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ABSTRACT

Swimming trajectories of bacteria can be altered by environmental conditions, such as background flow and physical barriers, that limit the
free swimming of bacteria. We present a comprehensive model of a bacterium that consists of a rod-shaped cell body and a flagellum which
is composed of a motor, a hook, and a filament. The elastic flagellum is modeled based on the Kirchhoff rod theory, the cell body is consid-
ered to be a rigid body, and the hydrodynamic interaction of a bacterium near a wall is described by regularized Stokeslet formulation com-
bined with the image system. We consider three environmental conditions: (1) a rigid surface is placed horizontally and there is no shear
flow, (2) a shear fluid flow is present and the bacterium is near the rigid surface, and (3) while the bacterium is near the rigid surface and is
under shear flow, an additional sidewall which is perpendicular to the rigid surface is placed. Each environmental state modifies the swim-
ming behavior. For the first condition, there are two modes of motility, trap and escape, whether the bacterium stays near the surface or
moves away from the surface as we vary the physical and geometrical properties of the model bacterium. For the second condition, there
exists a threshold of shear rate that classifies the motion into two types of paths in which the bacterium takes either a periodic coil trajectory
or a linear trajectory. For the last condition, the bacterium takes upstream motility along the sidewall for lower shear rates and downstream
motility for larger shear flow rates.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0082768

I. INTRODUCTION

In the microbial world, many species of bacteria utilize their fla-
gellar rotation for propulsion in fluids to search for nutrients or repel
themselves from harmful substances. Motility of flagellated bacteria
can be altered by the surrounding physical and chemical environ-
ments. When there are no physical barriers or chemical stimuli, a bac-
terium E. coli, for example, runs approximately straight by a flagellar
bundle with all motors turning counterclockwise (CCW) and all fla-
gella forming left-handed helices.1–3 However, E. coli draws a circular
trajectory when located near a solid surface, which allows the cell to be
confined close to the surface.4–7 Bacteria that are entrapped near a
rigid surface may become the onset of biofilm formation that is
responsible for many microbial infection.8–11

Bacterial motility near a planar wall has been studied using a
mathematical theory of an infinite waving sheet as the swimmer,12

boundary element method,7,13–15 a far-field theory,16,17 and resistive
force theory.18 However, the flagellum in the previous studies was
modeled as a rigid body that can rotate as a whole unlike the actual
elastic flagellum.19–22 Recently, Park et al.23,24 presented a model of a

single-flagellated bacterium that is composed of a rigid cell body in the
shape of a spheroid and an elastic flagellar filament, while a short hook
that links the rotary motor and the helical filament was still missing.
The compliant hook is known to play an important role in bacterial
swimming.1,15,25,26 In particular, Shum et al.15 and Riley et al.26

showed computationally and theoretically that there are constraints
for the rigidity of the hook in order to produce the systemic bacterial
swimming observed in nature.

It is well known that dynamic fluid environments can affect the
bacterial motility and thus affect microbial processes, such as nutrient
uptake and biofilm formation.27–34 Swimming bacteria naturally have
to respond to external fluid flow, and their hydrodynamic interaction
with the flow determines their ability to navigate complex environ-
ments. Bacteria reorient with respect to the background flow within
complex environments and may result in various trajectories, such as
downstream and upstream or move toward one side, which is not well
understood. Understanding of bacterial dynamics in shear flow within
complex environments is important for human health issues related to
microorganisms, such as pathogen transport, infections, and medical
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device contamination. For example, it was experimentally observed
that a moderate shear flow sometimes causes upstream motility (i.e.,
positive rheotaxis) in a flow channel,19,35–38 which can affect bacterial
transport in biomedical settings, such as the urinary tract and
catheters.

The study on microswimmers in shear flow was initiated by
Jeffery39 about a century ago based on simple passive particle dynam-
ics in shear flow, which was later completed by Bretherton.40 For active
particles representing motile microorganisms, Z€ottl et al.41,42 studied
the hydrodynamics of spherical and prolate squirmers in Poiseuille
flow for different flow geometries and identified motions of periodic
swinging and tumbling in which the frequency depends on the aspect
ratio of the spheroid. This was later confirmed experimentally by
Junot et al. using 3D Lagrangian tracking technique for motile E.
coli.43 Marcos et al.44 demonstrated about a decade ago that bacteria
Bacillus subtilis can exhibit rheotaxis in bulk fluid that may result from
the interplay between shear flow, flagellar chirality and bacterial motil-
ity, which was further investigated by Jing et al. using E. coli bacteria
in a wide channel.34 They verified experimentally and theoretically the
chirality-induced rheotaxis in a bulk shear flow.

Bacterial motility in shear flow near a solid surface has been stud-
ied experimentally; in particular, it is reported that motile E. coli bacte-
ria swim upstream against flow over a surface.35–37,45 Recently, some
scientists utilized self-propelled active nanorods representing swim-
ming bacteria to study experimentally and computationally upstream-
ing motility in microfluidic channels.46,47 Bacterial motility in shear
flow in confined environments has attracted many scientists; however,
it is still poorly understood.

In this paper, we extend the model in Ref. 24 and build a compu-
tational model based on a real bacterium. Whereas the model in Ref.
24 uses a spherical or ellipsoidal cell body without a hook, our present
model is composed of a rod-shaped cell body and a complete assembly
of a flagellum that incorporates a compliant hook, which is more flexi-
ble than the elastic filament. The elastic flagellum in this work is
assembled with three parts in the following order: a rotary motor
embedded in the cell membrane, a short compliant hook, and a long
helical filament. The rotary motor generates the torque to drive the

rotation of the elastic flagellum and hence the cell body counter-
rotates to balance the torque. Our complete model of a bacterium may
lead to understanding of the detailed hydrodynamics of bacteria in the
presence of shear flow or physical barriers, such as solid surfaces.

II. MATHEMATICAL MODEL

The mathematical model of a single-flagellated bacterium con-
sists of a cell body in the shape of a cylinder with a hemispherical cap
at each end of the tube, and a helical flagellum that is attached to the
cell body through a flexible, straight hook, see Fig. 1. We use the pen-
alty method to model the cell body as a rigid body23,48 and describe
the elastic flagellum using Kirchhoff rod theory.49 The hydrodynamic
interaction of the bacterium is described by the regularized Stokeslet
formulation50 together with the image system in order to account for
the effect of a planar wall on the cell motility.51,52

In the cell body dynamics, the penalty method introduced by
Kim and Peskin48,53 allows the rigid cell body to interact with a sur-
rounding fluid. The surface of the cell body is represented by two
Lagrangian descriptions, Xbðq; r; tÞ and Ybðq; r; tÞ where t is time.
The parameter pair (q, r) is Lagrangian coordinates which labels a
material point of the surface of cell body. In practice, it is unlikely to
keep the global Lagrangian coordinates tracking the cell body during
the simulation so Xbðq; r; tÞ and Ybðq; r; tÞ are used just for the repre-
sentation purpose. The former description has no mass but the latter
one carries all of the mass, and they are correspondingly linked by a
system of stiff springs. Since these two descriptions are supposed to
represent the same body, if there is a gap between the two correspond-
ing boundary points, we enforce them to stay close together by apply-
ing the following restoring force density:

Fbðq; r; tÞ ¼ KbðYbðq; r; tÞ � Xbðq; r; tÞÞ; (1)

where Kb is a sufficiently large constant. The restoring force
Fbðq; r; tÞ dq dr is applied to the fluid by the patch of cell boundary
dq dr, and the negative force �Fb dq dr acts on the rigid body Yb by
the Newton’s third law.

