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Polar cell growth is a process that couples the establishment of cell polarity with

growth and is extremely important in the growth, development, and reproduction of

eukaryotic organisms, such as pollen tube growth during plant fertilization and neuronal

axon growth in animals. Pollen tube growth requires dynamic but polarized distribution

and activation of a signaling protein named ROP1 to the plasma membrane via three

processes: positive feedback and negative feedback regulation of ROP1 activation

and its lateral diffusion along the plasma membrane. In this paper, we introduce a

mechanistic integro-differential equation (IDE) along with constrained semiparametric

regression to quantitatively describe the interplay among these three processes that

lead to the polar distribution of active ROP1 at a steady state. Moreover, we introduce

a population variability by a constrained nonlinear mixed model. Our analysis of ROP1

activity distributions from multiple pollen tubes revealed that the equilibrium between

the positive and negative feedbacks for pollen tubes with similar shapes are remarkably

stable, permitting us to infer an inherent quantitative relationship between the positive

and negative feedback loops that defines the tip growth of pollen tubes and the polarity

of tip growth.

Keywords: cell polarity, constrained semiparametric regression, identifiability, integro-differential equation,

method of moments, semilinear elliptic equation

1. INTRODUCTION

Cell polarity describes the asymmetric property of a cell, a fundamental feature of almost all cells. It
is required for the differentiation of new cells, cell shape formation, polar cell growth, cell migration,
etc. A well-known example of cell polarity in plants is found in the polar growth of pollen tubes
(termed tip growth), which delivers sperms to the ovary for fertilization. Pollen tubes are one of
the fastest growing cells in plants and therefore represent an attractive model system to investigate
polarized cell growth (Yang, 1998, 2008; Hepler et al., 2001; Lee and Yang, 2008; Qin and Yang,
2011; Luo et al., 2017; Guo and Yang, 2020). Similar polar cell growth is also found in fungi and
animals, such as fungal hyphal growth and neunronal axon extension (Gow, 1994; Palanivelu and
Preuss, 2000; Gow et al., 2002; Wen and Zheng, 2006; Lowery and Vanvactor, 2009; Takano et al.,
2019; Bassilana et al., 2020).
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Several mathematical models have been developed to simulate
pollen tube tip growth (Dumais et al., 2006; Kroeger et al.,
2008; Campas and Mahadevan, 2009; Lowery and Vanvactor,
2009; Fayant et al., 2010). These models focused on the cell wall
mechanics and the cell wall mechanics-mediated shape formation
of pollen tubes. However, it has been demonstrated that ROP1, a
pollen-specific member of the ROP subfamily of Rho GTPases, is
a central regulator of pollen tube tip growth (Gu et al., 2003). In
particular, it has been found that the local concentration of active
ROP1 on the plasma membrane (as shown in Figure 1) plays a
predominant role in determining the polarity of the pollen tubes
(Lin et al., 1996; Li et al., 1998). Hwang et al. (2010) suggested that
the distribution of active ROP1 is determined by three processes:
ROP1 activation through positive feedback, deactivation through
negative feedback, and diffusion (as shown in Figure 2).

Luo et al. (2017) proposed a model of pollen tube tip growth
that consists of two parts: the exocytosis-ROP1 polarization
(ERP) module and the Exocytosis-Wall Extension module. In
the ERP module, they proposed a system of evolutionary
partial differential equation (PDE) to simulate the spatiotemporal
dynamics of active ROP1 determined by the aforementioned

FIGURE 1 | Confocal microscopy image of a wild-type Arabidopsis pollen tube expressing CRIB4-GFP that shows the distribution of the active ROP1. Only the tip

region of the pollen tube is shown (The bar is 7 µm).

three processes and to predict how the shape of pollen
tubes changes when there is a change in positive feedback
strength, negative feedback strength, or degrees of deficiency
in exocytosis that regulates both positive feedback and negative
feedback. Altering either one can result in pollen tubes with
different widths (refer to Luo et al., 2017; Figures 1, 2 and
Supplementary Figure 3). For example, a mutant with a loss of
ROP1 deactivator REN1 is predicted to have an 80% reduction
in negative feedback strength and therefore produces a wider
tip and makes slower and smoother turnings to the guidance
signal when compared to a wild type (Luo et al., 2017; Figure
1b). A weak mutant for an exocyst subunit gene SEC8 treated
with 50 nM of Latrunculin B is predicted to have 43% reduction
in exocytosis and therefore shows a broader distribution of
active ROP1 and increased tube width when compared to a
wild type. The strengths of positive and negative feedback loops
in ERP module were not measurable and thus were computed
using a trial-and-error method so that active ROP1 distribution
can be simulated based on their evolutionary PDE model. As
they pointed out, however, constructing a realistic mathematical
model for pollen tube tip growth with testable and robust
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FIGURE 2 | The formation of ROP1 polarity is determined by the positive, negative feedbacks and the lateral diffusion.

predictive powers requires accurately determining the strengths
of positive and negative feedback loops.

