
Accelerating Variant Calling on Human Genomes Using a
Commodity Cluster

Praveen Rao

praveen.rao@missouri.edu

University of Missouri-Columbia

USA

Arun Zachariah

azachariah@mail.missouri.edu

University of Missouri-Columbia

USA

Deepthi Rao

raods@health.missouri.edu

University of Missouri-Columbia

USA

Peter Tonellato

tonellatop@health.missouri.edu

University of Missouri-Columbia

USA

Wesley Warren

warrenwc@missouri.edu

University of Missouri-Columbia

USA

Eduardo Simoes

simoese@health.missouri.edu

University of Missouri-Columbia

USA

ABSTRACT
Variant calling is a fundamental task that is performed to iden-

tify variants in an individual’s genome compared to a reference

human genome. This task can enable better understanding of an

individual’s risk to diseases and eventually lead to new innova-

tions in precision medicine and drug discovery. However, variant

calling on a large number of human genome sequences requires

significant computing and storage resources. While access to such

resources is possible today (e.g., through cloud computing), reduc-

ing the cost of analyzing genomes has become a major challenge.

Motivated by these reasons, we address the problem of accelerating

the variant calling pipeline on a large number of human genome

sequences using a commodity cluster. We propose a novel approach

that synergistically combines data and task parallelism for different

stages of the variant calling pipeline across different sequences with

minimal synchronization. Our approach employs futures to enable

asynchronous computations in order to improve the overall cluster

utilization and thereby, accelerate the variant calling pipeline. On a

16-node cluster, we observed that our approach was 3X-4.7X faster

than the state-of-the-art Big Data Genomics software.

CCS CONCEPTS
•Computingmethodologies; •Applied computing→Genomics;

KEYWORDS
Human genomes, variant calling, cluster computing, futures

ACM Reference Format:
Praveen Rao, Arun Zachariah, Deepthi Rao, Peter Tonellato, Wesley Warren,

and Eduardo Simoes. 2021. Accelerating Variant Calling onHumanGenomes

Using a Commodity Cluster. In Proceedings of the 30th ACM International
Conference on Information and KnowledgeManagement (CIKM ’21), November
1–5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3459637.3482047

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482047

1 INTRODUCTION
Genomics is regarded as a Big Data science [49]. It is projected

that between 100 million-2 billion humans could be sequenced by

2025 producing between 2-40 exabytes of genome data [49]. With

the cost of human whole-genome sequencing (WGS) falling below

$1,000 [15], WGS in large-scale studies and clinical practice have

become economically feasible. In fact, new genome sequencing

initiatives have been launched around the world [9, 11, 16] to un-

derstand COVID-19 susceptibility and severity in individuals [33].

The (diploid) human genome contains 6 billion base pairs of

deoxyribonucleic acid (DNA) [5]. DuringDNA sequencing, a sample

DNA is sliced into shorts fragments and read as a sequence of bases

(a.k.a. reads). Due to sequencing errors, a position in the genome is

covered by multiple DNA fragments resulting in millions of reads.

In essence, a human genome sequence can produce hundreds of

gigabytes of data. Such large sizes of human genome sequences pose

technical challenges for efficient storage, processing, and analysis.

Recently, companies such as Microsoft [13], Databricks [7], and

NVIDIA [14] are providing new tools and services to customers

for accelerating analytics on genomics data. Several open source

projects have emerged (e.g., GATK4 [1], ADAM-Cannoli [8, 44, 45])

that employ cluster computing frameworks, Apache Spark [52]

and Apache Hadoop [51], to manage and analyze large volumes

of genome data. Thus, there is growing interest in advancing the

state-of-the-art in processing human genomes efficiently at scale.

Once an individual’s genome is sequenced, it must be analyzed.

Variant calling is a fundamental task that is performed to iden-

tify variants in an individual’s genome compared to a reference

human genome such as single nucleotide polymorphisms (SNPs),

short insertions/deletions (indels), copy number variation, and other

structural variants [18]. Identifying these variants will enable better

understanding of an individual’s risk to diseases and eventually

lead to new innovations in precision medicine and drug discovery.