To describe the motion of the rigid cell body, we express
Ybðq; r; tÞ as

FIG. 1. Model of a single-flagellated bacterium near a rigid planar wall z¼ 0. The flagellum of a helical curve with pitch p0 and radius r0 is connected through a straight hook
to the cell body of a rod shape with the length Lb and diameter Db. The hook and the cell body share the motor in between. The distance between the center of the cell body
and the wall is denoted by h(t), and the inclination angle between the major axis of the cell body (E3) and the plane z¼ 0 is denoted by hðtÞ at time t.
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Ybðq; r; tÞ ¼ YcmðtÞ þ E ðtÞCðq; rÞ; (2)

where YcmðtÞ is the center of mass of the cell body, and E ðtÞ is a 3� 3
matrix of which the i-th column is the i-th orthnormal basis EiðtÞ,
i¼ 1, 2, and 3, for the coordinate system fixed to the body with its ori-
gin at YcmðtÞ. The time-independent constant vector Cðq; rÞ is a 3� 1
vector, which represents the coordinates fixed to the cell body in this
system. Then, the equations of motion for the rigid cell body
Ybðq; r; tÞ are now given by

dYcm

dt
¼ VcmðtÞ;M dVcm

dt
¼ �

ðð
C
Fbðq; r; tÞ dq dr; (3)

dL
dt

¼
ðð

C
ðYbðq; r; tÞ � YcmðtÞÞ � ð�Fbðq; r; tÞÞ dq dr; (4)

XðtÞ ¼ E ðtÞ I�1
0 E ðtÞTLðtÞ; dEi

dt
¼ XðtÞ � EiðtÞ; i ¼ 1; 2; 3; (5)

where VcmðtÞ; LðtÞ, and XðtÞ are the velocity of the center of mass,
the angular momentum, and the angular velocity of the cell body,
respectively. The total mass M and the initial moment of inertial
tensor I0 of the surface of the cell body can be computed by
M ¼ Ð Ð

Cmðq; rÞdq dr and I0 ¼
Ð Ð

Cmðq; rÞðCTCI3 � CCTÞ dq dr,
respectively, where m(q, r) is the mass density and I3 is 3� 3 identity
matrix. In summary, the cell body translates by Eq. (3) and rotates by
Eqs. (4) and (5) at the cost of the resultant forces and moments from
the deviation of two Lagrangian descriptions for the cell body.

Kirchhoff rod theory models an elastic rod as a space curve
Xðs; tÞ representing the centerline of the rod and an associated ortho-
normal triad D1ðs; tÞ;D2ðs; tÞ;D3ðs; tÞ;� �

, which measures the
amount of bending and twisting of the flagellum. The initial shape of
our flagellum model is a tapered helical curve with a helical radius
decreasing to be zero in the hook and is described by54

Xðs; 0Þ ¼ rðsÞ cos ðasÞ; rðsÞ sin ðasÞ; sð Þ; (6)

where a is the wave number and the helical radius r(s) is a variable
function defined as

rðsÞ ¼
0 0 � s � Lh;

r0 1� e�kðs�LhÞ2
� �

Lh � s � Lh þ Lf ;

(
(7)

where Lh and Lf are the lengths of the hook and the helical filament,
respectively, and k is a constant. The helical radius is 0 for the hook
(0 � s � Lh), which is a straight rod and then increases gradually to
be r0 for the helical filament (Lh � s � Lh þ Lf ). Then, the vector
D3ðs; 0Þ is initially chosen as a unit tangent vector to the curve Xðs; 0Þ
in Eq. (6), and the other two vectors,D1ðs; 0Þ andD2ðs; 0Þ, are normal
and binormal vectors, respectively.

The initial configuration of the centerline and the triad of the fla-
gellum is in the equilibrium state in the absence of external forces;
however, its deformation gives rise to the following internal force
Fðs; tÞ and moment Nðs; tÞ transmitted across a section of the rod at
the Lagrangian coordinate s at time t,

F ¼
X3
i¼1

FiD
i; N ¼

X3
i¼1

NiD
i; (8)

Fi ¼ bi Di � @X
@s

� d3i

� �
; Ni ¼ ai

@Dj

@s
�Dk � Xi

� �
; i ¼ 1; 2; 3;

(9)

where d3i is the Kronecker delta, and (i, j, k) is any cyclic permutation
of (1,2,3). The coefficients a1 and a2 are the bending moduli, a3 is the
twist modulus of the rod, b1 and b2 are the shear moduli, and b3 is the
stretching modulus. The strain twist vector ðX1;X2;X3) designates

the intrinsic property of the helical rod in which j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

1 þ X2
2

q
is

the intrinsic curvature and X3 is the intrinsic twist of the flagellum of
which the sign determines the helical handedness of the rod.

Let uðx; tÞ and pðx; tÞ be the fluid velocity and pressure, respec-
tively, where x is the fixed Cartesian coordinates and t is the time.
Then, the coupled system of equations that describes the hydrodynam-
ics of a bacterium in a viscous incompressible fluid is given as follows:

0 ¼ �rpþ lDuþ g; 0 ¼ r � u; (10)

gðx; tÞ ¼
ð
Fbðq; r; tÞw�ðx � Xbðq; r; tÞÞ dq dr

þ
ðL
0
ð�fðs; tÞÞw�ðx � Xðs; tÞÞdsþ 1

2
r

�
ðL
0
ð�nðs; tÞÞw�ðx � Xðs; tÞÞds; (11)

0 ¼ f þ @F
@s

; 0 ¼ nþ @N
@s

þ @X
@s

� F

� �
; (12)

@Xðs; tÞ
@t

¼ uðXðs; tÞ; tÞ; @Xbðq; r; tÞ
@t

¼ uðXbðq; r; tÞ; tÞ; (13)

@Diðs; tÞ
@t

¼ wðXðs; tÞ; tÞ �Diðs; tÞ; i ¼ 1; 2; 3; (14)

wðx; tÞ ¼ 1
2
r� uðx; tÞ: (15)

Equation (10) is the incompressible Stokes equations where l is the
fluid viscosity. The external force density g in Eq. (11) consists of three
parts; the penalty spring force from the cell body in the first term and
the contribution from the elastic flagellum in the last two terms in
which f and n are the force and torque densities applied by the fluid
on the flagellum, respectively. We assume in the present work that the
flagellum is neutrally buoyant and the inertia of the flagellum is
neglected. Thus, Eq. (12) expresses the equations for force and torque
balances on the flagellum. The radially symmetric blob function w� in
Eq. (11) is defined as

w�ðrÞ ¼
15�4

8pðjrj2 þ �2Þ7=2
; (16)

where � is the regularization parameter and r ¼ x � X for a point x in
the fluid. The blob function w� is a bell-shaped function with infinite
support, spreading most of the force and moment within a ball with
the radius � and the center at the point X and satisfyingÐ Ð Ð

R3w�ðrÞ dr ¼ 1.50,55

The motion of the immersed boundaries, the flagellum X and the
cell body Xb, is described in Eq. (13), which expresses the no-slip con-
dition for the linear velocity. Equation (14) states that the triads associ-
ated with the flagellum rotate at the local angular velocity of the fluid
(half the vorticity field) defined in Eq. (15). Equations similar to these
are derived and discussed in Refs. 49 and 50.

The bottom end Xð0; tÞ of the flagellum is assigned to the motor
point attached to one pole of the cell body denoted as Y0

bðtÞ. In reality,
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they are physically the same point and move in time together as the
cell swims. To incorporate this into our model, we connect Xð0; tÞ to
Y0
bðtÞ and align the vector D3ð0; tÞ, which is approximately tangent to

the flagellum at Xð0; tÞ, with the normal vector to the surface of the
cell body at Y0

bðtÞ. This is done by defining the feedback force and
moment densities as follows:

fmðtÞ ¼ K1
mðY0

bðtÞ � Xð0; tÞÞ; (17)

nmðtÞ ¼ K2
mðD3ð0; tÞ � E3ðtÞÞ; (18)

where K1
m and K2

m are large constants. Then the force density fmðtÞ is
added to the force density f in Eq. (12) at the bottom end point of the
hook Xð0; tÞ, the negative force density �fmðtÞ is added to Fbðq; r; tÞ
at Y0

bðtÞ and affects the total force and torque on the cell body.
Similarly, the moment density nmðtÞ is added to the moment n in Eq.
(8) at Xð0; tÞ, and the negative moment �nmðtÞ is added to the total
torque TðtÞ on the cell body.

The motor of the flagellum rotates at any given frequency f about
the tangent vectorD3ð0; tÞ. This can be done by prescribing the ortho-
normal triad at the motor pointXð0; tÞ as follows:

Dið0; tÞ ¼ RðD3ð0; tÞÞDi
motð0; tÞ; i ¼ 1; 2; (19)

where RðD3ð0; tÞÞ is a rotational matrix to transform the unit vector
(0, 0, 1) to the unit vector D3ð0; tÞ. The two orthonormal vectors
Di

motðtÞ; i ¼ 1; 2 represent the vectors which are rotated at frequency
f from the two standard basis (1, 0, 0) and (0, 1, 0), respectively,

D1
motðtÞ ¼ ðcos ð2pftÞ; sin ð2pftÞ; 0Þ;

D2
motðtÞ ¼ ð�sin ð2pftÞ; cos ð2pftÞ; 0Þ:

The rotary motor generates a twist that is transmitted along the flagel-
lum to its free end, which leads to the rotation of the helical filament,
and the resultant countertorque at the rotating motor automatically
appears to balance the torque on the cell body so that the cell body
counter-rotates. See Ref. 23 for a more detailed description of mathe-
matical formulation.

