccentricity can be larger than the disc’s aspect ratio
(Velasco-Romero, Masset & Teyssier 2022). Recent simulations by
Baruteau et al. (2021) suggest that the orbit of a giant planet can
reach e = 0.25 when the planet migrates into a cavity.

In this paper, by drawing an analogy to Huygens’ principle, we
develop a time-dependent method to calculate the shape of the spirals
launched by an eccentric planet in a disc. The method is introduced
in Section 2, and it is compared against numerical simulations in
Section 3. After studying the spirals’ pitch angles and pattern speeds
in Section 4, we conclude the paper in Section 5.

2 THE ANALYTICAL METHOD

2.1 Background

Perturbation in a medium can lead to visible disturbances or patterns
which propagate in the medium. We use wakes to refer to these visible
disturbances or patterns, while we use waves to refer to individual

propagating modes that satisty the wave dispersion relationship. The
wakes form from the interference of all individual wave modes. If
all individual wave modes lead to positive enhancements at the same
position, the final disturbance will be positive. If there are a mixture
of positive and negative contributions from different wave modes at
the same position, these waves may cancel out each other and lead
to little final disturbance.

The left-hand panel of Fig. 1 shows the wake pattern after we
perturb a static uniform medium at the same position for four times.
Specifically, we increase the density at x =1, y = 0 instantaneously
and then reset it back to the initial density. After each perturbation,
a ring of disturbance is launched which is propagating spherically
outwards at the sound speed. The disturbance gets weaker while it
propagates further. The right-hand panel of Fig. 1 shows the wave
pattern after we perturb a Keplerian disc at the same position in the
inertial frame (x =1, y =0) for four times. After each perturbation,
the disturbance is quickly advected azimuthally away from the
perturbation point (x=1, y = 0) following the local Keplerian
flow. At the same time, the disturbance launches a spiral which
corotates with the disturbance with the pattern speed Qp, = Qi (R =
1). The spiral propagates further inwards and outwards with time.
Clearly, a disturbance propagates differently in a rotating disc than
in a static medium. A disturbance in a shearing disc is always in
a spiral form, which leads to the ubiquitous spirals found in disc
observations of spiral galaxies, protoplanetary discs, and Saturn’s
rings.

If the source of the perturbation is moving (e.g. a traveling boat
in the water or an orbiting planet in a protoplanetary disc), the wake
will have a different pattern since different sets of waves can interfere
coherently. In a static medium, a Mach cone forms after an object
that moves at the supersonic speed of v. The opening angle of the
Mach cone is arcsin(cs/v) since only waves with the wavevector k -
v = ¢y maintain the same phase with respect to the moving object so
that a coherent interference can occur. For a ship moving in water,
the dispersion of the water waves leads to the Kevin wake pattern.
For a planet orbiting around the star at the local Keplerian speed,
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all the excited spiral waves interfere with each other coherently far
away from the planet to form a single-arm spiral, since spiral waves
with different m modes have the same pitch angle far away from
the perturber (Ogilvie & Lubow 2002). Specifically, considering that
the Wentzel-Kramers—Brillouin (WKB) dispersion relationship for
spiral waves (Binney & Tremaine 2008) in a non-self-gravitating
disc is

m*(Qpu — Q) = k> + Ik, (1

where £k is the wavenumber and « is the epicycle frequency which
equals 2 in a Keplerian disc, the pitch angles (¢) of all the modes
(¢ = arccot|kR/m|) are approaching arccot|(2py — 2)R/cs| when
they are far away from the planet so that k> can be ignored. With
the same pitch angle, the different m-mode waves can interfere with
each other coherently, forming a single-arm spiral. If we integrate
the pitch angle starting from the planet’s position, we can derive that
the spiral arm follows

0 = 0y +sgn(R — Rpl)%;g;])
R\ 1 1 R\
X[_(RTI) <1+,3_1—a+/3(Rpl) >
+( S )] @)
1+8 1—a+p8

in a disc with Q(R) o« R~ and the sound speed of cy(R) o R™#
(Rafikov 2002; Muto et al. 2012). From equation (1), we can see that
forming a single spiral arm is a property of the wave propagation and
independent from the origin of the perturbations (whether due to the
presence of a planet or some other density fluctuations).

To study wakes excited by a circularly orbiting planet, the rotating
frame is normally adopted so that a steady state can be achieved. This
significantly simplifies the analysis and a time-independent solution
can be found (Ogilvie & Lubow 2002; Miranda & Rafikov 2019).
However, it is difficult to extend this approach to time-dependent
phenomena, e.g. perturbation by a planet in an eccentric orbit.

2.2 The time-dependent method

By drawing an analogy to Huygens’ principle, we adopt a time-
dependent approach to study spirals launched by an eccentric
perturber in a disc. Huygens’ principle states that every point of
a wave front can be regarded as new sources of wavelets. After these
wavelets propagate for a while in the spherical fashion, the surface
that is tangent to the spherical wavelets, called the envelope of the
wavelets, is the new wave front. In other words, current disturbance
at any point is influenced by all the points in the past that can
propagate to this current point. Such a principle also applies to fluid
dynamics. Furthermore, thanks to the fluid equations’ linearity for
small perturbations, we can study how the small disturbance at every
position in the past contributes to the current disturbance, and linearly
add together the disturbances from all these positions in the past to
derive the current wake.

This allows us to separate all disturbances at one time (including
both the existing spiral and the perturbation around the planet) into
small wavelets, then follow the wavelets’ propagation, and finally add
all the wavelets at a later time to study how the wake changes with
time. We can apply this approach to study the shape of spirals excited
by an eccentric perturber in a disc, but with several simplifications
to make the problem trackable. First, we assume that every piece
of the spiral (wavelet) propagates in the radial direction at the local
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sound speed. A wavelet in a non-self-gravitating disc propagates at
the group velocity of

vg(R) = sgn(k) 3)

ke

m(Qpa — Q)
Plugging in equation (1), we can see vy(R) ~ sgn(k)c, when «
is dropped, e.g. far away from the position of wave excitation.
Thus, trailing wavelets (k > 0) propagate outwards while leading
wavelets (k < 0) propagate inwards. Secondly, we assume that
every wavelet follows the pitch angle of arccot|(Qp — S2)R/c|
while it propagates either inwards or outwards and rotates at the
pattern speed 2, Note that Qp, is the azimuthal pattern speed of
this particular wavelet and different parts of the spiral can have
different 2, Thirdly, we assume that every wavelet maintains
its Qpy during its propagation. The second and third assumptions
are based on the non-dispersive properties of different m-modes far
away from the perturber (equation 1). All m-modes maintain their
interference with a constant €2, so that they follow the spiral shape
during propagation. These assumptions are also justified in Fig. 1,
where any perturbation propagates inwards/outwards and follows
the spiral shape of equation (2). If we look back in time, every
current disturbance can eventually be traced back to the perturbation
at the planet’s location when the wavelet was just launched. The
disturbance’s Qp, equals the planet’s angular frequency back then.