Following Luo et al. (2017), we propose a similar integro-
differential equation (IDE) model to describe the interplay
among the aforementioned three processes that lead to ROP1
polarity formation at a steady state. Different from Luo et al.
(2017), we devote our effort to estimating the strengths of
positive feedback and negative feedback in the IDE model based
on steady state ROP1 data. Standard parameter estimation for
ordinary differential equation (ODE), such as gradient matching
or generalized profiling (Ramsay et al., 2007; Brunel, 2008; Wu
and Chen, 2008; Brunel et al., 2014), might be adapted to IDE
under appropriate regularity assumptions (Lakshmikantham,
1995), but with challenging two identifiability issues (Miao et al.,
2011). One is whether the solution of the nonlinear IDE exists
and is unique (Gutenkunst et al., 2007; Transtrum et al., 2011).
The other is whether the observed data are sufficient to estimate
the parameters in the model (related to the Fisher Information
Matrix).

Integro-differential equations of positive integer order have
been widely used in many scientific areas (Bohner et al., 2021),
and it is very important to investigate the qualitative properties
of solutions (Tunç and Tunç, 2018). Recently, Tunç and Tunç
(2018) presented sufficient and necessary conditions on the
stability of the solutions to the non-linear scalar Volterra IDE
and Volterra integro-differential systems of the first order.
They further studied the qualitative properties of solutions
to nonlinear Volterra IDE with Caputo fractional derivative,
multiple kernels, and multiple constant delays and derived new
sufficient conditions related to the stabilities and boundedness of
solutions (Bohner et al., 2021).

Recently, there are growing applications of fractional
differential equations and fractional integro differential equations
in various fields such as engineering (Baleanu et al., 2020a;
Bohner et al., 2021; Thabet et al., 2021) and biology (Baleanu
et al., 2020c;Mohammadi et al., 2021). The Caputo and Riemann-
Liouville Derivatives are the two most famous fractional
derivatives that are introduced in order to take into account non-
locality behavior in the phenomena of interest. The equations
involved in the papers (Aydogan et al., 2018; Baleanu et al.,
2019a,b, 2020a,b,c; Alizadeh et al., 2020; Matar et al., 2021;
Mohammadi et al., 2021; Thabet et al., 2021) are mixed relations
between integral and derivatives of the functions. While all these
papers successfully addressed the critical problem of proving the
existence and uniqueness of a solution to these new models, it
also shows that general results for existence and uniqueness in
IDE are still not found, and a careful and adapted proof should
be derived on a case by case basis. The papers mentioned above
use a variety of different techniques for constructing the solution:
for instance, Laplace Transforms and Picard iterations.

In this paper, we exploit the closeness of our IDE to the
semilinear equation, in order to apply the results of the theory
of standard semilinear PDE to our case. We provide sufficient
and necessary conditions for the existence and uniqueness of
the solution to the proposed IDE. Furthermore, we integrate
these conditions as constraints into our newMethod of Moments
(Lu and Meeker, 1993) estimation procedure to allow estimating
positive feedback rate and negative feedback rate in a single tube
IDE model or a multiple tube IDE model. For the latter case,
we naturally use the framework of mixed-models (Li et al., 2002;
Putter et al., 2002; Huang and Wu, 2006; Guedj et al., 2007; Lu
et al., 2011) for estimating the population parameters, but we
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avoid the use of the likelihood. The corresponding procedure is
equivalent to estimating a mixed-effects ODE model with linear
constraints. We show that the estimators are consistent with
asymptotic distributions under general conditions.We also prove
that the two parameters are identifiable given the data.

While we could possibly incorporate fractional derivatives in
our model, such modifications of our model are not necessary
at this stage because we already have a very good agreement
between model predictions and data. Moreover, we dedicate a
large portion of the paper to measuring the population variation
and the observation error, and our objective is to identify the
stability of the balance between positive and negative feedbacks.

The paper is organized as follows. In Section 2, we describe
how our IDE model is derived in order to characterize the
distribution of active ROP1 on the membrane at a steady-state.
We provide sufficient and necessary conditions for the existence
and uniqueness of the solution to the proposed IDE model
with a tractable and generic expression. We then introduce the
IDE-based statistical models for a single pollen tube and for
multiple pollen tubes. We estimate the individual and population
parameters in both models, based on a constrained method
of moments (CMM) procedure, and derive the asymptotic
properties of CMM. We also prove that the two parameters
are identifiable given the data. We examine the performance of
the proposed estimation procedures through simulation studies
and real data analysis in Section 3. The paper is concluded
in Section 4.

2. METHODS

2.1. An IDE Model for a Steady-State
Distribution of Active ROP1
In this paper, we aim at deriving a mechanistic and interpretable
model for distribution functions x 7→ R(x), defined on an
interval [−L0, L0], where L0 ≤ +∞. The function x 7→ R(x)
denotes the active ROP1 concentration at the location x on the
membrane, and the function is centered such that the apical tip
is obtained at the location x = 0 (as shown in Figure 3). The
tube membrane is indexed by its curvilinear abscissa x, and its
total length is 2 × L0. The function R is positive, bounded and

the integral
∫ b
a R(x)dx is equal to the quantity of ROP1 along the

segment [a, b],−L0 < a < b < L0. This implies that the function
R could be almost considered a non-normalized density function.

