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ABSTRACT: We analyze, in perturbation theory, a theory of weakly interacting fractons and non-
relativistic fermions in a 241 dimensional Quantum Field Theory. In particular we compute the
1-loop corrections to the self energies and interaction vertex, and calculate the associated 1-loop
Renormalization Group flows of the coupling constants. Surprisingly, we find that the fracton-
fermion coupling does not flow due to an emergent coordinate-dependent symmetry of the effective
Lagrangian, making this model a well-defined quantum field theory. We provide additional discus-
sions on the regularization and renormalization of interacting fractonic theories, as well as both
qualitative and quantitative remarks regarding the theory at finite temperature and finite chemical
potential.


mailto:distler@golem.ph.utexas.edu
mailto:jafrym@uw.edu
mailto:karcha@utexas.edu
mailto:araz@utexas.edu

Contents

1 Introduction 1
2 Lattice model 2
3 Continuum field theory 3
3.1 Feynman rules 4
3.2 Counter-term definitions 5
3.3 Regularization and renormalization scheme 5
4 Diagrams to 1-loop order 6
4.1 Scalar self-energy 6
4.2  Fermion self-energy 6
4.3 Vertex correction 7
5 Beta functions 8
6 Finite non-zero temperature 10
6.1 Scalar self-energy at finite temperature 11
6.2 Fermion self-energy at finite temperature 12
6.3 Vertex correction at finite temperature 13
7 The theory at finite density 14
7.1 Semi-classical approximation of the ground state configuration 14
7.2 The effective description at finite densities 15
8 Conclusions 16
A Computation of the scalar self-energy 17
B Computation of the fermion self-energy 18
C Computation of vertex correction 20
D Correlation functions 21

1 Introduction

Field theories of fractons are characterized by a rich set of symmetries [1, 2]. In many of the simplest
examples, these symmetries are indeed strong enough to ensure that the resulting field theory is
free at low energies. All interaction terms consistent with symmetries are irrelevant in the sense of
the renormalization group. Many interesting field theories of this type involving a single real scalar
which, in an abuse of nomenclature we will simply refer to as a fracton, have been analyzed in detail
in [3-6]. Interacting theories with these symmetries can be constructed by adding extra fields; one
very simple option being to promote the scalar to a complex scalar. While no longer free, these
theories are often intractable. One complication that arises for example in the case of the complex



scalars are kinetic terms that are quartic in the field [7, 8], making the theory difficult to analyze
with traditional perturbative techniques (see for example [9].) Calculable models of interacting
fractons are hard to come by.

In this paper, we will present one such interacting fracton model with a controlled perturbative
expansion and will calculate its properties to leading non-trivial order. The model describes the
interaction of a non-relativistic fermion with a fracton scalar. This model will have a momentum
dipole symmetry given by the shift of the fracton scalar ¢ — ¢+ f(z) + g(y), for arbitrary functions
f and ¢g. One can deform this theory by introducing a non-relativistic fermion 1 that couples
with the scalar via the interaction \)T8,0,4. This interaction is marginal and both preserves
the dipole symmetry as well as the Z4 rotational symmetry. In fact these symmetries exclude any
additional relevant or marginal interactions. This allows us to study the theory using conventional
perturbation theory. In particular, we calculate the [-functions of the theory to 1-loop order.
Interestingly we find that the theory has a vanishing beta function, and so describes a well-defined
quantum field theory in its own right. We also briefly analyze the vacuum structure of the theory.

The paper is organized as follows. We first introduce the lattice construction of the interacting
fermion and scalar in section 2. We then present the formal Lagrangian for the continuum field
theory in section 3, followed by a description of the perturbative framework. This includes describing
the associated Feynman rules, counter-terms, and regularization and renormalization schemes. In
section 4 we calculate all the divergent diagrams of the theory at 1-loop order, and provide the
counter-terms to subtract of the associated UV divergences. In section 5 we calculate the associated
beta functions for the associated couplings constants for the theory, and show that the g function
for the coupling A vanishes due to an emergent symmetry of the theory. In section 6 we discuss the
theory at non-zero temperature, while in section 7 we analyze the theory when the fermions have
a finite density in the ground state. Finally, we conclude with a summary in section 8.

2 Lattice model

The field theory we wish to discuss can be considered to be the low energy limit of a lattice
Hamiltonian of the XY-plaquette model [3, 5] interacting with a fermionic field. This lattice theory
consists of a compact scalar ¢ living on each site s of the lattice, with an XY-plaquette model
Hamiltonian [3, 5],

u
Hoeor = 5 ZTFE - KZCOS(Azy¢S)7 (2'1)

where Apydz 5 = da+1,941 — G2+1,§ — P2,9+1 + ¢P2,5. Here m, are the conjugate momentum modes
for the scalar field. This Hamiltonian is invariant under shifting all the scalars fields ¢ on a specific
coordinate line of the lattice, and also under the Z, rotations of the lattice.

In addition we introduce a fermionic field, v, to each lattice site. Though we can consider these
fermions to have some spin (usually spin 1/2,) the spin operators will always act as an internal
symmetry of the model (as is the case in non-relativistic theories,) so for simplicity we focus on a
spinless fermion. The Hamiltonian for these fermions is taken to be a standard nearest neighbor
interaction,

err =—J Z ¢lws’ + hz¢:wba (22)
(5,5") s

which in the continuum can becomes a free non-relativistic fermion. The operators obey the canoni-
cal commutation and anti-commutation relations of the form [¢s, 75/] = 905, s and {t),,, 1/)2,} = i0n,n-

We would like to couple the XY-plaquette scalar to the fermions in a way that preserves the
subsystem symmetries of the scalar field. The simplest local interaction term that meets this



criterion is

Hipp = R it sin(Agyo.). (2.3)

This term also requires that the ¢ field transform in the spin-2 representation the Z, rotation
symmetry in order to stay invariant. From this, we can write the complete lattice Hamiltonian as

H = Hscal + err + Hz’nt

= I3 T KD cos(Bays) =T Y e + B Y0l + R ehtnsin(Au,e) (3
S s (s,s’) s n

Though this lattice model is interesting in its own right (or perhaps similar but more solvable lattice
models inspired by [10, 11],) we will focus on its continuum field theory description, formulated in
the next section.

