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Abstract

Au and Pd complexes have emerged as highly effective n-bond cyclization catalysts to construct
heterocycles. These cyclization reactions are generally proposed to proceed through multi-step addition-
elimination mechanisms involving Au- or Pd-alkyl intermediates. For Au- and Pd-catalyzed allylic diol
cyclization, while the DFT potential energy surface landscapes show a stepwise sequence of alkoxylation
n-addition, proton transfer, and water elimination, quasiclassical direct dynamics simulations reveal
dynamical mechanisms that depend on the metal center. For Au, trajectories reveal that after m-addition
the Au-alkyl intermediate is always skipped because addition is dynamically coupled with proton transfer
and water elimination. In contrast, for Pd catalysis, due to differences in the potential-energy landscape
shape, only about half of trajectories show Pd-alkyl intermediate skipping. The other half of the
trajectories show the traditional two-step mechanism with the intervening Pd-alkyl intermediate. Overall,
this work reveals that interpretation of a DFT potential-energy landscape can be insufficient to understand
catalytic intermediates and mechanisms and that atomic momenta through dynamics simulations are

needed to determine if an intermediate is genuinely part of a catalytic cycle.
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Introduction

Molecular Au and Pd complexes have emerged as effective alkene cyclization catalysts to
construct heterocycles.!*** These cyclization reactions are often proposed to proceed through multi-step
mechanisms involving key Au- or Pd-alkyl intermediates.>*’ Because protodemetalation of these metal-
alkyl intermediates can be slow,? it was advantageous when Aponick®!®!""'2 and Uenishi'*!*
independently reported Au-catalyzed and Pd-catalyzed cyclization of monoallyic diols that do not require
protodemetalation. Scheme 1a shows that both Au and Pd catalyze cyclization and dehydration to give the

vinyl tetrahydropyran product through an overall Sx2’ transformation.

(PPh3)AUCI
a) AgOTf
or

H - (R (MeCN),PdCl, O~~~ R
OH

cis and trans

b)
(PPh3)AuCI H H

OH/\rR AgOTf o xR 0 R
e o

U OH CH,Cl, '

from from
trans alkene cis alkene
xR
O/\/ PPh3 \

®
Au
0. LR Anti Addition OH\ R
Anti Elimination =
OH

\ g®éu R/
%

Alkyl Gold Intermediate

Scheme 1. a) General outline of Au- and Pd-catalyzed monoallyic diol cyclizations of cis and trans
alkenes to tetrahydropyrans reported by Aponick® and Uenishi.'* b) Example of chirality transfer for
enantioenriched diols containing a chiral center at the carbon with the allylic hydroxyl group.’ ¢) Outline
of anti addition/anti elimination catalytic cycle identified with our previous DFT calculations.



Experiments to examine the mechanism of these Au- and Pd-catalyzed cyclization showed that
both cis and trans allylic alcohols resulted in a trans alkene product (Scheme 1b).” Also, Aponick
demonstrated that cyclization of chiral alcohols resulted in chirality transfer during alkoxylation carbon-
oxygen bond formation. While there are multiple stepwise and concerted mechanisms that can account for
these stereo-controlled reactions, our group previously showed with density functional theory (DFT)
calculations that a two-step anti addition/anti elimination mechanism with a metal-alkyl intermediate is

significantly lower than other mechanisms, !>

such as two-step syn addition/syn elimination or
carbocation mechanisms.

The Au catalytic cycle outlined in Scheme 1c is based on the DFT potential energy surface shown
in Scheme 2a."> During this catalytic cycle, hydrogen bonding between the hydroxyl groups preorganizes
alkoxylation m-addition that occurs through TS1. This transition state connects to the anti addition Au-
alkyl intermediate with hydrogen bonding intact, but no proton transfer. In the second step on this energy
surface through TS2 there is proton transfer along with water elimination to generate the new n bond.