A variant calling pipeline consists of several stages [36, 50] in-

cluding reading the genome sequence data, performing alignment of

reads with a reference genome, additional pre-processing steps, and

finally, invoking a variant caller to produce raw variants. The raw

variants are further processed by variant filtering and annotation

steps. The variant calling pipeline involves several computation-

ally intensive tasks and requires significant computing and storage

resources to analyze large number of human genome sequences.

While access to such resources is possible today through cloud

https://doi.org/10.1145/3459637.3482047
https://doi.org/10.1145/3459637.3482047

computing, reducing the cost of analyzing genomes has become a

key challenge [40, 44, 45].

Motivated by the aforementioned reasons, we propose a novel

approach called AVAH (Accelerating VAriant Calling on Human
Genomes) by leveraging asynchronous computations and cluster
computing technologies for faster execution of the variant calling
pipeline. The key contributions of our work are as follows:

• AVAH distributes the task of executing the variant calling
pipeline on the input sequences across the cluster nodes.
It synergistically combines task parallelism and data par-
allelism for different stages in the pipeline by launching
asynchronous computations using futures [35]. These com-
putations are executed in a sliding window manner on small
groups of sequences to control the degree of parallelism and
improve cluster utilization.
• AVAH employs two strategies for synchronizing different
stages of the variant calling pipeline: The first strategy uses a
synchronization barrier after every stage of the pipeline; the
second, however, only uses a synchronization barrier at the
end of the final stage of the pipeline. While both strategies
improve the overall cluster utilization, the latter is designed
to achieve the best performance.
• AVAH is built atop Apache Spark and Apache Hadoop and
leverages the APIs of existing Big Data Genomics software
that enable data parallelism. Through a detailed perfor-
mance evaluation on a 16-node commodity cluster, we show
that AVAH is significantly faster than ADAM-Cannoli, the
state-of-the-art Big Data Genomics software.

2 RELATEDWORK ANDMOTIVATION
2.1 Variant Calling Pipelines
A typical variant calling pipeline for an individual’s DNA sam-
ple [21, 36] involves a set of stages: (a) reading raw unmapped reads
(e.g., in FASTQ format [4]), (b) alignment of the reads with a refer-
ence genome (e.g., using BWA [38]) to obtain mapped reads (e.g.,
in BAM format [22]), (c) marking duplicate reads in the mapped
reads, (d) base quality score recalibration (BQSR) [17] and local
realignment around the indels (to correct sequencing errors and im-
prove accuracy of downstream processing), and finally, (f) variant
calling (e.g., using FreeBayes [19, 34], GATK HaplotypeCaller [12]).
The output file in VCF format [23] contains raw variants. Finally,
variant filtering and annotation is applied on the raw variants. In
fact, there are several pipelines for variant discovery [10, 36, 50].

In the interest of space, we discuss prior work closely related to
DNA variant calling pipelines using Apache Hadoop/Spark. Cloud-
Burst [48], CloudAligner [42], SEAL [46], and BigBWA [25] used
Apache Hadoop for speeding up the computationally-intensive
alignment stage. Hadoop-BAM was developed to support Hadoop-
based parallel I/O [43] for sequencing data. Later, SparkBWA [26]
employed Apache Spark to speed up alignment using BWA [38].
Cloud Scale-BWAMEM [29] also used Apache Spark to speed up
alignment andwas adapted for FPGAs [28]. Recently, PipeMEM [53]
used Spark pipes to speed up alignment using BWA-MEM [37].

The Broad Institute developed the GATK Best Practices Work-
flows [20], which have been widely adopted for variant discovery.
Halvade [31] parallelized the variant calling pipeline of GATK using

Figure 1: ADAM-Cannoli’s cluster utilization

MapReduce [30]. Later, GATK4 was built atop Apache Spark for
parallelization [1]. Parabricks was developed to accelerate GATK
pipelines using GPUs [14]. Nothaft et. al. [44] created ADAM and
Cannoli as part of the Big Data Genomics project [8]: ADAM was
designed to enable the processing of large genomic datasets us-
ing Spark’s primitives. ADAM supports read transformations and
correcting errors in aligned reads. Cannoli leverages pipes and
parallelizes the alignment process and variant calling by reusing
existing tools. Together, we refer to them as ADAM-Cannoli. ADAM-
Cannoli is considered the state of the art and was significantly
faster than GATK4 [44]. Our goal is similar to that of ADAM-
Cannoli – to accelerate the entire variant calling pipeline.