Following the approach developed in Luo et al. (2017) and
Altschuler et al. (2008), we consider a stationary PDE model
that describes the equilibrium among the three competing forces
that lead to ROP1 polarity formation: ROP1 activation through
positive feedback with rate kpf > 0 , deactivation through
negative feedback with rate knf > 0, and diffusionwith coefficient
D1 > 0 (as shown in Figure 2). A general semilinear elliptic
equation with Dirichlet conditions (Cazenave and Haraux, 1998;
Badiale and Serra, 2010) can be used to describe such a stationary
PDE

{

−D1∂
2
xR = −knf gn(R)+ kpf gp(R)

where x ∈ [−L0, L0], R(−L0) = R(L0) = 0.
(1)

The rate of ROP1 lateral diffusion D1 on the plasma membrane
can be measured by fluorescence recovery after photobleaching
(FRAP) (Luo et al., 2017). kpf and knf are determined by ROP1-
independent constants linking ROP1 activity to the local rate of
exocytosis and exocytosis-independent constants determined by
the enzyme activity and expression levels of GEF and GAP (Luo
et al., 2017).While knf and kpf are not experimentallymeasurable,
they can be estimated from observed active ROP1 concentration
on the membrane at the steady state. Model (1) gives a direct
measure of the relative importance of the different mechanisms
in the system.

The functions gn and gp are positive functions that describe the
laws of the underlying mechanisms. When the exact physical or
chemical mechanisms are known (such as the law of mass action,
or Michaelis-Menten kinetics), we can give exact functional
expression. But in general, the mechanisms are often partially
known and we can only consider qualitative behaviors. Typically,
standard assumptions are that gn and gp are both smooth
increasing functions. The linearity assumption gn(u) = u for
the negative feedback is common in numerous models used in
applications (Altschuler et al., 2008; Badiale and Serra, 2010;
Luo et al., 2017). Remarkably, the existence and uniqueness of
a positive solution (different from the trivial solution R = 0) is
guaranteed under general conditions (Lions, 1982). In addition,
under very general conditions on gp, this positive solution is
symmetric around 0 and decreasing on [0, L0] (see Theorem 1
in Gidas et al., 1979). These results indicate that all the solutions
R of the PDE models (1) share surprisingly the same qualitative
properties: they are bell-shaped and even functions that vanish
at the boundaries and therefore can characterize well the ROP1
distribution on the membrane as revealed in Figure 1. This
typically reduces the interest in exploring the use of refined
functions gp as they will provide the same pattern for R. As a
consequence, we concentrate on the case of a superlinear gp,
defined as gp(u) = uα ,α > 1, i.e., it grows faster than a linear
function when u tends to infinity.

An obvious limitation of the model (1) is that the two
competing positive and negative forces do not exhibit any
saturation or depletion effect, as both functions gp and gn are
assumed to be nondecreasing for any u > 0. For the negative
feedback, it is standard to assume that the negative feedback is
linear and does not depend on the actual quantity u. However,
themonotonicity of the positive feedback is questionable. Indeed,
the positive feedback is prone to be limited by the depletion of the
available material. A standard assumption as used in the logistic
equation (Murray, 2007) should be that the rate decreases with

the ratio of available ROP1 in the cytosole, i.e.,
(

1 −

∫ L0
−L0

R(x) dx

Rtot

)

,
where Rtot is total free ROP1 in the cell.

Putting all together, we refine the stationary PDE (1) as the
following stationary IDE

{

−D1∂
2
xR = −knfR+ kpf (1−

∫ L0
−L0

Rdx

Rtot
)Rα

where x ∈ [−L0, L0], R(−L0) = R(L0) = 0.
(2)

Here D1 is diffusion coefficient. kpf and knf are positive feedback
rate and negative feedback rate, respectively. α determines how
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FIGURE 3 | Imputated Data ỹij for all tubes at all locations. The red line is loess smoother.

FIGURE 4 | Scatter plot of the individual parameters (knf ,i , kpf ,i ).

faster the positive feedback function grows than the negative
feedback function when the active ROP1 concentration goes
to infinity.
Remark 1: A similar model for cell polarity was introduced
in Altschuler et al. (2008), except that their model includes a
spontaneous association term and α is assumed to be 1. The
nonlinearity in our model comes from the product of Rα with
α > 1 and the fraction of “available” ROP1 particles 1 −
∫ L0
−L0

R(x)dx

Rtot
.

Remark 2:While the fraction

∫ L0
−L0

R(x)dx

Rtot
plays a prominent role in

a specific dynamics driven by a particular ODE in Altschuler et al.

(2008), we consider directly an IDE that describes the intertwined

dynamics of R and

∫ L0
−L0

R(x)dx

Rtot
.

Remark:3 The total number of ROP1 on the membrane
∫ L0
−L0

R(x)dx must be lower than the total free ROP1 Rtot in the
cell, which will be an important constraint to satisfy in our model
for the existence of a solution.

2.2. Identifiability of Solution R
For the reference nondimensionalized model (3) below, we can
prove the existence and uniqueness of the positive solutions Uα

and its limited sensitivity to α and c (see Lemma 1 in Web
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Appendix),

{

−∂2xu = −u+ uα , x ∈ [−c, c]
u(−c) = u(c) = 0.

(3)

As a result, there exists unique positive solution(s) Rλ,µ(x) =

λUα(µx) to the IDE (2) with µ =

√

knf
D1

and λ being the positive

root(s) of the following equation

knf

kpf
− λα−1 + λα

√

D1

knf

|Uα|

Rtot
= 0, (4)

if and only if

3(Rtot ,D1,α, L0, knf , kpf ) =
knf

kpf
−
1

α





α − 1

α

√

knf

D1

Rtot

|Uα|





α−1

≤ 0.

(5)
See Proposition 1 in Web Appendix for details. Upon checking
condition (5), the solution Rλ,µ(x) can be obtained as follows:

1. Solve the semilinear elliptic equation (3) on �′ =
[

−L0

√

knf
D1

, L0

√

knf
D1

]

and obtain the solution Uα , compute

|Uα| .
2. Compute the discriminant function 3(·).