3 Continuum field theory

We are interested in studying the continuum limit of the lattice model considered in the previous
section. The continuum limit of the XY-plaquette model was carefully constructed in [5], and
consists of a single compact scalar field ¢ with the Lagrangian

Lucot = 000 = 5-(0.0,0)" (31)

The shift symmetry on the lattice becomes the subsystem symmetry ¢(z,y) = é(z,y)+ fz(z)+ [, (y)
for arbitrary function f, and f,.

The fermionic lattice Hamiltonian also has a well known continuum limit of a free non-relativistic
fermion ¢ with the action

. V2
Lier = Pl (Zao + o ’Y) 1, (3.2)

where m is the mass of the fermion and —+ is the chemical potential of the fermion.

It remains to understand how the lattice interaction between the fermion and the scalar will
look within the continuum theory. Naively we can expand sin(Agzy¢) =~ Agy¢ + O(Aiyqb), SO we
expect the leading order interaction to be

Lint = MN1100,0, 6. (3.3)

As in the lattice model, invariance of the interaction term requires that the scalar, ¢, transforms
in the spin 2 representation of the discrete Z,4 rotations. For comparison, this scalar field ¢ is the
equivalent to the ¢*¥ scalar field in [5].

To verify that this is in fact the interaction term in the continuum theory we must verify
that this is the only relevant or marginal interaction term that respects the symmetries in the
continuum description. To work out the scaling dimensions, first note that both the scalar and the
fermion kinetic terms have twice as many spatial derivatives as they have temporal derivatives, so
the free theory has a scale symmetry with dynamical critical exponent z = 2 (as is standard in
non-relativistic theories) and so the derivatives have scaling dimensions

(O] =2, [0:] =[0,] = 1. (3-4)

Wl=1, [¢]=0 (3.5)



leading to a marginal coupling for the interaction term, that is [A\] = 0. Any additional interaction
term that respects the subsystem symmetry would have additional powers of 9,0,¢ or 9Ty, and
so would be irrelevant. Thus (3.3) is the only possible marginal or relevant interaction term in the
continuum theory.

From this, we find that the full continuum theory, including all relevant and marginal terms
consistent with symmetry, in Euclidean Signature is

L= Escal + £fer + £int

_Hog a2y b SR Y PN G R t (3.6)
= B0 + 5-(0:0,07 + T (80— v - NT00.0,0 4 0.
One can also write down the theory in Minkowski Signature,
L= Escal + Efer + Eint
(3.7)

1 A
= 10000 — 020,00 + 01 (10 + 3 )= X0, i,

We will study this interacting theory using conventional perturbation theory techniques, as-
suming the marginal interaction coupling A is small. In the next subsections we further develop the
perturbative framework of this model, including stating the Feynman rules and the regularization
scheme we use to define the (divergent part of the) counter-terms.

3.1 Feynman rules

The Feynman rules for this theory are derived from the free Lagrangians, namely (3.1) and (3.2).
In position space the (free) fermionic propagator is

,T—| 1 0 e—iw‘r—ikmz—ikyy
U0 = g [ by (39
while the (free) propagator for the scalar field is
— 1 o) 6iw‘r+ik$a:+ik:yy
r.)0(0) = oz [ dd b, (39
—oo Pow?® + — =

Adding the interaction vertex, we can write the Feynman rules in momentum space and in
Euclidean Signature as

Vertex = —Akzky,
+ 1
w (wakwak( )w(_wa_k17_k ) = p )
! Tl B (3.10)
1

qb(w, kwv ky)¢(_w7 _kwv _ky) =

k2k2
2 z 'y
How + m
The corresponding Feynman rules in Minkowski Signature are

Vertex = ik ky

i 1
¢ (wakwak )¢(—w,—kw,—k ):
y N TEE L 11
1
¢(w7k$7ky)¢(_w7 _k:m _ky) = k2 k2 i
—pow? + = + je

m

One can see that under a Wick rotation of the Minkowski signature, ¢t — —i7, one will reproduce
the Euclidean propagators from the Minkowski propagators.



3.2 Counter-term definitions

To renormalize this theory, we introduce local counterterms and subtract the UV divergences using
a rotationally-invariant hard momentum cutoff. The full Euclidean Lagrangian with these coun-
terterms reads

v2
2m

£ =000 + 5 (00,07 + 01 (00— )0 — A00.0,0 + 70y

(3.12)

+ 200 006)2 1 P080,0,0)? + 87,01 (B0 — LTV — B30, 0,0 + 6,01

2
The form and signs for the counterterms follows the convention of [12].

Though (3.12) is the most general general renormalized Lagrangian, we can show that in this
theory d,, = 0 to all orders in perturbation theory using standard power counting of divergences.
Indeed any diagram contributing to the 1PI scalar 2-point function must include a fermion loop
that the external scalars connect to, similar to the 1-loop diagram in figure 1. Then the nature of
the vertex interaction implies such a diagram is proportional to kgk;, where k; , are the external
spatial momenta. Then, by power counting, we see that such diagrams are at most logarithmically
divergent, implying that they only contribute to d,,,, and so J,, = 0 to all orders in A.

We note that one can introduce an alternative marginal interaction term

NpTdeg (3.13)

which would lead to a nonzero value for 6,,. However, this coupling is only possible if we take ¢
to be uncharged under the Z, rotational symmetry, so we cannot include both marginal coupling
terms at the same time. Since the lattice theory suggests that ¢ should transform in the spin-2
representation of the Z, rotational symmetry, we set A’ = 0.

3.3 Regularization and renormalization scheme

To regularize this theory we will employ a rotationally-invariant hard momentum cutoff, A, for the
conventional renormalization group (RG) flow in momenta space. The divergences are absorbed
into the local counter-terms introduced in the previous section. This procedure is the same as the
standard picture of re-scaling space.

We choose to use a hard momentum cutoff as many of the other standard regularization schemes
seem ill-equipped to deal with the unique dispersion relation of the scalar field. In particular it is
not clear how to use dimensional regularization to regularize this field theory. We note that it may
be possible to use different regulators to regulate this theory, such as a Pauli-Villars type regulator,
which may have their own advantages and shortcomings.