2.2 Motivation
While most of the prior work has focused on accelerating certain
stages of the pipeline, we investigate how to accelerate the entire
variant calling on a large collection of genome sequences.

We tested ADAM-Cannoli on a 16-node cluster in CloudLab [32]
using 98 paired-end1 whole genome sequences [3]. The variant
calling pipeline was executed without BQSR/indel realignment.
ADAM-Cannoli processed one sequence-at-a-time employing data
parallelism across all the 15 Spark worker nodes and took close to
69 hours to process all the sequences. We observed that the cluster
utilization on the worker nodes was modest at best. Figure 1 shows
an example of the 15-minute load average (measured every 30
seconds) on the cluster nodes. Then we executed ADAM-Cannoli
on multiple sequences simultaneously (e.g., 2 at-a-time, 4 at-a-time,
8 at-a-time) to increase the load average. Unfortunately, the time
taken was higher than before for each case (i.e., 90+ hours) due
to resource contention among the Spark jobs. These observations
clearly indicate that a new approach is needed that (a) improves
the cluster utilization when executing on a large number of genome
sequences and (b) executes the variant calling pipeline faster. By
achieving higher throughput for variant calling, we can lower the
cost of analyzing human genome sequences especially in a cloud
computing environment.

3 OUR APPROACH
Motivated by the aforementioned reasons, we propose AVAH to
accelerate the variant calling pipeline for human genomes. Our
approach draws inspiration from asynchronous computations and
the futures abstraction [35]. A future is a result of an asynchronous

1
In paired-end DNA sequencing, a fragment is read in both directions, which enables

more accurate alignment and indel detection [24].

computation that may or may not be available yet. It enables
non-blocking operations. Several software systems like Ray [39],
CIEL [41], and Dask [47] have implemented the futures abstraction
for efficient large-scale distributed execution.

(a) (b)

Figure 2: (a) Architecture (b) AVAH’s processing model

AVAH’s architecture is shown in Figure 2(a). It is built atop
Apache Spark and Hadoop. It also leverages the APIs of existing
Big Data Genomics software (e.g., Adam-Cannoli, GATK4) that run
on Apache Spark to execute the variant calling pipeline. Genome se-
quences, intermediate files produced by the pipeline, the reference
genome, additional data needed during BQSR/indel realignment,
and the raw variants can be stored in HDFS. This enable stages of
the pipeline to be re-executed on different nodes if required.

Consider a single sample variant calling pipeline supported by
ADAM-Cannoli. Table 1 shows the four stages of the pipeline that
are invoked sequentially on a human genome. Recall that our goal is
to speed up the pipeline execution on a large collection of genomes.
AVAHmodels each stage of the pipeline as an atomic task. Tasks are
executed as asynchronous computations using futures. Tasks repre-
senting the same pipeline stage managed by a Spark executor (on
a worker node) are managed via a sliding window approach. This
controls the degree of parallelism and reduces resource contention.
Tasks across different executors are controlled by synchronization
barriers executed on the Spark driver process.

Table 1: Tasks in a variant calling pipeline

Stage Stage Description

1 fI : interleave paired-end FASTQ files to produce a .ifq file
2 fA : align against a reference genome to produce a .bam file
3 fD (or fD+): produce a Parquet [6] file by marking duplicates

on mapped reads without pre-processing (or marking duplicates
with BQSR/indel realignment)