3. If 3(·) = 0, compute µ =

√

knf
D1

and the unique root λ∗ of

Equation (4) where λ∗ = α−1
α

µRtot
|Uα |

, and compute the solution

Rλ∗ ,µ(x) = λ∗Uα(µx).

4. If 3(·) < 0, compute µ =

√

knf
D1

and the positive roots λ∗1
and λ∗2 of Equation (4), and compute the solutions Rλ∗1 ,µ

(x) =
λ∗1Uα(µx) and Rλ∗2 ,µ

(x) = λ∗2Uα(µx). Note: In practice, the
solution R closer to the experimental data will be chosen.

By solving Equation (4), we see that if Rλ,µ is a solution to the
IDE (2) and 3 < 0, we have necessarily knf = D1µ

2 and

kpf = D1µ
2
(

λα−1 − λα |Uα |
µRtot

)−1
. Consequently, with a given

solution Rλ,µ, we cannot recover knf , kpf , and Rtot , because we
cannot compute kpf and Rtot from a unique λ,µ. The biological
implication is that we cannot recover the total free number of
ROP1 in the cell by observing only ROP1 on the cell membrane.
For this reason, we need to fix Rtot to be a constant. In the case of
3 = 0, we still have knf = D1µ

2 while kpf = αD1µ
2λ1−α is not

impacted by Rtot anymore.

Let r =
∫ L0
−L0

Rλ,µ(x)dx/Rtot denote the fraction of active
ROP1 on the membrane. The existence of positive solution Rλ,µ

to IDE (2) suggests that rα−1(1 − r) ≤ (α − 1)α−1/αα , i.e., the
fractions of active ROP1 on the membrane and inactive ROP1
in the cytosol at the steady state are controlled by the nonlinear
growth of positive feedback force (determined by α) competing
with the linear growth of the negative feedback force.

Without an integral part in IDE (2), the solutions are still of
the form Rλ,µ. The parameters knf , kpf , and D1 in the equation

−D1∂
2
xR = −knfR+kpfR

α can freely vary and the shape (height)

of the solution changes with λ =
(

kpf
knf

)
1

1−α
. The introduction

of the saturation effect through the integral part in IDE (2) only
changes the height of the peak λUα(0) (see Remark 2 in Web

Appendix) with λ =
(

kpf
knf

(1− r)
)

1
1−α

. Obviously,
knf
kpf

is an

important quantity that controls the height of the peak. Recall

that
∫ L0
−L0

Rλ,µ(x)dx =
λ|Uα |

µ
≤ Rtot , the integral term implies that

knf , kpf , and D1 are linked together, and that link is controlled by
Rtot .

2.3. Parameter Estimation
Note that the diffusion coefficient D1 is a positive quantity that
can be experimentally measured: D1 = 0.2µm (Luo et al., 2017).
In order to reduce the identifiability problem between α and µ

(i.e., knf , see Web Supplementary Figure 2), α is fixed at 1.2 in
this paper. There is also a limited sensitivity of the solution R
to α and L0 as discussed in Section 3. Furthermore, we cannot
recover biologically the total free number of ROP1 (Rtot) in the
cell by observing only ROP1 on the cell membrane. Adding
all together, D1, α, L0, and Rtot are all assumed to be known
constants and will be dropped from 3(·) throughout this paper,
and our interest lies in the estimation of the parameters kpf and
knf under the constraint that the solution R of IDE (2) exists, i.e.,
3(kpf , knf ) ≤ 0.

In this section, we first consider estimating knf and kpf in a
constrained nonlinear fixed effect model using a single pollen
tube data. We then further extend to estimate knf and kpf in a
constrained nonlinear mixed effect model using multiple pollen
tube data. Proposition 2 (see Web Appendix) ensures that knf
and kpf can be estimated using noisy data (Miao et al., 2011)
obtained either from a single pollen tube or from multiple
pollen tubes.

2.3.1. Single Pollen Tube and Constrained Nonlinear

Fixed Effect Model
For a single pollen tube, let Yj be the observed ROP1 intensity at
a location Xj (Xj is randomly sampled from a distribution such as
a uniform distribution) on the membrane at a steady state, and

Yj = R(Xj; knf , kpf )+ ǫj j = 1, 2, · · · , n. (6)

where R(X; ·) is the solution of the IDE (2) and ǫj are i.i.d.
randommeasurement errors following a certain distribution with
mean 0 and variance σ 2. As shown in Section 2.2, R(X; ·) exists if
and only if the discriminant function 3(knf , kpf ) is non-positive.
Therefore, the IDE based model (6) is subject to the following
constraints

{

3(knf , kpf ) ≤ 0,

knf > 0, kpf > 0.

The constrained nonlinear model (6) can be reparametrized into
the following model (7) with µ and λ subject to the linear
constraints (8)

Yj = λUα(µXj)+ ǫj, j = 1, 2, · · · , n, (7)







3∗(µ, λ) = µRtot − λ |Uα| > 0
λ > 0
µ > 0

(8)
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where µ =

√

knf
D1

and λ is the root of Equation (4). See

Proposition 3 in the Web Appendix for proof. The choice of λ

has been discussed in Section 2.2. We can simply estimate λ and
µ first and then transpose them back to knf and kpf .