An important mechanistic typical assumption for drawing the catalytic cycle in Scheme lc is that
after TS1 there is fast intramolecular vibrational energy redistribution (IVR) and statistical vibrational
population of the anti addition Au-alkyl intermediate prior to traversing TS2. Stated another way, based
on the DFT potential energy surface, it is assumed there is fast equilibration between atomic potential and
kinetic energy, so that after TS1 the reaction pauses at intermediate 2 and has a significant lifetime before
continuing through TS2. However, for the Au-catalyzed allylic diol cyclization reaction, the anti Au-alkyl
intermediate is endothermic and only stabilized by ~2 kcal/mol relative to TS1 and <1 kcal/mol relative to
TS2. This relatively shallow well on the energy surface suggested to us that this reaction mechanism
might be significantly influenced by atomic momenta and that a possible lack of IVR would lead to
coupled reaction steps that skip the Au-alkyl intermediate during catalysis, which raises the general
question of when a catalytic intermediate should be proposed based on DFT calculations. The dotted

orange arrow in Scheme 2a depicts the possibility of dynamical motion and non-IVR resulting in the

coupling of alkoxylation n-addition, proton transfer, and water elimination into a single reaction step.



Scheme 2b outlines this dynamical one-step mechanism on a More O’Ferrall-Jencks'”'® type plot with
axes for addition and elimination steps. Additionally, there is the possibility of proton transfer preceding

alkoxylation carbon-oxygen bond formation.
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Scheme 2. a) Qualitative energy landscape based on previous DFT calculations depicting transition-state
structures for the two-step anti addition/anti elimination mechanism.!>!¢ b) More O’Ferrall-Jencks type
plot comparing two-step (anti addition/anti elimination) and one-step, concerted Sx2° mechanisms. The
orange dotted arrows (I, I, and III) represent several possible dynamical reaction mechanisms that
couple addition and elimination reaction steps.

Here, we report DFT-based quasiclassical direct dynamics trajectories that determine the
influence of atomic momenta during Au-catalyzed monoallylic diol cyclization reaction. Our trajectories
demonstrate that for the shallow minimum energy surface with Au there is indeed extremely fast

(ballistic) skipping of the Au-alkyl intermediate with dynamical coupling of addition, proton transfer, and

elimination steps. We also examined the Pd-catalyzed diol cyclization reaction and found that the more



stabilized Pd-alkyl intermediate results in some trajectories with intermediate skipping and some
trajectories ending at the intermediate. These results mean that interpretation of the Au- and Pd-catalyzed
DFT potential-energy landscape is insufficient to propose a catalytic cycle. Consideration of atomic
momenta through dynamics simulations is needed to determine if the Au-alkyl and Pd-alkyl intermediates

are genuinely part of the catalytic cycle for monoallylic diol cyclization reactions.

DFT Calculations and Dynamics Simulations

DFT structures for energy landscapes were optimized in Gaussian 16! with the M06% functional
using the 6-31G**[LANL2DZ for Au and Pd] basis set. This functional is one of the most accurate
methods for properties of third-row transition metals. All structures were optimized with the ultrafine
integration grid and with tight convergence criteria. Thermochemical corrections for enthalpies and Gibbs
free energies were applied using the standard rigid rotor-harmonic oscillator approximation. Use of the
quasi-harmonic oscillator approximation gave nearly identical energies. The continuum SMD
dichloromethane solvent model was used for all optimizations.?!

Trajectory calculations were initialized and propagated in Gaussian 16 with M06/6-
31G**[LANL2DZ], an ultrafine integration grid, and the SMD dichloromethane solvent model.
Quasiclassical trajectories that included zero-point energy (ZPE) were initialized and propagated from the
anti addition transition-state structure TS1. Initialization of trajectories was done using local mode and
thermal sampling at 298 K. The Au-catalyzed and Pd-catalyzed reactions both showed very high
conversion at and below room temperature.’!* Trajectories were propagated in mass-weighted Cartesian
velocities with an average step size of about 0.75 fs, which we previously showed is a reasonable time
step for organometallic reactions.?>? Forward trajectories were initiated so that the transition-state
vibrational mode was followed in the direction of decreasing the forming C-O bond length. Reverse

trajectories followed the direction of increasing this C-O bond length.



