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ABSTRACT
The core accretion model of giant planet formation has been challenged by the discovery of recycling flows between the planetary
envelope and the disc that can slow or stall envelope accretion. We carry out 3D radiation hydrodynamic simulations with an
updated opacity compilation to model the proto-Jupiter’s envelope. To isolate the 3D effects of convection and recycling, we
simulate both isolated spherical envelopes and envelopes embedded in discs. The envelopes are heated at given rates to achieve
steady states, enabling comparisons with 1D models. We vary envelope properties to obtain both radiative and convective
solutions. Using a passive scalar, we observe significant mass recycling on the orbital time-scale. For a radiative envelope,
recycling can only penetrate from the disc surface until ∼0.1–0.2 planetary Hill radii, while for a convective envelope, the
convective motion can ‘dredge up’ the deeper part of the envelope so that the entire convective envelope is recycled efficiently.
This recycling, however, has only limited effects on the envelopes’ thermal structure. The radiative envelope embedded in the
disc has identical structure as the isolated envelope. The convective envelope has a slightly higher density when it is embedded
in the disc. We introduce a modified 1D approach which can fully reproduce our 3D simulations. With our updated opacity and
1D model, we recompute Jupiter’s envelope accretion with a 10 M⊕ core, and the time-scale to runaway accretion is shorter
than the disc lifetime as in prior studies. Finally, we discuss the implications of the efficient recycling on the observed chemical
abundances of the planetary atmosphere (especially for super-Earths and mini-Neptunes).

Key words: convection – opacity – radiation: dynamics – planets and satellites: formation – planets and satellites: gaseous
planets – protoplanetary discs.

1 INTRODUCTION

The core accretion mechanism is one of the leading giant planet for-
mation mechanisms (Perri & Cameron 1974; Mizuno, Nakazawa &
Hayashi 1978). It was developed using a combination of static 1D
models and quasi-static evolutionary models. In the static models,
the planet’s envelope structure is calculated for a given core mass
given some assumptions on the envelope’s thermal structure (Perri &
Cameron 1974; Mizuno et al. 1978; Mizuno 1980). Assuming a
luminosity that is released by a constant rate of planetesimal accretion
(Mizuno 1980), such static solutions suggest a maximum core mass
for any given opacity. This maximum core mass is the ‘critical core
mass’, beyond which the envelope is subject to collapse. Although
the critical core mass can range widely depending on the given
luminosity and disc parameters (Rafikov 2006), it is estimated to be
around 10 M⊕ for Jupiter formation in the Solar Nebula (Mizuno
1980; Stevenson 1982). In assuming that all the luminosity comes
from planetesimal accretion, static models ignore energy release
from the envelope’s Kelvin–Helmholtz (KH) contraction. Thus, these
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models implicitly assume that the envelope settles on a time-scale
much shorter than the core building time-scale or the disc lifetime.
We can think of the static models as taking snapshots during the
envelope accretion. To properly take into account the envelope’s KH
contraction, quasi-static evolutionary models have been developed.
These models connect different snapshots using energy conservation
(Bodenheimer & Pollack 1986; Pollack et al. 1996; Movshovitz et al.
2010). These quasi-static models suggest that Jupiter’s formation
has three stages: the core building stage, the atmosphere accretion
stage, and the run-away stage when the core mass is comparable
to the envelope mass. Run-away accretion ends when the planets
manage to induce gaseous gaps in protoplanetary discs (Bryden et al.
1999; Alibert et al. 2005; Rosenthal et al. 2020). The quasi-static
approach has been extended to model the formation of giant planets
in exoplanetary systems (e.g. Lee, Chiang & Ormel 2014; Piso &
Youdin 2014; Lee & Chiang 2015; Piso, Youdin & Murray-Clay
2015; Ali-Dib, Cumming & Lin 2020; Chen et al. 2020).

The adequacy of any 1D description of giant planet formation can
reasonably be questioned. In addition to convection (as shown in
3D simulations of Ayliffe & Bate 2012) – which can be modelled
in 1D but only approximately – 3D numerical simulations show
that the flow pattern around embedded planets is highly complex.
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Gas in the disc flows to the planet from the pole, and then leaves the
planet from the mid-plane (Machida et al. 2008; Tanigawa, Ohtsuki &
Machida 2012). Isothermal (Bate et al. 2003; Fung, Artymowicz &
Wu 2015; Ormel, Shi & Kuiper 2015; Béthune & Rafikov 2019),
isentropic (Fung et al. 2017), adiabatic (Fung, Zhu & Chiang 2019),
and radiation (Paardekooper & Mellema 2008; Ayliffe & Bate 2009;
D’Angelo & Bodenheimer 2013; Szulágyi et al. 2016; Cimerman,
Kuiper & Ormel 2017; Lambrechts & Lega 2017; Szulágyi &
Mordasini 2017) hydrodynamic models all show complicated 3D
flow patterns, but the details of the flow patterns are dramatically
different among these simulations. In part, the differences arise due
to different adopted equations of state (EOS; Fung et al. 2019).
Isothermal simulations show a rotationally supported circumplan-
etary disc (Tanigawa et al. 2012; Wang et al. 2014; Fung et al.
2019), while adiabatic and radiative simulations show a pressure
supported sphere. The effect of these 3D flow patterns on giant
planet atmosphere accretion is still unclear. Some works suggest
that significant ‘atmosphere mass recycling’ (Ormel et al. 2015)
extends all the way to the planetary core or the simulated inner
boundary (Cimerman et al. 2017; Béthune & Rafikov 2019). This
recycling could stall atmosphere accretion, preventing the planet’s
run-away accretion (Moldenhauer et al. 2021). Other works suggest
that the bound inner envelope is not affected strongly by recycling
(Lambrechts & Lega 2017; Fung et al. 2019).

The 1D and 3D approaches have quite different assumptions
and produce different results. Both approaches have shortcomings.
Although 3D simulations are needed to capture recycling flows, they
suffer from limited spatial resolution and a limited time span. It is
impractical to simulate Jupiter all the way from the core to the 5 au
scale over the 1 Myr KH contraction time-scale. Thus, 3D simulations
normally place the inner boundary condition at radii larger than the
physical radius of the core (Béthune & Rafikov 2019), and often
reduce the opacity by several orders of magnitude to shorten the
KH time-scale (Cimerman et al. 2017; Moldenhauer et al. 2021). A
promising approach is to combine 3D simulations with 1D models.
We can study detailed physical processes and measure key quantities
from 3D simulations, and then use these 3D simulations to construct
1D models to study the long-term planet evolution.

Here, we present the results of new 3D simulations of the forming
Jupiter’s convective envelope. The simulations use an updated opac-
ity, appropriate for both disc and envelope physical conditions, and
a radiative transfer scheme that directly solves the time-dependent
transfer equation for the specific intensity (Jiang, Stone & Davis
2014). This approach is more accurate than flux-limited diffusion
at low and intermediate optical depths. In order to systematically
isolate 3D effects due to convection and recycling, and to compare
1D and 3D results, our simulation setup is distinct from prior
work in two ways. First, we inject specified luminosities throughout
the envelopes so that the envelopes can reach steady states. The
steady-state outcome is similar to the traditional static 1D approach,
making comparison between 1D models and 3D simulations easier.
Secondly, we run 3D simulations of isolated spherical envelopes as
well as envelopes that are embedded with the disc. The isolated
3D simulations have identical setups as 1D models, except that
convection is simulated self-consistently. By comparing these 3D
simulations with 1D radiation-only simulations, we are able to study
the effects of convection on the envelope structure. At the same
time, the 3D isolated envelope simulations are also similar to the 3D
envelopes that are embedded in discs, except for the absence of disc
recycling. A comparison between these two types of simulation can
therefore quantify the effects of recycling.

The plan of the paper is as follows. We introduce our updated
opacity in Section 2 before presenting the simulation methods in
Section 3. We present our results in Section 4. After some discussion
in Section 5, we conclude in Section 6. We defer some numerical
details to the Appendices.

2 OPACITY

Opacity determines the envelope’s cooling ability and thus directly
controls the envelope’s KH contraction and later run-away accretion.
Although we know little empirically about the opacity in the
planetary envelope itself (which will be affected by pebble accretion
and coagulation processes; Podolak 2003; Brouwers & Ormel 2020),
the outer envelope is directly connected with the protoplanetary disc,
and we have constraints on the disc’s dust opacity from ALMA
observations. For the deeper parts of the envelope where molecular
and atomic opacities dominate, several widely used opacities (e.g.
the opacities adopted in the MESA code; Paxton et al. 2011) are not
suitable for the conditions of the forming planet’s envelope. Thus, we
update and generate a new opacity table including dust, molecular,
and atomic opacities, spanning a large density and temperature
range for our envelope simulations. The Rosseland and Planck mean
opacity table can be downloaded at the Github repository.1

2.1 Dust opacity

We calculate the dust opacity following Birnstiel et al. (2018).
They compared several widely used dust opacities, and calculated
a new set of opacities which have been successfully used in the
ALMA large program DSHARP (Andrews et al. 2018). The dust is
composed of four different materials: water ice (Warren & Brandt
2008), astronomical silicates (Draine 2003), troilite, and refractory
organics (Henning & Stognienko 1996). The mass fractions of
water ice, silicates, troilite, and refractory organics are 0.2, 0.3291,
0.0743, 0.3966, respectively (Birnstiel et al. 2018). These fractions
are not derived from chemical equilibrium calculations. Instead,
they are determined based on protoplanetary disc spectral energy
distribution (SED) constraints (e.g. the adoption of the low water
abundance). Thus, the elemental abundance of the dust component
is different from the solar abundance that is used for the molecular
and atomic opacity calculations in the following sections. Although
chemical equilibrium calculations for the dust components can
remedy this inconsistency (Ferguson et al. 2005), we decide to use
the dust components that are more consistent with protoplanetary
disc observations. We adopt the nominal q = 3.5 power-law dust
size distribution with a minimum particle size of 10−5 cm. We have
calculated the opacity for different maximum particle sizes: amax = 10
μm, 1 mm, 1 cm, and 10 cm. The details of the opacity calculation
can be found in Birnstiel et al. (2018).2

With increasing temperature, the four materials considered subli-
mate one after another. We adopt the dust sublimation temperatures in
table 3 of Pollack et al. (1994) to decide which material to remove at
different temperatures. The sublimation temperatures of the water ice
and refractory organics are from ‘Water ice in discs’ and ‘Refractory
organics in discs’ in Pollack et al. (1994). When the gas density is
beyond the density range provided by Pollack et al. (1994), which is
between 10−18 and 10−4 g cm−3, we just use the limiting density

1https://github.com/zhuzh1983/combined-opacity
2https://github.com/birnstiel/dsharp opac
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Figure 1. The Rosseland mean (black curves) and Planck mean (red curves)
opacities for dust with different maximum particle size, amax (three different
line types: dashed, solid, and dotted curves). To show that the dust sublimation
temperature depends on the gas density, there are three different curves
(almost overlapping each other) for each type that are calculated under three
different gas densities (10−10, 10−7, and 10−4 g cm−3).

