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Preface

Kinetic theory is a rapidly developing field of research, not only because of its
intrinsic theoretical interests, but also because of its applications to many problems
in science and technology.

The main interest of kinetic models is the possibility of studying collective
phenomena for systems composed of a large number of elementary particles
(for example, gas molecules or dust particles) by going beyond the microscopic
approach. The description of these systems is based on one or more distribution
functions (or number densities) in phase space (or in extended phase spaces).

In the case of collisional models, the effect of binary interactions between
particles is treated from a statistical point of view. However, each such interaction is
viewed as a simple collision (or scattering) event, and its description at microscopic
scale involves only a few fundamental laws (such as the conservation of momentum,
or of kinetic energy in the case of elastic collisions). For this reason, kinetic models
depend much less on phenomenological laws than most models of continuum
mechanics. In particular, the main macroscopic collective features of the system
can be rigorously deduced by means of an appropriate limiting procedure on an ab
initio kinetic model, rather than heuristically introduced in the macroscopic model.

Another important class of kinetic equations does not model binary collisions,
but rather describes the interaction between particles through the mean field gener-
ated by the whole system and is well adapted for handling long-range interactions.

Because of the quality of research in kinetic theory and its future developments,
the National Italian Institute of Higher Mathematics (INdAM) funded the workshop
“Recent Advances in Kinetic Equations and Applications", which was held in
Rome (Italy), from 11 to 15 November 2019. This volume collects several original
contributions written by invited speakers at the workshop.

Anton Arnold, Jean Dolbeault, Christian Schmeiser and Tobias Wöhrer discuss,
in their chapter, two L2 hypocoercivity methods based on Fourier decomposition
and mode-by-mode estimates for dynamical systems. In particular, their theory
allows to study situations involving both a degenerate dissipative operator and a
conservative operator, provided that their combination implies the convergence to a
unique equilibrium.

v



vi Preface

Luigi Barletti, Philipp Holzinger and Ansgar Jüngel derive, by means of non-
standard applications of several mathematical tools, such as Wigner transform,
Moyal product expansion and Chapman-Enskog expansion, quantum drift-diffusion
equations for a two-dimensional electron gas with spin-orbit interaction of Rashba
type. In particular, the obtained quantum drift-diffusion equations involve the full
spin vector.

The chapter by Marzia Bisi and Romina Travaglini introduces a BGK kinetic
model for a mixture of four polyatomic gases, which may undergo bi-molecular
reversible chemical reactions. The authors prove that all disposable parameters that
appear in the BGK operators may be obtained in terms of some macroscopic fields,
such as the densities, the velocities and the temperatures of the species. They show
that the correct collision equilibria and collision invariants of the reactive Boltzmann
equations are preserved, and that the H-theorem holds.

The contribution by Guido Cavallaro is a review on the theory of the Vlasov
equation, with emphasis on a specific and interesting problem: what happens when
the initial mass of the plasma is infinite, and what is the effect of the decay in the
space of velocities of the initial datum. Several types of interactions are considered,
such as smooth or singular potentials.

Frédérique Charles has studied, both theoretically and numerically, a rarefied
mixture of gas and dust. The gas is treated as a Knudsen gas, whereas the
interactions between dust particles and gas molecules are modelled by considering
a moving domain free transport equation. Her chapter introduces a new numerical
strategy, based on a splitting between the transport of the gas molecules and the
movement of the boundary.

The chapter by Amic Frouvelle investigates phase transitions (including equilib-
ria, stability and convergence rates) for a model of collectives dynamics based on
body-attitude alignment. After a review of previous results, the author presents new
results for a non-linear Fokker–Planck model.

François Golse examines, in his chapter, how to describe condensation evapo-
ration phenomena. The starting point is the steady Boltzmann equation with slab
symmetry for a monatomic, hard sphere gas in a half space above its condensed
phase. He proves the existence and uniqueness of a uniformly, exponentially
decaying solution in the vicinity of the Maxwellian equilibrium with zero bulk
velocity, with the same temperature as that of the condensed phase, and whose
pressure is the saturating vapor pressure at the temperature of the interface.

Megan Griffin–Pickering and Mikaela Iacobelli review, in their chapter, some
results on quasineutral limits for Vlasov equations, modelling non-magnetized non-
collisional plasmas. The electron case is described by the classical Vlasov–Poisson
system, while the ion case requires the introduction of an additional exponential
term in the Poisson equation. The authors especially focus on the latter case.

Juhi Jang and Chanwoo Kim introduce, in their contribution, a new Hilbert-type
expansion of the Boltzmann equation with the acoustic scaling. By using recentLp-
L∞ theory of the Boltzmann equation, they show the validity of the acoustic limit
in optimal scaling.



Preface vii

The chapter by Yunbai Cao and Chanwoo Kim reviews some results on the
Vlasov–Poisson–Boltzmann system in a bounded domain of R3 with diffuse bound-
ary conditions in the case of strong solutions. After giving an accurate description of
the state-of-the-art on the subject, they moreover extend their regularity result when
the particles are surrounded by a conductor boundary.

Tomasz Komorowski and Stefano Olla study the effect of a thermal boundary,
modelled by a Langevin dynamics, on the macroscopic evolution of the energy at
different space-time scales. The authors analyze how the presence of a thermostat at
the origin influences the asymptotics and show that a boundary condition appears in
the kinetic limit.

The chapter by Nastassia Pouradier Duteil and by Benedetto Piccoli studies a
control problem for a consensus model. The problem is studied for two different sets
of controls. Each constraint on the control leads to a different result. The theoretical
results are presented together with several numerical simulations.

M. Piedade M. Ramos, Carolina Ribeiro and Ana Jacinta Soares provide a review
on the mathematical modelling of autoimmune diseases when the kinetic theory
approach is used for describing the microscopic interactions between cells. Before
studying the mathematical problem, the authors give a brief introduction to the
biology of autoimmune diseases and clarify the role of different types of cells
involved in the process.

The contribution by Satoshi Taguchi and Tetsuro Tsuji deals with the motion
of a slightly rarefied gas caused by a discontinuous wall temperature in a simple
two-surface problem and illustrates how the existing theory can be extended to this
case.

Shigeru Takata, Shigenori Akasobe and Masanari Hattori revisit, in their chapter,
the Cercignani–Lampis model for the gas-surface interaction from the Langevin
dynamics viewpoint. The velocity of the gaseous molecule after the interaction with
the surface is obtained through the sum of two operators: a drift part, which drives
the normal velocity to a value proportional to the wall temperature and decreases
the tangential velocities, and a diffusion process.

Finally, the chapter by Edoardo Zoni and Stefan Possanner studies the accuracy
of gyrokinetic equations in fusion applications. In particular, it shows the necessity
of considering high-order expansion for electrons.

Pavia, Italy Francesco Salvarani
March 2021
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Sharpening of Decay Rates in Fourier
Based Hypocoercivity Methods

Anton Arnold, Jean Dolbeault, Christian Schmeiser, and Tobias Wöhrer

Abstract This paper is dealing with two L2 hypocoercivity methods based on
Fourier decomposition and mode-by-mode estimates, with applications to rates of
convergence or decay in kinetic equations on the torus and on the whole Euclidean
space. The main idea is to perturb the standard L2 norm by a twist obtained either by
a nonlocal perturbation build upon diffusive macroscopic dynamics, or by a change
of the scalar product based on Lyapunov matrix inequalities. We explore various
estimates for equations involving a Fokker–Planck and a linear relaxation operator.
We review existing results in simple cases and focus on the accuracy of the estimates
of the rates. The two methods are compared in the case of the Goldstein–Taylor
model in one-dimension.

Keywords Hypocoercivity · Linear kinetic equations · Entropy–entropy
production inequalities · Goldstein–Taylor model · Fokker–Planck operator ·
Linear relaxation operator · Linear BGK operator · Transport operator · Fourier
modes decomposition · Pseudo-differential operators · Nash’s inequality
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2 A. Arnold et al.

1 Introduction

We consider dynamical systems involving a degenerate dissipative operator and
a conservative operator, such that the combination of both operators implies
the convergence to a uniquely determined equilibrium state. In the typical case
encountered in kinetic theory, the dissipative part is not coercive and has a kernel
which is unstable under the action of the conservative part. Such dynamical systems
are called hypocoercive according to [34]. We are interested in the decay rate of
a natural dissipated functional, the entropy, in spite of the indefiniteness of the
entropy dissipation term. In a linear setting, the functional typically is quadratic
and can be interpreted as the square of a Hilbert space norm. Classical examples are
evolutions of probability densities for Markov processes with positive equilibria.
Over the last 15 years, various hypocoercivity methods have been developed, which
rely either on Fisher type functionals (the H1 approach) or on entropies which are
built upon weighted L2 norms, or even weaker norms as in [6]. In the L2 approach,
it is very natural to introduce spectral decompositions and handle the free transport
operator, for instance in Fourier variables, as a simple multiplicative operator. In the
appropriate functional setting, the problem is then reduced to the study of a system
of ODEs, which might be finite or infinite. This is the point of view that we adopt
here, with the purpose of comparing several methods and benchmarking them on
some simple examples.

Decay rates are usually obtained by adding a twist to the entropy or squared
Hilbert space norm. In hyperbolic systems with dissipation, early attempts can
be traced back to the work of Kawashima and Shizuta [27, 32], where the
twist is defined in terms of a compensating function. The similarities between
hypocoercivity and hypoellipticity are not only motivated the creation of the latter
terminology, as explained in [34], but also serve as a guideline for proofs of
hypocoercivity [25, 28, 34] and in particular for the construction of the twist. Here
we shall focus on two approaches to L2-hypocoercivity.

In [20, 21], an abstract method motivated by [25] and by the compensating
function approach has been formulated, which provides constructive hypocoercivity
estimates. The twist is built upon a non-local term associated with the spectral gap
of the diffusion operator obtained in the diffusion limit and controls the relaxation
of the macroscopic part in the limiting diffusion equation, that is, the projection of
the distribution function on the orthogonal of the kernel of the dissipative part of the
evolution operator. The motivating applications are kinetic transport models with
diffusive macroscopic dynamics, see, e.g., [5, 18, 19, 22, 24, 30], where the results
yield decay estimates in an L2 setting.

The goal of the second approach is to find sharp decay estimates in special
situations, where sufficient explicit information about the dynamics is available.
Examples are ODE systems [1] as well as problems where a spectral decomposition
into ODE problems exists [7–9, 11]. In these situations, sharp decay estimates can
be derived by employing Lyapunov matrix inequalities.
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In the standard definitions of hypocoercivity, a spectral gap and an exponen-
tial decay to equilibrium are required. This, however, can be expected only in
sufficiently confined situations, i.e., in bounded domains or for sufficiently strong
confining forces. Problems without or with too weak confinement have been treated
either by regaining spectral gaps pointwise in frequency after Fourier transformation
as in [15, 33] or by employing specially adapted functional inequalities in [14–16],
with the Nash inequality [29] as the most prominent example.

The aim of this work is to present a review and a comparison of the two
approaches mentioned above, executed for both confined and unconfined situa-
tions, where for the former a periodic setting is chosen, such that the Fourier
decomposition method can be used in all cases. A special emphasis is put on
optimizing the procedures with the ultimate goal of proving sharp decay rates.
Attention is restricted to abstract linear hyperbolic systems with linear relaxation,
where ‘abstract’ means that infinite systems such as kinetic transport equations are
allowed. Note that in the finite dimensional case, the setting is as in [33].

In Sect. 2 of this work, both methods are presented in an abstract framework.
Concerning the method of [15, 21], the setting is abstract linear ODEs, where
the dynamics is driven by the sum of a dissipative and a conservative operator
such that the dissipation rate is indefinite, but the conservative operator provides
enough mixing to create hypocoercivity. Then the approach based on Lyapunov
matrix inequalities is discussed at the hand of hyperbolic systems with relaxation.
By Fourier decomposition the problem is reduced to ODE systems and Lyapunov
functionals with optimal decay rates are built. These results can be seen as a
sharpening of the abstract decay estimates in [33].

Section 3 is concerned with sharpening the approach of [15, 21] applied to linear
kinetic equations with centered Maxwellian equilibria (for sake of simplicity). It
contains results on the optimal choice of parameters in the abstract setting, on
the mode-by-mode application of the method after Fourier transformation, on the
convergence of an optimized rate estimate to the sharp rate in the macroscopic
diffusion limit and, finally, on the derivation of global convergence or decay rates
for the cases of small tori and of the Euclidean space without confinement.

Section 4 is devoted to a comparison of both approaches for a particular example,
the Goldstein–Taylor model with constant exchange rate, a hyperbolic system
of two equations with an exchange term in one space dimension, which can be
interpreted as a discrete velocity model with two velocities. It has already been
used as a model problem in [21], and the sharp decay rate on the one-dimensional
torus has been derived by the Lyapunov matrix inequality approach in [8]. The
challenging problem of finding the sharp decay rate for a position dependent
exchange rate has been treated in [12, 13]. It is shown that the mode-by-mode
Lyapunov functionals derived by both methods, the Lyapunov matrix inequality
approach and the modal optimization of the abstract framework outlined in Sect. 3,
coincide for the Goldstein–Taylor model. On the torus the mode-by-mode Lyapunov
functionals can be combined into a global Lyapunov functional which provides the
sharp decay rate (see Theorem 5). On the real line, the modal results combine into a
global estimate with sharp algebraic decay rate. Due to the presence of a defective
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eigenvalue in the modal equations, the standard approach requires modifications to
obtain reasonable multiplicative constants.

2 Review of Two Hypocoercivity Methods

We consider the abstract evolution equation

dF

dt
+ TF = LF , t > 0 , (1)

with initial datum F(t = 0, ·) = F0. Applied to kinetic equations, T and L are
respectively the transport and the collision operators, but the abstract result of
this section is not restricted to such operators. We shall assume that T and L are
respectively anti-Hermitian and Hermitian operators defined on a complex Hilbert
space

(
H , 〈·, ·〉) with corresponding norm denoted by ‖ · ‖.

2.1 An Abstract Hypocoercivity Result Based on a Twisted L2

Norm

Let us start by recalling the basic method of [21]. This technique is inspired by
diffusion limits and we invite the reader to consider [21] for detailed motivations.
We define

A :=
(

Id+ (T�)∗T�
)−1

(T�)∗ (2)

where ∗ denotes the adjoint with respect to 〈·, ·〉 and � is the orthogonal projection
onto the null space of L. We assume that positive constants λm, λM , and CM exist,
such that, for any F ∈ H , the following properties hold:

• microscopic coercivity

− 〈LF,F 〉 ≥ λm ‖(Id−�)F‖2 , (H1)

• macroscopic coercivity

‖T�F‖2 ≥ λM ‖�F‖2 , (H2)

• parabolic macroscopic dynamics

�T�F = 0 , (H3)
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• bounded auxiliary operators

‖AT(Id−�)F‖ + ‖ALF‖ ≤ CM ‖(Id−�)F‖ . (H4)

A simple computation shows that a solution F of (1) is such that

1

2

d

dt
‖F‖2 = 〈LF,F 〉 ≤ − λm ‖(Id−�)F‖2 .

We assume that (1) has, up to normalization, a unique steady state F∞. By
linearity, we can replace F0 by F0 − 〈F0, F∞〉F∞ or simply F0 − F∞, with F∞
appropriately normalized. With no loss of generality, we can therefore assume
that F∞ = 0. This is however not enough to conclude that ‖F(t, ·)‖2 decays
exponentially with respect to t ≥ 0. As in the hypocoercivity method introduced
in [21] for real valued operators and extended in [15] to complex Hilbert spaces,
we consider the Lyapunov functional

H1[F ] := 1

2
‖F‖2 + δ Re〈AF,F 〉 (3)

for some δ > 0 to be determined later. If F solves (1), then

− d
dtH1[F ] = D[F ] := − 〈LF, F 〉 + δ 〈AT�F, F 〉

− δ Re〈TAF, F 〉 + δ Re〈AT(Id−�)F, F 〉 − δRe〈ALF, F 〉 .
(4)

The following result has been established in [15, 21].

Theorem 1 Let L and T be closed linear operators in the complex Hilbert space(
H , 〈·, ·〉). We assume that L is Hermitian and T is anti-Hermitian, and that (H1)–

(H4) hold for some positive constants λm, λM , and CM . Then for some δ > 0, there
exists λ > 0 and C > 1 such that, if F solves (1) with initial datum F0 ∈ H , then

H1[F(t, ·)] ≤ H1[F0] e−λ t and ‖F(t, ·)‖2 ≤ C e−λ t ‖F0‖2 ∀ t ≥ 0 . (5)

Here we assume that the unique steady state is F∞ = 0 otherwise we have to replace
F(t, ·) by F(t, ·)−F∞ and F0 by F0−F∞ in (5). The strategy of [21], later extended
in [15], is to prove that for any δ > 0 small enough, we have

λH1[F ] ≤ D[F ] (6)

for some λ > 0, and

c− ‖F‖2 ≤ H1[F ] ≤ c+ ‖F‖2 (7)
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for some constants c− and c+ such that 0 ≤ c− ≤ 1/2 ≤ c+. As a consequence,
if c− > 0, we obtain the estimate C ≤ c+/c−. We learn from [15, Proposition 4]
that Theorem 1 holds with c± = (1± δ)/2,

λ = λM

3 (1+ λM)
min

{
1, λm,

λm λM
(1+λM) C2

M

}
and δ = 1

2
min

{
1, λm,

λm λM
(1+λM) C2

M

}
.

(8)

Our primary goal of Sect. 3 is to obtain sharper estimates of λ, c± and C for an
appropriate choice of δ in specific cases. Notice that it is convenient to work in an
Hilbert space framework because this allows us to use Fourier transforms.

2.2 An Abstract Hypocoercivity Result Based on Lyapunov
Matrix Inequalities

Here we review our second hypocoercivity method, as developed on various
examples in [2, 3, 9], before comparing it with the method of Sect. 2.1.

As in Sect. 2.1, without loss of generality we assume that (1) has the unique
steady state F∞ = 0. We are interested in explicit decay rates for ‖F(t, ·)‖2 → 0
as t → +∞. To fix the ideas we start with some prototypical examples:

1. Although almost trivial, the stable ODEs with constant-in-t coefficients

dF

dt
= −C F (9)

is at the core of the method. Here F(t) ∈ C
n, T := CAH ∈ C

n×n is an anti-
Hermitian matrix, and L := −CH ∈ C

n×n is a Hermitian negative semi-definite
matrix, where CAH and CH denote the anti-Hermitian and Hermitian parts of
C = CAH + CH . Several other examples will be reduced to (9), mostly via
Fourier transformation in x. We shall use the same index notation (‘AH ’ and
‘H ’) for matrix B in Example 4 and matrix C in Example 5. The hypocoercivity
structure of (9) is discussed in [1].

2. Discrete velocity BGK models, i.e. transport-relaxation equations (see § 2.1
and § 4.1 in [2]) can be written in the form of (1) where F(t, x) =(
f1(t, x), ..., fn(t, x)

)
, x ∈ X ⊂ R, T := V ∂x with the diagonal matrix
V ∈ R

n×n representing the velocities, and the collision operator L := σ B with
σ > 0. Here, the matrix B ∈ R

n×n is in BGK form

B =
⎛

⎜
⎝

b1
...

bn

⎞

⎟
⎠⊗ (1, . . . , 1)− Id
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with b = (b1, . . . , bn)

 ∈ (0, 1)n such that

∑n
j=1 bj = 1, and Id denotes the

identity matrix. The collision operator L is symmetric on the velocity-weighted
L2-space H = L2(X× {1, . . . , n}; {b−1

j }). Due to this structure, B has a simple
eigenvalue 0 with corresponding left eigenvector l1 = (1, . . . , 1) associated with
the mass conservation of the system. The corresponding right eigenvector b spans
the local-in-x steady states, which are of the form ρ(x) b for some arbitrary scalar
function ρ(x). The case with only two velocities, or Goldstein–Taylor model, is
dealt with in Sect. 4.

3. A linear kinetic BGK model is analyzed in [2], where F = f (t, x, v) ∈ R,
x ∈ T (the 1-dimensional torus of length 2π), and v ∈ R. The kinetic transport
operator is T := v ∂x , and the BGK operator Lf := Mϑ(v)

∫
R
f dv − f is

symmetric in the weighted space H = L2
(
T × R; dx dv/(2πMϑ(v))

)
, where

Mϑ(v) denotes the centered Maxwellian with variance (or temperature) ϑ. The
kernel of L is spanned by Mϑ(v), which is also the global steady state F∞(v),
due to the setting on the torus.

4. The (degenerate) reaction-diffusion systems of [23] can also be written as in (1),
with F(t, x) = (f1(t, x), ..., fn(t, x))


, T := −BAH , L := D	 + BH . Here,
0 ≤ D ∈ R

n×n is a diagonal matrix, B ∈ R
n×n is an essentially non-negative

matrix, i.e., bij ≥ 0 for any i �= j , and bii = −∑
i �=j bij , and BAH and BH are

its anti-symmetric and symmetric parts.
5. As a final example, let us mention (possibly degenerate) Fokker–Planck equa-

tions with linear-in-x drift for F = f (t, x), x ∈ R
d . After normaliza-

tion (in the sense of [11]), they can be identified with (1), where Tf :=
− div

(
f∞ CAH ∇(f/f∞)

)
, Lf := div

(
f∞ CH ∇(f/f∞)

)
, with a positive stable

drift matrix C ∈ R
d×d such that CH ≥ 0, and f∞ = (2π)−d/2 exp

( − |x|2/2
)

is the unique normalized steady state. As shown in [11], these Fokker–Planck
equations are equivalent to (9) and tensorized versions of it.

In the articles cited above for Examples 1–3, an L2-based hypocoercive entropy
method has been used to derive sharp decay estimates for the solution F(t) towards
its steady state F∞, and the same strategy can also be applied to Example 4. In [9]
an H1-based hypocoercive entropy method was developed for the Fokker–Planck
equations in Example 5. But in view of its subspace decomposition given in [11], an
L2-analysis is also feasible.

In our second hypocoercive entropy method, we construct a problem adapted
Lypunov functional that is able to reveal the sharp decay behavior as t → +∞.
We shall illustrate this strategy for Examples 2 and 3, where the anti-Hermitian
operator T is either V ∂x (for discrete velocities) or v ∂x (for continuous velocities).
In order to establish the mode-by-mode hypocoercivity, we Fourier transform (1)
w.r.t. x ∈ X, with either X = T

1 =: T or X = R
d . In the torus case, we assume

d = 1 for simplicity, but the method extends to higher dimensions (see [3]). With the
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abuse of notations of keeping F for the distribution function written in the variables
(t, ξ, v), this yields

dF

dt
= − i ξ V F + LF =: −C(ξ) F , (10)

with a discrete modal variable ξ ∈ Z for the torus and ξ ∈ R
d in the whole space

case. In (10), V is a diagonal matrix for Example 2, and for Example 3 it either
represents the multiplication operator by v or, when using a basis in the v-variable,
a symmetric, real-valued “infinite matrix” (cf. [2, § 4]).

For each fixed mode ξ , (10) is now an ODE with constant coefficients (of
dimension n < ∞ for Example 2, and infinite dimensional for Example 3). For
finite n, we define the modal spectral gap of C(ξ) as

μ(ξ) := min
0 �=λj∈σ(C(ξ))

Re(λj ) . (11)

If no eigenvalue of C(ξ) with Re(λj ) = μ(ξ) is defective (i.e., all eigenvalues have
matching algebraic and geometric multiplicities), see e.g. [26], then the exponential
decay of ‖F(t, ξ)‖2 with the sharp rate 2μ(ξ) is shown using a Lyapunov functional
obtained as a twisted Euclidean norm on C

n. To this end we use the following
algebraic result.

Lemma 1 ([2, Lemma 2]) For a given matrix C ∈ C
n×n, let μ be defined as

in (11). Assume that 0 �∈ σ(C) and that C has no defective eigenvalues with
Re(λj ) = μ. Then there exists a positive definite Hermitian matrix P ∈ C

n×n
such that

C∗P + P C ≥ 2μP . (12)

Moreover, if all eigenvalues of C are non-defective, any matrix

P :=
n∑

j=1

cj wj ⊗ w∗j (13)

satisfies (12), where wj ∈ C
n denote the normalized (right) eigenvectors of C∗ and,

for all j = 1, . . . , n, the coefficient cj ∈ (0,+∞) is an arbitrary weight.

For the extension of this lemma to the case 0 ∈ σ(C) we refer to [2, Lemma 3],
but, anyhow, this is typically relevant only for ξ = 0. The more technical case
when C has defective eigenvalues was analyzed in [9, Lemma 4.3(i)]. In the case
n = ∞ (occuring in the kinetic BGK models of Example 3), the eigenfunction
construction of the operator (or “infinite matrix”) P via (13) is, in general, not
feasible. A systematic construction of approximate matrices P with a suboptimal
value compared with μ in (12) was presented in [2, § 4.3–4.4] and [3, § 2.3].
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Using the deformation matrix P , we define the “twisted Euclidean norm”
in C

n as

‖F‖2
P := 〈F,P F 〉 ,

which is equivalent to the Euclidean norm ‖ · ‖ through the estimate

λP1 ‖F‖2 ≤ ‖F‖2
P ≤ λPn ‖F‖2 , (14)

where λP1 and λPn are the smallest and largest eigenvalues of P , respectively.
From (9) and (12) follows that

d

dt
‖F‖2

P = −〈F, (C∗P + PC)F 〉 ≤ − 2μ ‖F‖2
P .

This shows that solutions to (9) satisfy

‖F(t)‖2
P ≤ e−2μ t ‖F0‖2

P ∀ t ≥ 0 ,

and hence in the Euclidean norm:

‖F(t)‖2 ≤ cond(P ) e−2μ t ‖F0‖2 ∀ t ≥ 0 , (15)

where cond(P ) := λPn /λ
P
1 denotes the condition number of P . We recall from [4]

that cond(P ) is in general not the minimal multiplicative constant for (15). In fact, in
general it is impossible to obtain that optimal constant from a Lyapunov functional,
even for n = 2, see [4, Theorem 4.1]. We also remark that the matrix P from (13)
is not uniquely determined (even beyond trivial multiples). As a consequence,
cond(P ) may be different for different admissible choices of P . For an example
with n = 3, we refer to [4, § 3].

Analogous decay estimates hold for solutions F(t, ξ) to the modal ODEs (10),
and they involve the deformation matrices P(ξ) and the modal spectral gaps μ(ξ):

‖F(t, ξ)‖2
P(ξ) ≤ e−2μ(ξ) t ‖F0(ξ)‖2

P(ξ) ∀ t ≥ 0 . (16)

This motivates the definition of a modal-based Lyapunov functional by assembling
the modal functionals. We present two variants of this approach.

Strategy 1 We consider the global Lyapunov functional

H2[F ] :=
∑

ξ∈Z
‖F(ξ)‖2

P(ξ) , (17)

which is written here for the case of discrete modes, i.e., X = T.
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We recall that the matrixP(ξ) is not unique. In the kinetic BGK examples studied
so far (cf. [2, 3]) it was convenient to choose P depending continuously on ξ (for
ξ ∈ R

d ) and such that P(ξ) → Id as |ξ | → +∞. For kinetic equations with a
local-in-x dissipative operator L, the matrix C(ξ) has the form given in (10). Under
the assumption of a uniform spectral gap μ := infξ μ(ξ) > 0, the form P(ξ) =
Id + O (1/|ξ |) is very natural (see P (1)(ξ) in (54) for an example) in view of the
matrix inequality (12).

The modal decay (16) implies the following decay estimate for the solution to (1):

H2[F(t)] ≤ e−2 μ̄ t H2[F0] ∀ t ≥ 0 , for any F0 ⊥ F∞ .

Using Parseval’s identity and the norm equivalence from (14), this yields

‖F(t)‖2 ≤ c̄P e
−2 μ̄ t ‖F0‖2 ∀ t ≥ 0 , for any F0 ⊥ F∞ , (18)

where c̄P := supξ cond(P (ξ)).

Strategy 2 If all modes ξ have the same spectral gap μ(ξ), then the estimate (18)
clearly yields the minimal multiplicative constant c̄P (obtainable by Lyapunov
methods). This is the case when the relaxation rate σ < 2 in the Goldstein–Taylor
model, which is studied in [7] and in Sect. 4 below. But faster decaying modes
may have a “too large” condition number cond(P (ξ)), as it is the case for σ > 2
in [7]. Then, the matrices P(ξ) from (12) have to be modified in order to reduce
cond(P (ξ)) by lowering μ = μ(ξ) in (12). For simplicity we detail this strategy
only for the case that the infimum μ̄ is actually attained. Main steps are:

• Let � := {ξ : μ(ξ) = μ̄} be the set of the modes with slowest decay. Set
c� := supξ∈� cond(P (ξ)), i.e. the worst common multiplicative constant for
these slow modes.

• For all modes ξ �∈ �, we distinguish several cases:

– If cond(P (ξ)) ≤ c�, set P̃ (ξ) := P(ξ).
– If cond(P (ξ)) > c�, then replace P(ξ) by P̃ (ξ) ∈ C

n×n, which is a positive
definite Hermitian solution to the matrix inequality

C(ξ)∗P + P C(ξ) ≥ 2 μ̄ P .

In particular, P should be either chosen as any such solution that satisfies
cond(P (ξ)) ≤ c� or, if this is impossible, then by a solution P having the
least condition number.

• Let c̃� := supξ �∈� cond
(
P̃ (ξ)

)
be the best multiplicative constant for the faster

modes.
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• Set c̃P := max{c�, c̃�}. With this construction we define a second, refined
Lyapunov functional (again written for the case X = T) by

H̃2[F ] :=
∑

ξ∈�
‖F(ξ)‖2

P(ξ) +
∑

ξ∈�c

‖F(ξ)‖2
P̃ (ξ)

, (19)

where �c := Z \�.

This yields the improved decay estimate (w.r.t. the multiplicative constant):

‖F(t)‖2 ≤ c̃P e
−2 μ̄ t ‖F0‖2 ∀ t ≥ 0 , for any F0 ⊥ F∞ . (20)

Note that, by construction, c̃P ≤ c̄P . Altogether, our estimates on a solution to the
evolution equation (1) rewritten as (10) in Fourier variables can be summarized into
the following result.

Proposition 1 On T, let us consider an operator C such that, in Fourier variables,
C(ξ) takes values in C

n×n for any ξ ∈ Z. Assume the existence of a uniform spectral
gap μ := infξ∈Z μ(ξ) > 0 where μ(ξ) is defined by (11).

(a) If the corresponding modal deformation matrices P(ξ) satisfy c̄P < ∞, then
the solutions of (1) satisfy the decay estimate (18).

(b) If the modified deformation matrices P̃ (ξ) satisfy c̃P < ∞, then the solutions
of (1) satisfy the decay estimate (20).

The above procedure was applied in [7] to the Goldstein–Taylor model, and in [2]
to Examples 2–3, considered on T.

The hypocoercivity results based on the Lyapunov matrix inequalities (12) and
mode-by-mode estimates as in (16) have the advantage that, in simple cases, it
is possible to identify the optimal decay rates. They are less flexible than the
hypocoercivity results based on the twisted L2 norm inspired by diffusion limits
of Sect. 2.1. Our purpose of Sect. 4 is to detail several variants of these methods
in simple cases, draw a few consequences and compare the estimates of the two
methods.

3 Optimization of Twisted L2 Norms

This part is devoted to accurate hypocoercivity estimates in Fourier variables
based on our first abstract method, for two simple kinetic equations with Gaussian
local equilibria. It is a refined version of the paper [15] devoted to a larger class
of equilibria, but to the price of weaker bounds. Here we underline some key
ideas of mode-by-mode hypocoercivity and perform more accurate and explicit
computations. New estimates are obtained, which numerically improve upon known
ones. Rates and constants are discussed and numerically illustrated, with the purpose
of establishing benchmarks for the L2-hypocoercivity theory based upon a twist
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inspired by diffusion limits. Exponential rates are obtained on the torus, with a
discussion on high frequency estimates. On the whole space case, low frequencies
are involved in the computation of the asymptotic decay rates. We also detail
how spectral estimates of the mode-by-mode L2 hypocoercivity method can be
systematically turned into rates of decay using the ideas of the original proof of
Nash’s inequality.

3.1 A Detailed Mode-by-Mode Approach

3.1.1 Introduction

We consider the Cauchy problem

∂tf + v · ∇xf = Lf , f (0, x, v) = f0(x, v) , (21)

for a distribution function f (t, x, v), where x ∈ R
d denotes the position variable,

v ∈ R
d is the velocity variable, and t ≥ 0 is the time. Concerning the collision

operator, L denotes the Fokker–Planck operator L1 or, as in [20], the linear BGK
operator L2, which are defined respectively by

L1f := 	vf +∇v · (v f ) and L2f := ρf M− f .

Here M is the normalized Gaussian function

M(v) = e− 1
2 |v|2

(2π)d/2 ∀ v ∈ R
d

and ρf :=
∫
Rd f dv is the spatial density. Notice that M spans the kernel of L. We

introduce the weight

dγ := γ (v) dv where γ := 1

M

and the weighted norm

‖f ‖2
L2(dx dγ )

:=
∫∫

X×Rd

|f (x, v)|2 dx dγ ,

where X denotes either the cube [0, L)d with periodic boundary conditions or
X = R

d , that is, the whole Euclidean space.
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Let us consider the Fourier transform of f in x defined by

f̂ (t, ξ, v) =
∫

X
e−i x·ξ f (t, x, v) dx , (22)

where either X = [0, L)d (with periodic boundary conditions), or X = R
d . We

denote by ξ ∈ (2π/L)d Zd ⊂ R
d or ξ ∈ R

d the Fourier variable. Details will be
given in Sect. 3.1.3. Next, we rewrite Eq. (21) for F = f̂ as

∂tF + TF = LF , F(0, ξ, v) = f̂0(ξ, v) , TF = i (v · ξ)F . (23)

Here we abusively use the same notation T for the transport operator in the
original variables and after the Fourier transform, where it is a simple multiplication
operator. We shall also consider ξ as a given, fixed parameter and omit it whenever
possible, so that we shall write that F is a function of (t, v), for sake of simplicity.
Let us define

H = L2 (dγ ) , ‖F‖2 =
∫

Rd

|F |2 dγ , �F =M
∫

Rd

F dv =M ρF .

(24)

Our goal is to obtain decay estimates of ‖F‖ parameterized by ξ and this is why
such an approach can be qualified as a mode-by-mode hypocoercivity method.

3.1.2 A First Optimization in the General Setting

The estimates of [15, Proposition 4] are rough and it is possible to improve upon the
choice for δ and λ. On the triangle

Tm :=
{
(δ, λ) ∈ (0, λm)× (0, 2 λm) : λ < 2 (λm − δ)

}
,

let us define

h
(δ, λ) := δ2
(
CM + λ

2

)2

− 4

(
λm − δ − λ

2

) (
δ λM

1+ λM
− λ

2

)
,

λ
(δ) := sup
{
λ ∈ (0, 2 λm) : h
(δ, λ) ≤ 0

}
and C
(δ) := 2+ δ

2− δ
.

We will also need later

KM := λM

1+ λM
< 1 and δ
 := 4KM λm

4KM + C2
M

< λm .

Our first result provides us with the following refinement of (5).
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Proposition 2 Under the assumptions of Theorem 1, we have

H1[F(t, ·)] ≤ H1[F0] e−λ t ∀ t ≥ 0

with λ = max
{
λ
(δ) : δ ∈ (0, δ
)

}
. Moreover, for any δ < min{2, δ
}, if F

solves (1) with initial datum F0 ∈ H , then

‖F(t)‖2 ≤ C
(δ) e
− λ
(δ) t ‖F0‖2 ∀ t ≥ 0 .

On the boundary of the triangle Tm, we notice that

h
(0, λ) = λ (2 λm − λ) > 0 ∀ λ ∈ (0, 2 λm) ,

h


(
δ, 2 (λm − δ)

)
= (CM + λm − δ)2 δ2 > 0 ∀ δ ∈ (0, λm) ,

and h
(δ, 0)/δ = (
C2
M + 4KM

)
δ − 4KM λm is negative if 0 < δ < δ
. As a

consequence, the set {(δ, λ) ∈ Tm : h
(δ, λ) ≤ 0} is non-empty. The functions
λ �→ h
(δ, λ) for a fixed δ ∈ (0, λm) and δ �→ h
(δ, λ) for a fixed λ ∈ (0, 2 λm) are
both polynomials of second degree. The expression of λ
(δ) is explicitly computed
as the smallest root of λ �→ h
(δ, λ) but has no interest by itself. It is also elementary
to check that h
 is positive if (δ, λ) ∈ Tm with δ > δ
.

Proof The method is the same as in [21] and [15, Proposition 4], except that we use
sharper estimates.

Since AT� can be interpreted as z �→ (1 + z)−1 z applied to (T�)∗T�, the
spectral theorem and conditions (H1) and (H2) imply that

− 〈LF,F 〉 + δ 〈AT�F,F 〉 ≥ λm ‖(Id−�)F‖2 + δ λM

1+ λM
‖�F‖2 . (25)

From that point, one has to prove that −〈LF,F 〉 + δ 〈AT�F,F 〉 controls the other
terms in the expression of D[F ]. By (H4), we know that

|Re〈AT(Id−�)F,F 〉 + Re〈ALF,F 〉| ≤ CM ‖�F‖ ‖(Id −�)F‖ . (26)

As in [21, Lemma 1], if G = AF , i.e., if (T�)∗F = G+ (T�)∗ T�G, then

〈TAF,F 〉 = 〈G, (T�)∗ F 〉 = ‖G‖2 + ‖T�G‖2 = ‖AF‖2 + ‖TAF‖2 .

By the Cauchy-Schwarz inequality, we know that

〈G, (T�)∗ F 〉 = 〈TAF, (Id −�)F 〉

≤ ‖TAF‖ ‖(Id−�)F‖ ≤ 1

2μ
‖TAF‖2 + μ

2
‖(Id−�)F‖2
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for any μ > 0. Hence

2 ‖AF‖2 +
(

2− 1

μ

)
‖TAF‖2 ≤ μ ‖(Id−�)F‖2 ,

which, by taking either μ = 1/2 or μ = 1, proves that

‖AF‖ ≤ 1

2
‖(Id−�)F‖ , ‖TAF‖ ≤ ‖(Id−�)F‖

and establishes (7). Incidentally, this proves that

|〈TAF,F 〉| = |〈TAF, (Id −�)F 〉| ≤ ‖(Id−�)F‖2 , (27)

and also that

|〈AF,F 〉| ≤ 1

2
‖�F‖ ‖(Id −�)F‖ ≤ 1

4
‖F‖2 . (28)

As a consequence of this last identity, we obtain

∣
∣∣H1[F ] − 1

2 ‖F‖2
∣
∣∣ = δ

∣∣〈AF,F 〉∣∣ ≤ δ

4
‖F‖2 ,

which, under the condition δ < 2, is a proof of (7) with the improved constant

c± = 2± δ

4
. (29)

Now let us come back to the proof of (6). Collecting (25), (26), and (27) with the
definition of D[F ], we find that

D[F ] ≥ (λm − δ)X2 + δ λM

1+ λM
Y 2 − δ CM X Y

with X := ‖(Id−�)F‖ and Y := ‖�F‖. Using (28), we observe that

H1[F ] ≤ 1

2

(
X2 + Y 2

)
+ δ

2
X Y .

Hence the largest value of λ for which

D[F ] ≥ λH1[F ]
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can be estimated by the largest value of λ for which

Q(X, Y ) := (λm − δ)X2 + δ λM

1+ λM
Y 2 − δ CM X Y − λ

2

(
X2 + Y 2

)
− λ

2
δ X Y

=
(
λm − δ − λ

2

)
X2 − δ

(
CM + λ

2

)
X Y +

(
δ λM

1+ λM
− λ

2

)
Y 2

is a nonnegative quadratic form. It is characterized by the discriminant condition
h
(δ, λ) ≤ 0, and the condition λm − δ − λ/2 > 0 which determines Tm with
the two other conditions: δ > 0 and λ > 0. From (6), we deduce the decay of
H1[F(t, ·)] and the decay of ‖F(t)‖2 by (7) using (29). ��
Remark 1 The estimate (8) of [15, Proposition 4] is easily recovered as follows.
Using

D[F ] ≥ (λm − δ)X2 + δ λM

1+ λM
Y 2 − δ CM X Y

≥ (λm − δ)X2 + δ λM

1+ λM
Y 2 − δ

2

(
C2
M X2 + Y 2

)

and

H1[F ] ≤ 2+ δ

4

(
X2 + Y 2

)
,

with δ defined as in (8), we obtain

D[F ] ≥ λm

4
X2 + δ λM

2 (1+ λM)
Y 2

≥ 1

4
min

{
λm,

2 δ λM
1+ λM

}
‖F‖2 ≥ 2 δ λM

3 (1+ λM)
H[F ] .

Hence we have that 1
4 ‖F‖2 ≥ 1

3 H[F ] because 4/(2+ δ) ≥ 8/5 > 4/3 if δ < 1/2.
This estimate is non-optimal and it is improved in the proof of Proposition 2.

Remark 2 In the discussion of the positivity of Q, we can observe that (X, Y ) is
restricted to the upper right quadrant corresponding to X > 0 and Y > 0. The
discriminant condition h
(δ, λ) ≤ 0 and the condition λm− δ− λ/2 > 0 guarantee
that Q(X, Y ) ≥ 0 for any X, Y ∈ R, which is of course a sufficient condition. It
is also necessary because the coefficient of Y 2 is positive (otherwise one can find
some X > 0 and Y > 0 such that Q(X, Y ) < 0) and then by solving a second
degree equation, one could again find a region in the upper right quadrant such that
Q takes negative values.

Hence we produce a necessary and sufficient condition for Q to be a nonnegative
quadratic form. This does not mean that the condition of Proposition 2 is necessary
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because we have made various estimates, which are not generically optimal, in order
to reduce the problem to the discussion of the sign of Q. In special cases, we can
indeed improve upon Proposition 2. We will discuss such improvements in the next
section.

3.1.3 Mode-by-Mode Hypocoercivity

Fourier Representation and Mode-by-Mode Estimates Let us consider the
Fourier transform in x, take the Fourier variable ξ ∈ R

d as a parameter, and
study, for a given ξ , Eq. (23). For a given ξ ∈ R

d , let us implement the strategy of
Theorem 1 and Proposition 2 applied to (t, v) �→ F(t, ξ, v), with the choices (24).
The operator A is defined by

(AF)(v) = − i ξ

1+ |ξ |2 ·
∫

Rd

w F(w) dwM(v) .

Taking advantage of the explicit form of A, we can reapply the method of Sect. 3.1.2
with explicit numerical values, and actually improve upon the previous results.
Let us give some details, which will be useful for benchmarks and numerical
computations. Again we aim at relating the Lyapunov functional

H1[F ] := 1

2
‖F‖2 + δRe〈AF,F 〉

defined as in (3) with D[F ] defined by (4), i.e.,

D[F ] := − 〈LF,F 〉 + δ 〈AT�F,F 〉
− δ Re〈TAF,F 〉 + δ Re〈AT(Id−�)F,F 〉 − δ Re〈ALF,F 〉 .

In other words, we want to estimate the optimal constant λ(ξ) in the entropy–entropy
production inequality

D[F ] ≥ λ(ξ)H1[F ] (30)

corresponding to the best possible choice of δ, for a given ξ ∈ R
d .

If L = L1, λm = 1 is given by the Gaussian Poincaré inequality. If L = L2, it is
straightforward to check that λm = 1. In both cases, it follows from the definition
of T that λM = |ξ |2. With X := ‖(Id−�)F‖ and Y := ‖�F‖, using (25) we have

− 〈LF,F 〉 + δ 〈AT�F,F 〉 ≥ X2 + δ |ξ |2
1+ |ξ |2 Y

2 . (31)
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By a Cauchy-Schwarz estimate, we know that

∣
∣
∣∣ξ ·

∫

Rd

w F(w) dw

∣
∣
∣∣ = |ξ |

∣
∣
∣∣

∫

Rd

ξ

|ξ | ·w
√
M

(Id−�)F√
M

dw

∣
∣
∣∣ ≤ |ξ | ‖(Id−�)F‖

and therefore obtain that

‖AF‖ ≤ |ξ |
1+ |ξ |2 ‖(Id−�)F‖ and ‖ALF‖ ≤ |ξ |

1+ |ξ |2 ‖(Id−�)F‖ , (32)

where the second estimate is a consequence of ALF = −AF when L = L1 or L =
L2. Notice that the estimate of ‖AF‖ is sharper than the one used in the introduction.

