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Lubricated soft normal elastic contact of a sphere:
a new numerical method and experiment

Zezhou Liu, †a Hao Dong, †b Anand Jagota bc and Chung-Yuen Hui *ad

An important problem in lubrication is the squeezing of a thin liquid film between a rigid sphere and an

elastic substrate under normal contact. Numerical solution of this problem typically uses iteration

techniques. A difficulty with iteration schemes is that convergence becomes increasingly difficult under

increasingly heavy loads. Here we devise a numerical scheme that does not involve iteration. Instead, a

linear problem is solved at every time step. The scheme is fully automatic, stable and efficient. We

illustrate this technique by solving a relaxation test in which a rigid spherical indenter is brought rapidly

into normal contact with a thick elastic substrate lubricated by a liquid film. The sphere is then fixed in

position as the pressure relaxes. We also carried out relaxation experiments on a lubricated soft

PDMS (polydimethysiloxane) substrate under different conditions. These experiments are in excellent

agreement with the numerical solution.

1. Introduction

For engineering surfaces to operate smoothly and durably
during contact it is often necessary to use a lubricant – typically
a thin layer of oil — to reduce friction and adhesion.
An important class of lubrication problems is when a coherent
liquid film exists between two surfaces and the hydro-
dynamic pressure is sufficiently large to support a normal load
without solid–solid contact. Elasto-hydrodynamic lubrica-
tion (EHL) is an important subclass of this problem in which
the elastic deformation of at least one of the surfaces is
significant.

Traditionally, the mechanics of stiff lubricated contacts such
as metal bearings and pistons1–3 has been studied using EHL
theory. An excellent review of EHL theory can be found in the
article by Zhu and Wang.4 EHL theory is also of fundamental
importance to the understanding of filtration, coagulation and
adhesion of small particles.5–7 In the tire industry, EHL theory
governs how tires perform on a wet road.8,9 Recent interest in
soft materials and bio-medical applications have expanded the
use of EHL theory to study lubricated contact between a soft
elastic solid and a hard surface and for contactless rheology.10

For example, EHL theory has been used to study the lift forces
of cylinders near compliant walls.11,12

A conventional problem tackled by researchers in EHL is
that of sliding. The standard approximation is to assume steady
state conditions so the solution is independent of time.
A numerical method for the point contact sliding problem
was developed by Evans and Snidle,13 who extended the inverse
method first proposed by Dowson and Higginson14 for line
contact. The essence of the approach is that, assuming a
pressure field, the shape of the film is calculated in two
different ways: one by elasticity and the second by inverting
the Reynolds equation. The difference between the two calcu-
lated film shapes is used to iterate the actual pressure field,
that is, the pressure is adjusted until the two shapes agree with
each other.

Here we are interested in another fundamental problem
which involves both time and space. This is the normal contact
problem of squeezing a liquid film between two elastic sur-
faces. The line contact problem in which a thin liquid film
between two infinite circular cylinders is squeezed by a normal
force has been analyzed by many investigators.15–17 The point
contact problem, which involves lubricated normal contact of
elastic surfaces, has been less studied. A seminal study of the
point contact problem was carried out by Davis et al.,18 on the
normal collision of two elastic spheres. Normal lubricated
contact and sliding of rough surfaces have been studied by
Persson and co-workers19–21 by a combination of random sur-
face contact mechanics and lubrication theory. More recently,
Wang et al.22 also developed a numerical method to study
the deformation of elastic coatings under normal lubricated
contact.
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Our primary goal in this paper is to present a new numerical
technique to solve the normal point contact problem. As in all
EHL problems, the governing equation for flow is the Reynolds
equation, which is highly nonlinear. This equation is coupled
to elasticity via an integral equation which relates the elastic
displacement to the hydrodynamic pressure. To the best of
our knowledge, the numerical techniques designed to solve
this coupled nonlinear problem all require iteration. These
iteration procedures typically break down when the liquid
film thickness is very small or pressure very high. Also,
convergence can be very slow and involves many iterations.
A common way to alleviate some of these difficulties is to use
the inverse solution method first introduced by Dowson and
Higginson.14 In this method, direct iteration is applied only in
the low-pressure domain and the pressure is solved inversely
in the high-pressure region. This method has been shown to
be successful in handling high pressures. For example, Lee
and Chang17 obtained the pressure and deformation profiles
between two normally approaching lubricated cylinders using
direct iteration in the low pressure (inlet) region and using
Newton–Raphson to solve the nonlinear equation in the high-
pressure region. However, this procedure often requires
manual adjustments, and the domain of high/low pressure
can change continuously depending on the loading history.
Hence, the method is not fully automatic. Likewise, in the
point contact sphere collision problem, Davis et al.18 reported
that their iterative procedure breaks down when the elastic
displacement of the colliding spheres is comparable to the
initial film thickness. In their case, convergence in this
regime is obtained using a relaxation technique. Again,
this procedure usually requires manual adjustment of the
relaxation parameter which differs from problem to problem.
Recently, a new iterative numerical technique was deve-
loped by Wang et al.22 to study the deformation of elastic
coatings under normal lubricated contact. In this scheme,
the thickness of the liquid film is used as the iterant. Once
it is specified, the pressure is computed by solving the
Reynolds equation. The force acting on the indenter and the
elastic displacement is then obtained using this pressure.
From this displacement one can update the film thickness.
In general, this updated film thickness does not satisfy force
equilibrium; the film thickness is iterated until force balance
is satisfied.