The hydrodynamic interaction between fluid and the bacterium
including the effect of a planar wall is described by the regularized
Stokeslet formulation combined with the image system.51,52 We con-
sider an infinite plane wall (z¼ 0) at which the fluid velocity vanishes.
In the presence of the external force g resulting from the forces and
toques of the immersed boundaries (flagellum and cell body), the solu-
tion (the linear velocity) of Eq. (10) may not be zero on the wall. The
idea of the method of image system is to define various fundamental
solutions (kernels), such as Stokeslet, potential dipole, rotlet, doublet,
quadrupole, and rotlet doublet, and to apply them to appropriate
forces and torques at the image points of the immersed boundaries so
that the flow at the wall is at rest. The image system method was intro-
duced by Cortez et al.51,52 in order to apply the no-slip wall conditions
for the linear and angular velocities. See Ref. 24 for the detailed deriva-
tion of the mathematical formulation and the numerical schemes
which were applied to a bacterial locomotion near the planar wall
z¼ 0.

The regularized Stokeslet formulation is a Lagrangian (mesh-
free) method which is based on the superposition of exact solutions of
Stokes equations when forces and moments are given as regularized
functions at material points in a fluid. Thus, we need to discretize the

flagellum and the cell body surface only without a mesh for the fluid
domain. In our simulations, the flagellum is reparametrized by arc
length before being used and is discretized with equal meshwidth
Ds ¼ 0:035lm along the curve. The cell body is represented by a tri-
angulated surface composed of Lagrangian markers with the average
area DAb ¼ 0:0041lm2 of the triangles, see Table I.

The accuracy of the Lagrangian method depends on the mesh
size and the regularization parameter �, and the error was proved and
validated numerically to be OðDs2=�3Þ þ OðDAb=�

3Þ þ Oð�Þ, where
the former two terms are the quadrature (discretization) error for Eq.
(11) and the latter one is the regularization error.55 Even though the
regularized Stokeslet formulation with the image system has no such
theory for the accuracy,51 it was validated by comparing the drag force
computed by the regularized image system with the analytical value of
drag force generated on a sphere moving near a wall in Ref. 51 and by
comparing the swimming motions of a bacteria near wall computed
using the present method and using a traditional target point idea for
a fixed wall in Ref. 24.

III. RESULTS AND DISCUSSION

We investigate the swimming motion of a single-flagellated bac-
terium placed near a planar wall in the absence of a shear flow first
and then in the presence of a shear flow. Figure 1 shows a schematic
diagram of our computational model in which h(t) is the distance of
the center of the cell body from the wall, and hðtÞ is the inclination
angle of the cell body from the wall z¼ 0 at time t. Table I shows the
computational and physical parameters for the prototypical bacterium
model used in this work;2,3 however, we vary the initial settings, such
as the height and the inclination angle, the geometrical properties of
the flagellum and the cell body, and the elastic and geometrical proper-
ties of the hook to see the dynamical effect of these variations. In the

TABLE I. Computational and physical parameters.

Parameters (symbol) Value

Fluid viscosity (l) 10�6 g/(lm� s)
Regularization parameter (�) 3Ds
Time step (Dt) 5:0� 10�8 s
Meshwidth for flagellum (Ds) 0:035 lm
Helical radius of filament (r0) 0:2 lm
Helical pitch of filament (p0) 2:0 lm
Number of helical turns (Nk) 3.5
Bending modulus of filament (a1¼ a2) 0.007 glm3= s2

Twist modulus of filament (a3) 0.007 glm3= s2

Shear modulus (b1¼ b2) 2.0 g lm= s2

Stretch modulus (b3) 2.0 glm= s2

Length of hook (Lh) 2Ds
Bending modulus of hook (ahook1 ¼ ahook2 ) 0.000 175 glm3= s2

Twist modulus of hook (ahook3 ) 0.007 glm3= s2

Rotation rate of motor (f) 100.0Hz
Cell body length (Lb) 2:0 lm
Cell body diameter (Db) 1:0 lm
Cell body density (m) 10�12 g/lm2

Average area of triangles (DAb) 0.0041lm2
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absence of the shear flow, we are particularly interested in the critical
values of some of these parameters which categorize the motions into
two groups, trapping motion and escaping motion, in which the cell
stays near the wall or moves away from the wall, respectively. In the
presence of the shear flow, we investigate how shear flow alters trajec-
tories of bacteria. We also investigate the effect of an additional side-
wall on the dynamical motion of bacteria under the shear flow.

A. Dynamical motion of a bacterium near a solid
planar wall

In the absence of physical barriers or chemical stimuli in fluid,
the CCW rotation of the motor induces the CCW rotation of the left-
handed flagellum that leads the cell to a straightforward run, while the
cell body counter-rotates to balance the torque. When the cell is placed
near a solid wall, the balance between the opposite torques on the cell
body and on the rotating flagellum together with its hydrodynamic
interaction with the solid wall deviates the swimming path from a
straight line to a CW circle when viewed toward the wall.18 This has
been experimentally and numerically observed.5–7,14,18,56,57 Moreover,

the balance between a hydrodynamic attraction toward the wall due to
the image singularities58 and the repelling force from the wall gives a
stable height h�, which may enhance the chance of the bacterial adhe-
sion to the surface to form biofilm.8–10

Figure 2 (Multimedia view) shows time evolution of locomotion
of the prototypical bacterium when the initial height and inclination
angle are set as h0 ¼ 3:0lm and h0 ¼ 0, respectively. Parameter val-
ues for this simulation are shown in Table I. Two main features are
observed from the swimming trajectory: the model organism swims
toward the wall and eventually stays at a certain height level as shown
in (a), and the bacterium draws a CW circular trajectory with an
approximately constant radius as shown in (b).

To describe the swimming pattern quantitatively, we measure the
height h(t) (c), the radius R(t) of curvature of the trajectory (d), the
forward swimming speed Vf ðtÞ (e), and the inclination angle hðtÞ (f)
as functions of time for various initial heights h0. Here the forward
swimming speed is defined as Vf ðtÞ ¼ VcmðtÞ � E3ðtÞ where E3ðtÞ is
the unit vector from the motor point to the opposite node of the cell
body, and the radius R(t) of the trajectory is defined as the reciprocal
of the local curvature of the trajectory at time t. The limiting values of

FIG. 2. Motion of a bacterium viewed from side (a) and viewed toward the wall (b). The cell, initially positioned with the inclination angle h0 ¼ 0 and the height h0 ¼ 3:0lm,
swims toward the wall and follows a circular trajectory. Parameter values for this simulation are displayed in Table I. The right column displays time evolutions of the height h(t)
(c), the radius R(t) of curvature of the trajectory (d), the forward swimming speed Vf ðtÞ (e), and the inclination angle hðtÞ (f) for various initial heights h0 of h0¼ 0.75lm (dot-
ted), 1.5lm (dash-dotted), 3.0lm (dashed), and 4.5lm (solid). Multimedia view: https://doi.org/10.1063/5.0082768.1
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these four measurements are shown to be independent of the initial
height with h0¼ 0.75, 1.5, 3.0, and 4.5 in micrometers, and the limit-
ing values are h� ¼ 0:824lm, R� ¼ 26:8lm, V�

f ¼ 13:83lm/s, and
h� ¼ 3:84�. When the initial height h0 is large (larger than 1.5lm),
the cell body moves downward and the inclination angle hðtÞ
decreases for some time with the negative sign, which implies that
the cell body points toward the wall. When the cell body gets close to
the wall, the angle hðtÞ turns to increase and becomes a positive
value, which indicates that the cell body points away from the wall.
Note that the limiting value h� is positive so as to balance the attrac-
tive force of near-wall bacteria and the lift force on the moving cell
body.14

Figure 3 shows a snapshot of a swimming bacterium together
with the fluid markers at t¼ 4.875 s (a), arrows representing the force
field F0ðtÞ of the flagellum acting on the cell body along the trajectory
of cell body center YcmðtÞ from t¼ 4.0 s to 5.375 s (b), and time evolu-
tion of two components of the force F0ðtÞ, F0ðtÞ � E3ðtÞ (solid line)
and F0ðtÞ � ðE3ðtÞ � e3Þ (dashed line) (c) in the case described in Figs.
2(a) and 2(b). Fluid markers start out near the bacterium and leave
trails that show their recent trajectories. We can observe that, when
viewed from the flagellum toward the cell body, the fluid markers near
the cell body rotate CW, while the fluid markers near the flagellum
rotate CCWmoving slightly backward.