With the observations {yj}
n
j=1 at locations {xj}

n
j=1 obtained

from the pollen tube tip growth experiment, we propose
the following constrained nonlinear least square (CNLS)
estimation method.

1. Compute Uα(x)
2. Estimate µ and λ by minimizing (9) under the constraints (8)

(λ̂, µ̂) = argmin
λ,µ

n
∑

j=1

(

yj − λUα(µxj)
)2

(9)

3. Convert µ̂ and λ̂ to k̂nf and k̂pf by







k̂nf = D1µ̂
2

k̂pf =
D1µ̂

2

λ̂α−1−
λ̂α |Uα |
µ̂Rtot

(10)

4. Estimate σ 2 by σ̂ 2 = 1
n−2

∑n
j=1

(

yj − λ̂Uα(µ̂xj)
)2

In step 1, Uα can be obtained by numerically solving a boundary
value problem using many methods, such as the shooting
method (Soetaert, 2009; Soetaert et al., 2010), the mono-implicit
Runge-Kutta (MIRK) method (Cash and Mazzia, 2005), and the
collocation method (Bader and Ascher, 1987) available in the R
package “bvpSolve.”

To handle the linear constraint µRtot − λ |Uα| > 0 in the
nonlinear least-squares minimization in the second step, we
introduce a new parametrization with variable ν ,

µ
λ
. As a result,

the constrained minimization function is simplified as follows,
which can bemore efficiently solved by the Levenberg-Marquardt
algorithm (Bertsekas et al., 1998), coded in the R package NLSR.

{

minλ,ν
∑n

j=1

(

yj − λUα(λνxj)
)2

λ > 0, ν >
|Uα |
Rtot

(11)

Among other possible choices, we propose to use the following
raw estimates of the parameters as the initial values,







λ̃ =
ỹ0

Uα(0)

µ̃ = λ̃|Uα |
∑n

i=2 y(i)δi

(12)

where ỹ0 is the closest observed value to x = 0, and δi =

x(i) − x(i−1) is the step size of the sorted observations xi. Here,
we exploit the fact R(0; knf , kpf ) = λUα(0), and we estimate

the integral
∫ L0
−L0

Rλ,µ(x) dx = λ|Uα |
µ

directly from the data by
∑n

i=2 y(i)δi where y(i) is the observation corresponding to x(i).
Let θ = (µ, λ)T be the parameter vector, θ0 be the true value

of θ , and θ̂n be the CNLS estimator with n sample measurements.
For the general NLS estimator, the asymptotic properties have
been established by Jennrich (1969). Wang (1996) states that

the constraints have no impact on the asymptotic properties,
and we have a standard normal distribution. Nevertheless, for
the sake of completeness, we also consider the case when the
true parameter values θ0 are on the boundary of the constrained
set and give a more general result (see Proposition 4 in Web
Appendix). This latter situation corresponds to the case where

Rtot =
∫ L0
−L0

R(x)dx, i.e., all the available ROP1 is activated, and
the strength of negative feedback knf is overwhelmed by a high
kpf . However, this case has not been observed on real data.

2.3.2. Multiple Pollen Tube and Constrained

Nonlinear Mixed Effect Model
As discussed in the introduction, our objective is to estimate
at the population level the strength of the positive feedback
and negative feedback processes that contribute to the ROP1
distribution and polarity formation at a steady state. In Section 3,
we present data on ROP1 intensities collected from experiments
on 12 different pollen tubes. For each pollen tube, we can fit the
constrained nonlinear fixed effect model as described in Section
2.3.1 to the data associated with the tube and obtain the CNLS
estimators. The estimated parameters

(

λ̂i, µ̂i

)

, i = 1, . . . , 12

are plotted in Figure 4. We can see some variability of λ and µ

and a strong correlation between the two, and an even higher
correlation between the original parameters knf and kpf as shown
in Figure 5. For this reason, we propose to model this individual
variability with a mixed model. We extend the models (6) and
(7) by considering Yij, the ROP1 intensity observed for tube i at
location Xij on the membrane, as follows:

Yij = Ri(Xij; λi,µi)+ ǫij (13)

= λiUα(µiXij)+ ǫij, i = 1, 2, · · · ,m; j = 1, 2, · · · , ni,

(14)

where ǫij is i.i.d with mean 0 and variance σ 2. We further assume
that

θ i = (λi,µi)
T ∼ G(θ0,60) (15)

where G is a density on the constraint set C =
{

(λ0,µ0)|µ0, λ0 > 0,µ0Rtot − λ0|Uα| > 0
}

, such that the

mean E(θ i) = θ0 = (λ0,µ0)
T and variance V(θ i) = 60, for

i = 1, 2, · · · ,m. If there is no constraint, all the parameters can
be estimated by several existing methods such as Ke and Wang
(2001) and Wolfinger and Lin (1997). Due to the specific form of
the constraint set C, and the absence of “natural" assumptions on
the population distribution, we only assume the existence of the
first two moments: the mean θ0 and variance 60. The density G

does not need to be completely specified for population inference
(typically G can be a truncated Gaussian distribution on C).

Denote the experimental data to be {yij} and {xij} with i =

1, · · · ,m and j = 1, · · · , ni. We assume that the mean θ0 is not
on the boundary (i.e., the individual parameters θ i have a null
probability of being on the boundary). We first extend the CNLS
procedure and propose a new procedure called CMM to estimate
the nonlinear mixed effect model as follows:

1. Compute Uα(x) from Equation (3)
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FIGURE 5 | Scatter plot of the individual parameters (µi , λi ).