Using (32), we have that

|Re〈AF,F 〉| ≤ |ξ |
1+ |ξ |2 ‖�F‖ ‖(Id−�)F‖ ≤ 1

2

|ξ |
1+ |ξ |2 ‖F‖

2 (33)

and obtain an improved version of (7) given by

1

2

(
1− δ |ξ |

1+ |ξ |2
)
‖F‖2 ≤ H1[F ] ≤ 1

2

(
1+ δ |ξ |

1+ |ξ |2
)
‖F‖2 . (34)

We also deduce from (32) that

H1[F ] ≤ 1

2

(
X2 + Y 2

)
+ δ |ξ |

1+ |ξ |2 X Y (35)

and, using ALF = −AF and (33),

|Re〈ALF,F 〉| ≤ |ξ |
1+ |ξ |2 ‖�F‖ ‖(Id −�)F‖ . (36)

As for estimating ‖AF‖, by a Cauchy-Schwarz estimate we obtain

‖TAF‖ ≤ |ξ |2
1+ |ξ |2 ‖(Id−�)F‖ ,

so that

δ |Re〈TAF,F 〉| ≤ δ |ξ |2
1+ |ξ |2 X

2 . (37)
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As in [15], we can also estimate

‖AT(Id−�)F‖ =
∣
∣
∣
∫
Rd (v

′·ξ)2
(Id−�)F(v′) dv′

∣
∣
∣

1+|ξ |2

≤
(∫

Rd (v
′·ξ)4M(v′) dv′

)1/2

1+|ξ |2 ‖(Id−�)F‖ =
√

3 |ξ |2
1+ |ξ |2 ‖(Id−�)F‖ .

This inequality and (32) establish that (H4) holds with CM = |ξ | (1+√3 |ξ |)
1+|ξ |2 . Let us

finally notice that

δ |Re〈AT(Id−�)F,F 〉| + δ |Re〈ALF,F 〉| ≤ δ
|ξ |

(
1+√3 |ξ |

)

1+ |ξ |2 X Y . (38)

Improved Estimates with Some Plots In this section, our purpose is to provide
constructive estimates of the rate λ in Theorem 1 and get improved estimates using
various refinements in the mode-by-mode approach. Let us start with the one given
in (8).

With s := |ξ |, we read from section “Mode-by-Mode Hypocoercivity” that

λm = 1 , λM = s2 and CM =
s

(
1+√3 s

)

1+ s2 . (39)

In that case, the estimate (8) becomes λ ≥ λ0(s) for δ = δ0(s) with

λ0(s) := 1

3

s2

(
1+√3 s

)2 and δ0(s) := 1

2

1+ s2

(
1+√3 s

)2 .

With (39) in hand, we can also apply the result of Proposition 2. In order to take
into account the dependence on s, the function h
 has to be replaced by a function h1
defined by

h1(δ, λ, s) := δ2

⎛

⎝
s

(
1+√3 s

)

1+ s2 + λ

2

⎞

⎠

2

− 4

(
1− δ − λ

2

) (
δ s2

1+ s2 −
λ

2

)
,

so that the whole game is now reduced, for a given value of s > 0, to study the
conditions on (δ, λ) ∈ Tm such that h1(δ, λ, s) ≤ 0. In particular, we are interested
in computing the largest value λ1(s) of λ for which there exists δ > 0 for which
h1(δ, λ, s) ≤ 0 with (δ, λ) ∈ Tm, and denote it by δ1(s). The triangle Tm is shown
in Fig. 1 and the curves s �→ λ1(s) and s �→ δ1(s) in Figs. 2 and 3. Solutions are
numerically contained in Tm in the sense that s �→ (

δ1(s), λ1(s)
) ∈ Tm for any s >
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Fig. 1 With λm, λM and CM given by (39), the admissible range Tm of the parameters (δ, λ) is
shown in grey for s = 5. The darker area is the region in which h1(δ, λ, s) takes negative values,
and (δ1(s), λ1(s)) are the coordinates of the maximum point of the curve which separates the two
regions in the triangle Tm

0. As already noted, some estimates in section “Mode-by-Mode Hypocoercivity”
(namely (32), (34), (35), (36) and (37)) are slightly more accurate then the estimates
of the proof of Proposition 2. By collecting (31), (35), (37) and (38), we obtain

D[F ] − λH1[F ]

≥
(

1− δ s2

1+ s2 −
λ

2

)
X2 − δ s

1+ s2

(
1+√3 s + λ

)
X Y +

(
δ s2

1+ s2 −
λ

2

)
Y 2

(40)

is nonnegative for any X and Y under the discriminant condition which amounts to
the nonpositivity of

h2(δ, λ, s) := δ2 s2

(
1+√3 s + λ

1+ s2

)2

− 4

(
1− δ s2

1+ s2
− λ

2

) (
δ s2

1+ s2
− λ

2

)
,
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Fig. 2 With λm, λM and CM given by (39), curves s �→ λi(s) with i = 0, 1 and 2 are shown. The
improvement of λ2 upon λ0 is of the order of a factor 5

2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

�

�

Fig. 3 With λm, λM and CM given by (39), curves s �→ δi (s) with i = 0, 1 and 2 are shown. The
dotted curve s �→ δ0(s) shows the estimate (8) of [15, Proposition 4]. It can be checked numerically
that the numerical curves s �→ (

δi (s), λi (s)
)

with i = 1, 2 satisfy the constraints, i.e., stay in their
respective triangles for all s > 0, as shown in Fig. 1

in the triangle

Tm(s) :=
{
(δ, λ) ∈

(
0, λm 1+s2

s2

)
× (0, 2 λm) : λ < 2

(
λm − δ s2

1+s2

) }
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with λm = 1. Exactly the same discussion as for s �→ λ1(s) and s �→ δ1(s)

determines the curves s �→ λ2(s) and s �→ δ2(s) shown in Figs. 2 and 3. Solutions
satisfy s �→ (

δ2(s), λ2(s)
) ∈ Tm(s) for any s > 0.

3.1.4 Further Observations

In this section, we collect various observations, which are of practical interest, and
rely all on the same computations as the ones of Sects. 3.1.2 and 3.1.3.

Explicit Estimates The explicit computation of δ2 and λ2 is delicate as it involves
finding the roots of high degree polynomials, but it is possible to obtain a very good
approximation as follows. After estimating λX Y by λ

(
X2 + Y 2

)
/2, we obtain that

D[F ] − λH1[F ]

≥
(

1− δ s2

1+ s2
− λ

2

)
X2 − δ s

1+ s2

(
1+√3 s + λ

)
XY +

(
δ s2

1+ s2
− λ

2

)
Y 2

≥
(

1− δ s2

1+ s2 −
λ

2

(
1+ δ s

1+ s2

))
X2 − δ s

1+ s2

(
1+√3 s

)
XY

+
(

δ s2

1+ s2 −
λ

2

(
1+ δ s

1+ s2

))
Y 2 =: Q̃(X, Y )

is nonnegative for any X and Y , under the discriminant condition which amounts to
the nonpositivity of

h̃2(δ, λ, s) := δ2 s2

(
1+√3 s

1+ s2

)2

− 4

(
1− δ s2

1+ s2 −
λ

2

(
1+ δ s

1+ s2

)) (
δ s2

1+ s2 −
λ

2

(
1+ δ s

1+ s2

))
. (41)

By doing a computation as in section “Improved estimates with some plots”, we can
find an explicit result, which goes as follows.

Proposition 3 Assume (39). The largest value of λ > 0 for which there is some
δ > 0 such that the quadratic form Q̃ is nonnegative is

λ̃2(s) := 7 s2−
√

21 s4+4 (3+5
√

3) s3+ (22+8
√

3) s2+4 (1+√3) s+1+2 (1+√3) s+1
7 s2+2 (2+√3) s+2

with corresponding δ given by

δ̃2(s) := s2+1
s

λ̃2(s)
2−λ̃2(s)+2 s

7 s2+2
√

3 s+1−λ̃2(s)2
.
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Fig. 4 Plot of s �→ λ2(s) and of s �→ λ̃2(s), represented, respectively, by the plain and by the
dotted curves
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Fig. 5 The curves s �→ λ2(s) and s �→ λ̃2(s) have the same asymptotic behaviour as s → 0+
and as s →+∞

The proof is tedious but elementary and we shall skip it. By construction, we know
that

λ2(s) ≥ λ̃2(s) ∀ s > 0

and the approximation of λ2(s) by λ̃2(s) is numerically quite good (with a relative
error of the order of about 10 %), with exact asymptotics in the limits as s →
0+, in the sense that λ2(s)/s

2 ∼ λ̃2(s)/s
2, and s → +∞. See Figs. 4 and 5. The

approximation of δ2(s) by δ̃2(s) is also very good.
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Let us summarize some properties which, as a special case, are of interest for
Sects. 3.2.2 and “Mode-by-mode diffusion limit”.

Lemma 2 With the notation of Proposition 3, the function λ̃2 is monotone increas-
ing, the function δ̃2 is monotone increasing for s > 0 large enough, and

lim
s→0+

λ̃2(s)

s2
= 2 , lim

s→+∞ λ̃2(s) = 1−√
3/7 ≈ 0.345346 and lim

s→+∞ δ̃2(s) = 2/7 .

The proof of this result is purely computational and will be omitted here.

Mode-by-Mode Diffusion Limit We consider the diffusion limit which corre-
sponds to the parabolic scaling applied to the abstract equation (1), that is, the limit
as ε→ 0+ of

ε
dF

dt
+ TF = 1

ε
LF .

We will not go to the details and should simply mention that this amounts to
replace λ by λ ε when we look for a rate λ which is asymptotically independent of
ε. We also have to replace (H4) by the assumption

‖AT(Id−�)F‖ + 1

ε
‖ALF‖ ≤ Cε

M ‖(Id−�)F‖ (H4ε)

in order to clarify the dependence on ε. Since A, T, � and L do not depend on ε,
this simply means that we can write Cε

M = C
(1)
M + 1

ε
C
(2)
M where C(1)

M and C(2)
M are

the bounds corresponding to

‖AT(Id−�)F‖ ≤ C
(1)
M ‖(Id−�)F‖ and ‖ALF‖ ≤ C

(2)
M ‖(Id−�)F‖ .

With these considerations taken into account, proving an entropy–entropy produc-
tion inequality is equivalent to proving the nonnegativity of

D[F ] − λ εH1[F ]

≥
(

1

ε
− δ s2

1+ s2
− λ ε

2

)

X2 − δ s

1+ s2

(
1

ε
+√3 s + λ ε

)
XY +

(
δ s2

1+ s2
− λ ε

2

)

Y 2

for any X and Y , and the discriminant condition amounts to the nonpositivity of

δ2 s2

ε2

(
1+√3 ε s + λ ε2

1+ s2

)2

− 4

(
1

ε
− δ s2

1+ s2 −
λ ε

2

) (
δ s2

1+ s2 −
λ ε

2

)
.
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In the limit as ε → 0+, we find that the optimal choice for λ is given by
(λε(s), δε(s)) with

lim
ε→0+

λε(s) = 2 s2 and δε(s) = 2 (1+ s2) ε
(
1+ o(1))

)
.

Notice that λ(s) = 2 s2 corresponds to the expected value of the spectrum associated
with the heat equation obtained in the diffusion limit. This also corresponds to the
limiting behaviour as s → 0+ of λ̃2 obtained in Lemma 2.

Towards an Optimized Mode-by-Mode Hypocoercivity Approach? In our

method, the essential property of the operator A :=
(

Id + (T�)∗T�
)−1

(T�)∗ is

the equivalence of 〈AT�F,F 〉 with ‖�F‖2 given by the estimate

λM

1+ λM
‖�F‖2 ≤ 〈AT�F,F 〉 ≤ ‖�F‖2 .

These inequalities arise from the macroscopic coercivity condition (H2) and, using
the spectral theorem, from the elementary estimate z/(1+ z) ≤ 1 for any z ≥ 0. On
the one hand the Lyapunov functionalH1[F ] := 1

2 ‖F‖2+δ Re〈AF,F 〉 is equivalent
to ‖F‖2 for δ > 0 small enough because A is a bounded operator. On the other hand,
D[F ] = − d

dt
H1[F ] can be compared directly with ‖F‖2 because, up to terms that

can be controlled, as in the proof of Proposition 2, in the limit as δ → 0+, D[F ] is
bounded from below by

−〈LF,F 〉 + δ 〈AT�F,F 〉 ≥ λm ‖(Id−�)F‖2 + δ λM

1+ λM
‖�F‖2

by Assumptions (H1) and (H2). Notice that this estimate holds for any δ > 0. The
choice of z/(1+z) picks a specific scale and one may wonder if z/(ε+z)would not
be a better choice for some value of ε > 0 to be determined. By “better”, we simply
have in mind to get a larger decay rate as t → +∞, without trying to optimize on
the constant C in (5). It turns out that the answer is negative, as ε can be scaled out.
Let us give some details.

Let us replace A by

Aε :=
(
ε2 Id+ (T�)∗T�

)−1
(T�)∗

for some ε > 0 that can be adjusted, without changing the general strategy, and
consider the Lyapunov functional

H1,ε[F ] := 1
2 ‖F‖2 + δ Re〈AεF, F 〉
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for some δ > 0, so that

Dε[F ] := − d

dt
H1,ε[F ]

= − 〈LF,F 〉 + δ 〈AεT�F,F 〉
− δRe〈TAεF, F 〉 + δ Re〈AεT(Id−�)F,F 〉 − δ Re〈AεLF,F 〉 .

(42)

For a given ξ ∈ R
d considered as a parameter, if f solves (21) and if F = f̂ , then

we are back to the framework of Sect. 3.1.3. In this framework, the operator Aε is
given by

(AεF )(v) = − i ξ

ε2 + |ξ |2 ·
∫

Rd

w F(w) dwM(v) .

We have to adapt the computations of section “Mode-by-Mode Hypocoercivity” to
ε �= 1.

As a first remark, we notice that we do not need any estimate of ‖AεF‖: all
quantities in (42) involving Aε are directly computed except of Re〈TAεF, F 〉.
Estimating Re〈TAεF, F 〉 provides a bound which is independent of ε for the
following reason. When we solveG = AεF , i.e., if (T�)∗F = ε2 G+(T�)∗ T�G,
then

〈TAεF, F 〉 = 〈G, (T�)∗ F 〉 = ε2 ‖G‖2 + ‖T�G‖2 = ε2 ‖AεF‖2 + ‖TAεF‖2 .

By the Cauchy-Schwarz inequality, we know that

〈G, (T�)∗F 〉 = 〈TAεF, (Id −�)F 〉 ≤ ‖TAεF‖ ‖(Id−�)F‖ ,

which proves that ‖TAεF‖ ≤ ‖(Id−�)F‖ and, as a consequence,

|Re〈TAεF, F 〉| ≤ ‖(Id−�)F‖2 .

It is clear that the right-hand side is independent of ε > 0. A better estimate is
obtained by computing as in (37). By doing so, we obtain

|Re〈TAεF, F 〉| ≤ |ξ |2
ε2 + |ξ |2 ‖(Id−�)F‖2 .
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As in section “Fourier Representation and Mode-by-Mode Estimates”, we have
λm = 1, λM = |ξ |2 and the same computations show that

|Re〈AεF, F 〉| ≤ |ξ |
ε2 + |ξ |2 ‖�F‖ ‖(Id −�)F‖ ,

|Re〈AεLF,F 〉| ≤ |ξ |
ε2 + |ξ |2 ‖�F‖ ‖(Id−�)F‖ ,

|Re〈AεT(Id−�)F,F 〉| ≤
√

3 |ξ |2
ε2 + |ξ |2 ‖�F‖ ‖(Id −�)F‖ .

This establishes that (H4) holds with

CM =
|ξ |

(
1+√3 |ξ |

)

ε2 + |ξ |2 ,

∣
∣
∣∣H1,ε[F ] − 1

2
‖F‖2

∣
∣
∣∣ ≤ δ |Re〈AεF, F 〉| ≤ δ |ξ |

ε2 + |ξ |2 ‖�F‖ ‖(Id −�)F‖ ,

and as a consequence it yields an improved version of (7) which reads

1

2

(
1− δ |ξ |

ε2 + |ξ |2
)
‖F‖2 ≤ H1,ε[F ] ≤ 1

2

(
1+ δ |ξ |

ε2 + |ξ |2
)
‖F‖2 . (43)

Notice that the lower bound holds with a positive left-hand side for any ξ only under
the additional condition that

δ < 2 ε .

Anyway, if we allow δ to depend on ξ , the whole method still applies, including for
proving the hypocoercive estimate on ‖F‖2, if the condition

ε2 − δ |ξ | + |ξ |2 ≥ 0

is satisfied for every ξ .
With X := ‖(Id−�)F‖, Y := ‖�F‖, and s = |ξ |, we look for the largest value

of λ for which the right-hand side in

Dε[F ] − λH1,ε[F ]

≥
(

1− δ s2

ε2 + s2
− λ

2

)
X2− δ s

ε2 + s2

(
1+√3 s + λ

)
X Y+

(
δ s2

ε2 + s2
− λ

2

)
Y 2

(44)
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is nonnegative for any X and Y . Recall that s is fixed and δ is a parameter to be
adjusted. If we change the parameter δ into δ∗ such that

δ s

ε2 + s2 =
δ∗ s

1+ s2 , (45)

then the nonnegativity problem of the r.h.s. in (44) is reduced to the same problem
with ε = 1, provided that no additional constraint is added. Let us define

h3(δ, λ, ε, s) := δ2 s2

(
1+√3 s + λ

ε2 + s2

)2

−4

(
1− δ s2

ε2 + s2
− λ

2

) (
δ s2

ε2 + s2
− λ

2

)

with (δ, λ) in the triangle

T ε
m(s) :=

{
(δ, λ) ∈

(
0,

(
1+ ε2 s−2)

λm

)
× (0, 2 λm) : λ < 2

(
λm − δ s2

ε2+s2

) }

and λm = 1. Exactly the same method as in section “Mode-by-Mode Hypocoerciv-
ity” determines the curves s �→ λ3(s) and s �→ δ3(s, ε), but we have λ3(s) = λ2(s)

for any s > 0 while δ2(s) and δ3(s, ε) can be deduced from each other using (45).
Solutions have to satisfy the constraint s �→ (

δ3(s, ε), λ3(s)
) ∈ T ε

m(s) for any
s > 0. It is straightforward to check that (δ, λ) ∈ T ε

m(s) if and only if (δ∗, λ) ∈
T 1
m(s) = Tm(s), where δ∗ is determined by (45). Altogether, our observations can

be reformulated as follows.

Lemma 3 Assume (39). Then for any s > 0, we have

max
{
λ > 0 : (δ, λ) ∈ T ε

m(s) , h3(δ, λ, ε, s) ≤ 0
}

is independent of ε > 0.

To conclude this subsection, we note that, while the Lyapunov functionals H1,ε are
clearly different for different values of ε > 0, mode-by-mode, i.e., for a given value
of s = |ξ |, they all yield the same exponential decay rate λ = λ2(s), when choosing
the best parameter δ = δ3(s, ε). Similarly, no improvement on the constant C as
in (5) is achieved by adjusting ε > 0 when ε is taken into account in (43), for proving
the equivalence of H1,ε[F ] and ‖F‖2. This reflects a deep scaling invariance of the
method.

3.2 Convergence Rates and Decay Rates

In this section, we come back to the study of (21) and consider two situations.
A periodic solution on a small torus has a behaviour driven by high frequencies
corresponding to |ξ | large, while the decay rate of a solution on the whole Euclidean
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space is asymptotically determined by the low frequency regime with ξ → 0. In the
latter case, we use estimates as in Nash type inequalities and relate the time decay
with the behaviour of λ(ξ) in a neighbourhood of ξ = 0.

3.2.1 Exponential Convergence Rate on a Small Torus

Let us assume that X = [0, L)d (with periodic boundary conditions) and consider
the limit as L→ 0+. With the notation of Sect. 3.1.1 and the Fourier transform (22),
the periodicity implies that ξ ∈ (2π/L)Zd and in particular, for any fixed j ∈ Z

d

and ξ = 2π j/L, we have |ξ | → +∞ as L → 0+, unless j = 0. Let us denote
by λL(ξ) the optimal constant in (30) when ξ is limited to (2π/L)Zd \ {0}. We
recall that

λ
 := lim inf
L→0+

inf
ξ∈(2 π/L)Zd\{0}

λL(ξ) ≥ 1−√
3/7

according to Lemma 2. As a consequence, we have the following result.

Proposition 4 For any ε > 0, small, there exists some Lε > 0 such that, if X =
[0, L)d for an arbitrary L ≤ Lε , if f solves (21) with f0 ∈ L2(X×R

d, dx dγ ) and
L = L1 or L = L2, then we have

‖f (t, ·, ·)− f̄ M‖2
L2(dx dγ )

≤ (1+ε) ‖f0− f̄ M‖2
L2(dx dγ )

e−min{2,λ
−ε} t ∀ t ≥ 0 ,

with f̄ := 1
Ld

∫∫
X×Rd f0(x, v) dx dv.

Proof Let us notice that g(t, v) := f̂ (t, 0, v) = ∫
X f (t, x, v) dx solves

∂tg = Lg .

As a consequence either of the definition of L = L2, or of the Gaussian Poincaré
inequality

‖g − f̄ M‖2
L2(dγ )

≤ ‖∇g‖2
L2(dγ )

if L = L1, we know that

‖g(t, ·)− f̄ M‖2
L2(dγ )

≤ ‖g(0, ·)− f̄ M‖2
L2(dγ )

e−2t ∀ t ≥ 0 .

By the Plancherel formula, we have

‖f (t, ·, ·)− f̄ M‖2L2(dx dγ )
= ‖g(t, ·)− f̄ M‖2L2(dγ )

+ (2π)−d
∑

ξ∈(2 π/L)Zd\{0}
‖f̂ (t, ξ, ·)‖2L2(dγ )

.
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The conclusion follows from C(s) =
(

1+ s2 + δ̃2(s) s
)
/

(
1+ s2 − δ̃2(s) s

)
,

‖f̂ (t, ξ, ·)‖2
L2(dγ )

≤ C(|ξ |) ‖f̂0(ξ, ·)‖2
L2(dγ )

e−λL(ξ) t

for any (t, ξ) ∈ R
+ × (2π/L)Zd \ {0}, and the estimates of Lemma 2. ��

3.2.2 Algebraic Decay Rate in the Whole Euclidean Space

As a refinement of [15], we investigate the decay estimates for the solution to (21)
on X = R

d . Here we rely on Nash type estimates.
To start with, let us consider a model problem. Assume that s �→ λ(s) is a positive

non-decreasing bounded function on (0,+∞) and, for any s > 0, let

hλ(M,R, s) := λ(R)
(
ωd R

d M2 − s
)
, λ∗(M, s) := −min

R>0
hλ(M,R, s) ,

whereM is a positive parameter and ωd = |Sd−1|/d . Since hλ(M,R, s) ∼ −λ(R) s
as R → 0+ and hλ(M,R, s) ≥ c Rd for some c > 0 as R → +∞, there is indeed
some R > 0 such that λ∗(M, s) = − hλ(M,R, s) and λ∗(M, s) is positive for any
(M, s) ∈ (0,+∞)2. We also define the monotone decreasing function

ψλ,M(s) := −
∫ s

1

dz

λ∗(M, z)
∀ s ≥ 0 .

Our first result is a decay rate on R
d for a solution of ∂tu = Luwhere the operatorL

acts on the Fourier space as the multiplication of ξ �→ û(ξ) with some scalar
function −λ(ξ)/2, for any ξ ∈ R

d . With just a spectral inequality, we obtain the
following estimate.

Lemma 4 Assume that s �→ λ(s) is a positive non-decreasing bounded function on
(0,+∞) such that, with the above notation, lims→0+ ψλ,μ(s) = +∞ for all μ > 0.
If u ∈ C(R+,L1 ∩ L2(dx)) is such that M := ‖u(t, ·)‖L1(dx) does not depend on t
and

d

dt
|û(t, ξ)|2 ≤ − λ(|ξ |) |û(t, ξ)|2 ∀ (t, ξ) ∈ R

+ × R
d ,

then

‖u(t, ·)‖2
L2(dx)

≤ ψ−1
λ,M

(
t + ψλ,M

(
‖u(0, ·)‖2

L2(dx)

))
∀ t ∈ R

+ .
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Here û denotes the Fourier transform of u in x.

Proof The inspiration for the proof comes from [29, page 935]. Let

y(t) :=
∫

Rd

|û(t, ξ)|2 dξ ≤
∫

|ξ |≤R
‖û(t, .)‖2

L∞(dξ) dξ +
1

λ(R)

∫

Rd

λ(|ξ |) |û(t, ξ)|2dξ

≤ ωd R
d ‖u(t, .)‖2

L1(dx)
− 1

λ(R)

d

dt

∫

Rd

|û(t, ξ)|2 dξ .

Hence,

y ′ ≤ hλ(M,R, y) ,

for any R > 0. Taking the minimum of the r.h.s. over R > 0, we obtain

y ′ ≤ − λ∗(M, y) ,

and the conclusion follows after elementary computations. ��
Example 1 Let us consider a case that we have already encountered in Sects. 3.2.2
and “Mode-by-mode diffusion limit”. If λ(s) = 2 s2 for s ∈ (0, 1), we find that

λ∗(M, s) = 2 d

(
2

ωd M2

) 2
d

(
s

d + 2

)1+ 2
d ∀ s ∈ (0, 1) .

With cd := 1
2

(
(d + 2)/2

)1+2/d
ω

2/d
d , we find

ψλ,M(s) = cd M
4
d

(
s−

2
d − 1

)

and deduce from Lemma 4 that

‖u(t, ·)‖2
L2(dx)

≤
(
‖u(0, ·)‖−

4
d

L2(dx)
+ t

cd
‖u(0, ·)‖−

4
d

L1(dx)

)− d
2 ∀ t ∈ R

+ .

This estimate is similar to the estimate that one would deduce from Nash’s
inequality in the case of the heat equation on R

d . Notice that differentiating this
estimate at t = 0 gives a proof of Nash’s inequality, with the same constant as in
Nash’s proof in [29] (see [17] for a discussion of the optimal constant).



32 A. Arnold et al.

The assumption on u in Lemma 4 is a coercivity estimate for the operator L with
Fourier representation−λ(|ξ |)/2, which allows us to use a Bihari-LaSalle estimate,
i.e., a nonlinear version of Grönwall’s lemma. For the main application in this paper,
we have to rely on a hypocoercivity estimate, which is slightly more complicated.

Lemma 5 Assume that s �→ λ(s) is a positive non-decreasing bounded function on
(0,+∞) such that, with the above notation, lims→0+ ψλ,μ(s) = +∞ for all μ > 0.
Let u ∈ C(R+,L1 ∩ L2(dx)) be such that, for some bounded continuous function
s �→ C(s) such that C(s) ≥ 1 for any s > 0,

|û(t, ξ)|2 ≤ C(|ξ |) |û(0, ξ)|2 e− λ(|ξ |) t ∀ (t, ξ) ∈ R
+ ×R

d

and ‖u(t, ·)‖L1(dx) ≤ M for some M which does not depend on t . Then, for any
t ≥ 0, we have

‖u(t, ·)‖2
L2(dx)

≤ �M,Q(t) , (46)

where Q := ‖u(0, ·)‖L2(dx) and

�M,Q(t) := inf
R>0

(∫ R

0
C(s) e− λ(s) t sd−1 ds ωd d M

2 + sup
s≥R

C(s) e− λ(R) t Q2

)

.

(47)

Proof For any R > 0, we have

∫

|ξ |≤R
|û(t, ξ)|2 dξ ≤

∫

|ξ |≤R
C(|ξ |) e− λ(|ξ |) t dξ ‖û(0, ·)‖2

L∞(Rd ,dξ)

with ‖û(0, ·)‖L∞(Rd ,dξ) ≤ ‖u(0, ·)‖L1(Rd,dx) on the one hand, and

∫

|ξ |>R
|û(t, ξ)|2 dξ ≤ sup

s>R

C(s) e− λ(R) t‖û(0, ·)‖2
L2(Rd ,dξ)

on the other hand. The result follows by optimizing on R > 0. ��
The result of Lemma 5 is not as explicit as the result of Lemma 4, but it is useful

to investigate, for instance, the limit as t → +∞: if lims→0+ C(s) = C(0) > 0 and
λ(s) = 2 s2 for any s ∈ (0, 1), then one can prove that

‖u(t, ·)‖2
L2(dx)

≤ O
(
t−d/2

)
as t → +∞ .

In the spirit of [15], let us draw some consequences for the solution of (21).
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Theorem 2 If f solves (21) for some nonnegative initial datum f0 ∈ L2(Rd ×
R
d, dx dγ ) ∩ L2

(
R
d, dγ ;L1(Rd, dx)

)
and L = L1 or L = L2, then we have the

estimate

‖f (t, ·, ·)‖2
L2(Rd×Rd ,dx dγ )

≤ (2π)−d �M,Q(t)

with M = ‖f0‖L2(Rd ,dγ ;L1(Rd ,dx)), Q = ‖f0‖L2(Rd×Rd ,dx dγ ), and �M,Q(t) defined
by (47) usingC(s) = (2+δ(s))/(2−δ(s)) and λ(s), for any pair (δ, λ) of continuous
functions on (0,+∞) taking values in (0, 2)× (0,+∞), with s �→ λ(s) monotone
non-decreasing, such that the entropy–entropy production inequality (30) and the
equivalence (34) hold.

Here we abusively write λ(ξ) = λ(s) and δ(ξ) = λ(s) with s = |ξ |.
Proof We estimate ‖f (t, ·, ·)‖2

L2(Rd×Rd ,dx dγ )
using (22) and Plancherel’s theorem

∫∫

Rd×Rd

|f (t, x, v)|2 dx dγ = 1

(2π)d

∫∫

Rd×Rd

|f̂ (t, ξ, v)|2 dξ dγ .

Applying the results of Theorem 1 with

C(ξ) = 1+ |ξ |2 + δ(ξ) |ξ |
1+ |ξ |2 − δ(ξ) |ξ | ,

we learn that
∫

Rd

|f̂ (t, ξ, v)|2 dγ ≤ C(ξ)

∫

Rd

|f̂0(ξ, v)|2 dγ e−λ(ξ) t .

We can apply the same strategy as for Lemma 5, with

∫∫

BR×Rd

C(ξ) |f̂0(ξ, v)|2 e−λ(ξ) t dξ dγ ≤
∫

|ξ |≤R
C(ξ) e− λ(ξ) t dξ M2 ,

∫∫

Bc
R×Rd

C(ξ) |f̂0(ξ, v)|2 e−λ(ξ) t dξ dγ ≤ sup
ξ∈Bc

R

C(ξ) e−λ(R) t Q2 ,

using supξ∈Rd |f̂0(ξ, v)| ≤
∫
Rd f0(x, v) dx for the first inequality, and the mono-

tonicity of λ. ��
In practice, any good estimate, for instance the estimate based on the functions

(δ̃2, λ̃2) of Proposition 3, provides us with explicit and constructive decay rates of
the solution to (21) on R

d . As a concluding remark, it has to be made clear that the
method is not limited to the operators L1 and L2.
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4 The Goldstein–Taylor Model

4.1 General Setting and Fourier Decomposition

Consider the two velocities Goldstein–Taylor (GT) model (cf. [21, § 1.4]) with
constant relaxation coefficient σ > 0, position variable x ∈ X ⊆ R, and t > 0:

∂tf+(t, x)+ ∂xf+(t, x) = σ

2

(
f−(t, x)− f+(t, x)

)
,

∂t f−(t, x)− ∂xf−(t, x) = −σ
2

(
f−(t, x)− f+(t, x)

)
,

f±(x, 0) = f±,0(x) ,

(48)

where f±(t, x) are the density functions of finding a particle with a velocity ±1 in
a position x at time t > 0 and f±,0 ∈ L1+(X) is the initial configuration. This model
is the prime example of discrete velocity BGK equations, as described in Sect. 2.2,
Example 2, with b = (1/2, 1/2)T and V = diag(1,−1). We consider two situations
for X, the one-dimensional torus and the real line, i.e., X ∈ {T,R}.

Rewriting (48) in the macroscopic variables of (mass and flux densities)

u(t, x) := f+(t, x)+ f−(t, x) ≥ 0 , v(t, x) := f+(t, x)− f−(t, x) ,

leads to the transformed equations

∂tu(t, x) = − ∂xv(t, x) ,
∂tv(t, x) = − ∂xu(t, x)− σ v(u, x) ,

(49)

for x ∈ X, t ≥ 0. Integrating these equations along X directly shows that the total
mass is conserved for all times, i.e.

∫
X u(t, x) dx ≡

∫
X u(x, 0) dx, and that the total

flux is decaying exponentially, i.e.
∫
X v(t, x) dx = e−σ t

∫
X v(x, 0) dx for t ≥ 0.

A Fourier transformation in the space variable x ∈ X leads to ODEs of form (10),
given explicitly as

∂t ŷ(t, ξ) = −C(ξ, σ ) ŷ(t, ξ) (50)

with

ŷ(t, ξ) :=
(
û(t, ξ)

v̂(t, ξ)

)
and C(ξ, σ ) :=

(
0 i ξ

i ξ σ

)
,

for the Fourier modes ξ ∈ Z in the case of X = T, and ξ ∈ R for X = R.
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The matrix C(ξ, σ ) from (50) has the eigenvalues

λ±(ξ, σ ) := σ

2
±

√
σ 2

4
− ξ2

and hence its modal spectral gap is given by

μ(ξ, σ ) := Re

⎛

⎝σ

2
−

√
σ 2

4
− ξ2

⎞

⎠ , ξ �= 0 . (51)

For X = R, the modal spectral gap takes all values in the interval (0, σ/2] with
limξ→0 μ(ξ, σ ) = 0. To obtain decay estimates with the sharp decay rate of
solutions y(t, ξ) to (49) it is therefore important to achieve precise estimates of
the decay behavior as ξ → 0. For X = T, the spectral gap for solutions to (49)
corresponds to the uniform-in-Z spectral gap, i.e.

μ(σ) := min
ξ∈Z\{0}μ(ξ, σ ) .

The set of modal spectral gaps which coincide with the uniform spectral gap is
denoted by �(σ) and depends on the values of σ > 0:

• For σ ∈ (0, 2] it follows that

μ(σ) = σ

2
, �(σ) = Z \ {0} .

• For σ > 2 the lowest modes determine the uniform-in-Z spectral gap,

μ(σ) = μ(±1, σ ) = σ

2
−

√
σ 2

4
− 1 , � = {−1, 1} . (52)

Now, we consider the two hypocoercivity methods from Sects. 2.1 and 2.2 for
solutions ŷ(t, ξ) of (50) for fixed but arbitrary modes ξ .

Approach of Sect. 2.2 For equations of form (10), we consider the modal Lya-
punov functionals ‖ŷ(t, ξ)‖2

P(ξ,σ ) with deformation matrices P(ξ, σ ). These func-
tionals satisfy the explicit estimates of form (16), which go as follows:

• For fixed |ξ | �= σ/2, |ξ | > 0 the matrix C(ξ, σ ) is not defective and it follows
from Lemma 1 that

‖ŷ(t, ξ)‖2
P(ξ,σ ) ≤ e−2μ(ξ,σ ) t ‖ŷ(ξ, 0)‖2

P(ξ,σ ) , (53)
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with P(ξ, σ ) = P (1)(ξ, σ ) for |ξ | > σ/2 and P(ξ, σ ) = P (2)(ξ, σ ) for |ξ | <
σ/2, where

P (1)(ξ, σ ) :=
(

1 − i σ
2 ξ

i σ
2 ξ 1

)

, P (2)(ξ, σ ) :=
(

1 − 2 i ξ
σ

2 i ξ
σ

1

)

. (54)

• For |ξ | = σ/2 the matrix C(ξ, σ ) is defective. Then, due to [9, Lemma 4.3], for
any ε > 0 there exists an ε-dependent matrix that yields the purely exponential
decay μ(σ/2)− ε. For later purposes it will be sufficient to investigate the case
σ = 2 with ξ = 1, see Sect. 4.2.2. Hence, we will not state the general form here.

Approach of Sect. 2.1 With notation from Theorem 1, the Goldstein–Taylor
equation in Fourier modes (50) can be written as

∂t ŷ(t, ξ) =
(
L(σ )− T(ξ)

)
ŷ(t, ξ) .

The Hermitian collision matrix and the anti-Hermitian transport matrix are, respec-
tively, given as

L(σ ) :=
(

0 0
0 − σ

)
, T(ξ) :=

(
0 i ξ

i ξ 0

)
.

The projection on the space of local-in-x equilibria (satisfying L(σ )� = 0) is given
by the matrix

� :=
(

1 0
0 0

)
.

We introduce the operator A(ξ) as in (2) for each mode ξ :

A(ξ) :=
(

Id+ (
T(ξ)�

)∗ T(ξ)�
)−1 (

T(ξ)�
)∗ =

(
0 − i ξ

1+ξ2

0 0

)

.

The modal Lyapunov functional (3) is given as

H1(ξ, δ)[ŷ(ξ)] := 1

2
‖ŷ(ξ)‖2 + δ Re

(
ŷ(ξ)∗ A(ξ) ŷ(ξ)

)

= 1

2
‖ŷ(ξ)‖2 + δŷ(ξ)∗AH (ξ) ŷ(ξ)

= 1

2
ŷ(ξ)∗

(
1 − i ξ δ

1+ξ2

i ξ δ

1+ξ2 1

)

ŷ(ξ) , (55)

where we denote the Hermitian part of the matrix A by AH := 1
2 (A+ A∗).
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4.2 Comparison of the Two Hypocoercivity Methods for X = T

In the next step we shall assemble, for both hypocoercivity methods, the modal
Lyapunov functionals to form a global one. When appropriately optimizing both of
these functionals, we shall see that they actually coincide and achieve optimal decay
estimates in the class of all quadratic forms.

4.2.1 The Optimal Global Lyapunov Functional

We start by applying the strategies outlined in Sect. 2.2 to assemble a global L2(T)

functional. For simplicity, let us first assume that the matrix C(ξ, σ ), ξ ∈ Z of (50)
is diagonalizable for all modes, i.e. σ �∈ 2Z. A brief discussion of the defective
cases is deferred to the end of this section.

We first consider Strategy 1 of Sect. 2.2 that leads to the functional

H2[y] :=
∑

|ξ |>σ/2

‖ŷ(ξ)‖2
P (1)(ξ)

+
∑

|ξ |<σ/2

‖ŷ(ξ)‖2
P (2)(ξ)

, y ∈ (L2(T))2 , (56)

according to definition (17). Assuming that the system has total mass 0, i.e.∫
T
u(x, 0) dx = 0, we obtain that solutions y(t) of (49), (50) satisfy the estimate:

‖y(t)‖2 ≤ cP e
−2μ(σ) t ‖y(0)‖2 , (57)

where

c̄P := max

{

sup
|ξ |>σ/2

[
cond

(
P (1)(ξ)

)]
, sup
|ξ |<σ/2

[
cond

(
P (2)(ξ)

)]
}

. (58)

To improve upon the multiplicative constant cP in (57), we continue with
Strategy 2 of Sect. 2.2.

• For the case σ < 2 the functional H2 and (58) directly yield the optimal
multiplicative constant. With notation from Sect. 2.2 this follows from � =
Z \ {0} and cP = c� = cond

(
P (1)(±1)

) = (2 + σ)/(2 − σ). In this case
the two eigenvalues of the ODE system matrix C(ξ) are distinct and form a
complex conjugate pair. Hence, the multiplicative constant cP is the optimal
constant within the family of form (57), as has been shown in [4, Theorem 3.7].

• For the case σ > 2, σ �∈ 2Z, the lowest modes have the slowest decay:
� = {−1, 1} with c� = cond

(
P (2)(±1)

) = (σ + 2)/(σ − 2). The multiplicative
constant c� is not the smallest possible multiplicative constant in (57). However,
according to [4, Theorem 4.1] it is the best possible multiplicative constant
achievable by Lyapunov functionals that are quadratic forms. As σ > 2 it follows
that c̄P > c�, and hence we replace the functionals ‖ · ‖2

P (1)(ξ)
and ‖ · ‖2

P (2)(ξ)
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for the faster decaying modes ξ �∈ �, ξ �= 0. Let us define

P
(1)
(ξ) :=

(
1 − 2 i

σ ξ
2 i
σ ξ

1

)

, ξ �∈ �, ξ �= 0,

and notice that P
(1)
(ξ) satisfies the matrix inequality

C∗(ξ) P (1)
(ξ)+ P

(1)
(ξ) C(ξ) ≥ 2μP

(1)
(ξ) , ξ �∈ � , ξ �= 0 , (59)

where μ is the explicitly given uniform-in-Z spectral gap (52). Furthermore, as

cond
(
P
(1)
(ξ)

) ≤ cond
(
P
(1)
(±1)

) = (σ + 2)/(σ − 2), it satisfies the estimate

cond
(
P
(1)
(ξ)

) ≤ c�(σ). Thus, the choice ‖ · ‖
P
(1)
(ξ)

for ξ �∈ �(σ) and ξ �= 0

leads (via (19)) to the global functional for y ∈ (L2(T))2, given as

H̃2[y] :=
∑

ξ∈�
‖ŷ(ξ)‖2

P (2)(ξ)
+

∑

ξ �∈�,ξ �=0

‖ŷ(ξ)‖2
P
(1)
(ξ)
=

∑

ξ∈Z\{0}
‖ŷ(ξ)‖2

P
(1)
(ξ)

,

where the equality follows as P (2)(±1) = P
(1)
(±1). H̃2 yields decay with sharp

rate 2μ(σ) given by (52) and, within the family of quadratic forms, the optimal
multiplicative constant c�(σ) in (57).

In summary, for arbitrary σ > 0, σ �∈ 2Z, Strategy 2 of Sect. 2.2 yields the
global Lyapunov functional

H̃2(σ )[y] :=
∑

ξ∈Z\{0}
‖ŷ(ξ)‖2

P(ξ,θ(σ ))
, y ∈ (L2(T))2 , (60)

where

P (ξ, θ) :=
(

1 − i θ
2 ξ

i θ
2 ξ 1

)

, θ (σ ) :=
{
σ , 0 < σ < 2 ,
4
σ
, σ > 2 .

(61)

Next, we turn to the method of Sect. 2.1 and derive another global L2(T)

functional that is based on the modal functionals (55):

H1(δ)[y] :=
∑

ξ∈Z\{0}
H1(ξ, δ)[ŷ(ξ)] , y ∈ (L2(T))2 .

In [21, § 1.4] the parameter δ ∈ (0, 2) was chosen independent of ξ . But optimizing
the resulting decay rate of H1(δ) w.r.t. the parameter δ ∈ (0, 2) yields non-sharp
decay rates (as derived in [21, § 1.4] for λm = σ = 1). Hence, we shall optimize
here each modal functional H1(ξ, δ(ξ)) w.r.t. the parameter δ.
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For y ∈ (L2(T))2 and arbitrary σ > 0, σ �∈ 2Z, the resulting functional is given
as

H̃1(σ )[y] := 2
∑

ξ∈Z\{0}
H1

(
ξ, δ(ξ, σ )

) [ŷ(ξ)] , (62)

with the optimal parameter δ(ξ, σ ) := θ(σ ) (1+ξ2)

2 ξ2 ∈ (0, 2) and θ(σ ) defined in (61).

The following theorem relates H̃1 to the previously defined functional H̃2, given
respectively by (62) and (60).

Theorem 3 For y ∈ (L2(T))2 and arbitrary σ > 0, σ �∈ 2Z it follows that

H̃1(σ )[y] = H̃2(σ )[y] .

Proof Thanks to previous considerations, the proof is now straightfoward. For each
mode ξ ∈ Z \ {0}, the identity

2H1
(
ξ, δ(ξ, σ )

) [ŷ] = ‖ŷ‖2
P(ξ,θ(σ ))

, ŷ ∈ C
2 (63)

follows by setting δ = δ(ξ, θ) in (55). ��

4.2.2 The Defective Cases

For σ �= 2 the defective modes |ξ | = σ/2 do not exhibit the slowest decay of
all modes, i.e. ξ �∈ � as defined in Sect. 2.2. The functional ‖ · ‖2

P
(1)
(ξ)

yields

the sufficient decay rate 2 μ̄(σ ), along with multiplicative constants that are small

enough, i.e., cond
(
P
(1)
(ξ)

) ≤ c�(σ). It follows that Strategy 2 of Sect. 2.2 again
yields the functional H̃2 as defined in (60).

The case σ = 2 is the only case where the defective modes correspond to the
slowest modal decay, i.e. ξ = ±1 ∈ �. Then, for arbitrarily small ε > 0 the
modified norm ‖ · ‖2

P(ξ,θε)
, defined in (61), with

θε := 2
2− ε2

2+ ε2 , (64)

yields the exponential decay rate 2
(
μ(2)−ε)

for all modes |ξ | �= 0. Due to the lack
of an eigenvector basis in the defective case, constructing the matrix P (ξ, θε) results
in a decay estimate of form (57) with multiplicative constant cε =

√
2/ε. The blow-

up limε→0+ cε = +∞ reflects the fact that the true decay behaviour of solutions
in this defective setting is not purely exponential with rate 2μ(2), but rather
exponential times a polynomial in time t . An approach based on more involved time-
dependent Lyapunov functionals yields estimates with the sharp defective decay
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behaviour. As the time-dependent construction is besides our focus, we simply refer
to [10] for further details.