In this paper, we devise a novel numerical technique to solve
the point contact problem without resorting to iteration. The
numerical scheme boils down to solving a linear system of
equations at each time step. The numerical scheme is stable,
fast and can be solved using any standard matrix solver such as
those in Matlabs. The solution scheme is fully automatic. We
demonstrate this technique on the relaxation test. In this test, a
rigid spherical indenter is brought close to contact with an
elastic surface lubricated by a thin liquid film of initial mini-
mum thickness z0. The indenter is then rapidly pushed down
by a pre-determined amount dc. The indenter’s displacement is
held fixed immediately after dc is reached. During this holding
phase, flow reduces the hydrodynamic pressure and the elastic

substrate rebounds. In this problem, the long-time force acting
on the indenter depends on whether dc/z0 is less than or equal
to one.

Since we are primarily interested in soft lubricated contact,
we focus on the case of constant viscosity. However, it has been
known for a long time that at very high pressures, the viscosity
of many lubricants increases rapidly with pressure. This phe-
nomenon is very important for applications involving hard
lubricated contact and can present additional numerical difficulty.
A simple model for this dependence takes the form23

Z = Z0e
ap (1)

where Z0 is the viscosity at ambient pressure and a is the
viscosity-pressure coefficient. It should be noted that a is
typically very small – it takes pressure on the order of hundreds
of MPa for significant increase in viscosity.23 Since the modulus
of soft materials rarely exceeds a few MPa, there is little chance
that this effect is relevant for soft contacts – the material will
fail long before any substantial increase in viscosity.

The plan of this paper is as follows. Formulation of the point
contact problem is summarized in Section 2. We then apply
this formulation to model the relaxation problem. The experi-
mental method for the relaxation test is described in Section 3.
In Section 4 we highlight some simple analytical results on the
relaxation test. These results provide physical insight and also
serve as a check of our numerical method. In Section 5 we
present a numerical scheme to solve the general point contact
problem. We then apply this scheme to solve the special case
of a relaxation test. Section 6 compares the numerical results
with experimental data. This is followed by Summary and
Discussion.

2. Problem formulation and geometry

The geometry consists of a rigid sphere of radius R lying above
an elastic half space which is immersed in a fluid with viscosity
Z (Fig. 1). A cylindrical coordinate system (r, z) is used to specify
position, with z = 0 corresponding to the undeformed surface of
the elastic half space, which occupies z o 0. In the following,
we make the usual approximation that deformation is
restricted to a small region near the south pole of the sphere
so that its surface can be approximated by a paraboloid. The

initial film thickness profile is defined by hðr; t ¼ 0Þ ¼ z0 þ
r2

2R
,

Fig. 1 (a) Geometry of a rigid sphere in lubricated contact with an elastic
half space. The original position of the bottom of the sphere is at z0. (b) The
sphere is pushed downwards with a constant velocity v. The solid line
denotes the surface of the sphere at time t.
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where z0 4 0 denotes the initial position of the sphere bottom.
At this position, the system is quiescent and there is no
pressure acting on the substrate; as a result, the vertical
displacement of the substrate, denoted by w(r, t), is zero every-
where. Here we have made the usual thin film approximation
that the deformation is restricted to a small region near the
south pole of the sphere so its surface can be approximated by a
paraboloid. The substrate is assumed to be linearly elastic with
Young’s modulus E and Poisson’s ratio n.