2. For each pollen tube i, estimate θ i by minimizing least squares

θ̂ i = argmin
θ i

ni
∑

j=1

(

yij − λiUα(µixij)
)2

under the constraints 3∗(θ i) > 0 and θ i > 0

3. Estimate θ0 by θ̂0 =
∑m

i=1 θ̂ i
m

4. Estimate σ 2 by σ̂ 2 =

∑m
i=1

∑ni
j=1

(

yij−λ̂iUα(µ̂ixij)
)2

∑m
i=1(ni−2)

5. Estimate 60 by 6̂0 =
∑m

i=1
(θ̂ i−θ̂0)(θ̂ i−θ̂0)

T

m−1 − σ̂ 2
∑m

i=1
T−1
i
m ,

where Ti =

[

∂Ri

∂θTi

]T [

∂Ri

∂θTi

]
∣

∣

∣

∣

θ i=θ̂ i

and Ri =

(R(xi1; θ i),R(xi2; θ i), · · · ,R(xini; θ i))
T

6. Modify the estimator of 60 by

6̂+ =

{

6̂0 if 6̂0 is positive definite

Q9+Q
′ if 6̂0 is not positive definite

where9+ is a diagonal matrix whose diagonal elements9ii =

max(ψi, 0), where ψi is the eigenvalue of 6̂0, and Q is a
2×2 matrix whose ith columns is the eigenvector qi associated
with ψi.

7. Convert θ̂0 to k̂nf and k̂pf .

This procedure is motivated by the MM proposed by Lu and
Meeker (1993), and we extend it to the constrained case. The
asymptotic normalities of the CMM estimators θ̂0, 6̂0 are proved
in the Web Appendix (Proposition 6).
Remark 4: If ni is sufficiently large, then the estimators θ i
are closed enough to the true parameters so that even with a

small m, the mean (our population estimator) will be also very
close to the θ0. In addition, because of the independence of the
tubes, the quasi-normality of each estimator for big n implies
that the population estimator will be also almost Gaussian,
as a simple mean. However, if ni is not large enough, then
it requires sufficiently large m to obtain a close estimate, or
(approximate) Gaussianity.

We consider now the estimator of the population parameter
φ0 = (k0

nf
, k0

pf
) defined as k0

nf
= EG[knf (θ0)] and k0

pf
=

EG[kpf (θ0)]. Let φ̂0 = φ(θ̂0) be the estimator of φ0. By the

delta-method, we can prove the asymptotic normality of φ̂0 (see
Corollary 2 in Web Appendix).

3. RESULTS

3.1. Simulation Studies
In this section, our simulation studies demonstrate that the
proposed methods can provide robust and accurate estimates
of kpf and knf based on data from either single pollen tube
or multiple pollen tubes, an important step toward a deeper
understanding of the tip growth of normal and mutant pollen
tubes. All the estimation procedures were implemented in R.

To evaluate the performance of the CNLS procedure, we
simulated data using the values α = 1.2, D1 = 0.2, Rtot = 30,
L0 = 15, knf = 0.2, and kpf = 0.3. These values were obtained
empirically from real wild type Arabidopisis pollen tube data,
which are also similar as those in the Supplementary Table 2 in

Luo et al. (2017). Accordingly, µ = 1, λ = 0.6, and L0

√

knf
D1

= L0.

Although our knf and kpf values are different from those used
in Luo et al. (2017), our ratio of 1.5 is close to their ratio of
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30 ∗ 0.028/0.5081 = 1.65. Note that our kpf /knf is roughly
equivalent to their kpf /knf×Rtot . As wementioned earlier, it is the

ratio
kpf
knf

that determines the height of the peak. The solution of

Uα is solved by the collocation method (Bader and Ascher, 1987)
in R package “bvpSolve.” Recall that Uα(x) is a positive and even
function that achieves its maximum at x = 0. With α = 1.2,
Uα(x) is close to 1

2 at |x| = 5 and is close to 0 at |x| ≥ 15.
Therefore, R(x) = λUα(µx) with µ = 1 in the simulation studies
were generated from |x| < 15, and the range of R(x) is [0, 0.9663].

For each measurement error σ = 0.2, 0.4, we generated
10,000 data sets of size n = 51, 101, 301, i.e., x were picked
along [−15, 15] with step size of 0.1, 0.3, and 0.6. CNLS
based estimates of the parameters were obtained for each
of the 10,000 data sets, based on which the relative bias
and SD were computed as shown in Supplementary Table 1.
We could see the CNLS procedure works quite well and is
quite robust against noise when the size of data is fairly
large. We also followed Proposition 4 to compute asymptotical
variances and construct the coverage probability as shown in
Supplementary Table 1. K = EX[∇θR(X; θ0)∇θR(X; θ0)

T] in
Proposition 4 cannot be computed analytically. However, when
n ≥ 300, it can be well approximated by its sample mean
1
n

∑n
i=1 ∇θR(xi; θ0)∇θR(xi; θ0)

T according to our simulation.
We could see that the asymptotical variances computed based on
Proposition 4 are close to those computed based on simulation,
and the observed coverage appears to be approximately
equivalent to the nominal confidence level.

To evaluate the performance of the CMM procedure, we
generated data for each m pollen tubes with associated (µi, λi)
simulate from MVN((µ, λ)T ,6). The true values of parameters
used for the simulation were knf = 0.2, kpf = 0.3,µ = 1, λ = 0.6,

σ = 0.2, and 6 is a diagonal matrix with 611 = σ 2
µ = 0.062,

622 = σ 2
λ = 0.062, and 612 = ρσλσµ = 0.8 ∗ 0.062.