4.2.3 Decay Results for the Case X = T

In this subsection we start by refining the general strategy of Sect. 3.1.3 to extract
the sharp decay rate for the GT model from the functional H̃1. Subsequently, we
conclude the torus case by expressing the global Lyapunov functional in the spatial
variable.

In Theorem 3 above, we establish that both functional constructions (as described
in Sect. 2.1) coincide for the GT equation if one chooses the appropriate parameter
δ(ξ) for H̃1. Now, we compare both approaches of Sect. 2.1 to extract explicit decay
rates from the functional.

The Strategy 2 of Sect. 2.2 for H̃2 is based on modal matrix inequalities, (59),
which prove the sharp global decay rate 2μ as already discussed in Sect. 4.2.1.

The general method of Sect. 2.1 for H̃1 (and its improvements of Sect. 3.1) is to
estimate the entropy–entropy production inequality D[y] − λ H̃1[y] ≥ 0 in terms of
‖(Id −�) y‖ and ‖�y‖ that are then optimized for λ. As assumed in Sect. 3.1, we
restrict our discussion to λm = 1 which requires the relaxation rate σ = 1. Applying
Proposition 3 to the modal equation (50) for ξ = ±1 yields the decay estimates

H1

(
±1, δ̃2(1)

)
[ŷ(±1, t)] ≤ e−λ̃(1) t H1

(
±1, δ̃2(1)

)
[ŷ(±1, 0)]

with non-optimal modal decay rate λ̃(1) ≈ 0.165 and parameter δ̃2(1) ≈ 0.325.
Higher modes, |ξ | > 1, yield higher decay rates (cf. Lemma 2), but as

inf
ξ∈Z\{0}

λ̃(|ξ |) = λ̃(1) < 2μ(1) = 1 ,

the optimal global rate cannot be recovered. One cause for not reaching the sharp
rate is that Proposition 3 approximates the entropy–entropy production inequality
condition to obtain readable formulas (via the discriminant h̃2 as defined in (41)).
But even omitting approximations when optimizing δ does not yield sharp decay
rates λ(|ξ |) = 1 for our example.

This is not surprising as Sect. 3.1.4 provides explicit estimates with a general
hypocoercive setting in mind. In order to obtain sharp decay rates for the GT model,
we sacrifice this generality and refine the strategy for the simple structure at hand.
The reduction of the continuous velocity space velocity space v ∈ R (as defined
in Sect. 3.1.1) to two discrete velocities in the GT setting allows the following
modifications: With the notation of Sect. 4.1 it

A(ξ)T(ξ)(Id −�)ŷ = 0 , ŷ ∈ C
2 .



Rates in Fourier Based Hypocoercivity Methods 41

Thus, the constant CM as defined in (39) improves to CM = |ξ |
1+|ξ |2 . Additionally, as

A(ξ) (L+ λ Id) =
(

0 i ξ (1−λ)
1+ξ2

0 0

)

,

it follows that

∣
∣
∣Re

〈
A(ξ) (L+ λ Id)ŷ(ξ) , ŷ(ξ)

〉∣∣
∣ ≤ |ξ |

1+ |ξ |2 (1− λ)X Y ,

for 0 ≤ λ ≤ 1, where X := ‖(Id−�)ŷ‖ = ‖v‖ and Y := ‖�ŷ‖ = ‖u‖. Then, as a
refinement of (40) for the GT equation with H1(ξ, δ) from (55) it follows that

D(ξ, δ)[ŷ] − λH1(ξ, δ)[ŷ]

≥
(

1− δ ξ2

1+ ξ2
− λ

2

)
X2 − δ Re〈A (L− λ Id) F, F 〉 +

(
λ ξ2

1+ ξ2
− λ

2

)
Y 2

≥
(

1− δ ξ2

1+ ξ2 −
λ

2

)
X2 − δ |ξ | (1− λ)

1+ ξ2 X Y +
(

λ ξ2

1+ ξ2 −
λ

2

)
Y 2 .

The refined discriminant condition is then given by the non-positivity of

hGT(δ, λ) := δ2 ξ2

(1+ ξ2)2
(1− λ)2 − 4

(
1− δ ξ2

1+ ξ2 −
λ

2

) (
δ ξ2

1+ ξ2 −
λ

2

)
.

It can be verified directly that δ(ξ) := 1+ξ2

2 ξ2 for ξ �= 0 yields hGT
(
δ(ξ), 1

) = 0.
Hence we recover the sharp exponential decay rate λ(|ξ |) = 2μ(1) = 1 for the
modal equations (50) for all ξ ∈ Z \ {0} with σ = 1.

With this we have shown that refining the method of Sect. 3.1.3 for the GT model
(with σ = 1) allows us to recover the sharp global decay rate from the global
functional H̃1, as defined in (62).

In Sect. 4.2 above we show that both hypocoercive methods from § I lead to the
same global Lyapunov functional for arbitrary σ > 0. We conclude this subsection
by leaving the modal formulation behind and expressing this global functional in
the spatial variable.

In [7] the authors define an explicit spatial Lyapunov functional that yields
the sharp, purely exponential decay rates and best possible multiplicative constant
(reachable via quadratic forms) for each σ > 0:

Definition 1 Let u, v ∈ L2 (T) be real-valued and let θ ∈ (0, 2) be given. We then
define the functional Eθ [u, v] as

Eθ [u, v] := ‖u‖2
L2(T)

+ ‖v‖2
L2(T)

− θ

2π

∫ 2π

0
v ∂−1

x u dx .
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Here, the anti-derivative of u is defined as

∂−1
x u(x) :=

∫ x

0
u dy −

(∫ x

0
u(y) dy

)

avg
, (65)

where uavg := 1
2π

∫ 2π
0 u dx = û(0).

Theorem 4 For u, v ∈ L2(T) and arbitrary σ > 0, σ �∈ 2Z it follows that

H̃1(σ )
[
u− uavg, v

] = Eθ(σ )
[
u− uavg, v

]
, (66)

with H̃1 defined in (62).

Proof As in [7, § 4.3], we use Parseval’s identity and the fact that (i k)−1 is the
(discrete) Fourier symbol of ∂−1

x as defined in (65). For the total entropy of arbitrary
y := (u, v)T ∈ (L2(T))2, with uavg = 0, we deduce from (63) that

H̃1(σ )[y] + ‖v̂(0)‖2 =
∑

k∈Z\{0}
‖ŷ(ξ)‖2

P(ξ,θ(σ ))
+ ‖v̂(0)‖2

= 1

2π

∫ 2π

0

(
|u|2 + |v|2 − θ(σ ) v ∂−1

x u
)
dx

= Eθ(σ )[u, v] .

��
In the following result we recall from [7, Theorem 2.2.a] the optimal exponential

decay for y(t) to the steady state y∞ = (uavg, 0)T , both in the functional Eθ
and in the Euclidean norm. Mild solution refers to the terminology of semigroup
theory [31].

Theorem 5 Let (u, v) ∈ C([0,∞); (L2 (T))2) be a mild real valued solution
to (49) with initial datum u0, v0 ∈ L2 (T) and define uavg := 1

2π

∫ 2π
0 u0(x) dx.

• If σ �= 2 then

Eθ(σ )[u(t)− uavg, v(t)] ≤ Eθ(σ )[u0 − uavg, v0] e−2μ(σ) t ∀ t ≥ 0 ,

where

θ (σ ) :=
{
σ , 0 < σ < 2
4
σ
, σ > 2

, μ (σ) :=
⎧
⎨

⎩

σ
2 , 0 < σ < 2
σ
2 −

√
σ 2

4 − 1 , σ > 2
.
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Consequently we obtain the decay estimate

∥
∥
∥∥f (t)−

(
f∞
f∞

)∥
∥
∥∥

L2(T)

≤ Cσ

∥
∥
∥∥f0 −

(
f∞
f∞

)∥
∥
∥∥

L2(T)

e−μ(σ) t ∀ t ≥ 0 ,

where the decay rate μ(σ) is sharp and

Cσ :=
√

2+ σ

|2− σ | , f (t) :=
(
f+(t)
f−(t)

)
, f∞ = 1

2
uavg , f0 :=

(
f+,0
f−,0

)
.

• If σ = 2 then for any 0 < ε < 1

Eθε [u(t)− uavg, v(t)] ≤ Eθε [u0 − uavg, v0] e−2 (1−ε) t ∀ t ≥ 0

with θε defined as in (64) and we have that

∥∥
∥
∥f (t)−

(
f∞
f∞

)∥∥
∥
∥

L2(T)

≤
√

2

ε

∥∥
∥
∥f0 −

(
f∞
f∞

)∥∥
∥
∥

L2(T)

e−(1−ε) t ∀ t ≥ 0 .

4.3 Decay Results for the Case X = R

We consider the GT model with position x on the real line and prove two global
decay estimates with sharp algebraic rate. Our first goal is to obtain modal decay
estimates of general form (46) with modal constants C(|ξ |) as small as possible.
As we discuss below, a straightforward application of Lemma 5 with Strategy 1
of Sect. 2.2 is not possible due to the appearance of a defective eigenvalue in
the modal equation (50). To avoid this difficulty we shall use a non-sharp decay
estimate as input to apply Lemma 5. Our second goal is to construct a simple spatial
functional that closely approximates our first result. To achieve this, we construct
modal Lyapunov functionals that yield slightly less precise estimates but have the
advantage of representing a more convenient pseudo-differential operator.

To simplify notation, we assume that σ = 1 in the present section. This is
no restriction, as the general case σ > 0 in (48) can always be reduced to the
normalized one thanks to the rescaling t̃ = σ t , x̃ = σ x.

A natural approach to obtain a decay estimate for X = R is an application of
Lemma 5 to the decay estimates (53) with the matrices P (1) and P (2) of (54) for
σ = 1. The extension of Strategy 1 of Sect. 2.2 to ξ ∈ R leads to (57). But as
cond

(
P (1)(ξ)

) → ∞ and cond
(
P (2)(ξ)

) → ∞ for |ξ | → 1/2, it follows that
the multiplicative constants in (57) become unbounded. This is due to the defective
limit of the modal equation (50) at |ξ | = 1/2. The modal Lyapunov functionals
with sharp rate depend on the eigenspace structure, which has a discontinuity at
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|ξ | = 1/2 and the decay rates are not purely exponential there. Hence, we cannot
directly use Lemma 5 with sharp rates.

Therefore, the natural and in fact sharper approach is to start with the exact modal
decay function (instead of an exponential approximation): for 2 × 2 ODE systems,
this decay function was given in [4, Proposition 4.2]:

‖ŷ(t, ξ)‖2
2 ≤ h+(t, ξ) ‖ŷ(0, ξ)‖2

2 ∀ t ≥ 0 , (67)

where h+(t, ξ), the squared propagator norm associated with (50), is explicitly
given in [4]. Since this function is continuous at the defective point ξ = 1/2 for
all t ≥ 0 (see Fig. 6), one could easily extend Lemma 5 to this setting. But, since
h+(t, ξ) is a quite involved function, the minimization w.r.t. R (as in (47)) could
only be carried out numerically. In order to come up with an explicit decay estimate,
we shall therefore rather approximate the modal (exponential) decay estimates that
are used as a starting point for Lemma 5. We now approximate the decay estimate
for large frequencies |ξ |, but keep the sharp estimates for |ξ | small.

Fig. 6 The mapping |ξ | = s �→ h+(t, s) shows the continuous modal dependency of the squared
propagator norm of C(ξ, 1) for fixed times t . Note that the kinks are no numerical artefact
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Lemma 6 Assume that R ∈ (0, 1/2) and let ŷ(t, ξ) be a solution to (50). Then,

‖ŷ(t, ξ)‖2 ≤ c(ξ) e−λ(ξ) t ‖ŷ(0, ξ)‖2 , ∀ ξ ∈ R \ {0} , ∀ t ≥ 0 , (68)

with c(ξ) =
⎧
⎨

⎩

1+2 |ξ |
1−2 |ξ | , |ξ | < R ,

|ξ |+2R2

|ξ |−2R2 , |ξ | ≥ R ,
λ(ξ) =

{
2μ(ξ) , |ξ | < R ,

2μ(R) , |ξ | ≥ R .

Proof For every |ξ | < R, the modal functional ‖ · ‖2
P (2)(ξ)

, as defined in (54), yields
the sharp modal decay

2μ(ξ) := 2μ(ξ, 1) = 1−
√

1− 4 ξ2 ,

given by (51). The condition number of P (2)(ξ) is given as

c(ξ) := cond
(
P (2)(ξ)

)
= 1+ 2 |ξ |

1− 2 |ξ | ≤
1+ 2R

1− 2R
, |ξ | < R . (69)

For |ξ | ≥ R we use the rescaled version of ‖ · ‖2
P
(1)
(ξ)

(from Sect. 4.2.1, but now

for X = R), given as ‖ · ‖2
P(ξ)

, with the matrix

P (ξ) :=
(

1 − 2 i R2

ξ
2 i R2

ξ
1

)

. (70)

As this matrix satisfies the inequality

C∗(ξ)P (ξ)+ P (ξ)C(ξ) ≥ 2μ(R)P(ξ), |ξ | ≥ R, (71)

the functional ‖ · ‖2
P (ξ)

yields an exponential decay 2μ(R) for all modes |ξ | ≥ R.

The condition number of P (ξ) is given as:

c(ξ) := cond
(
P(ξ)

) = |ξ | + 2R2

|ξ | − 2R2 ≤ cond
(
P (R)

) = 1+ 2R

1− 2R
, |ξ | ≥ R ,

(72)

from which the desired result follows. ��
We can now apply Lemmas 5 and 6 to obtain following global decay estimate.

Proposition 5 Let y := (u, v)T be a solution of the Goldstein–Taylor equation (49)
on R with σ = 1 and initial datum y0 := (u0, v0)

T , such that u0, v0 ∈ L1(R) ∩
L2(R). Let the modal spectral gap, defined in (51), be denoted as μ(ξ) := μ(ξ, 1).
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Then, for any t ≥ 0 it follows that

‖y(t)‖2L2(R)
≤ inf

0<R< 1
2

1+ 2R

1− 2R

(
2 min

{
B(t, R)√

t
, R

}
‖y0‖2L1(R)

+ e− 2μ(R) t ‖y0‖2L2(R)

)

with B(t, R) := √t ∫ R

0 e−2μ(s) tds ∈ [
0,
√
π/8

)
.

Proof Applying Lemma 5 to the modal decay estimates (68) and taking into account
the estimates (69) and (72) leads to the decay result where, for B(t, R), we use the
estimate μ(|ξ |)/ξ2 = (

1/2 − √
1/4− ξ2

)
/ξ2 ≥ 1 for 0 ≤ |ξ | ≤ 1/2. The bound

on B follows from B(t, R) ≤ √t ∫∞
0 e−2 ξ2 t dξ . ��

Remark 3 The decay result of Proposition 5 is neither explicit in the optimization
with respect toR (for fixed t), nor optimal, as this would require an approach starting
from (67). It is however the best possible estimate of form (46) achievable with
quadratic forms for each mode. This follows, as for one, the modal functionals for
|ξ | ≤ R, ξ �= 0 are optimal for quadratic forms (cf. the discussion on P (2)(ξ)

in Sect. 4.2.1). Additionally, the modal functionals for |ξ | ≥ R are sufficient (in
light of Lemma 5) as they yield the sufficient decay 2μ(R) and the sufficient
multiplicative constants sup|ξ |≥R c(ξ) = sup|ξ |<R c(ξ) = (1 + 2R)/(1 − 2R).
In analogy to Sect. 2.2 the decay stated in Proposition 5 results from the global
functional

Ĥ2(R)[y] :=
∫

(−R,R)
‖ŷ(ξ)‖2

P (2)(ξ)
dξ +

∫

|ξ |≥R
‖ŷ(ξ)‖2

P(ξ)
dξ .

As our final result, we shall consider an alternative modal functional for the GT
equation on R that translates into a convenient representation in the spatial variable.
The trade-off is a less accurate global decay estimate.

The result of Proposition 5 was based on the modal Lyapunov functional ‖·‖2
P (ξ)

for large modes and ‖ · ‖2
P (2)(ξ)

for small modes. Now, we replace both functionals

by the single norm ‖ · ‖2
P̃ (ξ)

with the positive definite Hermitian matrix

P̃ (ξ) :=
(

1 − 2 i ξ
1+4 ξ2

2 i ξ
1+4 ξ2 1

)

, ξ �= 0 , (73)

which asymptotically approximates the matrices from (54) which yield sharp modal
decay. For the off-diagonal matrix elements we have

P̃12(ξ)− P
(1)
12 (ξ) = o

(
P
(1)
12 (ξ)

)
as |ξ | → +∞ ,

P̃12(ξ)− P
(2)
12 (ξ) = o

(
P
(2)
12 (ξ)

)
as |ξ | → 0 .
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�

�

Fig. 7 Exponential decay rate μ̃ in comparison to the sharp exponential rate μ, shown as functions
of the spatial frequency s = |ξ |

It satisfies the matrix inequality (12) with P = P̃ (ξ) and the spectral gap μ

replaced by

μ̃(ξ) = 1

2

(

1− 1
√

1+ 4 ξ2 (1+ 4 ξ2)

)

.

The rate 2 μ̃(ξ) is an approximation to the sharp decay rate 2μ(ξ) of fifth order for
modes ξ close to 0, see Fig. 7. The condition number of P̃ (ξ) is given by

c̃(ξ) := cond
(
P̃ (ξ)

)
:= 1+ 2 |ξ | + 4 ξ2

1− 2 |ξ | + 4 ξ2 , (74)

and hence we arrive at the modal decay estimates for ξ �= 0:

‖ŷ(t, ξ)‖2 ≤ c̃(ξ) e−2 μ̃(ξ) t ‖ŷ(0, ξ)‖2 , t ≥ 0 . (75)

We define the global Lyapunov functional

H3[y] :=
∫

R

‖ŷ(ξ)‖2
P̃ (ξ)

dξ .

As we shall see now, this can be rewritten in x-space (without resorting to the
ξ -modes) in terms of a fairly simple pseudo-differential operator, similar to the
functional Eθ [y] from Definition 1. Moreover, it is easily related to the functional
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H1[y] from Sect. 2.1: on the symbol level it holds that functional H3(ξ) =
2H1(2 ξ, δ = 1), see (73), (55).

Proposition 6

(a) For u, v ∈ L2(R), the functional H3 can be expressed as

H3[u, v] = ‖u‖2
L2(R)

+ ‖v‖2
L2(R)

− 4
∫

R

u(x) ∂x
(
1− 4 ∂2

x

)−1
v(x) dx .

(b) Let y := (u, v)T ∈ C([0,∞); (L2 (R))2
)

be a mild real valued solution to (49)
with σ = 1 and initial datum u0, v0 ∈ L1(R) ∩ L2(R). Then, the functional H3
yields the decay estimate

‖y(t, x)‖2L2(R)

≤ inf
0<R≤

√
5−1
4

(
1+2R+4R2

1−2R+4R2 min
{

2R,
√

π
2 t

}
‖y0‖2L1(R)

+ 3 e−2 μ̃(R) t ‖y0‖2L2(R)

)
.

Proof With Plancherel’s identity it follows that

H3[y] =
∫

R

‖ŷ(ξ)‖2
P̃ (ξ)

dξ = ‖u‖2L2(R)
+ ‖v‖2L2(R)

+ 2 Re

(∫

R

2 i ξ û(ξ)
v̂(ξ)

1+ 4 ξ2
dξ

)

= ‖u‖2L2(R)
+ ‖v‖2L2(R)

− 4
∫

R

u(x) ∂x
(
1− 4 ∂2

x

)−1
v(x) dx .

To prove the decay estimate, we apply Lemma 5 to (75). The multiplicative
constant c̃(ξ) from (74) is monotonously increasing for ξ ∈ [0, 1/2] to its global

maximum cond
(
P̃ (1/2)

)
= 3. For the integral in (47) with c̃(ξ), we estimate

∫

|ξ |≤R
c̃(ξ) e−2 μ̃(ξ) t dξ ≤ c̃(R)

∫

|ξ |≤R
e−ξ2α(ξ) t dξ

with

α(ξ) := 1

ξ2

(

1− 1
√

1+ 4 ξ2 (1+ 4 ξ2)

)

.

One easily sees that α has a local minimum at ξ = 0 with α(0) = α(ξ1) = 1,

ξ1 =
(√

5− 1
)
/4 ≈ 0.3, i.e. for 0 < R <

(√
5 − 1

)
/4 it holds that α(ξ) ≥ 1

for all |ξ | < R. Thus, for 0 < R <
(√

5 − 1
)
/4 and t > 0, the desired result

follows. ��
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Quantum Drift-Diffusion Equations
for a Two-Dimensional Electron Gas
with Spin-Orbit Interaction

Luigi Barletti, Philipp Holzinger, and Ansgar Jüngel

Abstract Quantum drift-diffusion equations are derived for a two-dimensional
electron gas with spin-orbit interaction of Rashba type. The (formal) derivation
turns out to be a non-standard application of the usual mathematical tools, such as
Wigner transform, Moyal product expansion and Chapman–Enskog expansion. The
main peculiarity consists in the fact that a non-vanishing current is already carried
by the leading-order term in the Chapman–Enskog expansion. To our knowledge,
this is the first example of quantum drift-diffusion equations involving the full spin
vector. Indeed, previous models were either quantum bipolar (involving only the
spin projection on a given axis) or full spin but semiclassical.

1 Introduction

Spintronics is an alternative to electronics, where the bit of information is carried by
the spin polarization and not by the current [25]. Spintronics must not be confused
with quantum computing: in the latter, both the information and its processing are
based on a relatively small number of spins and are completely subject to the laws of
quantum mechanics; in the former, the spin carriers are a large population and only
the polarization is the result of an average of many single spins. Also in the case of
spintronics, each spin carrier is subject to the laws of quantum mechanics and, for
an accurate simulation of the behaviour of a spintronic device, it is very important to
include quantum mechanical effects in the mathematical models. A systematic way
to construct mathematical models of quantum fluids (diffusive or hydrodynamic)
has been introduced by Degond, Ringhofer, and Méhats in Refs. [8, 9] (see also the
exposition in [16]). Their strategy is based on the quantum mechanical version of the
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Maximum Entropy Principle (MEP), which basically says that the fluid-dynamical
(macroscopic) equations, derived from an underlying kinetic (microscopic) model,
can be closed by assuming that the microscopic state is the most probable one
compatible with the observed macroscopic quantities (densities, currents, etc.). In
turn, the most probable state is the one that maximises a suitable entropy functional,
dictated by the laws of statistical mechanics. The quantum MEP (Q-MEP) can
be formulated in the standard (operator-based) formalism of statistical quantum
mechanics or in the phase-space formalism due to Wigner [22]. The operator form
is more general, to the extent that it can also be applied to Hamiltonians defined in
bounded domains (while the Wigner formalism is only suited to the whole-space
case). However, the Wigner framework, being a quasi-classical description, is more
suited to the semiclassical expansion of the quantum model, resulting in “classical
equations” with “quantum corrections”.

Diffusive models of particles with spin, subject to spin-orbit interactions, have
been previously derived in Refs. [4, 10, 20]. In Ref. [10], two kinds of models
are considered: the bipolar one, where only the projection of the spin on a given
axis is considered, and the spin-vector one, where all the components of the spin
vector are present. Such models are “semiclassical”, which means that the drift-
diffusion equations are not the standard ones because (of course) they contain the
spin components, but the models do not incorporate non-local effects, such as the
Bohm potential [16]. This is because the postulated equilibrium state is a classical
Maxwellian for each spin component, while non-local effects only arise from a
quantum equilibrium state. Reference [20] is a generalisation of [10], where a more
detailed collision operator is considered, with spin-dependent scattering rates.

The first application of the Q-MEP to the case of particles with spin-orbit
interaction is given in Ref. [4]. There, a two-dimensional electron gas (2DEG) with
spin-orbit interaction of Rashba type [25] is considered and the Q-MEP is used to
derive bipolar quantum drift-diffusion equations (QDDE) for the spin polarisation in
the direction perpendicular to the 2DEG plane. The obtained model is then expanded
semiclassically in order to obtain classical drift-diffusion equations for the density
and polarisation with quantum corrections.

Few results are available related to the existence analysis of spin drift- diffusion
models. The bipolar model was investigated in [13, 14]. An existence result for
a diffusion model for the spin accumulation with fixed electron current but non-
constant magnetization was proved in [12, 21]. Matrix spin drift-diffusion models
were analyzed in [15, 17] with constant precession axis and in [23] with non-
constant precession vector. Numerical simulations for this model can be found
in [7]. Assuming a mass- and spin-conserving relaxation mechanism, two full-
spin drift-diffusion models were derived and analyzed in [24], including spin-orbit
interactions. These model, however, do not contain “quantum correction” terms.

In the present paper, we derive spin-vector QDDE for the same spin-orbit system
as in [4]. As remarked before, this means that the QDDE that we derive here involve
all the components of the spin vector. The paper is organised as follows. In Sect. 2,
we introduce the Rashba Hamiltonian, describing the spin-orbit interaction of each
electron in the 2DEG. Moreover, some basic concepts of the spinorial Wigner-



Quantum Drift-Diffusion Equations for a Spin-Orbit 2D Electron Gas 53

Moyal formalism are recalled. In Sect. 3, we set up the model at the kinetic level,
consisting of an evolution equation for the matrix-valued Wigner function, endowed
with a collisional term that describes the relaxation of the system to an equilibrium
Wigner function obtained by the Q-MEP. The formal diffusive limit of the kinetic
model is analysed in Sect. 3, which leads to the spin-vector QDDE (Eqs. (17), (21),
and (24)). In order to test the consistency of the obtained equations, we consider
the semiclassical limit of the QDDE and show that it is in accordance with the
semiclassical equations derived in [10].

2 Physical and Mathematical Background

Let us consider a population of electrons confined in a two-dimensional potential
well, described by the coordinates (x1, x2) and subject to a spin-orbit interaction of
Rashba type [25]. The Hamiltonian of each electron has therefore the form

H =
(

− h̄2

2m	 −ih̄αR
(
∂x2 + i∂x1

)

−ih̄αR
(
∂x2 − i∂x1

) − h̄2

2m	

)

,

where αR is the Rashba constant and m is the (effective) electron mass. In terms of
the Pauli matrices, we can write

H = − h̄2

2m
	σ0 − ih̄αR

(
∂x2σ1 − ∂x1σ2

)
, (1)

where

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In the following, we will extensively make use of the algebra of the Pauli matrices.
Each 2 × 2 matrix-valued quantity a ∈ C

2×2 can be decomposed in Pauli
components according to

a =
3∑

j=0

ajσj = a0σ0 + a · σ ,

where a = (a1, a2, a3), σ = (σ1, σ2, σ3), and the components ak (k = 0, 1, 2, 3)
are real if and only if a is Hermitian. By using the well-known identity

σiσj = iεijkσk + δij σ0, 1 ≤ i, j, k,≤ 3,
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(where εijk and δij are, respectively, the Levi-Civita and Kronecker symbols), it is
straightforward to prove the following relations, mapping the matrix algebra on the
Pauli components:

tr(a) = 2a0, (2)

ab = (a0b0 + a · b)σ0 + (a0b + b0a + ia × b) · σ , (3)

ab − ba = ia × b · σ . (4)

The Hamiltonian (1) can be written more concisely as

H = − h̄2

2m
	σ0 − ih̄αR∇⊥ · σ (5)

with the notation

∇ = (∂x1, ∂x2, 0), ∇⊥ = ∇ × e3 = (∂x2,−∂x1, 0), e3 = (0, 0, 1).

We now combine the matrix algebra with the Wigner-Moyal calculus. The
following definitions and properties hold for suitably smooth functions. Let us recall
the definition of the Wigner transform, � �→ a, of a function � = �(x, y), x ∈ R

d ,
y ∈ R

d , into a phase-space function a = a(x, p), x ∈ R
d , p ∈ R

d :

a(x, p) =W(�)(x, p) =
∫

Rd

�

(
x + ξ

2
, x − ξ

2

)
e−ip·ξ/h̄dξ

(see also Ref. [22]). We remark that, in our framework, we have d = 2, and the
Wigner transform acts on the matrix-valued functions � and a componentwise. The
Wigner transformation is closely related to the Weyl quantization, a �→ A, that
maps the phase-space function a to an operator A, according to

(Aψ)(x) = [
Op(a)ψ

]
(x)

= 1

(2πh̄)d

∫

R2d
a

(
x + y

2
, p

)
ψ(y) ei(x−y)·p/h̄ dy dp.

In the correspondence A = Op(a), the phase space function a is often called the
“symbol” of A.

The Wigner transform is the inverse of the Weyl quantization if one identifies the
operator A with its integral kernel �A. In fact,

(Aψ)(x) =
∫

Rd

�A(x, y) ψ(y) dy =
∫

Rd

W−1(a)(x, y) ψ(y) dy.

The Wigner–Weyl correspondence is summarized in Fig. 1.
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Fig. 1 The Wigner–Weyl
correspondence: A = Op(a)
is the operator associated to
the phase-space function a,
�A is the integral kernel of A,
and a =W(�A) is the
Wigner transform of �A

�AA

a

Op

The operator algebra is transferred to phase-space functions by the Wigner–Weyl
correspondence. In particular, the operator product gives rise to the definition of the
Moyal product a#b = Op−1(AB), where A = Op(a) and B = Op(b). The Moyal
product has an explicit expansion in powers of h̄,

a#b =
∞∑

k=0

h̄ka#kb, (6)

where

a#kb = 1

(2i)k
∑

|α|+|β|=k

(−1)|α|

α!β!
(
∇αx∇βpa

) (
∇αp∇βx b

)
.

At the leading order of the expansion, we find the ordinary product a#0b = ab,
while at the first order, it is related to the Poisson bracket,

a#1b = i

2

2∑

j=1

(
∂xj a ∂pj b − ∂pj a ∂xj b

)
.

The operator trace Tr is equivalent to the integral on the phase-space of the matrix
trace tr of its symbol, i.e.

Tr(A) = 1

(2πh̄)d

∫

R2d
tr(a)(x, p) dx dp.

In particular, if A represents some physical observable and S represents the state of
the system, and if a = Op−1(A) and w = Op−1(S) are the corresponding phase-
space functions (w is called the Wigner function of the system), then the expected
value of the observable A in the state S = Op(w) is

Tr(AS) = 1

(2πh̄)d

∫

R2d
tr(aw)(x, p) dx dp.
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By expressing this identity in terms of Pauli components (by using (2) and (3)), we
obtain the fundamental formula for the expected values:

1

2
Tr(AS) = 1

(2πh̄)d

∫

R2d
(a0w0 + a · w)(x, p) dx dp.

This relation suggests to define the local density nA of the observable A as

nA(x) =
∫

Rd

(a0w0 + a · w)(x, p) dp = 1

2
〈tr(aw)〉(x),

where we introduced the notation 〈f 〉 = ∫
Rd f dp. Note that we have omitted the

constant factor 1/(2πh̄)d , which is irrelevant to what follows. Since our goal is to
derive a spinorial diffusive model, the local densities we are interested in are the
position density n0 (observable 1

2σ0) and the spin density n (observable 1
2σ ), given

by

n0(x) =
∫

R2d
w0(x, p) dp, n(x) =

∫

R2d
w(x, p) dp.

We remark that an operator S representing the state of a quantum system must be a
positive operator with unit trace. In particular, (Sψ)(x) is a positive definite matrix
for all two-component wave functionsψ and for a.e. x. This fact leads to constraints
on the functions nk , k = 0, 1, 2, 3, namely n0 ≥ 0 and n1, n2, n3 ∈ R with

n2
1 + n2

2 + n2
3 ≤ n2

0

(for a.e. x). If n2
1 + n2

2 + n2
3 = n2

0, then S and w = Op−1(S) represent a pure state
while if n2

1 + n2
2 + n2

3 < n2
0, then S and w represent a “mixed” (statistical) state.

3 Transport Picture

We shall now derive a mesoscopic-level (kinetic) transport model for our two-
dimensional electron gas.

3.1 Transport Equation

Let S(t) be the time-dependent density operator, representing the statistical quantum
mechanical state at time t , let �(x, y, t) be the associated density matrix (i.e. the
integral kernel of S(t)) and w(x, p, t) =W(�) the corresponding Wigner function.
The evolution equation for S(t) is the statistical version of the Schrödinger equation,
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that is the Von Neumann equation

ih̄∂tS = (H + V )S − S(H + V ),

where H is the Rashba Hamiltonian (5) and V = V (x)σ0 represents an external
electrostatic potential (e.g. a gate potential). In terms of the density matrix, this
equation reads as follows:

ih̄∂t� =
(

− h̄2

2m

(
	x −	y

)+ V (x)− V (y)

)

� − ih̄αR
(∇⊥x · σ� −∇⊥y � · σ

)

The evolution equation for the Wigner function w is obtained by applying the
Wigner transformation to both sides of the last equation. This results in

ih̄∂tw = {h+ V,w}# ,

where

h(x, p) = |p|
2

2m
σ0 + αRp

⊥ · σ

is the symbol of the Rashba Hamiltonian (as usual p⊥ = p × e3 = (p2,−p1, 0))
and {·, ·}# is the Moyal bracket

{a, b}# = a#b − b#a.

By explicitly computing this bracket and decomposing the matrix equation in the
Pauli components, we obtain the following system for the trace and spin parts of w:

∂tw0 = − 1

m
p · ∇xw0 − αR∇⊥x · w +�h̄[V ]w0,

∂tw = − 1

m
p · ∇xw − αR∇⊥x w0 +�h̄[V ]w + 2αR

h̄
p⊥ × w,

(7)

where

�h̄[f ] = 1

ih̄

[
f

(
x + ih̄

2
∇p

)
− f

(
x − ih̄

2
∇p

)]

=
∞∑

j=0

(−1)j
(
h̄

2

)2j ∑

|α|=2j+1

1

α!∇
α
x f∇αp (8)

is the usual force term of the Wigner equation [3, 16, 22]. Note that the leading order
term of the last expansion corresponds to the force term in the classical transport
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equation, namely

�h̄[V ] h̄→0−−−→ ∇xV · ∇p.

In order to study the diffusion asymptotics of our system, the purely Hamiltonian
dynamics described by Eq. (7) must be supplemented with a collisional mechanism.
If we want to remain in a rigorous quantum-mechanical setting, we cannot expect
to adopt a detailed description of collisions. However, since our goal is to obtain the
diffusive limit of our model, only very general properties of the collision dynamics
are needed, such as conservation properties. Therefore, the optimal strategy to insert
a relatively simple collisional mechanism, and to respect at the same time the rules
of quantum mechanics, is to adopt a relaxation-time term making the system relax
to a suitable quantum equilibrium state [1, 8, 9, 16]. We therefore re-write Eq. (7)
with suitable relaxation-time terms:

∂tw0 = − 1

m
p · ∇xw0 − αR∇⊥x · w +�h̄[V ]w0 + 1

τp
(g0 −w0)

∂tw = − 1

m
p · ∇xw − αR∇⊥x w0 +�h̄[V ]w + 2αR

h̄
p⊥ ×w + 1

τp
(g − w)

(9)

where g = g0σ0 + g · σ is the equilibrium Wigner function that will be specified
later on.

Before that, and in view of the diffusion asymptotics, let us rewrite Eq. (9) in a
non-dimensional form. Let T0 be the (given) temperature of the thermal bath with
which our electron population is assumed to be in equilibrium. The reference energy
E0 is taken as the thermal energy, given by

kBT0 = E0,

where kB denotes the Boltzmann constant. The associated thermal momentum is

p0 =
√
mkBT0.

Let us also fix a reference length x0 (e.g., the device size) and take the reference
time t0 as

t0 = mx0

p0
,

which is the time it takes an electron, traveling at the reference thermal velocity, to
cross the reference length. Then, in Eq. (9) we switch to non-dimensional variables
with the substitutions

x → x0x, t → t0t, p→ p0p, V → E0V
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(for the sake of simplicity, the new non-dimensional variables are denoted by the
same symbols as the dimensional ones). We obtain in this way

∂tw0 = −p · ∇xw0 − εα∇⊥x ·w +�ε[V ]w0 + 1

τ
(g0 −w0) ,

∂tw = −p · ∇xw − εα∇⊥x w0 +�ε[V ]w + 2αp⊥ ×w + 1

τ
(g − w) .

(10)

Here, two important non-dimensional parameters have been introduced,

ε = h̄

x0p0
, τ = τp

t0
.

The “semi-classical” parameter ε is the scaled Planck constant: roughly speaking,
the smaller it is, the further we zoom out from the quantum scale and approach the
classical scale. The diffusive parameter τ is the scaled collision time: the smaller
it is, the more collisions occur in the reference time, making the diffusive regime
predominate on the “ballistic” one. Moreover,

α = mx0αR

h̄

is the non-dimensional Rashba constant. Since εα = mαR/p0, we see that α is the
coefficient of proportionality between ε and the ratio of αR (which has the physical
dimension of a velocity) and the thermal velocity p0/m. This choice makes the
Rashba constant scale with ε and gives the correct result in the semiclassical limit
ε → 0 (see Sect. 4.3 and Ref. [4]).

3.2 Maximum Entropy Principle

We now come to the description of the quantum equilibrium function appearing
in the transport equation (10). According to the theory developed in Refs. [8, 9]
(see also [3, 16]), we choose the equilibrium Wigner function g = g0σ0 + g · σ
as the minimiser of a suitable quantum entropy-like functional, with the constraint
of positivity and fixed densities, which is the quantum version of the well-known
Maximum Entropy Principle. Physically speaking, this means that g is assumed to
be the most probable microscopic state compatible with the observed macroscopic
density. This is rigorously expressed in our case as follows.

Quantum Maximum Entropy Principle (Q-MEP) Let n = n0σ0 + n · σ be a
given matrix-valued function of x and t , with

n0 > 0, n1, n2, n3 ∈ R, n2
1 + n2

2 + n2
3 < n2

0,
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for a.e. x ∈ R
2 and t > 0. The equilibrium Wigner function g is given by

g = argmin {H(w) | Op(w) > 0, 〈w〉 = n} ,

where H is the quantum free-energy functional given (in non-dimensional vari-
ables) by

H(w) = 1

2
tr

(∫

R6
(wLog(w)−w + h#w) (x, p) dxdp

)
(11)

and Log is the “quantum logarithm” defined as

Log(w) =W (log(Op(w)))

(log being the operator logarithm).
Note that the constraints on n are consistent with the requirement that w

represents a quantum mixed state, according to the remark at the end of Sec. 2 (see
also [18, 19]).

Then, g is defined as the Wigner function that minimises the quantum entropy
(or, more precisely, the free energy, which is the energy minus the entropy) under the
constraint of the given density. Note that the condition Op(g) > 0 means that g must
be a genuine Wigner function (i.e. the Wigner transform of a density operator). The
entropy functional (11) is the phase-space equivalent of the Von Neumann entropy
(free energy, more precisely): if S = Op(w) is the density operator, then

H(w) = Tr (S log(S)− S +HS) .

A formal proof of the following theorem makes use of the mathematical techniques
adopted in similar contexts (see, e.g., Ref. [2]); however the application of these
techniques to the full-spin case is far from being straightforward and a detailed
proof is deferred to a forthcoming paper. Rigorous proofs also exist, but only for the
simpler case of a one-dimensional system of scalar (non-spinorial) particles in an
interval with periodic boundary conditions, see Refs. [18, 19].

Theorem The matrix-valued Wigner function g, satisfying the above constrained
minimisation problem, exists and is given by

g = Exp(−h+ a), 〈g〉 = n, (12)

where a = a0σ0 + a · σ is a matrix of Lagrange multipliers and

Exp(w) =W (exp(Op(w)))

(with exp the operator exponential).
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Our model is now completed by using g given by (12) as the equilibrium function
in the Wigner equation (9). We remark that the quantum equilibrium function g is
quite a complicated object, it is a non-local function of the Lagrange multipliers,
which are implicitly related to the densities n0 and n by the four integral constraints
〈g〉 = n, i.e. 〈g0〉 = n0 and 〈g〉 = n. However, it is possible to make the model
more explicit by performing a semiclassical expansion of g, made possible by the
semiclassical expansion (6) of the Moyal product.

4 Diffusion Picture

Let us now formally derive the diffusion asymptotics of the kinetic model introduced
in the previous section.

4.1 Chapman–Enskog Expansion

To shorten the notation, we denote by T the transport operator

Tw := 1

iε
{h+ V,w}# =

(
−p · ∇xw0 − εα∇⊥x · w +�ε[V ]w0

)
σ0

+
(
−p · ∇xw − εα∇⊥x w0 +�ε[V ]w + 2αp⊥ × w

)
· σ ,

so that the scaled Wigner equation (10) is concisely written as

τ∂tw = τTw + g −w. (13)

The diffusion asymptotics is obtained by means of the Chapman–Enskog expansion
[6, 16], by expanding the equation for the macroscopic density n = 〈w〉,

∂tn = ∂
(0)
t n+ τ∂

(1)
t n+ τ 2∂

(2)
t n+ · · · ,

and the microscopic state,

w = w(0) + τw(1) + τ 2w(2) + · · · . (14)

We remark that it is only the equation for n that is expanded, and not n itself, which
is an O(1) quantity with respect to τ .

Integrating (13) with respect to p and recalling that 〈g −w〉 = 0 (which follows
from (12) and reflects the conservation of the number of particles and the spin in the
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collisions), we can identify the k-th order time derivative of n by

∂
(k)
t n = 〈Tw(k)〉.

To computew(k), we substitute (14) in (13). This yields, at leading and at first order
in τ ,

w(0) = g, w(1) = Tg − ∂tg,

respectively. Therefore,

∂
(0)
t n = 〈Tg〉, ∂

(1)
t n = 〈TTg〉 − 〈T ∂tg〉. (15)

The function g depends on time only through its (functional) dependence on n,
according to (12). Then, at the same order of approximation, we can also write

∂tg = δg

δn
◦ ∂tn ≈ δg

δn
◦ ∂(0)t n = δg

δn
◦ 〈Tg〉, (16)

where ◦ denotes the componentwise product, resulting from the chain rule

δg

δn
◦ ∂tn ≡

3∑

k=0

δg

δnk
∂tnk.

Using (15) and (16) and neglecting higher-order terms, we obtain the quantum drift-
diffusion (QDDE) equation for n:

∂tn = 〈Tg〉 + τ 〈TTg〉 − τ

〈
T
δg

δn

〉
◦ 〈Tg〉. (17)

We remark the following:

1. The QDDE (17) is, formally, a closed equation for n, since g depends on n

through (12).
2. The term τ 〈TTg〉 is the truly diffusive term in the equation, to the extent that

it is the only term that appears in the standard cases (i.e. classical or quantum
scalar particles [8, 9, 16]).

3. The term 〈Tg〉, which is equal to zero for standard particles, does not vanish for
spin-orbit electrons (see below). This is the reason why we were forced to use a
hydrodynamic scaling instead of the usual diffusive one. As a consequence, the
Chapman–Enskog procedure produces the additional terms 〈Tg〉 and τ 〈T δg

δn
〉 ◦

〈Tg〉 in the diffusive equations.

The last point deserves some additional comments. In the usual situation, the
diffusion asymptotics is derived from the transport, or kinetic, equation in the so-
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called diffusive scaling, i.e. obtained by a further rescaling of time, t �→ t/τ . This
means that the system is observed on a very long time scale, in which the collision
time is τ 2 (the hydrodynamic scaling being instead the one in which the collision
time is τ ). This is because in the standard case, if collisions do not conserve the
momentum, one has 〈Tg〉 = 0, which reflects the fact that the equilibrium state
carries no current. Therefore, a purely diffusive current manifests in the longer,
diffusive, time scale. In the present situation, even though the collisions do not
conserve the momentum, g still carries a current, that is due to the peculiar form
of the spin-orbit interaction. This implies that a current, 〈Tg〉, already appears at
the hydrodynamic scale. Moreover, at order τ the additional term τ 〈T δg

δn
〉 ◦ 〈Tg〉

appears. A formally analogous term appears also in the derivation of the classical
hydrodynamic equation: in that case it contains the viscosity [6]. In the present
context, its interpretation is not so clear. We point out that the two non-standard
terms 〈Tg〉 and τ 〈T δg

δn
〉 ◦ 〈Tg〉 are “small” in a semiclassical perspective, because,

as we shall see later, they vanish at leading order in ε.