(10−18 or 10−4 g cm−3). Since dust gradually sublimates over a
temperature range around the sublimation temperature, we smooth
out the opacity transition around the dust sublimation temperature
(Tsub) using a sin function,

κ(T ) = κlT + (κhT − κlT )

(
1 − 1

2

(
sin

(
T − Tsub

�Tsub
π

)
+ 1

))
,

if Tsub − �Tsub

2
< T < Tsub + �Tsub

2
, (1)

where κ lT and κhT are opacities before and after one particular
material is sublimated. To determine the width of the transition
temperature (�Tsub), we use the GRAINS code (Petaev 2009; Li et al.
2020) and fig. 4 in Li et al. (2020) to estimate �Tsub = Tsub/10 ×
(log10(P/bar)/16 + 1), where P is the gas pressure. The pressure
dependent term accounts for the fact that the transition is smoother
in a higher pressure environment.

The Rosseland mean and Planck mean opacities for dust with
different amax are shown in Fig. 1. When the temperature increases,
different dust components start to sublimate. The sublimation occurs
at a higher temperature in a higher pressure environment, except for
troilite and refractory organics whose sublimation temperature was
given as a single value in Pollack et al. (1994).

2.2 Molecular opacity

For the gas opacity at low temperature (dominated by the molecular
opacity), we adopt the opacity table provided by Freedman et al.
(2014).3 This opacity table covers gaseous pressure from 10−6 to
300 bar, and temperature from 75 to 4000 K. The corresponding
gaseous density range is from ∼10−10 to 10−3 g cm−3 (Fig. 2),
which is significantly broader than the density or pressure range in
previous gaseous opacity tables (e.g. Ferguson et al. 2005; Freedman,
Marley & Lodders 2008). On the other hand, deep within the forming
planet’s envelope, the gaseous density can be much higher, reaching
1 g cm−3. Thus, we use the analytical fit provided in Freedman
et al. (2014, equations 3–5) to derive the Rosseland mean opacity
for densities higher than ∼10−3 g cm−3 and lower than 1 g cm−3.
Applying the analytical fit to high densities leads to a smooth

3https://www.ucolick.org/∼jfortney/models.htm

transition to atomic opacities in the next section. However, we caution
that there is no detailed opacity calculation to show that such an
extension of the analytical fit to high density is valid. For Planck
mean opacities, the analytical fit formula has not been provided.
Thus, we simply assume that the Planck mean opacity at densities
beyond the table range in Freedman et al. (2014) is the same as
the Planck mean opacity at the highest density in the table at that
temperature. For opacity at densities lower than the provided table
range, we also assume that the opacity is the same as the opacity at
the lowest density in the table.

2.3 Atomic opacity

At higher temperatures where molecules have been dissociated and
the atomic opacity dominates, we adopt the Los Alamos National
Lab (LANL) new generation opacity table (Colgan et al. 2016).4

This new LANL opacity table is LANL’s recent opacity effort using
their ATOMIC opacity and plasma modelling code (Magee et al.
2004; Hakel et al. 2006) with their atomic data (Fontes et al. 2015).
It provides opacities for elements from hydrogen through zinc for
a wide range of temperatures (0.5 eV up to 100 kev) and densities
(spanning at least 12 orders of magnitude). To derive the solar opacity,
we use the solar elemental abundances provided by Asplund et al.
(2009; photosphere abundance in their table 1). To calculate the
opacities at the metal rich or poor environment, we vary the metal
(beyond H and He) abundance accordingly. Both Planck mean and
Rosseland mean opacities have been generated using the LANL
opacity website. Since protoplanetary discs and planet envelopes are
cooler and less dense than stars, we only calculate the opacity with
temperatures from 0.5 eV to 1 keV (∼5800 K to 107 K) and densities
from 10−14 to 1 g cm−3. The density range where the LANL opacity
is valid depends on the temperature and element considered.

One advantage of the LANL opacity table over the widely used
opacities (mainly from Iglesias & Rogers 1996; Ferguson et al. 2005)
in MESA (Paxton et al. 2011) is that it includes opacities at high
densities and low temperatures, the conditions found in the planet
envelope or atmosphere. For example, the MESA opacity table has a
maximum opacity at ρ ∼ 0.01 g cm−3 and T ∼ 3 × 104 K (fig. 3
in Paxton et al. 2011). This maximum opacity is artificial since the
adopted radiative opacity in MESA is only valid for ρ � 0.01 g cm−3

at T ∼ 3 × 104 K, as shown in Fig. 2. For ρ � 0.01 g cm−3, it is
interpolated to connect to the electron conduction opacity (Cassisi
et al. 2007) at much higher densities. Considering plasma screening
and electron degeneracy effects (e.g. Pauli blocking; Armstrong et al.
2014), the LANL radiative opacity is valid at much higher densities,
covering the high-pressure range that we are interested in (Fig. 2).
By comparison, we can see that, for a given temperature, the LANL
radiative opacity continues to rise with density even to our upper
density limit of ρ = 1 g cm−3, which is dramatically different from
the MESA opacity.

2.4 Combining opacities

Various opacities from different opacity data bases, together with
their valid range, are shown in Fig. 2. The top three panels show
the atomic, molecular, and dust opacities we adopt. The bottom two
panels show the solar abundance opacities used in MESA (Paxton
et al. 2011) and ATLAS9 (Castelli & Kurucz 2003). Since MESA and
ATLAS9 are stellar structure codes, their adopted opacities miss the ρ

− T condition of the planet interior.

4https://aphysics2.lanl.gov/apps/
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Figure 2. The Rosseland mean opacities at different densities and temperatures from various data bases. The coloured region is where the data are calculated
and valid. The dashed curve labels the ρ − T condition of a forming Jupiter’s envelope at the cross-over mass, as calculated in Section 5.3.

Our combined opacities (LANL + Freedman + DSHARP) are
shown in Fig. 3. At 100 K < T <1000 K, molecules and dust coexist
and they all contribute to the total opacity. Since Freedman et al.
(2008) didn’t provide the monochromatic opacity, we cannot derive
the total monochromatic opacity to calculate the mean opacities.
Thus, we simply pick the maximum between the molecular and dust
mean opacities as the total opacity. Considering that the molecular
opacity is normally significantly smaller than the dust opacity, the
derived opacity should approximate the real mean opacity reasonably
well. For the ρ − T region that does not have valid opacity data,
we use the opacity at the smallest or largest available density at
that specific temperature, except for the molecular opacity (the
detailed interpolation scheme for the molecular opacity is discussed
in Section 2.2).

To verify our combined opacities, we compare our mean opacities
with the MESA and ATLAS9 opacities in Fig. 4. Our opacities are
valid over a much larger ρ − T parameter space. In the common
ρ − T parameter space where the different opacity data bases are
all valid, our opacities agree with the other opacities quite well.
These combined opacities are significant updates to our previously
compiled opacities for protoplanetary disc numerical simulations
(Zhu, Hartmann & Gammie 2009; Zhu et al. 2012). After deriving this
new opacity table, we are ready to use it in our numerical simulations.

3 NUMERICAL METHOD

We solve the hydrodynamical equations using ATHENA++ (Stone
et al. 2020). ATHENA++ is the successor of ATHENA that uses a
higher order Godunov scheme for magnetohydrodynamic (MHD)

and the constrained transport (CT) to conserve the divergence-free
property for magnetic fields (Gardiner & Stone 2005, 2008; Stone
et al. 2008). The geometric source terms in curvilinear coordinates
(e.g. in cylindrical and spherical-polar coordinates) are specifically
implemented to conserve angular momentum to machine precision.
This property is crucial for disc simulations. In this work, we further
extend the angular momentum conservation property to the rotating
frame, as detailed in Appendix A.

We have used two different radiation modules to solve the radiative
transfer equation and to couple radiation with the fluid equations.
Both modules directly solve the time-dependent radiative transfer
equation for the specific intensity (Jiang et al. 2014). Unlike the
commonly used flux-limited diffusion approximation (Levermore &
Pomraning 1981) and the M1 closure method (González, Audit &
Huynh 2007; Skinner & Ostriker 2013), solving the specific intensity
equation does not suffer the shadowing problem or the ray crossing
problem (Davis, Stone & Jiang 2012). We first use the method of
Jiang et al. (2014) to explicitly solve the radiative transfer equation.
Since the characteristic speed in the transport step is the speed of
light, solving this equation explicitly requires very small numerical
time-steps. Thus, we adopt the reduced speed of light approach as
in Zhang et al. (2018). Although this explicit method is numerically
stable and robust, the reduced speed of light could lead to inaccurate
light crossing and diffusion time-scales (e.g. Zhang et al. 2018;
Zhu, Jiang & Stone 2020). Thus, after the simulation settles to a
steady state (five planetary orbits for 3D simulations), we restart the
simulations using the implicit method of Jiang (2021). Although the
implicit method is slow due to the iteration steps and the speed of
light is still reduced in some cases to speed up the convergence, we
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Figure 3. The final combined Rosseland mean and Planck mean opacities.

Figure 4. Our combined Rosseland mean (black curves) and Planck mean
(yellow dotted curves) opacities compared with the MESA and ATLAS9
Rosseland mean opacities at different gas densities and temperatures. Only
the opacities at their valid ρ − T conditions are plotted. In the common ρ − T
parameter space where different opacity data bases are all valid, our opacities
agree with the other opacities quite well.

can achieve a much better time-scale separation between the radiation
transport and fluid dynamics. In most of our cases, the speed of light
only needs to be reduced at most by a factor of 10 for the implicit
method, compared with a factor of 2 × 105 for the explicit method.
On the other hand, using the explicit and the implicit methods give
almost identical results in our simulations, suggesting a good time-
scale separation even for the explicit method. Test problems using
either the implicit and explicit methods are provided in Section 3.2.1.

We adopt the third-order piecewise parabolic method (PPM) for
spatial reconstruction for hydrodynamic quantities, which maintains
a better hydrostatic equilibrium compared with the second-order
reconstruction method. For the explicit radiative transfer, we also
adopt the third-order spatial reconstruction for the intensity in the
radiation transport step, which is crucial for accurately simulating
regions with high optical depths (e.g. the optical depth of 104; Zhu
et al. 2020). For the implicit radiative transfer scheme, the second-
order intensity reconstruction is sufficient for capturing the thermal
structure of the optically thick region, and is thus adopted. We use
the second-order Van-Leer method for the time integration, and
the HLLC Riemann solver to calculate the flux for hydrodynamic
quantities.

3.1 Protoplanetary disc structure and planetary core properties

The protoplanetary disc structure determines the planet’s atmosphere
structure. For example, the disc temperature directly affects the
envelope crossover time (Ali-Dib et al. 2020). Unlike most previous
works (Lee et al. 2014; Piso & Youdin 2014) which use the
minimum-mass solar nebula or the minimum-mass extrasolar nebula
model (Chiang & Laughlin 2013), we adopt the disc structure from
D’Alessio et al. (1998), which successfully fits protoplanetary disc
observations. Its thermal structure is also self-consistently derived
with disc radiative transfer calculations. We fit fig. 3 of D’Alessio
et al. (1998) to derive the disc mid-plane temperature as

Tc =
{

39.4 × (R/10 au)−4/5 K if R < 10 au
39.4 × (R/10 au)−1/2 K if R > 10 au .