We considered three cases. In case 1, m = 10, x is uniformly
sampled from –15 to 15 with step size 0.6 and n = 51. In
case 2, m = 10, x is uniformly sampled from –15 to 15
with step size 0.3 and n = 101. In case 3, m = 50, x
is uniformly sampled from –15 to 15 with step size 0.1 and
n = 301. Each simulation was done 10,000 times. The relative
bias, SD and coverage probability for the CMM procedure
are shown in Supplementary Table 2, from which we can see
that the CMM procedure performs well. In particular, the
asymptotical variances computed based on Proposition 6 are
close to those computed based on simulation, and the observed
coverage appears to be approximately equivalent to the nominal
confidence level. Similar results were also observed by Yang
(2001).

3.2. Pollen Tube Data Analysis
3.2.1. Data Preprocessing
In this section, we analyze data from real pollen tubes. We have
measured the ROP1 intensities of 12 pollen tubes of Arabidopsis
on a reference regular grid defined on (−10µm, 10µm) with a
step size of 0.1205µm, therefore, m = 12 and n = 173. In
order to remove outliers and to reduce excessive noise while
taking into account the correlations among the 12 tubes, we

replace the data with their projections on the most significant
axis of a Principal Component Analysis (PCA). We select 9
axes for reconstructing the data in all the tubes (instead of 12
axes for exact reconstruction), which represent 98% of the total
variance, as shown in Figure 3. Nevertheless, the tubes are not
observed at all the same points xj of the reference grid, and the
observed grid (xij) may vary with tube i. In order to deal with
the random locations (on a common grid), we consider that the
tubes have missing values (around 25% of missing values for the
whole dataset) and we use the R package missMDA (Josse and
Husson, 2016) for computing the axis and PCA. As a by-product
of the PCA, we impute also the observations at all the locations
of the reference grid, for all the tubes. For simplicity, although
our mixed-effect estimator is consistent for tubes with random
designs, we compute the individual and population estimators
with the imputed data, so that the data are defined on the same
uniform grid, for all the tubes.

As the ROP1 intensities ỹij in tubes are measured by relative
intensity, it cannot represent the modeled true intensities. In
particular, nonparametric smoothing estimates suggest that the
functions cannot vanish at the boundaries. For this reason, we

standardize the data with respect to the boundaries yij =
ỹij−¯̃yB
¯̃yB

(where ¯̃yB = 1
NB

∑

i,|xij|>8 ỹij is the mean of the boundary values),

in order to get ROP1 intensities that can vanish at the boundaries,
as shown in Figure 6. The estimated SD of the noise is then 0.146.
Figure 7 shows the normalized tubes and the smoothed estimate
(in red) of Ri for i = 1, . . . , 12.

As the functions Ri can be written as Ri(x) = λiUα(µix),
this means that any renormalization by a given constant R0 only
impacts λi. If R̃i = Ri

R0
, then the normalized distribution has

corresponding parameters
(

µi,
λi
R0

)

and it satisfies the IDE

− D1∂
2
x R̃i = −knf R̃i + kpfR

α−1
0 R̃α

i

(

1−

∫

R̃idx

R̃total

)

(16)

where R̃total =
Rtotal
R0

, and the corresponding parameters are

simply shifted in the following way
(

k̃nf , k̃pf

)

=
(

knf , kpfR
α−1
0

)

,

and the ratio is changed accordingly
k̃nf

k̃pf
= 1

Rα−1
0

knf
kpf

. This ratio

is an important quantity in the IDE as it controls the height of
the peak.

Note that the Equation (2) or the normalized Equation (16)
are the mathematical models we construct for the ROP1 data y.
The difference between its solution Ri and yij, j = 1, · · · , 173 for
each i, i = 1, · · · , 12, is caused by random error as described in
Equation (6) for signle pollen tube and Equation (13) for multiple
pollent tube. We then apply estimation procedure detailed in
Section 2.

3.2.2. Estimation of Individual Parameters
Following the results of paper (Luo et al., 2017), we assume that
the diffusion parameter isD1 = 0.2, the shape parameter α = 1.2,
and Rtot = 30. Moreover, as the data does not vanish exactly at
the boundaries, we select L0 = 15 which permits to deal with a
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FIGURE 6 | Normalized data yij for all tubes at all locations. Red line is loess smoother.

FIGURE 7 | Individually fitted curves for each tube: loess-smoothed curves (in red), IDE solution Rλ,µ (in blue).

function that will not be exactly 0 for x = ±10. For i = 1, . . . , 12,

we compute a rough estimate of R̄i =
∫ L0
L0

Ri(x)dx based on the

nonparametric smoother of Figure 7. We find that R̄i is between
7 and 9.5, i.e., the percentage of active ROP1 on the membrane
is around 23% to 30% of Rtot . For each tube, we compute the

CNLS estimates of (λi,µi) and knf , kpf ,
knf
kpf

, and σ (see Table 1).

Table 1 suggests that although we have a non-negligible tube
to tube variation, we can obtain pretty robust and consistent

estimate for the ratio
knf
kpf

( and λ as well). This is consistent with

our observation that all 12 pollen tubes have similar shapes and
heights (as shown in Figure 7).