It is interesting to note that the standard RG flow in momenta space is not the only renormal-
ization scheme proposed for these types of field theories. An alternative approach, suggested by
[13], involves integrating out the fast moving or high frequency modes. As the dispersion relation
for the scalar is nonstandard, this modified RG scheme for a theory consisting of only the scalar
field amounts to integrating only over the region in momentum space defined by kZk; < A? for
some energy cutoff A. As our theory consists of a fermion with a standard non-relativistic kinetic
term along with the scalar, integrating over the surface k%ki < A? seems unnatural as it captures
many of the high energy fermion modes.

A more conventional strategy would be to implement a cutoff in the frequency w, similar to the
standard RG procedures when computing the RG flow near the Fermi surface [14, 15]. Such a hard
cutoff would not leave all the integrals in the theory regularized, and an additional regularization
scheme would be required. However, when working at zero density (fixed non-positive chemical
potential, or equivalently v > 0,) we expect the two different RG prescriptions to coincide. This is



Figure 1. The Feynman diagram contributing to the scalar self energy at 1-loop. In this figure, the dotted
lines represent the scalar propagators while the solid lines represent the fermion propagators. The self-
energy contribution here represents the only second order contribution to the 1PI diagram for the scalars
within this theory.

due to the fact that every loop will contain at least one fermion propagator, so integrating out all
the high energy states ensures that a large momenta cannot flow through the loops.

At finite densities this standard RG prescription in momentum space is no long valid as the
low energy states are near the Fermi surface [14, 15]. Due to this complication we will only work
at zero density (that is we assume v > 0) for the next few sections, and then make some general
comments about the theory at finite density in section 7.

4 Diagrams to 1-loop order

There are three diagrams which are divergent to 1-loop order in this theory. The associated UV
divergences are subtracted off by the counter-terms, {dz,, 01 /m, 91/, 0x,0y}. The diagrams will be
computed in Euclidean space, R3.

4.1 Scalar self-energy

The 1-loop diagram contributing to the scalar 1PI propagator is in figure 1. The contribution of
this diagram to the scalar self-energy is

)\2k12k/2 1
—iw + £ +W —i(w — w) 4 EZR2 2:,1) + 7

We regulate this log-divergent integral with a hard momentum cutoff, A. The ultraviolet divergence
is absorbed into the counter-term d;,, in (3.12). The exact form of the counter-term is

mA2
O1jp = == log(4). (4.2)

The full explicit calculation for the diagram can be found in Appendix A.

4.2 Fermion self-energy

The 1-loop diagram contributing to the fermion 1PI propagator is in figure 2. The contribution of
this diagram to the fermion self energy is

dwd?k 1 k2k?
5 :(,A)z/ . (4.3)
v (2m)% —i(wy —w) + B2 2 o




Figure 2. The Feynman diagram contributing to the fermion self energy at 1-loop. In this figure, the
dotted lines represent the scalar propagators while the solid lines represent the fermion propagators. The
self-energy contribution here is the only second order contribution to the 1PI diagram for the fermion in
this theory.

This integral has three distinct UV divergences that will be absorbed by the counter-terms dz,,
01/2m and d, in equation (3.12). This arises from the fact that the self-energy can be expressed as

k2 N\ ki A
S = (57— iwn |Z1log(A) + - log(A) + —-Fs, (4.4)

where =1, 9, and =3 are three functions of the couplings which are momentum and cutoff indepen-
dent. We expanded the fermion self-energy in this manner as =Z; and E5 have physical significance,
namely =; is related to the anomalous dimension of the fermion, while =5 is related to the beta-
function for m. This will be discussed in more detail in the next section.

In terms of these functions, the counter-terms éz,, 6/, and ¢, are

6Z = —El log(A)

P
01/m = =~ log(A) — Sz log(A) (4.5)

A?_ _
oy = —5E=7% log(A)

Evaluating the integral in (4.3) using an ultraviolet cutoff, A, results in the following values for
51, EQ, and 532

Sy m*u Bk

1+ m arctan | ——n | - T (4.6)
w2 o —m? (1o — m?2)1/2 V o — m? 2 7 .

— mp (ppo)>/? m? 3m m 0
Ep=N—1 T o4 — 4+ (arctan | —— ) — = | ¢, 4.7
’ 72 (ppo —m?)? Ko /g —m? v/ g — m? 2 (4.7)

st (arctan (\/Aﬁ) — g) } . (4.8)

The full explicit calculation for the Fermion 1PI diagram can be found in Appendix B.

= _\2 M T HEo
HSAQ?TQ{ +

4.3 Vertex correction

The final divergent 1-loop diagram corrects the scalar—fermion vertex. The diagram for this vertex
correction is in figure 4.
( /\)3/ dwd?k 1 k2k? (k1 + ko) (k1 + k2)y

I =
(M) —i(wr — w) + FEE 4y pow? 4+ L iy + w) + FHEDE 4

(4.9)



Figure 3. Here we have the vertex correction diagram for the scalar + fermion theory. Here the solid line
represents the fermion, and the dashed line represents the scalar.

Again, employing a hard momentum cutoff, A, we find that the UV divergent term in this integral
is proportional to log(A). The associated counter-term to absorb this divergence is dy in (3.12).
This counter-term is

2 S
Oy = )\3m2u HHo 541+ m 775 | arctan S L ) log(A) (4.10)
T2 pigo —m (1o — m?)/ Vo —m2 ) 2

The full explicit calculation of this Feynman diagram can be found in Appendix C.

Though most of the counter-terms appear to have some sort of singularity occurring at pug =
m?2, that is an artifact of the particular presentation of the expressions. In reality, all of these
counter-terms are continuous functions of m, p, and pg for all positive real values of the parameters.
A plot of these counter-terms is presented in figure 4, where it is evident that they are continuous

around g = m?2.

5 Beta functions

Using the counter-terms calculated in the previous section, one can find the associated beta functions
for the dimensionless parameters m, u, and A. These beta functions can be computed from the
Callan-Symanzik equation. For a dimensionless coupling constant g associated to a vertex with m
scalars and n fermions the beta function takes the general form [12]

_ 99 _ O (5 M
ﬁ(g)—m—/\a/\( dg + 2521,,). (5.1)

Note that in this equation we took the scalar renormalization to be zero because it vanishes to all
orders in perturbation theory, as was shown in section 3.2.
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Figure 4. Plots of the various counter-terms as a function of m/,/mon. Note that these counter-terms are

continuous across po = m?.