Results and Discussion
DFT potential energy landscapes with transition-state and intermediate structures are very often
used to analyze catalytic organometallic reaction mechanisms and propose catalytic cycles. A general

assumption in the interpretation of energy landscapes, based on transition state theory?*2>26

and other
statistical theories, is that transition-state and intermediate static structures represent an average of an
ensemble. Moreover, intermediate structures have atomic kinetic energy in an equilibrium distribution
among harmonic vibrational modes and that at an intermediate there is IVR, which results in a significant
lifetime of the intermediate.?”-*8

For organic reactions there are now several studies showing that atomic momenta impact the

29.30.31,32,33,3435.36.37 Recently, we discovered

reaction mechanism, selectivity, and lifetime of intermediates.
dynamic effects in a few stoichiometric organometallic reactions. For example, in the C-H activation
between methane and [Cp*(PMes)Ir'™(CH;3)]",* as well as the B-hydrogen transfer for
[Cp*Rh!"(Et)(ethylene)]*,* despite a fully characterized intermediate on the DFT-potential energy
landscape, direct dynamics simulations revealed that the intermediate is either sometimes or always
skipped due to dynamical coupling of multiple reaction steps through dynamic matching or the lack of
IVR. We also discovered dynamic effects, specifically dynamical pathway branching, in the reaction
between Tp(NO)(PR3)W and benzene® as well as Cp(PMes),Re and ethylene.*! Related organometallic
dynamic effects were reported for hydrogenation reaction steps of (CI)(CO)(PH3)Ru(H)(H,)(C2Ha),*
Rh-carbenoid C-H bond insertion,* and Au/Ag arene C-H functionalization.** There are also recent
reports of dynamic effects for Ru geminal hydroboration,* Fe Diels-Alder reactions,* Fe arene
amination,*’” and Pd transmetallation.*®

Quasiclassical direct dynamics trajectories allow examination of reaction mechanisms beyond
characterization of the potential energy surface because there is inclusion of atomic kinetic energy. More
specifically, in a DFT quasiclassical direct dynamics simulation zero-point and temperature-dependent
vibrational energy is added to the transition-state structure in the form of both kinetic and potential

energy. The structure is then propagated over time using classical equations of motion with atomic forces



solved at each step directly by using DFT. This type of simulation provides the timing of geometry

changes and lifetime of intermediates, which is not available from the DFT potential-only energy

landscape and intrinsic reaction coordinate (IRC) calculations that have infinitesimal atomic velocity.*
To begin, we calculated the Au and Pd energy surfaces using M06 DFT (Scheme 3). Similar to

our previous reports, >

we located alkoxylation anti addition transition state TS1, the Au-alkyl and Pd-
alkyl intermediates (2), and the proton transfer/anti elimination transition state TS2. For both Au and Pd,
in TS1 there is the intramolecular hydrogen bonding that controls stereochemistry. This transition state
only involves carbon-oxygen bond formation. IRC calculations confirm the connection of TS1 to 2 on the
energy surface and show that the hydrogen bond interaction is slightly enhanced, but there is no
intramolecular proton transfer. In TS2 the proton transfer is nearly complete and allows elimination of
water and change of an alkyl-metal intermediate back to @ coordination. IRC calculations confirm that

TS2 involves both proton transfer and water elimination. Based on these energy surfaces, both Au and Pd

reactions have the same catalytic cycle that is outlined in Scheme 1c.
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Scheme 3. M06/6-31G**[LANL2DZ for Au] energy landscape for a) the Au-catalyzed monoallylic diol
cyclization reaction at 298 K and b) Pd-catalyzed monoallylic diol cyclization reaction at 298 K. Red
numbers in structure 1-Au define atom numbering. (kcal/mol)

For the Au reaction (Scheme 3a), while the Au-alkyl intermediate 2-Au is assumed to be formed
during catalysis, it is endothermic and only stabilized by 1.6 kcal/mol relative to TS1-Au and 0.5
kcal/mol relative to TS2-Au on the enthalpy surface. Therefore, 2-Au resides in a shallow well on the
enthalpy and Gibbs energy landscapes and the formation and lifetime of this intermediate is likely
significantly influenced by atomic momenta after TS1-Au. We have confirmed this shallow well with
DLPNO-CCSD(T)/def-TZVP calculations in ORCA,*® which only gives an intermediate stabilized by
slightly more than 1.5 kcal/mol.