4.2 Quantum Drift-Diffusion Equation

In order to recast (17) in a more explicit form, note that we can write

Tg = 1

iε
{h+ V, g}# =

1

iε
{h− a, g}# +

1

iε
{V + a, g}# =

1

iε
{V + a, g}# ,

where a is the matrix of Lagrange multipliers; see (12). In fact,

{h− a, g}# = 0, (18)

because g = Exp(−h + a) and therefore, (18) is just the expression in the Wigner-
Moyal formalism of the commutativity of the operator H − A with its exponential
exp(−H + A). Recalling that V and a do not depend on p, we find that

Tg = 1

iε
{V + a, g}# = (�ε[V + a0]g0 +�ε[a] · g) σ0 (19)

+
(
�ε[V + a0]g +�ε[a]g0 + ε−1�+ε [a] × g

)
· σ ,

where �ε is given by (8) and �+ε is defined as follows:

�+ε [f ] =
1

iε

[
f

(
x + iε

2
∇p

)
+ f

(
x − ih̄

2
∇p

)]
(20)

=
∞∑

j=0

(−1)j
(ε

2

)2j ∑

|α|=2j

1

α!∇
α
x f∇αp .
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We infer from (8) (with ε instead of h̄) and (20) the following properties:

〈�ε [f ]w〉 = 0, 〈pj�ε[f ]w〉 = −∂xj f 〈w〉, 〈�+ε [f ]w〉 = 2f 〈w〉.

Then, recalling that 〈g〉 = n,

〈Tg〉 = 2ε−1a × n · σ . (21)

This represents explicitly the above-mentioned residual spin-orbit current at equi-
librium. We see that a condition for this current to vanish is

a × n = 0, (22)

which is equivalent to the commutativity of the matrices n and a (see Eq. (4)). This
explains why in Ref. [4], concerning the bipolar case, only the standard diffusion
term 〈TTg〉 has been found: in that case the matrices n and a are both diagonal.

Now, for a generic w, we have

〈Tw〉 =
(
−∂j 〈pjw0〉 − εα∇⊥ · 〈w〉

)
σ0 (23)

+
(
−∂j 〈pjw〉 − εα∇⊥〈w0〉 + 2α〈p⊥ ×w〉

)
· σ

(where ∂j ≡ ∂xj and summation over j = 1, 2 is assumed). Substituting w = Tg
in (23), where T is defined in (19), yields

〈TTg〉 =
{
∂j

[
n0 ∂j (V + a0)+ n · ∂ja

]− 2α∇⊥ · (a × n)
}
σ0 (24)

+
{
∂j

[
n ∂j (V + a0)+ n0∂ja − 2ε−1a × 〈pjg〉

]

− 2α
[
∇⊥(V + a0)× n+ (∇⊥ × a)n0 − 2ε−1α〈p⊥ × (a × g)〉

] }
· σ .

Equations (21) and (24) express the first and the second terms in the quantum
drift-diffusion equations (17) in terms of the Lagrange multipliers (no such explicit
expression has been found for the third term).

We remark that the Lagrange multipliers depend on the densities n via the
constraint 〈g〉 = n. Even though this fact makes (17) a closed equation for n,
nevertheless the dependence of a on n is very implicit and non-local, since it comes
from integral constraints on a quantum exponential, involving back and forth Wigner
transforms. Numerical methods to solve QDDE of this kind exist [5, 11]. However,
the optimal use of a QDDE is expanding it semiclassically (i.e. in powers of ε), in
order to obtain “quantum corrections” to classical QDD [2, 4, 8, 9, 16]. This will be
the subject of a future work. For the moment, we shall limit ourselves to consider
the semiclassical limit ε → 0 of (17), just to check if our model allows us to recover
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the semiclassical drift-diffusion equations for spin-orbit electrons already known in
the literature [10].

4.3 Semiclassical Limit

The semiclassical limit is obtained from the fully quantum model (17), (21), and
(24) by expanding g and a in powers of ε and retaining only the terms of order
O(ε0). This would require the expansions of g and a up to O(ε1), because of the
terms of order ε−1 appearing in (21) and (24). So it is easier to compute directly the
right-hand side of (17), neglecting all terms of order ε and using the leading-order
approximation of g, that is

g(x, p, t) ≈ e−p2/2ea(x,t) = 1

2π
e−p2/2n(x, t).

We remark that this is indeed the semiclassical equilibrium distribution (see, e.g.,
Ref. [10]). Within this approximation, we have 〈Tg〉 ≈ 0 (and then, of course, also
〈T δg

δn
〉 ◦ 〈Tg〉 ≈ 0) as well as

〈TTg〉 ≈ ∂j
(
∂j n0 + n0∂jV

)
σ0

+
{
∂j

[
∂jn+ n∂jV + 4αAj (n)

]− 2α∇⊥V × n− 4α2B(n)
}
· σ ,

where

A1(n) =
⎛

⎝
n3

0
−n1

⎞

⎠ , A2(n) =
⎛

⎝
0
n3

−n2

⎞

⎠ , B(n) =
⎛

⎝
n1

n2

2n3

⎞

⎠ .

Then, as a leading-order approximation of the quantum drift-diffusion equations
(17), we arrive to

∂tn0 = ∂j
(
∂jn0 + n0∂jV

)
,

∂tn = ∂j
[
∂jn+ n∂jV + 4αAj (n)

]− 2α∇⊥V × n− 4α2B(n).

The semiclassical drift-diffusion equations derived in Ref. [10] coincide with our
equations in the case of constant relaxation time and purely spin-orbit interaction
field. (In Ref. [10] an additional term, even in p, is introduced in the spinorial part
of the Hamiltonian, h, which can be used to model, e.g., an external magnetic field:
this term could also be considered in our framework but we preferred to neglect it
for the sake of simplicity.) We remark that each of the Pauli components diffuses
according to a classical drift-diffusion equation and, moreover, the spin has the
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additional current term 4αAj (n), coming from spin-orbit interactions, a relaxation
term−4α2B(n), and an interaction with the external potential,−2α∇⊥V×n, which
shows the capability of controlling the spin by means of an applied voltage.

5 Conclusions

In this paper, we have derived quantum drift diffusion equations (QDDE) for a
2DEG with spin-orbit interaction of Rashba type. The derivation is based on the
quantum version of the maximum entropy principle (Q-MEP), as proposed in Refs.
[8, 9]. To our knowledge, this is the first application of the Q-MEP to the full spin
structure and not only to the spin polarization (i.e. the projection of the spin vector
on a given axis).

Our derivation starts with the formulation of a kinetic model which has an
Hamiltonian part (basically, the mixed-state Schrödinger equation in the phase-
space formulation) and a non-conservative, collisional term in the relaxation time
approximation. Here, the quantum equilibrium state given by the Q-MEP appears.

Assuming that the relaxation time is a small parameter in the problem, we apply
the Chapman–Enskog technique to derive the quantum drift-diffusion model (17),
(21), and (24). It forms a system of four equations: one for the charge density n0 and
three for the spin-vector components n = (n1, n2, n3). Such equations are non-local
in the components nk , since they are expressed in terms of Lagrange multipliers that
are connected with the densities by the (integral) constraint that the equilibrium
state possesses such densities. This aspect of the model is not different from the
analogous QDDE obtained in the scalar [8, 16] or bipolar [4] cases.

A new feature of the present model is that the application of the Chapman–
Enskog technique is not the standard one for the diffusive case and resembles more
to the Chapman–Enskog expansion of the hydrodynamic case. This is due to the fact
that, due to the peculiar form of the spin-orbit interaction, the equilibrium state has
no zero current. In the derivation, we have obtained a general condition, Eq. (22),
for such current to vanish.

Typically, the QDDE are expanded semiclassically, i.e. in powers of the scaled
Planck constant ε, which allows for an approximation of the QDDE by a local
model consisting in classical diffusive equations with “quantum corrections”. Here,
we just computed the approximation at the leading order, in order to compare the
semiclassical limit of our model with the semiclassical models already existing in
the literature. The semiclassical expansion of our QDDE, which is not an easy task,
goes beyond the aim of the present paper and is deferred to a work in preparation.

Acknowledgments The last two authors acknowledge partial support from the Austrian Science
Fund (FWF), grants F65, P30000, P33010, and W1245.



Quantum Drift-Diffusion Equations for a Spin-Orbit 2D Electron Gas 67

References

1. Arnold, A.: Self-consistent relaxation-time models in quantum mechanics. Commun. Partial
Differ. Equ. 21, 473–506 (1996)

2. Barletti, G., Frosali, G.: Diffusive limit of the two-band K.P model for semiconductors. J. Stat.
Phys. 139, 280–306 (2010)

3. Barletti, L., Frosali, G., Morandi, O.: Kinetic and hydrodynamic models for multi-band
quantum transport in crystals. In: Ehrhardt, M., Koprucki, T. (eds.) Multi-Band Effective
Mass Approximations: Advanced Mathematical Models and Numerical Techniques, pp. 3–56.
Springer, Berlin (2014)

4. Barletti, L., Méhats, F.: Quantum drift-diffusion modeling of spin transport in nanostructures.
J. Math. Phys. 51, 053304 (2010)

5. Barletti, L., Méhats, F., Negulescu, C., Possanner, S.: Numerical study of a quantum-diffusive
spin model for two-dimensional electron gases. Commun. Math. Sci. 13, 1347–1378 (2015)

6. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)
7. Chainais-Hillairet, C., Jüngel, A., Shpartko, P.: A finite-volume scheme for a spinorial matrix

drift-diffusion model for semiconductors. Numer. Methods Partial Differ. Equ. 32, 819–846
(2016)

8. Degond, P., Méhats, F., Ringhofer, C.: Quantum energy-transport and drift-diffusion models.
J. Stat. Phys. 118, 625–667 (2005)

9. Degond, P., Ringhofer, C.: Quantum moment hydrodynamics and the entropy principle. J. Stat.
Phys. 112, 587–628 (2003)

10. El Hajj, R.: Diffusion models for spin transport derived from the spinor Boltzmann equation.
Commun. Math. Sci. 12, 565–592 (2014)

11. Gallego, S., Méhats, F.: Entropic discretization of a quantum drift-diffusion model. SIAM J.
Numer. Anal. 43, 1828–1849 (2006)

12. García-Cervera, C., Wang, X.-P.: Spin-polarized transport: existence of weak solutions.
Discrete Contin. Dyn. Sys. Ser. B 7, 87–100 (2007)

13. Glitzky, A.: Analysis of a spin-polarized drift-diffusion model. Adv. Math. Sci. Appl. 18, 401–
427 (2008)

14. Glitzky A., Gärtner, K.: Existence of bounded steady state solutions to spin-polarized drift-
diffusion systems. SIAM J. Math. Anal. 41, 2489–2513 (2010)

15. Holzinger, P., Jüngel, A.: Large-time asymptotics for a matrix spin drift-diffusion model. J.
Math. Anal. Appl. 486, 123887 (2020)

16. Jüngel, A.: Transport Equations for Semiconductors. Springer, Berlin (2009)
17. Jüngel, A., Negulescu, C., Shpartko, P.: Bounded weak solutions to a matrix drift-diffusion

model for spin-coherent electron transport in semiconductors. Math. Models Methods Appl.
Sci. 25, 929–958 (2015)

18. Méhats, F., Pinaud, O.: An inverse problem in quantum statistical physics. J. Stat. Phys. 140,
565–602 (2010)

19. Méhats, F., Pinaud, O.: A problem of moment realizability in quantum statistical physics.
Kinetic Relat. Models 4, 1143–1158 (2011)

20. Possanner, S., Negulescu, C.: Diffusion limit of a generalized matrix Boltzmann equation for
spin-polarized transport. Kinetic Relat. Models 4, 1159–1191 (2011)

21. Pu, X., Gu, B.: Global smooth solutions for the one-dimensional spin-polarized transport
equation. Nonlin. Anal. 72, 1481–1487 (2010)

22. Zachos, C.K., Fairlie, D.B., Curtright, T.L. (eds.): Quantum Mechanics in Phase Space. An
Overview with Selected Papers. World Scientific, Hackensack (2005)

23. Zamponi, N.: Analysis of a drift-diffusion model with velocity saturation for spin-polarized
transport in semiconductors. J. Math. Anal. Appl. 420, 1167–1181 (2014)

24. Zamponi, N., Jüngel, A.: Two spinorial drift-diffusion models for quantum electron transport
in graphene. Commun. Math. Sci. 11, 927–950 (2013)
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A Kinetic BGK Relaxation Model
for a Reacting Mixture of Polyatomic
Gases

Marzia Bisi and Romina Travaglini

Abstract We present a kinetic model of BGK-type for a mixture of four polyatomic
gases, each one having its own number of internal energy levels, subject also
to a bimolecular and reversible chemical reaction. A single relaxation operator
is constructed for each gas component, with auxiliary parameters depending on
main macroscopic fields and able to take into account all mechanical and reactive
interactions affecting the considered component. Preservation of correct collision
equilibria, conservation laws, and H -theorem is proved, and some numerical
simulations in space homogeneous conditions are shown.

1 Introduction

Boltzmann kinetic equations for gas mixtures are very complicated to deal with,
since they are integro-differential equations with a collision term provided by a
sum of binary Boltzmann operators, each one describing elastic collisions between
particles of the considered species and particles of only another constituent [10].
The kinetic system becomes even more cumbersome in the presence of polyatomic
molecules or of chemical reactions that change the nature of the colliding particles.
For this reason, simpler kinetic models have been presented in the literature, mainly
in the spirit of the BGK relaxation model proposed by Bhatnagar, Gross, Krook in
1954 for a single gas [3].

The generalization of the BGK model to a gas mixture is not obvious, and several
consistent ways of modelling have been investigated. Some pioneering works for
inert mixtures, that have given rise to several generalizations and applications, are
Ref. [21] by McCormack and Ref. [1] by Andries, Aoki, Perthame. The former
is still used to face fluid-dynamic problems as flows in microchannels [23], and
the latter has been extended also to mixtures of monoatomic gases undergoing

M. Bisi (�) · R. Travaglini
Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy
e-mail: marzia.bisi@unipr.it; romina.travaglini@unipr.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
F. Salvarani (eds.), Recent Advances in Kinetic Equations and Applications,
Springer INdAM Series 48, https://doi.org/10.1007/978-3-030-82946-9_3

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82946-9_3&domain=pdf
mailto:marzia.bisi@unipr.it
mailto:romina.travaglini@unipr.it
https://doi.org/10.1007/978-3-030-82946-9_3


70 M. Bisi and R. Travaglini

simple bimolecular and reversible chemical reactions [5, 15]. The BGK model
in [21] has a linearized form, and shows a sum of binary relaxation operators in
each kinetic equation; this idea has been generalized in different ways, constructing
also non-linear BGK models for inert mixtures, see for instance [16, 18] and the
more recent paper [9] where also a comparison among the existing models has
been done. On the other hand, the BGK model proposed in [1] shows a unique
relaxation operator for each species, being thus much simpler to be managed from
the mathematical point of view, and for this reason it turns out to be well suited
to take into account also chemical reactions for monoatomic particles, of course
at the price of more complicated expressions for auxiliary parameters affecting
Maxwellian attractors [5], or of suitable simplifying assumptions in the reactive
contributions [15].

In view of physical applications, for instance the investigation of gas flows in the
atmosphere, even polyatomic gases should be included in the kinetic description.
Boltzmann-type models for polyatomic particles have been built up, modelling the
non-translational degrees of freedom by means of an additional internal energy
variable, that could be discrete [14] or continuous [12]. Macroscopic equations at
different levels of accuracy have been consistently derived owing to an asymptotic
Chapman–Enskog procedure in both cases of discrete [13] or continuous internal
energy [2]. BGK approximations of these Boltzmann models for polyatomic gases
have been recently proposed, with various assumptions. At first, mixtures of only
polyatomic gases having the same number of internal energy levels have been
considered [4], and then a consistent BGK model has been developed also in the
case of continuous internal energy [7]. However, for physical applications, kinetic
descriptions allowing the simultaneous presence of monoatomic and polyatomic
particles are highly desirable. This has been the main motivation of the recent
paper [8], where we have extended the BGK model proposed in [4] to an
inert mixture constituted by both monoatomic and polyatomic species, with each
polyatomic one characterized by its own number of discrete internal energy levels.
In this paper, we aim at generalizing this model to a reacting mixture; specifically,
we consider a mixture of four gas species,Gi , i = 1, . . . , 4, whose particles, besides
elastic collisions and inelastic transitions from one internal energy level to another,
are subject also to the reversible chemical reaction G1 +G2 � G3 +G4, where a
pair of reacting particles of species (G1,G2) provides, as products, a pair belonging
to (G3,G4), or vice versa.

The paper will be organized as follows. In Sect. 2, we briefly introduce the
physical reacting frame that we are considering, and we present the construction
of our BGK model; we prove that all disposable parameters appearing in the BGK
operators may be determined in terms of the actual species densities, velocities
and temperatures in such a way that correct collision equilibria of the reactive
Boltzmann equations are preserved, as well as conservation laws and the validity of
theH -theorem. Then, in Sect. 3 some numerical simulations of trends to equilibrium
of main macroscopic fields in space homogeneous conditions are shown and
commented on. Finally, Sect. 4 contains some concluding remarks.
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2 Reacting BGK Model for Polyatomic Gases

We take into account a mixture of four polyatomic gas species, Gi , i = 1, . . . , 4.
The reversible chemical reaction in which the four gas species are involved is

G1 +G2 � G3 +G4. (1)

As done in [8], each gas species Gi will be characterized by a mass mi and a
certain number Li of discrete energy levels. Thus, it will be seen as a mixture of
components Ci

j , j = 1, . . . , Li , each one corresponding to a different energy level,

denoted by Ei
j . In the frame of the same gas Gi the energy levels are assumed

(without loss of generality) to be increasing with respect to the subindex j , namely
Ei
j < Ei

k for any j, k = 1, . . . , Li with j < k. As concerns masses, according to

the conservation law, they have to satisfy the relation m1 +m2 = m3 +m4.
The distribution function of the component Ci

j is denoted by

f ij (t, x, v), i = 1, . . . , 4, j = 1, . . . , Li .

We now consider possible interactions between particles, that will be, as usual,
only binary instantaneous collisions. We may have, besides classical elastic colli-
sions, also inelastic encounters in which particles may change their internal energy
(as those described in [8]), but also their nature, according to chemical reaction (1).

A generic encounter is given by

Ci
j + Ch

k → Cl
m + Cn

p, 1 ≤ i, h, l, n ≤ 4

1 ≤ j ≤ Li

1 ≤ k ≤ Lh

1 ≤ m ≤ Ll

1 ≤ p ≤ Ln.

(2)

Elastic encounters, where there is no change in the internal energy levels during the
collision, correspond to

Ci
j + Ch

k → Ci
j + Ch

k , 1 ≤ i, h ≤ 4
1 ≤ j ≤ Li

1 ≤ k ≤ Lh.
(3)

Inelastic encounters, where there is a change of internal energy levels of compo-
nents, are described by

Ci
j + Ch

k → Ci
m + Ch

p, 1 ≤ i, h ≤ 4
1 ≤ j,m ≤ Li

1 ≤ k, p ≤ Lh,
(4)

and they can be endothermic if Ei
m + Eh

p − Ei
j − Eh

k ≥ 0 or exothermic if Ei
m +

Eh
p − Ei

j − Eh
k < 0. Chemical encounters, where there is also a change in the gas
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species, are given by

Ci
j + Ch

k → Cl
m + Cn

p,
(i, h) �= (l, n),

(i, h), (l, n) ∈ {(1, 2), (3, 4)} ,

1 ≤ j ≤ Li

1 ≤ k ≤ Lh

1 ≤ m ≤ Ll

1 ≤ p ≤ Ln,

(5)

that are endothermic if El
m+En

p−Ei
j −Eh

k ≥ 0 or exothermic if El
m+En

p−Ei
j −

Eh
k < 0.
Denoting with (v,w) the molecular velocities of the ingoing particles and with

(v′,w′) the corresponding post-collision velocities, we have preservation of mass,
global momentum and total energy:

mi +mh = ml +mn ,

mi v+mh w = ml v′ +mn w′ ,
1

2
mi |v|2 + Ei

j +
1

2
mh |w|2 + Eh

k =
1

2
ml |v′|2 + El

m +
1

2
mn |w′|2 + En

p .

(6)

We take into account the major moments of each componentCi
j , that are number

densities nij , drift velocity uij and kinetic temperature T i
j . Clearly, the total density

of each gas species, given by

ni =
Li∑

j=1

nij , i = 1, . . . , 4,

is not constant in time, but thanks to conservation of total mass we have that three
suitable combinations of them, for instance n1+n3, n1+n4, n2+n4, are conserved,
as well as global momentum and total energy of the mixture.

Collision equilibria in gas mixtures are provided by Maxwellian distributions in
which all species share the same mean velocity u and the same temperature T [10,
11]. In particular, for a mixture of polyatomic gases with discrete energies, denoting
by Mi(v; u, T /mi) the Maxwellian

Mi

(
v; u, T

mi

)
=

(
mi

2π T

)3/2

exp

(
− mi

2 T
|v− u|2

)
, (7)

the equilibrium state for gas components reads as

f i
jM(v) = nij M

i

(
v; u, T

mi

)
, i = 1, . . . , 4, j = 1, . . . , Li , (8)
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where, as proven in [14], number densities of single components nij are related to

the total number density ni of the gas Gi by the following relation depending on the
internal energy levels:

nij = ni
exp

(
− Ei

j−Ei
1

T

)

Li∑

k=1

exp

(

− Ei
k − Ei

1

T

) = ni
exp

(
− Ei

j−Ei
1

T

)

Zi(T )
. (9)

In addition, in the present reactive frame, number densities of the four interacting
gases must fulfill at equilibrium the mass action law of chemistry

n1n2

n3n4 =
(
m1m2

m3m4

) 3
2 Z1(T )Z2(T )

Z3(T )Z4(T )
exp

(
	E

T

)
, (10)

with 	E = E3
1 + E4

1 − E2
1 − E1

1 .

2.1 BGK Model

We propose a BGK model analogous to [8] by writing a kinetic equation for each
component’s distribution function f i

j (i = 1, . . . , 4, j = 1, . . . , Li ) with a collision

operator constituted by a unique relaxation term. In this way, we get a set of L1 +
. . .+ L4 BGK equations

∂f i
j

∂t
+ v · ∇xf

i
j = νij (M

i
j − f i

j ) , i = 1, . . . , 4, j = 1, . . . , Li , (11)

where νij are macroscopic collision frequencies (independent of molecular veloc-

ity v, but possibly dependent on macroscopic fields). The distributions Mi
j are

Maxwellian attractors:

Mi
j (v) = ñij

(
mi

2π T̃

)3/2

exp

[
− mi

2T̃
|v− ũ|2

]
,

i = 1, . . . , 4,
j = 1, . . . , Li,

(12)

depending on auxiliary parameters ñij (i = 1, . . . , 4, j = 1, . . . , Li ), ũ, T̃ , to be
suitably determined in terms of the actual macroscopic fields.
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For any gas species Gi , i = 1, . . . , 4, fictitious densities ñij are taken bound
together as

ñij = ñi
exp

(
− Ei

j−Ei
1

T̃

)

Zi(T̃ )
, (13)

and in addition fictitious total densities ñi satisfy the constraint

ñ1ñ2

ñ3ñ4
=

(
m1m2

m3m4

) 3
2 Z1(T̃ )Z2(T̃ )

Z3(T̃ )Z4(T̃ )
exp

(
	E

T̃

)
. (14)

In this way, collision equilibria of the BGK model (11) are correctly provided by
Maxwellian distributions sharing a common velocity and a common temperature,
with number densities related to the total density of the gas by (9) and total densities
bounded together by (10). Our aim is to find auxiliary parameters in terms of the
actual ones imposing the preservation of the same (seven) collision invariants of
the Boltzmann equations in the BGK model. These correspond to three suitable
combinations of gas densities, for instance n1 + n3, n1 + n4, n2 + n4,

L1∑

j=1

ν1
j

∫

R3
(M1

j − f 1
j )dv+

L3∑

j=1

ν3
j

∫

R3
(M3

j − f 3
j )dv = 0 (15)

L1∑

j=1

ν1
j

∫

R3
(M1

j − f 1
j )dv+

L4∑

j=1

ν4
j

∫

R3
(M4

j − f 4
j )dv = 0 (16)

L2∑

j=1

ν2
j

∫

R3
(M2

j − f 2
j )dv+

L4∑

j=1

ν4
j

∫

R3
(M4

j − f 4
j )dv = 0, (17)

global momentum

4∑

i=1

Li∑

j=1

νij m
i

∫

R3
v (Mi

j − f ij )dv = 0, (18)

and total energy

4∑

i=1

Li∑

j=1

νij

∫

R3

(
1

2
mi |v|2 + Ei

j

)
(Mi

j − f i
j )dv = 0. (19)
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Relations (15)-(17) lead to

Li∑

j=1

νij (ñ
i
j − nij ) = λi

L1∑

j=1

ν1
j (ñ

1
j − n1

j ), i = 1, . . . , 4, (20)

with λ1 = λ2 = −λ3 = −λ4 = 1. A linear combination of previous equations,
together with conservation of mass, gives as results

4∑

i=1

Li∑

j=1

νij ñ
i
j =

4∑

i=1

Li∑

j=1

νijn
i
j (21)

and

4∑

i=1

mi

Li∑

j=1

νij ñ
i
j =

4∑

i=1

mi

Li∑

j=1

νij n
i
j . (22)

Expression (20) can be written as

Li∑

j=1

νij ñ
i
j =

Li∑

j=1

νijn
i
j + λi

L1∑

j=1

ν1
j (ñ

1
j − n1

j ), i = 1, . . . , 4, (23)

and, from relation (13), we have

Li∑

j=1

νij
ñi

Zi(T̃ )

[

exp

(

− Ei
j − Ei

1

T̃

)]

=
Li∑

j=1

νijn
i
j + λi

L1∑

j=1

ν1
j

(
ñ1

Z1(T̃ )

[

exp

(

− E1
j − E1

1

T̃

)]

− n1
j

)

, i = 1, . . . , 4.

(24)

This allows us to write three of the auxiliary total densities (ñ2, ñ3, ñ4) as function
of the remaining one (ñ1):

ñi

Zi(T̃ )
=

⎡

⎣
Li∑

j=1

νij exp

(

− Ei
j − Ei

1

T̃

)⎤

⎦

−1 ⎧
⎨

⎩

Li∑

j=1

νij n
i
j − λi

L1∑

j=1

ν1
j n

1
j

+ λi

⎡

⎣
L1∑

j=1

ν1
j exp

(

− E1
j − E1

1

T̃

)⎤

⎦ ñ1

Z1(T̃ )

⎫
⎬

⎭
,

(25)

that holds for i = 1, . . . , 4, since for i = 1 we get a trivial identity.
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From momentum conservation (18) we get the equation involving auxiliary mean
velocity

4∑

i=1

⎛

⎝
Li∑

h=1

νih m
i ñihũ−

Li∑

j=1

νij m
i nijuij

⎞

⎠ = 0 , (26)

that owing to (22) provides

ũ =

4∑

i=1

Li∑

j=1

νij m
i nij uij

4∑

i=1

Li∑

j=1

νij m
i nij

, (27)

hence ũ is an explicit combination of actual number densities and mean velocities
of single gas components.

Total energy conservation (19) gives the equation

3

2

4∑

i=1

Li∑

j=1

νij n
i
j T̃ +

4∑

i=1

Li∑

j=1

ñij ν
i
j E

i
j = � (28)

with � being a term explicitly depending on actual densities, velocities and energies

� = 1

2

⎛

⎝
4∑

i=1

mi
Li∑

j=1

νij n
i
j

(
|uij |2 − |ũ|2

)
⎞

⎠+ 3

2

⎛

⎝
4∑

i=1

Li∑

j=1

νij n
i
j T

i
j

⎞

⎠+
4∑

i=1

Li∑

j=1

νij E
i
j n

i
j .

(29)

By applying expression (13) to the left-hand side of (28) we get an equation of the
form

3

2

4∑

i=1

Li∑

j=1

νij n
i
j T̃ +

4∑

i=1

ñi

Zi(T̃ )

Li∑

j=1

νij E
i
j exp

(

− Ei
j − Ei

1

T̃

)

= �. (30)

At this point, we face the main difference with respect to the model without
chemical reaction. Instead of a transcendental equation for T̃ having one positive
solution and depending only on the actual parameters of the mixture, we have
Eq. (30) containing both auxiliary parameters T̃ and ñ1. Following the procedure
applied in [4], it is possible to show that those two parameters are uniquely
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determined, bearing in mind also the fictitious mass action law (14). At first, we
find it convenient setting

Y i = ñi

Zi(T̃ )

Li∑

j=1

νij exp

(

− Ei
j − Ei

1

T̃

)

, (31)

and Eq. (30) thus becomes

3

2

4∑

i=1

Li∑

j=1

νij n
i
j T̃ +

4∑

i=1

Y i

Li∑

j=1

νij E
i
j exp

(

− Ei
j − Ei

1

T̃

)

Li∑

k=1

νik exp

(

− Ei
k − Ei

1

T̃

) = �. (32)

Since from (25) we have

Y i =
Li∑

j=1

νij n
i
j − λi

L1∑

j=1

ν1
j n

1
j + λiY 1 i = 1, . . . , 4, (33)

we end up with an equation of the form

Y 1 =
L1∑

j=1

ν1
j n

1
j + S(T̃ ), (34)

where S(T̃ ) is written as

S(T̃ ) = N(T̃ )

D(T̃ )
, (35)

with the numerator N

N(T̃ ) = �−
4∑

i=1

⎛

⎝
Li∑

m=1

νim n
i
m

⎞

⎠

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

3

2
T̃ +

Li∑

j=1

νij E
i
j exp

(

− Ei
j − Ei

1

T̃

)

Li∑

k=1

νik exp

(

− Ei
k − Ei

1

T̃

)

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

(36)
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and the denominator D

D(T̃ ) =
4∑

i=1

λi

Li∑

j=1

νij E
i
j exp

(

− Ei
j − Ei

1

T̃

)

Li∑

k=1

νik exp

(

− Ei
k − Ei

1

T̃

) . (37)

We observe that, if we had repeated the previous calculations choosing a different
gas species to express the other three ones, we would have obtained

Y i =
Li∑

j=1

νij n
i
j + λiS(T̃ ) i = 1, . . . , 4. (38)

Putting these expressions in the constraint (14), we obtain a transcendental equation
depending on T̃

G(T̃ ) =
(
m1m2

m3m4

) 3
2

, (39)

with

G(T̃ ) = G1(T̃ ) · G2(T̃ ) · G3(T̃ ), (40)

being

G1(T̃ ) =

⎡

⎣
L1∑

j=1

ν1
j n

1
j + S(T̃ )

⎤

⎦

⎡

⎣
L2∑

j=1

ν2
j n

2
j + S(T̃ )

⎤

⎦

⎡

⎣
L3∑

j=1

ν3
j n

3
j − S(T̃ )

⎤

⎦

⎡

⎣
L4∑

j=1

ν4
j n

4
j − S(T̃ )

⎤

⎦

, (41)

G2(T̃ ) =

L3∑

k=1

ν3
k exp

(

− E3
k − E3

1

T̃

)
L4∑

k=1

ν4
k exp

(

− E4
k − E4

1

T̃

)

L1∑

k=1

ν1
k exp

(

− E1
k − E1

1

T̃

)
L2∑

k=1

ν2
k exp

(

− E2
k − E2

1

T̃

) , (42)

G3(T̃ ) = exp

(
− 	E

T̃

)
. (43)
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Our aim is now to show that Eq. (39) admits one positive solution in the range in
which all the densities ñi are positive. More precisely, referring to the quantities Y i ,
we are looking for a solution in the set

A =
⎧
⎨

⎩
T̃ > 0 : max

⎛

⎝−
L1∑

j=1

ν1
j n

1
j ,−

L2∑

j=1

ν2
j n

2
j

⎞

⎠ < S(T̃ ) < min

⎛

⎝
L3∑

j=1

ν3
j n

3
j ,

L4∑

j=1

ν4
j n

4
j

⎞

⎠

⎫
⎬

⎭
.

(44)

We will go through the same proof performed in [4], adjusting it to the present frame
of polyatomic gases with a different number of internal energy levels. The first result
that we point out is the following.

Lemma 1 Let I = (T̃1, T̃2) ⊆ A be any interval in which the function D(T̃ ) given
in (37) is strictly negative (positive), then the function S(T̃ ) given in (35) is strictly
monotonically increasing (decreasing) in I .

Proof From the expression of S(T̃ ) we easily get

S′(T̃ ) = N ′(T̃ )
D(T̃ )

− S(T̃ )
D′(T̃ )
D(T̃ )

. (45)

Then we have that

D′(T̃ ) =
4∑

i=1

λi

Li∑

j=1

Li∑

k=1

νij ν
i
k

T̃ 2

[(
Ei
j

)2 − Ei
jE

i
k

]
exp

(

− Ei
j + Ei

k − 2Ei
1

T̃

)

⎡

⎣
Li∑

k=1

νik exp

(

− Ei
k − Ei

1

T̃

)⎤

⎦

2 ;

(46)

performing the exchange of indices j ↔ k, Eq. (46) can be written as

D′(T̃ ) =
4∑

i=1

λiF i (T̃ ) (47)

with

F i (T̃ ) :=

Li∑

j=1

Li∑

k=1

νij ν
i
k

2T̃ 2

[
Ei
j − Ei

k

]2
exp

(

− Ei
j + Ei

k − 2Ei
1

T̃

)

⎡

⎣
Li∑

k=1

νik exp

(

− Ei
k − Ei

1

T̃

)⎤

⎦

2 ≥ 0 i = 1, . . . , 4.

(48)
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Analogously we get

N ′(T̃ ) = −
4∑

i=1

⎛

⎝
Li∑

j=1

νij n
i
j

⎞

⎠
[

3

2
+ F i (T̃ )

]
< 0 . (49)

Eventually, from (45), the expression for S′(T̃ ) is

S′(T̃ ) = − 1

D(T̃ )

⎧
⎨

⎩

4∑

i=1

3

2

⎛

⎝
Li∑

j=1

νij n
i
j

⎞

⎠+
4∑

i=1

⎡

⎣
Li∑

j=1

νij n
i
j + λiS(T̃ )

⎤

⎦F i (T̃ )

⎫
⎬

⎭
.

(50)

We notice that the content of the square brackets in (50) is strictly positive for T̃ ∈ A
and so the content of the whole curly brackets is positive too, this means that S′(T̃ )
and D(T̃ ) have opposite sign. ��

We focus now on the behavior of the function S(T̃ ). For the numerator N(T̃ ) we
have

Lemma 2 The function N(T̃ ) has a unique positive root T̃ ∗.

Proof First of all we recall that N ′(T̃ ) < 0. Moreover we have

lim
T̃→0+

N(T̃ ) = �− lim
T̃→0+

4∑

i=1

⎛

⎝
Li∑

m=1

νim n
i
m

⎞

⎠

⎡

⎢
⎢⎢⎢
⎢⎢
⎣

3

2
T̃ +

Ei
1ν

i
1 +

Li∑

j=2

νij E
i
j exp

(

− Ei
j − Ei

1

T̃

)

νi1 +
Li∑

k=2

νik exp

(

− Ei
k −Ei

1

T̃

)

⎤

⎥
⎥⎥⎥
⎥⎥
⎦

= �−
4∑

i=1

⎛

⎝
Li∑

m=1

νim n
i
m

⎞

⎠Ei
1

= 1

2

⎛

⎝
4∑

i=1

mi

Li∑

j=1

νij n
i
j

(
|uij |2 − |ũ|2

)
⎞

⎠+ 3

2

⎛

⎝
4∑

i=1

Li∑

j=1

νij n
i
j T

i
j

⎞

⎠ (51)

+
4∑

i=1

Li∑

j=1

νij n
i
j

(
Ei
j −Ei

1

)
.

As it is shown in [8], the sum involving mean velocities in (51) is non-negative, so
the whole limit is strictly positive. In addition it holds

lim
T̃→+∞

N(T̃ ) = −∞. (52)

Thus, N(T̃ ) has a unique positive root T̃ ∗. ��
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Following the same argument used in [4], we shall omit the situation in which
the choice of initial data, internal energies and collision frequencies is such that also
D(T̃ ∗) = 0. In this case, T̃ = T̃ ∗ simplifies the function S(T̃ ) and we have to deal
with a simple algebraic equation for our unknown Y 1.

Now we make some considerations about D(T̃ ).

Lemma 3 On every interval
(
T̃1, T̃2

)
⊆ A the sign of D(T̃ ) does not change.

Proof Since

lim
T̃→0+

D(T̃ ) = −	E < 0, lim
T̃→+∞

D(T̃ ) =
4∑

i=1

λi

Li∑

j=1

νij E
i
j

Li∑

j=1

νij

(53)

and the sign of D′(T̃ ) given in (47) changes in relation to internal energy levels and
collision frequencies, D(T̃ ) may have a positive root, call it T̃ #, with T̃ # �= T̃ ∗. But
in this case we would have

lim
T̃→T̃ #

S(T̃ ) = ±∞ (54)

getting a neighborhood of T̃ # not contained in A. Thus we can conclude that on

every interval
(
T̃1, T̃2

)
⊆ A the sign of D(T̃ ) does not change. ��

Consequently, from Lemma 1, neither the sign of S′(T̃ ) changes. This allows us
to prove the following result.

Lemma 4 The set A given in (44) is a connected set of R+.

Proof Let
(
T̃a, T̃b

)
be a connected component of A. If T̃a �= 0 the function S(T̃ ) is

continuous, strictly monotonically increasing or decreasing on it, hence it assumes

all the values between its upper bound that is min
(∑L3

j=1 ν
3
j n

3
j ,

∑L4

j=1 ν
4
j n

4
j

)
and

its lower bound that is max
(
−∑L1

j=1 ν
1
j n

1
j ,−

∑L2

j=1 ν
2
j n

2
j

)
. If T̃a = 0, since

limT̃→0+ D(T̃ ) < 0, S(T̃ ) has to be strictly monotonically increasing on
(
T̃a, T̃b

)
,

going from lim
T̃→0+ S(T̃ ) < 0 to min

(∑L3

j=1 ν
3
j n

3
j ,

∑L4

j=1 ν
4
j n

4
j

)
. Thus S(T̃ ) has

a root in
(
T̃a, T̃b

)
, but we know that S(T̃ ) has only one positive root, T̃ ∗. It follows

that
(
T̃a, T̃b

)
is the only connected component of A, i.e. A is a connected set. ��
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Now we are able to give the final result.

Lemma 5 The function G(T̃ ) defined in (40) is strictly monotone in the set A,
ranging from 0 to +∞. More precisely, it is increasing if D(T̃ ) < 0 and decreasing
if D(T̃ ) > 0.

Proof We compute the derivative of the function G(T̃ ). We have

G′1(T̃ ) = S′(T̃ )

⎛

⎝
L3∑

j=1

ν3
j n

3
j − S(T̃ )

⎞

⎠

−2 ⎛

⎝
L4∑

j=1

ν4
j n

4
j − S(T̃ )

⎞

⎠

−2

×
⎡

⎣

⎛

⎝
L1∑

j=1

ν1
j n

1
j + S(T̃ )

⎞

⎠+
⎛

⎝
L2∑

j=1

ν2
j n

2
j + S(T̃ )

⎞

⎠

⎤

⎦

⎛

⎝
L3∑

j=1

ν3
j n

3
j − S(T̃ )

⎞

⎠

⎛

⎝
L4∑

j=1

ν4
j n

4
j − S(T̃ )

⎞

⎠

×
⎡

⎣

⎛

⎝
L3∑

j=1

ν3
j n

3
j − S(T̃ )

⎞

⎠+
⎛

⎝
L4∑

j=1

ν4
j n

4
j − S(T̃ )

⎞

⎠

⎤

⎦

⎛

⎝
L1∑

j=1

ν1
j n

1
j + S(T̃ )

⎞

⎠

⎛

⎝
L2∑

j=1

ν2
j n

2
j + S(T̃ )

⎞

⎠

(55)

that can be cast as

G′1(T̃ ) = G1(T̃ )S′(T̃ )
4∑

i=1

1

Li∑

j=1

νijn
i
j + λiS(T̃ )

. (56)

Proceeding in a similar way we have

G′2(T̃ ) = −G2(T̃ )
1

T̃
2

4∑

i=1

λi

Li∑

j=1

νij

(
Ei
j − Ei

1

)
exp

(

− Ei
j − Ei

1

T̃

)

Li∑

k=1

νik exp

(

− Ei
k − Ei

1

T̃

) , (57)

and, finally,

G′3(T̃ ) = G3(T̃ )
	E

T̃
2 . (58)
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In this way we can conclude that

G′(T̃ ) = G(T̃ )

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S′(T̃ )
4∑

i=1

1

Li∑

j=1

νij n
i
j + λiS(T̃ )

− 1

T̃
2

4∑

i=1

λi

Li∑

j=1

νij

(
Ei
j − Ei

1

)
exp

(

− Ei
j − Ei

1

T̃

)

Li∑

k=1

νik exp

(

− Ei
k − Ei

1

T̃

) + 	E

T̃
2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

(59)

that can be written, using function D(T̃ ) defined in (37), as

G′(T̃ ) = G(T̃ )

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S′(T̃ )

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

4∑

i=1

1

Li∑

j=1

νijn
i
j + λiS(T̃ )

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

− 1

T̃
2 D(T̃ )

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (60)

We have that both G(T̃ ) and the term in square brackets in (60) are positive in the

set A that, as we proved in Lemma 4, is an interval A =
(
T̃min, T̃max

)
; moreover,

thanks to Lemma 1, S′(T̃ ) and −D(T̃ ) have the same sign, that does not change in
A, and this means that G(T̃ ) is strictly monotone. Moreover, recalling the definition

of G(T̃ ) given in (40), when S(T̃ ) → min
(∑L3

j=1 ν
3
j n

3
j ,

∑L4

j=1 ν
4
j n

4
j

)
we have

G(T̃ ) → +∞ and when S(T̃ ) → max
(
−∑L1

j=1 ν
1
j n

1
j ,−

∑L2

j=1 ν
2
j n

2
j

)
we have

G(T̃ )→ 0; also in the case in which T̃min = 0 it holds limT̃→0+ G(T̃ ) = 0. ��
This final result allows us to assert that Eq. (39) has a unique solution, providing
thus the auxiliary temperature T̃ , and this completes the construction of Maxwellian
attractors Mi

j of our BGK model.

The equilibrium states correspond to f ij = Mi
j for i = 1, . . . , 4 and j =

1, . . . , Li , therefore

uij = ũ = u , T i
j = T̃ = T , i = 1, . . . , 4, j = 1, . . . , Li,

and number densities of components nij are related to global density of the

corresponding gas ni by the constraint (9), while the densities ni are bound together
by (10).



84 M. Bisi and R. Travaglini

2.2 H -Theorem for the Homogeneous Case

We can also prove the asymptotic stability of collision equilibria. Indeed, in space
homogeneous conditions, setting f = (f 1

1 , . . . , f
4
L4), the physical entropy

H [f] =
4∑

i=1

Li∑

j=1

∫

R3
f i
j log(f i

j ) dv (61)

is a Lyapunov functional for the present BGK model. Specifically, if fM denotes the
stationary state corresponding to the initial state f0, we have H [f] > H [fM ] for any
f �= fM (this is a classical result, already shown for instance in [14]), and we can
prove the entropy inequality H ′[f] < 0 for any f �= fM , while H ′[fM ] = 0.

The derivative of the H -functional (61) reads as

H ′[f] =
4∑

i=1

Li∑

j=1

νij

∫

R3

(
Mi

j − f i
j

)
log(f i

j ) dv. (62)

At first we can check that

4∑

i=1

Li∑

j=1

νij

∫

R3

(
Mi

j − f ij
)

log(Mi
j ) dv = 0 . (63)

Indeed, we explicitly compute the logarithm of Maxwellian attractors, leading to

4∑

i=1

Li∑

j=1

νij

∫

R3

(
Mi

j − f i
j

)
[

log ñij +
3

2
log(mi)− 3

2
log(2πT̃ )

]
dv

+
4∑

i=1

Li∑

j=1

νij

∫

R3

(
Mi

j − f i
j

)
[
− mi

2 T̃

(|v|2 − 2ũ · v+ |ũ|2)
]
dv . (64)

Then, owing to conservation laws of momentum and total energy, it simplifies to

4∑

i=1

Li∑

j=1

νij
(
ñij − nij

)
[

log ñij +
Ei
j

T̃
+ 3

2
logmi

]

; (65)

bearing in mind (13), the previous equation becomes

4∑

i=1

Li∑

j=1

νij
(
ñij − nij

)
[

log ñi + Ei
1

T̃
− log

(
Zi(T̃ )

)
+ 3

2
logmi

]

. (66)
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Using the relations (20), the quantity above can be written as

L1∑

j=1

ν1
j

(
ñ1
j − n1

j

) 4∑

i=1

λi

[

log ñi + Ei
1

T̃
− log

(
Zi(T̃ )

)
+ 3

2
logmi

]

=
L1∑

j=1

ν1
j

(
ñ1
j − n1

j

)
⎧
⎨

⎩
log

⎡

⎣ ñ1ñ2

ñ3ñ4

(
m3m4

m1m2

) 3
2

⎤

⎦− log

[
Z1(T̃ )Z2(T̃ )

Z3(T̃ )Z4(T̃ )
exp

(
	E

T̃

)]⎫
⎬

⎭
= 0

(67)

due to the mass action law (14) for auxiliary parameters. Then, by subtracting (63)
from (62) we easily get that for any f �= fM

H ′[f] = −
4∑

i=1

Li∑

j=1

νij

∫

R3

(
f ij −Mi

j

)
log

(
f i
j

Mi
j

)

dv

and the inequality H ′[f] < 0 holds owing to usual convexity arguments.