The 1-loop beta functions for the dimensionless couplings are

B = A ( . ;A(%Zw)) — o0,
B(1/m) :Aaajx(—(sl/m-f';;(%zw)) = Eo, (5.2)

mA?

01/ = Mg (=) = 5o

Surprisingly, the beta function for A vanishes at 1-loop even though both counter-terms ¢, and
0z, are independent nontrivial functions of the couplings. Indeed this vanishing beta function arises
from a hidden symmetry of the Lagrangian (3.7) given by the transformations

w N ei)\atw7 ,(/}T N e—i)\atw‘f7 ¢_> ¢+O{.’L'y (53)



! This symmetry

Under this symmetry the Lagrangian is invariant up to a total derivative term
is preserved by our regularization scheme, so it remains an invariance of the full renormalized

Lagrangian (3.12). This implies that the counter terms dz, and Jy are related by
Az, = 0x (5.4)

Hence, as the scalar does not acquire an anomalous dimension at any order in perturbation theory,
we must have S(A) = 0 to all orders in perturbation theory. Therefore X is scale invariant within
this theory. This symmetry is reminiscent of the emergent gauge symmetry observed in certain
non-fermi liquids [16-18], though in our case the emergent symmetry is not anomalous.

As X does not run, we can take it to be uniformly small and analyze the RG flow of the
two remaining constants, m and pu, just using their 1-loop § functions. The running of these two
constants can be solved numerically, and a representative plot of these coupling constants as a
function of the cutoff scale A is presented in figure 5. From the plot we see that in the deep IR,
when A — oo, m approaches a constant value while 4 — 0. On the other hand, the model seems
to have a Landau pole in the UV where p diverges in at some large but finite UV scale. It is
interesting to note that m does not diverge at this scale, but rather approaches a finite value. This
UV divergent behavior may be cured by higher loop corrections, or by necessitating the introduction
of additional UV physics.

6 Finite non-zero temperature

Another interesting dynamic of the theory occurs at non-zero temperature. In this situation, Eu-

clidean time becomes periodic with periodicity 3, where % represents the temperature of the as-

sociated QFT. Due to the compactification the integral over w will become a sum over Matsubara

;ﬂ/mdw%;; (6.1)

We can use this procedure to compute the perturbative 1-loop corrections also at finite temperatures,

modes

however non-perturbative effects may become important at finite temperature.

In particular our perturbative analysis was conducted at zero fermionic density, but this density
is no longer zero at finite temperatures even for the non-interacting theory with A = 0. We know
that in 2-dimensions a non-interacting Fermi gas at a fixed chemical potential ;%> has a density n
given by

/OO e uto i (6.2)
n= —————de= —————~. .

o deePle=i) 41 27 Jé]

So at least when i < 0 and S]] > 1 the density is exponentially small, and we can hope that the
perturbative analysis is valid. We note that non-perturbative effects in the full interacting theory
may still make this small density significant, but nevertheless we shall present the naive 1-loop

perturbative calculation at finite temperature bellow.

'In (Minkowski signature) momentum space, this transformation reads

$(k,w) = ¢(k,w) — a(2m)*6(w) 5@ (k)

Ok 0ky
w(va) - w(’ng - )‘O‘)
W1 (k,w) = Pk, + )
which is compatible with our hard cutoff on the k integration.
2Recall that the chemical potential i = —v in our Lagrangian.

~-10 -
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Figure 5. A representative plot of u and m as a function of the cutoff scale A, found by numerically
solving the B functions in equation (5.2). We present both a semi-log and a regular plot. Though the
actual values of the couplings would depend on the initial conditions, the qualitative behavior, including
the IR asymptotes and the UV Landau pole, are generic and independent of the exact values of the initial
conditions.

6.1 Scalar self-energy at finite temperature

We shall start by computing the 1-loop scalar self energy at finite temperatures, which takes the
form

)\2kl2k/2 1
2
Yy = (2 2 B Z /d (_ 27n k2 >( (ol 2mn | om (k' —k)? k)2
) (55 + 5) T om +7/ \=i(w — (35 + 5)) + +7

n—=—oo

—_
\_/

We can compute the sum over Matsubara modes by using the property that 3
oo
Z f(n)=— Z Res <7T cot(m2) f(z2), zl) , (6.4)

where the sum on the RHS runs only over the poles of f(z). The summed expression in the scalar
self-energy, (6.3), has two poles (as a function of n) located at

— ﬁ k2 1 _.5 (kl_k)Q - 1
= ’27r(2m+7 2’ 2= Tom YT ) 73 (6:5)

3This is a consequence of using the residue theorem to evaluate the integral of cot(rwz)f(z) on the contour
|z] = R — o0, assuming that |f(z)| decays sufficiently fast as |z] — oo and that f(z) has no poles on the integers.

— 11 -



This allows us to evaluate the sum using the residue theorem as

Bk B((k—F) - 1
Z f(n {t nh<<2m+’y)>+tanh<2( o +’yzw>)] M+27

(6.6)
Then the 1-loop scalar self energy at finite temperatures is
)\2kl2k12 ﬁ k2 6 (k _ k/)Q
Yy = ——2L [ d%k [tanh | = =— tanh | = [ ——2 4 v —iw’
o=t [ (55 0)) e G (B =)
1 (6.7)
X K2 +(k k)

—iw’ + + 27
Here w’ and k' are the external Euclidean frequency and momentum. Note that when the external
frequency w’ is evaluated on the Lorentzian energy, that is take w’ = —if2 where 2 is the Lorentzian
energy, then these expressions become manifestly real.

This expression will reproduce the zero-temperature self-energy found in the previous section
and appendix A when we take the limit 3 — oco. This is due to the fact that the entire 8 dependence
of the self-energy arises from hyperbolic cotangent functions, which have the limiting behavior
tanh(x) ~ 1 + O(e™2%) at large .

Additionally, the UV divergent part of the counter-terms will be equal to the UV divergent
pieces found at zero temperature. This can be seen by computing the UV divergent part of (6.7),
which after moving to polar coordinates, taking the polar integral, and looking at UV divergent
part evaluates to

N2E2E2 Ny, Br2 By 3 By — )
(Bg)uv = ——+ dr[t anh (+)+tanh ((r—k’)2+>}
4 / r 4 2 im D) .