The force F0ðtÞ � E3ðtÞ, which represents the forward directional
component of the force F0ðtÞ, gradually increases and then settles
down to a positive constant value, which induces a forward directional
motion of the bacterium as shown in Fig. 2(e). The force
F0ðtÞ � ðE3ðtÞ � e3Þ, where e3 is the positive z-directional unit vector,
represents the centripetal directional component of force F0ðtÞ along
the circular swimming trajectory. While the centripetal directional
force goes through a large-amplitude oscillation, it settles down to a
stable oscillation with a positive average value, which, together with
the positive forward directional force, induces a CW circular swim-
ming trajectory as shown in Fig. 2(b).

Figure 2 demonstrates that when a cell is initially placed close
enough to the wall and the major axis of the cell is parallel to the wall,
the cell is confined in a trapping zone. However, if bacteria are initially
placed far away from the wall and/or has a large positive inclination
angle, they might stay away from the trapping zone and reside in the
escaping zone. Figure 4 shows time evolutions of the height h(t) (a),
the radius R(t) of curvature of the trajectory (b), the forward swim-
ming speed Vf ðtÞ (c), and the inclination angle hðtÞ (d) as functions of
time for different combinations of initial height h0 and inclination
angle h0. The model bacterium is of the prototype, and the motor
rotates at f¼ 100Hz. When h0 ¼ 3:0 lm and h0 ¼ 10� (lines withþ)
or h0 ¼ 2:3 lm and h0 ¼ 15� (lines with �), the bacterium gets close

FIG. 3. A snapshot of a swimming bacterium together with the fluid markers at t¼ 4.875 s (a), arrows representing the force field F0ðtÞ of the flagellum acting on the cell body along
the trajectory of cell body center YcmðtÞ from t¼ 4.0 to 5.375 s (b), and time evolution of two components of the force F0ðtÞ, F0ðtÞ � E3ðtÞ (solid line) and F0ðtÞ � ðE3ðtÞ � e3Þ
(dashed line) (c) in the case described in Figs. 2(a) and 2(b). Fluid markers start out near the bacterium and leave trails that show their recent trajectories. The forces F0ðtÞ � E3ðtÞ
and F0ðtÞ � ðE3ðtÞ � e3Þ represent the forward directional component and the centripetal directional component, respectively, along the circular swimming trajectory.
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to the wall and moves into the trapping zone. However, when the
height increases to h0 ¼ 4:0lm with h0 ¼ 10� (lines with�) or when
the inclination increases to h0 ¼ 15� with h0 ¼ 3:0lm (lines with
^), the bacterium swims in the escaping zone, in which it moves far
away from the wall [see Fig. 4(a)] and draws a trajectory of a straight
line in contrast to the circular trajectory [see Fig. 4(b)].

Note that even though the bacterium in the trapping zone goes
through different paths during the transient time depending on h0 and
h0, all cases reach the same steady states as before. Note also that the
bacterium in the escaping zone reaches the same limiting value of the
forward velocity, V�

f ¼ 13:29lm/s, see Fig. 4(c). In fact, when a bacte-
rium is far away from the wall so that it feels no effect of the wall, it
moves in a uniform direction at a uniform speed which is smaller than
the speed of the bacterium near the wall, compare the limiting speeds in
(c). The inclination angles of the bacterium in the escaping zone con-
verge to different limiting values depending on h0 and h0, see Fig. 4(d).

Figure 5 displays a classification of dynamical motions of bacteria
into two regions: trapping (light gray) and escaping (white) zones. We
do not consider the bacterium with the initial inclination angle and
height in the dark gray region at the bottom, since its flagellum passes
through the wall, z¼ 0, in our initial setting. The markers “�” and “�”
represent the initial height and inclination angle which make the bac-
terium to escape and be trapped, respectively. By using these com-
puted data and applying the least squares approximation to the

function hðhÞ ¼ a
h�b þ c, we construct the curve separating the h–h

plane into trapping and escaping zones. We also draw some illustrative
trajectories of the bacterium which starts at various initial points (“	”).
The bacteria which start in the escaping zone go up higher with some
convergent inclination angles depending on h0 and h0, as indicated by
the dashed lines. The solid lines show that the swimming trajectories
of the bacterium which starts in the trapping zone are attracted to the
same steady state with h� ¼ 3:84

�
and h� ¼ 0:824lm (“$”).

B. Dependence on geometrical and elastic properties
of bacteria

We here investigate the dependence of the swimming patterns of
bacteria near wall upon various geometrical and elastic properties of
the helical flagellum, cell body, and hook. Note that, in Secs. III B, IIIC
and IIID, we express the forward swimming speed, radius of curvature
of the trajectory, height, and inclination angle in the dimensionless
form by scaling them with V�

0 ¼ 13:83lm/s, R�
0 ¼ 26:8lm, h�0

¼ 0:824lm, and h�0 ¼ 3:84
�
, respectively, which are the steady values

produced with the default parameter values given in Table I.
We first investigate how the geometrical parameters of the flagel-

lum affect its swimming course near a solid surface. We vary one
parameter among number of helical turns Nk, helical radius r0, and
helical pitch p0 of the flagellum, while the other parameters are held

FIG. 4. Time evolutions of the height h(t) (a), the radius R(t) of curvature of the trajectory (b), the forward swimming speed Vf ðtÞ (c), and the inclination angle hðtÞ (d) for differ-
ent combinations of the initial height h0 and initial inclination angle h0. When both h0 and h0 are smaller than some critical values, the bacterium gets close to the wall and
moves into the trapping zone. Otherwise, the bacterium goes far away from the wall and gets into the escaping zone.
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fixed at default values; r0 ¼ 0:2lm, p0 ¼ 2:0lm, and Nk ¼ 3:5. The
rest of the physical parameter values are the same as in Table I, and
the model bacterium is initially positioned with h0 ¼ 1:5 lm and
h0 ¼ 0. We have observed that the bacteria approach stable circular
swimming paths with constant heights for certain ranges of r0, p0, and
Nk. Figure 6 shows limiting values of stable circular trajectories
resulted from the changes in each of the three geometrical parameters:
Nk ¼ 2; 2.5, 3, 3.5, and 4 (a); r0=Db ¼ 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35
(b); and p0=Db ¼ 1.0, 1.5, 2.0, 2.5, and 3.0 (c), where Db ¼ 1:0lm is
the diameter of the cell body. For the change of each parameter, we
display normalized limiting values of forward swimming speed
V�
f =V

�
0 , radius R�=R�

0 of the circular trajectory, height h�=h�0, and
inclination angle h�=h�0.

As Nk increases and thus the flagellum gets longer, the normal-
ized forward velocity V�

f =V
�
0 and the radius R�=R�

0 increase; however,
the height h�=h�0 decreases, and the inclination angle h�=h�0 almost
does not change, as shown in (a). When the helical radius r0=Db and
pitch p0=Db increase independently, the swimming velocity V�

f =V
�
0

increases first and then decreases with the maximal values attained at
r0=Db ¼ 0:3 and pitch p0=Db ¼ 2:5, see the first row. The limiting
height h�=h�0 is shown to decrease when r0=Db 
 0:25 and p0=Db


 2:0 (third row). While the radius R�=R�
0 and the inclination angle

h�=h�0 do not change much when the pitch varies, they change notice-
ably when the helical radius varies, see the second and fourth rows.

FIG. 5. Classification of dynamical behaviors depending on the initial inclination
angle h0 and height h0: trapping (light gray) and escaping (white) zones. The
markers “�” and “�” represent the initial height and inclination angle which make
the bacterium to escape and be trapped, respectively. We do not consider the bac-
terium with the initial inclination angle and height in the dark gray region, since its
flagellum passes through the wall in the initial setting. The dashed lines (or solid
lines) represent some trajectories of bacteria which start at various initial points (	)
and illustrate that the bacteria starting from the escaping zone (or trapping zone)
stay within the same zone. The bacteria which start in the trapping zone are
attracted to the same steady state indicated by “$.”

FIG. 6. Limiting values of stable circular swimming motions resulted from changes in three geometrical parameters; number of helical turns Nk (a), helical radius r0=Db (b), and helical
pitch p0=Db (c). For the change of each parameter, four types of normalized limiting values are displayed; forward swimming speed V�

f =V
�
0 (first row), radius R�=R�

0 (second row) of
the circular trajectory, height h�=h�0 (third row), and inclination angle h

�=h�0 (fourth row). The filled circles represent the simulation results with the default parameter values.
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In particular, as the helical radius r0=Db increases, the limiting value of
the inclination angle h�=h�0 generally increases, whereas the limiting
radius R�=R�

0 of curvature of the trajectory tend to decrease, which
was reported in Ref. 18.