We allow only vertical indenter motion, so the center of the
sphere is directly above r = 0 and its position is completely
specified by its vertical coordinate z(t). The liquid film thick-
ness, h(r, t) is given by

h r; tð Þ ¼ zðtÞ þ r2

2R
� w r; tð Þ: (2)

Note in our coordinate system, w(r, t) r 0 for positive pressure.
The axisymmetric Reynolds equation for hydrodynamic lubri-
cation in cylindrical coordinates is:24

@h

@t
¼ 1

12r

@

@r

rh3

Z
@p

@r

� �
; (3)

where p is the hydrodynamic pressure and h is given by eqn (2).
To evaluate the gap or film thickness h in eqn (2), one needs the
elastic displacement w which is related to the pressure by:25

w r; tð Þ ¼ �4

pE�

ð1
0

u

uþ r
p u; tð ÞK 4ru

uþ rð Þ2

" #
du; (4)

where E* = E/(1 � n2) is the plane strain modulus of the half
space and K is the complete elliptical integral of the first kind.
Eqn (2)–(4) are the governing equations for EHL for our
geometry.

2.1. Special case: relaxation test

An example of a point contact problem that has not been
previously studied is the relaxation test. In this test, the sphere
represents the tip of a rigid indenter. At time t = 0, it starts
to move downwards at a fixed speed v0 until t = tc (loading
phase). At the end of the loading phase the indenter has
travelled a distance dc = v0tc. After tc = dc/v0 the indenter
position is fixed (hold phase). Specifically, the evolution of z
in eqn (1) is:

zðtÞ ¼
z0 � v0t 0 � t � tc

z0 � dc tc � t

(
ð5a; bÞ

The boundary condition is that the pressure vanishes at r = N

and
@p

@r
¼ 0 at the origin. The latter condition reflects the fact

that, because our domain is axisymmetric, we expect the
pressure field to have a local extremum at r = 0. The initial
condition for the loading phase is

z(t = 0) = z0 (6a)

dz

dt
ðt ¼ 0Þ ¼ �v0 (6b)

2.2. Normalization

We introduce the following normalization to expedite analysis:

�r ¼ r
. ffiffiffiffiffiffiffiffi

Rdc
p

; (7a)

%h = h/dc, (7b)

%t = t/tc, (7c)

%z = z/dc, (7d)

%w = w/dc, (7e)

�p ¼ p
2E�

ffiffiffiffiffi
R

dc

r
p (7f)

Here a bar denotes a dimensionless quantity. Substituting
eqn (7a)–(7f) into eqn (2)–(5) and assuming a constant viscosity
Z = Z0 results in

@ �h

@�t
¼ b

�r

@

@�r
�r�h3

@�p

@�r

� �
; �h ¼ �zþ �r2

2
� �w (8a)

�w ¼ � 8

p2

ð1
0

�u

�uþ �r
�p �u; �tð ÞK 4�u�r

�uþ �rð Þ2

 !
d�u (8b)

�z �tð Þ ¼
�z0 � �t

�z0 � 1

(
0 � �to 1

�t � 1
ð8c; dÞ

where

b � E�d
5=2
c

6pZ0v0R3=2
; (8e)

%z0 = z0/dc (8f)

The initial conditions eqn (6a) and (6b) become:

%z(%t = 0) = %z0, (9a)

d�z

d�t

����
�t¼0

¼ �1: (9b)

Using eqn (8a) and eqn (8c), (8d), the normalized partial
differential equations (PDEs) for the loading and holding
phase are:

�1� @ �w

@�t
¼ b

�r

@

@�r
�r �z0 � �tþ �r2

2
� �w

� �3
@�p

@r

 !

�to 1 ðloadingÞ
(10a)

�@ �w

@�t
¼ b

�r

@

@�r
�r �z0 � 1þ �r2

2
� �w

� �3
@�p

@�r

 !
�t4 1 ðholdÞ (10b)

For the hold phase, we impose continuity of pressure and
displacement field at %t = 1. The boundary conditions for both
eqn (10a) and (10b) are that the pressure vanishes at infinity

and
@�p

@�r
¼ 0 at the origin.
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The force F during relaxation is computed by integrating the
pressure field and is

FðtÞ ¼ 2p
ð1
0

p r; tð Þrdr: (11a)

Using the normalization scheme eqn (7a)–(7f), the normalized
force %F is

F � 2E�dc
3=2

ffiffiffiffi
R

p

p
�F ) �F ¼ 2p

ð1
0

�p �r; �tð Þ�rd�r: (11b)