(2)

In the disc region beyond 10 au, stellar irradiation dominates.
As in D’Alessio et al. (1998), we derive the disc surface density
using the α disc model (Shakura & Sunyaev 1973). We also
require the disc to be gravitationally stable. Thus, we have surface
density � = min{Ṁ/(3πν), �Q=1}, where ν = αc2

s /
 and �Q = 1 =
cs
/(πG). We choose a constant accretion rate through the disc
Ṁ = 10−8M� yr−1 and α = 10−3 for our disc model. Thus, at the
disc radius R = 5 au, the disc’s surface density is 488 g cm−2, the
mid-plane temperature is 66 K, the mid-plane density is 7 × 10−11

g cm−3, and the disc’s aspect ratio (H/R) is 0.037. With similar
assumptions, our adopted disc model is similar to the Bitsch et al.
(2015) model.

We choose 10 M⊕ as the planet’s core mass in our simulations.
Then, the Hill and Bondi radii for the planetary core at 5 au are

rH = R
(q

3

)1/3
= 0.0216R = 0.58H , (3)

where q = Mp/M∗. With our fiducial disc temperature,

rB = GMp

c2
s

= qR
R2

H 2
= 0.0219R = 0.59H . (4)

Both the Hill radius and the Bondi radius are about half of the disc
scale height at 5 au. This is expected considering that the core mass
of 10 M⊕ is close to the disc thermal mass

Mth = c3
s

G

=

(
H

R

)3

M∗ = 17M⊕ . (5)

The radii rB and rH are related to the thermal mass with rB/H =
Mp/Mth, rH/H = 3−1/3(Mp/Mth)1/3, and rB/rH = 31/3(Mp/Mth)2/3. Thus,
with Mp ∼ Mth, we have rB ∼ rH ∼ H.
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Table 1. Different setups for isolated-sphere and disc models.

Fiducial HighL BigDust HotDisc LowL LowLBD

L/(1.54 × 10−6L�) 1 10 1 1 0.1 0.1
amax for dust 1 mm 1 mm 10 cm 1 mm 1 mm 10cm
Tirr 66 K 66 K 66 K 174 K 66 K 66
tend/tp for 3D sphere 7.68 6.79 7.10 7.26 6.94 5.47
tend/tp for 3D disc 7.20 7.00 7.01 8.30 7.18 8.00

Knowing disc and planet properties, we should be able to study
how Jupiter gathers its envelope in 3D simulations. However, the
atmosphere build-up time-scale is the thermal (KH) time-scale,
which is millions of years, much longer than our 3D simulations can
afford. Instead, we can only study snapshots during the atmosphere
accretion, similar to the static model discussed in the introduction.
Then, we can connect different snapshots using the energy conser-
vation as in the quasi-static model.

To simulate the envelope structure at one snapshot, we need to
specify a luminosity throughout the envelope. The most important
phase of Jupiter’s atmosphere accretion is the phase when Jupiter
is gathering its atmosphere mass to reach the crossover mass. This
is also the longest phase during the atmosphere accretion, which
directly determines if Jupiter can go through the run-away accretion.
The luminosity during this phase can be estimated with L =
GMpṀp/rp , which is L = 5.92 × 1027 ergs s−1 (or 1.54×10−6 L�)
using Mp = 10M⊕, Ṁp = 10−5M⊕ yr−1, and rp = 2R⊕. With this
Ṁp , a 10 M⊕ atmosphere can be accreted on to the 10M⊕ core
during the 1 Myr disc lifetime, so that run-away accretion can occur
before the gas disc disperses. In reality, this luminosity is at the high
end of the envelope accretion luminosity. It is more representing
the beginning of the atmosphere gathering stage or the run-away
accretion stage (Section 5.3). The actual accreted atmosphere is
on top of the existing atmosphere so that not all the atmosphere
is accreted to the core radius and we overestimate the energy
released during the accretion. Furthermore, some protoplanetary
discs’ lifetimes can be 10 Myr so that a lower accretion rate can
still trigger run-away accretion. Thus, we have also carried out
simulations with 10 times less luminosity, which is L = 5.92 × 1026

ergs s−1 (or 1.54×10−7 L�). We caution that a smaller luminosity
leads to a colder and denser planetary atmosphere so that, after the
initialization of the simulation, the atmosphere needs to collapse
further to reach a steady state and this collapse takes a longer time.
Within our simulation time (∼10 orbits), the atmospheres in these
low luminosity simulations are not fully settled to steady states, as
discussed in Section 4.1.

For our main simulations, we follow Pollack et al. (1996) and
Rafikov (2006) to assume that the released energy is distributed
throughout the envelope so that the luminosity actually follows (1-
rp/r)L. By replacing rp with the inner boundary radius rin (in our
simulations rin is ∼59 times rp =2 R⊕; details in Section 3), this
luminosity profile is also more numerically friendly since there is no
large intensity close to the inner boundary. To achieve this luminosity,
we add a heating rate to the whole envelope

dE

dt
= L

4π

rin

r4
, (6)

where E is the energy per unit volume. The resulting luminosity
increases sharply from the inner boundary, and, for the bulk of
the envelope, the luminosity is a constant, similar to the constant
luminosity assumption in Piso & Youdin (2014). For our test case
in Section 3.2.1, where we want to compare the simulation with

the analytical solution, we indeed implement a constant flux inner
boundary condition detailed in Appendix B.

After specifying the disc density, temperature, core mass, and core
heating rate, we can simulate the planet’s envelope in the disc. The
envelope reaches a steady state with the given heating rate. We have
tried six different setups (Table 1), including the fiducial case, the
big dust case (thus lower opacity), the higher luminosity case, the
hotter disc case, and two low luminosity cases that are identical to
the fiducial case and the big dust case except for the low luminosity.
These setups are summarized in Table 1. The BigDust setup explores
how dust growth affects the envelope structure. The HotDisc setup
simulates the giant planet formation in a hotter disc environment.

As will be shown in Section 4, convection directly affects the en-
velope structure. For a spherical envelope, the maximum luminosity
that can be carried out by radiation before the envelope becomes
unstable to convection is

Lmax = 64πσT 3

3κρ(r)

(
1 − 1

γ

)
μmuGm(r)

kB

, (7)

where m(r) is the mass within the radius r, ρ(r) is the density at r, μ is
the mean molecular weight, mu is the atomic mass constant, and kB is
the Boltzmann constant. With T∼100 K in the outer envelope, m ∼ 10
M⊕, κ ∼ 1 cm2 g−1 for our fiducial opacity, ρmid = 7 × 10−11 g cm−3,
γ = 1.4, and μ = 2.35, we can derive Lmax = 1.7 × 1027 ergs s−1.
Since our fiducial luminosity is higher than this Lmax, the envelope
in our fiducial case is convectively unstable. However, the BigDust
case with κ ∼ 0.1 cm2 g−1 and the HotDisc case with Tirr ∼ 174 K
have ∼10 times higher Lmax that are larger than our provided fiducial
luminosity. Thus, envelopes in these two cases should be radiative.
Our low luminosity cases should also be radiative accordingly. These
estimates are consistent with our simulation results in Section 4.
Overall, by changing L, κ , and Tirr, we can control the strength of
convection in the envelope.

For each setup in Table 1, we carry out three simulations for
comparison: the 1D radiation simulation for the isolated and spherical
envelope, the 3D simulation for the isolated and spherical envelope
(Section 3.2), and the 3D simulation for the planet envelope embed-
ded in the disc (Section 3.3). We visualize these simulations in Fig. 5.

3.2 1D and 3D isolated sphere simulations

For the isolated spherical envelope, both 1D and 3D radiation
simulations have been carried out to study the effect of convection.
Our 1D radiation simulations have the radiative energy transport
only. We do not add the energy transport due to convection from the
sub-grid mixing-length theory. Thus, the 1D and 3D simulations have
identical setups, and the only difference is that while 3D simulations
allow convection, 1D simulations do not. If not specified, when we
refer to 1D simulations, we mean 1D simulations with radiation
only (no convection). Only in Section 5.1 where we develop a simple
model for reproducing 3D simulation results, we consider convection
in 1D models.
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Proto-Jupiter’s envelope 459

Figure 5. The density structure of the 3D isolated sphere (the left-hand panel) and 3D envelope-in-disc (the right-hand panel) simulations with our fiducial
setup. The green surface at the centre is the iso-surface with a constant radial radiation flux. The iso-surface is not smooth due to the convective motion within
the envelope.

The initial spherically symmetric envelope has a radial density
profile of

ρ = ρ0e
−r2/2H 2

, (8)

where ρ0 = 7 × 10−11 g cm−3, and H = 0.185 au, representing
the vertical density stratification in the protoplanetary disc at 5 au,
following our choice of disc parameters after equation (2).

To simulate the gravity from both the star and the planet, the
envelope is subject to the gravitational force of

g(r) =
(

GMp

r2
+ r
2

r=5 au

)
× fs , (9)

where 
r = 5 au is the angular frequency of Jupiter’s orbit. The first
term on the right is the gravity from the planet, while the second term
is the force component towards the disc mid-plane due to the stellar
gravity. fs is a smoothing function,

fs = (r − rin)2

(r − rin)2 + r2
s

, (10)

where rin is the inner boundary of the simulation domain, and rs is
the gravitational smoothing length. With this smoothing function,
the gravitational acceleration is zero at rin, which allows the disc
to maintain a better hydrostatic equilibrium close to the inner
boundary (Fung et al. 2019). Compared with previous 1D envelope
calculations which start with the disc mid-plane quantities, our
adopted gravitational force (equation 9) guarantees a much smoother
transition from the planet envelope to the background disc. On the
other hand, this setup is designed for simulating the vertical direction
in the disc (perpendicular to the disc mid-plane), and it does not
include the anisotropic density stratification in the disc and the disc’s
Keplerian shear. These shortcomings will be overcome by the disc
setup in Section 3.3.

The initial condition is not in hydrostatic equilibrium since
equation (8) does not take into account the gravity from the planet.
After the planet gathers its envelope, the density structure beyond
the planet’s Hill radius should be smaller than the density from
equation (8). However, in all our simulations, the planet’s envelope

mass within the Hill radius is at most 20 per cent of the total mass in
the computational domain. Thus, the resulting density profile beyond
the planet’s Hill radius still follows equation (8) very well.

The 10 M⊕ core gathers envelope material quickly and reaches
steady state during the thermal time (CvnT/L), where Cv is the molar
heat capacity and L is the typical luminosity. With the 0.3 M⊕ enve-
lope (the typical envelope mass in our simulations) at our disc tem-
perature and L being close to our fiducial luminosity (at early times,
L is actually higher than our fiducial luminosity), the thermal time is
∼5 times Jupiter’s orbital period. Note that this thermal time in the
simulation is significantly shorter than the Myr KH time-scale of the
planet’s envelope since we only simulate the very outer region of the
planet’s envelope, which has low mass and low temperature. We run
our simulations longer than the thermal time and ensure that the en-
velope has reached steady state (except for the low luminosity cases).

Our simulation domain covers r = 0.001 to 0.3 ap with the Jupiter
orbit’s semimajor axis ap = 5 au with 140 grid cells that are uniformly
spaced in logarithmic space. The domain range is equivalent to
0.027–8.1 H at 5 au. The reflecting inner boundary and outflow
(no inflow allowed) outer boundary conditions have been used in the
radial direction. To guarantee that there is no mass flux at the inner
boundary, we set the mass flux from the Riemann solver to be zero
at the inner boundary. For 3D simulations, we have 40 grid cells
uniformly spaced from θ = 0.1 to π /2 in the poloidal direction, and
160 grid cells uniformly spaced from φ = 0 to 2π in the azimuthal
direction. We have adopted a reflecting boundary condition in the
θ direction and a periodic boundary condition in the φ direction.
The heat capacity ratio γ is chosen as 1.4 and the mean molecular
weight is chosen as 2.35, considering that the gas mainly consists of
molecular hydrogen at our studied density and temperature range. A
global density floor of 10−10–10−8ρ0 has normally been adopted. The
smoothing parameter rs for the gravitational force is chosen as 0.1 rin.