The swimming pattern of bacteria near a wall is also dependent
on the shape of the cell body. To see this, we start with the prototypical
bacterium, which takes the parameter values given in Table I, and vary
only the length of the cell body Lb with the diameter being fixed at
Db ¼ 1:0lm. It is known that, as single-flagellated cells grow, their
cell bodies elongate the length while keeping the body width the same
and thus the aspect ratio Lb=Db increases.14 Figure 7(a) (Multimedia
view) shows trajectories of bacteria with five different aspect ratios:
Lb=Db ¼ 1:5, 2.0, 2.5, 3.0, and 3.5. All the bacteria are initially placed
at the same location (0,0,1.5lm) indicated by the filled circle, and
their configurations are captured at t¼ 12.5 s, which are scaled up by
a factor of three for a clearer view. As Lb=Db increases, cells draw
circular paths with larger radii, stay farther away from the wall, and
swim slower, see Figs. 7(b)–7(d). When the aspect ratio is sufficiently
large, for example, in the case of Lb=Db ¼ 3:5, the cell escapes from
the trapping zone and keeps moving away from the wall in a linear
manner. The threshold of the aspect ratio that separates the escaping
mode from the trapping one is obtained approximately at
Lb=Db ¼ 3:45, see the vertical dotted line in the second column. As
Lb=Db increases, the limiting inclination angle h�=h�0 in the trapping
zone increases first and then decreases with the maximal value
attained at Lb=Db ¼ 3:0. These results are consistent with those in the
previous studies.5,14

It is reported that the bacteria with a longer flagellum prone to
stay near a wall unlike the bacteria with a shorter flagellum, which

suggests the existence of a threshold of helical length that separates the
swimming motions into trapping mode and escaping mode.14,23 In
order to investigate the cell’s modes of motility depending on the geo-
metrical properties, we consider bacteria with various helical proper-
ties and cell body lengths. Figure 8 shows the critical numbers of
helical turns Nk (upper panels) and the corresponding curvilinear
lengths of the flagellum lf normalized by Db (lower panels) as functions
of normalized radius r0=Db (a) and (d), helical pitch p0=Db (b) and
(e), and aspect ratio Lb=Db (c) and (f). The region above each curve
indicates the trapping zone, i.e., when bacteria have a larger number of
helical turns and thus a longer length of the flagellum than those given
on the curve, they stay in the trapping zone. The filled circles represent
the simulation results with the default values. The critical number of
helical turns and the flagellum length are inversely proportional to the
pitch shown in (b) and (e) and is proportional to the aspect ratio
shown in (c) and (f), see also Ref. 24. It is interesting to see from (a)
that the critical number of helical turns is almost independent of the
helical radius; however, the critical value of curvilinear length of the
flagellum increases as the helical radius increases for the model organ-
ism to stay in the trapping zone.

The swimming dynamics of bacteria can also be influenced by
the geometrical and elastic properties of the hook. So far, we have used
the straight hook with the length Lh ¼ 2Ds ¼ 0:07lm and the bend-
ing modulus ahook1 ¼ahook2 ¼0.000 175 g lm3= s2, which is 40 times
smaller than that of the flagellum, i.e., ahook1 ¼a1=40. The twist moduli
of the hook and the flagellum remain the same. Here, we investigate
the dynamics of bacteria with (1) various lengths of the hook from D
to 5D s with the bending modulus of the hook being fixed at ahook1 and
with (2) various bending moduli ahook1 of the hook from a1=120 to a1

FIG. 7. Trajectories (a) of bacteria with
five different aspect ratios, i.e., Lb=Db

¼ 1:5, 2.0, 2.5, 3.0, and 3.5, where the
diameter of the body is fixed at Db
¼ 1:0lm. All bacteria are initially placed
at the same location (0, 0, and 1.5 lm)
indicated by the filled circle, and the final
positions of cells are captured at
t¼ 12.5 s. Normalized limiting values of
radius R�=R�

0 of curvature of the trajec-
tory (b), height h�=h�0 (c), forward swim-
ming speed V�

f =V
�
0 (d), and inclination

angle h�=h�0 (e) are drawn as functions of
aspect ratio Lb=Db. The vertical dotted
line in the second column indicates the
threshold of the aspect ratio that sepa-
rates trapping (left side) from escaping
(right side) motions. Multimedia view:
https://doi.org/10.1063/5.0082768.2
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while the length of the hook being fixed at 2D s. For efficient forward
bacterial swimming, the hook should be as straight as possible to align
well the body axis with the flagellum axis. Even though the hook stiff-
ness is determined by the bending modulus ahook1 , its proper function
can be affected by the motor torque and the hook length. Thus, we
consider the hook stiffness relative to the product of the motor torque
sm with the hook length Lh, i.e., ahook1 =ðsmLhÞ, which is called the rela-
tive hook stiffness.15

Figure 9 displays normalized limiting values of height h�=h�0 (a)
and (b), radius R�=R�

0 of curvature of the trajectory (c) and (d), for-
ward swimming speed V�

f =V
�
0 (e) and (f), and inclination angle h�=h�0

(g) and (h) as functions of the relative hook stiffness, ahook1 =ðsmLhÞ,
which is calculated with various bending moduli ahook1 while Lh being
fixed (left panels) and with various lengths of the hook Lh while ahook1
being fixed (right panels). The filled circles represent the simulation
results with the default values. Since the rotation rate of the motor is a
constant at f¼ 100Hz, the torque sm generated at the motor point
Xð0; tÞ, which is computed by sm ¼ nð0; tÞDs, is approximately a
constant value of 0.0021 g lm2= s2 in time and in all the cases consid-
ered here. We can observe that the limiting values in Fig. 9 behave in
almost the same fashion as the relative hook stiffness varies even
though the bending modulus of hook varies (left panels) or the length
of hook varies (right panels). It is shown that the limiting values of the
height h�=h�0, the circular radius R�=R�

0, and the forward velocity
V�
f =V

�
0 increase at first and then level off upon increasing relative

hook stiffness. The inclination angle h�=h�0 increases first and then
decreases with the maximal value at ahook1 =ðsmLhÞ ¼ 0:69 (g) and (h).

Note that, as the relative hook stiffness ahook1 =ðsmLhÞ decreases
below 1.389, the bacterium swims more slowly (e) and (f) and more
closely to the wall (a) and (b). This is related to a malfunction of the
hook which is too flexible to keep the alignment of the flagellum axis
to the body axis. To see this, we display in Fig. 10(a) the angle H

between these two axes as functions of time for three different values
of ahook1 =ðsmLhÞ ¼ 1:389 (line with “þ”), 0.557 (line with “�”), and
0.463 (line with “�”). The alignment angle H converges to 3.14

�
and

7.27
�
for the cases with ahook1 =ðsmLhÞ ¼ 1:389 and 0.557, respectively,

i.e., the limiting alignment angle increases as the relative hook stiffness
decreases.15 A further decrement of the relative hook stiffness by low-
ering bending modulus or raising hook length increases the alignment
angle further to induce a buckling instability in which the motor twist
is not well transmitted to the flagellum.23 Figure 10(c) shows the con-
figurations of the swimming bacterium with ahook1 =ðsmLhÞ ¼ 0:463 at
some selected times and illustrates the buckling of the flagellum with
the alignment angle being larger than 100

�
as shown in (a).

After the time shown in Fig. 10(c), the simulation stops for the
case with ahook1 =ðsmLhÞ ¼ 0:463, which was also reported in Ref. 15.
The reason for the stopping of simulation is that, together with the
buckling instability, the bacterium goes down to and finally contact
with the wall. Figure 10(b) shows time evolution of the minimum dis-
tance dgap of the cell body from the wall normalized by the regularized
parameter � ¼ 0:105 lm.When ahook1 =ðsmLhÞ ¼ 1:389 and 0.557, the
gap converges to constant values which are smaller when the hook
stiffness ahook1 =ðsmLhÞ is smaller. The gap decreases to be almost 0
when ahook1 =ðsmLhÞ ¼ 0:463, which might induce the stopping of
simulation.