There are several possible ways that atomic momenta can impact this mechanism. First, it is
possible that the reaction coordinate motion leaving TS1-Au is coupled/matched with proton transfer
leading to TS2-Au. In this case, which is outlined as the dotted orange arrow I in Scheme 2b, there would

be extremely rapid/ballistic traversing of the Au-alkyl intermediate without stopping and the addition and



elimination steps are merged into a single dynamical one-step mechanism.?'*? Second, it is possible that
intermediate 2-Au is formed, but without rapid and complete IVR. This would result in the relatively brief
sampling on intermediate 2 followed by proton transfer and water elimination. This mechanistic scenario
is outlined by the dotted orange arrow II in Scheme 2b. Previously, we referred to this type of mechanism
as dynamically unrelaxed.?® Third, there is the possibility where proton transfer precedes carbon-oxygen
bond formation (Scheme 2b orange dotted arrow III). Similar to this suggestion, Singleton found that a
proton can dynamically transfer before carbon-carbon bond cleavage during benzoylacetic acid
decarboxylation.’! Last, there is the possibility that complete IVR occurs, and 2-Au is formed in what
would be best classified as a two-step addition/elimination mechanism.

To examine these dynamical mechanism possibilities, we initiated and propagated 95 Au
trajectories starting from TS1-Au. Figure 1 displays these trajectories with color coding. Red lines
represent recrossing trajectories that turnaround and proceed back through TS1-Au. Recrossing can be
substantial on a relatively flat surface. Consistent with this idea, 47 out of 95 trajectories (49.5%)
recrossed TS1-Au. Recrossing is most apparent by tracking the forming carbon-oxygen bond, C1-O2
(Figure 1a). Interestingly, there is a band of very fast recrossing trajectories where within 50 fs there is
initial motion towards 2-Au followed by very fast turnaround. There are also several recrossing

trajectories where 2-Au is formed, but due to the lack of IVR there is rebound back to TS1-Au.
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Figure 1. Plots tracking distances (in A) versus time (in fs) for 95 Au-catalyzed trajectories initiated at
TS1-Au (a) and progressing forward towards 2-Au. b) Tracking formation of the carbon-oxygen bond
(C1-02), c) breaking carbon-oxygen bond (C5-04), and d) forming oxygen-hydrogen bond (O4-H3) for
proton transfer. Blue lines represent trajectories with long C5-O4 distances and indicate progression
beyond 2-Au (48 trajectories, 50.5%). Red lines represent recrossing trajectories that return to 1-Au (47
trajectories, 49.5%). No trajectories remained at intermediate 2 after 750 fs.



In Figure 1 blue lines represent trajectories that descend from TS1-Au towards intermediate 2-
Au, but ultimately progress to TS2-Au and beyond. Figures 1b and 1c¢ track the breaking carbon-oxygen
bond (C5-04) and the forming oxygen-hydrogen bond (O4-H3) for proton transfer. These plots reveal
that all non-recrossing trajectories from TS1-Au skip intermediate 2-Au and lead to intermediate 3-Au
with complete proton transfer and water elimination. Importantly, Figure 1b reveals that nearly all blue
trajectories show extremely fast, ballistic traversing of intermediate 2-Au between 50 and 200 fs where
TS1-Au is to a large extent dynamically coupled with TS2-Au, which was outlined by the dotted orange
arrow I in Scheme 2b. Figure 2a shows images along a representative ballistic trajectory. From the
transition state with time labeled at 0 fs, by 29 fs the new C-O bond is fully formed and by 57 fs the
proton is transferred. Only 30 fs later water begins to dissociate and by 113 it is completely gone from the
newly formed alkene unit. Based on these ballistic trajectories, in contrast to the two-step mechanism
based on the DFT potential energy landscape, inclusion of atomic momenta show that addition, proton
transfer, and elimination occur in a single reaction process. This indicates that it may not be appropriate
for the Au-alkyl intermediate to be proposed as an intermediate in the catalytic cycle for Au-catalyzed