Thus, we can think that the planet is emitting wavelets all the
time during its orbital motion, and a wavelet propagates at the sound
speed in the radial direction while following a spiral shape in the
azimuthal direction. As long as we know the planet’s position with
time, we can determine the wavelets’ positions at any time and we
can determine the spiral shape by simply connecting all the wavelets.
Imagine that two wavelets are launched by a planet at time 7; (one
traveling inwards and one traveling outwards), the wavelets thus have
a pattern speed of €2,y = 2,1(11), where (1)) is the planet’s angular
frequency at time 7. At time #,, these wavelets propagate to the radial
location at

1

Ry (1) = Rp(ty) — / edr )

il

for the inner spiral and

n

Ry, (12) = Ryy(n) + / cydr )
1

for the outer spiral, where Ry (1) is the planet’s radial location at

time #;. Assuming c,(R) o< R~#, we can derive

R, (1) — Ryt = £ (B + D es(Ru(t)Ry(1) (12 — 1) .
(©)

To calculate the azimuthal locations of these wavelets at f,, we can
integrate

cots = RAO/AR = |(Qpu — QR/cs| ©)

starting from the planet’s radial position at 7, to R, (t,) (equations 4
and 5), where Q,,; = Qp(#;) being a constant. After deriving 6,
we need to add an additional Q. (72 — 1) to 6 to account for the
pattern’s rotation in the inertial frame. On the other hand, equation (2)
is derived from integrating R d6/dR. Thus, we can use equation (2)
to calculate 6 of the wavelet at #, analytically. First, at #;, we need
to find the corotation radius where Q(R.) = Q(#1) (Fig. 2). Then,
the wavelet can be considered as traveling along the spiral of the
imaginary planet at (R, 6.). 6. can be derived using equation (2) by
replacing 6 with 0p,(¢1), 01 with 6., R with R, (t1), and Ry with R...
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Figure 2. The spirals at r = t, are the sum of all the wavelets that the planet
emitted in the past during the planet’s orbital motion. The wavelet of the
spiral at #; (the red wiggled curve) is excited by the planet at 7. The wavelet
propagates following the spiral shape while rotates with the planet’s orbital
frequency at 71 [labelled as p(¢1), which is the wavelet’s pattern speed]. The
spiral shape can be derived analytically using the planet’s corotating radius
R..

Eventually, we can derive

RQ(R.)
0. = epl(tl) - Sgn(Rpl(tl) - Rc)m
(R Rp()\ ™
R. 1+8 l—a+B\ R
+( ! )] ®)
148 l—a+8) ]|

where 0 () is the planet’s azimuthal position at #,. Then, with R,
and 0. derived, we can find 6 of the wavelet at #, by replacing R
in equation (2) with equations (4) and (5), R, with R, and 0, with
Qui(t1)(t, — t1) + 6. which is the imaginary planet’s position at #,.
We thus have

RQAR.)
0 = Qut)(t2 — 1) + 6c + sgn(R;, (1) — RC)W
Ry \ ™ [ 1 1 R (t)\
X{_( R. ) 1+ﬂ_1—a+ﬁ( R, )
+< Lo 1 )} ©)
1+8 l1—a+8)]

Through these steps, we find the position of the wavelet at 7, that is
emitted by the planet at 7;. After dividing the planet’s orbital motion
into many wavelet emitting events separated with a time interval of
AT, we can calculate the positions of all wavelets at 7, analytically.
By connecting all the wavelets at 7, that are emitted by the planet
from t = 0 to ¢ = 1, with the interval of AT, we can derive the shape
of the spiral at 7,. Although this method is not fully analytical at the
final step, we will still call it the analytic method to be compared
with numerical simulations later.

3 NUMERICAL SIMULATIONS AND
COMPARISON

To verify the analytical method, we use FARGO code (Masset 2000) to
carry out 2D hydrodynamical simulations to study wakes excited by
planets. We have carried out four simulations with different planet
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Figure 3. The spirals excited by a circularly orbiting planet at t = Toyp. The
spirals are shown in the Cartesian coordinate system (top panels) and the
polar coordinate system (bottom panels). The right panels overplot the shape
of spirals from the analytical theory (cyan curves: the inner spirals, green
curves: the outer spirals).

Bifurcating Spirals

Detached
Spirals

Crossing Spirals

Figure 4. The spirals excited by an eccentric planet with e = 0.25 at 2To,.
We can see spirals that are detached from the planet and detached from each
other, spirals that bifurcate, and spirals that cross each other. The movies can
be downloaded at https://www.physics.unlv.edu/~zhzhu/Movies10.html.

eccentricities (e = 0, 0.1, 0.25, 0.5). The planet mass is very low
with Mp/M, = 3 x 107 (equivalent to M, = My if M, = M)
so that the excited wakes are in the linear regime. In Section 5.2,
we have increased the planet mass to one Jupiter mass to study
the spirals excited by high-mass planets. The planet is on fixed orbits
with a gravitational smoothing length of 0.3 disc scale height. Indirect
forces have not been included in the low planet mass cases while they
have been included in the high planet mass cases. The radial domain
extends from 0.1 to 5 R, with 638 radial grids that are uniformly
spaced in log R and 1024 azimuthal grids that are uniformly spaced
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Figure 5. Top two rows: the spirals excited by an eccentric planet with e = 0.1 at different times from 7o, to 276y, (from the left-hand to right-hand panels).
The corotating frame with the planet is adopted, so that the planet is at the same azimuthal angle in all the plots. The spirals are shown in the Cartesian coordinate
system (the first row) and the polar coordinate system (the second row). Bottom two rows: similar to the top rows but with the spirals from the analytical theory

overplotted.

in 6. The disc’s aspect ratio (¢s/vk) is 0.1 at R = R,. The disc has
a uniform surface density and a constant temperature to simplify
the analysis. Thus, « = 1.5 and B = 0. We have only run the
simulations for four planetary orbits to study how the spirals are
launched. The sound crossing time is R/c, that is around 1.6 orbits.
The wakes reach steady states after two orbits. To compare with these
numerical simulations, our analytical study adopts a time interval of
AT = 1/2007,,, between every wavelet emitting event by the planet.