4 fV : invoke a variant calling method

We begin with our first approach called AVAHx that uses a syn-
chronization barrier at the end of each pipeline stage. Algorithm 1
summarizes the steps involved. Each genome sequence in HDFS
is identified by a sequence ID. AVAHx reads an input file contain-
ing a list of sequence IDs and the corresponding sequence sizes
as a resilient distributed dataset (RDD). (In Spark, an RDD is a
distributed immutable collection of items that can be operated in
parallel.) The RDD can be repartitioned (e.g., by using hash/range
partitioning) for load balancing along with sorting the sequence
IDs in each partition by size. (See Line 1.) The sorting enables the
sliding window of futures, which is introduced later in Algorithm 2,

to slide faster. Next, AVAHx invokes a map operation on each RDD
partition along with the appropriate pipeline stage. The map opera-
tion is executed on a worker node on the set of sequences identified
by the partition. For example, in Line 2, AVAHx invokes the first
stage of the pipeline on the sequences. The map operation on all
the partitions returns an RDD containing tuples of sequence IDs
and status of the execution of a stage on that sequence (i.e., success
or failure). Each task/stage on a sequence can be executed in a data
parallel manner using existing Big Data Genomics software. The
collect call executed by the Spark driver after the map operation
completes on all the partitions acts as a synchronization barrier
before the next stage can begin. (See Lines 2-5.)

Algorithm 1 AVAHx : Our first approach

Input: p: partitioning function; k : num. of partitions; w : sliding
window size for futures

1: S← read(‘sequence-list.txt’).repartition_and_sort(p, k)
2: rI ← S.mapPartitions(execFutures(fI ,w)).collect()
3: rA ← rI .mapPartitions(execFutures(fA,w)).collect()
4: rD ← rA.mapPartitions(execFutures(fD or fD+),w).collect()
5: rV ← rD .mapPartitions(execFutures(fV),w).collect()
6: return rV /* Raw variant files are stored in HDFS */

Rather than executing one sequence at a time, AVAHx maintains
a sliding window of outstanding futures representing tasks on the
sequence IDs in a single partition that is processed by a worker
node. The steps are shown in Algorithm 2. The total number of
outstanding futures on a partition is at most w , i.e., the window
size. This controls the degree of parallelism and reduces resource
contention among different tasks. The sliding window advances by
one sequence ID when the future at the beginning of the window
completes. As the sequence IDs are sorted by size, it is expected
that the sequence denoted by the head will tend to finish faster
than the others to allow the window to slide faster. Thus, AVAHx
synergistically combines task parallelism and data parallelism for
different stages in the pipeline across different sequences.

Algorithm 2 execFutures: A sliding window approach

Input: P : RDD partition containing sequence IDs; f : task to exe-
cute;w : sliding window size

1: for j=0 tow-1 do
2: ret[j] ← Future(f (P[j].sequenceID))
3: head ← 0
4: while head ≤ P .length() -w do
5: await(ret[head])
6: ret[head +w] ← Future(f (P[head +w].sequenceID))
7: head ← head + 1
8: await_all(ret[head], . . . , ret[P .lenдth() − 1])

Our second approach called AVAHy uses a synchronization bar-
rier only at the end of the last stage of the pipeline. An illustration
is shown in Figure 2(b). Algorithm 3 summarizes the steps involved.
Essentially, AVAHy chains the map operations that are applied on
the partitions for the different pipeline stages. Finally, it invokes a
single collect call after the variant calling stage. (See Line 2.) Like

AVAHx , it also uses the sliding window approach (execFutures)
for managing futures. Compared to AVAHx , AVAHy has minimal
synchronization among the pipeline stages and is designed to pro-
vide better cluster utilization and faster execution. Furthermore, in
AVAHy , two sequences can be executing two different stages of the
variant calling pipeline at a given time.

Algorithm 3 AVAHy : Our second but improved approach

Input: p: partitioning function; k : num. of partitions; w : sliding
window size for futures

1: S← read(‘sequence-list.txt’).repartition_and_sort(p, k)
2: rV ← S.mapPartitions(execFutures(fI ,w))

.mapPartitions(execFutures(fA,w))

.mapPartitions(execFutures(fD or fD+),w)

.mapPartitions(execFutures(fV),w).collect()
3: return rV /* Raw variant files are stored in HDFS */

4 PERFORMANCE EVALUATION
We compared the performance of AVAHx , AVAHy , and ADAM-
Cannoli. As ADAM-Cannoli [44] ran faster than GATK4, we did
not include GATK4 in the comparison.