For radiative transfer calculations, we have used the angular
discretization with respect to the local coordinate (r, θ , φ) in each
cell. We have 8 longitudinal angles and 6 polar angles in the 3D
simulations (a total of 96 discrete directions including both inward
and outward directions) and 20 polar angles in the 1D simulations. At
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460 Z. Zhu et al.

Figure 6. The density, temperature, and luminosity in our 1D envelope test problems with rin = 0.0003 ap (upper panels) and rin = 0.001 ap (lower panels).
The black curves are from simulations with the explicit radiative transfer method, while the red curves are from simulations with the implicit radiative transfer
method. The blue curves in the middle and right-hand panels are analytical solutions. In the upper panels, the dotted and solid curves represent low and high
resolution runs, respectively. The vertical dashed line in the density panel labels rH (which is also very close to rB in this case).

the outer radial boundary, we assume that there is incoming isotropic
radiation from the background medium (e.g. stellar irradiation) with a
temperature of 66 K. With such a boundary condition, our simulation
domain is kept at 66 K if there are no additional heating sources. The
tolerance error is set at 10−5 for the implicit method.

3.2.1 Test problems

To explore the limitation of our grid setup and radiative transfer
methods, we have done various slightly simplified 1D spherical
simulations with different resolutions and radiative transfer methods,
and compare them against the analytical results.

When the envelope is radiative, we can calculate the envelope’s
thermal structure analytically. For a steady state, the second momen-
tum equation of the radiative transfer equation becomes

∇ · P r = −κT ρFr , (11)

where P r and Fr are the radiation pressure tensor and the radiation
flux, and κT is the total opacity. With the Eddington approximation,
we have

1

3

∂Er

∂r
= −κT ρ

L

4πr2c
. (12)

where κT is the total opacity (including the absorption and scattering
opacity) and c is the speed of light. With irradiation from a blackbody
having a temperature of Tirr, we use the two stream approximation

to derive the temperature at the surface (r = rout, τ = 0)

L

4πr2
out

= Fr = car√
3

(
T 4

τ=0 − T 4
irr

)
, (13)

where ar is the radiation density constant. With Er (τ = 0) = arT
4
τ=0

as one boundary condition, we can integrate equation (12) from the
surface at rout to the interior at r to derive

T (r)4 = 3L

4πcar

∫ rout

r

κT ρ

r2
dr +

√
3L

4πR2car

+ T 4
irr . (14)

The choice of rout does not matter as long as the density drops sharply
at large r so that the integral converges. We use our outer boundary
0.3 ap as rout in our calculation below.

Fig. 6 shows various 1D test problems at t = 50 planetary orbits.
In the lower panels, we adopt our fiducial grid setup as in Section 3.2
but with 1/10th of our fiducial luminosity (thus 1.54×10−7 L�, the
same as our low luminosity cases). We use the constant radiation
flux boundary condition at the inner boundary (the implementation
is detailed in Appendix B) so that we can compare with the analytical
solution of equation (14). Both the Planck and Rosseland mean
opacities are chosen as 1 cm2 g−1 for simplicity. All other parameters
are the same as our fiducial cases in Section 3.2. The blue curve in
the middle panel is from the analytical solution, which agrees well
with our simulation results. After testing with various luminosities,
we find that this luminosity is the lowest we can accurately simulate
with our adopted grid setup. An even lower input luminosity will lead
to a sharp density or pressure gradient close to the core, which will
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Proto-Jupiter’s envelope 461

generate significant artificial heating that can propagate throughout
the whole envelope.

To demonstrate the artificial heating due to insufficient resolution,
we carry out test simulations with a smaller rin = 0.0003ap, as shown
in the upper panels of Fig. 6. This leads to a sharper density or
pressure gradient close to the core. We adopt our fiducial luminosity
in these simulations. We carry out simulations with two different
resolutions: 100 (dotted curves) and 200 (solid curves) radial grid
cells uniformly spaced in logarithmic space. In the very inner region,
where the pressure gradient is the largest, the limited number of
numerical grid cells means that it is harder to maintain a good
hydrostatic equilibrium, and a noticeable amount of extra heat is
generated. In the rightmost panel, we can see that, when the resolution
is low (100 grid cells), the real luminosity throughout the envelope
is higher than our input luminosity from the inner boundary (the
blue line). When we double the resolution, we can recover our input
luminosity. Thus, high resolution is needed to simulate the region
with a steep pressure gradient, or a larger smoothing length is needed.
The red curves are from implicit methods, which show very similar
results but with less variations.

Fundamentally, such numerical heating is a manifestation of
insufficient numerical resolution at sharp density transition close
to the inner boundary. The numerical scheme cannot maintain an
infinitely sharp density transition. For example, we cannot simulate
the whole atmosphere of a forming Jupiter if the atmosphere is
isothermal, since the density contrast from the core surface at rcore to
the Bondi radius is exp(− (rB − rcore)/hcore), where (rB − rcore)/hcore =
1.7 × 106 with the envelope scale height (hcore) calculated with our
disc temperature. Trying to simulate this structure with insufficient
resolution leads to a much smoother density profile. For our radiative
transfer calculations, a smoother density profile close to the inner
boundary corresponds to the density profile of a sphere with a higher
luminosity. This higher luminosity can also be derived directly using
the diffusion equation where a lower ρ leads to a higher luminosity
with the same temperature structure. Thus, the smoother density
profile manifests as numerical heating and higher luminosity. When
we examine the velocity structure, we notice velocity fluctuations
close to the inner boundary in the poorly balanced case, which drives
the extra heating. It is difficult to give some specific rules on the nu-
merical resolution needed. Different numerical schemes also provide
different results (in our setup the PPM reconstruction behaves better
than the piecewise linear PLM reconstruction). We also find that a
larger smoothing length of the planetary potential can significantly
reduce the numerical heating (as in Schulik et al. 2019), but it also
limits the ability to simulate the innermost high density region. Thus,
numerical resolution tests are crucial. Overall, with our fiducial setup
(rin = 0.001 ap), smoothing length (rs = 0.1 rin), and luminosity
(L = 1.54 × 10−7 or 1.54×10−6 L�), we have confirmed that the nu-
merical heating rate is significantly lower than our input luminosity.

3.3 3D disc simulations

After simulating the isolated envelope assuming the spherical geom-
etry, we begin to simulate the planet’s envelope in a background
protoplanetary disc. Following the protoplanetary disc structure
derived in Section 3.1, we set H/R = 0.037 at 5 au and a flat
temperature radial profile. The mid-plane density at 5 au is ρ0 =
7 × 10−11 g cm−3, and it changes radially as ρ0(R/5 au)−3, where R is
the distance to the star. The disc vertical structure is self-consistently
determined by the vertical hydrostatic equilibrium, and the azimuthal
velocity around the central star is also self-consistently determined
by the radial force balance. Our simulation domain is centred around

the planetary core at 5 au and is initiated with the background disc
structure. Since the planetary core is orbiting around the central star,
we need to consider non-inertial forces. The implementation of the
non-inertial forces is given in Appendix A.

All parameters on the grid structure and boundary conditions are
identical to our isolated sphere simulations in Section 3.2. The only
differences in the setup are the outer radial boundary condition for
fluid quantities and the initial condition using the disc structure
(Fig. 5). Considering that the outer radial boundary is only 0.3 × 5
au away from the planet at 5 au, the central star and most of the disc
are outside the whole computation domain centred around the planet.
Thus, we need to feed the Keplerian flow at our radial boundary to
maintain the disc structure. Thus, quantities at the outer boundary
are always fixed with the disc’s density, velocity, and energy as in
the initial condition, which is similar to Zhu, Ju & Stone (2016).

4 RESULTS

We first present our results from 3D isolated sphere simulations
(Section 4.1), and then present results from 3D disc simulations
(Section 4.2). The 1D spherical simulations will also be compared
with these 3D simulations.

4.1 3D isolated sphere simulations

After running the 3D isolated sphere simulations for several planetary
orbits (Table 1), we present the envelope structure at θ = π /2 plane
in Fig. 7. For our fiducial case, despite the fact that the density
and temperature structures are very axisymmetric, there is strong
subsonic convective motion in the envelope. As shown in the leftmost
panels of Fig. 7, no visible asymmetric structure can be seen in
the density and temperature panels. However, there is subsonic
convective motion shown in the vr panel with the local mach number
less than 0.5.

Convective motion is driven by the high luminosity in the envelope.
To study the effects of convection on the envelope structure, we plot
the spherically averaged 1D profiles of various quantities for both
the 1D and 3D simulations in Fig. 8. As shown in the ∇ ≡ dlnT/dlnP
panel, ∇ in the 1D simulation is actually higher than the adiabatic
temperature gradient ∇ad in order to transport the energy out by
the radiative diffusion. The ∇ad is equal to (γ − 1)/γ for the ideal
gas. Based on the Schwarzschild criterion, whenever ∇ is higher
than ∇ad, the gas is convectively unstable, and, since convection is
extremely efficient at transporting energy out, the envelope remains
to be marginally convectively stable or unstable having ∇ = ∇ad.
However, 1D simulations do not allow convective motion, since one
gas parcel that is under another gas parcel remains under in 1D
simulations. In 2D or 3D simulations that gas parcel can move up
through the second or third dimension. As shown in the ∇ panel,
allowing the convective motion, the 3D spherical simulations exhibit
the expected ∇ ∼ ∇ad. This ∇ ∼ ∇ad holds all the way from the centre
to log10(r/5 au) ∼ −1.5, indicating that convection even reaches out
beyond rB (labelled by the vertical dashed line). In this paper, we
define entropy per particle as

Entropy = kBln

(
T

γ
γ−1

P

)
. (15)

The entropy is shown in the upper right panel of Fig. 8 and the curve
is flat in the convective region, as expected.

Convection is carrying part of the energy out from the interior to
the surface. The radiative flux (Fr) and convective energy flux (〈Egvr〉
where Eg is the internal energy density) are shown in the lower left
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462 Z. Zhu et al.

Figure 7. The density (upper panels), temperature (middle panels), and vr (normalized to the local sound speed, lower panels) for four 3D isolated sphere
models at the θ = π /2 plane at the end of each simulation. Convection in the HighL case is so strong that we adjust the vr/cs colourbar for the HighL case to
[−2, 2]. The left two models show convection, while the right two models do not show convection.

panel of Fig. 8. By comparing the 3D isolated sphere simulation with
the 1D simulation, we can see that, in the 3D isolated sphere simula-
tion, almost half the energy is carried out by convection and the other
half by radiative diffusion. If we add the radiative and convective flux
together, we roughly recover the green curve within rB.

The presence of convection significantly changes the envelope’s
density and temperature structure. By comparing the 1D and 3D
isolated sphere simulations, we can see that convection in 3D
simulations makes the envelope colder and denser. By convectively
transporting the energy out, the disc does not need to be very hot
to transport heat out radiatively. The cooler envelope makes the
envelope collapse more, leading to a higher density. In this case, the
whole envelope is convectively unstable in our simulation domain.