The wakes at one planetary orbit (7,) with the circular perturber
are shown in Fig. 3 (top rows: in the Cartesian coordinate system;
bottom rows: in the polar coordinate system). Both the inner and outer
wakes have not yet reached to the inner and outer boundaries. The
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spirals from the analytical theory are traced by cyan and green dots
in the right-hand panels. The dots represent wavelets that are emitted
at a time interval of 1/2007,,,. The earlier the wavelet is admitted,
the smaller the dot is. The dots are so packed together (especially
close to the planet) that they form a continuous curve. The cyan dots
trace the inner spiral which uses R, from equation (4), while the
green dots trace the outer spiral with equation (5). As expected for
the circular perturber, the analytical spirals follow equation (2) and
trace the spirals in simulations very well. Furthermore, the analytical
spirals roughly show the radial extend of the spirals at t = T,. At the
tips of the spiral arms, we can see that the simulated spirals extend
a little bit further away than the analytical model. This is because
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Figure 6. Similar to Fig. 5 but with an eccentric planet having e = 0.25. The ‘V points’ where the spirals bifurcate are labelled with the arrows.

the waves have intrinsic dispersion, and the wavelet is not localized
as a single point as we assumed. We will discuss this caveat in
Section 5.

The spirals excited by an eccentric perturber are quite different
from the spirals by a circular perturber. With the perturber’s e = 0.25
(Fig. 4), the excited spirals can detach from the planet. Both the inner
and outer spirals can exist inside the planet’s position and they are
separated from each other. We define the inner/outer spirals as the
wakes that propagate inwards/outwards from the planet after they
are launched. It is difficult to distinguish them just from the images
without the help of the analytical theory (the inner and outer spirals
are labelled with different colours in Figs 5-7). The spirals can
bifurcate and even cross each other at some positions. Furthermore,
the spiral’s shape is changing with time, as shown in Figs 5-7. We
adopt the corotating frame where the planet is always at y = 0,

which highlights the spirals’ movements with respect to the planet.
In Fig. 5, we can see that the spirals can be detached and attached
to the planet during one orbit. Or we could think of it as that one
spiral is excited and propagates away before a new spiral is excited.
Although the wake is changing over time, it returns to the same shape
after one full orbit except that the spiral extends further radially. This
periodicity of spiral shape is expected since the planet’s motion has
the periodicity of one planetary orbit. For the spirals excited by
an eccentric perturber, one noticeable feature is that these spirals
bifurcate at some positions, which is drastically different from the
spirals excited by a circular perturber. The bifurcation points, which
we refer as “V points’, are labelled in the upper left panel of Fig. 6.
When the perturber’s eccentricity increases, the spirals can change
their shapes more dramatically during one orbit. In Figs 6 and 7, part
of the outer spiral is inside the planet’s orbit at t = T, At One given
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Figure 7. Similar to Fig. 5 but with an eccentric planet having e = 0.5.

radius (e.g. R = 0.6a, where ap, is the planet’s semimajor axis),
there are three spirals in Fig. 6 and even five spirals in Fig. 7 at t =
2T All these spirals have different pitch angles and radial extent.
Around the planet, the spirals cross each other. Overall, the spirals
appear to be highly complex.

The simple analytical model reproduces the spiral shapes remark-
ably well (the bottom panels of Figs 5-7). Most importantly, it
predicts the ‘V points’ and the cross points of the spirals. The only
noticeable mismatch is that the analytical model underpredicts the
extend of some spirals. The spirals in simulations travel a little bit
further than the ‘V points’. This is similar to the discrepancy at
the tip of the spirals shown in Fig. 3. We will discuss this more in
Section 5.

Successfully reproducing the ‘V points’ allows us to use the
analytical model to understand the origin of the spiral bifurcation.

MNRAS 510, 3986-3999 (2022)

The black solid curves in the bottom panels of Fig. 8 show the
planet’s radial position with time. Since the planet in this case has
an eccentricity of 0.25, it oscillates between 1.25 a, and 0.75 ay.
During the planet’s orbital motion, wavelets are emitted and travelled
inwards and outwards with time. The wavelets’ radial positions with
time are shown by the blue and green lines in the left (for the inward
moving wavelets) and right bottom panels (for the outward moving
wavelets). These lines are plotted darker when the wavelets are
emitted later during the orbit. The lines are straight since the sound
speed is a constant in this disc. The slopes of the lines are d#/dR =
1/es(R). The top panels show the spirals and the wavelets (dots) at
1 planetary orbit. These wavelets’ radial positions correspond to the
positions of the blue and green lines at = T, in the bottom panels.
Normally, the wavelet that is emitted earlier by the planet travels
further away from the planet. But since the eccentric planet’s radial
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Figure 8. The top panels: the spirals excited by an eccentric planet (e = 0.25) at r = Ty, plotted in the polar coordinate system. The bottom panels: the planet’s
radial position with time (black curves). Each wavelet propagates inwards (the left-hand panel) or outwards (the right-hand panel) following the tilted straight
lines after they are excited. The wavelets’ positions at # = Ty, in the bottom panels correspond to their radial positions in the upper panels. The first wavelets
that are excited at t = 0 are labelled with the crosses in the upper panels, and correspond to the wavelets at ‘a’ and ‘d’ in the bottom panels. The spirals’ ‘V
points’ (where the spirals bifurcate) correspond to the points where the spirals make a turn, and they occur when the planet’s radial speed equals the sound speed

(b, c, e, f points in the bottom panels).

motion can be faster than the sound speed occasionally, an inward
moving wavelet (the left-hand panel) that is emitted later can be at
a smaller R than the wavelet that is emitted earlier. The ‘V points’
occur when the planet’s radial speed equals the sound speed. For a
planet with eccentricity of e, the *V points’ correspond to the wavelet
emitted at the planet’s true anomaly 6 where

G(M, + M, .
g .e-Sinf = :l:CS’
ap(1 —e?)

where the left-hand is the eccentric planet’s radial speed with 6.
Thus, for either the inner or outer spiral, there are two ‘V points’
generated during each orbit. The ‘V points’ are labelled as ‘b’ and
’¢’ for the inner spiral and ‘e’ and ‘f” for the outer spiral in Fig. 8. We
can also see the generation of new ‘V points’ in the bottom panels
of Fig. 6. If we just focus on the outer spiral, two new ‘V points’ are
generated from Tj, to 27}, The generation of new V points’ also
makes the spirals more complicated with time until the spirals reach
the inner and outer boundaries. To see where the spirals originate,
the first wavelets that are excited at t = 0 are labelled with the crosses

10)

in the upper panels, and correspond to the wavelets at ‘a’ and ‘d’ in
the bottom panels.