3 Trend to Equilibrium in Space Homogeneous Conditions

Performing the same calculations done in [8], we are able to derive from BGK
model (11) the evolution equations for the main macroscopic fields, i.e. number
densities, mean velocities and temperatures of all components of the four reacting
gases (nij , uij , T i

j , for i = 1, . . . , 4 and j = 1, . . . , Li ). We obtain the following
system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂nij

∂t
+∇x · (nij uij ) = νij (ñ

i
j − nij ) ,

nij

(
∂uij
∂t
+ uij · ∇xuij

)

+ 1

mi
∇x · Pij = νij ñ

i
j (ũ− uij ) ,

3

2
nij

(
∂T i

j

∂t
+ uij · ∇xT

i
j

)

+ Pij : ∇xuij +∇x · qij

= νij ñ
i
j

[
3

2
(T̃ − T i

j )+
1

2
mi |ũ− uij |2

]
,

(68)
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where Pij are pressure tensors and qij heat fluxes for each component defined as

Pij = mi

∫

R3
(v−uij )⊗(v−uij ) f

i
j (v) dv , qij =

mi

2

∫

R3
(v−uij ) |v−uij |2 f i

j (v) dv .

For illustrative purposes we will show some numerical results for two reacting
mixtures taking into account the space homogeneous and one-dimensional version
of evolution equations (68) that reads as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂nij

∂t
= νij (ñ

i
j − nij ) ,

i = 1, . . . , 4,
j = 1, . . . , Li,

∂uij

∂t
= νij

ñij

nij

(ũ− uij ) ,
i = 1, . . . , 4,
j = 1, . . . , Li,

∂T i
j

∂t
= νij

ñij

nij

(
T̃ − T i

j +
1

3
mi (ũ− uij )

2
)
,

i = 1, . . . , 4,
j = 1, . . . , Li,

(69)

where ñij is provided by (13) and (25), ũ is explicitly given in (27), and T̃ may
be obtained as the unique solution of the transcendental equation (39). Equations
(69) constitute thus a closed system of 3(L1 + . . . + L4) equations, having as
unknowns densities, velocities and temperatures of all components of polyatomic
species. Once the initial state (nij )0, (uij )0, (T i

j )0 is assigned, the corresponding
equilibrium configuration is unique and may be determined bearing in mind the
conservations of three suitable combinations of total densities, global velocity and
total energy.

The first mixture we model is inspired by the reversible reaction involving
hydrogen H2 (with mass 2.02 g/mol), iodine I2 (253.8 g/mol) and hydrogen iodide
HI (127.91 g/mol)

H2 + I2 � HI +HI.

So we take into account four gasesGi , i = 1, ..., 4, with mass ratios reproducing the
ones of the gases involved in the reaction: m1 = 0.1, m2 = 12.8, m3 = m4 = 6.45.
Notice that in this bimolecular reaction the third and the fourth species coincide,
therefore they are characterized by the same internal structure and by the same initial
data. We suppose that gas species G1, G3 ≡ G4 are endowed with two and G2 is
endowed with three discrete energy levels, respectively. Specifically, we assume the
following configuration of internal energy levels

E1
1 = 6.5, E1

2 = 7.5, E2
1 = 7, E2

2 = 8, E2
3 = 8.5,

E3
1 = 6, E3

2 = 7, E4
1 = 6, E4

2 = 7. (70)
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From now on we will consider the components concentrations

cij =
nij

∑4
h=1

∑Lh

k=1 n
h
k

,

and also velocities and temperatures will be suitably normalized with respect to the
corresponding equilibrium values. Initial data for number concentrations, velocities
and temperatures are given as follows

C1
1 C1

2 C2
1 C2

2 C2
3 C3

1 C3
2 C4

1 C4
2

c0 0.13 0.07 0.08 0.06 0.15 0.14 0.11 0.14 0.11
u0 0.3 0 0.1 0.4 0.2 0.6 0.1 0.6 0.1
T0 2 4 1 2.5 2 6 1.5 6 1.5

. (71)

The choice of collision frequencies is done as in [4], setting the sets of indices for
i = 1, . . . , 4 and j = 1, . . . , Li

D1i
j =

⎧
⎨

⎩

h = 1, . . . , 4,
m = 1, . . . , Li,
k, p = 1, . . . , Lh

: Ei
m + Eh

p − Ei
j − Eh

k ≤ 0

⎫
⎬

⎭
,

D2i
j =

⎧
⎨

⎩

h = 1, . . . , 4,
m = 1, . . . , Li,
k, p = 1, . . . , Lh

: Ei
m + Eh

p − Ei
j − Eh

k > 0

⎫
⎬

⎭
,

D3i
j =

⎧
⎪⎨

⎪⎩
h, l, n :

(i, h) �= (l, n),

(i, h), (l, n)

∈ {(1, 2), (3, 4)} ,

k = 1, . . . , Lh,

m = 1, . . . , Ll ,

p = 1, . . . , Ln
: El

m + En
p − Ei

j − Eh
k ≤ 0

⎫
⎪⎬

⎪⎭
,

D4i
j =

⎧
⎪⎨

⎪⎩
h, l, n :

(i, h) �= (l, n),

(i, h), (l, n)

∈ {(1, 2), (3, 4)} ,

k = 1, . . . , Lh,

m = 1, . . . , Ll ,

p = 1, . . . , Ln
: El

m + En
p − Ei

j − Eh
k > 0

⎫
⎪⎬

⎪⎭
,

and taking

νij =
∑

h,k,m,p∈D2i
j

ν
m,p
j,k n

h
k exp

(

− Ei
m + Eh

p − Ei
j − Eh

k

T

)

+
∑

h,k,m,p∈D1i
j

ν
m,p
j,k n

h
k

+
∑

h,k,l,m,n,p∈D4i
j

ν
m,p
j,k n

h
k

(
mimj

mlmn

) 3
2

exp

(

− El
m + En

p − Ei
j − Eh

k

T

)

+
∑

h,k,l,m,n,p∈D3i
j

ν
m,p
j,k n

h
k
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with ν
m,p

j,k = k + j

20(m+ p)
. Equilibrium values for concentrations cijM obtained in

this setting are reported in the following table

C1
1 C1

2 C2
1 C2

2 C2
3 C3

1 C3
2 C4

1 C4
2

cM 0.001 0.001 0.042 0.031 0.027 0.256 0.192 0.256 0.192

while equilibrium global mean velocity is uM = 0.29 and temperature is TM =
3.47. The evolution in time of species concentrations computed numerically is
depicted in Fig. 1. It is possible to observe that, according to constraint (9), for each
gas species the component corresponding to a higher energy level will have a lower
concentration and vice-versa. Moreover, due to relation (10), the concentrations
of species G1 and G2 are lower, in particular the one of G1 (that has the lowest
mass in the mixture) is the lowest, while concentrations of species G3 and G4 are
higher. In other words, chemical equilibrium is achieved when species G1 is almost
completely disappeared, so that almost no reactive collision can occur. We also note
that trend to equilibrium for concentrations may be non monotone, see for instance
c2

1 and c2
2. In Fig. 2 we report the behavior of normalized velocities ūij = uij /uM

and normalized temperatures T̄ i
j = T i

j /TM . We can observe that the species G1

takes a longer time to reach the equilibrium value for velocity and temperature, its
components keep nearly constant values in the first stage of the evolution.

The second reacting mixture we take into account for our simulations is the
following

ClNO2 +NO � NO2 + ClNO,

0 0.05 0.1t
0

0.1

0.2

0.3
G1 - Concentrations

C1
1

C1
2

0 0.05 0.1t
0

0.1

0.2

0.3
G2 - Concentrations

C2
1

C2
2

C2
3

0 0.05 0.1t0

0.1

0.2

0.3
G3 - Concentrations

C3
1

C3
2

0 0.05 0.1t
0

0.1

0.2

0.3
G4 - Concentrations

C4
1

C4
2

Fig. 1 Concentrations for a mixture of four reacting gases with energy levels and initial values as
in (70), (71), considering masses (m1,m2,m3,m4) = (0.1, 12.8, 6.45, 6.45)
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0 0.02 0.04 0.06 0.08 0.1t0

1

2
Velocities

G1

G2

G3

G4

0 0.02 0.04 0.06 0.08 0.1t0

1

2
Temperatures

G1

G2

G3

G4

Fig. 2 Normalized velocities and temperatures for a mixture of four reacting gases with
energy levels and initial values as in (70), (71), considering masses (m1,m2,m3,m4) =
(0.1, 12.8, 6.45, 6.45)

where the chloro nitride ClNO2 (81.46 g/mol) reacts with nitric oxide NO

(30.01 g/mol) forming nitrosyl chloride ClNO (65.46 g/mol) and nitrogen dioxide
NO2 (46.01 g/mol), and vice-versa in the reverse reaction. As before, we take in
our model four gases having mass ratios similar to the ones involved in the real
reaction:m1 = 1, m2 = 2.72,m3 = 2.18,m4 = 1.53. We make the assumption that
the first gasG1 is composed by two, the second gasG2 is composed by four, and the
other two gases G3 and G4 are composed by three components, respectively. Each
component corresponds to a different internal energy level as follows

E1
1 = 6, E1

2 = 7, E2
1 = 7, E2

2 = 8, E2
3 = 10, E2

4 = 12,

E3
1 = 5.5, E3

2 = 6, E3
3 = 7.5, E4

1 = 4, E4
2 = 9, E4

3 = 10. (72)

We set initial number concentrations, velocities and temperatures as reported in the
following table

C1
1 C1

2 C2
1 C2

2 C2
3 C2

4 C3
1 C3

2 C3
3 C4

1 C4
2 C4

3

c0 0.12 0.09 0.07 0.08 0.11 0.06 0.07 0.05 0.13 0.03 0.08 0.09
u0 0.3 0 0.1 0.4 0.2 0.6 0.1 0.4 0.5 0.3 0 0.2
T0 2 4 1 2.5 2 6 1.5 2.5 3 4.5 5 1

. (73)



90 M. Bisi and R. Travaglini
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0 0.02 0.04 0.06t
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0.2
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C4
1

C4
2

C4
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Fig. 3 Concentrations for a mixture of four reacting gases with energy levels and initial values as
in (72), (73), considering masses (m1,m2,m3,m4) = (1, 2.72, 2.18, 1.53)

In this case, equilibrium values for equilibrium concentrations cijM are

C1
1 C1

2 C2
1 C2

2 C2
3 C2

4 C3
1 C3

2 C3
3 C4

1 C4
2 C4

3

cM 0.09 0.07 0.12 0.08 0.04 0.02 0.13 0.11 0.07 0.2 0.05 0.04

while global mean velocity is uM = 0.28 and temperature is TM = 3.59. Numerical
results for behavior in time of concentrations for all the components are showed in
Fig. 3. In this case, since there is less difference among masses than in the previous
case, final values of number densities are more similar; we only have a significantly
higher concentration of component C4

1 that corresponds to the lowest energy level.
Trends for normalized mean velocities and temperatures of the species are reported
in Fig. 4 and also in this case we can observe that the lighter gas G1 takes a longer
time to reach the equilibrium value.

4 Conclusions

We have generalized the BGK model proposed in [8] to a mixture of four polyatomic
gases undergoing a bimolecular and reversible chemical reaction. The additional
difficulties with respect to the inert frame are essentially due to two reasons. At first,
single number densities are no more preserved during the evolution, since particles
involved in a reactive collision change their nature; consequently, proper auxiliary
number densities affect the Maxwellian attractors of the BGK collision operators,
and they are related in a non-trivial way to species masses and concentrations,
to global (auxiliary) temperature and to the chemical energy gap. Then, the mass
action law of chemistry that characterizes chemical collision equilibrium, and that
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Fig. 4 Normalized velocities and temperatures for a mixture of four reacting gases with
energy levels and initial values as in (72), (73), considering masses (m1,m2,m3,m4) =
(1, 2.72, 2.18, 1.53)

is assumed to be valid also for auxiliary parameters, constitutes an additional
transcendental equation to be combined to the energy conservation requirement
(that is a transcendental law by itself) in order to prove well-posedness of auxiliary
number densities and temperature. We have also performed some numerical simula-
tions of evolution equations for species concentrations, velocities and temperatures
corresponding to our BGK model. Specifically, we have considered two different
mixtures, with particle mass ratios corresponding to real cases, namely to the ones
of two real bimolecular and reversible chemical reactions. The trend to equilibrium
turns out to be much slower for the species much lighter than the others, and this is in
agreement with the separation of species with disparate masses observed in several
physical problems [17]. Of course it will be interesting to test our BGK model
and corresponding macroscopic equations also in space dependent problems, as for
instance the shock wave structure, comparing our results with the ones obtained
for inert mixtures in the frame of extended thermodynamics [20], or from kinetic
systems for reactive monoatomic gases [6] or for a single polyatomic gas [19, 22].
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On Some Recent Progress
in the Vlasov–Poisson–Boltzmann System
with Diffuse Reflection Boundary

Yunbai Cao and Chanwoo Kim

Abstract We discuss some recent development on the Vlasov–Poisson–Boltzmann
system in bounded domains with diffuse reflection boundary condition. In addition
we present a new regularity result when the particles are surrounded by conductor
boundary.

1 Background

The object of kinetic theory is the modeling of particles by a distribution function
in the phase space, which is denoted by F(t, x, v) for (t, x, v) ∈ [0,∞)×�× R

3

where � is an open bounded subset of R
3. Dynamics and collision processes of

dilute charged particles with an electric field E can be modeled by the (two-species)
Vlasov–Poisson–Boltzmann equation

∂tF+ + v · ∇xF+ + E · ∇vF+ = Q(F+, F+)+Q(F+, F−),

∂tF− + v · ∇xF− − E · ∇vF− = Q(F−, F+)+Q(F−, F−).
(1)

Here F±(t, x, v) ≥ 0 are the density functions for the ions (+) and electrons (−)
respectively. The collision operator measures “the change rate” in binary hard sphere
collisions and takes the form of ([14])

Q(F1, F2)(v) := Qgain(F1, F2)−Qloss(F1, F2)

:=
∫

R3

∫

S2
|(v − u) · ω|[F1(u

′)F2(v
′)− F1(u)F2(v)]dωdu,

(2)
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where u′ = u− [(u− v) · ω]ω and v′ = v + [(u− v) · ω]ω. The collision operator

enjoys a collision invariance: for any measurableG,
∫
R3

[
1 v |v|

2−3
2

]
Q(G,G)dv =

[
0 0 0

]
. It is well-known that a global Maxwellian μ satisfies Q(·, ·) = 0, where

μ(v) := 1

(2π)3/2 exp

(
− |v|

2

2

)
. (3)

The electric field E is given by

E(t, x) := −∇xφ(t, x), (4)

where an electrostatic potential is determined by the Poisson equation:

−	xφ(t, x) =
∫

R3
(F+(t, x, v)− F−(t, x, v)) dv in �. (5)

A simplified one-species Vlasov–Poisson–Boltzmann equation is often consid-
ered to reduce the complexity. Where we let F(t, x, v) takes the role of F+(t, x, v),
and assume F− = ρ0μ where the constant ρ0 =

∫
�×R3 F+(0, x, v) dvdx. Then we

get the system

∂tF + v · ∇xF + E · ∇vF = Q(F,F), (6)

−	xφ(t, x) =
∫

R3
F(t, x, v) dv − ρ0 in �. (7)

Here the background charge density ρ0 is assumed to be a constant.
Throughout this paper, we use the notation

ι = + or −, and − ι =
{
− , if ι = +
+ , if ι = −. (8)

And for the one-species case, Fι = F .
In many physical applications, e.g. semiconductor and tokamak, the charged

dilute gas is confined within a container, and its interaction with the boundary,
which can be described by suitable boundary conditions, often plays a crucial role
in global dynamics. In this paper we consider one of the physical conditions, a so-
called diffuse boundary condition:

Fι(t, x, v) =
√

2πμ(v)
∫

n(x)·u>0
Fι(t, x, u){n(x) · u}du for (x, v) ∈ γ−. (9)

Here γ− := {(x, v) ∈ ∂�×R
3 : n(x) · v < 0}, and n(x) is the outward unit normal

at a boundary point x.
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Due to its importance, there have been many research activities in mathematical
study of the Boltzmann equation. In [11], global strong solution of Boltzmann
equation coupled with the Poisson equation has been established through the
nonlinear energy method, when the initial data are close to the Maxwellian μ. In
the large-amplitude regime, an almost exponential decay for Boltzmann solutions is
established in [8], provided certain a priori strong Sobolev estimates can be verified.
Such high regularity insures an L∞-control of solutions which is crucial to handle
the quadratic nonlinearity. Even though these estimates can be verified in periodic
domains, their validity in general bounded domains have been doubted.

Despite its importance, mathematical theory on boundary problems of VPB,
especially for strong solutions, hasn’t been developed up to satisfactory (cf.
renormalized solutions of VPB were constructed in [18]). One of the fundamental
difficulties for the system in bounded domains is the lack of higher regularity,
which originates from the characteristic nature of boundary conditions in the kinetic
theory, and the nonlocal property of the collision term Q. This nonlocal term
indicates that the local behavior of the solution could be affected globally by x

and v, and thus prevents the localization of the solution. From that a seemingly
inevitable singularity of the spatial normal derivative at the boundary x ∈ ∂�

arises ∂nFι(t, x, v) ∼ 1
n(x)·v /∈ L1

loc. Such singularity towards the grazing set

γ0 := {(x, v) ∈ ∂� × R
3 : n(x) · v = 0} has been studied thoroughly in

[13] for the Boltzmann equation in convex domain. For recent development of the
boundary theory of the Boltzmann equation, we refer to [9, 12, 15–17] and the
references therein. Here we clarify that a Cα domain means that for any p ∈ ∂�,
there exists sufficiently small δ1 > 0, δ2 > 0, and an one-to-one and onto Cα-
map, ηp : {(x‖,1, x‖,2, xn) ∈ R

3 : xn > 0} ∩ B(0; δ1) → � ∩ B(p; δ2)

with ηp(x‖,1, x‖,2, xn) = ηp(x‖,1, x‖,2, 0) + xn[−n(ηp(x‖,1, x‖,2, 0))], such that
ηp(·, ·, 0) ∈ ∂� ([10]). A convex domain means that there exists C� > 0 such that
for all p ∈ ∂� and ηp and for all x‖,

2∑

i,j=1

ζiζj ∂i∂jηp(x‖) · n(x‖) ≤ −C�|ζ |2 for all ζ ∈ R
2. (10)

Construction of a unique global solution and proving its asymptotic stability of
VPB in general domains has been a challenging open problem for any boundary
condition. In [4] the authors give the first construction of a unique global strong
solution of the one-species VPB system with the diffuse boundary condition when
the domain is C3 and convex. Moreover an asymptotic stability of the global
Maxwellianμ is studied. The result was then extended to the two-species case in [6].
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2 Global Strong Solution of VPB

In [4, 6], the authors take the first step toward comprehensive understanding of VPB
in bounded domains. They consider the zero Neumann boundary condition for the
potential φ: n · E|∂� = ∂φ

∂n
|∂� = 0, which corresponds to a so-called insulator

boundary condition. In such setting (Fι, E) = (μ, 0) is a stationary solution.
The characteristics (trajectory) is determined by the Hamilton ODEs for f+ and

f− separately

d

ds

[
X
f
ι (s; t, x, v)

V
f
ι (s; t, x, v)

]

=
[

V
f
ι (s; t, x, v)

−ι∇xφf (s,Xf
ι (s; t, x, v))

]

for−∞ < s, t <∞,

(11)

with (X
f
ι (t; t, x, v), V f

ι (t; t, x, v)) = (x, v). Where the potential is extended to
negative time as φf (t, x) = e−|t |φf0(x) for t ≤ 0. For (t, x, v) ∈ R × � × R

3,

define the backward exit time tfb,ι(t, x, v) as

t
f

b,ι(t, x, v) := sup{s ≥ 0 : Xf
ι (τ ; t, x, v) ∈ � for all τ ∈ (t − s, t)}. (12)

Furthermore, define xfb,ι(t, x, v) := X
f
ι (t − tb,ι(t, x, v); t, x, v) and vfb,ι(t, x, v) :=

V
f
ι (t − tb,ι(t, x, v); t, x, v). In order to handle the boundary singularity, they

introduce the following notion

Definition 1 (Kinetic Weight) For ε > 0

αf,ε,ι(t, x, v) := χ
( t − t

f

b,ι(t, x, v)+ ε

ε

)
|n(xfb,ι(t, x, v)) · vfb,ι(t, x, v)|

+
[
1− χ

( t − t
f

b,ι(t, x, v)+ ε

ε

)]
.

(13)

Here they use a smooth function χ : R→ [0, 1] satisfying

χ(τ) = 0, τ ≤ 0, and χ(τ) = 1, τ ≥ 1.
d

dτ
χ(τ) ∈ [0, 4] for all τ ∈ R.

(14)

Also, denote

αf,ε(t, x, v) :=
[
αf,ε,+(t, x, v) 0

0 αf,ε,−(t, x, v)

]
. (15)
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Note that αf,ε,ι(0, x, v) ≡ αf0,ε,ι(0, x, v) is determined by f0. For the sake

of simplicity, the superscription f in Xf
ι , V

f
ι , t

f

b,ι, x
f

b,ι, v
f

b,ι is dropped unless they
could cause any confusion. One of the crucial properties of the kinetic weight in (13)
is an invariance under the Vlasov operator:

[
∂t+v·∇x−∇xφf ·∇v

]
αf,ε,ι(t, x, v) = 0.

This is due to the fact that the characteristics solves a deterministic system (11). This
crucial invariant property under the Vlasov operator is one of the key points in their
approach in [4, 6].

Theorem 1 ([4, 6]) Let wϑ(v) = eϑ |v|2 . Assume a bounded open C3 domain � ⊂
R

3 is convex (10). Let 0 < ϑ̃ < ϑ  1. Assume the compatibility condition:
(9) holds at t = 0. There exists a small constant 0 < ε0  1 such that for all
0 < ε ≤ ε0 if an initial datum F0,ι = μ+√μf0,ι satisfies

‖wϑf0,ι‖L∞(�̄×R3) < ε, ‖wϑ̃∇vf0,ι‖L3(�×R3) <∞, (16)

‖wϑ̃α
β
f0,ι,ε
∇x,vf0,ι‖Lp(�×R3) < ε for 3 < p < 6, 1− 2

p
< β <

2

3
, (17)

then there exists a unique global-in-time solution Fι(t) = μ+√μfι(t) ≥ 0 to (1),
(4), (5), (9). Moreover there exists λ∞ > 0 such that

sup
t≥0

eλ∞t‖wϑfι(t)‖L∞(�̄×R3) + sup
t≥0

eλ∞t‖φf (t)‖C2(�) � 1, (18)

and, for some C > 0, and, for 0 < δ = δ(p, β),

‖wϑ̃α
β
f,ε,ι∇x,vfι(t)‖Lp(�×R3) � eCt for all t ≥ 0, (19)

‖∇vfι(t)‖L3
x(�)L

1+δ
v (R3)

�t 1 for all t ≥ 0. (20)

Furthermore, if Fι nad Gι are both solutions to (1), (4), (5), (9), then

‖fι(t)− gι(t)‖L1+δ(�×R3) �t ‖fι(0)− gι(0)‖L1+δ(�×R3) for all t ≥ 0. (21)

Remark 1 The second author and his collaborators constructs a local-in-time
solution for given general large datum in [7] for the generalized diffuse reflection
boundary condition. By introducing a scattering kernelR(u→ v; x, t), representing
the probability of a molecule striking in the boundary at x ∈ ∂� with velocity u to
be bounced back to the domain with velocity v, they consider

F(t, x, v)|n(x) · v| =
∫

γ+(x)
R(u→ v; x, t)F (t, x, u){n(x) · u}du, on γ−.

(22)
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In [7] they study a model proposed by Cercignani and Lampis in [2, 3]. With two
accommodation coefficients 0 < r⊥ ≤ 1, 0 < r‖ < 2, the Cercignani-Lampis
boundary condition (C-L boundary condition) can be written as

R(u→ v; x, t)

:= 1

r⊥r‖(2− r‖)π/2

|n(x) · v|
(2Tw(x))2

I0

(
1

2Tw(x)

2(1− r⊥)1/2v⊥u⊥
r⊥

)

× exp

(
− 1

2Tw(x)

[ |v⊥|2 + (1− r⊥)|u⊥|2
r⊥

+ |v‖ − (1− r‖)u‖|2
r‖(2− r‖)

])
.

(23)

Here Tw(x) is a wall temperature on the boundary and I0(y) := π−1
∫ π

0 ey cosφdφ.
In this formula, v⊥ and v‖ denote the normal and tangential components of the
velocity respectively: v⊥ = v · n(x), v‖ = v − v⊥n(x) .

In [4, 6] a global L∞-bound is proven by L2 − L∞ framework. The idea is to
use Duhamel’s principle to estimate the solution f along the characteristics (11) to
reach

‖fι(t)‖L∞(�̄×R3) ∼ ‖e−t f0,ι‖L∞(�̄×R3) +
∫ t

0
e−(t−s)‖fι(s)‖L2(�×R3)ds.

And then use the decay of fι in L2 norm to conclude the decay in L∞. The key of
this process is to verify

∂Xι(s; t, x, v)
∂v

∼ −(t − s)Id3×3 +
∫ t

s

∫ t

s ′
∇2
xφ(s

′′)
∂Xι(s

′′; t, x, v)
∂v

ds′ds′′

∼ O(|t − s|)Id3×3.

(24)

For which the C2-bound of φ seems necessary. Unfortunately such C2 estimate for
φ falls short of the boarder line case of the Schauder elliptic regularity theory when
the source term of the Poisson equation

∫
R3(F+−F−)dv in (5) is merely continuous

or bounded. They overcome such difficulty by interpolating the C2 norm into a sum
of a C2,0+ norm and a C1,1− norm:

Lemma 1 Assume� ⊂ R
3 with aC2 boundary ∂�. For 0 < D1 < 1, 0 < D2 < 1,

and �0 > 0,

‖∇2
xφ(t)‖L∞(�) ��,D1,D2 e

D1�0t‖φ(t)‖C1,1−D1 (�) + e−D2�0t‖φ(t)‖C2,D2 (�).

(25)
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While an exponential decay of the weaker C1,1− norm can be derived from the
exponential decay of fι in L∞, the C2,0+ norm is controlled by Morrey’s inequality

‖φ‖
C

2,0+
x

�
∑

ι=±
‖

∫

R3
f ι
√
μdv‖

C
0,0+
x

�
∑

ι=±
‖

∫

R3
∇xfι√μdv‖Lpx , for p > 3.

(26)

Now the spatial derivative of fι needs to be controlled. They develop an
αι-weighted W 1,p estimate by energy-type estimate of αι∇x,vfι, where the αι-
multiplication compensates the boundary singularity. This allows us to bound (26)
for p−2

p
< β <

p−1
p

,

‖
∫

R3
∇xfι√μdv‖Lpx � ‖α−βι ‖

L
p

p−1
‖αβι ∇xfι

√
μ‖Lpx,v � ‖αβι ∇xfι

√
μ‖Lpx,v ,

as long as

α
− βp

p−1
ι ∼ 1

αι(t, x, v)1−
∈ L1

v uniformly for all x. (27)

A difficulty of the proof of (27) arises form lack of local representation
of αι(t, x, v). αι is only defined at some boundary point along (possibly very
complicated) characteristics. They employ a geometric change of variables v �→
(xb,ι(t, x, v), tb,ι(t, x, v)) to exam (27). By computing the Jacobian there is an extra
α-factor from dv ∼ αι

|tb,ι|3 dtb,ιdxb,ι, which cancels the singularity of (27). Then they

use a lower bound of tb,ι �
|xfb,ι−x|
max |V | and a bound α � |(x−xfb,ι)·n(xfb,ι)|

t
f

b,ι

to have

∫

|v|�1
αι
− βp

p−1 dv �
∫

boundary

|(x − xb,ι) · n(xb,ι)|1−
βp
p−1

|x − xb,ι|3−
βp
p−1

dxb,ι + good terms <∞,

(28)

which turns to be bounded as long as βp
p−1 < 1.

From the above estimates and the interpolation, they derive an exponential decay
of φ(t) in C2

x as long as ‖αβι ∇xf (t)‖Lpx,v grows at most exponentially. With the

C2
x -bound of φ in hand, they control ‖αβι ∇xf (t)‖Lpx,vvia Gronwall’s inequality and

close the estimate by proving its (at most) exponential growth.
For the uniqueness and stability of approximating sequence they prove L1-

stability. The key observation is that v-derivatives of the diffuse BC (9) has no
boundary singularity, thus is bounded. The equation of ∇vfι has a singular forcing
term ∇xfι. For which they control ‖∇xfι‖L3

xL
1
v

as ‖α−βι ‖
L

p
p−1
v

‖αβι ∇xfι‖Lpx,v , and

this term is bounded from (27).
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3 Improved Regularity Under the Sign Condition

One interesting question is to improve the regularity estimate beyond a weighted
W 1,p for p < 6 of fι in [4, 6]. Some work in this direction has been done in [5].

In [5] the author consider the one-species VPB system (4), (6), where the
potential consists of a self-generated electrostatic potential and an external potential.
That is E = ∇φ, where

φ(t, x) = φF (t, x)+ φE(t, x), with
∂φE

∂n
> CE > 0 on ∂�, (29)

and φF satisfies (7) and the zero Neumann boundary condition ∂φF
∂n
= 0 on ∂�.

Under such setting, the field E satisfies a crucial sign condition on the boundary

E(t, x) · n(x) > CE > 0 for all t and all x ∈ ∂�. (30)

With the help of the external potential φE with the crucial sign condition (29),
they construct a short time weighted W 1,∞ solution to the VPB system, which
improves the regularity estimate of such system in Theorem 1. The key idea of
the result is to incorporate a different distance function α̃:

α̃ ∼
[
|v · ∇ξ(x)|2 + ξ(x)2 − 2(v · ∇2ξ(x) · v)ξ(x)− 2(E(t, x) · ∇ξ(x))ξ(x)

]1/2

,

(31)

where ξ : R3 → R is a smooth function such that � = {x ∈ R
3 : ξ(x) < 0}, and

the closest boundary point x := {x̄ ∈ ∂� : d(x, x̄) = d(x, ∂�)} is uniquely defined
for x closed to the boundary. Note that α̃|γ− ∼ |n(x) · v|. A version of a distance
function without the potential was used in [13]. One of the key contribution in [5]
is to incorporate this different distance function (31) in the presence of an external
field.

Theorem 2 ([5]) Let φE(t, x) be a given external potential with ∇xφE satisfying
(30), and ‖∇xφE(t, x)‖C1

t,x(R+×�̄) < ∞. Assume that, for some 0 < ϑ < 1
4 ,

‖wϑα̃∇x,vf0‖L∞(�̄×R3) + ‖wϑf0‖L∞(�̄×R3) < ∞. Then there exists a unique
solutionF(t, x, v) = √μf (t, x, v) to (6), (4), (9), (29) for t ∈ [0, T ]with 0 < T  
1, such that for some 0 < ϑ ′ < ϑ , " " 1, sup0≤t≤T ‖wϑ ′f (t)‖L∞(�̄×R3) < ∞,

and

sup
0≤t≤T

‖wϑ ′e
−" 〈v〉t α̃∇x,vf (t, x, v)‖L∞(�̄×R3) <∞. (32)
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One of the crucial property α̃ enjoys, under the assumption of the sign condition
(30), is the invariance along the characteristics:

Lemma 2 (Velocity Lemma Near Boundary) Suppose E(t, x) satisfies the sign
condition (30). Then for any 0 ≤ s < t and trajectory X(τ), V (τ ) solving (11), if
X(τ) ∈ � for all s ≤ τ ≤ t , then

e−C
∫ t
s (|V (τ ′)|+1)dτ ′α̃(s,X(s), V (s)) ≤ α̃(t, X(t), V (t))

≤ eC
∫ t
s (|V (τ ′)|+1)dτ ′α̃(s,X(s), V (s)),

(33)

for any C � (‖∇xφE(t, x)‖C1
t,x(R+×�̄) + 1)/CE .

The key ingredient in the α̃-weighted regularity estimate is a dynamical non-local
to local estimate which can be stated as

Lemma 3 Let (t, x, v) ∈ [0, T ] × � × R
3, 1 < β < 3, 0 < κ ≤ 1. Suppose

E satisfies the sign condition (30). Then for " " 1 large enough, and for any
0 < Cϑ < 1

4 , 0 < δ  1,

∫ t

max{0,t−tb}

∫

R3
e−

∫ t
s
"
2 〈V (τ ;t,x,v)〉dτ e

−Cϑ
2 |V (s)−u|2

|V (s)− u|2−κ
1

(α̃(s,X(s), u))β
duds

�e2C�
‖∇E‖∞+‖E‖2

L∞t,x
+‖E‖

L∞t,x
CE

δ
3−β

2

〈v〉2(CE + 1)
β−1

2 (α̃(t, x, v))β−2(‖E‖2
L∞t,x
+ 1)

3−β
2

+
(‖E‖2

L∞t,x
+ 1)β−1

C
β−1
E δβ−1(α̃(t, x, v))β−1

2

"
,

(34)

where (X(s), V (s)) = (X(s; t, x, v), V (s; t, x, v)) as in (11).

The same estimate without the external field had been established by the second
author and his collaborators in [13]. The proof of (34) is obtained by first making
use of a series of change of variables to get the precise estimate of the velocity
integration, which is bounded by,

∫

R3

e−ϑ |V (s)−u|2

|V (s)− u|2−κ [α̃(s,X(s), u)]β du � 1

(|V (s)|2ξ(X(s))− CEξ(X(s)))
β−1

2

,

(35)
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then followed by relating the time integration back to α̃−1. For the later part of the
proof, the velocity lemma (33) and the boundedness of the external field to ensure
the monotonicity of |ξ(X(s))| near the boundary, where the change of variable dt #
dξ
|v·∇ξ | , can be performed and recovers a power of α̃ in the ξ -integration. On the
other hand, the sign condition (29) is crucially used to establish a lower bound for
|ξ(X(s))| when it’s away from the boundary, which helps to recover a power of α̃
as wanted.

4 On the Vlasov–Poisson–Boltzmann System Surrounded
by Conductor Boundary

In the second part of the paper, we consider the one-species VPB system surrounded
by conductor boundary. More specifically, we consider the system (6), (4), where the
electrostatic potential φ is obtained by

−	xφ(t, x) =
∫

R3
F(t, x, v)dv, x ∈ �, φ = 0, x ∈ ∂�. (36)

An important benefit in the conductor boundary setting (36) is that E = −∇xφ
enjoys the sign condition (30) from a quantitative Hopf lemma, without the need of
an external potential.

Lemma 4 (Lemma 3.2 in [1]) Suppose h ≥ 0, and h ∈ L∞(�). Let v be the
solution of

−	v = h in �, v = 0 on ∂�. (37)

Then for any x ∈ ∂�,

∂v(x)

∂n
≥ c

∫

�

h(x)d(x, ∂�)dx, (38)

for some c > 0 depending only on �. Here d(x, ∂�) is the distance from x to the
boundary ∂�.

Our goal is to prove a local existence and regularity theorem for the system (6),
(4), (9), (36). Let’s first define our distance function α̃.

Let d(x, ∂�) := infy∈∂� ‖x−y‖. For any δ > 0, let �δ := {x ∈ � : d(x, ∂�) <
δ}. For δ  1 is small enough, we have for any x ∈ �δ there exists a unique x̄ ∈ ∂�
such that d(x, x̄) = d(x, ∂�) (cf. (2.44) in [5]).
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Definition 2 First we define for all (x, v) ∈ �δ ×R
3,

β(t, x, v) =
[
|v·∇ξ(x)|2+ξ(x)2−2(v·∇2ξ(x)·v)ξ(x)+2(∇φ(t, x)·∇ξ(x))ξ(x)

]1/2

.

For any ε > 0, let χε : [0,∞)→ [0,∞) be a smooth function satisfying χε(x) = x

for 0 ≤ x ≤ ε
4 , χε(x) = Cε for x ≥ ε

2 , χε(x) is increasing for ε
4 < x < ε

2 , and
χ ′ε(x) ≤ 1. Let δ′ := min{|ξ(x)| : x ∈ �, d(x, ∂�) = δ}, then we define our weight
function to be:

α̃(t, x, v) :=
{
(χδ′(β(t, x, v))) x ∈ �δ,

C
δ′ x ∈ � \�δ.

(39)

Theorem 3 (Weighted W 1,∞ Estimate for the VPB Surrounded by Conductor)
Assume F0 = √μf0 satisfies

‖wϑα̃∇x,vf0‖L∞(�̄×R3)+‖wϑf0‖L∞(�̄×R3)+‖wϑ∇vf0‖L3(�̄×R3) <∞, (40)

for some 0 < ϑ < 1
4 .Then there exists a unique solution F(t, x, v) = √μf (t, x, v)

to (6), (4), (9), (36) for t ∈ [0, T ] with 0 < T  1, such that for some 0 < ϑ ′ < ϑ ,
" " 1,

sup
0≤t≤T

‖wϑ ′f (t)‖L∞(�̄×R3) <∞, (41)

sup
0≤t≤T

‖wϑ ′e
−" 〈v〉t α̃∇x,vf (t, x, v)‖L∞(�̄×R3) <∞, (42)

sup
0≤t≤T

‖e−" 〈v〉t∇vf (t)‖L3
x (�)L

1+δ
v (R3)

<∞ for 0 < δ  1. (43)

The corresponding equation for f = F√
μ

is

(∂t + v · ∇x −∇φ · ∇v + v

2
· ∇φ + ν(

√
μf ))f = $gain(f, f ), (44)

−	xφ(t, x) =
∫

R3

√
μfdv, φ = 0 on ∂�, (45)

f (t, x, v) = cμ
√
μ(v)

∫

n·u>0
f (t, x, v)

√
μ(u)(n(x) · u)du. (46)

Here ν(
√
μf )(v) := ∫

R3

∫
S2 |v − u|κq0(

v−u
|v−u| · w)

√
μ(u)f (u)dωdu, and

$gain(f1, f2)(v) :=
∫
R3

∫
S2 |v − u|κq0(

v−u
|v−u| · w)

√
μ(u)f1(u

′)f2(v
′)dωdu.
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Let ∂ ∈ {∇x,∇v}. Let E = −∇xφ. Denote

ν" = ν(
√
μf )+ v

2
·E+" 〈v〉+t" v

〈v〉 ·E−α̃
−1(∂t α̃+v ·∇x α̃+E ·∇vα̃). (47)

Then by direct computation we get

{
∂t + v · ∇x + E · ∇v + ν"

}
(e−" 〈v〉t α̃∂f )

=e−" 〈v〉t α̃
(
∂$gain(f, f )− ∂v · ∇xf − ∂E · ∇vf − ∂(

v

2
· E)f − ∂(ν(

√
μf ))f

)

:=N(t, x, v).

(48)

In order to deal with the diffuse boundary condition (9), we define the stochastic
(diffuse) cycles as (t0, x0, v0) = (t, x, v),

t1 = t − tb(t, x, v), x
1 = xb(t, x, v) = X(t − tb(t, x, v); t, x, v),

v0
b = V (t − tb(t, x, v); t, x, v) = vb(t, x, v),

(49)

and v1 ∈ R
3 with n(x1) · v1 > 0. For l ≥ 1, define

t l+1 = t l − tb(t
l, xl, vl), xl+1 = xb(t

l, xl, vl),

vlb = vb(t
l , xl, vl),

and vl+1 ∈ R
3 with n(xl+1) · vl+1 > 0. Also, define

Xl(s) = X(s; t l , xl, vl), V l(s) = V (s; t l , xl, vl),
so X(s) = X0(s), V (s) = V 0(s). We have the following lemma.

Lemma 5 (Lemma 12 in [5])
If t1 < 0, then

e−" 〈v〉t α̃|∂f (t, x, v)|

� α̃(0,X0(0), V 0(0))∂f (0,X0(0), V 0(0))+
∫ t

0
N(s,X0(s), V 0(s))ds.

(50)
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If t1 > 0, then

e−" 〈v〉t α̃|∂f (t, x, v)|

�e− ϑ
2 |v0

b|2P(‖wϑf0‖∞)+
∫ t

t1
N(s,X0(s), V 0(s))ds

+
√
μ(v0

b)〈v0
b〉2

∫

∏l−1
j=1 Vj

l−1∑

i=1

1{t i+1<0<ti}|α̃∂f (0,Xi(0), V i(0))| d%l−1
i

+
√
μ(v0

b)〈v0
b〉2

∫

∏l−1
j=1 Vj

l−1∑

i=1

1{t i+1<0<ti}
∫ t i

0
N(s,Xi(s), V i(s))ds d%l−1

i

+
√
μ(v0

b)〈v0
b〉2

∫

∏l−1
j=1 Vj

l−1∑

i=1

1{t i+1>0}
∫ t i

t i+1
N(s, Xi(s), V i(s))ds d%l−1

i

+
√
μ(v0

b)〈v0
b〉2

∫

∏l−1
j=1 Vj

l−1∑

i=2

1{t i>0}e−
ϑ
2 |vi−1

b |2P(‖wϑf0‖∞) d%l−1
i−1

+
√
μ(v0

b)〈v0
b〉2

∫

∏l−1
j=1 Vj

1{t l>0}e−" 〈v
l−1
b 〉t l α̃(t l , xl, vl−1

b )|∂f (t l , xl, vl−1
b )|d%l−1

l−1 ,

(51)

where Vj = {vj ∈ R
3 : n(xj ) · vj > 0}, and

d%l−1
i ={

l−1∏

j=i+1

μ(vj )cμ|n(xj ) · vj |dvj }{e" 〈vi〉t iμ1/4(vi)〈vi 〉dvi}

{
i−1∏

j=1

√
μ(v

j

b)〈vjb〉μ1/4(vj )〈vj 〉e" 〈vj 〉t j dvj },

where cμ is the constant that
∫
R3 μ(v

j )cμ|n(xj ) · vj |dvj = 1.

The following lemma is necessary for us to establish Theorem 3.

Lemma 6 If (F, φ) solves (36), write f = F√
μ

, then

‖φF (t)‖C1,1−δ(�) �δ,� ‖wϑf (t)‖L∞(�̄×R3), for any 0 < δ < 1, (52)

and

‖∇2φF (t)‖L∞(�) � ‖wϑf (t)‖L∞(�̄×R3) + ‖e−" 〈v〉t α̃∇xf (t)‖L∞(�̄×R3). (53)
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Proof It is obvious to have (52) from the Morrey inequality and elliptic estimate.
Next we show (53). By Schauder estimate, we have, for p > 3 and � ⊂ R

3,

‖∇2φF (t)‖L∞(�) ≤ ‖φF ‖
C

2,1− 3
p (�)

�p,� ‖
∫

R3
f (t)
√
μdv‖

C
0,1− 3

p (�)
.

Then by Morrey inequality,W 1,p ⊂ C
0,1− 3

p with p > 3 for a domain � ⊂ R
3 with

a smooth boundary ∂�, we derive

‖
∫

R3
f (t)
√
μdv‖

C
0,1− 3

p
� ‖

∫

R3
f (t)
√
μdv‖W 1,p

� ‖wϑf (t)‖∞ + ‖e−" 〈v〉t α̃∇xf (t)‖∞‖
∫

R3
e" 〈v〉t√μ 1

α̃
dv‖Lp(�).

It suffices to show that for some β > 1,

‖
∫

R3
e−

1
8 |v|2 1

α̃β
dv‖Lp(�) <∞. (54)

Since α̃ is bounded from below when x is away from the boundary of �, it suffices
to only consider the case when x is close enough to ∂�. From direct computation
(see [5]), we get

∫

R3
e−

1
8 |v|2 1

α̃β
dv � 1

(ξ(x)2 − 2E(t, x̄) · ∇ξ(x̄)ξ(x)) β−1
2

� 1

|ξ(x)| β−1
2

. (55)

And since ξ is C2, we have

∫

d(x,∂�) 1

1

|ξ(x)| (β−1)p
2

dx �
∫

d(x,∂�) 1

1

|x − x̄| (β−1)p
2

dx.

Now from (10),

∫

�∩B(p;δ2)

1

|x − x̄| (β−1)p
2

dx �
∫

|xn|<δ1

1

|xn| (β−1)p
2

dxn <∞,

if we pick β < 2
p
+ 1. And since ∂� is compact, we can cover ∂� with finitely

many such balls, and therefore we get (54). ��
Proof of Theorem 3 For the sake of simplicity we only show the a priori estimate.
See [7] for the construction of the sequences of solutions and passing a limit.