4.1 Implementation, Setup and Dataset
We implemented AVAHx and AVAHy in Scala and built the code us-
ing Scala 2.12.8. (The APIs of ADAM-Cannoli were used for different
pipeline stages.) The code was run with Apache Spark 3.0.0, Apache
Hadoop 3.2.0, and OpenJDK 8. We ran the experiments on a 16-
node cluster set up in two different data centers of CloudLab [32]:
Clemson and Wisconsin. The nodes were physical machines run-
ning Ubuntu 16.04 and connected by a Gigabit Ethernet network
(10 Gbps). Each node in Clemson had 2 Intel E5-2660 10-core CPUs
(2.20 GHz) and 256 GB RAM. Each node in Wisconsin had 2 Intel
E5-2660 10-core CPUs (2.60 GHz) and 160 GB RAM. (Each core
had 2 hardware threads.) Due to limited root filesystem storage
on the nodes, we mounted additional local block storage (striped
across multiple physical disks) on each node. HDFS was set up
using the local block storage of the nodes. We also installed ADAM
0.33, Cannoli 0.11, FreeBayes 1.3.2, and BWA 0.7.17 on the nodes.

We downloaded 98 human whole genome sequences from the
1000 Genomes Project [3, 27]. The total size of these low-coverage
(paired-end) sequences was 632 GB (in compressed form). The
minimum and maximum size of the sequences were 2.2 GB and
15.4 GB, respectively.

Table 2: Time comparison (best time shown in bold)

Data Time taken (no preprocessing) Our best
center ADAM-Cannoli AVAHy speedup

Clemson 68 h 51 min 22 h 13 min 3.10X
Wisconsin 46 h 7 min 15 h 1 min 3.07X

Data Time taken (w/ BQSR/indel realignment) Our best
center ADAM-Cannoli AVAHy speedup

Clemson 127 h 34 min 39 h 55 min 3.17X
Wisconsin 147 h 45 min 31 h 24 min 4.70X

4.2 Performance Results
We tested two versions of the variant calling pipeline: (a) with no
pre-processing in Stage 3 (fD) and (b) with BQSR/indel realignment
in Stage 3 (fD+). Note that BQSR/indel realignment are computa-
tionally intensive and require more I/O due to additional files that
must be processed. Hence, the latter version always required more
time to complete. (We used GRCh38 [2] as the reference genome
and a sliding window size of 2/3.) The input RDD containing the
sequence IDs and their sizes had 15 partitions. Table 2 shows the
time taken by the approaches. (In the interest of space, AVAHx
timings are not shown. We observed that AVAHy was at least 2X
faster than AVAHx , which in turn was faster than ADAM-Cannoli.)
For both versions, AVAHy was the fastest as it is designed to syn-
ergistically combine both task and data parallelism for different
stages of the pipeline using futures and minimal synchronization
barriers. On the other hand, ADAM-Cannoli only exploited data
parallelism. For the first pipeline version, AVAHy was 3X faster
than ADAM-Cannoli. For the second pipeline version, AVAHy was
between 3X-4.7X faster than ADAM-Cannoli.

(a) No preprocessing (b) With BQSR/indel
(fD) realignment (fD+)

Figure 3: Cluster utilization of AVAHy in Clemson

While both AVAHx and AVAHy improved the overall cluster
utilization compared to ADAM-Cannoli, AVAHy yielded the best
results. Figure 3 shows the 15-minute load average of AVAHy (for
both pipeline versions) measured every 30 seconds on the Spark
worker nodes in Clemson. Similar trends were observed in Wis-
consin and are not shown in the interest of space. These results
demonstrate the effectiveness of AVAHy for accelerating the variant
calling pipeline on human genomes.

5 CONCLUSION
We developed a novel approach to accelerate the variant calling
pipeline on human genomes using futures to synergistically com-
bine data and task parallelism for different stages of the pipeline
across different sequences. Our best approach introduces minimal
synchronization barriers and significantly improves the cluster uti-
lization. As a result, it was significantly faster than ADAM-Cannoli.
We believe our work provides an effective template for accelerating
different variant calling pipelines using cluster computing. Our
code is available at https://github.com/MU-Data-Science/EVA.

Acknowledgments: This work was supported by the National
Science Foundation under Grant No. 2034247.

https://github.com/MU-Data-Science/EVA

REFERENCES
[1] GATK4. https://github.com/broadinstitute/gatk.
[2] Genome Reference Consortium Human Build 38. https://www.ncbi.nlm.nih.gov/

assembly/GCF_000001405.26/, 2013.
[3] 1000 Genomes Phase 3 Release. https://www.internationalgenome.org/data-

portal/data-collection/phase-3, 2015.
[4] FASTQ Files Explained. https://support.illumina.com/bulletins/2016/04/fastq-

files-explained.html, 2016.
[5] Size Matters: A Whole Genome is 6.4B Letters. https://www.veritasgenetics.com/

our-thinking/whole-story, 2017.
[6] Apache Parquet. https://parquet.apache.org/documentation/latest/, 2018.
[7] Building the Fastest DNASeq Pipeline at Scale. https://databricks.com/blog/

2018/09/10/building-the-fastest-dnaseq-pipeline-at-scale.html, 2018.
[8] Big Data Genomics. https://github.com/bigdatagenomics/, 2020.
[9] COVID-19 Genomics UK Consortium. https://www.cogconsortium.uk/, 2020.
[10] DNA-Seq Analysis Pipeline. https://docs.gdc.cancer.gov/Data/Bioinformatics_

Pipelines/DNA_Seq_Variant_Calling_Pipeline, 2020.
[11] Genomics on a Mission: Meeting the COVID-19 Challenge. https://www.

genomecanada.ca/en/news/genomics-mission-meeting-covid-19-challenge/,
2020.

[12] HaplotypeCaller in a Nutshell. https://gatk.broadinstitute.org/hc/en-us/articles/
360035531412-HaplotypeCaller-in-a-nutshell, 2020.

[13] Microsoft Genomics. https://www.microsoft.com/en-us/genomics/, 2020.
[14] NVIDIA Clara Parabricks. https://developer.nvidia.com/clara-parabricks, 2020.
[15] The Cost of Sequencing a Human Genome. https://www.genome.gov/about-

genomics/fact-sheets/Sequencing-Human-Genome-cost, 2020.
[16] The COVID Human Genetic Effort. https://www.covidhge.com/, 2020.
[17] BaseQuality Score Recalibration (BQSR). https://gatk.broadinstitute.org/hc/en-

us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR- , 2021.
[18] Ensembl Variation - Variant Classification. https://m.ensembl.org/info/genome/

variation/prediction/classification.html, 2021.
[19] FreeBayes, a Haplotype-Based Variant Detector. https://github.com/freebayes/

freebayes, 2021.
[20] Genome Analysis Toolkit. https://gatk.broadinstitute.org/hc/en-us, 2021.
[21] Germline Short Variant Discovery (SNPs + Indels). https://gatk.broadinstitute.

org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-

Indels- , 2021.
[22] Sequence Alignment/Map Format Specification. https://samtools.github.io/hts-

specs/SAMv1.pdf , 2021.
[23] The Variant Call Format (VCF) Version 4.2 Specification. https://samtools.github.

io/hts-specs/VCFv4.2.pdf , 2021.
[24] What is Paired-End Sequencing? https://www.illumina.com/science/

technology/next-generation-sequencing/plan-experiments/paired-end-vs-

single-read.html, 2021.
[25] Abuin, J. M., Pichel, J. C., Pena, T. F., and Amigo, J. BigBWA: Approaching the

Burrows-Wheeler Aligner to Big Data Technologies. Bioinformatics 31, 24 (2015),
4003–4005.

[26] Abuin, J. M., Pichel, J. C., Pena, T. F., and Amigo, J. SparkBWA: Speeding up the
Alignment of High-Throughput DNA Sequencing Data. PLoS ONE 11, 5 (2016).

[27] Auton, A., and et.al. A Global Reference for Human Genetic Variation. Nature
526, 7571 (2015), 68–74.

[28] Chen, Y.-T., Cong, J., Fang, Z., Lei, J., and Wei, P. When Apache Spark Meets
FPGAs: A Case Study for Next-Generation DNA Sequencing Acceleration. In
Proc. of the 8th USENIX Conference on Hot Topics in Cloud Computing (2016),
pp. 64–70.

[29] Cong, J., Lei, J., Li, S., Peto, M., Spellman, P., Wei, P., and Zhou, P. CS-
BWAMEM: A Fast and Scalable Read Aligner at the Cloud Scale for Whole
Genome Sequencing. In High Throughput Sequencing Algorithms and Applications
(HITSEQ) (2015).

[30] Dean, J., and Ghemawat, S. MapReduce: Simplified Data Processing on Large
Clusters. In Proc. of the 6th Symposium on Operating Systems Design and Imple-
mentation (2004), pp. 137–149.

[31] Decap, D., Reumers, J., Herzeel, C., Costanza, P., and Fostier, J. Halvade:

Scalable Sequence Analysis with MapReduce. Bioinformatics 31, 15 (2015), 2482–
2488.

[32] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L.,

Hibler, M., Johnson, D., Webb, K., Akella, A., Wang, K., Ricart, G., Landwe-

ber, L., Elliott, C., Zink, M., Cecchet, E., Kar, S., and Mishra, P. The Design
andOperation of CloudLab. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19) (2019), pp. 1–14.

[33] Fricke-Galindo, I., and Falfan-Valencia, R. Genetics Insight for COVID-19
Susceptibility and Severity: A Review. Frontiers in Immunology 12 (2021), 1057.

[34] Garrison, E., and Marth, G. Haplotype-Based Variant Detection from Short-
Read Sequencing, 2012.

[35] Halstead, R. H.MULTILISP: A Language for Concurrent Symbolic Computation.
ACM Transactions on Programming Languages and Systems 7, 4 (1985), 501–538.

[36] Koboldt, D. C. Best Practices for Variant Calling in Clinical Sequencing. Genome
Medicine 12, 1 (2020), 91.

[37] Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs With
BWA-MEM. arXiv e-prints (Mar. 2013), arXiv:1303.3997.

[38] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth,

G., Abecasis, G., and R. Durbin, e. a. The Sequence Alignment/Map Format
and SAMtools. Bioinformatics 25, 16 (2009), 2078–2079.

[39] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol,

M., Yang, Z., Paul,W., Jordan,M. I., and Stoica, I. Ray: ADistributed Framework
for Emerging AI Applications. In Proc. of the 13th USENIX Conference on Operating
Systems Design and Implementation (2018), pp. 561–577.

[40] Muir, P., Li, S., Lou, S., Wang, D., Spakowicz, D. J., Salichos, L., Zhang, J.,

Weinstock, G. M., Isaacs, F., Rozowsky, J., and Gerstein, M. The Real Cost of
Sequencing: Scaling Computation to Keep Pace with Data Generation. Genome
Biology 17, 1 (2016), 53.

[41] Murray, D. G., Schwarzkopf, M., Smowton, C., Smith, S., Madhavapeddy,

A., and Hand, S. CIEL: A Universal Execution Engine for Distributed Data-
Flow Computing. In 8th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 11) (USA, 2011), pp. 113–126.

[42] Nguyen, T., Shi, W., and Ruden, D. CloudAligner: A Fast and Full-Featured
MapReduce Based Tool for Sequence Mapping. BMC Research Notes 4, 1 (2011),
171.

[43] Niemenmaa, M., Kallio, A., Schumacher, A., Klemela, P., Korpelainen, E., and

Heljanko, K. Hadoop-BAM: Directly Manipulating Next Generation Sequencing
Data in the Cloud. Bioinformatics 28, 6 (2012), 876–877.

[44] Nothaft, F. A. Scalable Systems and Algorithms for Genomic Variant Analysis.
PhD thesis, UC Berkeley, ProQuest, 2017.

[45] Nothaft, F. A., Massie, M., Danford, T., Zhang, Z., Laserson, U., Yeksigian,

C., Kottalam, J., Ahuja, A., Hammerbacher, J., Linderman, M. D., Franklin,

M. J., Joseph, A. D., and Patterson, D. A. Rethinking Data-Intensive Science
Using Scalable Analytics Systems. In Proc. of the 2015 ACM SIGMOD International
Conference on Management of Data (2015), pp. 631–646.

[46] Pireddu, L., Leo, S., and Zanetti, G. SEAL: A Distributed Short Read Mapping
and Duplicate Removal Tool. Bioinformatics 27, 15 (2011), 2159–2160.

[47] Rocklin, M. Dask: Parallel Computation with Blocked algorithms and Task
Scheduling. In Proc. of the 14th Python in Science Conference (2015), K. Huff and
J. Bergstra, Eds., pp. 130 – 136.

[48] Schatz, M. C. CloudBurst: Highly Sensitive Read Mapping with MapReduce.
Bioinformatics 25, 11 (2009), 1363–1369.

[49] Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J.,

Iyer, R., Schatz, M. C., Sinha, S., and Robinson, G. E. Big Data: Astronomical
or Genomical? PLOS Biology 13, 7 (2015), 1–11.

[50] Supernat, A., Vidarsson, O. V., Steen, V. M., and Stokowy, T. Comparison of
Three Variant Callers for Human Whole Genome Sequencing. Scientific Reports
8 (2018).

[51] White, T. Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc., 2009.
[52] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I.

Spark: Cluster Computing with Working Sets. In Proc. of the 2nd USENIX Con-
ference on Hot Topics in Cloud Computing (2010), pp. 10–10.

[53] Zhang, L., Liu, C., and Dong, S. PipeMEM: A Framework to Speed Up BWA-
MEM in Spark with Low Overhead. Genes 10, 11 (2019).

https://github.com/broadinstitute/gatk
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
https://www.internationalgenome.org/data-portal/data-collection/phase-3
https://www.internationalgenome.org/data-portal/data-collection/phase-3
https://support.illumina.com/bulletins/2016/04/fastq-files-explained.html
https://support.illumina.com/bulletins/2016/04/fastq-files-explained.html
https://www.veritasgenetics.com/our-thinking/whole-story
https://www.veritasgenetics.com/our-thinking/whole-story
https://parquet.apache.org/documentation/latest/
https://databricks.com/blog/2018/09/10/building-the-fastest-dnaseq-pipeline-at-scale.html
https://databricks.com/blog/2018/09/10/building-the-fastest-dnaseq-pipeline-at-scale.html
https://github.com/bigdatagenomics/
https://www.cogconsortium.uk/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline
https://www.genomecanada.ca/en/news/genomics-mission-meeting-covid-19-challenge/
https://www.genomecanada.ca/en/news/genomics-mission-meeting-covid-19-challenge/
https://gatk.broadinstitute.org/hc/en-us/articles/360035531412-HaplotypeCaller-in-a-nutshell
https://gatk.broadinstitute.org/hc/en-us/articles/360035531412-HaplotypeCaller-in-a-nutshell
https://www.microsoft.com/en-us/genomics/
https://developer.nvidia.com/clara-parabricks
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.covidhge.com/
https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR-
https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR-
https://m.ensembl.org/info/genome/variation/prediction/classification.html
https://m.ensembl.org/info/genome/variation/prediction/classification.html
https://github.com/freebayes/freebayes
https://github.com/freebayes/freebayes
https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-
https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/VCFv4.2.pdf
https://samtools.github.io/hts-specs/VCFv4.2.pdf
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/paired-end-vs-single-read.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/paired-end-vs-single-read.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/paired-end-vs-single-read.html

	Abstract
	1 Introduction
	2 Related Work and Motivation
	2.1 Variant Calling Pipelines
	2.2 Motivation

	3 Our Approach
	4 Performance Evaluation
	4.1 Implementation, Setup and Dataset
	4.2 Performance Results

	5 Conclusion
	References