4 THE PITCH ANGLE AND PATTERN SPEED

The pitch angle (¢) and pattern speed ($2p,) are two fundamental
properties of the spirals. Pitch angles can be directly measured
from either density contours in simulations or observational images.
Specifically, if we plot the observational image under the polar
coordinate system with InR as the x-axis, the slope of the spiral
(d9/dInR) in the image is cotangent of the pitch angle (cot¢).
Pattern speeds of the spirals can be derived if we can observe the
spirals multiple times with a long enough time interval. Although
this is not possible for studying spiral galaxies, it is feasible for
protoplanetary disc observations. Current and future observations
can probe protoplanetary discs at the au scale where the orbital time
can be less than several years.

The pitch angle of spirals excited by a circular perturber is
~arccot|(Qpa — S2)R/c|, shown as the black solid curves in the
bottom panels of Fig. 9. To measure the pitch angle of spirals excited

MNRAS 510, 3986-3999 (2022)

220z AInp €0 uo Josn saueiqr Aysioniun AINN Ad 9262979/986€/€/0 L G/9101LE/SEIU/WOD dNO"DIWSPESE//:SAYY WOlj PapEojumOQ


art/stab3641_f8.eps

3994  Z. Zhu and R. M. Zhang

6 6
5 5
4 4
© 3 3
2 2
1 1
0 0
—-0.50-0.25 0.00 0.25 -0.50-0.25 0.00 0.25 —0.50-0.25 0.00 0.25
90 90 90
80 — 80 - 80 —
70 — 70 — 70 —
60 — 60 — 60 —
— 50 - 50 = 50 =
(=]
™ 40 A 40 - 40 -
30 - 30 H 30 =
20 20 20 -
o\ e
10 — 10 H 10 — o5
® “.‘.
0 T T T T 0 T T T T 0 T T T 1
—-0.50-0.25 0.00 0.25 -0.50-0.25 0.00 0.25 —0.50-0.25 0.00 0.25
ngloR/apf Iong/ap; ng]_oR/apj

Figure 9. The top panels: the spirals excited by eccentric planets (e = 0.1, 0.25, 0.5, from the left to right) at r = 27,y,. Different spirals are labelled with
different coloured dots. Their pitch angles are calculated and shown in the bottom panels. The black curves in the bottom panels are based on the analytical

theory for a circular planet.

by the eccentric perturber, we identify density peaks on the spirals,
as shown in the top panels. Different spirals are labelled by dots with
different colours. Using the positions of these dots, we calculate
the pitch angle of each spiral in the bottom panels. Most spirals
(including the outer spirals) by eccentric planets have increasing
pitch angles towards larger radii, which is noticeably different from
the outer spirals in the circular case. A higher planet eccentricity
results in more spirals and larger pitch angle deviations compared
with planets on circular orbits. At the same radius, different spirals
could have different pitch angles. The spiral with the largest pitch
angle (cyan dots) is close to the planet.

Fig. 10 shows the comparison between the measured pitch angles
in the e = 0.25 case and the pitch angles derived from our analytical
solution at r = 27y, (the rightmost panel in Fig. 6). We did not
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pick out all the spirals in the simulations since some spirals are very
weak in Fig. 6. Overall, we can see that the analytical model correctly
predicts the pitch angles for most parts of the simulated spirals, except
that the spirals in the analytical models are shorter than the spirals
in simulations. Since the spirals by an eccentric perturber cannot
maintain steady states, the pitch angle also changes with time.

To study the pattern speeds of the spirals, we identify the azimuthal
position of the density peaks at R = 0.6a;,. Two peaks associated
with two spirals (cyan and green spirals in Fig. 9) have been studied.
We follow these two density peaks from Ty to 277, to calculate the
pattern speeds of the spirals at R = 0.6a;,. The resulting pattern
speeds are plotted in Fig. 11 for e = 0.25 and e¢ = 0.5 cases. In
our analytical model, the spiral/wavelet at R = 0.6ap, should have
the same pattern speed as the planet when this wavelet was emitted.
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Figure 10. The same as the e = 0.25 panel in Fig. 9 but overplotted with the
pitch angle derived from the analytical theory (black dots).
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Figure 11. The pattern speed of the spirals at R = 0.6ap from 1 to 2T orp.
Two spirals that correspond to the cyan and green dots (the same colour)
in Fig. 9 have been identified over the orbit. The blue curves are from the
analytical theory (equation 11).

Since it takes the wavelet a time of [Ry (1) — 0.6ay)/c, to propagate
to 0.6ap after it was emitted by the planet at 7, the spiral’s pattern
speed at R = 0.6ay, is the planet’s orbital speed 2 at a time [Ry(f)
— 0.6ay)/cs ago. In other words, the patter speed at R = 0.6ay
atris

Qpat, R=0.6ay (1) = $2p1 (f - [Rpl(t) - 0~6ap1] /Cs) . (1)

This pattern speed is plotted as blue curves in Fig. 11. These curves
can also be used to estimate how many spirals exist at one radius.
We can see that, during one orbit, the number of spirals at 0.6ap,
can vary between 1 and 3 for the e = 0.25 case. The analytical
curves agree with the measured Qp, fairly well. Overall, the pattern
speed varies with time and the two spirals have different pattern
speeds. Theoretically, the range of the spiral’s pattern speed is the
same as the range of the planet’s orbital speed, since the pattern
speed equals the planet’s orbital speed at some point in the past.
However, the measured pattern speed can be lower than what the
theory predicts. This is because our simple theory cannot capture
the spiral beyond the ‘V point’ that is due to the wave dispersion
(Section 5).

Spirals 3995

5 DISCUSSION

5.1 Wave dispersion and strength

Despite the success of the analytical method, this simple method
underpredicts the spiral’s extent at the tips and ‘V points’ of the
spirals (middle panels in Fig. 12). We think this is because each
wavelet has some intrinsic dispersion (as the dispersion in different
m-modes discussed in the introduction) so that it is not localized as a
single point. The wavelet has some finite radial and azimuthal extent.
To verify this, we assume that each wavelet has some radial extent
from Ry, (t2) — 0.15¢5Tor to R, (£2) + 0.15¢, Ty, in equations (4) and
(5). The resulting spirals are shown in the right-hand panels of Fig. 12.
Clearly, this approach recovers the spirals beyond the tips and ‘V
points’ much better. The 0.15¢,T,y, that we add to R;, (#,) is not from
rigorous theoretical calculations and it is simply chosen for a better
spiral fit.