The proof of (41) for f satisfying (44), (45), and (46) is standard. We refer to
Theorem 4 in [5].
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First from (45) and the fact that
∫
R3
√
μf dv ≥ 0, we apply Lemma 4 to get

− ∂φ(t, x)

∂n
≥ c

∫∫

�×R3

√
μf (t, x, v)δ(x)dvdx, (56)

for some c depending only on �.
Denote

∫∫

�×R3
F0(x, v)δ(x)dvdx = cE0 .

Then
∫ T

0

∫∫
�×R3 δ(x)× (6) dvdxdt gives

∫∫

�×R3
F(T , x, v)δ(x)dvdx

=
∫∫

�×R3
F0(x, v)δ(x)dvdx +

∫ T

0

∫∫

�×R3
Fv · ∇xδ(x)dvdxdt.

Together with (41) and (56) we deduce

− ∂φ(t, x)

∂n
≥ c

∫∫

�×R3
F(t, x, v)δ(x)dvdx >

ccE0

2
, (57)

as long as T � cE0
2M .

Next, we investigate (48). Since

wϑ$gain(∂f, f ) � ‖e2ϑ ′|v|2f ‖∞
∫

R3

e−Cϑ′ |u−v|2

|u− v|2−κ |e
ϑ ′|u|2∂f (t, x, u)|du,

and

wϑν(
√
μ∂f )f � ‖e2ϑ ′|v|2f ‖∞

∫

R3

e−Cϑ′ |u−v|2

|u− v|2−κ |∂f (t, x, u)|du.

Thus from (41) we have the following bound for N:

|N(t, x, v)| �(1+ ‖∇2φ‖∞)[P(‖wϑf0‖∞)+ |wϑ ′e
−" 〈v〉t α̃∂f (t, x, v)|]

+ ‖wϑf0‖∞e−" 〈v〉t α̃(t, x, v)
∫

R3

e−Cϑ |u−v|2

|u− v|2−κ |e
ϑ ′|u|2∂f (t, x, u)|du.

(58)
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Recall the definition of ν" in (47), note that from the velocity lemma (33), and
(57) we have

α̃−1(∂t α̃ + v · ∇xα̃ −∇φ · ∇vα̃)
�(‖∇φ‖∞ + ‖∇2φ‖∞)〈v〉
�(‖wϑ ′f (t)‖∞ + ‖e−" 〈v〉t α̃∇xf (t)‖∞)〈v〉
�(P (‖wϑf0‖∞)+ ‖α̃∂f0‖∞)〈v〉.

Therefore we have

ν" ≥ "

2
〈v〉, (59)

once we choose " " 1 large enough.
For t1 < 0, using the Duhamel’s formulation we have from (48)

wϑ ′e
−" 〈v〉t α̃|∂f (t, x, v)|

≤e−
∫ t
s ν" (τ,X(τ),V (τ )dτeϑ

′|V (0)|2α̃∂f (0,X(0), V (0))

+
∫ t

0
e−

∫ t
s ν" (τ,X(τ),V (τ )dτN(s,X(s), V (s))ds.

(60)

Thus by (58) we have

sup
0≤t≤T

‖1{t1<0}e−" 〈v〉twϑ ′ α̃∂f (t, x, v)‖∞

≤ sup
0≤t≤T

‖e−
∫ t

0 ν" (τ,X(τ),V (τ)dτ eϑ
′ |V (0)|2 α̃∂f (0,X(0), V (0))

+
∫ t

0
e−

∫ t
s
ν" (τ,X(τ),V (τ)dτN(s,X(s), V (s))ds‖∞

≤‖wϑ ′ α̃∂f0‖∞ + P (‖wϑf0‖∞) sup
0≤t≤T

‖wϑ ′e
−" 〈v〉t α̃∂f (t, x, v)‖∞

+ T (1+ ‖∇2φ‖∞)[P (‖wϑf0‖∞)+ sup
0≤t≤T

‖wϑ ′e
−" 〈v〉t α̃∂f (t, x, v)‖∞]

×
∫ t

0

∫

R3
e−

∫ t
s
"
2 〈V (τ ;t,x,v)〉dτ e

−" 〈(s;t,x,v)〉s

e−" 〈u〉s
e−Cϑ |V (s)−u|2

|V (s)− u|2−κ
α̃(s,X(s), V (s))

α̃(s,X(s), u)
duds.
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Now since 〈u〉 − 〈V (s; t, x, v)〉 ≤ 2〈u − V (s; t, x, v)〉, we have e−" 〈(s;t,x,v)〉s
e−" 〈u〉s

e−Cϑ |V (s)−u|2 � e−
Cϑ |V (s)−u|2

2 . Thus

∫ t

0

∫

R3
e−

∫ t
s
"
2 〈V (τ ;t,x,v)〉dτ e

−" 〈(s;t,x,v)〉s

e−" 〈u〉s
e−Cϑ |V (s)−u|2

|V (s)− u|2−κ
α̃(s,X(s), V (s))

α̃(s,X(s), u)
duds

�
∫ t

0

∫

R3
e−

∫ t
s
"
2 〈V (τ ;t,x,v)〉dτ e

−Cϑ
2 |V (s)−u|2

|V (s)− u|2−κ
α̃(s,X(s), V (s))

α̃(s,X(s), u)
duds.

(61)

Note that, for any β > 1, 1
α̃(x,X(s),u)

� 1
(α̃(x,X(s),u))β

+ 1. So from (57) we can let
1 < β ≤ 2, and apply the nonlocal-to-local estimate (34)–(61) to have

∫ t

0

∫

R3
e−

∫ t
s
"
2 〈V (τ ;t,x,v)〉dτ e

−" 〈(s;t,x,v)〉s

e−" 〈u〉s
e−Cϑ |V (s)−u|2

|V (s)− u|2−κ
α̃(s,X(s), V (s))

α̃(s,X(s), u)
duds

�eC(‖∇φ‖2∞+‖∇2φ‖∞)
(
δ

3−β
2 (α̃(t, x, v))3−β

(|v|2 + 1)
3−β

2

+ (|v| + 1)β−1(α̃(t, x, v))2−β

δβ−1" 〈v〉

)

�eC(‖∇φ‖2∞+‖∇2φ‖∞)
(
δ

3−β
2 + 1

δβ−1"

)
,

(62)

where we used α̃(s,X(s), V (s)) � eC(‖∇φ‖2∞+‖∇2φ‖∞)α̃(t, x, v).
Similarly, for t1(t, x, v) ≥ 0, we again apply the nonlocal-to-local estimate (34)

to get

|1{t1>0}wϑ ′e
−" 〈v〉t α̃∂f (t, x, v)|

�CleClt
2

(
δ

3−β
2 + 1

δβ−1"

)
P(‖wϑf0‖∞) max

0≤i≤l−1
eC(‖∇φ‖2∞+‖∇2φ‖∞)

× sup
0≤t≤T

‖wϑ ′e
−" 〈v〉t α̃∂f (t, x, v)‖∞

+T (1+ ‖∇2φ‖∞) sup
0≤t≤T

‖wϑ ′e
−" 〈v〉t α̃∂f (t, x, v)‖∞

+T l(CeCt2)l(1+ ‖∇2φ‖∞) sup
0≤t≤T

‖wϑ ′e
−" 〈v〉t α̃∂f (t, x, v)‖∞

+T l(CeCt2)l(1+ ‖∇2φ‖∞)P (‖wϑf0‖∞)+ l(CeCt
2
)l‖α̃∂f0‖∞ + P(‖wϑf0‖∞)

+ C

(
1

2

)l

sup
0≤t≤T

‖wϑ ′e
−" 〈v〉t α̃∂f (t, x, v)‖∞.
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Finally from (53), we can choose a large l then large C then small δ then large
" and finally small T to conclude

sup
0≤t≤T

‖e−" 〈v〉t α̃∂f (t, x, v)‖∞ ≤ C1

2
(‖wϑα̃∂f0‖∞ + P(‖wϑf0‖∞))

This proves (42).
Next we prove (43). Consider taking ∇v derivative of (44) and adding the weight

function e−" 〈v〉t , we get

[∂t + v · ∇x − ∇xφ · ∇v + v

2
· ∇xφ +" 〈v〉 − v

〈v〉"t · ∇xφ + ν(
√
μf )](e−" 〈v〉t∇vf )

=e−" 〈v〉t
(
−∇vν(√μf )f − ∇xf − 1

2
∇xφf + ∇v$gain(f, f )

)
,

(63)

with the boundary bound

∣∣∇vf
∣∣ � |v|√μ

∫

n·u>0
|f |√μ{n · u}du on γ−. (64)

And

v

2
· ∇xφ +" 〈v〉 − v

〈v〉"t · ∇xφ + ν(
√
μf ) >

"

2
〈v〉,

for " " 1.
Using the Duhamel’s formulation, from (63) we obtain the following bound

along the characteristics

|e−" 〈v〉t∇vf (t, x, v)|
≤ 1{tb(t,x,v)>t}e−

∫ t
0 −C

2 〈V (τ)〉dτ |∇vf (0,X(0; t, x, v), V (0; t, x, v))| (65)

+ 1{tb(t,x,v)<t}e−" 〈vb〉tbμ(vb)
1
4

∫

n(xb)·u>0
|f (t − tb, xb, u)|√μ{n(xb) · u}du (66)

+
∫ t

max{t−tb,0}
e−

∫ t
s −"

2 〈V (τ)〉dτ e−" 〈V (s)〉s|∇xf (s,X(s), V (s))|ds (67)
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+
∫ t

max{t−tb,0}
(1+ ‖wϑ ′f ‖∞)e−

∫ t
s −"

2 〈V (τ)〉dτe−" 〈V (s)〉s (68)

×
∫

R3

e−Cϑ′ |V (s)−u|2

|V (s)− u|2−κ ∇vf (s,X(s), u)|duds

+ ‖wϑ ′f ‖∞
∫ t

max{t−tb,0}
e−

∫ t
s −"

2 〈V (τ)〉dτ e−" 〈V (s)〉se−ϑ ′|V (s)|2 (69)

×|∇xφ(s,X(s; t, x, v))|ds.

We first have

‖(65)‖
L3
xL

1+δ
v

�
(∫

�

(∫

R3
|eϑ ′|V (0)|2∇vf (0, X(0), V (0))|3

) (∫

R3
e−(1+δ)

3
2−δ ϑ ′|V (0)|2dv

) 2−δ
1+δ

)1/3

�
(∫∫

�×R3
|eϑ ′ |V (0)|2∇vf (0, X(0; t, x, v), V(0; t, x, v))|3dvdx

)1/3

� ‖wϑ ′∇vf (0)‖L3
x,v
,

(70)

where we have used a change of variables (x, v) �→ (X(0; t, x, v), V (0; t, x, v)).
Clearly

‖(66)‖
L3
xL

1+δ
v

� sup
0≤s≤t

‖wϑ ′f (s)‖∞. (71)

From ‖∇xφ‖L3 � ‖φ‖
W

2,2
x

for a bounded � ⊂ R
3, and the change of variables

(x, v) �→ (X(s; t, x, v), V (s; t, x, v)) for fixed s ∈ (max{t − tb, 0}, t),

‖(69)‖
L3
xL

1+δ
v

�‖wϑ ′f ‖∞
∫ t

max{t−tb,0}
‖φ(s)‖

W
2,2
x

� ‖wϑ ′f ‖∞
∫ t

max{t−tb,0}
‖

∫

R3

√
μf (s)dv‖2. � t‖wϑ ′f ‖∞‖wϑ ′f ‖∞.

(72)
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Next we have from (55), for 3δ
2(1+δ) < 1, equivalently 0 < δ < 2,

‖(67)‖
L3
xL

1+δ
v
≤

∥
∥
∥
∥
∥

∥
∥
∥
∥

∫ t

max{t−tb,0}
∇xf (s,X(s), V (s))ds

∥
∥
∥
∥
L1+δ
v (R3)

∥
∥
∥
∥
∥
L3
x

=
∥
∥
∥
∥
∥∥

∥
∥
∥
∥∥

∫ t

max{t−tb,0}
eϑ
′|V (s)|2e−" 〈V (s)〉sα̃∇xf (s,X(s), V (s))

eϑ
′|V (s)|2e−" 〈V (s)〉sα̃

ds

∥
∥
∥
∥∥
L1+δ
v (R3)

∥
∥
∥
∥
∥∥
L3
x

≤ sup
0≤t≤T

∥
∥
∥wϑ ′e

−" 〈v〉t α̃∇xf
∥
∥
∥∞

×
∥
∥∥
∥
∥
∥

∥
∥∥
∥
∥

∫ t

max{t−tb,0}
e−ϑ ′|V (s)|2e" 〈V (s)〉s

α̃(s,X(s), V (s))
ds

∥
∥∥
∥
∥
L1+δ
v (R3)

∥
∥∥
∥
∥
∥
L3
x

�eC(‖∇φ‖∞+‖∇φ‖2∞+‖∇2φ‖∞) sup
0≤t≤T

∥
∥∥wϑ ′e

−" 〈v〉t α̃∇xf
∥
∥∥∞

× t

∫

�

⎛

⎝
∫

R3

e− ϑ′
2 |v|2

(α̃(t, x, v))1+δ
dv

⎞

⎠

3
1+δ

dx

�teC(‖∇φ‖2∞+‖∇2φ‖∞) sup
0≤t≤T

∥
∥
∥wϑ ′e

−" 〈v〉t α̃∇xf
∥
∥
∥∞ .

(73)

Next, we consider (68). From the computations in (55), and using the fact that
1
α̃
� 1

α̃β
, we have

‖(68)‖
L3
xL

1+δ
v

≤
∥∥∥
∥

∥∥∥
∥

∫ t

max{t−tb,0}
e−

∫ t
s −"

2 〈V (τ)〉dτ e−" 〈V (s)〉s

×
∫

R3

e−Cϑ ′ |V (s)−u|2

|V (s) − u|2−κ ∇vf (s,X(s), u)|duds

∥∥
∥∥∥
L1+δ
v (R3)

∥∥∥
∥∥∥
L3
x

�eC‖∇φ‖∞ sup
0≤t≤T

∥∥∥wϑ ′e
−" 〈v〉t α̃∇xf

∥∥∥∞

×
∥∥
∥∥∥
∥

∥∥
∥∥∥
∥

∫ t

max{t−tb,0}
e−

∫ t
s −"

2 〈V (τ)〉dτ
∫

R3

e−Cϑ ′ |V (s)−u|2

|(s) − u|2−κ
e− ϑ ′

2 |u|2

(α̃(s,X(s), u))β
duds

∥∥
∥∥∥
∥
L1+δ
v (R3)

∥∥
∥∥∥
∥
L3
x

.

(74)
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And then applying the nonlocal-to-local estimate (34) to (74) , we conclude

‖(68)‖
L3
xL

1+δ
v

�eC(‖∇φ‖∞+‖∇2φ‖∞) sup
0≤t≤T

∥∥
∥wϑ ′e

−" 〈v〉t α̃∇xf
∥∥
∥∞

×
∥∥
∥∥∥
∥

∥∥∥
∥∥

δ
3−β

2

(α̃(t, x, v))β−2(|v|2 + 1)
3−β

2

+ (|v| + 1)β−1

δβ−1" 〈v〉(α̃(t, x, v))β−1

∥∥∥
∥∥
L1+δ
v (R3)

∥∥
∥∥∥
∥
L3
x

�eC(‖∇φ‖∞+‖∇2φ‖∞) sup
0≤t≤T

∥
∥
∥wϑ ′e

−" 〈v〉t α̃∇xf
∥
∥
∥∞

×
⎛

⎝O(δ
3−β

2 )+ 1

δβ−1"

∥
∥∥
∥
∥

∥
∥∥
∥

1

〈v〉2−β (α̃(t, x, v))β−1

∥
∥∥
∥
L1+δ
v (R3)

∥
∥∥
∥
∥
L3
x

⎞

⎠

�C(δ
3−β

2 + 1

δβ−1"
)eC(‖∇φ‖∞+‖∇2φ‖∞) sup

0≤t≤T

∥
∥∥wϑ ′e

−" 〈v〉t α̃∇xf
∥
∥∥∞ ,

(75)

for β satisfies (β−1)(1+δ)−1
2

3
1+δ < 1, which is equivalent to β < 5

3 + 1
1+δ . Therefore

any 1 < β < 5
3 would work.

Collecting terms from (65)–(69), and (70), (71), (72), (73), (75), we derive

sup
0≤s≤t

‖e−" 〈v〉t∇vf (s)‖L3
xL

1+δ
v

�‖wϑ ′∇vf (0)‖L3
x,v
+ ‖wϑ ′f ‖∞)2 + ‖wϑ ′f ‖∞

<∞.

(76)

This proves (43) and conclude Theorem 3. ��
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The Vlasov Equation with Infinite Mass

Guido Cavallaro

Abstract We discuss about the initial value problem for the Vlasov equation in
case of unbounded total mass. The problem strongly depends on the dimension d of
the physical space and on the singularity of the interaction. In particular, for d = 3,
the more singular the interaction, the faster must be the spatial decay at infinity of
the initial distribution. We describe also an application which gives rise to a viscous
friction model.

1 Introduction

We want to review some known results, and to address some open problems,
related to the initial value problem for the Vlasov equation when it describes the
time evolution of a plasma in an unbounded domain with an unbounded mass
distribution. The problem is not trivial, since it is not easy in this case to exclude a
priori a blow-up of the mass distribution in a finite time. We summarize some results
on the Vlasov equation, starting from finite mass systems.

A Vlasov system is described by a function f (x, v, t) which gives the density of
mass at time t in the point (x, v) of the one-particle phase space. A general way to
write the equation governing its time evolution is based on the characteristics. More
precisely, we look for a pairs of functions,

(x, v)→ (X(x, v; t),V(x, v; t)) , f0(x, v)→ f (x, v; t) , (1)
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where (x, v) ∈ R
d ×R

d , t ∈ R, are solution to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẋ(x, v; t) = V(x, v; t) ,
V̇(x, v; t) = F(X(x, v; t), t) ,
(X(x, v; 0),V(x, v; 0)) = (x, v) ,

f (X(x, v; t),V(x, v; t); t) = f0(x, v) ,

(2)

where

F(x, t) = −
∫

Rd

dy ∇Φ (x− y) ρ(y, t) , (3)

ρ(x, t) =
∫

Rd

dv f (x, v; t) (4)

is the density of mass, and Φ is the interaction potential between two particles.
In the case of smooth initial data, the condition (2)4 implies that f (x, v; t)

satisfies the (transport) differential equation,

(∂t + v · ∇x + F(x, t) · ∇v) f (x, v; t) = 0 . (5)

As the phase space velocity (V,F(X, t)) has zero divergence, by Liouville’s
Theorem the Jacobian |J (X,V|x, v)| is equal one and the Lebesgue measure dx dv
is thus conserved along the motion. This implies that (2)4 (i.e., (5) for smooth initial
data) corresponds to the conservation of mass.

The total mass of the gas is defined as the integral in the whole space of the
density of mass,

Mtotal =
∫

Rd

dx ρ(x, t) .

For finite total mass and smooth mutual interactionΦ, the existence and uniqueness
of the solution is simple and follows from standard methods. Singular interactions
are more delicate to deal, especially the physically relevant case of Coulomb
interaction, where (5) is known as the Vlasov-Poisson equation. The problem has
been solved both for the attractive (gravitational) case and for the repulsive (plasma)
case [22, 23, 26, 27, 32–34, 38–40]. (See also [17, 28–30]).

However we deal with unbounded masses, and on this topic there are fewer
results. The case of smooth interaction in three dimensions is discussed in [4],
where the authors assume positive interaction, but with some technical effort it can
be extended to superstable interactions, as done in the case of the point particles
dynamics [5]. In dimension d = 2, the Coulomb interaction gives rise to the so
called Vlasov-Helmholtz equation, which is discussed in [19]. More recently, the
case in which in dimension d = 2 a point body interacts via a Coulomb potential



The Vlasov Equation with Infinite Mass 117

with a plasma with a charge of the same sign has been treated in [17]. Perhaps, it is
possible to study also the three dimensional case, but with a cylindrical symmetry
and the body moving along the symmetry axis. The general problem in dimension
d = 3 with singular interaction is open (and we believe very hard).

All these results, at least in dimension d > 1, concern the well-posedness of the
problems but give no information on the long time behavior of the solutions. For the
case of unbounded plasma see also [24, 31, 35–37], and when an external magnetic
field acting on the plasma is present see [6–8, 10, 12, 13, 15].

We remark that in [4] the authors assume an initial distribution of the form

0 ≤ f0(x, v) ≤ C0e−λ|v|2

in the whole space R
3. This means that it is sufficient to take an exponential decay

in the velocities, and a spatial distribution simply bounded by a constant, to obtain
existence and uniqueness of the solution. Whenever the mutual interaction potential
is singular at the origin, it is necessary to introduce a suitable spatial decay in the
initial datum to obtain an analogous result [9, 14, 16]. This holds in the whole space
R

3. In special unbounded domains contained in R
3 it is possible to consider an initial

spatial density simply bounded by a constant: in [7] it is considered the evolution in
an infinite cylinder when the potential has a coulomb singularity. A singularity of the
form 1/rα, α > 0, and a spatial density ρ(x, 0) ≤ const in the whole space R3 is an
open problem. It would be also interesting (but not explicitly done) to investigate, in
R

3, the relation between the exponent α of the singularity of the potential, and the
exponent β of the decay of the spatial density at infinity

ρ(x, 0) ≤ const

(1+ |x|)β

which is necessary for the well posedness of the problem.
An interesting application which takes inspiration from the previous results is

the motion of a heavy body immersed in a Vlasov gas and interacting with it. The
resulting coupled dynamics of the gas and the body is very hard to be studied
in general, as mentioned before, and some assumptions and approximations are
necessary in order to tackle the problem (see for instance [1]). In Sect. 3 we deal
with this model. In the next one we give some hints on the initial value problem for
the Vlasov equation with infinite mass.

2 Initial Value Problem

We give here an overview of the initial value problem for the Vlasov equation
when it describes the time evolution of a plasma distributed in the whole space
R
d and with infinite total mass. As for point particle systems [5], this problem is not

trivial since it is not easy to exclude a priori the blow-up of the mass distribution
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in a finite time. There are many studies on the Vlasov equations, here we focus
our attention on the difficulty related to the assumption of infinite total mass. In
order to separate the difficulties, we assume the interaction is positive, smooth,
and short-range. In analogy to the case of point particle systems, we believe that
the positiveness and short-range assumptions can be relaxed by assuming that the
interaction is superstable and satisfies some decaying property at large distance. But
this task needs a not trivial effort and it has not been done. The case of singular
interaction (the Coulomb interaction being the most interesting one) is discussed
later on.

The difficulty of the problem grows with the dimension of the physical space. We
start with an heuristic consideration, which shows the importance of the physical
space dimension in this framework.

Consider the Vlasov equation (2) and assume Φ = Φ(|x|) to be a non-negative
function such that

Φ ∈ C2(R) , Φ(0) > 0 , Φ(|x|) = 0 if |x| > r (r > 0) . (6)

Moreover, we assume that the initial distribution f0 satisfies

0 ≤ f0(x, v) ≤ C0e−λ|v|2 (C0, λ > 0) . (7)

We remark that we really need to postulate some decay in the velocity variable as
shown by the following example. Consider the free evolution in one dimension of
an initial datum f0(x, v) which is the characteristic function of the set {(x, v) : x >
0, −(x + 1) < v < −x}. Therefore, the initial density of mass is equal to zero for
x ≤ 0 and to one for x > 0. It is clear that for t = 1 we have a blow-up of the
density.

The main issue in proving the existence of solutions is to show that the force
F(x, t) acting on the element of fluid located in x ∈ R

d is bounded. By (3) and (4)
we have,

|F(x, t)| ≤ ‖∇Φ‖∞
∫

B(x,r)
dy ρ(y, t) = ‖∇Φ‖∞ m(B(x, r), t) , (8)

where B(x, r) in an open ball around x of radius r , m(B(x, r), t) is the mass
contained in such a ball at time t and r is defined in (6). To simplify the situation
we first assume that

f0(x, v) ≤ C0 χ(|v| < V̂0) (9)

where χ(·) is the characteristic function. Letting

V̂ (t) = sup
0≤s≤t

sup
x,v
|V(x, v, s)| ,
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we have, for any a ∈ R
d ,

m(B(a, r), t) =
∫

dx dv f0(x, v) χ(X(x, v; t) ∈ B(a, r))

≤ ‖f0‖L∞ V̂ d
0 [r + V̂ (t)t]d .

The last inequality follows from the fact that χ(X(x, v; t) ∈ B(a, r)) = 0 if |x− a|
is larger than r + V̂ (t)t . On the other hand,

V(x, v; t) = v+
∫ t

0
ds F(X(x, v; s), s) ,

which gives

V̂ (t) ≤ V̂0 + ‖∇Φ‖∞ ‖f0‖∞ V̂ d
0

∫ t

0
ds [r + V̂ (s)s]d . (10)

The above inequality is solvable globally in time only if d = 1. We remark that,
as for the particle systems, a rigorous proof where the assumption (9) is relaxed
requires some care. In dimension d > 1, other tools are needed besides the naive
use of mass conservation. More precisely, to control the maximal velocity V̂ a deep
use of energy conservation is needed in d = 2, while for d = 3 suitable time
averages have to been used. We discuss directly the more difficult case, i.e., the
three dimensional one.

For a given function f (x, v) and any couple (μ,R) ∈ (R3×R
+) we introduce a

sort of “smoothed energy” of a ball of center μ and radius R,

W(f ;μ,R) = 1

2

∫
dx gμ,R(x)

[∫
dv |v|2f (x, v)+ ρ(x)

∫
dy ρ(y) Φ(|x− y|)

]
,

where gμ,R is a smoothing function defined as

gμ,R(x) = g

( |x− μ|
R

)
,

with g ∈ C∞(R+) such that

g(η) = 1 if η ∈ [0, 1] , g(η) = 0 if η ∈ [2,∞) , −2 ≤ g′(η) ≤ 0 .

For the positivity of the potential Φ, W is a well-defined positive functional for any
f satisfying (7). Moreover, it is straightforward to see that there exists a positive
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constant C1 such that

sup
(μ,R)∈R3×R+

W(f ;μ,R)
R3 ≤ C1 .

The following theorem is proved in [4].

Theorem 1 Let f0 satisfy (7). Then, there exists a pair of functions

(x, v)→ (X(x, v; t),V(x, v; t)) , f0(x, v)→ f (x, v; t) ,
(x, v, t) ∈ R

3 × R
3 ×R

+ ,

satisfying the Vlasov equations (2). This is the unique solution in the class of
functions f (t) = f (·, ·; t) such that

sup
t∈[0,T ]

sup
(μ,R)∈R3×R+

W(f (t);μ,R)
R3 <∞ ∀ T > 0 .

Moreover, for each λ1 < λ and T > 0 there exists C2 > 0 such that

f (x, v; t) ≤ C2e−λ1|v|2 ∀ t ∈ [0, T ] .

The proof is obtained in analogy with the case of point particle systems in three
dimensions [5]. First, we introduce a partial dynamics with a cut-of on the positions
and the velocities, i.e., we introduce the sequence of problems,

Ẋ
M,N

(x, v; t) = VM,N(x, v; t) , V̇
M,N

(x, v; t) = FM,N(X(x, v, t), t) ,

XM,N(x, v, 0) = x , VM,N(x, v, 0) = v , |x| ≤M , |v| ≤ N ,

where M,N are positive integers,

FM,N(x, t) =
∫

dy ∇Φ(|x− y|)
∫

dv fM,N(x, v; t) ,

f M,N(XM,N(x, v; t),VM,N(x, v, t), t) = f
M,N
0 (x, v) ,

and

f
M,N
0 (x, v) = f0(x, v) χ(|x| ≤ M) χ(|v| ≤ N) .

The above problem is a well posed Vlasov evolution with finite mass, which admits
an unique positive solution fM,N(x, v; t) (see for instance [20] and the references
quoted in).
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We next investigate the limit M,N →∞. We introduce the quantity,

V̂ M,N (t) = sup
0≤s≤t

sup
x,v
|VM,N(x, v, s)| .

We can prove, after many efforts, that for each T > 0 there exists a positive constant
C such that

VM,N(T ) ≤ CN.

The last step is to remove the cut-off by means of an iterative procedure, under the
hypothesis that M = Nα , with α > 1 to be fixed conveniently. This is the idea
of the proof, that develops through complicated steps. We forward to the original
paper [4].

In the proof the smoothness of the interaction plays an essential role. In fact,
in this case the only way to obtain a large growth of the velocity in a point is to
crowd a lot of mass in a point. In this case, the superstability condition imposes
a large energy, that in its turn controls the maximal velocity. This proof fails in
three dimensions. In two dimensions indeed it is possible to do it if the interaction
is not too singular [19], while in a three dimensional domain which is unbounded
in one direction only the Vlasov equation can be studied for interactions with a
singularity almost Coulomb-like [11] (and Coulomb-like when the initial velocities
are bounded by a constant [7]). Another direction of (not trivial) generalization is to
consider also long range interactions.

Some results have been obtained in this direction in the physically relevant case
of the so-called Vlasov-Helmholtz equation, where the interaction at short distance
behaves as the Coulomb one and decays exponentially at large distances by a
screening effect [19].

It is interesting to consider also situations where point particles coexists with a
Vlasov fluid. Of course, the Coulomb interaction plays a privileged role because of
its physical importance. Some results have been obtained for localized Vlasov fluid
that we do not quote here, but only one: a two-dimensional system composed by a
point charge particle that interacts with an unbounded Vlasov fluid with charges of
the same sign. The interaction behaves at short distance as the Coulomb one and it
is exponentially decreasing at large distances [18].

We mention that in this direction it would be interesting the study of the following
case: a Vlasov gas in three dimensions with a cylindrical symmetry and a point
particle moving along the symmetry axis. Of course, it would be a model of viscous
friction. We will talk about this model in the next section. A study of the long
time behavior is too hard, but at least the existence of the infinite dynamics, or
the existence of stationary states, seem to be approachable issues.



122 G. Cavallaro

3 A Viscous Friction Model

An interesting application of the previous ideas and results consists in considering
the motion of a heavy point body in a Vlasov fluid, experiencing a drag force which
slows down its motion. Such force should derive by the interaction between the
body and the fluid particles. The stronger is this interaction, the stronger we expect
the drag force exerted by the fluid over the body. We analyse a simple schematic
model in which such conjecture can be supported rigorously, and which can give
some hints on more realistic models. The more drastic assumption is to consider a
non self-interacting Vlasov fluid.

We consider a point body of mass M = 1 under the action of a constant force
E of intensity E and directed along the x1-axis, i.e., E = (E, 0, 0). The body is
immersed in a gas of free particles (see below), which interacts with the body via a
force of pair potentialΨ (|r|), r ∈ R

3. We assume that Ψ (r) is a twice differentiable
function for r > 0, and that there exist two positive constants r1 < r0 < ∞ such
that Ψ (r) = g r−α for r < r1, with g, α > 0, Ψ (r) is a decreasing function for
r1 ≤ r ≤ r0, and Ψ (r) = 0 for r > r0. Here, we assume Ψ singular at the origin,
but of course we can also consider the case in which Ψ is bounded everywhere. The
analysis of this case is simpler and it is essentially contained in the present one.

We assume the medium to be a three-dimensional Vlasov system of free particles
in the mean field approximation (Knudsen gas), namely the pairs of functions

(x, v)→ (X(x, v; t),V(x, v; t)) , f0(x, v)→ f (x, v; t) ,

where (x, v) ∈ R
3 × R

3, t ∈ R, solution to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẋ(x, v; t) = V(x, v; t) ,
V̇(x, v; t) = −∇XΨ (|X(x, v; t)− r(t)|) ,
(X(x, v; 0),V(x, v; 0)) = (x, v) ,

f (X(x, v; t),V(x, v; t); t) = f0(x, v) ,

(11)

where r(t) ∈ R
3 is the trajectory of the point body.

In the case of smooth initial data f (x, v; t) satisfies the differential equation

(
∂t + v · ∇x − ∇xΨ (|x− r(t)|) · ∇v

)
f (x, v; t) = 0 , (12)

which is coupled to the equation of motion of the body,

r̈(t) = E−
∫

dx dv ∇rΨ (|r(t)− x|) f (x, v; t) , (13)

with initial conditions

r(0) = r0 , ṙ(0) = ṙ0 . (14)
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This model, in which the medium is coupled with a massive body, has been
introduced in connection with the so-called piston problem, see [21, 25] and
references therein. In our problem, the medium is unbounded and so in principle the
existence of the solution is not obvious. In fact, it is easy to exhibit initial conditions
for which the time evolution produces singularity in the motion after a finite time.
This happens because very far away particles could arrive very fastly close to the
body. These situations are pathological from a physical point of view, and they are
removed by the assumption that, initially,

f0(x, v) ≤ ρ

(
β

π

)3/2

e−β|v|2 , β = (kT )−1 , ρ > 0 , (15)

where T is the temperature and k the Boltzmann constant. Hence, f is bounded by
a homogeneous Maxwellian distribution.

We now look for a particular steady state. We assume that the body has a constant
velocity V > 0, and by a Galilean transformation we consider a reference system in
which the body is at rest. Then, in this reference system we assume f0(x, v) ≡ f̂ ,
given by a scattering state with incoming particles having velocity (−V, 0, 0) and
constant density, which produce a friction force on the body. By construction this
state (if it exists) is stationary. In this set up it can be proved the following theorem.

Theorem 2 Fix E > 0. In the limit V → ∞, the friction force tends to −∞ for
α > 2, to a constant for α = 2, to zero for 0 < α < 2 and for any bounded
interaction.

As a consequence, whatever intensity E > 0 is considered, in the case α > 2
large enough values of the velocity V produce a friction force opposite to E with an
intensity larger than E, and so for some value of V there is a stationary state f̂ .

On the contrary, if α ≤ 2 or if the interaction is bounded, for sufficiently large
value of E and any value of V , the friction force has an intensity smaller than E,
and hence a stationary state f̂ cannot exist.

Proof The proof is elementary and we only sketch it. We assume spherical
coordinates (r, θ, φ) with the axis corresponding to θ = 0 in the x1-direction. The
problem has an axial symmetry and, for the moment, we put φ = 0. We study
the motion of a particle starting at time −∞ from the point (r, θ) = (∞, 0), with
velocity−V directed along the x1-axis and an impact parameter s. After a scattering
the particle escapes at r = ∞ with an angle θ = θf and the same absolute value
of the velocity. The energy and angular momentum conservations determine the
motion of the particle,

θ̇ r2 = sV = const , (16)

1

2

(
ṙ2 + θ̇2r2

)
+ Ψ (r) = 1

2
V 2 . (17)
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Performing the explicit calculation (for α > 0) we have,

θf =
∫ r1

rmin

2s dr

r2
√

1− 2V−2g r−α − (s/r)2
+ 2 arcsin

(
s

r0

)

+
∫ r0

r1

2s dr

r2
√

1− 2V−2Ψ (r)− (s/r)2
,

(18)

where rmin is the value of r for which the square root in the first integral vanishes.
The momentum transferred from the particle to the body is equal to the difference

of the x1-component of the initial and final velocities,

Δp = [lost momentum by particle] = V (1+ cos θf ) . (19)

The flux is proportional to the incoming velocity, [Flux] = CV , C < 0. Hence, by
integration over all particles with impact parameter s ≤ r0,

F = [total friction force] = 2π C
∫ V r0

0
dz z (1+ cos θf ) , (20)

where z = V s.
Our aim is to show that for α > 2, |F | → ∞ for V →∞, whereas for α ∈ [0, 2]

|F | converges to zero or remains bounded in the same limit. Since the interaction
is repulsive, θf ∈ [0, π], range in which the cosine is decreasing with respect to its
argument, so that for α > 2 we must increase θf to decrease |F |, and, viceversa, for
α ∈ [0, 2] we must decrease θf to increase |F |.

We start with the case α = 2, and by it we study the other cases.

(i) α = 2

We can do an explicit calculation and we obtain:

θf = 2z
√
z2 + 2g

[
π

2
− arcsin

(
s

r1

√

1+ 2g

z2

)]

+ 2 arcsin

(
s

r0

)

+ 2
∫ r0

r1

s dr

r2
√

1− 2V −2Ψ (r)− (s/r)2
,

(21)

and hence

lim
V→∞|F | = 2π |C|

∫ ∞

0
dz z

(
1+ cos θf

)
<∞ . (22)

(We remark that the integral in the previous formula is bounded since the integrand
for large values of z behaves like z−3).
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Since the friction force vanishes for V = 0, is bounded at infinity and it is
continuous, it is always bounded. It is enough to take E larger than the maximum
of |F | to forbid a stationary state f̂ .

(ii) 0 < α < 2

We want to obtain integrals similar to those of the previous case. For this purpose
we change the term 2gV −2r−α in the first integral of Eq. (18) into as2r−2, where a
is determined by the relation:

a = 2gV −2s−2(rmin)
2−α . (23)

By this operation we decrease θf and we have

θf >

∫ r1

rmin

2s dr

r2
√

1− as2r−2 − (s/r)2
+ 2 arcsin

(
s

r0

)

+
∫ r0

r1

2s dr

r2
√

1− 2V−2Ψ (r)− (s/r)2
.

(24)

We neglect a positive term, perform the integral and obtain:

θf >
2√

1+ a

[π
2
− arcsin

(
s r−1

1

√
1+ a

)]
+ 2 arcsin

(
s

r0

)
. (25)

We fix z; in the limit V → ∞, we have s → 0, rmin → 0, a → 0, and hence
θf → π . This fact implies that |F | → 0, by using the Dominated Convergence
Theorem and observing that in Eq. (20) the integrand is bounded by an L1 function.
(A rough but simple choice of this function can be made considering the scattering
process with interaction at short distance Ψ = g1 r

−2, which produces a larger
friction force and, as proved in i), gives a bounded force).

(iii) Bounded interaction.

We can prove that the friction force vanishes for V →∞ in a similar (but simpler)
way to that of point (ii).

(iv) α > 2

We must show that F → −∞ for V → ∞. It is enough to investigate a quantity
smaller than |F |.

First we restrict the set of integration in Eq. (20) to z = sV ≤ b, where b is a
fixed constant. Second we decrease |F | by increasing θf . We proceed like (ii). We
change the term 2gV−2r−α into as2r−2, where a = 2gV −2s−2(rmin)

2−α . By this
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operation we increase θf and we have

θf <

∫ r1

rmin

2s dr

r2
√

1− as2r−2 − (s/r)2
+ 2 arcsin

(
s

r0

)

+
∫ r0

r1

2s dr

r2
√

1− 2V−2Ψ (r)− (s/r)2
.

(26)

Performing the integral and neglecting a negative term, we obtain

θf <
π√

1+ a
+

∫ r0

r1

2s dr

r2
√

1− 2V−2Ψ (r)− (s/r)2
+ 2 arcsin

(
s

r0

)
. (27)

For V → ∞, for z fixed, s → 0, rmin ≈ (2g/V 2)1/α, and so a → ∞. Hence in
this limit θf → 0 and cos θf → 1. Now we allow b→∞ and we have proved that
|F | → ∞.

We have proved that for large V the friction force is larger than E. On the
contrary for V = 0 the friction force vanishes. Since it is a continuous function
of V , there exists at least a velocity of the body for which the friction force balances
exactly the external force E, and this value gives a stationary state f̂ . ��

The stationary state f̂ corresponds to a scattering state with particles of the
medium at rest (in the original reference system in which the body moves at speed
V ), and hence at zero temperature. A similar study can be made for a scattering
state with temperature T > 0, corresponding to a distribution which is of the form
f = ρ(β/π)3/2e−β|v|2 for incoming particles at a distance from the body larger
than the range of the interaction. The analysis could be performed in strict analogy
to the one previously discussed, with some geometrical complications. We also
remark that, although we have assumed the potential to be a decreasing function
on [0, r0], this assumption can be relaxed, by choosingΨ (r) a bounded but possibly
attractive potential in the interval [r1, r0]. The analysis of the scattering process
leads to similar conclusions.

To summarize, we have shown that, in the framework of a fully Hamiltonian
system, the motion of a body in a medium can represent a good model of viscous
friction if the interaction between the body and the medium particles is sufficiently
strong at short distances, i.e., if the potential has a singularity at the origin stronger
than r−α , with α > 2. In fact, this condition assures that the force exerted by the
medium on the body during its motion increases to infinity when the velocity of the
body diverges, relation that we expect to occur in any reasonable model of viscous
friction. On the contrary, if the potential at short distances is of the form r−α , with
0 ≤ α ≤ 2, the force exerted by the medium remains finite, then in this case the
model cannot be considered as a model of viscous friction.

This analysis is preliminary to the much more complicated case of a nonsta-
tionary motion of the body, that is the study of the Cauchy problem with arbitrary
initial data, as expressed in (11)–(13), proving the reaching of an asymptotic velocity
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(for α > 2), or an unbounded growth of it (for 0 ≤ α ≤ 2), finding the rate of
convergence of the velocity of the body towards the asymptotic velocity, or towards
a “uniformly accelerated motion”. The latter case corresponds to the runaway
particle effect, as discussed in [2, 3]. Another level of difficulty would consist to
assume a real, self-interacting, Vlasov fluid, which is an open problem.
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Mathematical and Numerical Study
of a Dusty Knudsen Gas Mixture:
Extension to Non-spherical Dust Particles

Frédérique Charles

Abstract In this work, we consider the model introduced in Charles and Salvarani
(Acta Appl Math 168:17–31, 2020) describing the movement of dust particles in
a very rarefied atmosphere. The gas is treated as a Knudsen gas, whereas the
interaction between dust particles and gas molecules is modeled by considering a
moving domain free transport equation (including the boundary with the particles
and the boundary of the domain). We here precise the proof of existence of solutions
to the initial-boundary value problem announced in Charles and Salvarani (Acta
Appl Math 168:17–31, 2020). Moreover, we introduce a new numerical strategy,
based on a splitting between the transport of the gas molecules and the movement
of the boundary. This strategy allow to perform 2d-numerical simulations with
elliptical-shaped particles.

1 Introduction

We consider here a mixture of a rarefied gas and macroscopic particles (such as
dust particles). A typical example of such a situation is the study of the dynamics
of gases inside a microelectromechanical system (MEMS). More precisely, we
place ourselves in the physical situation described by the order of magnitude of
the physical constants in Table 1. Under these assumptions, the mean free path of
the gas is equal to λg = 2 · 10−3 m, and the Knudsen number of the gas (that is,
the ratio between the mean free path and the characteristic length of the domain)
inside the container is Kn = 10. In this context, a kinetic description of the gas is
more suitable than a description with fluid models. Moreover, one of the advantages
of kinetic models is that they depend much less on phenomenological laws than
most models of continuum mechanics. We therefore consider a mesoscopic scale
and describe the gas thanks to a density function defined in the phase space (no
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Table 1 Order of magnitude
of physical quantities in the
situation under study

Temperature of the gas Tg 293 K

Mach number Ma 0.1

Gas Pressure P 5 Pa

Size of the Container L 2 · 10−4 m

Radius of particles r 10−5 m

distinction is made here between the different types of molecules constituting the
gas). Without any particles, a rarefied gas inside a vessel could typically be described
by the Boltzmann equation (see [4]) with suitable boundary conditions. A kinetic
description of a gas-particle mixture was introduced in [5], where the flow of
particles is described thanks to another density function, and interactions between
particles and molecules are modeled by integral collisions operators. We can also
mention [11], where the movement of spherical particles is described through
equations on their momentum and velocity, and where the gas is described by a
Boltzmann equation with an integral operator describing gas-particles interactions.
In [13], the motion of a rigid body immersed in a gas is governed by the Newton-
Euler equations, where the force and the torque on this body are computed from
the momentum transfer of the gas molecules colliding with the body; the gas is
described by a Boltzmann equation without any effect of the body on the gas.

The point of view adopted in [7] is rather different. The interaction between the
gas and the particles (in finite number) is modeled by considering the evolution of
the gas in a moving domain, where the boundary of the domain include the surface of
the particles. This approach has already been introduced in [9] and [12]. However,
in the later works, authors use an Eulerian numerical method (Finite-Difference
and Semi-Lagrangien method respectively) which makes the treatment of boundary
conditions rather complicated; the numerical study is therefore only carried out in
dimension 1.

Moreover, for large Knudsen number (typically larger to 10), it is generally
admitted [10] that the gas can be considered as a Knudsen gas (or molecular flow),
and we therefore neglect here collisions between molecules. Theoritical studies of
the convergence to equilibrium of a particle in a Knudsen gas have been carried
out in [2] and [3], but no numerical simulation has been performed. The study of a
Knudsen system in a moving domain, both at the theoretical and at the numerical
level, has been the subject of [8], but in the context of a gas in a vessel with absorbing
boundary conditions.