Note also that the limiting values of h�=h�0; R
�=R�

0; V
�
f =V

�
0

change only slightly even though the relative hook stiffness
ahook1 =ðsmLhÞ changes from 1.389 to 55.6, as shown in Fig. 9. We have
found that the alignment angle decreases slightly as the hook stiffness
increases in this range of the hook stiffness (data not shown here). The
case with ahook1 =ðsmLhÞ ¼ 55:6 can be considered as a model without
a hook which was used in Ref. 24. In the model used in Ref. 15, how-
ever, the bacterium does not swim efficiently due to a large oscillatory
alignment angle when ahook1 =ðsmLhÞ 
 2. The difference is that the

FIG. 8. Critical numbers of helical turns Nk (a)–(c) and the corresponding curvilinear lengths of the flagellum lf normalized by Db (d)–(f) as functions of normalized helical
radius r0=Db (a) and (d), helical pitch p0=Db (b) and (e), and aspect ratio Lb=Db (c) and (f). Each curve separates the trapping zone from the escaping zone, and the filled
circles represent the simulation results with the default values.
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FIG. 9. Normalized limiting values of the height h�=h�0 (a) and (b), the radius R
�=R�

0 of curvature of the trajectory (c) and (d), the forward swimming speed V
�
f =V

�
0 (e) and (f),

and the inclination angle h�=h�0 (g) and (h) as functions of the relative hook stiffness, a
hook
1 =ðsmLhÞ, which is calculated with various bending moduli ahook1 while Lh being fixed

(left panels) and with various lengths of the hook Lh while ahook1 being fixed (right panels). The motor torque is sm ¼ 0:0021 g lm2= s2, and the filled circles represent the sim-
ulation results with the default values.

FIG. 10. Alignment angle H (a) between the flagellum axis and the body axis, the minimum distance dgap (b) of the cell body from the wall normalized by the regularized
parameter � ¼ 0:105 lm as functions of time for three different values of ahook1 =ðsmLhÞ ¼ 1:389 (line with “þ”), 0.557 (line with “�”), and 0.463 (line with “�”). The configura-
tions (c) of the swimming bacterium with ahook1 =ðsmLhÞ ¼ 0:463 at some selected times indicate that a buckling instability occurs, in which case, the alignment angle H gets
larger than 100

�
and the gap dgap=� becomes almost 0.
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hook and flagellum are both flexible in our model, while the flagellum
is rigid with a flexible hook in Ref. 15.

C. Bacterial swimming dynamics in shear flow

It has been experimentally observed that a background uniform
flow can alter the trajectories of bacteria near wall.35–37 The back-
ground uniform flow is in fact a shear flow in the presence of a fixed
planar wall, z¼ 0, and it can be applied by imposing on the whole
domain the background velocity field of the form

ushearðxÞ ¼ cðz; 0; 0Þ; (20)

where z is the z� coordinate (height) of the point x, and c is a con-
stant representing the shear rate. This positive x-directional flow
ushearðxÞ and the associated angular velocity wshearðxÞ ¼ 1

2r�ushear ¼ ð0; c=2; 0Þ are simply added to the velocities of the
immersed boundaries, Eqs. (13) and (15), respectively.

Whereas a motile bacterium near a surface exhibits a circular
clockwise trajectory in the absence of flow, under shear flow and no-
slip boundary conditions at the surface, the bacterial locomotion
changes by flagellar propulsion against shear flow. Figure 11
(Multimedia view) illustrates swimming trajectories for different val-
ues of the shear rate and demonstrates that there exists a threshold of
the shear rate, cc, approximately 9.25/s that divides the swimming
paths into two groups: periodic skewed coil paths and linear paths in
the long run. Each trajectory accompanies four bacterial configura-
tions obtained at the selected times t¼ 0, 48 s, 51 s, and 54 s for c � 9/s
and at t¼ 0, 24, 27, and 30 s for c 
 10/s.

For the values of c < cc, the bacteria obliquely draw periodic coil
trajectories and go in the direction of the shear flow ushearðxÞ (or e1)

and also in the negative direction of the angular velocity wshearðxÞ (or
�e2), as observed in Refs. 35–37. These coil trajectories of the bacteria
under a shear flow result in the periodic behavior of swimming prop-
erties as shown in Fig. 12, which may result from the relation between
the swimming direction of the bacteria and the shear flow direction.
Figure 12(a) shows time evolution of the inner product of the flow
direction e1 and the forward swimming direction E3 (the unit vector
from the motor point to the opposite node of the cell body) when the
shear rate is c ¼ 8:0/s. The positive value of E3 � e1 (gray regions)
means that the bacterium swims in accord with the background flow,
and its duration is shorter than that of the negative value (white
regions) in which the bacterium swims against the background flow.
The in-plane angle W in (b), which can be computed by
W ¼ cos�1ðE3 � e1Þ, varies periodically in time from�180� to 180�.

Figure 12 displays the normalized values of the height hðtÞ=h�0
(c), the radius RðtÞ=R�

0 of curvature of the trajectory (d), and the incli-
nation angle hðtÞ=h�0 (e), and the forward swimming speed Vf ðtÞ=V�

0
(f) as functions of time. The height hðtÞ=h�0 and the inclination angle
hðtÞ=h�0 are in phase each other with a small phase difference but they
both are in anti-phase with E3 � e1. As the cell body gets well aligned
with the flow (i.e., as E3 � e1 increases), the height and inclination angle
decrease, that is, the bacterium goes down with a decreasing inclina-
tion angle. As the cell body goes against the flow (i.e., as E3 � e1
decreases), the opposite happens. The circular radius RðtÞ=R�

0, which
measures the reciprocal of the local curvature of the swimming trajec-
tory, is generally larger when E3 � e1 is positive than when it is nega-
tive. However, a large jump of the radius occurs right after the
transition from the positive to negative values of E3 � e1, which does
not appear when c < 8/s (data not shown here). The forward swim-
ming speed Vf ðtÞ=V�

0 is exactly in the same phase as E3 � e1, which
can reasonably be expected, since the forward swimming speed
becomes larger as the cell body gets well aligned with the flow.

The bacterial swimming dynamics is periodic under a shear flow
with c < cc as shown in Figs. 11 and 12 in which the period of all
curves is approximately T¼ 15.65 s when c¼ 8/s. Figure 13 shows the
normalized period T=T0 (a) and the angle ~U (b) of displacement vec-
tor of the bacteria as functions of shear rate for c < cc. The period T is
computed using the time evolution of E3 � e1, and T0 ¼ 12:0 s is the
period of the circular trajectory of the bacterium without shear. The
angle ~U is the angle of the displacement vector of the bacterium over a
single period from the flow direction, e1. The negative angle implies
that the bacterium averagely goes to the negative y-direction, �e2. As
the shear rate increases, the period T=T0 increases but the angle ~U of
the swimming direction decreases, i.e., the bacterium takes more time
to draw one turn of the coil trajectory and moves more in the negative
direction of the background angular velocity, i.e.,�e2.

For the values of c > cc, the fluid shear dominates and the behav-
ior of the bacterium is not periodic anymore. The bacterium under a
high shear flow initially tries to make a circular trajectory; however,
the shear flow is so strong that the bacterium eventually swims linearly
in the direction of the shear flow (e1) and in the negative direction of
background angular velocity (�e2), see Fig. 11. Note that three config-
urations at times t¼ 24 s, 27 s, and 30 s for each shear rate c 
 10/s
are almost parallel to one another with a certain translational distance
which increases upon the increasing shear rate.

Figures 14(a) and 14(b) show time evolutions of the normalized
height hðtÞ=h�0 (a) and two angles UðtÞ andWðtÞ (b) representing the

FIG. 11. Swimming trajectories of bacteria under shear flow. The shear rate is
given at c¼ 8/s, 9/s, 10/s, 15/s, 20/s, and 25/s. For each trajectory, configurations
of the bacterium are captured at t¼ 0, 48, 51, and 54 s for c � 9:0/s and at t¼ 0,
24, 27, and 30 s for c 
 10:0/s, and their size is enlarged by 8 times for a better
visualization. The overall swimming direction of all the bacteria is in the direction of
e1 and �e2; however, while the bacterium creates a coil trajectory when c � 9/s, it
draws an almost straight trajectory when c 
 10/s. The inset displays the angle W
of the forward direction of the cell and the angle U of the swimming trajectory, both
from the flow direction e1. Multimedia view: https://doi.org/10.1063/5.0082768.3
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swimming direction of the bacterium when c¼ 10/s. After the bacte-
rium goes through transient movement, the cell stays approximately at
a constant height (a) and moves unidirectionally between e1 and �e2
with the cell pointing to a steady direction, which is indicated by the
constantly negative values of UðtÞ andWðtÞ in (b).

To see more quantitatively the rheotaxis of the bacterium under a
shear flow, we draw in Figs. 14(c) and 14(d) two velocity components
of the cell body in the transverse direction vcm ¼ Vcm � e2 (c) and in
the flow direction ucm ¼ Vcm � e1 (d), which are normalized by the
swimming speed V�

0 and the instantaneous background shear flow

FIG. 12. Time evolutions of the inner product of e1 and E3 (a), the in-plane angleWðtÞ (b), the normalized values of the height hðtÞ=h�0 (c), the radius RðtÞ=R�
0 (d), the inclina-

tion angle hðtÞ=h�0 (e), and the forward swimming speed Vf ðtÞ=V�
0 (f) when c ¼ 8:0/s. The positive (gray regions) and negative (white regions) values of E3 � e1, respectively,

represent that the bacterium swims in accord with and against the background flow. The period of all curves is approximately 15.65 s.