2102102 pA
:)\k;k; / dr@,
21 r

which is temperature independent and identical to the zero temperature result.

Thus, in the perturbative picture the counter-terms for the finite QFT are consistent with the
zero temperature QFT. Due to this, the § function for A is also zero at finite temperatures. This
is interesting as the symmetry that protects A from running is explicitly broken by the periodicity
of Euclidean time, yet A does not run. This is because the symmetry is only softly broken as the
UV physics is unaffected by the periodicity in Euclidean time.

6.2 Fermion self-energy at finite temperature
The fermion self-energy at finite temperature takes the form
d2k 1 k2K,
Yy = 5 Z / = 2R2 * (6.9)

T kl k
(27)) + Q + MO(ZT)Q + =

One can again compute this sum using (6.4), noting that there are three poles in the expression for
the fermion self-energy:

kzk ki — k)?
2112—:|: 5‘ | 3:Z£ —zwl—i—g—l—’y . (610)

27/l 27 2m

- 12 —



This leads to the sum of the form

5\/1 Blk.k,| [kky |
h x vy Ty
Zf ot ( )—iw1+|

2 /Hifto Fopkiy|

2 (k1—k)?
Vis T am o T
2
B\ o ot <B|kxky|> \kakk, |

n=—oo

+ (6.11)
4 2 Jiiic [ (T
Hto i T Tm T
ky — k)2 k2k2
—&—écoth B M—!—W—iwl Y 5 )
2 2 2m (k _k,)z . k2 k2
—po| T Y —iwr |+ =

We can combine these into the single compact expression

S s [ oth (B§>A—c th(fBQA)r] . (6.12)

n=-—oo

where
_ |kﬂcku‘ A — (kl - k)2
Viop’ 2m
As before, note that A, and thus the whole expression, is real when considering an external
Lorentzian energy wy = —if);.

+y —iwr. (6.13)

All together, leads to the fermion self-energy becoming

N [ &%k BY BA T
5= [ o (D)o (2] s

Note that the integrand is finite when A =Y, and reduces to the zero temperature expression
(B.3) in the limit § — oo.

6.3 Vertex correction at finite temperature

The vertex correction at finite temperatures take the form

B Z / d2k 1 kzky (B1 + F2)e (k1 + F2)y
5 — —zw +7/27T’IL + (kl k) +7M0(27TT7’7,)2 + k%fy iws _,’_227m + (k2+k) + 5
(6.15)
For simplicity we define the quantities
ki k ky — k)2 ko + k)2
T:‘ y|, A1:7(1 ) + v —iwy, A2=7(2+ ) + 7+ iwa, (6.16)
/o 2m 2m
so that the he vertex correction becomes
A3 d2k 1
= B2y + B (By + K2y Z / GO . (6.17)
As before, note that A; o are real when considering external Lorentzian energies wq 2 = —i€2; 2.

We can then evaluate the sum over Matsubara modes using (6.4), noting that the summed
function has poles at

21,2 = iﬁAl’Q, 23,4 = +i—7. (618)
™ ™
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This results in

c- 1 1 B (6 ) 1
=—coth | =A
2 T (a ) (me) 2t B e aEe s
+ coth(BA> 1
277) (T2 =A%) (A1 —A2)  (6.19)

_|_

+
"N e el T ey

aQ
Q
-+
=

7N
|
'—%

3 1
coth (2T> T(C+ A1) (T + Ag)°

Combining everything together, the 1-loop vertex correction at finite temperatures is

_L}\?’ A2k (k‘l + k‘g)x(kl + ]{ig)y T
> @R (T2 A7) (02— A3) (A~ &)

I =

coth (65) (A1A2 T TQ) (A — Ay)

— coth (6?1) T (Y* — A3) + coth <52A2) T (Y% - A3Y)

(6.20)
In this from it is clear that the resulting integral is well defined around T = A5 and A; = A,.

As in the previous 1-loop calculations, I' reduces to the zero temperature integral (C.3) in the
B — oo limit, and the UV divergence is unaffected by the finite temperature. To better understand
the impact of low-temperature physics on this theory, a numerical evaluation of the respective
integral while subtracting off the associated counter-term (4.10) would provide novel insight into
the dynamics of the theory at finite temperature.

7 The theory at finite density

Up to now we have analyzed the theory when the average fermion density is zero. However many
interesting phenomena occur at finite fermion densities. To induce a fermionic density we can take
the chemical potential to be positive. When this happens much our of our perturbative analysis
breaks down as we are expanding around the wrong vacuum.

The finite density of fermions leads to two interesting phenomena. The first is that the fermionic
density induces a background configuration for the scalar field. The second is that at finite densities
we must expand the low energy action around the Fermi surface to get an effective theory. In this
effective description the scalar’s unique dispersion relation results in unique dynamics and RG flow.

7.1 Semi-classical approximation of the ground state configuration

Considering the model with a finite positive chemical potential (v < 0), we would like to understand
how the finite fermion density effects the optimal scalar field configuration, at least at a semi-classical
level. To find the optimal scalar configuration we will minimize the energy density of the ground
state of the fermions subject to a fixed scalar field configuration. Thus we will treat the fermions
as an ideal Fermi gas, while the scalars will be treated classically.

It is clear that time varying configurations of the scalar field are always suppressed, however
spatially varying configurations may not be suppressed, as they can alter the effective chemical
potential of the fermions. In particular we can restrict ourselves to configuration where 9,0,¢ is a
constant, as such configuration cause a global shift to the chemical potential of the fermions, rather
than spatially varying shifts which will be additionally suppressed by the fermionic kinetic term.
Such configurations take the form ¢ = axy for some fixed value a, up to a subsystem symmetry
transformation.
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This scalar configuration modifies the chemical potential for the fermions to
:&’ =7 a)‘v (71)

resulting in a shift to the fermionic ground state energy density. However such a configuration also
adds an energy density of a?/(2u) due to the scalar kinetic term.