After understanding the results for our fiducial case, we can study
how different envelope parameters affect the envelope structure. As
shown in Fig. 7, the higher luminosity in ‘HighL’ drives a much
stronger convection. The colourbar for vr/cs, 0 is adjusted to [−2,2]
accordingly, and we can clearly see that the turbulence becomes
transonic. Such transonic motion does not provide enough time for
the envelope to adjust itself from the turbulent motion. Thus, the
density and temperature structure is not axisymmetric. We can clearly
see turbulent features in the ρ and T panels. In the left-hand panels
of Fig. 9, we see similar behaviour as the fiducial case. In the 1D
model, ∇ is larger than ∇ad, while in the 3D model convection tries
to drive it back to ∇ad. We notice that the actual ∇ is a little bit higher
than ∇ad. We think this might be due to the fact that, with such a high
luminosity, even convection cannot transport energy out efficiently

enough considering that the convective motion is already transonic.
The convective envelope is again colder and denser in the 3D model
compared with the 1D radiative model.

On the other hand, we can make the envelope less convective or
even radiative by using either a hotter disc, a lower opacity, or a
lower luminosity as discussed after equation (7). As shown in Fig. 7,
the envelope structure is indeed axisymmetric and quiescent in the
hotter disc or with the low opacity (from the bigger dust in the
envelope). Most importantly, due to the spherical symmetry and the
lack of motion, the envelope structure is almost identical between
1D and 3D isolated sphere simulations. This is demonstrated in the
middle and right columns of Fig. 9, where the green and blue curves
perfectly overlap with each other in these radiative envelopes. The ∇
is smaller than ∇ad everywhere for both the 1D and 3D models. The
convective flux is also significantly smaller than the radiative flux,
again confirming that the envelope is convectively stable. Due to the
radiative envelopes with ∇ < ∇ad, the entropy decreases towards the
centre (middle rows of Fig. 9).

Overall, the 1D and 3D isolated sphere models produce identical
envelope structure for the radiative envelope, but they produce
different structures for the convective envelope since 1D simulations
do not allow convection. On the other hand, if we include the effects
of convection (e.g. ∇ = ∇ad) in the 1D semi-analytical model, we
can reproduce the envelope structure in the 3D spherical simulations
using 1D models, which will be studied in Section 5.1.

We also plot the 1D profiles of the lower luminosity cases in
Fig. 10. The envelopes are mostly radiative. Even in 1D radiative
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Proto-Jupiter’s envelope 463

Figure 8. The radial profiles of various quantities for 1D (green curves), 3D isolated sphere (blue curves), and 3D disc (red curves) models with our fiducial
setup. All quantities are spherically averaged over grids, except for the lower left panel which shows the spherically integrated energy flux (solid curves: radiative
fluxes, dotted curves: convective fluxes from Egvr). The energy fluxes have been averaged over 20 snapshots over a time span of 0.2 planetary orbits. The energy
fluxes, together with the pressure and temperature used in the lower right panel, have also been smoothed over 4 radial grids. The vertical dashed line in the
temperature panel labels rH (which is also very close to rB in our fiducial case). Clearly, convection is prohibited in the 1D model so that ∇ can be higher than ∇ad.

simulations, ∇ is smaller than ∇ad in most regions, except for a
narrow r range in the LowL case, where ∇ is barely higher than
∇ad. Since the envelopes are radiative, 1D and 3D isolated sphere
simulations are almost identical. On the other hand, the envelopes
have not fully reached steady states with such a low luminosity
(especially for the LowLBD case). The envelopes are still contracting
with significant vr so that the convective flux (Egvr) is still high. The
radiative flux in the LowLBD case is still higher than our input flux of
1.54 × 10−7 L�. The radiative flux is actually close to the convective
flux suggesting that the energy increase due to the contraction is
mostly radiated away. Longer 1D radiative simulations suggest that
steady states (when the contraction stops) can be reached at t ∼ 20
planetary orbits (20 tp).

4.2 3D disc simulations

Due to the Keplerian shear, the 3D disc simulations exhibit spiral
arms that extend from the planet. We can see density concentration
along the spirals in the upper panels of Fig. 11. These spirals can also
perturb the disc’s velocity structure (Rabago & Zhu 2021), as shown
in the lower panels of Fig. 11, where the velocity perturbation (δvr)
suddenly changes sign along the spirals at y/H = ±1 when x/H = ±2.
Goodman & Rafikov (2001) pointed out that the strength of a spiral

is mainly determined by the mass ratio between the planet mass and
the disc thermal mass (Mp/Mth). For the Fiducial and the BigDust
models, their disc temperatures are the same and thus Mp/Mth is
also the same. Then, their amplitudes of velocity perturbation at
the spirals should also be similar, as shown in Fig. 11 (the leftmost
and rightmost bottom panels). For the HotDisc model, Mth, which
is proportional to c3

s , is a lot higher so that Mp/Mth is a lot smaller
than our fiducial case. Thus, the excited spirals are much weaker,
demonstrated as the less apparent spirals in the ρ panel and smaller
δvr/cs, 0 in the velocity panel. Besides the spirals, we can also see the
planet-induced horseshoe orbit at x/H ∼ ±0.5 when y/H = ±2.

On the other hand, the envelope structure is very similar between
the 3D isolated sphere and the 3D disc models. For our fiducial case,
the envelope is also convectively unstable and ∇ ∼ ∇ad, as shown in
the ∇ panel of Fig. 8. For the convective envelope, the main difference
between the 3D isolated sphere and disc models is that the 3D disc
model has a slightly colder and denser envelope. This is partly due to
the disc geometry, which leads to a higher density after the spherical-
averaging (e.g. at r/5au = 0.1, the disc model has a higher density.).
The higher averaged density with the same disc temperature leads
to a lower entropy compared with the isolated sphere model at large
r (shown in the entropy panel). Since a convective envelope in 3D
tries to maintain a constant entropy throughout the envelope (even
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464 Z. Zhu et al.

Figure 9. Similar to Fig. 8 but for three other setups.

Figure 10. Similar to Fig. 9 but for two lower luminosity setups.

beyond rB), the envelope’s entropy in a 3D disc is lower than that in
a 3D sphere. Another factor, which may be even more important, is
that the convective motion in the isolated sphere seems to extend to
larger r than that in the disc model. This can be seen in the bottom
left panel of Fig. 7, where the convective motion extends to the scale
of the disc scale height. The ∇ panel in Fig. 8 also shows that the
∇ ∼ ∇ad region extends to a slightly larger r in the 3D isolated
sphere. Thus, the 3D isolated sphere maintains a high entropy from
the surface. On the other hand, the envelope in a 3D disc is colder with
a lower entropy, which then leads to a higher density concentration.
The higher density leads to a higher optical depth. The radiative
diffusion equation suggests that the same temperature gradient leads
to a smaller radiative energy flux in a more optical thick environment.
Thus, compared with the 3D isolated sphere model, less energy in
the disc model can be carried out by radiation and more energy is
now carried out by convection, as shown in the lower left panel of
Fig. 8. The density and temperature differences between isolated
spheres and disc models can be accounted with our 1D simple semi-
analytical model in Section 5.1.

For radiative envelopes, the envelope structure is almost identical
among the 1D/3D isolated sphere and disc models, indicating that
the disc geometry has little effect on the radiative envelope structure.
As shown in the right two columns of Fig. 9, the red curves overlap
the green and blue curves perfectly within rB. At a larger r, the
disc geometry leads to a higher spherically averaged density which
then causes a lower entropy and a higher ∇ there. Unlike the
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Proto-Jupiter’s envelope 465

Figure 11. Similar to Fig. 7 but for 3D disc simulations. δvr is the velocity difference between this snapshot and the initial condition (from the Keplerian shear).
Again, convection in the HighL case is so strong that we adjust the δvr/cs colourbar in the HighL case to [−2, 2].

convective envelope, this higher density beyond rB has little effect
on the envelope structure. This is because the structure of a radiative
envelope is determined by the temperature instead of the entropy in
the disc, and the disc has quite a uniform temperature beyond rB
where the stellar irradiation determines the temperature structure.
The photosphere of the envelope is quite high with our fiducial disc
parameters. The photosphere is at ∼2.8 disc scale heights with our
fiducial opacity, while the photosphere is at ∼2.1 disc scale heights
with our big dust opacity.

4.3 Recycling

Such similarity between the isolated sphere and disc models for
the radiative envelopes is quite surprising since we have observed
significant net flow motion in disc models, as shown in the bottom
panels of Fig. 11. Both the spirals and the horseshoe orbits in disc
models lead to non-zero δvr. Moreover the disc’s Keplerian shear
itself carries material in the envelope away.

To study how material within the envelope is recycled back into
the disc, we add a passive scalar within r/5 au = 0.05 (roughly 2.5
rB for the fiducial model) at t = 5 tp when the envelope has already
settled to a steady state. The passive scalar’s initial density is the
same as the envelope density at t = 5 tp. Then we continue the
simulation for several orbits to see how the passive scalar is advected
in the disc. Since no passive scalar is added into the domain after
the initialization at t = 5 tp, the passive scalar is carried away by the
disc flow and diluted. By tracing the evolution of the passive scalar,

we can understand and quantify how mass is exchanged between the
envelope region and the disc region.

Fig. 12 shows the evolution of the passive scalar at the disc mid-
plane for the convective envelope (fiducial model in the upper panels)
and the radiative envelope (BigDust model in the middle panels
and HotDisc model in the bottom panels) after the passive scalar
is injected at t = 5 tp. For the convective envelope, the convective
motion quickly transports material near the centre to larger radii
where it is carried away by the Keplerian shear. Within 2 orbits,
almost all of the original envelope material is recycled into the disc.
On the other hand, for the radiative envelope, even though the outer
envelope is recycled, the inner core (within 0.1–0.2 rH) is protected
from the recycling. We note that the protected regions in the BigDust
and the HotDisc models are both around 0.1–0.2 rH, although rH in
the HotDisc model is ∼2.6rB, while rH ∼ rB in the BigDust model.

To quantify the efficiency of the recycling, we integrate the mass,
entropy, and internal energy of the passive scalar within a sphere
of rH, 0.2 rH, and 0.1 rH for three different models, and plot these
quantities with time in Fig. 13. As shown in the upper left panel
for the convective envelope, the total mass of the passive scalar
decreases exponentially no matter where the mass is calculated.
Within two planetary orbits, the mass has decreased by almost two
orders of magnitude. The entropy and internal energy per unit mass
is constant with time, indicating that the passive scalar is well mixed
in the envelope and the mass is depleted at the same rate at different
envelope regions. For the radiative envelopes shown in the right two
columns, the passive scalar’s mass within rH decreases quickly, while
the mass within 0.2 and 0.1 rH (especially within 0.1 rH) is almost a
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466 Z. Zhu et al.

Figure 12. The evolution of the passive scalar at the disc mid-plane for the fiducial model (upper panels), the big dust model (middle panels), and the hot disc
model (bottom panels) at different times (left-hand to right-hand panels) after the passive scalar is injected.

constant. The entropy or internal energy per unit mass decreases or
increases with time (especially within the rH sphere), indicating that
the outer envelope where the entropy is the highest and the internal
energy is the lowest has been recycled first.