The paper is organised as follows. We first recall the model introduced in [7] for
spherical particles, that we extend to any shape of particle. We then precise the proof
of the existence of solutions announced in [7]. Finally we present a new numerical
strategy that allows to perform numerical simulations with non-spherical particles,
and some scenarios of numerical simulations.
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2 Description of the Model

We briefly recall the model introduced in [7] and generalize it to non-spherical
particles. We consider a free transport equation in a open bounded and regular
spatial domain D ⊂ R

d , d ∈ N
∗, which describes the evolution of the molecules

density f := f (t, x, v), with (t, x, v) ∈ R
+ × D × R

d . The motion of particles
is supposed to be known, and we denote Bi(t) the closed set corresponding to the
region occupied by the particle indexed by i at time t . We assume that the domain
D and the particles are smooth enough (C1 for example) to define a normal vector
on the boundaries. We introduce the time T1 which guarantees the non-overlapping
of particles

T1 = sup{t ≥ 0 : ∀s ∈ [0, t[, Bj (s) ∩ Bi(s) = ∅ for all j, i = 1, . . . , Nd, j �= i}
(1)

and the time T2 which guarantee the non-exit of particles out of the domain

T2 = sup{t ≥ 0 : ∀s ∈ [0, t[, Bi(s) ∩ ∂D = ∅ for all i = 1, . . . , Nd }. (2)

We do not consider here collisions of a particle with another particle or with the
boundary of the domain, and therefore consider the problem for t ∈ [0,T ), with
T ≤ min(T1,T2). For t ∈ [0,T ) we denote �t the domain occupied by the gas at
time t

�t := D \
Nd⋃

i=1

Bi(t),

and ∂�t = ∂D ∪ $t its boundary, with

$t =
Nd⋃

i=1

∂Bi(t)

(see Fig. 1). The motion of the domain is described through the velocity law of each
point of the boundary at a given time t . We define a field c : R+ × R

d → R
d

which gives the local velocity of each point x ∈ ∂�t , for any t ∈ [0,T [. We
note that for any x ∈ ∂D, we have c(t, x) = 0. We assume that the interaction
between molecules and particles is described by a diffuse reflection on the surface
of the particle, and that all particles have the same temperature Tp > 0, uniform
on the surface. Following this assumption, the boundary condition on the surface of
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Fig. 1 Graphical description
of the problem

nx D

t

nx

B1(t )

B2(t )

particles, that is for x ∈ $t , writes

f (t, x, v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

{(w−c(t,x))·nx≥0}
kd,Tp(x, v − c(t, x),w − c(t, x))f (t, x,w)dw

for x ∈ $t , (v − c(t, x)) · nx < 0

0 for x ∈ $t , (v − c(t, x)) · nx ≥ 0
(3)

where nx ∈ S
d−1 is the outward normal originated in x, and kd,Tp a kernel modeling

a diffuse reflection at temperature Tp, defined by (see [14])

kd,Tp(x, v,w) =
√

2π

Tp
MTp(v)(w · nx), (4)

where MTp is the centered Maxwellian at temperature Tp:

MTp (v) =
1

(2πTp)d/2 e
− |v|22Tp .

This kernel verifies the following property

∫

{w·nx≥0}
kd,Tp(x, v,w)MTp (w)dw = MTp(v). (5)
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For x ∈ ∂D, that is on the boundary of the external domain, which is assumed to
be still (c(t, x) = 0 for x ∈ ∂D), the boundary condition writes

f (t, x, v) =

⎧
⎪⎨

⎪⎩

∫

{w·nx≥0}
k(x, v,w)f (t, x,w)dw for x ∈ ∂D, v · nx < 0

0 for x ∈ ∂D, v · nx ≥ 0
(6)

In (6), k is a kernel modeling an accommodation reflection on ∂D at temperature Tp

k(x, v,w) = γ ks(x, v,w) + (1− γ )kd,Tp(x, v,w)

where γ ∈ [0, 1] is the accommodation coefficient, and ks a kernel modeling a
specular reflection

ks(x, v,w) = δ(w − v + 2(v · nx)nx).

The kernel ks verifies, for all function ϕ defined on R
+:

∫

{w·nx≥0}
ks(x, v,w) ϕ(|w|)dw = ϕ(|v|)1{v·nx≤0}. (7)

One can summarize the boundary conditions by

f (t, x, v) =
∫

R3
K(t, x, v,w)f (t, x,w)dw 1{(v−c(t,x))·nx<0} for x ∈ ∂�t,

(8)

with

K(t, x, v, w) =
⎧
⎨

⎩

kd,Tp(x, v − c(t, x), w − c(t, x))1{w−c(t,x)·nx≥0} if x ∈ $t
(
γ ks(x, v, w)+ (1− γ )kd,Tp(x, v,w)

)
1{w·nx≥0} if x ∈ ∂D.

(9)

We end-up with the following model

∂f

∂t
+ v · ∇xf = 0 (t, x, v) ∈ R

+ ×�t × R
d, (10)

with the initial condition

f (0, x, v) = f in(x, v)1{�0×Rd }(x, v) (11)

and the boundary conditions (8)–(9).
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3 Existence

We slightly modify and precise the Theorem 3.3 in [7].

Theorem 1 Let T ∈ (0,min(T1, T 2)), where T1 and T2 are defined by (1) and (2).
We assume that c ∈ L∞((0, T )×D). Let f in ∈ L∞(�0×Rd , e|v|2/Tpdv dx ), f in ≥
0 for a.e. (x, v) ∈ �0×Rd . Then there exists at least one non-negative weak solution
f ∈ L∞((0, T );L∞(�̄t ,Rd )) of the initial-boundary value problem (10)–(11)–

(8)–(9). Moreover (t, x, v) �→ f (t, x, v)e
|v−c(t,x)|2

2Tp ∈ L∞((0, T );L∞(�̄t ,Rd )).

Proof We follow and adapt the proof for a fixed domain made in [1]. We first
consider the auxiliary problem for the function g : R+ ×�t ×R

d → R

∂g

∂t
+ v · ∇xg = 0, (t, x, v) ∈ R

+ ×�t × R
d, (12)

with initial data

g(0, x, v) = f in(x, v)1{�0×Rd }(x, v) (13)

and boundary conditions

g(t, x, v) = -(t, x, v)1{(v−c(t,x))·nx<0} (14)

for a.e. (x, v) ∈ ∂�t ×R
d , where - ∈ L∞((0, T )× ∂�t ×R

d) is a given function.
The problem (12)–(13)–(14) has a unique weak solution, given by the method of
characteristics

g(t, x, v) = f in(x − vt, v)1{τ�t (x,v)>t} +-(t, x − τ�t (x, v)v, v)1{τ�t (x,v)<t},

where

τ�t (x, v) =
{ +∞ if {θ > 0 : x − θv ∈ $t−θ ∪ ∂D} = ∅

inf{θ > 0 : x − θv ∈ $t−θ ∪ ∂D} otherwise.

τ�t (x, v) correspond to the arrival time on the boundary when we follow backward
the characteristic starting from x ∈ �t at velocity v ∈ R

d . We deduce that

‖g‖L∞((0,T )×�t×Rd ) ≤ max{‖f in‖L∞(�0×Rd ) , ‖-‖L∞((0,T )×∂�t×Rd }. (15)

We now consider the sequence (fn)n∈N of functions, such that

f0(t, x, v) = 0 for a.e. (t, x, v) ∈ [0, T )× �̄t ×R
d
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and, for all n ∈ N, n ≥ 1, fn is the solution of the following initial-boundary value
problems:

∂fn

∂t
+ v · ∇xfn = 0, (t, x, v) ∈ R

+ ×�t × R
d, (16)

with initial data

fn(0, x, v) = f in(x, v)1{�0×Rd }(x, v) (17)

and boundary conditions

fn(t, x, v) =
∫

R3
K(t, x, v,w)fn−1(t, x,w)dw1{(v−c(t,x))·nx<0} (18)

for (x, v) ∈ ∂�t × R
d , where K is defined in (9). Thanks to properties (5) and (7),

the boundary condition (18) leads to the estimate on the boundary

∥
∥
∥∥
∥

fn

MTp (v − c(t, x))

∥
∥
∥∥
∥
L∞((0,T )×∂�t×Rd )

≤
∥
∥
∥∥
∥

fn−1

MTp(v − c(t, x))

∥
∥
∥∥
∥
L∞((0,T )×∂�t×Rd )

(19)

Then the estimate (15) allow to prove by induction that

∥
∥
∥
∥
∥

fn

MTp(v − c(t, x))

∥
∥
∥
∥
∥
L∞((0,T )×�̄t×Rd)

≤
∥
∥
∥
∥
∥

f in

MTp(v − c(t, x))

∥
∥
∥
∥
∥
L∞((0,T )×�0×Rd )

(20)

Moreover, an immediate induction argument prove that fn ≥ 0 for all n ≥ 0. We
obtain

0 ≤ fn(t, x, v) ≤ fn(t, x, v)e
|v−c(t,x)|2

2Tp ≤
∥
∥∥
∥f

ine
|v|2
Tp

∥
∥∥
∥
L∞(�0×Rd )

e
‖c‖2∞
Tp (21)

for a.e. (t, x, v) ∈ [0, T ) × �̄t × R
d . We then can prove that the sequence is non

decreasing by considering the sequence hn := fn+1−fn, for all n ≥ 0. By linearity,
for all n ≥ 0, hn satisfy the free transport equation (12) with the initial condition

∀(x, v) ∈ �0 × R
d,

{
h0(0, x, v) = f in(x, v)1{�0×Rd }(x, v)

hn(0, x, v) = 0 for n ≥ 1;
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and the boundary condition

hn(t, x, v) =
∫

R3
K(t, x, v,w)hn−1(t, x,w)dw1{(v−c(t,x))·nx<0} (22)

for (x, v) ∈ ∂�t × R
d . We deduce that hn(t, x, v) ≥ 0 for a.e. (t, x, v) ∈

[0, T )×�̄t×Rd . We have hence built a monotone non-decreasing sequence (fn)n∈N
composed by non-negative and uniformly bounded functions a.e. in the domain
of definition of the problem. By consequence, the sequence (fn)n∈N pointwise
converges to a limit f , which is by construction a non-negative solution of the
initial-boundary value problem (10)–(11)–(8), and we can pass to the limit in
estimate (21). ��

4 Numerical Simulations

4.1 Numerical Method

We describe here a new strategy for the numerical study of the model (10)–(11)–(8),
which is a modification of the particle method proposed in [7]. The initial density
f in of the gas is discretized by mean of a collection of weighted smooth shape
functions centered on the particle positions, that is

f in
ε,Nm

(x, v) =
Nm∑

k=1

ωk ϕε(x − x0
k ) ϕε(v − v0

k ), (23)

where Nm represents the number of numerical particles, ωk is the weight of
the k-th numerical particle (which represents ωk molecules). In (23), the shape
function ϕε(x) = ϕ(ε−1x)/εd is a smooth function with compact support. The term
“numerical particles” is here used for avoiding any confusion with the (real) number
of dust particles. Once the number Nm of numerical particles has been chosen, the
initial positions (x0

k )1≤k≤Nm and velocities (v0
k )1≤k≤Nm are sampled according to

the initial density f in (either in a deterministic way, either thanks to a Monte-Carlo
procedure). Then, the positions and velocities of the numerical particles evolve in
time by taking into account the different phenomena listed below:

(i) the free flow of the numerical particles in the absence of any interaction,
mathematically represented by the transport operator v · ∇;

(ii) the boundary condition on ∂D; we can consider here specular reflection or
accommodation reflection, but also a periodic condition in order to hide the
effects of the boundary.
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(iii) the diffuse reflection between gas molecules and dust particles;
(iv) the time evolution of the set of dust particles.

We introduce a time discretization of step 	t and we set tn = n	t . The density of
gaseous molecules at time tn—i.e. f (tn, ·, ·) where f is the solution of (10)–(11)–
(8) is then approximated by

f n
ε,Nm

(x, v) =
Nm∑

k=1

ωk ϕε(x − xnk ) ϕε(v − vnk ), (24)

where (xnk )1≤k≤N and (vnk )1≤k≤N are the positions and the velocities of the
numerical particles at time tn.

In [7], our strategy was to compute simultaneously the steps (i), (iii), (iv)
previously described. For that purpose, we compute for each numerical particle the
position of the possible intersection of its trajectory with the dust particle during the
time 	t . To do that, we compute if the condition

min
1≤i≤Np

min
t∈[tn,tn+	t ] ‖ξi(t)− xnk (t)‖ ≤ r,

is verified or not, where ξi(t) is the position of the center of the i-th spherical
particle, r its radius, and xnk (t) = xnk +(t− tn)vnk the trajectory of the k-th numerical
particle between time tn and tn+1. However, this strategy is hardy adaptable to non-
spherical particles.

We consider here a splitting between the advection stage of the dust particles
(iv) and the evolution of gas molecules, corresponding to stages (i)–(ii)–(iii). In
other word, we first transport dust particles independently of molecules during the
time 	t , and we then transport numerical particles and perform the treatment of
the boundary conditions. We thus come back to dealing with conditions at the
boundaries of a fixed domain instead of a mobile domain. We first test on every
numerical particle if xn+1 ∈ �t , and otherwise we compute the boundary condition.
To do so, we only need a Cartesian equation of the surface of dust particles, in order
to calculate the intersection of this surface with a straight line as well as the normal
vector at each point of the surface.

The latter strategy, which gives graphically similar results to the first one for
spherical particles, allows to consider easily some ellipse-shaped particles. For such
particles, our objective is in particular to observe the effect of the rotational velocity
of the particle on the gas. This effect was not visible for spherical particles because
the gas has no viscosity.
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4.2 Numerical Results

We describe here a series of numerical experiments in dimension d = 2. We suppose
that the initial density is uniform in space and that it is described by a Maxwellian
function in velocity, that is

f in(x, v) = f in(v) = n0m

2πkBT in e
−m|v−ug |2

2kBT
in
, (25)

where m is the mass of a gas molecule, uin and T in are respectively the initial
macroscopic velocity and the temperature of the gas (in K), and n0 correspond to
‖f in‖L1(�0×R3)/|�0|. In this case, each component (v0

k )i , for 1 ≤ k ≤ Np of the
initial velocities of the gas particles is sampled according a Gaussian law of mean
(uin)i and variance kBT in/m (see [6] for details). The weights of the particles are
identical, and are tuned in order to reproduce the mass of the initial condition:

ωk =
‖f in‖L1(�0×R3)

Np

= n0|�0|
Np

, for all 1 ≤ k ≤ Np.

The initial positions of the numerical particles have been fixed on a regular grid,
except inside the dust particles. In some scenarios, the gas has a macroscopic
velocity along the first axis equal uin = Vs Ma , where Ma is the Mach number
and Vs is the sound velocity in air at temperature T in. We take here Ma = 0.1 and
T in = 293 K; then uin = 34.41 m/s. The temperature of the surface of particles is
500 K. The value n0 has been normalized to 1. Indeed, the values of n0 have no
impact, neither on the transport of molecules and of dust particles (since these ones
are no influenced by the surrounding gas) nor on the collisions between molecules
and dust particles (the number of collisions is not computed as in DSMC methods).
The domain D is the square [−1, 1] × [−1, 1] (in 10−5 m), with specular reflection
at the top and bottom boundary. We use a periodic boundary condition at the left
and at the right sides of ∂D, in order to mimic an infinite domain in the x direction.
We use B3-splines (see [6]) as shape functions ϕ, with a shape size ε = h0.5, where
h is the initial distance between two numerical gas particles in each direction (and
which is obviously linked to Nm).

4.2.1 Scenarios 1 and 2

The first simulations presents the rotation of a particle with no translational velocity.
The particle is an ellipse, with axes equal to a = 2.5 · 10−5 and b = 1 · 10−5. In
the first scenario, the macroscopic velocity of the gas is ug = (0, 0), whereas in the
second one the macroscopic velocity of the gas is ug = (−uin, 0). The rotational
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Fig. 2 Time history of the gas density in Scenario 1, from left to right and from top to bottom, at
times 8 · 10−8 s, 2.4 · 10−7 s, 4 · 10−7 s, 5.6 · 10−7 s, 7.2 · 10−7 s, 8 · 10−7 s. The axis are scaled
according to the length scale L◦ = 10−4 m

velocity of the particle is equal to � = 2π · 106 rad/s in both scenarios. Figures 2

and 3 show the time evolution of the number density ρ(t, x) =
∫

R3
f (t, x, v)dv

of scenario 1 and 2 respectively. In particular, we can observe the effect of the
macroscopic velocity of the gas, which acts as a side wind. Figure 4 show the
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Fig. 3 Time history of the gas density in Scenario 2, from left to right and from top to bottom, at
times 8 · 10−8 s, 2.4 · 10−7 s, 4 · 10−7 s, 5.6 · 10−7 s, 7.2 · 10−7 s, 8 · 10−7 s. The axis are scaled
according to the length scale L◦ = 10−4 m
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Fig. 4 Temperature (in K) at times 8 · 10−7 s for scenario 1 (left) and for scenario 2 (right). The
axis are scaled according to the length scale L◦ = 10−4 m

comparison at a given time between the kinetic temperature of the gas

T (t, x) = m

2kBρ(t, x)

(∫

R3
f (t, x, v)v2dv −

∣∣
∣
∣

1

ρ(t, x)

∫

R3
f (t, x, v)vdv

∣∣
∣
∣

2
)

in scenarios 1 and 2. Here the macroscopic speed of the gas (which is much
smaller than the kinetic velocity of molecules) does not have much influence on
the temperature.

4.2.2 Scenarios 3 and 4

In scenarios 3 and 4, two particles are crossing each other with opposite velocities:
u1
p = (0, 2uin), and u2

p = (0,−2uin). The gas has a macroscopic velocity equal

to (−uin, 0). In scenario 3 the dust particles have no rotational velocity, whereas
in scenario 4 they have rotational velocities equal to �1 = 2π · 106 rad/s and
�2 = −π · 106 rad/s. Figures 5 and 6 show the evolution of the number density

ρ(t, x) =
∫

R3
f (t, x, v)dv of scenario 3 and 4 respectively, and Figure 7 shows the

time evolution of the kinetic temperature of the gas in scenario 4.
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Fig. 5 Time history of the gas density, from left to right and from top to bottom, in Scenario 3 at
times 8 ·10−8 s, 1.6 ·10−7 s, 3.6 ·10−7 s, 5.6 ·10−7 s, 7.2 ·10−7 s, 1.32 ·10−6 s. The axis are scaled
according to the length scale L◦ = 10−4 m
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Fig. 6 Time history of the gas density, from left to right and from top to bottom, in Scenario 4 at
times 8 ·10−8 s, 1.6 ·10−7 s, 3.6 ·10−7 s, 5.6 ·10−7 s, 7.2 ·10−7 s, 1.32 ·10−6 s. The axis are scaled
according to the length scale L◦ = 10−4 m
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Fig. 7 Time history of the temperature ( in K) in Scenario 4, from left to right and from top to
bottom, at times 8 · 10−8 s, 1.6 · 10−7 s, 3.6 · 10−7 s, 5.6 · 10−7 s, 7.2 · 10−7 s, 1.32 · 10−6 s. The
axis are scaled according to the length scale L◦ = 10−4 m
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Body-Attitude Alignment: First Order
Phase Transition, Link with Rodlike
Polymers Through Quaternions,
and Stability

Amic Frouvelle

Abstract We present a simple model of alignment of a large number of rigid
bodies (modeled by rotation matrices) subject to internal rotational noise. The
numerical simulations exhibit a phenomenon of first order phase transition with
respect the alignment intensity, with abrupt transition at two thresholds. Below
the first threshold, the system is disordered in large time: the rotation matrices
are uniformly distributed. Above the second threshold, the long time behaviour of
the system is to concentrate around a given rotation matrix. When the intensity
is between the two thresholds, both situations may occur. We then study the
mean-field limit of this model, as the number of particles tends to infinity, which
takes the form of a nonlinear Fokker–Planck equation. We describe the complete
classification of the steady states of this equation, which fits with numerical
experiments. This classification was obtained in a previous work by Degond, Diez,
Merino-Aceituno and the author, thanks to the link between this model and a four-
dimensional generalization of the Doi–Onsager equation for suspensions of rodlike
polymers interacting through Maier–Saupe potential. This previous study concerned
a similar equation of BGK type for which the steady-states were the same. We take
advantage of the stability results obtained in this framework, and are able to prove
the exponential stability of two families of steady-states: the disordered uniform
distribution when the intensity of alignment is less than the second threshold,
and a family of non-isotropic steady states (one for each possible rotation matrix,
concentrated around it), when the intensity is greater than the first threshold. We
also show that the other families of steady-states are unstable, in agreement with the
numerical observations.
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1 Introduction

The mathematical study of active matter, such as aligning self-propelled particles,
is now a well established field of research, inspired for instance by phase transition
phenomena that appear in the Vicsek model [4, 25]. Following the kinetic approach
introduced in [13], a simple model of alignment of unit vectors subject to internal
rotational noise gives rise to a continuous phase transition at the kinetic level [17].
When the alignment intensity (that we call ρ, since it is related to the local density ρ
of particles in the inhomogeneous version [8], where the unit vectors represent the
velocities of self-propelled particles) is below a threshold ρc, the only stable steady-
state is the uniform distribution on the unit sphere. On the other hand, when ρ > ρc,
this isotropic equilibria becomes unstable and a family of stable equilibria arises:
von Mises distributions with concentration parameter depending on ρ, around a
given unit vector. When setting the intensity of alignment as a nonlinear function
of the order parameter of the system [9], this continuous phase transition may
become a discontinuous one (or first order), with hysteresis phenomenon: a second
threshold ρ∗ < ρc appears, the uniform equilibrium distribution being stable
for ρ < ρc and the concentrated distributions being stable for ρ > ρ∗. Around
those thresholds, the order parameter cannot vary continuously from a family of
equilibria to the other.

Recently, in a work with Degond and Merino-Aceituno [10] we extended the
model of self-propelled particles of Degond and Motsch [13] to the case where
the orientation of particles are not only given by their velocity (a unit vector) but
by their whole body attitude (an orthonormal frame, given by a rotation matrix).
Then, still with Degond and Merino-Aceituno, together with Trescases [11] we
proposed a similar model based on quaternion representation for rotation matrices,
and the models appeared to be equivalent. In these models, the interaction was
normalized and no phenomenon of phase transition could occur, but we remarked
that the non-normalized version may lead to such a phenomena. Finally, with
Degond, Diez and Merino-Aceituno [7] we managed to treat this phenomenon
of phase transition in a homogeneous Bhatnagar–Gross–Krook (BGK) model,
thanks to this link with unit quaternions and an analogy with a four-dimensional
generalization of the Doi–Onsager equation for suspensions of rodlike polymers
interacting through Maier–Saupe potential. Indeed, the compatibility equation we
need to solve to determine the possible steady-states can be reformulated in this
quaternionic formulation, and leads to a compatibility equation for the Maier–Saupe
potential in dimension 4, which was solved in [27]. We obtain a discontinuous phase
transition with two thresholds ρ∗ < ρc, still with the same two types of stable
equilibria: the uniform distribution for ρ < ρc, and a family of generalized von
Mises distributions, concentrated around a given rotation matrix when ρ > ρ∗.

The aim of this paper is twofold. We first want to introduce the model of
alignment of rigid bodies through numerical simulations of the particle system, in
order to present the first order phase transition that we observe numerically. And
then we want to provide a rigorous mathematical description of this phase transition
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phenomenon, at the kinetic level: the mean-field limit of the particle system when
the number of particles is large is given by a nonlinear Fokker–Planck equation,
for which the steady states are the same as those characterized in [7] for the BGK
equation. The main result of this article is that we have a fine description of the
long-time behaviour of the solution to the Fokker–Planck equation: we classify
all the families of equilibria regarding their stability, and prove the exponential
stability of the uniform equilibrium when ρ < ρc and of the concentrated von Mises
distributions when ρ > ρ∗.

In Sect. 2, we present the framework of our model: a system of coupled stochastic
differential equations for N matrices in SO3(R). We present a time discretization
scheme of Euler–Naruyama type, and provide numerical simulations which illus-
trate the phenomenon of first order phase transition. In Sect. 3, we describe the
mean-field limit of this system, which takes the form of a nonlinear Fokker–Planck
equation. We give general results on the behaviour of the solution of this evolution
equation, and we show that the determination of its steady states amounts to solve a
matrix compatibility equation. Thanks to the free energy associated to the Fokker–
Planck equation, the uniform equilibria is shown to be unstable for ρ > ρc = 6,
proving that in that case there are others solutions than 0 for the compatibility
equation. Section 4 is a summary of the results of [7] to solve this compatibility
equation: we present the link between rotation matrices and unit quaternions, and the
fact that the compatibility equation can be transformed to a compatibility equation
for Q-tensors which was solved in [27]. We therefore get a precise description of
all the steady-states of the equation, and a way to obtain the second threshold ρ∗
(as the minimum of a one-dimensional function) such that for ρ � ρ∗ there exists
non-trivial steady-states. In Sect. 5, we summarize the results of [7] regarding the
stability of these equilibria in the framework a BGK equation (which shares the
same steady-states), and we are able to use these results to obtain the classification
of the steady-states, as critical points of the free energy. In particular we show that
three families of equilibria are unstable, and the remaining two other types are
local minimizers of the free energy: the uniform distribution when ρ < ρc and
the concentrated von Mises distributions for ρ > ρ∗. Finally, Sect. 6 is devoted to
the main new result of this paper: the exponential stability of these two types of
steady-states. In Theorem 3, we prove that if a function f0 is sufficiently close to
the set of equilibria (in relative entropy), then there exist such an equilibrium f∞
such that the solution of the Fokker–Planck equation converges exponentially fast
towards f∞ (still in relative entropy). We finish this last section by some comments
and perspectives.
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2 Numerical Evidence of a First-Order Phase Transition in a
System of Interacting Particles

2.1 A Simple SDE on SO3(R) and Its Time-Discretization

First of all let us recall some basic facts about SO3(R).

Definition 1 For any u =
⎛

⎜
⎜
⎝

u1

u2

u3

⎞

⎟
⎟
⎠ ∈ R

3 we denote by [u]× =
⎛

⎜
⎜
⎝

0 −u3 u2

u3 0 −u1

−u2 u1 0

⎞

⎟
⎟
⎠

the (antisymmetric) matrix associated to the linear map v ∈ R
3 �→ u × v in the

canonical basis.

Proposition 1 (Rodrigues’ Formula) Any special orthogonal matrixA ∈ SO3(R)

can be written as a rotation around an axis in R
3. More precisely, there exists a

unique angle θ ∈ [0, π] and a unit vector n ∈ S2 such that A is the rotation R(θ,n)
of angle θ around the axis directed by n, given by the following formula:

R(θ,n) = exp(θ [n]×) = cos θ I3 + sin θ [n]× + (1− cos θ)nn
. (1)

where I3 is the identity matrix. When θ ∈ (0, π), the unit vector n is unique.
When θ = π there are two such vectors n, opposite one to the other. And
when θ = 0, any unit vector n can be used.

To introduce the model and some important notations, we first start with a simple
stochastic differential equation (SDE) modeling a rotation matrix A(t) ∈ SO3(R)

trying to align with another fixed rotation matrix A0 ∈ SO3(R), with strength of
alignment ν > 0, and subject to angular noise of intensity τ > 0:

dA = −ν∇A( 1
2‖A− A0‖2)dt + 2

√
τPTA ◦ dBt . (2)

To give a meaning to the previous equation, let us describe the terms one by
one, from left to right. We need to define a metric on SO3(R) in order to define the
gradient∇A. As it is usually the case in SO3(R), we will take the metric induced by
the scalar product in M3(R) given by

A · B = 1

2
Tr(AB
). (3)

One of the reasons to take this metric is that the geodesic distance between a
matrix A ∈ SO3(R) and its composition by a rotation of angle θ ∈ [0, π] is
exactly θ . Said differently, if n ∈ S2, then the curve θ ∈ R �→ R(θ,n)A given
by the formula (1) is a geodesic travelled at unit speed. The other reason is that
the map u ∈ R

3 �→ [u]× given by Definition 1 is an isometry from R
3 to the

antisymmetric matrices (which is the Lie algebra of SO3(R)). The norm ‖A− A0‖
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in the SDE (2) is the one associated to this scalar product. The operator PTA is
the orthogonal projection on the tangent space of SO3(R) at A, given by PTAH =
1
2 (H − AH
A). The notation ◦ in the SDE (2) means that it must be understood
in the Stratonovich sense, and the Brownian motion Bt is a 3 × 3 matrix whose
entries are independent real standard Brownian motions.1 This ensures that the
matrix A stays on SO3(R) for all time, and this is the usual way of defining SDEs
on manifolds (we refer to [20] for a reference on this topic). Therefore the first
term in the right-hand side of (2) may be written ν∇A(A · A0) since ‖A‖2 = 3

2
whenever A ∈ SO3(R). Finally, the law t �→ μ(t, ·) (with values in P(SO3(R)),
the set of probability measures on SO3(R)) of such a process satisfies the following
Fokker–Planck equation:

∂tμ+ ν∇A · (∇A(A · A0)μ) = τΔAμ, (4)

where ∇A· and ΔA are the divergence and Laplace-Beltrami operators on SO3(R).
Up to a time rescaling, we see that the important parameter is κ = ν

τ
, and we can

then without loss of generality study the following PDE, obtained by replacing τ

by 1 and ν by κ in (4):

∂tμ = −κ∇A · (∇A(A ·A0)μ)+ΔAμ

= ∇A ·
[

exp(κ A ·A0)∇A
( μ

exp(κ A · A0)

)]
.

(5)

In view of the above formulation, we now define the generalized von Mises
distribution (a probability measure) on SO3(R) of parameter J ∈ M3(R) by

MJ (A) = 1

Z(J ) exp(J · A), where Z(J ) =
∫

SO3(R)

exp(J · A)dA, (6)

the normalized volume form on SO3(R) being its Haar probability measure (this
comes from invariance of the metric with respect to left or right multiplication by
a given rotation matrix). Therefore it is for instance easy to see that Z(κA0) only
depends on κ when A0 ∈ SO3(R). With this notation, we can multiply the PDE (5)
by μ

MκA0
, integrate by parts and take advantage of the fact that the integral of μ

on SO3(R) remains constant in time, to obtain

1

2

d

dt

∫

SO3(R)

| μ
MκA0

− 1|2MκA0dA = −
∫

SO3(R)

‖∇A( μ
MκA0

− 1)‖2MκA0dA. (7)

1 Note that this does not give a standard Brownian motion on the Euclidean space M3(R), equipped
with this scalar product, but B̃t =

√
2Bt is such a standard Brownian motion. The SDE for a

standard Brownian motion on the manifold, with generator 1
2ΔA, would be dA = PTA ◦ dB̃t ,

which explain the choice of 2
√
τ instead of the usual

√
2τ in the SDE (2) so that the Fokker–

Planck equation (4) has the simplest coefficients.
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Together with a weighted Poincaré inequality on SO3(R), this shows that the
solution to the PDE (5) converges exponentially fast to the von Mises distribu-
tionMκA0 . Let us remark that when κ is small (strong noise, or weak alignment), this
distribution tends to be uniform on SO3(R), and when κ is large (strong alignment
or low level of noise), it is concentrated around the maximizer ofA �→ A·A0, which
is exactly A0, as expected.

Let us finish this subsection by describing a numerical discretization of the
SDE (2). By using the fact that ∇A(A · A0) = PTAA0, and denoting by Π the
orthogonal projection on SO3(R) (well-defined in a neighborhood of the manifold),
a naive projected Euler-Naruyama scheme would read as follows:

A(t +Δt) ≈ Π(A(t)+ νΔt PTA(t)A0 +
√
Δt 2
√
τPTA(t)N9), (8)

where N9 is a three by three matrix whose 9 entries are independent samples
of standard Gaussian distribution. One could even remove the projections on the
tangent plane and use this model, easy to describe as a starting point: “Start
from A ∈ SO3(R), move with step νΔt in the direction of the target A0, add some
noise of intensity 2

√
τΔt and project the result back on SO3(R)”. However, there

is a way to avoid sampling 9 entries per step and to take advantage of the Lie group
structure of SO3(R) instead of computing the projection on SO3(R) (which is the
polar decomposition of matrices and may have some cost). Indeed, the right-hand
side of the scheme (8) can be written

Π(I3 + 1
2νΔt [A0A(t)


 − A(t)A
0 ] +
√
τΔt[N9A(t)


 − A(t)N9

])A(t).

Since a rotation of a standard Gaussian vector is still a standard Gaussian vector, one
can see that the matrix N9A(t)


 is also a matrix whose 9 entries are independent
samples of standard Gaussian distribution. Therefore N9A(t)


 − A(t)N9

 is an

antisymmetric matrix whose independent entries are samples of centered Gaussian
distribution of variance 2. It is then a matrix of the form

√
2[η]× (see Definition 1),

where η is a standard Gaussian vector in R
3. When H is a small antisymmetric

matrix, a consistent approximation to Π(I3 + H) is given by exp(H) and can
be computed thanks to Rodrigues’ formula (1). Therefore a numerical scheme
consistent with the naive scheme (8) is given by

A(t +Δt) ≈ exp( 1
2νΔt [A0A(t)


 − A(t)A
0 ] +
√

2τΔt[η]×)A(t), (9)

where η is a standard Gaussian vector in R
3.

2.2 A System of SDEs and Its Numerical Simulations

We are now ready to introduce our model. In the article [10], we considered N

individuals located at positions Xi ∈ R
3 for 1 � i � N and with body

orientations Ai ∈ SO3(R), moving at unit speed in the direction of their first
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vector Aie1 and aligning their orientations with their neighbours, as in the simple
SDE (2). This could take the following form:2

⎧
⎪⎨

⎪⎩

dXk = Ake1dt

dAk = −
N∑

j=1
νj,k∇Ak (

1
2‖Ak − Aj‖2)dt + 2

√
τPTAk

◦ dBt,k,
(10)

where νj,k is the intensity at which particle k aligns with particle j , and which may
depend for instance on the distance ‖Xj − Xk‖ between the particles. We consider
here a much simpler model, homogeneous in space, so we only look at N rotation
matrices (Ai)1�i�n ∈ SO3(R), with the same intensity ρ

N
of alignment between

any pair of particles. We are therefore interested in the following system of SDEs:

∀k ∈ 1 . . .N, dAk = ρ

N

N∑

j=1

PTAk
Ajdt + 2

√
τPTAk

◦ dBt,k,

where we used the fact that ∇A( 1
2‖A− A0‖2) = −∇A(A ·A0) = −PTAA0.

In this model, when all the rotation matrices are close to a given one A0, the
behaviour of the system can be expected to be similar to the one of the simple
SDE (2), and we may expect the matrices to concentrate if the alignment intensity ρ
is high (or τ is low). Conversely, if they are not concentrated around some target, the
average of the alignment forces is small and the noise level may prevent the matrices
to align if ρ is low (or τ is high). From now on, up to rescaling time (and dividing ρ
by τ ), we consider the case τ = 1 and we denote by J the average “flux”, so our
system has the following form:

⎧
⎪⎨

⎪⎩

dAk = PTAk
Jdt + 2PTAk ◦ dBt,k, (1 � k � N)

J (t) = ρ
N

N∑

j=1
Aj(t).

(11)

We are then interested in the different behaviours of the system (11) for different
values of ρ. One way to measure how much matrices are concentrated is to
compute the variance 〈‖A − 〈A〉‖2〉 (where for any function h, we write 〈h(A)〉 =
1
N

∑N
j=1 h(Aj )). This nonnegative quantity is equal to 〈‖A‖2〉 − ‖〈A〉‖2 = 3

2 −
‖J
ρ
‖2, which implies that if we define the order parameter c(t) by

c(t) =
√

2√
3ρ
‖J (t)‖, (12)

2 Actually, the model studied in [10] (which does not present the phenomenon of phase transition
we are studying here) is a little bit more involved: each particle first chose an average target and
aligns with it, instead of averaging the “forces of alignment” as it is the case in the system of
SDEs (10).
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Fig. 1 Time evolution of the order parameter in four situations

we obtain a quantity between 0 (when the variance is maximal) and 1 (the variance
is 0, all matrices are the same). To give a numerical illustration of the phenomenon
we are interested in, we use a scheme similar to the scheme (9) of the previous
subsection: we take N matrices Ak ∈ SO3(R) for 1 � k � N), a time step Δt ,
and at each time iteration, we compute J = ρ

N

∑N
j=1 Aj and we update each Ak

for 1 � k � N with the matrix

exp( 1
2Δt [JA
k − AkJ


] + √2Δt[ηk]×)Ak,

where (ηk)1�k�N are independent samples of a standard Gaussian vector in R
3.

Figure 1 depicts the time evolution of the order parameter c(t) given by the
formula (12) for two realisations of this numerical scheme. In both cases the number
of particles is N = 500, the time step is Δt = 0.04 and we run the simulation
for 100 time iterations. In the top-left part of Fig. 1 where we took ρ = 1, even
if we started with all the particles in the same position (order parameter equal
to 1), as time evolves, the order parameter becomes very small. In the top-right
part, with ρ = 10, even if the particles were uniformly sampled on SO3(R) (order
parameter close to 0), as time evolves, the order parameter stabilizes around a quite
high value, indicating that the matrices are concentrated around a given rotation
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Fig. 2 Numerical illustration of a first-order phase transition

matrix. This indicates that a phase transition phenomenon is occurring with respect
to the parameter ρ. However, for some intermediate values of ρ, as in the bottom
part of Fig. 1 where ρ = 5, two different behaviours may happen: starting with
concentrated particles lead to an order parameter stabilizing around a non-zero
value, while the configuration starting with particles uniformly sampled on SO3(R)

stays with an order parameter close to 0 as time evolves.
In order to obtain a more precise illustration of this phenomenon, we ran 500 such

simulations with various values of the parameter ρ and different initial conditions,3

still with N = 500 and Δt = 0.04, for 500 time iterations. Figure 2 depicts the
initial order parameters c and strengths ρ, and their value after 500 iterations (t =
20). We clearly see two thresholds for ρ. The first threshold that we will denote ρ∗,
is such that for all simulations with ρ < ρ∗, the order parameter seems to be close
to 0 for large times. The second threshold, that we will denote ρc (with ρ∗ < ρc),
is such that for all simulations with ρ > ρc, the order parameter does not stay close
to 0 for large times, and stabilizes around a quite high value. In the intermediate
regime ρ∗ < ρ < ρc, both behaviours occur. This is what is called first-order
(or discontinuous) phase transition: the order parameter does not vary continuously
when going from one behaviour to the other.

The aim of the next sections is to present a rigorous mathematical description
of this phenomenon in the framework of a kinetic equation corresponding to the
limiting behaviour of the system of SDEs (11) when N →∞.

3 For a better illustration, the parameter ρ and the initial order parameter c are not uniformly
sampled, in order to see more points in the region of interest.
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3 Mean-Field Limit and Compatibility Equation

Let us first consider the first part of the system (11), as if t �→ J (t) was a prescribed
regular function from R to M3(R):

dA = PTAJdt + 2PTA ◦ dBt . (13)

As before for the simple SDE (2), the law t �→ μ(t, ·) of such a stochastic process
would satisfy the following (linear) Fokker–Planck equation:

∂tμ = −∇A · (μPTAJ )+ΔAμ = ∇A ·
[
MJ (A)∇A

( μ

MJ (A)

)]
, (14)

where the definition of the generalized von Mises distribution MJ is given by
the formula (6). Let us now suppose that several such processes Ak satisfying
the SDE (13) were independently drawn, with different independent Brownian
motionsBt,k , and independent initial conditions following a probability measureμ0
on SO3. Their law at time t would be given by μ(t, ·), solution of the Fokker–
Planck equation (14) with initial condition μ0 by the law of large numbers the
average 1

N

∑N
k=1 Ak(t) would converge to the expectation of one of this process,

that we call J [μ(t, ·)]. More generally, we define J [f ] for any finite measure f
on SO3(R) (not necessarily a probability measure, it may also be a signed measure):

J [f ] =
∫

SO3(R)

A f (A)dA. (15)

To deal with the system (11), where J (t) = ρ
N

∑N
k=1 Ak(t) is not prescribed

but depends on all the particles, we cannot expect the particles Ak to behave
independently. However one can show that in the limit N → ∞, their behaviour
is close to independent particles. This is called the propagation of chaos property,
and we refer to [24] for an introduction on this subject. One of the typical results
in this theory is that the empirical measure of the particle system converges to
a solution to the (now nonlinear) Fokker–Planck equation corresponding to (14)
with J (t) = ρJ [μ(t, ·)]:
Proposition 2 If Ak,0 are independent random rotation matrices distributed
according to the probability measure μ0, then the empirical measure associated
to the solution of the system of SDEs (11), given by μN(t) = 1

N

∑N
k=1 δAk(t),

converges (in Wasserstein distance) to the solution μ of the following nonlinear
Fokker–Planck equation, with initial condition μ0:

∂tμ = −ρ ∇A · (μPTAJ [μ])+ΔAμ. (16)

The convergence is uniform on [0, T ] for all T > 0.
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Proof We will not provide the proof in detail here, as it follows the classical theory
of propagation of chaos for coupled drift-diffusion processes, but we will recall
some important steps. It has to be adapted to the framework of SDEs on a manifold,
but this is not a real problem in this compact case (see for instance [3] in the case of
the Vicsek model on the sphere). Let us recall the coupling argument such as the one
in [24]. We start by proving the well-posedness of this following SDE (the coupling
process):

{
dA = ρ PTAJ [μ]dt + 2PTA ◦ dBt,

μ(t, ·) is the law of A(t).
(17)

The proof of this well-posedness, seen as a fixed point problem (either for the
function J (t) = ρJ [μ] or directly on the law μ) is done thanks to a Picard iteration
which leads to a contraction in the appropriate Wasserstein metric.

We then construct independent solutions to this coupling process Ak with
independent Brownian motions Bt,k and initial conditions Ak,0: the same as the
Brownian motions and initial conditions used for the original system of SDEs (11).
All these processes Ak have the same law, which is the solution μ of the Fokker–
Planck equation (16) starting with μ0. By the law of large numbers, the empirical
distribution μN of the coupling processes converges to μ, and therefore it is enough
to estimate the distance between μN and μN . This can be done by obtaining
estimates of the form

E[‖Ak − Ak‖2] � exp(CT )

N
, (18)

for all 1 � k � N , which gives control on the 2-Wasserstein distance between μN

and μN on the time interval [0, T ]. ��
We now want to study the long time behaviour of the nonlinear Fokker–Planck

equation (16), that we will rewrite in function of f = ρ μ (in that case, ρ represents
the total “mass” of f ). Since ρJ [μ] = J [f ], it therefore has the following form,
without any parameter on the equation:

∂tf = −∇A · (f PTAJ [f ])+ΔAf. (19)

This is an equation of the form ∂tf = C[f ] where C[f ] can also be written, using
the definition (6) of the von Mises distribution MJ , under the following factorized
form:

C[f ] = ∇A ·
[
MJ [f ](A)∇A

( f

MJ [f ](A)

)]
.

In order to understand the long time behaviour of the solution, let us first look at
stationary solutions.
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Proposition 3 A measure f on SO3(R) is a stationary solution of the Fokker–
Planck equation (19) if and only if it is of the form f = ρMJ , where J satisfies
the following compatibility equation

J = ρJ [MJ ]. (20)

Proof Since we have, by integration by parts,

∫

SO3(R)

f

MJ [f ](A)
C[f ]dA = −

∫

SO3(R)

∥∥
∥∇A

( f

MJ [f ](A)

)∥∥
∥

2
MJ [f ](A)dA,

we immediately get that if C[f ] = 0 then f has to be proportional to MJ [f ], and the
total mass of f , denoted by ρ, gives the coefficient of proportionality. Then, taking
the average on SO3(R) against A, thanks to the definition (15) of J , we obtain,
denoting J = J [f ]:

J = J [f ] = J [ρMJ [f ]] = ρJ [MJ ],

which is the compatibility equation for J . Conversely, if J is a fixed point of this
map J �→ ρJ [MJ ], then setting f = ρMJ , we get J [f ] = J , and then C[f ] = 0.

��
Before obtaining a simple characterization of the solutions of the compatibility

equation (20), which is the object of the next section, let us give some more results
on the solutions to the Fokker–Planck equation (19).

Proposition 4 For all nonnegative measure f0 on SO3(R), with a total mass ρ > 0,
there exists a unique weak solution f to the nonlinear Fokker–Planck equation (19)
such that f (t, ·) converges to f0 (in Wasserstein distance) as t → 0. This
solution belongs to C∞((0,+∞), SO3(R)) and is positive for any positive time.
Furthermore, we have the following uniform estimates in time: for all t0 > 0,
and s ∈ R, the solution f is uniformly bounded on [t0,+∞) in the Sobolev
space Hs(SO3(R)).

The proof of this proposition can be obtained through simple energy estimates
in Hs(SO3(R)), using Poincaré inequalities for high modes and the fact that the
low modes are uniformly bounded in time. Indeed, the nonlinearity in the Fokker–
Planck equation (19) is only through J [f ], which is uniformly bounded thanks to
its definition (15) and the fact that SO3(R) is compact, together with the fact that
the total mass ρ is preserved. The positivity comes from the maximum principle. We
refer to [17] to a detailed proof of such results on the unit sphere instead of SO3(R),
for which all the arguments may be used similarly.