A free non-relativistic fermionic field with mass m, at zero temperature and subject to a chemi-
cal potential fi (which is also the Fermi energy) in 2 spatial dimensions has a ground energy density
of m

Efermions = —%”@(g), (7.2)

where O(z) is the Heaviside step function. Note that this energy density is negative as states bellow
the Fermi surface have an energy less than the Fermi energy (which is the chemical potential), and
so gives an overall negative contribution to the energy density. *

The total energy density of this ground state configuration is

a2

o % (v + ar)?O(—y — a). (7.5)

For v > 0 we see that the configuration with a@ = 0 is stable (assuming A is small,) indicating
that our previous perturbative analysis at zero density and around ¢ = 0 is valid.

When v < 0 the minimal energy configuration of the system is no longer at a = 0, but rather
at

Aymp (7.6)

Qmin = .
T — M2

It is interesting to note that there is an instability that happens when A2 > 7/(mpu), irregardless
of the sign of the chemical potential. It is also not clear to us what the correct effective description
of the system is in this case, or if one even exists, though this does occur at strong coupling when
our perturbative understanding breaks down.

Finally, we note that even though this scalar configuration seems to spontaneously break trans-
lational symmetry, there is a combination of translations and subsystem symmetry that acts trivially
on these configurations.

7.2 The effective description at finite densities

At finite densities the low energy fermionic excitation’s lie near the Fermi surface. We would like to
understand the effective description for these low-lying modes in the presence of the non-standard
scalar field. In the typical picture of an interacting Fermi liquid, if we impose an effective energy
cutoff A < E, then fermions that reside in far away patches near the Fermi surface cannot interact
via a scalar field unless they are antipodal. This is because the intermediate scalar field would
have energy of order E; > A, and so would be integrated out in the effective description [14, 15].
However, in our system this is no longer the case due to the unique dispersion relation of the
mediating scalar field.

4In general dimensions the density of states of a free ideal (spin-less) Fermi gas is [19]

dn md/2d d—2

kb - 7.3
de 2d/27rd/2r(1 I g)ﬁ ( )

Assuming the fermions occupy all states up the Fermi energy, the contribution to the energy density from these

fermions is fO” e‘fTZde. However, each fermion also contributes a negative energy of —f due to the chemical potential,

so we must add —njfi to the fermionic energy density contribution, resulting in

d/2
n e (7.4)

& /ﬁ( i)
rmi = €— ooee=-
fermions 0 H de 20/2=2(d + 2)7d/2T(1 + g)
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As the energy of the scalar field goes like E ~ k‘ka(2 the mediating scalar can have a small

x™Vy»
energy even with a large momenta k, in the = direction, so long as k,, is sufficiently small (or vice
versa). Thus non antipodal fermions with momenta near the Fermi surface can still interact via
the scalar field so long as they share the same momenta in x or y direction. An example of such

fermions is presented in figure 6.

ky
Y
kn/ i
1
1
] ks
T
:
ko '
Ly A
P

Figure 6. A schematic sketch of the Fermi surface. All the states in the shaded region are occupied, while
the effective description focuses on the fermions near the surface. The two fermions near the Fermi surface
with momenta k1 and k2 can still interact even though ki + k2 is large because ki + k2 lies near the k, axis.

This unique interaction necessitates a four patch effective description for the fermions, rather
than the more standard two patch description. Additionally, the strength of the coupling can depend
on which specific four patches we focus on. Even in a single four patch description the strength
of the coupling between the different patches differs. All these unusual features may give rise to
unique scaling behaviors, and novel physics, though thoroughly analyzing this effective description
is beyond the scope of this paper.

8 Conclusions

In this paper, we studied the properties of a continuum field theory of a fracton scalar interacting
with a non-relativistic fermion. We properly renormalized the theory using a conventional ultravi-
olet cutoff scheme on momentum. From this, the associated 1-loop beta functions for the coupling
constants were computed. We also explored some aspects of the theory at finite temperature and
finite density.

The theory we studied may well be the simplest interacting theory with subsystem symmetries,
in that it only allows a single marginal and no relevant interactions. Subsystem symmetries strongly
restrict the allowed terms one can write down in the Lagrangian. For a single real scalar, no relevant
or marginal terms exist that aren’t quadratic in the fields. So our fracton plus fermion theory is a
very natural first step in exploring interacting theories with subsystem symmetry.

There are several lessons one can draw from this exercise. Maybe first of all, it is reassuring to
see that in this system, despite all of its peculiarities, including discontinuous field configurations
and strong UV/IR mixing, the standard tools of quantum field theory still apply. As we discussed,
one could wonder whether different RG schemes could be tried to extract a different scaling regime,
but the standard momentum cutoff we employed does give meaningful results and, as we mentioned
in the text, the fact that we couple the scalar with its unusual dispersion relations to a conventional
fermion also seems to indicate that this is the correct scheme to use in this context.
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Maybe the biggest surprise we encountered was the vanishing of the 1-loop beta function for
the coupling constant. We have identified a novel symmetry in the system that seem to guarantee
this vanishing to all loops. Nevertheless, given the novelty of the subject it may be re-assuring to
explicitly check in the future that the vanishing does indeed persist at 2-loop order. Beyond that,
the kind of symmetry we observed, combining a time dependent phase rotation of a fermion with a
shift in a scalar field, isn’t unique to our system and, in fact, doesn’t even rely on the presence of
subsystem symmetries. A version of this symmetry can easily be constructed in more conventional
systems of non-relativistic® fermions coupled to scalars. In particular, one can easily see that such
a symmetry is in fact present in the theory of a critical metal, a Fermi surface coupled to an order
parameter. This theory has been intensely studied over the years as for example reviewed in [18].
Some aspects of this symmetry have been discussed in [16] and, in more detail, in appendix A of
[17]. Tt would be very interesting to see if one could use this symmetry to constrain this system
further, maybe along the lines we explored in here.

A very interesting future study in our system would be to analyse loops in the theory at finite
density. In this case we would be describing fermions near the Fermi surface interacting with the
fracton scalar. This will give an interesting structure to the dispersion relations of both of our
matter fields, allowing for the possibility of interesting new scaling behaviors and potentially new
physics.
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A Computation of the scalar self-energy

In this appendix we give a detailed calculation of scalar self-energy to first loop order in Euclidean
spacetime. We note that this specific 1-loop computation is fairly standard in the literature as only
the fermion runs in the loop, see for example [20].