Eqn (10a) and (10b) imply that the solution of the relaxation
problem depends on two dimensionless parameters, %z0 and b.
Let us consider the physical meaning of these parameters. In a
relaxation test, %z0 = z0/dc 4 1 means indentation is smaller than
the initial separation between the spherical indenter and the
soft substrate. This means that it is not possible to drain the
fluid underneath the indenter sufficiently to establish solid/
solid contact. For this case, flow will continue until pressure
vanishes everywhere during the hold phase. This results in the
indentation force approaching zero at long times. On the other
hand, when %z0 o 1, indentation is large enough so all the fluid
underneath the indenter is eventually drained. For this case,
the indentation force is non-zero at long times. The parameter
b in eqn (8e) is the ratio of flow velocity generated by hydro-
dynamic pressure which scales with Z0

�1R�1E*dc
2 to the flow

velocity cause by indentation,26 i.e., v0
ffiffiffiffiffiffiffiffiffiffi
R=dc

p
. Physically, large

indentation speed, high viscosity, soft substrate and small
indentation reduce flow and hence decrease b. In the following
we will explore more precisely how some of these parameters
control the relaxation process. Here we give an estimate of b for
soft materials. The indenter speed v0 can vary by several orders
of magnitude in an experiment, typically from 1 mm s�1 to
1 mm s�1. For soft solids such as PDMS the plane strain
modulus E* B 4 � 106 Pa. For a moderately viscous liquid,
ZE 0.1 Pa s. Taking R = 1 mm, dc = 10 mm, we find 10r br 104.
For very stiff solids such as metals, b can be extremely large, since
E* can be six orders of magnitude higher. In this case, other
assumptions such as isoviscosity (see eqn (1)) and incompressi-
bility of the lubricant, are often inaccurate.

3. Materials and methods
3.1. Sample fabrication

Poly(dimethylsiloxane) (PDMS) samples about 2 cm � 2 cm �
5 mm were fabricated based on a silicone elastomer kit (DOW
SYLGARD 184, DOW Corning). The elastomer base and curing
agent were mixed in a ratio of 10 : 1, and the mixture was cured
for 2 hours at 80 1C.

3.2. Relaxation experiment

Load on and displacement of an indenter made of a glass bead
(2 mm radius, McMaster-Carr) indenting a flat lubricated PDMS
sample were measured and recorded by a custom-built flat-on-
flat tribometer (see ref. 26 for description). The PDMS strip
as prepared was mounted on the flat-on-flat tribometer and

silicone oil (100 Pa s at 25 1C, Sigma-Aldrich) that served as
lubricant was added on the top surface of the PDMS sample.
After adding lubricant, the indenter was slowly (0.001 mm s�1)
brought down until the indenter contacted the sample, as
detected by a load cell. Then the indenter was lifted up a
distance of 140 mm (i.e., z0 = 140 mm), and the system was
allowed to relax for a few minutes. This was followed by
moving the indenter rapidly downward at a constant velocity
of 0.1 mm s�1 for (a) 126 mm (z0/dc= 1.11), (b) 140 mm (z0/dc = 1),
or (c) 154 mm (z0/dc = 0.91). Indenter motion was then halted
abruptly and the indenter was subsequently held in place. The
normal force and the position of the indenter were recorded
during this process as a function of time. Based on collected
data, the corresponding b, %t and %F were calculated and
compared with numerical solutions.

4. Behavior of the solution in different
regimes

Before diving into numerical methods and calculations, we
discuss several special cases where approximate solutions
can be obtained. These solutions give physical insight on the
relaxation process and serve as a check of our numerical
method.

4.1. Asymptotic solution for large b

As noted above, b is typically much greater than one. For this
case, eqn (10a) suggests looking for a solution where the
pressure is of order 1/b. Hence, the displacement of the
substrate is also of order 1/b and can be ignored relative to

�zþ �r2

2
. Substituting %p � p̂(%r, %t)/b into eqn (10a) and keeping only

leading order terms, eqn (10a) becomes:

�d�z

d�t
¼ 1

�r

@

@�r
�r �zðtÞ þ �r2

2

� �3
@p̂

@r

 !
�to 1 (12a)

Eqn (12a) can be integrated with respect to the spatial coordi-
nate; the resulting hydrodynamic pressure is