The recycling pattern revealed by the passive scalar can also
be directly probed with the velocity vectors within the envelope.
Fig. 14 shows the velocity vectors for both isolated sphere and disc
simulations. The vectors in all the panels are on the same scale.
The left two panels show the convective envelopes, where we can
clearly see the rolling motion at various scales. The right two panels
show that the radiative envelopes have much slower motion. Even
though the lower right panel (the disc model) shows slightly faster
motion than the upper right panel (the sphere model), the radial flow
in the disc model decreases dramatically around the core at 0.07 H
(∼0.12 rH). This is consistent with our passive scalar results that, for
radiative envelopes, the region within 0.1–0.2 rH is protected against
recycling. Although the global flow pattern is less robust in our local
simulations which centred around the planet instead of the star, the
global simulations from Fung et al. (2019) also reveal that the flow
velocity decreases dramatically at similar scales.

The protected inner core could be qualitatively understood using
the buoyancy force argument. When the gas parcel is moving towards
the planet due to the planet’s gravity (e.g. the Meridional flow), it

is against the buoyancy force from a thermally stable atmosphere.
Thus, it is slowed down and eventually stopped. Since the thermal
effect plays a role here, we expect that the slowing down occurs when
the entropy of the envelope is smaller than the disc entropy at the disc
scale height. Fig. 9 shows that the entropy starts to decrease sharply
at 0.2 rH for the radiative envelopes. Another way of thinking is that
the infalling material stops at the position where its ramp pressure
balances the thermal pressure. For a transonic inflow, this occurs
when the envelope temperature becomes significantly higher than
the disc temperature.

5 DISCUSSION

5.1 New procedures for 1D semi-analytical models

Based on results from our direct 3D simulations, we can improve
previous 1D models for calculating the envelope’s structure, mainly
regarding the outer boundary condition in the 1D models. Previous
approaches use the minimum of the planet’s Hill radius and Bondi
radius as the outer boundary for 1D calculations (e.g. Bodenheimer &
Pollack 1986). The disc mid-plane density and temperature are used
as the outer boundaries’ density and temperature. Recently, a much
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Proto-Jupiter’s envelope 467

Figure 13. The time evolution of the passive scalar after being injected around the planet for three different disc models (left-hand to right-hand panels). The
upper, middle, and lower panels show the integrated mass, the spherically averaged entropy, and the averaged internal energy per unit mass within a sphere of
rB (solid curves), rB/5 (dotted curves), and rB/10 (dashed curves).

smaller radius (e.g. 1/5–1/3 of the Bondi radius) has been used as
the outer boundary in 1D calculations (e.g. Lee 2019; Ali-Dib et al.
2020), where the entropy is set to be the same as the disc’s entropy.
This is motivated by 3D simulations in which material beyond that
radius is recycled to the disc. For the fully convective envelope, the
outer boundary position does not matter since the envelope’s entropy
is the same as the disc’s entropy anyway. However, for radiative
envelopes, our 3D simulations do not support such a small radius
approach at least for the planetary core at 5 au. For the radiative
envelopes shown in Fig. 9, ∇ is smaller than ∇ad throughout the
whole region. There is no constant entropy region beyond 0.1–0.2
rB. The density and temperature profiles are almost identical to
those in the isolated sphere calculations. Recycling does happen
(as in Section 4.3), but the time-scale of recycling is longer than
the thermal time-scale of recycled material (Section 5.2). Thus,
the temperature structure is hardly affected by the recycling and is
similar to that of an isolated sphere.

Considering that the planet’s gravity does not abruptly stop at the
Hill or Bondi radius, we choose a larger radius, the disc scale height,
as the outer boundary condition. The spherically averaged density
there is

ρ = 1.33ρmide
−1/2 = 0.81ρmid , (16)

where the factor of 1.33 accounts for spherically averaging the flat
disc density structure in every direction at r = H from the planet
(e.g. in the mid-plane, the density is still the mid-plane density at r
= H). The temperature there is chosen as either the disc mid-plane
temperature (if the envelope is convective at r = H) or the temperature
derived with equation (14) integrating from the disc surface to r =
H (if the envelope is radiative at r = H). Finally, starting with these
density and pressure at r = H, we integrate from r = H towards the
core with both the disc’s and the planet’s gravity (equation 9 with
fs = 1) to derive the envelope structure. Similar to the traditional
approach, ∇ is calculated with the thermal diffusion equation, and
we switch to ∇ = ∇ad whenever ∇ > ∇ad. Compared with our 3D
radiation hydrodynamical simulations, this approach is significantly
simpler and faster and we refer it as the 1D semi-analytical
model.

The resulting envelope structures using our fiducial opacity and
amax = 10 cm opacity are shown in Fig. 15 as the dashed curves.
We can see good agreement between this simple semi-analytical
model and 3D simulations for both the convective (left-hand panels)
and the radiative (right-hand panels) cases. At the outer boundary,
the density is slightly higher in 3D simulations since even the disc
region beyond r = H still feels the planet’s gravity and concentrates
slightly.
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468 Z. Zhu et al.

Figure 14. The vertical slices of the temperature structure in 3D isolated sphere models (upper panels) and 3D disc models (lower panels) for the fiducial setup
(left-hand panels) and BigDust setup (right-hand panels) in the direction away from the star. In the disc models, the slices are from the direction that is pointing
towards the central star. The lengths of the velocity vectors are on the same scale among all the four panels.

Figure 15. The envelopes’ structure in 3D simulations (solid curves) and 1D
semi-analytical models (dashed curves) of Section 5.1 for both the convective
(left-hand panels) and radiative (right-hand panels) envelopes. The blue line
in the ∇ panel represents ∇ad.

5.2 Various time-scales

The planet’s atmosphere or envelope accretion involves dramatically
different spatial scales (e.g. core and disc scales) and time-scales
(e.g. recycling and KH time-scales). The structure of the envelope
largely depends on the relative amplitudes among these scales.
Unfortunately, direct numerical simulations can only simulate very
limited spatial and time-scales. Thus, it is important to estimate the
various time-scales for the entire envelope. Particularly, we want to
compare the recycled material’s cooling time-scale with the recycling
time-scale to understand if the recycling process can affect the
envelope’s thermal structure.

Cooling time-scales are the ratio of energy content to an energy
loss rate. The cooling time for an entire bound object is a KH time-
scale, E/L, where due to the virial theorem it is most correct to use
total energy, but (also by the virial theorem) either the thermal or
gravitational energy is usually a good approximation. To estimate
the cooling time-scale, we use our 1D semi-analytical model in
Section 5.1 to calculate the planet’s envelope structure all the way
to the core (2 earth radii) with either the fiducial opacity or the big
dust opacity. All other parameters, including the disc condition, the
luminosity, and the adiabatic index, are the same as in our fiducial
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Proto-Jupiter’s envelope 469

Figure 16. The KH time-scale (dashed blue curves), and the thermal time-
scale for the recycled material (black curves) based on the 1D model with
the big dust opacity. The horizontal dashed line represent the Jupiter’s orbital
time. The solid, dotted, and dashed black curves are different estimates for
the thermal time-scale using different approximations (detailed in the text).

case. From the resulting structure, we integrate the thermal energy
from the Hill radius inwards,

Etot(r) =
∫ r

rH

E(r ′)4πr ′2dr ′ (17)

where and E(r
′
) is the energy per unit volume at r

′
. Then, we use

Etot(r)/L to derive the KH time-scale at different r in the envelope. It
represents the time-scale for the given luminosity to affect the thermal
energy of the envelope material above r. This time-scale for the big
opacity case is given in Fig. 16 as the blue dashed curve. This is the
longest time-scale in the process of envelope accretion. We note that
our KH time-scale at the core is only 103 yr, significantly shorter than
the Myr KH time-scale normally assumed in the Jupiter’s atmosphere
accretion. This is mainly due to our assumed high luminosity. As
discussed in Section 3.1, our fiducial luminosity is ∼10 times higher
than the typical envelope’s luminosity during the contraction. This
high luminosity not only transports the energy out quicker, but also
leads to a hotter and less massive envelope. Both effects decrease the
KH time-scale in our models. On the other hand, this KH time-scale
is the whole envelope’s cooling and contraction time-scale, which is
not the recycled material’s cooling time-scale.

Cooling times for the recycled material can be derived using the
cooling times for local thermal perturbations. We recap this time-
scale for the case of optically thick perturbations larger than �λ =
(κρ)−1. For a thermal perturbaton δT on length-scale �x in a plane-
parallel atmosphere, the excess energy per volume is ρcVδT with cV
the specific heat per unit mass. The energy loss per volume is ∇ · F
∼ δF/�x. The radiative flux is F = krad∇T with krad = 16σT3/(3κρ).
Thus δF ∼ kradδT/�x and

tcool ∼ 3cV ρ2κ

16σT 3
�2

x (18)

in agreement with standard expressions (in the diffusive regime).
We can use this cooling time-scale to describe cooling during the
‘atmospheric recycling’ process.

‘Atmospheric recycling’, i.e. the flow of disc gas inside the
envelope of a protoplanet (i.e. inside its Bondi radius) can limit
the cooling of a protoplanet by constantly delivering disc material
which has a higher entropy than any parts of the envelope that have
already cooled. The existence of the radiative envelopes in some
simulations reveal that in regions with recycling the envelope still
has a stably stratified, radiative structure with ∇ < ∇ad. Furthermore,

∇ in these 3D radiative envelopes which are subject to recycling is
almost identical to the ∇ in corresponding 1D radiative simulations,
indicating that the recycled high entropy disc flows cool efficiently
on their recycling time-scale. To quantify this we define the extra
energy content that must be lost if the actual temperature T is below
the adiabaticTad that has the disc entropy (at that radius and pressure).

Eextra = 4π

∫ rout

r

ρcV (Tad − T )r ′2dr ′ (19)


 4π

∫ rout

r

ρcV

[∫ rout

r ′
(∇ad − ∇)

μg

R dr ′
]

r ′2dr ′, (20)

where we use T = To(rout) − ∫
dT /drdr = To + ∫ ∇μg/Rdr , with

an ideal gas law P = ρRT /μ, the hydrostatic equilibrium dP/dr =
ρg, and similarly for Tad. We further approximate the integral as

Eextra ∼ 4πcV ρT r3(∇ad − ∇), (21)

which could be too severe an approximation. It assumes that
∫

rgdr
∼ GMp/r and that the density integral is dominated by the deepest
Hp = P/(ρg).

The available luminosity to carry away this Eextra is likely not the
entire luminosity as usual sources of luminosity (KH contraction
and planetesimal heating) are not responsible for this additional
cooling of the recycling flows. Moreover, there is likely no additional
luminosity to easily measure in a numerical model, if it is in a
quasi-steady state. Given these issues, the relevant luminosity is best
defined relative to Eextra as the additional luminosity that would be
generated by an adiabatic envelope, i.e.

Lextra = 64πσT 4Gm(r)

3κP
(∇ad − ∇) (22)

= 64πσT 4r2

3τ‖
(∇ad − ∇) , (23)

where the final form uses the optical depth τ � = κP/g that would
apply in a plane-parallel atmosphere.