This wave dispersion has also been used to explain the disappear-
ance of the primary spiral and the appearance of the secondary spiral
induced by a circularly orbiting perturber (Bae & Zhu 2018a). As
pointed out by Miranda & Rafikov (2019), the formation of secondary
spirals is a generic property of wave propagation regardless of the
excitation mechanisms. Indeed, these secondary spirals can also be
seen in all our simulations. For example, the innermost two spirals in
the e = 0.1 case of Fig. 9 (the purple and green dots) originate from
the same set of waves. Due to the wave dispersion, the green spiral
(the primary spiral) gradually disappears towards the inner disc while
the purple spiral (the secondary spiral) starts to appear at a slightly
larger 6 position. When the planet mass is low, the secondary spiral
is very close to the primary spiral and sometimes we treat them as
a single spiral. When the planet mass is high, the secondary spiral
separates from the primary spiral, forming two distinct spirals (details
in Section 5.2).

Besides predicting the spiral shape, our simple method also carries
information on the strength of spirals through the density of wavelets.
When the wavelets are closer to each other, their contribution to the
spiral wake can be coherently added so that the spiral there should be
stronger. This can explain why the spirals are strong at the *V points’.
To accurately predict the strength of the spirals, a more detailed model
that includes both wave excitation and wave propagation is needed.

5.2 Spirals by high-mass planets

Since our simple model is built upon the linear theory, we focus
on the low-amplitude wakes excited by low-mass planets. However,
spirals from low-mass planets are normally too weak to be observed
(Zhu et al. 2015; Dong et al. 2015a; Dong & Fung 2017). The
spirals excited by a high-mass perturber are quite different from those
excited by a low-mass perturber, even if the perturber is in a circular
orbit (Zhu et al. 2015). First, the high-amplitude spirals steepen to
spiral shocks (Goodman & Rafikov 2001). Since shocks propagate
faster than the sound speed, the spirals open up more with larger pitch
angles than those from equation (7) (Bae & Zhu 2018b; Cimerman &
Rafikov 2021). Secondly, the secondary spirals that are produced
by the wave dispersion (Bae & Zhu 2018a; Miranda & Rafikov
2019) separate from the primary spirals more (Bae & Zhu 2018b),
producing multiple prominent spiral arms. Third, the spirals are more
prominent at the atmosphere than at the mid-plane when the planet
mass is higher (Zhu et al. 2015; Juhdsz & Rosotti 2018), leading
to observable spirals in near-IR observations. Due to these effects,
Dong et al. (2015a) suggests that a massive perturber (~10Mj) is
responsible for the two near-IR spirals in MWC 758.
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Figure 12. The spirals excited by an eccentric planet (e = 0.25) at t = Top. The middle panels are the same as those in Fig. 6, while the right-hand panels
overplot a modified analytical model in which the wavelets have some dispersion extending over a time period of AT = £0.15T op,.

To study the spirals excited by eccentric high-mass planets, we
have carried out the same set of simulations but with a Jupiter mass
planet in the disc. The resulting surface density contours are shown
in Fig. 13. Although the shape of the spirals from eccentric high-
mass planets are similar to those from eccentric low-mass planets,
there are several noticeable differences, especially evident in the
polar plots (comparing the right two columns). First, similar to the
case with a circularly orbiting perturber, the spiral wakes from high-
mass perturbers become quite strong and steepen into spiral shocks,
and the secondary spirals start to separate from the primary spirals.
These prominent multiple spirals could be observable with near-IR
observations. Secondly, the shape of the spirals is not as smooth
as the spirals from low-mass planets. Especially when two spiral
shocks cross each other (e.g. at the spiral bifurcating or crossing
points), the spirals are significantly distorted and may appear to
break into several segments. The distortion is more apparent when
the spiral shocks have larger amplitudes. This is expected since shock
crossing is highly non-linear and more complicated than the linear
wave crossing.

The spiral shocks can also deposit the spirals” angular momentum
to the background disc, leading to gap opening. To study the gap
structure induced by a massive eccentric planet, we continue our
high-mass planet simulations to 50 planetary orbits. The discs’
surface density at the end of the simulations is shown in the rightmost
panels of Fig. 14. Clearly, the gap is shallower when the planet has a
higher eccentricity. This is because weaker spirals are launched by a
more eccentric planet (e.g. Fig. 13). When a gap is induced (the e =
0.1 and 0.25 cases), the gap is more dynamic when the planet’s
eccentricity is higher. Regarding the gap depth, this degeneracy
between the planet mass and eccentricity may be useful for placing
limits on the eccentricity of planets in gaps if the planets’ mass can be
independently constrained. Rabago & Zhu (2021) point out that the
planet detection in the DSHARP sample (Andrews et al. 2018) using
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ALMA CO kinematic observations (Pinte et al. 2020) is not fully
consistent with the planet mass from dust continuum observations
(Zhang et al. 2018). To be detected by CO kinematic observations,
the planet’s mass needs to be higher than one Jupiter mass (Bollati
etal. 2021; Izquierdo et al. 2021; Rabago & Zhu 2021). These planets
should produce very prominent dusty gaps, but most of these gaps
are shallow and narrow in the dust continuum observations. One
explanation is that we do not fully understand the physical processes
that produce the CO kinematics or dusty gaps. Another explanation
could be that the high-mass planets are in eccentric orbits, producing
less prominent gaps or traveling outside the main gaps.

We also notice that, when the planet is at the apastron of its orbit,
the planet can be at the outer gap edge. This is similar to PDS
70c (Haffert et al. 2019), where the planet is close to the outer gap
edge. Then, the planet can potentially accrete more material from the
circumstellar disc, facilitating its growth and the circumplanetary
disc formation (Isella et al. 2019; Benisty et al. 2021).