�p ¼
_�z

4b
�z �tð Þ þ �r2

2

� ��2

(12b)

where ż � d%z/d%t. Note this solution is valid only for short times
or sufficiently low pressure where elasticity can be neglected.
For example, the pressure given by eqn (12b) depends on %z – it
becomes unbounded at the origin %r = 0 as %z - 0. Indeed, for
%z0 o 1 (large indentation), the pressure predicted by eqn (12b)
becomes unbounded at %r = 0 as %t - 1 since %z = %z0 � %t reaches
zero at %t = %z0 o 1 (recall that holding occurs at %t Z 1). Thus, for
large indentations, eqn (12b) is valid only for short times %t o 1.
On the other hand, for small indentations where %z0 4 1, the
pressure given by eqn (12b) is valid for the entire loading phase
provided that b c 1. For this case, eqn (12b) can be used as the
initial condition for eqn (10b).
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4.2. Long time solution for the relaxation problem

Relaxation is governed by eqn (10b). Here we note that a natural
time scale in the holding phase is obtained by renormalizing

time t as t̃ = b %Mx0074; = bt/tc � t/tR where tR � 6pZ0R
3=2

E�dc3=2
¼ tc=b.

Later, we shall see that tR is the characteristic relaxation time.
With this new normalization, eqn (10b) is:

�@ �w

@~t
¼ 1

�r

@

@�r
�r �z0 � 1þ �r2

2
� �w

� �3
@�p

@r

 !
~t4b (13)

Consider first the regime of large indentation where %z0 o 1. In
this regime, we expect most of the fluid will be squeezed out at
long times and the pressure field is given by the classical Hertz
theory:25

�p �r; ~t ! 1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �z0ð Þ � �r2

p
�ro �r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �z0

p

0 r4 �r1

8<
: (14)

where �r1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �z0

p
is the normalized contact radius. Mathe-

matically, this can be seen by noting that

h �ro �r1; ~t ! 1ð Þ ¼ �z0 � 1þ �r2

2
� �w ¼ 0 ) �w ¼ � 1� �z0 �

�r2

2

� �
(15)

is the Hertz contact condition and satisfies eqn (13) exactly for
%ro %rN. Thus, for %z0 o 1, the long-time indenter force is positive
and should plateau to (using Hertz theory and eqn (11a) and
(11b))

F1 ¼ 4E� ffiffiffiffi
R

p

3
dc � z0ð Þ3=2) �F1 ¼ 2p

3
1� �z0ð Þ3=2 (16)

The situation is more complicated for %z0 4 1. There is no
simple analytical solution for the long-time pressure distri-
bution other than the fact that it decays to zero everywhere so
FN = 0. The behavior in this regime will be explored numeri-
cally in Sections 5 and 6.

5. Numerical method

In the following, we focus on the numerical solution of the
general case where h is given by eqn (2). Without loss of
generality, we use the same normalization as eqn (7a)–(7f),
except that time t is normalized by T, i.e., %t = t/T, where T is a
characteristic time in the problem. T varies from problem to
problem. For example, in the relaxation problem, T = z0/v0 = tc.
We discretize time into equal steps, %tj = jD%t, j = 0, 1,. . .
We replace the infinite interval %r A [0, N) by a finite interval
%r A [0, %L] and discretize it into N equally spaced points ri,
i.e., %ri+1 = %ri + D%r, 1r ir N. Denote solution at time step j at %ri to

be %p j
i. The differential equation eqn (8a) can be written as:

�@ �w

@�t
¼ � d�z

d�t
þ b m �r; �tð Þ½ �3@

2�p

@�r2

� �

þ b 3 m �r; �tð Þ½ �2 �r� @ �w

@�r

� �
@�p

@�r

� �

þ b
1

�r
m �r; �tð Þ½ �3@�p

@�r

� �
(17a)

where m �r; �tð Þ � �z �tð Þ þ �r2

2
þ �w. The 1st and 2nd spatial deriva-

tives of pressure at time step j + 1 are computed using

@2�p

@�r2

����
jþ1

¼
�pjþ1
iþ1 � 2�pjþ1

i þ �pjþ1
i�1

D�rð Þ2
; (17b)

@�p

@�r

����
jþ1

¼
�pjþ1
iþ1 � �pjþ1

i

D�r
; (17c)

The time derivative is computed using:

@ �w

@�t

����
jþ1

¼ �wjþ1
i � �wj

i

D�t
; (18a)

d�z

d�t

����
jþ1

¼ �zjþ1 � �zj

D�t
(18b)