This suggests that estimating individual
knf
kpf

using each single

pollen tube data can reveal whether the pollen tubes are
undergoing the same mechanism of polarity formation or not
and potentially discover new mutants with new mechanisms.

3.2.3. Estimation of the Population Parameters
If all pollen tubes are from the same population (e.g., the 12
tubes we are analyzing in this paper), we can use the constrained
mixed model’s approach to obtain the population parameter
estimates µ̂0 = 1.0 (95% confidence interval is [0.96, 1.03]) and
λ̂0 = 0.625 (95% confidence interval [0.59, 0.66]), with a SD
for the noise σ̂ = 0.18. From these estimates, we derive the
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TABLE 1 | The individual parameter estimates with constrained nonlinear least

square (CNLS) for tubes i = 1, . . . , 12.

1 2 3 4 5 6 7 8 9 10 11 12

µ 0.99 1.12 0.97 1.09 0.90 0.99 1.00 1.07 1.02 1.02 0.88 0.95

λ 0.70 0.72 0.67 0.71 0.54 0.66 0.69 0.71 0.72 0.71 0.67 0.61

knf 0.20 0.25 0.19 0.24 0.16 0.20 0.20 0.23 0.21 0.21 0.16 0.18

kpf 0.31 0.37 0.29 0.35 0.25 0.30 0.31 0.34 0.32 0.32 0.25 0.28

σ 0.13 0.17 0.16 0.17 0.18 0.19 0.17 0.20 0.12 0.16 0.19 0.20
knf
kpf

0.64 0.67 0.64 0.67 0.65 0.65 0.65 0.66 0.65 0.65 0.62 0.65

population parameter estimates for k̂0
nf

= 0.2 (95% Confidence

Interval is [0.18, 0.21]) and k̂0
pf

= 0.3 (95% Confidence Interval

is [0.28; 0.32]).
The SD in the population are σ̂µ = 0.059 and σ̂λ = 0.061, with

an estimated correlation ρ̂µ,λ = 0.81. The estimated correlation
ρ̂knf ,kpf = 0.96 indicates that there is a quasi-linear relationship

between knf , kpf . Above all, the mixed model permits us to
estimate the correlation between the parameters and explains the
strong relationship observed in Figure 5.

The multiple tube analysis and the introduction of a flexible
(semi)-parametric model on the geometric properties of the
densities has permitted us to infer the remarkable relationships
between knf and kpf . We believe that this link is deeply related to
the growth process of pollen tubes. In fact, in Luo et al. (2017),
the mathematical model used shows that the tube geometry (tube

width) is related to the values of the ratio
knf
kpf

, and we refer to

the Web Appendix of Luo et al. (2017) in which the Figure

3a relates a given ratio
knf
kpf

to the width of pollen tubes. Our

mixed-model then gives a way to measure this link through the
population covariance.

4. DISCUSSION

In this paper, we propose a statistical estimation procedure
for an IDE model. Such models are quite difficult to analyze
and estimate in general, as the existence of a solution and
the qualitative behavior can be very specific. Nevertheless, we
have shown through a mathematical analysis that the space
of solutions can be reparametrized in a much more efficient
manner. We have derived a versatile parametrization of the
solution that links the shape of the distribution R (described
with parameters µ, λ) to the competition between positive and
negative feedback loops knf , kpf . Based on this relationship, we
have derived an estimator with its complete statistical properties,
by taking into account individual variability with a mixed model
approach and asymptotic arguments. Thanks to the properties
of CNLS, we can derive an estimator with few parametric
assumptions on the distribution of the possible shapes of the
densities Ri (we only specify the first two moments of G).
Indeed, from the available data, it is arguable to assume standard
parametric assumptions on G, such as a Gaussian distribution—
as shown in Figure 5: in our analysis, we rely instead on the
asymptotic normality of the CNLS estimators. In addition, the
(degenerated) deterministic relationship between knf and kpf is

also very hard to introduce directly in a mixed-effects model. On
the contrary, the multiple tube analysis and the introduction of a
flexible (semi)-parametric model on the geometric properties of
the densities has permitted to infer the remarkable relationships
between knf and kpf . We think that this link is deeply related to
the growth process of pollen tubes.

Oscillatory spatiotemporal Ca2+ signals have been observed
in experiments, and it is identified as an important driving force
of the polar cell growth in Arabidopsis pollen tubes (Luo et al.,
2017). Tian et al. (2019) proposed a new reaction-diffusionmodel
of ROP1 and Ca2+ interaction on the plasma membrane which
incorporates knf ,kpf , D1, and Ca2+. Estimating knf and kpf using
ROP1 data at steady state proposed in this paper can provide
reasonable initial values for knf and kpf in Tian et al. (2019)’s PDE
model to facilitate a more complete and realistic description of
the tube geometry to have better estimates, or to introduce other
characteristics of the ROP1 distribution that could be related to
the trade-off between negative and positive feedbacks.

The mathematical tools (in particular the theory of semilinear
diffusion equation) used for deriving the existence of a solution
could provide ways for deriving a tractable parametrization
of the solutions set, amenable for statistical estimation.
Another challenging situation is also the presence of (existence)
constraints that may be reached with real data. We give in the
Web Appendix the corresponding asymptotics in that situation,
but the impact of reaching such constraints during estimation
may have a consequence on the validity of the model and might
be used for model selection. Nevertheless, in our case, the linear
constraints are far from being saturated, and we always accept the
NLS estimator.
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