5.3 Applications to observations

Eccentric planets can induce a wide variety of spirals. Although this
makes it easier to find a spiral that can fit observations, it poses a
challenge to use the spirals to accurately predict the planet’s mass
and position. The spirals excited by eccentric high-mass planets
at different times are displayed in Fig. 14. When the planet’s
eccentricity is <0.1, the spirals look similar to the spirals excited
by a circular planet. This is because the planet’s radial speed is less
than the disc’s sound speed (based on equation 10 with the disc’s
cs/vg ~ 0.1), so that spiral bifurcation and crossing do not occur.
When the planet’s eccentricity is higher than 0.1, the spirals appear
much different. First, more spirals are excited when the planet’s
eccentricity is higher. We caution that, when a gap is induced
by a planet (which can be a circularly orbiting planet), the gap
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Figure 13. The spirals excited by eccentric low-mass planets (one Earth mass) and high-mass planets (one Jupiter mass) at two planetary orbits. The left two
columns show the density perturbation in the Cartesian coordinate system, while the right two columns show the same data in the polar coordinate system. The

planet eccentricity increases from the top to bottom panels.

edge vortices can also generate many spirals (Huang et al. 2019).
Secondly, the spirals can bifurcate and cross each other, making the
spiral pattern complicated. The bifurcation point corresponds to the
wavelet that is emitted by the planet when the planet’s radial speed
equals the disc’s sound speed (Fig. 8). Theoretically, we can use the
bifurcation point to constrain the planet’s position and speed in the
past, which can then be used to constrain the planet’s current position.
However, this may not be practical since the bifurcation point is
difficult to be identified even in the simulation images without prior
knowledge of the planet’s orbit (Fig. 8). The bifurcation point can
also be confused with the spiral crossing point. Thirdly, probably
most importantly, different spirals and even different parts of one
spiral can have different pattern speeds. It is possible to use the
measured pattern speeds to constrain the planet’s eccentricity and
current position by understanding that the pattern speed of any part
of a spiral corresponds to the planet’s orbital frequency in the past.
This is a challenging task if we only have several pattern speed
measurements. However, if the pattern speeds of more spirals or
more parts of a spiral have been measured, the planet’s eccentricity
and position will be better constrained. Generally, the pattern speed
should be between the planet’s slowest and fastest orbital frequencies

VI 1—e

Q,
A1tV Txe ~ 0=

VI 1+e (12)

a?(l—e)V 1—¢’

where u = G(M,, + Mp). We note that the pattern speed can actually
go lower than the leftmost term in equation (12) (as shown in Fig. 11)

since our analytical model cannot capture the tip of some spirals
formed by the wave dispersion.

A variety of spirals have been discovered in many protoplanetary
discs (Yu, Ho & Zhu 2019). For example, the CO spirals in TW
Hydrae (Teague et al. 2019) have pitch angles dropping from 9° at
70 au to 3° at 200 au, while the spirals in HD34700A (Monnier et al.
2019; Uyama et al. 2020) can reach 30° pitch angles. The small pitch
angles of TW Hydrae spirals could be from the buoyancy resonances
(Zhu, Stone & Rafikov 2012) of a circularly orbiting planet (Bae et al.
2021). On the other hand, these spirals could be the outer spirals of
an eccentric perturber. As shown in the 27, panels of Figs 5 and 6,
the outer spiral can be considered as two separate spirals, one with a
larger pitch angle joining the planet (the blue spirals in the e = 0.1
and e = 0.25 panels of Fig. 9) and one with a smaller pitch angle
further away (the grey spirals in the same panels of Fig. 9). This
is consistent with TW Hydrae observations where several spirals
seem to join together with the inner one having a larger pitch
angle.

For HD 34700A, Monnier et al. (2019) conclude that a circular
perturber is difficult to explain those large pitch angles. Furthermore,
several spirals have been detected in the disc. An eccentric perturber
will naturally produce several spirals and some have large pitch
angles, as in the e = 0.25 and e = 0.5 panels of Fig. 9. Although
HD 34700A is a spectroscopic binary with a = 0.21 au and e = 0.25
(Torres 2004), it is unlikely that such a binary can excite large scale
spirals at 200 au. Another perturber (as in Uyama et al. 2020) may be
responsible for these spirals. We note that the spiral features of HD
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Figure 14. The spirals excited by eccentric high-mass planets (one Jupiter mass) at different times (different columns). The planet eccentricity increases from

the top to bottom panels.

34700A are similar to those in HD 142527 (Avenhaus et al. 2014),
which has been explained by an eccentric binary (with a ~ 30 au)
within the cavity (Price et al. 2018).

Another system with multiple spirals is AB Aurigae (Boccaletti
et al. 2020). A large number of spirals are detected at near-IR
(Fukagawa et al. 2004; Hashimoto et al. 2011), while two CO spirals
are detected with ALMA (Tang et al. 2017). The near-IR spirals are
highly complex. The spirals can bifurcate, cross, and break. They
resemble the spirals excited by a moderately or highly eccentric
perturber (e.g. e = 0.25 or e = 0.5 cases).

An eccentric perturber can explain not only multiple irregular
spirals but also some features of the grand-design two-spiral systems.
MWC 758 has two prominent spirals (Grady et al. 2013; Benisty et al.
2015). These two spirals are explained with a single outer perturber
(Dong et al. 2015a), one inner and one outer perturber (Baruteau
et al. 2019), or one eccentric inner perturber (Calcino et al. 2020).
Previously, the difficulties in explaining the spirals with an inner
perturber is the observed large pitch angles (~20°) and the slow
pattern speeds (Ren et al. 2020). With an eccentric inner perturber,
its outer spirals can have large pitch angles and the pattern speeds
can be low. Calcino et al. (2020) adopts an inner companion with e =
0.4, which reproduces the two open spirals. If we use equation (12)
with e = 0.4 and the €2, measured in Boccaletti et al. (2021) and
Renetal. (2020), we derive that the perturber’s semimajor axis is still
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quite large =170 au, not in the cavity. However, equation (12) cannot
fully capture all the spirals (Fig. 11) due to the wave dispersion, and
an eccentric perturber with a much smaller a remains a possibility.
A bigger challenge for both the inner and outer perturber scenarios
is that such a predicted massive companion has not been discovered
yet (Boccaletti et al. 2021).