This is a backward Euler discretization that is first-order
accurate and due to its implicit nature provides greater numer-
ical stability compared to an explicit Euler discretization. The
key is to avoid solving a nonlinear equation, thus negating the
need to iterate which is the main source of difficulty. This is
accomplished by evaluating m(%r, %t) and the spatial derivative of
displacement at the previous time step j, i.e.,

�zj þ �ri
2

2
� �wj

i

� �
� mj

i (19a)

and

@ �w

@�r
¼

�wj
iþ1 � �wj

i

D�r
(19b)

where %z j � %z(tj).This hybrid method preserves stability and
allows us to solve a linear problem at each time step. After
some algebra, the discretized version of eqn (17a) is

� D�rð Þ2

bD�t
wjþ1
i þ 2 mj

i

� �3þ mj
i

� �2
njiD�r

h i
�pjþ1
i

� mj
i

� �3þ mj
i

� �2
njiD�r

h i
�pjþ1
iþ1

� m
j
i

� �3
�pjþ1
i�1 ¼ � �wj

i þ �zjþ1 � �zj
� � D�rð Þ2

bD�t
2 � i � N � 1

(20a)

where

nji � 3 �ri �
w
j
iþ1 � w

j
i

D�r

 !
þm

j
i

�ri
: (20b)
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In order to evaluate the displacement field %w j at time step j, we
assume the pressure distribution within the domain [%rm � D%r/2,
%rm + D%r/2] is uniform and equal to %pjm, where 2rmr N (Fig. 2).
Within the domain [0, D%r/2], the pressure is %pj1.

The integral connecting pressure to displacement field
eqn (8b), is evaluated numerically according to:

�wjþ1
i ¼ � 8

p2

ðD�r=2
0

�u

�uþ �ri
�pjþ1
1 K

4�u�ri

�uþ �rið Þ2

 !
d�u

� 8

p2
XN
m¼2

ð�rmþD�r=2

�rm�D�r=2

�u

�uþ �ri
�pjþ1
m K

4�u�ri

�uþ �rið Þ2

 !
d�u

¼ � ŵi1�p
jþ1
1 �

XN
m¼2

ŵim�p
jþ1
m

(21a)

where

ŵi1 �
8

p2

ðDr=2
0

�u

�uþ �ri
K

4�u�ri

�u �uþ �rið Þ2

 !
d�u; (21b)

ŵim � 8

p2

ð�rmþDr=2

�rm�Dr=2

�u

�uþ �ri
K

4�u�ri

�u �uþ �rið Þ2

 !
d�u (21c)

It is important to note that ŵi1 and ŵim in eqn (21b) and (21c)
are independent of pressure and surface displacement and
hence need to be determined only once and stored as a vector.
This further speeds up the numerical procedure. Physically, ŵim

are influence coefficients for the displacement at a field point
due to the pressure at a source point. The boundary conditions

are:
@�p

@�r

����
�r¼0

¼ �pj2 � �pj1
Dr

¼ 0 and %pji=N = 0. The cylindrical coordinate

system causes a singularity at the origin (r = r1 = 0) (see
eqn (8a)). Here we bypass this difficulty since eqn (20a) is for
2 r i r N � 1. We simply enforce boundary conditions using

%pj1 = %pj2 (22a)

%pji=N = 0 (22b)

Eqn (20a), (21a), (22a) and (22b) constitute a linear system of
equations for the pressure and displacement in the ( j + 1)th
time step once the pressure and displacement in the jth time
step are known. No iteration is needed. The matrix associated
with this linear system of equations is given in the Appendix.

It should be noted that inmany applications, e.g., in the relaxation
problem considered in this work, %z is a known function of time so
d%z/d%t can be evaluated exactly so the discretization eqn (18b) is not
necessary. In certain cases, such as the collision problem of
Davis,18 %z is determined by solving two first order linear ordinary
differential equations (ODEs) in time.