FIG. 13. Normalized period T=T0 (a) and angle ~U (b) of displacement vector of the bacterium as functions of shear rate. The period T is computed using the time evolution of
E3 � e1, and T0 ¼ 12:0 s is the period of the circular trajectory of the bacterium without shear flow. The angle ~U of the swimming direction is the angle of the displacement vec-
tor of the bacterium over a single period from the flow direction, e1. As the shear c increases, the period T=T0 increases but the angle ~U of the swimming direction decreases.
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chðtÞ, respectively. The shear rates are c¼ 8/s (dashed line) and 10/s
(solid line). The negative (positive) value of vcmðtÞ=V�

0 indicates that
the organism swims to the negative (positive) direction of background
angular velocity. When ucmðtÞ=chðtÞ < 1, the bacterium swims
against the background flow with the instantaneous velocity chðtÞ.
When c¼ 8/s (c < cc), vcmðtÞ=V�

0 oscillates from –1 to 1, and
ucmðtÞ=chðtÞ varies periodically crossing the value 1. When c¼ 10/s
(c > cc), after some transient time, vcmðtÞ=V�

0 converges to a nega-
tive value and ucmðtÞ=chðtÞ converges to a constant value which is
less 1.

Figure 14(e) shows limiting values of the height h�=h�0 (line with
“þ”), (line with “�”), and u�cm=ðch�Þ (line with “�”) as functions of
the shear rate. When c < cc, since these quantities oscillate periodi-
cally in time as shown in Figs. 12(c), 14(c), and 14(d), we average
them over one period of time. As the background shear flow gets
stronger, the limiting height increases first and then decreases with the
maximal value at c¼ 10/s. The speed v�cm=V

�
0 in the transverse direc-

tion is all less than 0, decreasing with the increasing shear rate.34 The
flow-directional speed u�cm=ðch�Þ is all less than 1 and decreases first
and then increases with the minimal value at c¼ 10/s as the shear rate
increases.34 We can conclude from (e) that the organism under a shear
flow swims to the negative direction of background angular velocity

and against the background flow. Notice the jumps on the curves in
Fig. 14(e) which indicate the separation of the swimming modes
between periodic skewed coil and linear paths. Note also that, when
c > 15/s, v�cm=V

�
0 , and u�cm=ðch�Þ are close to –1 and 1, respectively.

This implies that the bacterium does not only swim actively in the
direction �e2 with its body pointing to �e2 but also drifts passively
with the shear flow, see Fig. 11.

Figure 14(f) shows the limiting values of the angleU� of the swim-
ming direction (line with “h”) and the in-plane angle W� (line with
“�”) as functions of shear rate. When c < cc; UðtÞ andWðtÞ vary peri-
odically from �180� to 180�, their average values over one period of
time are almost 0. In this case, we draw ~U in Fig. 13(b) instead of U�.
As the shear flow gets stronger, while the angle U� of the swimming
direction gets lower first and then higher with the minimal value at
c¼ 10/s, the in-plane angle W� increases. It is interesting to see that,
when c¼ 10/s, U� andW� are close to �90� (dotted line) and�150�,
respectively. This indicates that the bacterium swims in the direction
close to �e2 with the cell body pointing close to the direction of �e1,
see Fig. 11. Figures 14(e) and 14(f) demonstrate that, under a back-
ground shear flow, the bacterium tends to move in the direction of the
shear flow (e1) and in the negative direction (�e2) of the background
angular velocity, which is consistent with the results in Refs. 34–37.

FIG. 14. Time evolutions of the normalized height hðtÞ=h�0 (a), and two angles UðtÞ and WðtÞ (b) when c ¼ 10/s. The velocity components of the cell body in the transverse
direction vcm ¼ Vcm � e2 (c) and in the flow direction ucm ¼ Vcm � e1 (d), normalized by the swimming speed V�

0 and the instantaneous shear flow chðtÞ, respectively, when
c¼ 8/s (dashed line) and 10/s (solid line). The normalized limiting values of the height h�=h�0 (line with “þ”), the two velocity components v�cm=V

�
0 (line with “�”) and

u�cm=ðch�Þ (line with “�”) of the cell body (e), and the two angles U� (line with “h”) and W� (line with “�”) (f) as functions of shear rate.
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D. Upstreammotility

We have observed that, when bacteria near a planar wall swim in
a shear flow, they move in the direction of the shear flow and in the
negative (or positive only for the case with Lb=Db ¼ 1:5) direction of
the background angular velocity. The experiments in Refs. 35–37,
however, showed that some bacteria swim upstream in a flow channel,
i.e., in the opposite direction of the flow. A possible reason for the
upstream motility is the presence of physical barriers, such as side
walls and some bumps on the floor around which the downstream
velocity becomes small or even negative, which allows the organisms
to swim against the mainstream flow.

In order to demonstrate this possibility, we construct a vertical side-
wall using the target point idea. In the target point method, we impose
the no-slip condition on a part of the plane y ¼ yside by laying out an
array of target points. We define the vertical sidewall as W0ðq; rÞ
¼ ðq; yside; rÞ for 0 � q � 14 and 0 � r � 4:2 lm, and then the target
points are defined by translating W0ðq; rÞ in the x-direction by the x-
coordinate of one chosen point Xðs0; tÞ of the flagellum, i.e., the target
points can be written as Wðq; r; tÞ ¼ W0ðq; rÞ þ ðXðs0; tÞ � e1Þ e1, see
the illustrative vertical (yellow) planes in Fig. 15(b). Now letting
Xwðq; r; tÞ be the corresponding moving boundary points, we impose
the no-slip condition on the target wall by applying to the moving
boundaryXwðq; r; tÞ the following force:

Fwðq; r; tÞ ¼ c0ðWðq; r; tÞ � Xwðq; r; tÞÞ; (21)

where c0 is a large constant and Xwðq; r; tÞ moves at the local fluid
velocity. This provides a feedback mechanism for computing the
boundary force needed to enforce the moving boundary points
Xwðq; r; tÞ to stay close to the target pointsWðq; r; tÞ.

One might ask why we use a moving target wall instead of a large
size of a fixed target wall. This is because a large size of a target wall
requires to increase the number of target points (or immersed bound-
ary points) to describe the wall with a reasonable resolution, which
would make the computation for a realistic bacterial model impossible.
The computational cost of our numerical method isOðN2Þ whereN is
the number of immersed boundary points. Our computational model
uses about 1000 immersed boundary points for the bacterium (cell
body and flagellum) and 3000 target points for the small size of the
moving wall. Thus, simulations of a bacterial model together with the
small moving sidewall take about 16 times more computational time
than the model without the sidewall.

Since the existence of the vertical sidewall in space requires the no-
slip boundary condition, we modify the shear flow ushearðxÞ in Eq. (20)
so that the background velocity decreases to be zero at the sidewall
y ¼ yside. This is done by applying the shear flow of the following form:

~ushearðxÞ ¼ cðz gðyÞ; 0; 0Þ;
where

gðyÞ ¼ 1� expð�ðy � ysideÞ=10lmÞ: (22)

This implies that the modified shear flow ~ushearðxÞ is 0 at y ¼ yside and
increases as y increases to be close to the original shear flow ushearðxÞ
in Eq. (20). Figure 15(a) shows contours of the x-component of the
shear flow ~ushearðxÞ on a part of the imaginary (gray) plane in (b).
The shear flow is 0 on the floor z¼ 0 and on the vertical sidewall
y ¼ �50lm and increases with z and y, see the flow intensity values
on the contours in (a). This shear flow and the background angular
velocity field, which is computed by ~w shear ¼ 1

2r� ~ushear, are applied
on the whole domain.

FIG. 15. Contours (a) of the x-component of shear flow drawn on a part of the imaginary (gray) plane in (b). Trajectory of a bacterium and its configurations are drawn at differ-
ent times when there is a moving vertical sidewall (yellow planes) at y ¼ �50lm and a background shear flow is applied on the whole domain.
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Finally, in order to prevent the penetration of the immersed
boundaries (cell body and flagellum) through the sidewall, we use the
repulsive force ~f

rðs; tÞ, which is defined as59–61

~f
rðs; tÞ ¼ cr max 1:0� ðX2ðs; tÞ � ysideÞ

Dmin
; 0

� �
e2; (23)

where cr is a stiffness constant, e2 is the positive y-directional unit vec-
tor, X2ðs; tÞ is the second component of the immersed boundary
Xðs; tÞ (flagellum and cell body), and Dmin is the minimum distance
allowed from the sidewall to the immersed boundary. The equation
says that, only when the distance from Xðs; tÞ to the wall y ¼ yside is
less than the threshold Dmin, the y-directional repulsive force ~f

rðs; tÞ
appears to act on the immersed boundary. We use Dmin ¼ 0:2lm
and cr¼ 100 g lm= s2.