Another grand-design spiral system SAO 206462 (Muto et al.
2012) exhibits different pattern speeds for its two spirals (Xie et al.
2021). Although two planets (one at 120 au and one at 49 au)
have thus been suggested (Xie et al. 2021), an eccentric perturber
may also explain these two independent-moving spirals. If we use
equation (12), we can derive that the ratio between the minimum and
maximum pattern speeds is (1 — ¢)*/(1 4 ¢)?. Thus, if both spirals
are induced by one eccentric perturber, we have

1—e\* 49\
<\ (13)
I+e 120
ore >0.32. If we adopt e = 0.4, the planet’s semimajor axis should be
between 74 and 92 au. However, many more spirals should be excited
by such an eccentric perturber, which needs to be tested by future
observations. Overall, considering the complex spiral pattern excited

by eccentric perturbers, studying pattern speed of spirals could be an
important way to locate the planet.
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6 CONCLUSION

We develop a general method to calculate the shape of spirals
launched by perturbations in a disc (e.g. from disc turbulence,
vortices, or gravitational perturbers). We apply this method to spirals
launched by an eccentric planet, and find good agreement with
numerical simulations. The spirals excited by an eccentric perturber
are very different from the spirals excited by a circular perturber.
The spirals can detach from the perturber, bifurcate, or even cross
each other. Multiple spirals can be excited. Different spirals or even
different parts of one spiral can have different pitch angles and pattern
speeds. These pitch angles and pattern speeds are also changing over
time.

With a high-mass eccentric planet, the spirals steepen to shocks.
Secondary spirals start to separate from the primary spirals, forming
more spirals. The crossing of spiral shocks lead to distorted or
broken spirals. Gaps can be induced by high-mass eccentric planets.
However, the gap induced by a more eccentric planet is shallower due
to the weaker spiral shocks it launches. The eccentric planet can travel
from one gap edge to another during its eccentric orbit, potentially
accrete more material from the circumstellar disc, and facilitate the
planet’s growth and the circumplanetary disc formation.

Finally, we discuss the potential applications of the theory. The
multiple spirals in TW Hydrae, HD34700A, AB Aurigae, and the
different pattern speeds of spirals in HD 135344 could be indicators
of eccentric perturbers in discs. Our simple method provides an
easy way to calculate the spirals from an eccentric perturber, which
enables using spirals to probe eccentric planets in protoplanetary
discs and constrain planet formation theory.

ACKNOWLEDGEMENTS

We thank the reviewer for a thorough and helpful report. ZZ
acknowledges support from the National Science Foundation under
CAREER grant number AST-1753168.

DATA AVAILABILITY

The data underlying this article are available in the article.

REFERENCES

Andrews S. M. et al., 2018, ApJ, 869, L41

Avenhaus H., Quanz S. P,, Schmid H. M., Meyer M. R., Garufi A., Wolf S.,
Dominik C., 2014, ApJ, 781, 87

BaeJ., Zhu Z., 2018a, ApJ, 859, 118

Bae J., Zhu Z., 2018b, ApJ, 859, 119

Bae J., Teague R., Zhu Z., 2021, ApJ, 912, 56

Baehr H., Zhu Z., 2021, ApJ, 909, 135

Baruteau C. et al., 2019, MNRAS, 486, 304

Baruteau C., Wafflard-Fernandez G., Le Gal R., Debras F., Carmona A.,
Fuente A., Riviere-Marichalar P., 2021, MNRAS, 505, 359

Benisty M. et al., 2015, A&A, 578, L6

Benisty M. et al., 2021, ApJ, 916, L2

Béthune W., Latter H., Kley W., 2021, A&A, 650, A49

Binney J., Merrifield M., 1998, Galactic Astronomy, Princeton University
Press, Princeton, NJ (Princeton series in astrophysics)

Binney J., Tremaine S., 2008, Galactic Dynamics, 2nd edn, Princeton
University Press, Princeton, NJ

Boccaletti A. et al., 2020, A&A, 637, L5

Boccaletti A. et al., 2021, A&A, 652, L8

Bollati F., Lodato G., Price D. J., Pinte C., 2021, MNRAS, 504, 5444

Spirals 3999

Calcino J., Christiaens V., Price D. J., Pinte C., Davis T. M., van der Marel
N., Cuello N., 2020, MNRAS, 498, 639

Chen Y.-X., Wang Z., Li Y.-P., Baruteau C., Lin D. N. C., 2021, ApJ., 922, 184

Cimerman N. P., Rafikov R. R., 2021, MNRAS, 508, 2329

Cuzzi J. N, Lissauer J. J., Shu F. H., 1981, Nature, 292, 703

Dong R., Fung J., 2017, ApJ, 835, 38

Dong R., Zhu Z., Rafikov R. R., Stone J. M., 2015a, ApJ, 809, L5

Dong R., Hall C., Rice K., Chiang E., 2015b, ApJ, 812, L32

Dong R., Zhu Z., Fung J., Rafikov R., Chiang E., Wagner K., 2016, ApJ, 816,
L12

Follette K. B. et al., 2017, AJ, 153, 264

Fukagawa M. et al., 2004, ApJ, 605, L53

Fung J., Dong R., 2015, ApJ, 815, L21

Goldreich P., Sari R., 2003, ApJ, 585, 1024

Goldreich P., Tremaine S., 1979, ApJ, 233, 857

Goodman J., Rafikov R. R., 2001, ApJ, 552, 793

Grady C. A. etal., 2013, ApJ, 762, 48

Haffert S. Y., Bohn A. J., de Boer J., Snellen I. A. G., Brinchmann J., Girard
J. H., Keller C. U., Bacon R., 2019, Nat. Astron., 3, 749

Hashimoto J. et al., 2011, ApJ, 729, L17

Heinemann T., Papaloizou J. C. B., 2009, MNRAS, 397, 52

Huang J. et al., 2018, ApJ, 869, L43

Huang P., Dong R., Li H., Li S., Ji J., 2019, ApJ, 883, L39

Isella A., Benisty M., Teague R., Bae J., Keppler M., Facchini S., Pérez L.,
2019, ApJ, 879, L25

Izquierdo A. F., Facchini S., Rosotti G. P., van Dishoeck E. F., Testi L., 2021,
preprint (arXiv:2111.06367)

Juhdsz A., Rosotti G. P.,, 2018, MNRAS, 474, .32

Li Y.-P,LiH.,, Li S., Lin D. N. C., 2019, ApJ, 886, 62

Mankovich C., Marley M. S., Fortney J. J., Movshovitz N., 2019, ApJ, 871, 1

Masset F., 2000, A&AS, 141, 165

Miranda R., Rafikov R. R., 2019, ApJ, 875, 37

Monnier J. D. et al., 2019, ApJ, 872, 122

Muley D., Fung J., van der Marel N., 2019, ApJ, 879, L2

Muto T. et al., 2012, ApJ, 748, L.22

Ogilvie G. 1., Lubow S. H., 2002, MNRAS, 330, 950

Paardekooper S.-J., Lesur G., Papaloizou J. C. B., 2010, ApJ, 725, 146

Pérez L. M. et al., 2016, Science, 353, 1519

Pinte C. et al., 2020, ApJ, 890, L9

Price D. J. et al., 2018, MNRAS, 477, 1270

Rabago L., Zhu Z., 2021, MNRAS, 502, 5325

Rafikov R. R., 2002, ApJ, 569, 997

Ragusa E., Rosotti G., Teyssandier J., Booth R., Clarke C. J., Lodato G.,
2018, MNRAS, 474, 4460