In our numerical technique, one starts the simulations with
%z1, %p1i ( %w1

i can be found using eqn (21a)). The initial position
of the indenter/sphere, %z1, is known from initial condition.
In many problems, the system is initially quiescent, with zero
pressure everywhere. However, for the relaxation problem,
there is a sudden pressure jump at t = 0+ as indicated by
eqn (12). For b c 1 and for initial film thickness that is large
in comparison with elastic displacement, an excellent choice
for %p1i is to use eqn (12b). For this case, the error will be small
even if one use %p1i = 0 since these conditions imply small
pressure (B1/b). However, eqn (12b) should not be used if
these conditions are not met, for example, if b is not large.
A simple way to bypass this issue is to ramp the velocity of the
indenter or sphere quickly from 0 to v0, which is exactly what is
done in real life. This can be accomplished by starting the
simulation at an earlier time, t = �t1 o 0 when the system is
quiescent so p(r, t = �t1) = 0 and define

zðtÞ ¼ z0 � tþ t2

2t1

� �
for � t1 � t � 0 (23)

6. Special case: relaxation test
6.1. Convergence test

We apply our numerical scheme to simulate the relaxation test.
First, we carried out a convergence test by changing the element
size (Dr) and time step size (Dt) or domain size (L). Fig. 3 plots
the pressure distribution at the end of the relaxation test for a
large indentation test where %z0 = 0.5 for different meshes, time
steps and domain sizes. Note that our choice of %z0 = 0.5 implies
that the elastic displacement is twice of the initial thickness of

Fig. 2 Discrete pressure distribution within each spatial step is used to
create the algebraic set of equations.

Fig. 3 Pressure distribution at the end of the relaxation test for a large
indentation test where %z0 = 0.5 for different mesh, time step and domain sizes.
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the fluid layer, yet we have encountered no numerical difficulties.
The numerical solutions lie right on top of each other. In the
following calculations, we will use D%r = 0.01, D%t = 0.001 and %L = 4.

6.2. Results: relaxation test

Fig. 4a–c plot the pressure distribution for different normalized
indentation depths %z0 and normalized time %t for b = 100. The
pressure in the loading phase (%t r 1) is shown by solid lines.
For the holding phase where %t 4 1, pressure distributions are
indicated by dashed lines. For large indentation, %z0 = 0.5, the
short time and long-time asymptotic solutions are shown for
comparison. In this case the long-time pressure distribution
matches the Hertzian profile (eqn (14)), as expected. For small
indentation where %z0 = 2 (Fig. 4b and c), pressure increases
transiently and then decays rapidly to zero in the hold phase (at
the time scale of tR = b�1tc, %t = 10 in Fig. 4c corresponds to t =
10tc = tR/10). A further check of our numerical scheme is to
compare the long-time pressure with the Hertz pressure eqn (14)
which is indicated by the black symbols (o). If our numerical
scheme is accurate, the long-time pressure for %z0 o 1 should
converge to the Hertz pressure for long times, which is the case in
Fig. 4a. Fig. 5a–c show the film thickness profile for different
indentations at different times. As expected, for small indentation
depths (%z0 Z 1, Fig. 5b and c), a thin layer of fluid remains on the
entire interface. However, for indentation depths %z0 o 1 (Fig. 5a,
%z0 = 0.5), most of the fluid in the pocket formed by the deformation
of the elastic substrate has been squeezed out by %t = 5. The surface
displacement of the substrate for different indentation depths at
different times is shown in Fig. 6a–c. For small indentation depths
%z0Z 1, Fig. 6(b and c), the substrate surface rebounds to its original
flat state for %tZ 5. This is not the case for larger indentation depths
where %z0o 1. For these cases, the Hertz pressure causes permanent
substrate deformation (Fig. 6a).

6.3. Comparison between experiment results and numerical
solution

As a further check on our numerical solution and lubrication
model, we performed relaxation experiments as described in
the Materials and methods section. To compare experimental
and simulation results, we converted dimensionless variables

to dimensional values based on eqn (7a)–(7f) and (11a), (11b).
Fig. 7a–c show the comparison between numerical solution and
experimental results for a fluid viscosity of 100 Pa s (as provided
by the manufacturer) and Young’s modulus of 2.94 MPa, a
reasonable value for Sylgard-184 PDMS. Since PDMS is almost
incompressible, we set n = 0.5. It is evident that experiments
and numerical solutions are in excellent agreement.

7. Discussion and conclusion

We developed a new numerical scheme to solve lubricated
normal elastic point contact problems. We applied this numer-
ical technique to simulate a relaxation test. We provide simple
analytic expressions for short- and long-time behavior. We also
conducted relaxation experiments on a glass (indenter)/silicone
oil (lubricant)/PDMS (substrate) system to test our model and
numerical scheme. We found excellent agreement between our
numerical solution and experimental data. Our numerical
method is stable, highly efficient and fully automatic.