The Feynman diagram for the scalar self energy evaluates to

)\2k12k/2 2 1
= d d k/ k 2 : (A.l)
—Zw+f+’y —i(w’—w)—i—i( Z:n) +

We can use the residue theorem to calculate the w integral by closing the contour in the lower half
plane, to find that

[l oo )
wige +iv) \ (o —w) + i &R gy

ori R ( 1 1 k2 > (A2)
= —xT1 €S - - n , W= —1— — 17 .
w+z%+w(w’—w)+17(k27:) + 1y 2m
1
= =27 .
,w+w+%+2,y

5In relativistic theories the fact that the kinetic terms involve a fermion bi-linear in the vector representation
of the Lorentz group, while the Yukawa couplings involve a scalar bi-linear make it more challenging to find such
symmetries in that context
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We can substitute this expression back into our original equation, leading to

/\2k/2k/2 1
Y= ——2 Y | %k ) A3
°T (2 / —iwf 4 B=EL2E 4 B2 oy S

We can compute this integral by first shifting & — k 4+ k’/2, then converting to polar coordinates.
After this shift we can take the angular integral to see that

. A%ﬁk;f/dk k (A4)
¢ = (27_‘,) R k2 + k2 +2’)/ .

This integral is UV divergent, so imposing a UV cuttoff we find that

/\2 ]{3/2 k/Z )\2 k/2 k/2 A2 A
. mi / ik k m v 1 ( + )

B2Z+A 2 A
+ i (A.5)
AQk;?k/fl A O (A1
= T og ﬁ + ( ) 5
where A = —miw’ +2m~y. Note that A is indeed real after Wick rotating the external Euclidean
frequency back to Lorentzian energy w’ = —if).
Finally we find that the associated counter-term for d;,,, in Euclidean spacetime is
mA2

B Computation of the fermion self-energy

In this appendix, we go through the explicit calculation of the Fermion self-energy counter-terms.
This will consist of computing the integral from (4.3). The associated integral is

dwd?k 1 K2k
2y = (-3 [ _— (B.1)

3 (k1—F)? k k2
(27)3 —i(wy —w) + S Y pow? 4+ =2 m

This w integral is computed by closing the contour in the lower half plane, then using the residue
theorem. This contour only encloses a single pole arising from the scalar propagator. This compo-
nent is computed by solving the residue of the form

dew 1 K2k
2T —j(wy — w) + % 7 pow? + kiﬂki
_ —z‘Res( 1 k2K2 Y _i|kwky|)
—i(wn —w) + B2 2 kgﬂki ’ N (B2)
M
o Ho ‘k k |
2 zw—|—‘kk|+(klk) +’y

N

This therefore means that (B.1) reduces down to

5, \/ i /dk Lk, ok, | (B.3)

X L )2 Lk )2 .
—iw1+ ‘ka;]:’)yJ + (kl,z km)z':n(kLy ky) +'Y
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To calculate this integral, we can transition into polar coordinates: r? = k2 + k;, k. = rcos(h),
k, = rsin(d). Due to the fact that we are only concerned with finding the appropriate counter-
terms for this diagram, we seek to isolate the UV divergent piece. In this case, we will find that
this integral becomes

2w 3 in(f
Sy V s / d@/ dr rleos®) stn®)] . (B4)
—iw, + r2|cos(0) sin(0)] + (k1,2 —7cos(8))2+(k1,y—7sin(0)) NN
Ny 2m
If we now choose to Laurent expand the integrand above in terms of r (or A), then we find that
the self-energy splits into two UV divergent integrals. The two integrals will correspond to counter-

terms that are defined in (4.4). These two integrals are defined as the quardratically divergent piece

and the lograithmically divergent piece,

Ty =3y, + I3 + O(A°). (B.5)
Expanding the integral out, we find that Ellﬂ and Ei are
2w
(20)]
2L =22 A g Y r, (B.6)
2(2m)2 J, N —|—m\sln (20)| Jo
and
£ T i 2 _ 2 sin(26)
o _ e Vi /2 m|sin(20)|[—ki 4+ 2my — 2imw; + m(kf + 2my — 2imw, )| 2= o )l /A l
P 2(271-)2 0 ( m| sin(20) |) !
Vo
(B.7)
Starting with qu/j, computing the 6 integral leads to
2./ arctan m+2y/iito tan(6) /2
E}Z,,\Q/‘[(g e ( VAo —m? )ﬂ / /Adrr
272 /4/L/L0 — m2 0 0 (BS)

A
Py + _ PO retan [ —— ) = T dr .
2 2
27 2 Lo — M Vo — m?2 2 0

From this we see that Z3 in (4.4), which is the coefficient term proportional to %2 in the self energy,

is
Z.— 2P )T __HHo " _m Y _T)U B.
3 52 { > + P arctan e 5 (B.9)

We can now go on to compute Ei. In this case, the UV divergent integral possess two terms,
2
one proportional to (2% +7—iw), and another term proportional to k% /2, which in (4.4) are defined
as Z1 and Zp. These correspond to the UV divergent pieces contributing to the iz, and the 4y,
counter-terms through (4.5). More specifically, we can say that

k2 . _ k2 _
%7 = <27§1 +- zw1>z1 log(A) + ?1:2 log(A). (B.10)

=, and 25 are computed from (B.7) as
2
_ , e 2" | sin(20)]
IR C I Ay ) (R o i I
0 (1 )?

‘ sin(26)
i

(B.11)

™ | sin(26)|
0 (14 m)| \/WD
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Evaluating theses two integrals directly, we get

2 /
1 :7)\2"12# Hio 5 1+ m 173 | arctan m _r
T2 o —m (1o — m?2)Y/ Vo —m? ) 2
7T
2

3/2 2
_ Azmlﬁ% {2 + m + 3m<arctan <m)

Mo/ ppg —m?

This then become the desired coefficients for the counter-terms.

(1]

(B.12)

L

72 (ppo — m?)?