The resulting cooling time for recycling flows is then

tcrc = Eextra

Lextra
∼ 15Prτ‖

32σT 4
, (24)

where the approximate expression uses equation (21) instead of
equation (19) and the diatomic cV = 5/2R/μ. If we compare to
the standard equation (18) then

tcrc

tcool
= τ‖r

τx�x

, (25)

where τ x = ρκ�x for the perturbation, so the only difference is in
effective optical depths and length-scales.

Thus, we can estimate the cooling time for recycling flows using
our derived 1D envelope structure. Fig. 16 shows these time estimates
for the big dust opacity case. The solid black curve represents Eextra/L
where Eextra is from equation (19) and L is the constant luminosity
throughout the envelope. The dashed black curve uses the sameEextra,
but L is from equation (22) at different r. The dotted black curve is
from equation (24). Overall, the cooling time-scale is comparable
or shorter than the orbital time-scale (which is also the recycling
time-scale) at r > 0.01rH. Thus, recycling has limited impact on the
thermal structure of the envelope.

At the same time, the core and envelope can be convective (e.g. our
fiducial opacity case). When the envelope is convective, the energy
transport time-scale is the time-scale of the convective motion. The
convection speed can be estimated using the Mixing-length-theory
(MLT). However, the MLT requires us to solve the deviation of
the envelope’s temperature gradient from the adiabatic temperature
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gradient, which is beyond our simple 1D model. Thus, we roughly
estimate the convection velocity using the empirical relationship
(Porter & Woodward 2000; Fuller 2017; Jones et al. 2017),

vconv(r) =
(

L

4πr2ρ

)1/3

. (26)

Using the 1D model with our fiducial setup, we can estimate vconv(r).
It turns out that vconv(r) is roughly a constant throughout the envelope
with the value of ∼0.1 cs,0 where cs,0 is the sound speed at the disc
temperature. This is consistent with our simulations (Fig. 7). Thus,
the convection time-scale (rH/(0.1 cs,0) ∼ 6/
) is the orbital time-
scale.

By comparing these time-scales, we can discuss the effect of
recycling which occurs on the orbital time-scale (Section 4.3). For
a convective envelope, the recycling time-scale is similar to the
convective time-scale. Thus, recycling can quickly exchange the
envelope material with the disc material even to the deepest part of the
outermost convective envelope. In our fiducial 3D disc simulation, the
convective envelope extends to our inner boundary, which explains
why all the envelope material have been recycled efficiently. In our
1D semi-analytical model, there is a radiative zone from 0.005 rH to
0.05 rH separating the inner and outer convective regions so that the
recycling may only be effective for the outer convective zone (>0.05
rH).

For a radiative envelope, the mass recycling is only efficient
beyond 0.1 rH. Even so, the thermal structure of that outer region
is hardly affected by the recycling process, implying that the thermal
time-scale to establish the envelope’s thermal structure is shorter
than the recycling time-scale. Quantifying this thermal time-scale
is difficult. Our crude estimate (black curves in Fig. 16) indeed
suggests that the cooling time-scale is shorter or comparable to the
recycling time-scale. Overall, for the planet at 5 au, the recycling
has large effects on the mass exchange for the outer envelope, but it
has limited effects on the thermal structure of the envelope. At 0.1
au where the orbital time-scale decreases dramatically, the recycling
may have stronger effects on the envelope’s thermal structure.

5.3 Jupiter’s evolution

After calculating the envelope structure at different snapshots, we can
use the energy conservation (e.g. Piso & Youdin 2014) to connect
them and derive the time evolution of the Jupiter’s envelope accretion.
In detail, given an envelope mass, we search for the luminosity
which can sustain this envelope, and derive the resulting envelope
structure. Then, we calculate the energy difference between two
snapshots having slightly different envelope masses, and divide this
difference with the luminosity to calculate the time span between
these two snapshots. Finally, connecting all the snapshots from
small to large envelope masses, we can derive the time evolution
of envelope accretion. Runaway accretion starts when the luminosity
begins to increase with the increasing envelope mass, which normally
occurs when the atmosphere mass roughly equals the core mass (the
atmosphere reaches the cross-over mass). We have ignored the effects
of mass and volume change on the energy equation, as in Lee et al.
(2014). We use the new 1D models in Section 5.1 to calculate the
envelope structure, but now with the full EOS from Piso & Youdin
(2014) and the new opacity in Section 2. When we calculate the
envelope’s energy, we only include the envelope within 1/10th of the
Hill radius since only this region is bound in our radiative envelopes.
Fig. 17 shows the time evolution of the envelope-to-core mass ratio
and the envelope luminosity for a 10 earth mass core at 5 au. The
envelope mass only includes the envelope within 1/10th of the Hill

Figure 17. The gas-to-core mass ratio (solid curves) and the luminosity
(dashed curves) for our Jupiter evolutionary model with the fiducial opacity
(black curves) and the lower opacity (green curves).

radius. The black curves are derived with the fiducial opacity, while
the green curves are derived with opacity with amax = 10 cm. We
can see that our fiducial luminosity in the simulations (5.92 × 1027

ergs s−1) is at the higher end of the luminosity curve, which occurs
at the early contraction stage or late run-away accretion stage. The
reduced luminosity in our simulations (5.92 × 1026 ergs s−1) is more
aligned with the typical envelope luminosity.

The resulting Jupiter envelope evolution is very similar to previous
results. The 10 earth mass core can undergo runaway accretion
within 10 Myr, and the reduced opacity can speed up the atmo-
sphere accretion. These agreements are not surprising since our 3D
simulations basically confirm the previous 1D analytical or semi-
analytical approach. The improvement we proposed (Section 5.1)
does not change the results qualitatively.

5.4 Chemical abundances of the planetary atmosphere

Although our 3D simulations produce similar planetary structure and
planet evolution as previous 1D models, the 3D simulations reveal
efficient mass recycling which can change the chemical abundances
of the planetary atmosphere.

For a planet with a final atmosphere mass ofmatm, let’s assume that
the initially accreted material has a fraction (fi) of this mass in the
metal. But the planet is embedded in the disc and the disc material
has a fraction (fd) of its mass in the metal. After exchanging the mass
of �m, the metal fraction of the atmosphere becomes

fo = (matm − �m)fi + �mfd

matm
. (27)

If the disc has the same metallicity as the planet (fd = fi), the atmo-
sphere’s chemical abundances won’t change. If all the atmosphere is
recycled (�m = matm), the atmosphere metallicity will change to the
disc’s metallicity. Thus, both �m and the difference between fi and
fd are crucial for the planet’s final metallicity.

From the first-order estimate, �m cannot be higher than the local
disc mass. If we assume that the planet can at most accrete the disc
material within 1 disc scale height at each side of the planet, this
local disc mass is 0.9, 22, 214, 1342 M⊕ if the planet is at 0.1,
1, 5, 20 au based on our adopted disc model in Section 3.1. Thus,
there is a larger mass reservoir for recycling at the outer disc. On
the other hand, for a radiative envelope around a 10 M⊕ core, the
recycling can penetrate until ∼0.1 Hill radius, which corresponds to
5, 51, 253, 1012 R⊕ at these distances. For a planet at 0.1 au, almost
all the atmosphere beyond the core radius (∼2 R⊕) can be recycled,
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while, for a planet that is far away from the star, the recycling process
may only exchange a tiny fraction of the atmosphere at its surface.
Overall, the planet closer to the star is more affected by disc recycling,
although there is a limited amount of disc mass reservoir. Thus,
discovered super-Earths or mini-Neptunes within 1 au may have local
disc metallicity imprinted no matter where they formed initially in
the disc.

For a planet with an outer convective envelope (e.g. due to the
high luminosity from pebble accretion or runaway accretion), the
recycling may penetrate to a deeper part of the atmosphere. On the
other hand, these high luminosity phases can be short compared with
the disc lifetime.

The other effect, fi − fd, is determined by the disc evolution and the
planet migration. During planet formation, the chemical abundances
of the disc change with time (e.g. Li et al. 2020) so that the initially
accreted material may have a different abundance from the later
surrounding disc material. At the same time, if the planet migrates
in the disc, the planet can exchange with the disc material during its
migration.

It is feasible to incorporate the mass exchange into the core-
accretion planet formation model considering disc evolution, planet
migration, and atmosphere accretion, and derive the final planet
metallicity. But it is beyond the scope of this work, and we will
leave it for future studies.

6 CONCLUSION

The traditional model of giant planet formation through core-
accretion is derived by the 1D quasi-static approach. Recently, this
1D approach has been challenged by 3D numerical simulations
which show complicated flow patterns between the envelope and
the disc. Some works suggest that the significant recycling between
the planetary envelope and the disc can slow or even stall the envelope
accretion, potentially explaining the large number of discovered
super-Earths and mini-Neptunes.

To reconcile 1D isolated envelope models and 3D disc simulations,
we have carried out radiation hydrodynamic simulations for 1D
and 3D isolated spherical envelopes, and 3D envelopes embedded
in discs. Different from most previous 3D simulations, we heat
the envelopes at specific rates so that the envelopes can achieve
steady states, similar to the traditional static models. Furthermore,
we have carried out the 3D isolated sphere simulations to bridge 1D
models and 3D disc models. When we compare these 3D isolated
sphere simulations with the 1D isolated sphere simulations, we can
understand the role played by convection. When we compare them
with the 3D disc simulations, we can understand the role played by
disc recycling.

We have updated the opacity table for these simulations. Our
new table uses the dust opacity derived from protoplanetary disc
observations. The molecular and atomic opacities are also updated
to cover the ρ − T condition in a forming planet’s envelope. Both
Rosseland mean and Planck mean opacities for different metallicities
have been derived and provided publicly through GitHub.

We test our 1D radiation simulations against analytical solutions.
Insufficient numerical resolution can lead to artificial heating close
to the inner boundary, where the density gradient is highest. Thus, a
resolution study, at least with the 1D setup, is crucial for the correct
envelope simulations.

When the luminosity is capable of driving convection, 3D simu-
lations are needed since 1D radiation simulations do not allow the
convective motion. With efficient energy transport by convection,
the resulting envelope structure follows ∇ ∼ ∇ad, as expected. The

convective envelope in the disc has a similar structure as the isolated
envelope, except with a slightly higher density due to a lower entropy.

When we increase the luminosity to make the envelope more
convective, the convective motion becomes transonic which reduces
the efficiency of convection. The envelope also shows significant
asymmetric features since the envelope does not have time to adjust
to the transonic convective motion.

When we adjust the parameters (e.g. a lower opacity, a hotter
disc, or a lower luminosity) to make the envelopes radiative, we find
almost identical structure among 1D or 3D isolated envelopes and
3D envelopes in discs. We provide a modified 1D semi-analytical
approach which can fully reproduce our 3D disc simulations for both
convective and radiative envelopes.

Using a passive scalar, we indeed observe significant mass recy-
cling on the orbital time-scale. For the radiative envelope, recycling
can only penetrate to ∼0.1–0.2 Hill radius, while, for the convective
envelope, the convective motion can ‘dredge up’ the deeper part
of the envelope so that the whole convective envelope is recycled
efficiently with the disc material. This mass exchange has important
implications on the proto-Jupiter’s composition. For an example, a
migrating proto-Jupiter can quickly (on the orbital time-scale) mix
the local disc material with its envelope material so that the envelope
composition does not reflect where the planet originally formed.