allylic diol cyclization.
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In addition to the many ballistic trajectories, there are also a few trajectories that sample
intermediate 2-Au for up to ~450 fs before proceeding through TS2-Au and onto 3-Au. These are
perhaps best categorized as unrelaxed trajectories where there is incomplete IVR. We did not find any
trajectories that showed proton transfer prior to carbon-oxygen bond formation. This in retrospect is
probably reasonable considering that proton transfer between neutral hydroxyl groups is extremely
endothermic and that proton transfer only occurs after alkoxylation promoted by Au. While proton
transfer does not proceed prior to carbon-oxygen bond formation, comparison of the timing of proton
transfer with carbon-oxygen bond cleavage/water elimination does show that these two processes are
dynamically coupled in both ballistic and unrelaxed trajectories. Figure 3 shows histograms for timing of
the forming C-O bond, breaking C-O bond, and breaking O-H bond for the 48 non-recrossing trajectories.
There was an average difference of 20 fs between C-O bond formation and C-O cleavage with the longest
difference being 55 fs. Typically, carbon-oxygen bond cleavage occurs within 10 fs of proton transfer.

We also found that for the non-ballistic, unrelaxed trajectories that skip intermediate 2-Au there
is the possibility of proton ping pong between the hydroxyl groups prior to water elimination. Figure 1¢
displays several blue line trajectories where the forming O-H bond first becomes short at about 1.0 A, but
then increases to >1.5 A that is closer to the distance in intermediate 2-Au. On average there are three
proton oscillations between hydroxyl groups prior to water elimination. Figure 2b shows images along a
representative ping pong trajectory. From the transition state (0 fs), the new C-O bond is formed at about
493 fs. 24 fs later, at 517 fs after the transition state, the proton is transferred to the other hydroxyl group.
55 fs later, at 572 fs, the proton moves back to the first hydroxyl group. At 682 fs the proton goes back to
the second hydroxyl group and this time the proton transfer is coupled to water elimination.

Importantly, for a Au-catalyzed process this is the first time that trajectories have revealed
nonstatistical dynamic skipping of an intermediate and the coupling of several reaction steps into a single
process. In a few previous studies with Au catalysis, trajectories or analysis of the potential energy

surface revealed the different dynamic effect of a post-transition state pathway bifurcation.”>>*>4333 Thig



new discovery will impact the interpretation of several experimental and computational studies that

propose multi-step catalytic reaction mechanisms involving Au-alkyl or Au-vinyl intermediates after n-

bond addition.’’
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Figure 3. Histograms showing the timing of key bond formations and cleavages of 48 non-recrossing Au-
catalyzed trajectories initiated at TS1-Au and progressing forward towards 2-Au.

While the energy landscapes in Schemes 3a and 3b both show two steps that involve first n-bond
addition and second proton transfer/water elimination there is a potentially important difference in the
relative energies of the Au-alkyl and Pd-alkyl intermediates. On the Au surface, intermediate 2-Au is only
slightly stabilized compared to TS1-Au and TS2-Au whereas on the Pd surface 2-Pd is 4-6 kcal/mol
lower in energy than TS1-Pd and TS2-Pd, depending on the analysis of either the electronic or Gibbs
surfaces. In our effort to understand how the qualitative and quantitative shape of a DFT potential energy
surface relates to mechanisms that include dynamical motion,* we wanted to know if this more stabilized

Pd-alkyl intermediate is dynamically skipped akin to the Au reaction or if it is stable enough to result in a



genuine intermediate with substantial IVR. Therefore, we initiated and propagated 84 Pd trajectories
beginning at TS1-Pd.