Vo —m? }
C Computation of vertex correction

In this section, we compute the Feynman diagram for the vertex correction. The associated integral
for this correction equals

r

P w 2 k2k2 1 2 1 2)y
(ﬂ)s/d 4k 1 (k1 + ka)o (k1 + ko) 1)

(21)% —i(wn — w) + BB 4y w2 + kTNk” i(w +w) + UZEE 4y

The w integral can then be computed by the residue theorem. Specifically, we can close in the lower
half plane, and compute one residue, as there only exits a single pole within that region. This gives

dw 1 k2/€2 1
2 ilon =)+ Bl 7 gt i+ )+ B
- _ZRGS< 1 k2K2 1 L _z’|kwky|)
- _ 2 ) -
—i(wy —w) + EKE 02 ’“lﬂ’“u i(wy + w) + G2t N
M
_ Ho 1 |/€ k |
- kyky ki —k kaky ki—k
2 iy + Bl b gy el kR

(C.2)

We can now collect all of these terms together and substitute back into (C.1) to calculate the rest
of the diagram, which becomes

w

2k \ 1o 1 |k key|
I = (—)\)3(/{1+k2)x(k1+/€2)y/ 3 h 2 ok Y AV .
(@m) 2 iy 4 bl Buh? g, 4 Bl (W 2h2

(C.3)
To calculate this integral, we can transition into polar coordinates: r? = k2 + k;, ke = rcos(h),
k, = rsin(6). This leads to

= (X% + kol + )y | [ o5 Vi 1

2 92 r2| cos(6) sin(6)| (k1—k)?
(2m) ot = T T ()

2| cos(0) sin(6)]

. 72| cos(0) sin(0)] (k1 k)2 :
iwe + = JAoR + = T

X

As we are only interested in the UV divergent piece, we can expand the integral as a perturbative
series in terms of external momenta. Only the leading order term within this series will contain the
UV divergence, and this leading term is found by taking k)" = k4 = (0, 6) inside the integral. This
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then simplifies the vertex to become

n
rdrdf \/ uo 72| cos(0) sin(6
FUV - <7)\)3(k1 N k2)m(k1 * kQ)y |:/ (271')2 2 : r2|cos(6|‘) 3111((9)? (2)| 2:| (C 5)
(7 VEoR Tom t 7) ’

= (=) (k1 + ko) (k1 + ka) E.

We can now compute the 6 integral:

= ,u,/u/z / dr / sin(29)
= 2
sm (20) + VLo + 27%0”7)

u\/uuo / dr 1
0 /m

O

+ > arctan — 3
Voo (£ +2)° - Vi (2 +2%)° -1

Then the divergent piece of the r integral is found by expanding the above function around
r — 00, giving us

uy/pio m? m m T 0
= 1+ arctan | ————= ] — = | | log(A) + O(AY). (C.7
™ o = Ql VMMO_m2< (VMMo—m2> 2)1 g(A) (A% (C7)

From this, we have that the associated counter-term for \ is

2 e
0\ = )\3m H adall 1+ m arctan _m )T log(A). C.8
g T o — m? (Hpo — m2)1/2 Vo — m? 2 5(4) (©8)

D Correlation functions

(1]

For this section, we will calculate the correction to the two point function for the scalar. Specifically,
we will compute the O(A?) correction to the two-point function. This will amount to calculating
the integral of the form
. . . k2k2
/ dwdk,dk, e~ wks—iyky —iTw e (D.1)
pow? + = + Xy

1
(020, 0(T, 2, )00y $(0,0,0)) = @

Here Y4 was computed in and is given by

N2 k2 k2 k2 + k2
= mT/fy lo ( Y miw + 2m7> (D.2)
0

One can first compute the w integral using the residue theorem. This equals

o] efiTw
/ Ao —— e K2 ER2 _
—oo pow® + = 4+ log L — miw + 2my
1 oo e~ iTw (D3)
= — dw
mAZk2 k2 k2 +k2 .
Ho J oo w? + me + 477;; £ ]o ( T — miw + 2m7)
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Here we can extend the w in terms of A in order to find the A? correction to the pole. This particular
integral only possess two poles, one in the upper and lower half planes, and when A\ = 0 the location

of this poles w = :tzl\/k% At small X\ the location of the poles, and the residue associated with

the pole change perturbativley with A. Thus, we can compute this integral perturbativley by
computing the order by order change in the residue of the pole. The modified location of the pole

is at w* = wy + A\2ws + O(A\?). Here w; = zlk;i\/%zl’ and one can find ws by finding the term that leads

the denominator of the integrand to equal zero to O(\?). This leads to

Vo mlkgky| log(kﬁ—kkg Kk

- +m + 2m >
2t Ampo 4 NI v

(D.4)

Wy = —

1 mk2k2 <k~g + k2

201 Ao 4 ity + 2my

One can now Taylor expand the integrand for (D.3) around w* = w; + A%ws and simply take the
leading order term. This leading order term will correspond to the residue of the integral. This
equals

1 0 e—iTw ot 6iw*|7’\
dw = —
k2 k2 mA2k2 k2 k2 +k2 .
Mo J—oo 2 z Ny y ¥y o_ Ho k2k2 mA2k2 k2 k2+k2 .
WAt et T log 1 miw + 2my 9 e v 4 — yl = e + 2mey

(D.5)
In this last line we used the fact that the integral reduces down to the expression. We must now
only take into account for terms O(\?) within the square root. Thus, in this analysis, we use the
fact that log(w*) &~ log(wy). This means that the the full two point function becomes

1 2m —ixke —iyky kiki il
(0a0y6(7, 2, 9)020,6(0,0,0)) = —— == [ dkdkye v
(27)3 o k2k2  mAZkZk2 k2 +k2 .
2 Y Y lo ( . fmzw1+2m'y)

o 47 po
(D.6)
One can now further simplify the integral above by taking into account its symmetry about the

origin. This leads to

iw™ |7
(0:0,0(7, 7, 1)D2y6(0,0,0)) — 1 / dydk, [koky | cos(kat) cos(kyy)e
m>\2 k2+k2 [y key|
\//mo 47r/m ( +m VEHO +2m’y)

(D.7)
In the case above, when the value of 7 — 0 the integral (D.7) is no longer well defined. This is clear
as the theory possess an interesting UV /IR mixing property. Specifically, the integral at non-zero
7 leads to (D.6), however in the limit where 7 — 0, the integral begins to diverge. Thus, as at
smaller values of 7, the correlation function begins to diverge. This gives rise to this apparent
UV/IR mixing property.
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