Although the recycling has large effects on mass exchange, it has
limited effects on the envelope’s thermal structure, at least for 10
M⊕ planetary cores at 5 au. We estimate various time-scales to study
the effects of recycling on the envelope structure. For a convective
envelope, the recycling time-scale is similar to the convective time-
scale. Thus, recycling can quickly exchange the envelope material
with the disc material even to the deepest part of the outermost
convective envelope. For a radiative envelope, the mass recycling is
only efficient beyond 0.1 rH. Our crude estimate suggests that the
cooling time-scale for the recycled material is shorter or comparable
to the recycling time-scale, which may explain the limited effects of
recycling on the thermal structure of the envelope.

With the updated opacity table, equation of states, and 1D models,
we calculate Jupiter’s atmosphere accretion with a 10 M⊕ core, and
confirm that it can undergo runaway accretion within the disc’s
lifetime using our fiducial opacity. With a lower opacity in the
envelope (opacity from 10 cm grains), the time to runaway accretion
can be shorter than a Myr.

Finally, we discuss how the recycling process can affect the
chemical abundances of the planet atmosphere. Both the amount of
the recycled mass and the difference between the envelope metallicity
and the disc metallicity are key for determining the final planet’s
metallicity. For a planet close to the star, the recycling process can
efficiently exchange the planet’s gaseous atmosphere with the disc,
although there is a limited amount of disc mass reservoir at the inner
disc for the exchange. Overall, the discovered super-Earths or mini-
Neptunes within 1 au may have local disc metallicity imprinted no
matter where these planets formed initially in the disc.

ACKNOWLEDGEMENTS

The authors thank the referee for a very helpful report, especially
regarding the implications on chemical abundances of the planetary
atmosphere. This research was supported by NASA TCAN award
80NSSC19K0639. All simulations are carried out using computer
supported by the Texas Advanced Computing Center (TACC) at The
University of Texas at Austin through XSEDE grant TG-AST130002
and from the NASA High-End Computing (HEC) program through
the NASA Advanced Supercomputing (NAS) Division at Ames

MNRAS 508, 453–474 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/1/453/6367152 by U
N

LV U
niversity Libraries user on 03 July 2022



472 Z. Zhu et al.

Research Center. ZZ acknowledges support from the National
Science Foundation under CAREER Grant Number AST-1753168.
The Center for Computational Astrophysics at the Flatiron Institute
is supported by the Simons Foundation. ANY acknowledges support
from NASA by grant NNX17AK59G.

DATA AVAILABILITY

The data underlying this article are available in the article and in its
online supplementary material.

REFERENCES

Ali-Dib M., Cumming A., Lin D. N. C., 2020, MNRAS, 494, 2440
Alibert Y., Mordasini C., Benz W., Winisdoerffer C., 2005, A&A, 434, 343
Andrews S. M. et al., 2018, ApJ, 869, L41
Armstrong G., Colgan J., Kilcrease D., Magee N., 2014, High Energy Density

Phys., 10, 61
Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481
Ayliffe B. A., Bate M. R., 2009, MNRAS, 397, 657
Ayliffe B. A., Bate M. R., 2012, MNRAS, 427, 2597
Bate M. R., Lubow S. H., Ogilvie G. I., Miller K. A., 2003, MNRAS, 341,

213
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D’Alessio P., Cantö J., Calvet N., Lizano S., 1998, ApJ, 500, 411
Davis S. W., Stone J. M., Jiang Y.-F., 2012, ApJS, 199, 9
Draine B. T., 2003, ARA&A, 41, 241
Ferguson J. W., Alexander D. R., Allard F., Barman T., Bodnarik J. G.,

Hauschildt P. H., Heffner-Wong A., Tamanai A., 2005, ApJ, 623, 585
Fontes C. J. et al., 2015, J. Phys. B: At. Mol. Phys., 48, 144014
Freedman R. S., Marley M. S., Lodders K., 2008, ApJS, 174, 504
Freedman R. S., Lustig-Yaeger J., Fortney J. J., Lupu R. E., Marley M. S.,

Lodders K., 2014, ApJS, 214, 25
Fuller J., 2017, MNRAS, 470, 1642
Fung J., Artymowicz P., Wu Y., 2015, ApJ, 811, 101
Fung J., Masset F., Lega E., Velasco D., 2017, AJ, 153, 124
Fung J., Zhu Z., Chiang E., 2019, ApJ, 887, 152
Gardiner T. A., Stone J. M., 2005, J. Comput. Phys., 205, 509
Gardiner T. A., Stone J. M., 2008, J. Comput. Phys., 227, 4123
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APPENDIX A: SOURCE TERMS UNDER THE ROTATING FRAME

Since we solve the fluid equations in the rotating frame which rotates around the central star at an angular frequency of 
0, we need to add the
Coriolis force (−2�0 × V ) and the centrifugal force (−�0 × (�0 × r)) as external source terms. We want to add these two terms in a way to:
1) cancel out the central star’s gravitational force and the geometrical source terms as much as possible, and 2) conserve angular momentum
in the inertial frame. Since the gravitational force from the central star is the largest force in the system, any numerical imbalance between the
gravitational force term and the other terms can lead to strong perturbations to a steady fluid. Besides the radial force balance, conserving the
angular momentum is crucial for accurately simulating a disc in a rotating frame (Kley 1998).

Most of the derivation below is applicable to different hydrodynamical codes, although some are specifically for the ATHENA++ code which
we will state explicitly. For the radial momentum equation, the radial Coriolis and centrifugal forces are Fr = 2
0vφsinθ + 
2

0rsin2θ . For a
Keplerian flow, this force needs to balance the gravitational force and the geometric source term v2

φ/r . In ATHENA++, the gravitational force
of a point mass is implemented as

F∗ = src1ii
GM

ri

, (A1)

where

src1ii = 1/2
(
R2

i+1/2 − R2
i−1/2

)
1/3

(
R3

i+1/2 − R3
i−1/2

) . (A2)

Thus, we implement the radial source terms from the Coriolis and centrifugal forces using the same quantities

ρFr = 
0risinθj

(
Fφ,k+1 + Fφ,k

) × src1ii + ρ
2
0r

2
i sin2θj × src1ii . (A3)

where Fφ, k is the Riemann flux at the constant φk interface for the density continuity equation. The first term on the right side is the Coriolis
force, while the second term is the centrifugal force.

Similarly, for the θ momentum equation, the Coriolis and centrifugal forces are Fθ = 2
0vφcosθ + 
2
0rsinθcosθ . This force needs to

balance the geometric source term (cotθ v2
φ /r) which uses the factor of src1ii × src1jj in ATHENA++ where

src1jj = sinθj+1 − sinθj

cosθj+1 − cosθj

. (A4)

Thus, we implement the θ source terms using

ρFθ = 
0risinθj

(
Fφ,k+1 + Fφ,k

) × src1ii × src1jj + ρ
2
0r

2
i sin2θj × src1ii × src1jj . (A5)

In both equations (A3) and (A5), we use the Riemann flux to represent ρvφ to slightly improve the accuracy.
For the φ momentum equation, we can absorb both the Coriolis and centrifugal terms into the divergence operator so that it is written as a

conservative form (Kley 1998),

∂
(
ρ
(
vφ + 
0r sin θ

)
r sin θ

)
∂t

+ ∇ · (r sin θρu
(
vφ + 
0r sin θ

)) = 0. (A6)

If we solve equation (A6) directly using the finite volume method, we can conserve the total angular momentum (ρ(vφ + 
0rcsinθ c)rcsinθ c)
to the machine precision, where rc and θ c represent the distance and angle of each cell centre. Unfortunately, solving equation (A6) directly
can significantly change the structure of the code. We would still like the code to solve the same set of equations no matter what coordinate
systems we are using. Thus, we expand equation (A6) into the discretized form and separate the terms which are associated with the Coriolis
and centrifugal forces. The time derivative of the density is replaced by the discretized continuity equation. In this way, adding the derived
source term is equivalent to solving equation (A6) directly while keeping the structure of the code intact. The derived source term is

ρFφ = −
0sinθc

(
cosθj − cosθj+1

)
�φ

rc�V

(
r4
i+1Fr,i+1 − r2

c r2
i+1Fr,i+1 − r4

i Fr,i + r2
c r2

i Fr,i

)
−
0rc

(
r2
i+1 − r2

i

)
�φ

2sinθc�V

(
sin3θj+1Fθ,j+1 − sin3θjFθ,j − sin2θcsinθj+1Fθ,j+1 + sin2θcsinθjFθ,j

)
, (A7)

where �V= 1/3(r3
i+1 − r3

i )(cosθj − cosθj+1)�φ. We chose rc = (ri + 1 + ri)/2 and sinθ c = (sinθ j + 1 + sinθ j)/2, so that equation (A7) becomes

ρFφ = −3
0

(
sinθj+1 + sinθj

) (
r2
i+1Fr,i+1 (3ri+1 + ri) + r2

i Fr,i (3ri + ri+1)
)

4 (ri+1 + ri)
(
r2
i+1 + ri+1ri + r2

i

)
−3
0 (ri+1 + ri)

2
(
sinθj+1 − sinθj

) ((
3sinθj+1 + sinθj

)
sinθj+1Fθ,j+1 + (

3sinθj + sinθj+1

)
sinθjFθ,j

)
8
(
sinθj+1 + sinθj

) (
cosθj − cosθj+1

) (
r2
i+1 + ri+1ri + r2

i

) . (A8)

Since the Coriolis force does not do any work, we only add the work done by the centrifugal force in the energy equation. Again, we use the
density flux (F) instead of ρv to calculate the work done by the centrifugal force.

APPENDIX B: CONSTANT RADIATION FLUX BOUNDARY CONDITION

Our 1D test problem requires us to have a constant radiation flux coming out of the inner radial boundary. Since we solve the specific intensity
for the radiative transfer, we need to provide the specific intensity in all directions within the ghost zones. To maintain a constant radiation flux
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at the inner boundary, the second momentum equation of the radiative transfer equation

∇ · P r,c = −σT ,cFr,c , (B1)

where P r,c and Fr,c are the radiation pressure tensor and the radiation flux in the code unit, and σ T, c is the total opacity in the code unit,
indicates that

Er,c(rg) = T 4
in + 3σT ,c

(
rin − rg

)
Fr,c , (B2)

where rg and rin are the radial position of each ghost zone and the first active zone, and we have assumed the Eddington approximation Pr, c =
Er, c/3 and Er,c = T 4

c for the LTE condition.
Using two stream approximation, we assume that all rays pointing to the negative r direction have the same intensity I−, while all rays

pointing outwards have the intensity I+. Then, we have

Er,c = I− ×
∑

−
w− + I+ ×

∑
+

w+

Fr.c = I− ×
∑

−
w−μr− + I+ ×

∑
+

w+μr+ . (B3)

where w and μr are the weights and r-direction cosines as defined in Davis et al. (2012), and
∑

− or
∑

+ is the summation of all rays in
negative or positive r directions. The sign of − and + represent rays pointing to the negative or positive r direction. If we define

∑
−w− as a−,∑

+w+ as a+,
∑

−w−μr − as b−, and
∑

+w+μr + as b+, we can solve for I− and I+ as

I− = Er,c/a+ − Fr,c/b+
a−/a+ − b−/b+

I+ = Er,c/a− − Fr,c/b−
a+/a− − b+/b−

. (B4)

Using Er, c calculated in equation (B2), we assign I− and I+ for rays propagating in the negative and positive r directions for every cell in the
ghost zones.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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