Figure 4 displays plots of these 84 Pd trajectories as a function of time and forming and breaking
C-0O bonds and forming O-H bond. With a deeper energy well for intermediate 2-Pd, and an overall less
flat energy surface, the amount of recrossing is less, but still substantial at 32% (27 out of 84 trajectories,
red line trajectories in Figure 4). Figure 4b best illustrates the types of trajectories found for Pd. In
addition to red recrossing trajectories, we also found intermediate 2-Pd skipping trajectories labeled with
blue lines. However, in contrast to the Au reaction, we also found non-skipping trajectories labeled as
green lines. In contrast to all trajectories skipping during Au catalysis, the majority of non-recrossing
trajectories did not skip and ended at 2-Pd (37 our 84 trajectories). There were some skipping trajectories
(20 out of 84 trajectories). These skipping trajectories are best classified as unrelaxed skipping rather than
ballistic trajectories. Figure 4b shows that no trajectories skipped the Pd-alkyl intermediate until after 150
fs. Similar to the unrelaxed Au trajectories, the unrelaxed Pd trajectories showed proton ping pong
between hydroxyl groups prior to water elimination. On average, there were two complete back-and-forth

proton movements before water elimination.
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Figure 4. Plots of tracking distances (in A) versus time (in fs) for 84 Pd-catalyzed trajectories initiated at
TS1-Pd (a) and progressing forward towards 2-Pd. b) Tracking formation of the carbon-oxygen bond
(C1-02), c) breaking carbon-oxygen bond (C5-04), and d) breaking oxygen-hydrogen bond (O4-H3) for
proton transfer. Green lines represent trajectories that do not progress beyond 2-Pd, which is consistent
with a two-step mechanism (37 trajectories, 44.0%). Blue lines represent trajectories with long C5-O4
distances and indicate progression beyond 2-Pd (20 trajectories, 23.8%). Red lines represent recrossing
trajectories that return to 1-Pd (27 trajectories, or 32.1%).



Conclusions

Using quasiclassical direct dynamics simulations, new dynamical mechanisms were revealed for
Au- and Pd-catalyzed allylic diol cyclization. For Au, ballistic trajectories revealed extremely fast
skipping of a Au-alkyl intermediate during the anti addition/anti elimination process (blue dotted arrow in
Scheme 4a). Additionally, a somewhat slower, but still mechanistically coupled, unrelaxed dynamical
mechanism was also found that involves brief sampling of the Au-alkyl intermediate before proceeding to
the elimination step (red dotted arrow in Scheme 4a). These dynamical mechanisms show that addition,
proton transfer, and elimination occur can occur in single reaction process. In contrast to Au catalysis, for
Pd catalysis, due a more stabilized Pd-alkyl intermediate, only about half of trajectories show Pd-alkyl
intermediate skipping through an unrelaxed dynamical mechanism and no ballistic trajectories were
identified. The other half of the trajectories show the traditional two-step mechanism with a much longer-
lasting Pd-alkyl intermediate.

This work demonstrated that interpretation of DFT calculated potential-energy landscape for
catalytic cycles can be incomplete without consideration of atomic momenta. Typically, when catalytic
cycles are outlined based on DFT calculations intermediates are drawn for each major minimum energy
structure regardless of the surface shape. Importantly, one of the many implications of drawing a structure
on a catalytic cycle is the potential of direct observation or interception of this intermediate. For this
allylic diol cyclization, Schemes 4b and 4c show updated catalytic cycles based on these dynamical
mechanisms. For example, in Scheme 4b, some of the trajectories leave the m-coordination intermediate
and through a ballistic mechanism lead directly the cyclized pyran product. There are also other
trajectories that briefly sample the Au-alkyl intermediate before generating the pyran. None of the
trajectories show the full catalytic cycle where the Au-alkyl has a long lifetime. Scheme 4c shows that the

Pd catalysis involves both the full catalytic cycle as well as the unrelaxed dynamical mechanism.
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Xyz structures and initial trajectory configurations. This information is available free of charge on

the ACS Publications website.
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