The geometry in this paper is mathematically equivalent to
the normal lubricated contact of two elastic spheres provide
that R in (1) is replaced by the reduced radius which is related
to the radii of the spheres R1 and R2 by25 R�1 = R1

�1 + R2
�1.

Likewise, the plane strain modulus E* of the half space in (3)
should be replaced by the reduced modulus:

1/E* - E1
�1(1 � n12) + E2

�1(1 � n22), (24)

where Ei, ni are the Young’s moduli and Poisson’s ratios of the
spheres. With these simple modifications, our numerical
method can be used to analyze lubricated contact of elastic
spheres. Also, with a bit of effort, one can use a variable-size
mesh (e.g., a finer mesh at the location of large pressure
gradient) or variable time steps.

The numerical method used in this work assumes a con-
stant time step and a uniform spatial mesh which is easy to
implement but less efficient. In some problems, it may be
useful to modify this technique to variable time stepping and
non-uniform spatial meshing. Such modifications are rather
straightforward. Another improvement is to change the current
time stepping method to more accurate integration schemes

Fig. 4 Normalized pressure distribution as a function of normalized time for different indentation depths. Results during loading phase (%tr 1) are shown
by solid lines. Results during holding phase (%t 4 1) are shown by dashed lines. (a) Large indentation: %z0 = 0.5; symbols (short time (x), long time (o)) are
asymptotic results (eqn (12b) and (14)). (b) transition case: %z0 = 1 (c) small indentation: %z0 = 2.
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such as the Runge–Kutta methods. In this way one can take larger
time-steps. Also, it is not difficult to generalize our numerical
method to include pressure dependent viscosity. In addition, since
the Green’s function for elastic substrate with finite thickness is
known,27 our numerical scheme can be easily modified to account
for an elastic substrate with finite thickness. This method can also
be extended to study viscoelastic substrates. As noted in the
Introduction, there is considerable interest in problems where
the surfaces are not smooth. Our numerical formulation should
readily accommodate spatially varying surface profiles and be
applicable to this class of problems. Other EHL problems such as
lubricated sliding of a sphere can be more difficult to solve because
of increased complexity such as loss of axisymmetry. These modi-
fications and extensions will be studied in future works.
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Fig. 5 Normalized liquid film thickness profile as a function of normalized time. Time profiles during loading phase (%t r 1) are shown by solid lines.
Profiles during holding phase (%t 4 1) are shown by dashed lines. (a) Large indentation: %z0 = 0.5, (b) transition case: %z0 = 1 (c) small indentation: %z0 = 2.

Fig. 6 Normalized substrate surface displacement profile at different times. Results during loading phase (%t r 1) are given by solid lines. Results during
holding phase (%t 4 1) are given by dashed lines. (a) Large indentation: %z0 = 0.5, (b) Transition case: %z0 = 1 (c) Small indentation: %z0 = 2.

Fig. 7 Comparison between numerical solution and experimental results based on 100 Pa s silicone oil and PDMS Young’s modulus of 2.94 MPa for (a)
z0/dc = 1.0, (b) z0/dc = 1.11, and (c) z0/dc = 0.91. The short black line on the right-hand side shows the fully-relaxed solution for force given by eqn (16).
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Appendix

Equations (20a) and (21a), along with the boundary conditions (22a,b), form a linear system of equations. In matrix form:

1 ŵ11 ŵ12 	 	 	 ŵ1 N�1 0

1 ŵ21 ŵ22 	 	 	 ŵ2 N�1 0

. .
. ..

. ..
. . .

. ..
.

1

1 ŵN1 ŵN2 ŵN N�1 0

0 1 �1

D �C
j
2 A

j
2 �B

j
2

D �C
j
3 A

j
3 �B

j
3

. .
. . .

.

D �C
j
N�1 A

j
N�1 0

0 1

2
66666666666666666666666666666666666664

3
77777777777777777777777777777777777775

wjþ1
1

wjþ1
2

..

.

wjþ1
N

p
jþ1
1

pjþ1
2

..

.

pjþ1
N�1

p
jþ1
N

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼

0

0

..

.

0

0

E
j
2

..

.

Ej
N�1

0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(A1)

where

A
j
i ¼ 2 mj

i

� �3þ mj
i

� �2
njiD�r; Bj

i ¼ mj
i

� �3þ mj
i

� �2
njiD�r; Cj

i ¼ mj
i

� �3
; Ej

i ¼ � D�rð Þ2

bD�t
wj
i ; D ¼ � D�rð Þ2

bD�t
; (A2a e)–
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