Figure 16 (Multimedia view) shows swimming trajectories of
four bacteria and their configurations at some selected times viewed
toward the bottom wall. Each trajectory corresponds to a case with a
different shear rate which is given at c¼ 4/s (dotted line), 8/s (dash-
dotted line), 10/s (dashed line), and 15/s (solid line), and the vertical
sidewall is located at y ¼ �50lm. When there is no sidewall, the
organism draws a periodic coiled trajectory for small shear rates and a
unidirectional one for large shear rates, as shown in Fig. 11. When
there is a vertical sidewall together with the horizontal bottom wall,
the model organism gets close to the sidewall, turning to the opposite
direction of the shear flow (�e1), and swims upstream, remaining
close to the sidewall independent of the shear rate.

Figures 17(a) and 17(b) show time evolutions of the normalized
height hðtÞ=h�0 (a) and the normalized distance of the cell body center
from the sidewall, ðycm � ysideÞ=Db (b), for the four different shear
rates: c¼ 4/s (dotted line), 8/s (dash-dotted line), 10/s (dashed line),
and 15/s (solid line). While the bacteria go down initially to the floor
and then go up a little to reach steady states in an oscillatory manner,

they also approach the vertical sidewall initially and then oscillate
around at a certain constant distance from the sidewall.

The changes of the height and the distance from the sidewall of
the cell alter the magnitude of background flow, which is given in Eq.
(22). Figures 17(c) and 17(d) display the x-component of normalized
background shear flow at the body center, ð~ushearðYcmðtÞÞ � e1Þ=V�

0
(c), and the x-component of the normalized velocity of the cell body,
ðVcmðtÞ � e1Þ=V�

0 (d), as functions of time for the four different shear
rates. The background flow goes down and up initially and then
decreases again to reach a steady state in an oscillatory manner. The x-
directional velocity of the cell body begins at a positive value and
decreases gradually to be negative, which indicates that the bacteria
swim upstream. Even though the background shear flow decreases
near the floor and near the sidewall, it is still positive, as shown in (c).
However, the bacteria overcome and swim against the background
downstream flow. Note that ðVcmðtÞ � e1Þ=V�

0 < �1 in the steady
state in (d), which implies that the organisms swim upstream at a
higher speed when there is a sidewall than when they swim without a
sidewall.

We have found that the bacteria do not swim upstream in a shear
flow with high shear rates. Figure 18 shows two swimming trajectories
with some configurations of the bacteria viewed toward the floor at
some chosen times. The shear rates are given at c¼ 25/s (dash-dotted
line), 30/s (dashed line), and the vertical sidewall is located at
y ¼ �50l m. The bacteria swim rightward ð�e2Þ, approach the side-
wall, and turn into the upstream direction. After they move against the
background downstream flow for some time, the shear flow forces
them to turn again into and swim in the downstream direction. Note
that the bacteria swim straight in the same direction as the background
flow during the downstream swimming. This is because the bacteria
escape from the region that is affected by both the bottom and side
walls.

IV. SUMMARY AND CONCLUSIONS

Swimming environment is important to bacterial locomotion. In
this work, we present a more realistic model of a polarly flagellated
bacterium and study the effect of different environmental conditions
on the dynamical motion of bacteria. We consider three environmen-
tal conditions in an accumulative manner. The first condition is that
there exists a horizontal rigid plane above which bacteria swim in the
absence of a shear flow. The second condition is that bacteria are
placed near the horizontal plane and swim under a shear flow. The
last condition is that on top of the second condition there also exists a
vertical plane (sidewall) that blocks the bacterial swimming through
the side. Swimming behavior of bacteria changes as the environmental
condition changes.

First, when the bacteria swim near the wall in the absence of
shear flow, there are two types of motility—trapping and escaping
motions. The trapping motion is when the bacteria stay near the sur-
face, while the escaping motion is when the bacteria move away from
the surface. In the trapping mode, the bacteria draw stable circular tra-
jectories in which the height, the radius of curvature of the trajectory,
the forward swimming speed, and the inclination angle converge to
certain constant values, respectively. In the escaping mode, the bacteria
escape from the trapping zone and swim freely in a linear manner and
eventually there is no effect of the wall on the bacterial locomotion.
These two modes are determined by the initial settings of the model

FIG. 16. Swimming trajectories and configurations of bacteria viewed toward the
bottom wall at some chosen times. The shear rate is given at c¼ 4/s (dotted line),
8/s (dash-dotted line), 10/s (dashed line), and 15/s (solid line), and the vertical side-
wall is located at y ¼ �50 lm. Each bacterium gets close to the sidewall, turns
into the opposite direction of the shear flow (�e1), and swims upstream staying
close to the sidewall independent of the shear rate. Multimedia view: https://doi.org/
10.1063/5.0082768.4
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organism, such as the height of bacteria from the wall and the inclination
angle of the cell body, helical properties of the flagellum, the cell body
length, and the hook’s properties, such as the bending modulus and the
hook length. Our simulation results clearly show that the swimming
motion of bacteria is sensitive to various physical parameters.

Second, when the bacterium swims near the wall and it is under
the shear flow, by using the default parameters for the model bacte-
rium, we find that there exist two types of trajectories, which are deter-
mined by the strength of the shear flow. For low shear rate, the

flagellar propulsive force is strong enough to push the bacterium
against the fluid shear, and thus the bacterium draws a periodic coil
trajectory while it swims rightward when viewed toward the down-
stream direction. It is shown that the period of the coil trajectory
increases monotonically with the increasing shear rate. This implies
that, as the fluid shear gets strong, the flagellar propulsive force
becomes relatively weak, and the bacterium takes longer to turn the
swimming direction to draw a coil trajectory. For high shear rate, the
bacterium draws a linear trajectory eventually, moving rightward.
Variations of geometrical properties of the bacterium can also change
the overall swimming direction. For example, the bacterium with a
smaller cell body length swims leftward rather than rightward when
viewed toward the downstream direction.

Finally, when the bacterium is bounded by the horizontal plane
together with a vertical plane and under a shear flow, we find that
there exists a threshold of the shear rate that separates the upstream
motility from the downstream motility. The upstream motility can be
observed only when the shear rate is smaller than the critical shear
rate, whereas the bacterium takes a downstream motility in the long
run for larger shear rate. The upstream motility is important to study
the bacterial transport in narrow passages, such as a bloodstream. Our
simulations demonstrate that the passage enclosed with the horizontal
and vertical planes offers the possibility of the upstream motility as
long as the shear rate meets a proper condition.

FIG. 17. Time evolutions of the normalized height hðtÞ=h�0 (a), the normalized distance between the cell body center and the sidewall, ðycm � ysideÞ=Db (b), the x-component
of normalized background shear flow at the body center, ð~ushearðYcmðtÞÞ � e1Þ=V�

0 (c), and the x-component of the normalized velocity of the cell body, ðVcmðtÞ � e1Þ=V�
0 (d),

for four different shear rates: c¼ 4/s (dotted line), 8/s (dash-dotted line), 10/s (dashed line), and 15/s (solid line).

FIG. 18. Swimming trajectories and some configurations of bacteria viewed toward
the floor at some chosen times. The shear rates are given at c¼ 25/s (dash-dotted
line), 30/s (dashed line), and the vertical sidewall is located at y ¼ �50lm. The
bacteria swim rightward ð�e2Þ, approach the sidewall, and turn to the upstream
direction. The shear flow then forces them to turn again into and swim in the down-
stream direction.
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There are many ways to improve the present model to be in
more realistic settings, which shall be the subject of future work. With
regard to the surrounding physical environment, although our model
drives an upstream motility by forming a L-shaped wall with horizon-
tal and vertical planes, bacterial movement may be altered if a bacte-
rium is enclosed by a circular tube representing urinary tracts or blood
vessels. We plan to develop an image method in a cylindrical tube to
study the cell motility in the bloodstream. With regard to cell–cell
interactions, cells communicate one another through quorum sensing
which is a process of gene regulation in response to fluctuations in
cell-population density. Quorum sensing is one of the important fac-
tors in biofilm formation, which can be incorporated into our model
to study swimming behavior of bacteria.
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