Ren B. et al., 2020, ApJ, 898, L38

Rosotti G. P. et al., 2020, MNRAS, 491, 1335

Shu F. H., 2016, ARA&A, 54, 667

Stolker T. et al., 2017, ApJ, 849, 143

Tang Y.-W. et al., 2017, ApJ, 840, 32

Teague R., Bae J., Huang J., Bergin E. A., 2019, ApJ, 884, L56

Teyssandier J., Ogilvie G. 1., 2017, MNRAS, 467, 4577

Torres G., 2004, AJ, 127, 1187

Uyama T. et al., 2020, ApJ, 900, 135

Velasco-Romero D. A., Masset F. S., Teyssier R., 2022, MNRAS, 509, 5622

Wagner K., Apai D., Kasper M., Robberto M., 2015, ApJ, 813, L2

Xie C., Ren B., Dong R., Pueyo L., Ruffio J.-B., Fang T., Mawet D., Stolker
T., 2021, ApJ, 906, L9;”

Yu S.-Y.,Ho L. C., Zhu Z., 2019, ApJ, 877, 100

Zhang S. et al., 2018, ApJ, 869, L47

Zhu Z., Stone J. M., Rafikov R. R., 2012, ApJ, 758, L42

Zhu Z., Dong R., Stone J. M., Rafikov R. R., 2015, ApJ, 813, 88

This paper has been typeset from a TEX/I&XTEX file prepared by the author.

MNRAS 510, 3986-3999 (2022)

220z AInp €0 uo Josn saueiqr Aysioniun AINN Ad 9262979/986€/€/0 L G/9101LE/SEIU/WOD dNO"DIWSPESE//:SAYY WOlj PapEojumOQ


http://dx.doi.org/10.3847/2041-8213/aaf741
http://dx.doi.org/10.1088/0004-637X/781/2/87
http://dx.doi.org/10.3847/1538-4357/aabf8c
http://dx.doi.org/10.3847/1538-4357/aabf93
http://dx.doi.org/10.3847/1538-4357/abe45e
http://dx.doi.org/10.3847/1538-4357/abddb3
http://dx.doi.org/10.1093/mnras/stz802
http://dx.doi.org/10.1093/mnras/stab1045
http://dx.doi.org/10.1051/0004-6361/201526011
http://dx.doi.org/10.3847/2041-8213/ac0f83
http://dx.doi.org/10.1051/0004-6361/202040094
http://dx.doi.org/10.1051/0004-6361/202038008
http://dx.doi.org/10.1051/0004-6361/202141177
http://dx.doi.org/10.1093/mnras/stab1145
http://dx.doi.org/10.1093/mnras/staa2468
http://dx.doi.org/10.3847/1538-4357/ac23d7
http://dx.doi.org/10.1093/mnras/stab2652
http://dx.doi.org/10.1038/292703a0
http://dx.doi.org/10.3847/1538-4357/835/1/38
http://dx.doi.org/10.1088/2041-8205/809/1/L5
http://dx.doi.org/10.1088/2041-8205/812/2/L32
http://dx.doi.org/10.3847/2041-8205/816/1/L12
http://dx.doi.org/10.3847/1538-3881/aa6d85
http://dx.doi.org/10.1086/420699
http://dx.doi.org/10.1088/2041-8205/815/2/L21
http://dx.doi.org/10.1086/346202
http://dx.doi.org/10.1086/157448
http://dx.doi.org/10.1086/320572
http://dx.doi.org/10.1088/0004-637X/762/1/48
http://dx.doi.org/10.1038/s41550-019-0780-5
http://dx.doi.org/10.1088/2041-8205/729/2/L17
http://dx.doi.org/10.1111/j.1365-2966.2009.14799.x
http://dx.doi.org/10.3847/2041-8213/aaf7a0
http://dx.doi.org/10.3847/2041-8213/ab40c4
http://dx.doi.org/10.3847/2041-8213/ab2a12
http://arxiv.org/abs/2111.06367
http://dx.doi.org/10.1093/mnrasl/slx182
http://dx.doi.org/10.3847/1538-4357/ab4bc8
http://dx.doi.org/10.3847/1538-4357/aaf798
http://dx.doi.org/10.1051/aas:2000116
http://dx.doi.org/10.3847/1538-4357/ab0f9e
http://dx.doi.org/10.3847/1538-4357/aafe87
http://dx.doi.org/10.3847/2041-8213/ab24d0
http://dx.doi.org/10.1088/2041-8205/748/2/L22
http://dx.doi.org/10.1046/j.1365-8711.2002.05148.x
http://dx.doi.org/10.1088/0004-637X/725/1/146
http://dx.doi.org/10.3847/2041-8213/ab6dda
http://dx.doi.org/10.1093/mnras/sty647
http://dx.doi.org/10.1093/mnras/stab447
http://dx.doi.org/10.1086/339399
http://dx.doi.org/10.1093/mnras/stx3094
http://dx.doi.org/10.3847/2041-8213/aba43e
http://dx.doi.org/10.1093/mnras/stz3090
http://dx.doi.org/10.1146/annurev-astro-081915-023426
http://dx.doi.org/10.3847/1538-4357/aa886a
http://dx.doi.org/10.3847/1538-4357/aa6af7
http://dx.doi.org/10.3847/2041-8213/ab4a83
http://dx.doi.org/10.1093/mnras/stx426
http://dx.doi.org/10.1086/381066
http://dx.doi.org/10.3847/1538-4357/aba8f6
http://dx.doi.org/doi:10.1093/mnras/stab3334 
http://dx.doi.org/10.1088/2041-8205/813/1/L2
http://dx.doi.org/10.3847/2041-8213/abd241
http://dx.doi.org/10.3847/1538-4357/ab1d65
http://dx.doi.org/10.3847/2041-8213/aaf744
http://dx.doi.org/10.1088/2041-8205/758/2/L42
http://dx.doi.org/10.1088/0004-637X/813/2/88

	1 INTRODUCTION
	2 THE ANALYTICAL METHOD
	3 NUMERICAL SIMULATIONS AND COMPARISON
	4 THE PITCH ANGLE AND PATTERN SPEED
	5 DISCUSSION
	6 CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES

