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Abstract—Human genome sequences are very large in size
and require significant compute and storage resources for large-
scale analysis. Motivated by the need to speedup human genome
processing, we developed software for large-scale human genome
sequence analysis on CloudLab. We present the design of our
software and the experimental setup on CloudLab. We also
discuss the insights gained and lessons learned through our
effort. Our software can be a valuable resource for researchers,
educators, and students in computing and bioinformatics.

I. INTRODUCTION

Genomics is regarded as a Big Data science [8]. It is
projected that between 100 million-2 billion humans could be
sequenced by 2025 producing up to 40 exabytes of genome
data [8]. With the cost of human whole-genome sequencing
(WGS) falling below $1,000, WGS has become economically
feasible in large-scale studies and clinical practice. It has
become a critical tool for accelerating scientific discovery in
genomics and medicine. The COVID-19 pandemic has led to
multiple genome sequencing initiatives worldwide,' providing
further impetus to genomic medicine in a clinical setting.

In recent years, there has been a growing demand from
hospitals and institutions to process large volumes of genomic
data; getting back results in a few hours can potentially save a
patient’s life. A single human genome sequence can consume
10’s of GBs of storage [2]. Processing a large number of
sequences poses technical challenges for efficient storage,
processing, analysis, and data transfer. While access to a
large number of computing and storage resources is possible
today through cloud computing, reducing the cost of analyzing
genomes continues to be a key challenge [4]-[6]. In recent
years, open source projects have emerged (e.g., GATK4?,
ADAM-Cannoli [5], [6]) that employ cluster computing frame-
works, Apache Spark [11] and Apache Hadoop [10], for
analyzing human genomes. Companies such as Microsoft,
Databricks, and NVIDIA are providing new tools and services
to customers for accelerating analytics on genomics data.
Thus, there is growing interest in advancing the state of the
art in analyzing human genomes at scale.

'www.covidhge.com, www.cogconsortium.uk, www.genomecanada.ca

Zhttps://blogs.microsoft.com/ai/microsoft-computing-method-makes-key-
aspect-genomic-sequencing-seven-times-faster
3https://github.com/broadinstitute/gatk
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Our effort is aimed at democratizing human genome se-
quence analysis using CloudLab [1]. Thus, any registered
CloudLab user can process human genomes for research and
educational purposes at no charge. We specifically focus on
variant calling, which is a fundamental task that is performed
to identify variants in an individual’s genome compared to a
reference human genome [9]. Identifying variants will enable
better understanding of an individual’s risk to diseases and
lead to new advances in disease prevention and treatment.

The variant calling pipeline consists of several stages in-
cluding reading the genome sequence, performing alignment
of reads with a reference genome, additional pre-processing
steps, and finally, invoking a variant caller to produce raw
variants.> The raw variants are further processed by variant
filtering and annotation steps.> The pipeline involves several
computationally intensive tasks and requires significant com-
puting and storage resources to analyze a large number of hu-
man genome sequences. Setting up the pipeline (based on best
practices) and necessary datasets is tedious especially when
executing in a commodity cluster. Therefore, we seek to lower
the barrier to entry for human genome sequence analysis
among computing/bioinformatics researchers, educators, and
students. Thus, our effort can accelerate scientific discoveries
in genomic medicine and enable new innovations in computer
and network systems for large-scale genome analysis.

II. OUR SOFTWARE

Motivated by the growing demand for efficient genome anal-
ysis, we developed novel software called AVAH (Accelerating
VAriant Calling on Human Genomes) to accelerate the vari-
ant calling pipeline on human genomes using a commodity
cluster [7]. AVAH draws inspiration from asynchronous com-
putations and the futures abstraction [3]. It distributes the
task of executing the variant calling pipeline on the input
sequences across the cluster nodes. It synergistically combines
task parallelism and data parallelism for different stages in
the pipeline by using futures and has minimal synchronization
barriers among the stages. These asynchronous computations
are executed in a sliding window manner on small groups of
sequences to control the degree of parallelism and improve
cluster utilization. AVAH is built atop Apache Spark and
Apache Hadoop, and designed to leverage the APIs of existing
Big Data Genomics software (e.g., Adam-Cannoli) to execute



the variant calling pipeline. Genome sequences, intermediate
files produced by the pipeline, the reference genome, addi-
tional data needed during certain stages of the pipeline, and
the raw variants can be stored in the Hadoop Distributed
File System (HDFS). Thus, stages of the pipeline can be re-
executed on different nodes if required. Failures can occur
during the execution of the variant calling pipeline due to
insufficient main memory for processes running outside of the
Java Virtual Machine (JVM), Spark shuffle errors, and others.
AVAH performs early re-execution of failed sequences when
the cluster load falls below a user-specified threshold.

In terms of performance, AVAH was 3X-4.7X faster than
ADAM-Cannoli in processing 98 genome sequences using a
16-node cluster on CloudLab. It yielded better cluster utiliza-
tion than ADAM-Cannoli. Thus, AVAH can accelerate variant
calling pipelines and lower the computational cost per genome.
In the interest of space, the reader is referred to a previous
publication [7] for complete details about AVAH. AVAH is
available via https://github.com/MU-Data-Science/EVA.

III. EXPERIMENTAL SETUP

AVAH can be executed in three different cluster settings
on CloudLab: (a) single-site, homogeneous cluster (C7); (b)
single-site, heterogeneous cluster (C'3); and (c) multi-site clus-
ter (Cs). In C4, all the nodes are of the same hardware type.
In Cs, two different hardware types can be chosen for the
cluster nodes. In C; and C,, the nodes are connected by a
Gigabit Ethernet network (10 Gbps). In C'5, the nodes between
the two sites (e.g., Clemson and Wisconsin) are connected by
Internet2’s Advanced Layer 2 Service (AL2S) using a VLAN
(virtual LAN). CloudLab profiles are available for each cluster
setting. The network bandwidth among cluster nodes can be
configured to study how it impacts the processing time of
AVAH. Typically, 16-24 nodes are sufficient to process 100’s
of human genome sequences. We recommend the Clemson or
Wisconsin data centers as they have nodes with large amounts
of RAM required for variant calling.

Due to limited root filesystem storage on the nodes, we
mount additional local block storage (striped across multiple
physical disks) on each node (about 1-2 TB per node). HDFS
and the required software packages are set up on the local
block storage of the nodes. The maximum transmission unit
(MTU) value can be changed for the network interfaces (e.g.,
to use jumbo frames). During execution of AVAH, statistics
such as CPU load average, network I/O, disk I/O, memory
usage, etc., can be collected using dstat. Network traces
can also be collected using tcpdump for further analysis.

Due to privacy laws, we allow only publicly available or
de-identified genome sequences to be processed on CloudLab.
A user can specify the URLs of the sequences to download
via the Internet. AVAH downloads these sequences in parallel
(using futures) and directly stores them in HDFS.

IV. LESSONS LEARNED

Next, we report the lessons learned while enabling large-
scale genome analysis on CloudLab. Security threats can arise

when running experiments on CloudLab. Specifically, Apache
Spark and Hadoop can be exploited by attackers (e.g., for
cryptomining) through arbitrary code execution. To prevent
such exploits, we disabled the Spark UI, enabled Spark’s
authentication using secret keys, and enabled access control
in Hadoop’s Yet Another Resource Negotiator (YARN).

Configuring the YARN settings was challenging. The maxi-
mum RAM used by YARN on each node had to be configured
carefully. If too much memory was allocated to YARN, it
caused failures when executing third-party genomic tools for
alignment and variant calling that run outside of the JVM.
Spark’s executor memory had to be carefully configured so
that genome sequences of varying sizes could be processed.
A higher value of executor memory resulted in fewer YARN
containers being launched, thereby leading to lower cluster
utilization. Certain variant calling stages required more ex-
ecutor memory to execute successfully due to processing of
additional genomic data files.

As HDFS is used to store genome sequences and intermedi-
ate files, network bandwidth can impact AVAH’s performance.
Higher bandwidth links (e.g., 1-5 Gbps) are required for fast
network I/O during different stages of the variant calling
pipeline. Otherwise, the cluster utilization deteriorates leading
to slower execution of the pipeline by AVAH.

In conclusion, we hope our work will stir more innovation
in human genome sequence analysis using cluster computing.
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