Let us now describe the free energy associated to this Fokker–Planck equation,
which may be rewritten

∂tf = ∇A ·
(
f ∇A(ln f − A · J [f ])).
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Multiplying by ln f−A·J [f ] and integrating over SO3(R), the left-hand side of the
equality can be seen as a time derivative, and the right-hand side can be integrated
by parts, to obtain the following dissipation relation:

d

dt
F [f ] +D[f ] = 0, (21)

where

F [f ] =
∫

SO3(R)

f (A) ln f (A)dA− 1

2
‖J [f ]‖2, (22)

D[f ] =
∫

SO3(R)

f (A)‖∇A(ln f − A · J [f ])‖2dA. (23)

We can then prove, as in [17] that being a stationary state of the Fokker–Planck
equation (see Proposition 3) is equivalent to be a critical point of F under
the constraint of mass ρ, and that is also equivalent to be a function with no
dissipation (D[f ] = 0).

We then have a decreasing free energy F [f ], and thanks to a kind of LaSalle’s
principle, we obtain that the solution converges to a set of equilibria:

Proposition 5 Let f0 be a nonnegative measure on SO3(R) with mass ρ > 0. We
denote by F∞ the limit of F [f (t, ·)] as t → +∞, where f is the solution to the
Fokker–Planck equation (19) with initial condition f0. Then the set of equilibria E∞,
given by

E∞ = {ρMJ such that J = ρJ [MJ ] and F [ρMJ ] = F∞},

is not empty. Furthermore, the solution f converges in any Sobolev spaceHs to this
set of equilibria in the following sense:

lim
t→∞ inf

g∈E∞
‖f (t, ·)− g‖Hs = 0.

Once more, the proof of this proposition follows exactly the one given in [17]. The
important point of this proposition is that once the structure of the solutions of the
compatibility equation (20) is known (which is the aim of the next section), it gives a
lot of information on the large time behaviour of the solutions to the Fokker–Planck
equation.

Before giving a precise description of these solutions, let us remark that J =
0 is always a solution to the compatibility equation, since J [ρ] = 0, therefore
the uniform distribution with mass ρ is a steady-state. We want to expand the free
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energy F around this steady-state. We will need the following lemma (Lemma 3.3
of [7]):

Lemma 1 For all J ∈ M3(R),

∫

SO3(R)

(J ·A)A dA = 1

6
J. (24)

Consequently, if f is a finite measure, the orthogonal projection of f on the space
of functions of the form A �→ J · A for J ∈ M3(R) is A �→ 6J [f ] · A. Now, let
us take a nonnegative measure f with mass ρ, we write J = J [f ] and g(A) =
6 J · A. We suppose that ‖J‖ is sufficiently small, so that ρ + g > 0 on SO3(R).
We write h = f − ρ − g, so h is a finite measure with zero average and J [h] = 0.
Then we obtain, by convexity of x �→ x ln x on R+:

F [f ] �
∫

SO3(R)

[(ρ + g(A)) ln(ρ + g(A))+ h(A)(ln(ρ + g(A))+ 1)] dA− 1
2‖J‖2

� F [ρ + g] +
∫

SO3(R)

h(A)
(

1+ lnρ + g(A)

ρ

)
dA

−O(‖g‖2∞)
∫

SO3(R)

|h(A)|dA.

� F [ρ + g] −O(‖J‖2)
( ∫

SO3(R)

|f (A)− ρ| dA+O(‖J‖)
)
. (25)

Next we compute

F [ρ + g] = ρ lnρ + 1

2ρ

∫

SO3(R)

(6A · J )2dA+O(‖g‖3∞)− 1
2‖J‖2

= F [ρ] + 6− ρ

2ρ
‖J‖2 +O(‖J‖3), (26)

thanks to Lemma 24. We therefore see that the sign of 6 − ρ plays a role to study
the nature, as a critical point of F , of the uniform distribution of mass ρ:

Proposition 6 We set ρc = 6.

• If ρ < ρc, then the uniform distribution with mass ρ is a local strict minimizer of
the free energy F under the constraint of total mass ρ.

• If ρ > ρc, the uniform distribution with mass ρ is not a local minimizer of the
free energy F under the constraint of total mass ρ.
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Proof When ρ > 6, it is clear thanks to (25) and (26) that when J �= 0, if ‖J‖
and

∫
SO3(R)

|f − ρ| are sufficiently small, then F [f ] > F [ρ]. If J = 0 but f �= ρ,
then by strict convexity of x �→ x ln x on R+, we get

F [f ] =
∫

SO3(R)

f (A) ln f (A) dA >

∫

SO3(R)

(ρ ln ρ+(f (A)−ρ) lnρ) dA = F [ρ].

The second point follows directly from (26). ��
This last proposition gives an insight on the stability of the uniform steady-state

(we will indeed see later that this uniform steady-state is isolated). In summary, we
have shown that there is a phenomenon of phase transition at the threshold ρ = ρc,
and we know thanks to Proposition 5 that there must exist other types of steady-
states, at least when ρ > ρc. We are now ready to give a precise description of those
non-isotropic equilibria.

4 Link with Higher Dimensional Polymers, Solutions
to the Compatibility Equation

This section is the summary of the results we obtained in [7] to solve the
compatibility equation (20) (in a slightly different context, see Sect. 5), therefore
we will omit the proofs.

Let us first recall some definitions. We denote by H the set of quaternions: objects
of the form q = a + bi + cj + dk, where (a, b, c, d) ∈ R

4 and the imaginary
quaternions satisfy i2 = j2 = k2 = ijk = −1. For such a quaternion q , we denote
by q∗ = a − bi − cj − dk its conjugate. If we identify the Euclidean space R

4

with H, it satisfies |q|2 = a2 + b2 + c2 + d2 = qq∗ = q∗q . We denote then by H1
the set of units quaternions: those for which |q|2 = 1.

We say that a quaternion q of the previous form is purely imaginary if its
real part a is zero. It allows now to identify R

3 with the set of purely imaginary
quaternions. We will use boldface letters when using this identification.

The first proposition is a link between SO3(R) and H1/{±1}.
Proposition 7 For any q ∈ H1, the linear map u �→ quq∗ sends purely
imaginary quaternions on purely imaginary quaternions of the same norm. It is
therefore identified as a rotation of R3, and the corresponding rotation matrix is
denoted Φ(q). Conversely for any rotation matrix A ∈ SO3(R), there exists a
unit quaternion q such that A = Φ(q) (this quaternion is not unique, the only
other possibility being −q). The map Φ can then be seen as a group isomorphism
between SO3(R) and H1 (this is actually a local isometry between the manifolds).
In practice, the matrix R(θ,n) given by Rodrigues’ formula (1) corresponds to the
quaternion q = cos( θ2 )+ sin( θ2 )n (remember that vectors in R

3 are seen as purely
imaginary quaternions, and remark that if we replace θ by θ + 2π , we get the same
rotation matrix, but the opposite quaternion).
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This allows to represent a rotation matrix by a unit quaternion up to multiplica-
tion by ±1. This is reminiscent of describing rodlike polymers as unit vectors up to
multiplication by ±1, but generalized in dimension 4. This analogy was the starting
point of our work [11], where we used those unit quaternions for the modeling
of alignment of rigid bodies. In the present case, we will see that this analogy
will actually be very helpful, by transforming the compatibility equation (20) into
another one which has already been solved in [27], in the context of suspensions of
diluted polymers.

We denote by S0
4 (R) the space of symmetric and trace-free matrices of dimen-

sion 4, which are called Q-tensors. To a unit quaternion q , we can associate
the Q-tensor given by q ⊗ q − 1

4 I4. Remark that two unit quaternions q and q̃

are associated to the same Q-tensor if and only if q = ±q̃ (this is a unit
vector in the eigenspace of this Q-tensor associated to the eigenvalue 3

4 , which
is one-dimensional). So we have another way to represent unit quaternions up
to multiplication by ±1 in this space. The important fact to notice is that those
two embeddings are actually the same, up to a linear isomorphism between the
spaces M3(R) and S0

4 (R), which has nice properties.

Proposition 8 There exists a linear isomorphism between the spaces M3(R)

and S0
4 (R) (both of dimension 9), denoted φ, with the following properties:

∀q ∈ H1, φ(Φ(q)) = q ⊗ q − 1
4 I4, (27)

∀J ∈ M3(R),∀q ∈ H1,
1

2
J ·Φ(q) = q · φ(J )q, (28)

where the map Φ is given by Proposition 7. The dot product in the left-hand side
of (28) is the metric in the space M3(R) given in (3), while the one in the right-
hand side is the canonical scalar product of R4. Furthermore, the isomorphism φ

preserves the diagonal structure: J ∈ M3(R) is diagonal if and only if φ(J ) is
diagonal in S0

4 (R).

The proof of this proposition is done in [7]. The expression (28) is actually the
definition of φ: the left-hand side is a quadratic form in q (seen as an element of R4),
defined for any unit quaternion, which defines a symmetric bilinear form on all
quaternions, the matrix of which is φ(J ). The expression of φ(J ) is given in the
appendix of [7], which gives the fact that it is bijective and with values in trace-free
matrices, and the provides the property (27). With this isomorphism, we can rewrite
the compatibility equation in the framework of Q-tensors. For a finite measure f
on H1, we define its averaged Q-tensor by

Q[f ] =
∫

H1

f (q)(q ⊗ q − 1
4 I4)dq.
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Therefore, thanks to the definition (15) of J and the fact that Φ is a local isometry,
we obtain, for a finite measure f on SO3(R)

φ(J [f ]) =
∫

SO3(R)

φ(A)f (A)dA =
∫

H1

φ(Φ(q))f (Φ(q))dq = Q[f ◦Φ].

Finally, we also define the generalized von Mises associated to Q ∈ S0
4 (R) by

MQ(q) = 1

Z(Q) exp(q ·Qq), where Z(Q) =
∫

H1

exp(q ·Qq)dq,

where we use the same notation as in (6) for the generalized von Mises on SO3(R),
but it will always be clear following the context which definition is concerned. Using
the property (28), it gives MJ (Φ(q)) = M2φ(J )(q). Therefore, the compatibility
equation (20) becomes, writing Q = 2φ(J ):

Q = 2φ(J ) = 2ρ φ(J [MJ ]) = 2ρQ[MQ].

It happens that this equation is exactly the compatibility equation that we obtain
when we try to obtain the steady states of the following Fokker–Planck equation,
for a probability measure μ on H1:

∂tμ = −2ρ ∇q · (μ∇q(q ·Q[μ]q))−Δqμ.

This corresponds to the Smoluchowski (or Doi–Onsager) equation for suspensions
of dilute rodlike polymers with Maier–Saupe potential of strength 2ρ, and is nothing
else than our Fokker–Planck equation (14), up to a change of variable thanks to
the map Φ. It happens that this compatibility equation has been studied a lot in
dimension 3 (instead of 4 here), with the independent works [5, 15, 21]. And in the
work [27], a unified approach has been proposed, which allows to treat the case
of higher dimensional space. The main result is that a solution Q ∈ S0

n(R) of the
compatibility equation Q = αQ[MQ] can have at most two different eigenvalues.
In dimension 4, it means that if Q is different from zero, there are only two cases:
either one eigenvalue is simple and the other one is triple, or both are double. In the
first case, if we take q a unit quaternion in the eigenspace of dimension one, we get
thatQ is proportional to q⊗q− 1

4 I4, which means that J = φ−1(Q) is proportional
to the rotation matrix Φ(q). And indeed it is possible to see that if A0 is a rotation
matrix and α ∈ R, then J [MαA0] is proportional toA0, with a coefficient c1(α) (that
can be expressed using an appropriate volume form on SO3(R) and will be given
later on). Therefore the compatibility equation (20) becomes the one-dimensional
equation α = ρc1(α). For the second case, it is a little bit more subtle, but it



164 A. Frouvelle

still leads to a one-dimensional equation of the form α = ρc2(α). The results are
summarized in the following proposition (corresponding to Theorem 5 of [7]):

Proposition 9 The solutions to the compatibility equation (20) are:

• The matrix J = 0,
• the matrices of the form J = αA0 with A0 ∈ SO3(R) and where α ∈ R \ {0}

satisfies the scalar compatibility equation

α = ρc1(α), (29)

• the matrices of the form J = α
√

3 a0 ⊗ b0 where a0 and b0 are two unit vectors
of R3 and α > 0 satisfies the scalar compatibility equation

α = ρc2(α), (30)

with the functions c1 and c2 given by

c1(α) =
∫ π

0
1
3 (2 cos θ + 1) sin2( θ2 ) exp(α cos θ)dθ

∫ π

0 sin2( θ2 ) exp(α cos θ)dθ
,

c2(α) = 1√
3

∫ π

0 cosϕ sin ϕ exp(
√

3
2 α cosϕ)dϕ

∫ π

0 sin ϕ exp(
√

3
2 α cosϕ)dϕ

.

Compared to the convention taken in [7], we chose to add the constant
√

3 in the last
type of solutions (changing accordingly the expression of c2(α)). The reason is that
if J is a solution to the compatibility equation (20), where α satisfies (29) or (30),
then ‖J‖2 = 3

2α
2. The order parameter c associated to the steady state ρMJ by

the formula (12) is then equal to |α|
ρ

which is |c1(α)| or |c2(α)|. These functions c1
and c2 then provide the values of the order parameter of the considered steady-state.
The study of these functions (and more precisely the behaviour of α

c1(α)
and α

c2(α)
) is

the key to provide a complete description of the possible steady-states. Once more,
the following proposition is taken from [7].

Proposition 10 The functions c1 and c2 are both strictly increasing on R having
value 0 at 0. Therefore 0 is always a solution to the scalar compatibility Eqs. (29)
and (30). If we set ρc = 6, then the functions ρ1 : α �→ α

c1(α)
and ρ2 : α �→ α

c2(α)

both have a limit equal to ρc when α→ 0,. Furthermore:

• There exists α∗ > 0 such that ρ1 is decreasing on (−∞, α∗] and increasing
on [α∗,+∞), converging to +∞ at ±∞. We set ρ∗ = ρ1(α

∗) (which is less
than ρc). For all ρ � ρ∗, we define α↑1 (ρ) (resp. α↓1 (ρ)) to be the unique value

of α � α∗ (resp α � α∗) such that ρ1(α) = ρ. Finally, we define c̃↑1 (ρ) =
c1(α

↑
1 (ρ)) and c̃

↓
1 (ρ) = c1(α

↓
1 (ρ)). Setting c∗ = c1(α

∗), the function c̃
↑
1
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Fig. 3 Behaviors of the functions c̃↑1 (solid line), c̃↓1 (dashed line) and c̃2 (dashed-dot line)

(resp. c̃↓1 ) is increasing (resp. decreasing) on [ρ∗,+∞), with value c∗ at ρ∗,
and converging to 1 (resp. − 1

3 ) at +∞.
Numerically, we obtain α∗ ≈ 1.9395, ρ∗ ≈ 4.5832, and c∗ ≈ 0.4232.

• The function ρ2 is (even and) increasing on [0,+∞), converging to+∞ at+∞.
For all ρ � ρc, we define α2(ρ) to be the unique value of α � α∗ such
that ρ2(α) = ρ. Finally, we define c̃2(ρ) = c2(α2(ρ)). The function c̃2 is
increasing on [ρc,+∞), with value 0 at ρc and converging to 1√

3
at +∞.

Figure 3 depicts a plot of these functions c̃↑1 (solid), c̃↓1 (dashed), and c̃2 (dashed-
dot line), in log-scale for ρ ∈ [2, 40]. They represent the order parameters (up to
sign) of the different families of steady-states. We also drew a solid line at level 0
for ρ < ρc and a dotted line at level 0 for ρ > ρc, corresponding to the order
parameter of the uniform steady-state (and illustrating the result of Proposition 6
regarding its stability).

We can therefore describe more precisely the long time behaviour of the solution
to the Fokker–Planck equation according to the value of ρ, thanks to Proposition 5.

Theorem 1 Let f0 be a nonnegative measure with mass ρ > 0, and f the solution
to the Fokker–Planck equation (19) with initial condition f0. For the following
statements, the notion of convergence is with respect to anyHs norm on SO3(R).

• If ρ < ρ∗, the only steady-state is the uniform distribution on SO3(R), and the
solution f (t, ·) converges to this steady state as t →+∞.

• If ρ∗ � ρ � ρc, there are three families of steady-states (two of which are equal
when ρ = ρ∗ or ρ = ρc), and f (t, ·) converges to one of these families:

– either there exists A0(t) ∈ SO3(R) such that f (t, ·)−ρM
α
↑
1 (ρ)A0(t)

converges
to zero,
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– either f (t, ·) converges to the uniform distribution on SO3(R),
– or there exists A0(t) ∈ SO3(R) such that f (t, ·)− ρM

α
↓
1 (ρ)A0(t)

converges to
zero, as t →+∞.

• If ρ > ρc, there is an additional family of steady-states, and f (t, ·) converges to
one of these four families:

– either there exists A0(t) ∈ SO3(R) such that f (t, ·)−ρM
α
↑
1 (ρ)A0(t)

converges
to zero,

– either f (t, ·) converges to the uniform distribution on SO3(R),
– either there exists A0(t) ∈ SO3(R) such that f (t, ·)−ρM

α
↓
1 (ρ)A0(t)

converges
to zero,

– or there exist unit vectors a0(t),b0(t), with f (t, ·) − ρMα2(ρ)
√

3a0(t)⊗b0(t)

converging to zero, as t →+∞.

Proof This result is a summary of the possible steady-states according to Proposi-
tion 3 and 9. The convergence of f to one of this families comes from Proposition 5
and from the fact that, even if the limit set E∞ of equilibria may consist of several
distinct such families, they would belong to different connected components of E∞.

��
Let us now try to understand the stability of each of these families of equilibria.

Figure 4 is a zoom on the region ρ ∈ [3, 8] of the plots of the functions c̃↑1 , |̃c↓1 |
and c̃2 (remember that these functions are the order parameters of the corresponding

Fig. 4 Behaviors of the functions c̃↑1 , |̃c↓1 | and c̃2 and final order parameters of the numerical
simulations
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steady-states), on top of the final values of the order parameters of the numerical
simulations which were given in the right part of Fig. 2. It suggests the only stable
equilibria, apart from the uniform one when ρ < ρc, are those corresponding to the
curve c̃↑1 . This is indeed what we will show in the next section.

5 Stability Results Thanks to a BGK Model

Instead of the Fokker–Planck equation (19), let us consider the following BGK
equation:

∂tf = ρMJ [f ] − f. (31)

This is still an equation where the total mass is preserved and for which the steady
states satisfy the same compatibility equation: if f is a steady-state, it has to be of the
form ρMJ where J = J [f ] = ρJ [MJ ]. Therefore these two evolution equations
share the same steady-states, which were determined in [7] and summarized in
the previous section. Let us now give a summary of the results of stability of
these equilibria which were obtained in [7]. It happens that these two evolution
equations (BGK and Fokker–Planck) also share the same property of dissipation of
the free energy F : if f is a positive solution to (31), then by multiplying both sides
by ln f (A)− A · J [f ] and integrating on SO3(R), we obtain

d

dt
F [f ] + D̃[f ] = 0,

where F [f ] is given by (22) and

D̃[f ] =
∫

SO3(R)

(f − ρMJ [f ])
(

ln f − ln(ρMJ [f ])
)
dA � 0.

Then, by writing J (t) = J [f (t, ·)] where f is a solution of the BGK equation (31),
we obtain that J satisfies an ordinary differential equation:

d

dt
J = ρJ [MJ ] − J. (32)

The long-time behaviour of the solution of the BGK equation is much simpler to
study, since it can be reduced to the study of a finite dimensional ODE.

A further reduction can be done through the special singular value decomposi-
tion, for which we state a result which will be useful in the following.

Proposition 11 If J ∈ M3(R), we call Special Singular Value Decomposition
(SSVD) of J a decomposition of the form J = PDQ where P,Q ∈ SO3(R)

and D = diag(d1, d2, d3) is a diagonal matrix satisfying d1 � d2 � |d3|.
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Such a SSVD always exists, and the matrix D is unique (the rotations P and Q
may not be unique). Furthermore, we have

min
A∈SO3(R)

‖J − A‖ = ‖J − PQ‖ = ‖D − I3‖. (33)

Proof The existence and uniqueness can be obtained through the singular value
decomposition, and modifying the orthogonal matrices if necessary to change the
sign of the last entry of the diagonal part and get special orthogonal matrices, see [7].
We now compute

‖J − A‖2 = ‖D − P
AQ
‖2 = ‖D‖2 − 2B ·D + 3

2
,

where B = P
AQ
. Therefore minimizing ‖J − A‖ for A ∈ SO3(R) amounts to
maximizing B ·D, for B ∈ SO3(R). The set of diagonal parts of rotation matrices
(seen as vectors of R3) is given by Horn’s tetrahedron [19]: this is the convex hull T
of the points (±1,±1,±1)with an even number of minus signs. Therefore we want
to maximize x · d for x ∈ T and d = (d1, d2, d3). This convex function reaches it
maximum on extremal points of T , that is to say on one of the vertices of T . Since
we have

d1 + d2 + d3 � d1 − d2 − d3 � −d1 + d2 − d3 � −d1 − d2 − d3,

we see that the maximum is reached for x = (1, 1, 1). Therefore the maximum
of B ·D for B ∈ SO3(R) is reached for B = I3, which ends the proof.4 ��

With this definition of the SSVD, the reduction that can be done is that
the flow of the ODE (32) preserves the SSVD: if a SSVD of the initial con-
dition is given by J (0) = PD0Q, then for all time t , we have the follow-
ing SSVD: J (t) = PD(t)Q, with the same rotation matrices P and Q, and
where D(t) = (d1(t), d2(t), d3(t)) is a diagonal matrix satisfying the same
ODE (32) as J , with initial condition D0 (the fact that the matrix is diagonal and
the inequalities d1(t) � d2(t) � |d3(t)| are preserved by the flow of this ODE). We
therefore only have to study a three-dimensional ODE. Finally, the last observation

4 Let us remark that if d2 > −d3, the maximum of x · d is unique on T and since the only
rotation matrix for which the diagonal part is (1, 1, 1) is the identity matrix I3, we get that the
minimizer PQ of (33) is unique. So even if P and Qmay not be unique, in that case the matrix PQ
is unique, and could be seen as a Special Polar Decomposition of J (with the analogy with the fact
that if det J > 0, then J = PDQ is the singular value decomposition of J and PQ is the polar
decomposition of J [10]).



Body-Attitude Alignment: First Order Phase Transition and Stability 169

we can do is that the flow of the ODE (32) is actually a gradient flow of a potential:
if we write

V (J ) = 1

2
‖J‖2 − ρ lnZ(J ), where Z(J ) =

∫

SO3(R)

exp(J ·A)dA, (34)

as in the definition (6) of the generalized von Mises distribution, we obtain

∇V (J ) = J − ρJ [MJ ], (35)

where the gradient is taken with respect to the inner product of M3(R) given by (3).
Therefore the ODE (32) is simply d

dt J = −∇V (J ), and one can prove that any
solution will converge to a critical point of V , which corresponds to a solution of
the compatibility equation (20). We then obtain the same type of convergence as in
Theorem 1. The main difference is that we have convergence to a unique steady-
state (and not to a set of steady-states), that can be determined by knowing a special
singular value decomposition of J [f0]. The other difference is that the convergence
does not takes place in any Sobolev space Hs : the BGK equation is not regularizing
in time. The following proposition is a summary of results in [7]:

Proposition 12 Let f0 be a finite nonnegative measure with mass ρ > 0, and f the
solution to the BGK equation (31) with initial condition f0. We write the decompo-
sition J [f0] = P0D0Q0, where P0,Q0 ∈ SO3(R) and D0 = diag(d1,0, d2,0, d3,0),
with d1,0 � d2,0 � |d3,0| (special singular value decomposition). Then for all t ∈ R,
we have J [f (t, ·)] = P0D(t)Q0, where D(t) = diag(d1(t), d2(t), d3(t)) is the
solution to the ODE (32) with initial condition D0, satisfying d1(t) � d2(t) �
|d3(t)|. In the following statements, the notion of convergence of f (t, ·) is in the
space of measures (or any normed space for which f0 is an element and for which
the map f �→ J [f ] is continuous).

• If ρ < ρ∗, then D(t) → 0 and f (t, ·) converges to the uniform distribution
as t →+∞.

• If ρ∗ � ρ � ρc, there are three families of steady-states (two of which are equal
when ρ = ρ∗ or ρ = ρc), and f (t, ·) converges to one of these steady-states,
as t →+∞:

– either D(t)→ 0, and f (t, ·) converges to the uniform distribution,
– either D(t)→ α

↑
1 (ρ)I3, and f (t, ·)→ ρM

α
↑
1 (ρ)A0

where A0 = P0Q0,

– or D(t)→ α
↓
1 (ρ)I3, and f (t, ·)→ ρM

α
↓
1 (ρ)A0

where A0 = P0Q0.

• If ρ > ρc, there is an additional family of steady-state, and f (t, ·) converges to
one of these steady-states, as t → +∞:

– either D(t)→ 0, and f (t, ·) converges to the uniform distribution,
– either D(t)→ α

↑
1 (ρ)I3, and f (t, ·)→ ρM

α
↑
1 (ρ)A0

where A0 = P0Q0,
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– either D(t) → α
↓
1 (ρ) diag(−1,−1, 1), and f (t, ·) converges to ρM

α
↓
1 (ρ)A0

,

where A0 = P0 diag(−1,−1, 1)Q0
– or D(t) → α2(ρ)diag(

√
3, 0, 0), and f (t, ·) converges to ρMα2(ρ)

√
3a0⊗b0

,

with a0 = P0e1 and b0 = Q
0 e1 (where e1 is the first element of the canonical
basis of R3).

We now turn to stability results. For convenience, we will denoteV the restriction
of V to the space of diagonal matrices. Its Hessian HessV is then a symmetric
bilinear form on a space of dimension 3. Thanks to the study of the signature of this
Hessian, we obtained in [7] the characterization of the stability of all steady-states.
The next proposition is a summary of these results (without details on the domains
of convergence):

Proposition 13 The uniform steady-state for the BGK equation (31) corresponds
to the critical point 0 of the potential V (and V ).

• If 0 < ρ < ρc, the Hessian HessV (0) has signature (+++) (and so 0 is a local
minimizer of V ). Therefore the uniform steady-state is locally asymptotically
stable (with exponential rate of convergence).

• If ρ > ρc, the signature is (− − −) (therefore 0 is not a local minimizer of V ),
and the uniform steady-state is unstable.

When ρ � ρ∗, the steady-states of the form ρM
α
↑
1 (ρ)A0

(resp. ρM
α
↓
1 (ρ)A0

) with A0

in SO3(R) (see Theorem 1) correspond to the critical points of the form α
↑
1 (ρ)A0

(resp. α↓1 (ρ)A0) of V . Their nature can be reduced to the study of the critical

point D↑∞ = α
↑
1 (ρ)I3 (resp. D↓∞ = α

↓
1 (ρ)I3) of V .

• If ρ > ρ∗, the Hessian HessV (D↑∞) has signature (+++) (and so α↑1 (ρ)A0 is
a local minimizer of V ). Thus the steady-states of the form ρM

α
↑
1 (ρ)A0

are locally

asymptotically stable (with exponential rate of convergence).
• If ρ∗ < ρ < ρc (resp. ρ > ρc), then HessV (D↓∞) has signature (− + +)

(resp. (+−−)) (therefore α↓1 (ρ)A0 is not a local minimizer of V ), and the steady-
states of the form ρM

α
↑
1 (ρ)A0

are unstable.

When ρ > ρc, the steady-states of the form ρM
α2(ρ)

√
3a0⊗b0

with a0,b0 ∈ S
2 (see

Theorem 1) correspond to the critical points of the form α2(ρ)
√

3a0 ⊗ b0 of V ,
which reduces to the study of the critical point D∞ = α2(ρ)diag(1, 0, 0) of V .

• The Hessian HessV (D∞) has signature (+ + −) (so α2(ρ)
√

3a0 ⊗ b0 is not
a local minimizer of V ), and the steady-states of the form ρMα2(ρ)

√
3a0⊗b0

are
unstable.

Furthermore, the critical cases are unstable: the uniform steady-state is unstable
for ρ = ρc, and the steady-states of the form ρMα∗A0 are unstable when ρ = ρ∗
(the corresponding matrices J = 0 or J = α∗A0 are not local minimizers of V ).
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The main object of this section is to show, as it was claimed in Remark 5.5 of [7],
that we can directly use these results of (in)stability for the BGK equation (and
more precisely for the potential V ) to obtain (in)stability results for the Fokker–
Planck equation, in order to complete the results around the uniform distribution
given by Proposition 6. We provide a proposition and a theorem which give details
on this statement. The first proposition allows to compare the behaviours of V and
of J �→ F [ρMJ ].
Proposition 14 Let us define for J ∈ M3(R)

W(J ) = F [ρMJ ],

Then, we have that ∇W(J ) = 0 if and only if ∇V (J ) = 0, that is to say J is
a solution to the compatibility equation (20). Furthermore, if J is such a critical
point, the Hessian HessW has the same signature as HessV (and more precisely,
if W is the restriction of W to the diagonal matrices, then HessW and HessV have
the same signature).

Proof We first compute

W(J ) =
∫
ρ(ln ρ + A · J − lnZ(J ))MJ (A)dA− ρ2

2
‖J [MJ ]‖2

= ρ lnρ − lnZ(J )+ 1

2
‖J‖2 − 1

2
‖J − ρJ [MJ ]‖2

= V (J )− 1

2
‖∇V (J )‖2 + ρ ln ρ,

thanks to (35). Therefore we obtain

∇W(J ) = ∇V (J )− HessV (J )(∇V (J )). (36)

We want to compute the Hessian of V , seen as a linear mapping from M3(R)

to M3(R), symmetric with respect to the inner product of M3(R). For a small H ∈
M3(R), we first have Z(J + H) = (1 + J [MJ ] · H)Z(J )+ O(‖H‖2). Thus we
get MJ+H(A) = (1+ A ·H − J [MJ ] ·H)MJ (A)+O(‖H‖2). Finally we obtain

J [MJ+H ] = J [MJ ] − (J [MJ ] ·H)J [MJ ]

+
∫

SO3(R)

A(A ·H)MJ (A)dA+O(‖H‖2).

Now, using the expression (35) of ∇V , we get

HessV (J )(H) = H − ρ
[
(J [MJ ] ·H)J [MJ ] −

∫

SO3(R)

A(A ·H)MJ (A)dA
]
.
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Said differently, seeing now HessV as a symmetric bilinear form on M3(R):

HessV (J )(H,H) = ‖H‖2 − ρ
[
(J [MJ ] ·H)2 −

∫

SO3(R)

(A ·H)2MJ (A)dA
]

= ‖H‖2 − ρ

∫
[(A− J [MJ ]) ·H ]2MJ (A)dA, (37)

and we see that all the eigenvalues of HessV are strictly less than 1. Therefore the
(symmetric) linear mapping Id − HessV from M3(R) to M3(R) has only strictly
positive eigenvalues, and is therefore an isomorphism. The expression (36) of ∇W
then provides the equivalence between critical points for V and for W .

Finally, at a point J for which ∇V (J ) = 0, we obtain

HessW(J ) = HessV (J )− [HessV (J )]2.

Therefore, the eigenvalues of HessW(J ) are given by λ(1 − λ), where λ are the
eigenvalues of HessW(J ), which all satisfy λ < 1. Therefore their signs are the
same. And this is also true when restricted to the space of diagonal matrices. ��

We can now state the final theorem of this section.

Theorem 2 The nature of all the critical points of the free energy F is given by the
following statements.

• For ρ < ρc, the uniform equilibrium of mass ρ is a local strict minimizer of the
free energy F .

• For ρ > ρ∗, the set E = {ρM
α
↑
1 (ρ)A0

, A0 ∈ SO3(R)} is a local strict minimizer

of the free energy F , in the sense that there exists a neighborhood V of E (in the
space of nonnegative measures of mass ρ) such that if f ∈ V \ E , then F [f ] >
F∞, where F∞ is the common value of F on E .

• For ρ � ρc, the uniform equilibrium of mass ρ is not a local minimizer of the
free energy F .

• For ρ � ρ∗ (and ρ �= ρc), any steady-state of the form ρM
α
↓
1 (ρ)A0

for A0

in SO3(R) is not a local minimizer of the free energy F .
• For ρ > ρc, any steady-state of the form ρMα2(ρ)

√
3a0⊗b0

for A0 in SO3(R) is
not a local minimizer of the free energy F .

Therefore, the last three families of steady-states are unstable for the Fokker–Planck
equation (19): there exist initial conditions arbitrarily close to these families (in
any Hs norm), such that the solution to the Fokker–Planck equation converges in
long time towards another family of equilibria (see Theorem 1).

Proof The first point has been proven in Proposition 6. For the second one, if it was
not true, there would exist f0 as close as we want from E such that F(f0) � F∞,
and f0 /∈ E . Since the different families of steady-states are isolated, f0 cannot
be a steady-state. By letting f be the solution of the BGK equation with initial
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condition f0, we would have Q̃[f0] > 0 and therefore F [f (t, ·)] < F∞ for
all t > 0. Combined with the fact that F [f (t, ·)] is nonincreasing in time, this
would be in contradiction with the fact that f (t, ·) converges towards the set E ,
thanks to the asymptotic stability of those steady-states for the BGK equation given
by Proposition 13. Let us remark that the first point of the theorem could be proven
in the same way, without having to expand the free energy, but only using the known
results for the BGK equation and the fact that F is nonincreasing.

To prove the last three points, let us take such a steady state, of the form ρMJ0 .
We want to prove that J0 is not a local minimizer of W , therefore ρMJ0 is not a
local minimizer of F . We write a SSVD of the form J0 = PD0Q where D0 is a
diagonal matrix and P,Q ∈ SO3(R). If J = PDQ where D is a diagonal matrix
close to D0, then W(J ) = W(D). Therefore we only need to prove that D0 is not
a local minimizer of W . In the case where ρ �= ρc and ρ �= ρ∗, since the signature
of HessW(D0) has negative components (thanks to Propositions 13 and 14), we
directly get the results. In the critical cases we will use a mountain-pass lemma
argument. In the case where ρ = ρc, suppose that 0 is a local minimizer of W .
Then it is a local strict minimizer, since this critical point is isolated. Therefore by
looking at the other local strict minimizer α↑1 (ρc)I3 of W (for which the signature
of the Hessian is (+ + +), thanks again to Propositions 13 and 14), we would
obtain, by the mountain-pass lemma, a third critical point D of W , which would
satisfy W(D) > max(W(0),W(α

↑
1 (ρc)I3)). This is in contradiction with the fact

that we only have two families of equilibria for this value of ρ. The same argument
can be used to show that when ρ = ρ∗, the point α∗I3 is not a local minimizer ofW ,
using as other local strict minimizer the point 0.

The conclusion of the statement of the theorem comes from the fact that we
actually proved that the critical points were not local minimizers of W , which is the
evaluation of F on smooth functions of the form ρMJ , so the Hs norm of ρMJ −
ρMJ0 is small when J is close to J0. ��

For the first two points of Theorem 2, we did not provide the corresponding
stability results. Indeed, in the next section, a more detailed study will show that
they are exponentially stable.

6 Exponential Convergence for the Stable Steady-States

We will now show that the two families of steady-states that correspond to what
we observe in the numerical simulations are locally exponentially attracting. In
particular, when f is a solution to the Fokker–Planck equation in the neighborhood
of those steady-states, we will show that J [f (t, ·)] will converge to a solution J∞
of the compatibility equation (20). However, since this J∞ (if it is non-zero) is not
known from the initial condition (contrary to the case of the BGK equation), it is
not easy to control directly the distance between f and ρMJ∞ , but we will see that
controlling the distance from f and ρMJ [f ], even if this last one is not a steady-
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state, will be the key to our analysis. A convenient framework is to use the relative
entropy, for which we will need the following results.

Proposition 15 Let ρ > 0. If f, g are two measurable nonnegative functions
on SO3(R) with total mass ρ and with g > 0, we define the relative entropy H(f |g)
and Fisher information I(f |g):

H(f |g) =
∫

SO3(R)

f (A) ln
(f (A)
g(A)

)
dA,

I(f |g) =
∫

SO3(R)

f (A)

∥
∥
∥∇ ln

(f (A)
g(A)

)∥
∥
∥

2
dA.

Then, for two such functions, we have the Csiszár–Kullback–Pinsker inequality:

∫

SO3(R)

|f (A)− g(A)| dA �
√

2ρH(f |g). (38)

Finally, we have the following families of (weighted) logarithmic Sobolev inequali-

ties: there exists a constant λ > 0 such that for all J ∈ M3(R) with ‖J‖ �
√

3√
2
ρ,

and all measurable nonnegative function f with total mass ρ, we have

H(f |ρMJ ) �
1

2λ
I(f |ρMJ ). (39)

Proof The Csiszár–Kullback–Pinsker inequality is well-known [6, 23], we just
notice the factor ρ since we do not work with probability measures here. The log-
arithmic Sobolev inequality (39) in the case J = 0 (uniform measure on SO3(R))
comes for instance from the Bakry–Émery criterion [1] since SO3(R) has positive
Ricci curvature (this is the same as the curvature of S

3, thanks to the local
isometry Φ given in Proposition 7).5 Then, we use the fact that the logarithmic

Sobolev inequality is stable by bounded perturbation [18, 26]. Since ‖J‖ �
√

3√
2
ρ,

then MJ is bounded above and below, uniformly in J , which ends the proof. ��
Let us now compute the relative entropy of f with respect to ρMJ for J

in M3(R). Using the definition (6), we obtain

H(f |ρMJ ) =
∫

SO3(R)

(
f (A) ln f (A)− f (A)A · J )

dA+ ρ lnZ(J )− ρ lnρ

= F [f ] + 1

2
‖J − J [f ]‖2 − V (J )− ρ lnρ, (40)

5 Actually, as already stated by Bakry and Émery [1], this criterion does not give the optimal
constant in S

3, which was given by Mueller and Weissler in [22], but here even the optimal constant
in S

3 would not be necessarily optimal in SO3(R), since we only want the logarithmic Sobolev
inequality for even functions on S

3.
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thanks to the definitions (22) and (34) of F and V . Therefore, if Jeq is a solution
to the compatibility equation and feq = ρMJeq , we apply (40) with f = feq
and J = Jeq to obtain ρ lnρ = F [feq] − V (Jeq). Now applying (40) with J = Jeq
or with J = J [f ], we obtain

F [f ] − F [feq] = H(f |ρMJ [f ])+ V (J [f ])− V (Jeq), (41)

H(f |feq) = F [f ] − F [feq] + 1

2
‖Jeq − J [f ]‖2. (42)

Furthermore, it is straightforward to see, thanks to the definition (23) of D[f ], that

D[f ] = I(f |ρMJ [f ]). (43)

These links between the free energy, its dissipation, the relative entropy, the Fisher
information, and the potential V associated to the BGK equation are the key points
to prove the stability of the steady-states associated to solutions of the compatibility
equation corresponding to local minimizers of V .

Theorem 3 Let ρ > ρ∗ (resp. ρ < ρc).
We define the set of equilibria E∞ = {ρMα

↑
1 (ρ)A0

, A0 ∈ SO3(R)} (resp. E∞
reduced to the uniform distribution on SO3(R) of mass ρ).

Then there exists δ > 0, λ̃ > 0 and C > 0 such that for all nonnegative measur-
able function f0 with mass ρ, if there exists feq,0 ∈ E∞ such that H(f0|feq,0) < δ,
then there exists f∞ ∈ E∞ such that for all time t � 0, we have

H(f (t, ·)|f∞) � C e−2̃λt H(f0|feq,0).

Proof For convenience, we write α = α
↑
1 (ρ) (resp. α = 0 for the study of stability

of the uniform equilibrium) and V∞ = V (αI3). We also denote by E∞ the set of
matrices Jeq solutions to the compatibility equation (20) corresponding to the family
of equilibria we are interested in, that is to say E∞ = {αA0, A0 ∈ SO3(R)}.

Since the signature of HessV (αI3) is (+ + +) (thanks to Proposition 13), by
continuity of HessV (and of its smallest eigenvalue), there exists δ0 > 0 and η > 0
such that for all diagonal matrix D with ‖D − αI3‖ < δ0, HessV (D) is positive
definite with lowest eigenvalue being greater than or equal to η (we recall that
thanks to (37), its highest eigenvalue is always less than 1). By the following Taylor
formulas, for all such D, we have

‖∇V (D)‖2 = (D − αI3) ·
( ∫ 1

0
HessV (αI3 + t (D − αI3))dt

)2
(D − αI3),

V (D)− V∞ =
∫ 1

0
(1− t)(D − αI3) · HessV (αI3 + t (D − αI3))(D − αI3)dt
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and therefore

‖∇V (D)‖2 � η ‖D − αI3‖2,

η

2
‖D − αI3‖2 � V (D)− V∞ � 1

2
‖D − αI3‖2 � 1

2η
‖∇V (D)‖2.

Therefore, we write U = {J ∈ M3(R),minJeq∈E∞ ‖J − Jeq‖ < δ0}, which is a
neighborhood of E∞. If J ∈ U and we write the SSVD J = PDQ, we obtain by
Proposition 11 that minJeq∈E∞ ‖J − Jeq‖ = ‖D − αI3‖ � δ0 (when α > 0, and the
result is still true if α = 0 since E∞ = {0} in that case). Therefore, since V (J ) =
V (D) we obtain that there exists Jeq ∈ E∞ (which is equal to αPQ) such that

η

2
‖J − Jeq‖2 � V (J )− V∞ � 1

2η
‖∇V (J )‖2 = 1

2η
‖J − ρJ [MJ ]‖2. (44)

By the Csiszár–Kullback–Pinsker inequality (38), we have that if g is a nonnegative
measure with mass ρ:

‖J [f ] − J [g]‖ �
∫

SO3(R)

‖A‖|f (A)− g(A)|dA �
√

3√
2

√
2ρH(f |g), (45)

and therefore for g = ρMJ [f ], we obtain

‖J [f ] − J [ρMJ [f ]]‖ �
√

3ρH(f |ρMJ [f ]).

Combining this with (41) and (44) with J = J [f ], we get that if J [f ] ∈ U , then

F [f ] − F∞ � (1+ 3ρ
2η )H(f |ρMJ [f ]).

Therefore, as soon as J [f ] ∈ U , we have by (43) and the logarithmic Sobolev

inequality (39) (we recall that ‖J [f ]‖ �
√

3√
2
ρ if the total mass of f is ρ):

D[f ] � 2λ

1+ 3ρ
2η

(F [f ] − F∞).

By the dissipation of the free energy (21), writing λ̃ = λ

1+ 3ρ
2η

we obtain that as long

as J [f ] ∈ U ,

0 � F [f ] − F∞ � e−2̃λt (F [f0] − F∞) � e−2̃λtH(f0|feq,0), (46)

the first inequality coming from (41) and the fact that V (J [f ]) − V∞ � 0 thanks
to (44), and the last inequality coming from (42). Finally, thanks to (44), (41)
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and (46), we obtain that still as long as J [f (t, ·)] ∈ U , there exists Jeq(t) such
that

‖J [f (t, ·)] − Jeq(t)‖ �
√

2

η
(V (J [f (t)])− V∞) �

√
2√
η
e−λ̃t

√
H(f0|feq,0).

(47)

Therefore, by taking δ = min( η2 δ
2
0,

1
3ρ δ

2
0), and using (45) with g = feq,0, we obtain

that if H(f0|feq,0) < δ, then ‖J [f0] − J [feq,0]‖ < δ0, so J [f0] ∈ U , and for all
positive time ‖J [f (t, ·)]−Jeq(t)‖ < δ0 (and thereforeJ [f (t, ·)] stays in U ) thanks
to (47). Indeed, if it was not the case, for the first exit time t0 > 0 of U , we would

have ‖J [f (t0, ·)] − Jeq(t0)‖ �
√

2√
η

√
H(f0|feq,0) < δ0 which is a contradiction.

From now on we suppose that H(f0|feq,0) < δ, so that (47) and (46) are valid for
all time t � 0.

Let us now find a way to control the displacement of J [f ]. For J ∈ M3(R),
using the Fokker–Planck equation (19) and integrating by parts, we have

d

dt
J · J [f ] =

∫

SO3(R)

[∇A(A · J ) · ∇A(A · J [f ])−ΔA(A · J )]f (A) dA,

which can be written

d

dt
J [f ] =M[f ](J [f ])− L[f ], (48)

where, when g is an integrable function on SO3(R), we define M[g] as the linear
operator from M3(R) to M3(R) given by the fact that for any J, J ′ in M3(R),

J ·M[g](J ′) =
∫

SO3(R)

∇A(A · J ) · ∇A(A · J ′)g(A) dA,

and L[g] as the matrix6 such that for all J ∈ M3(R),

J · L[g] =
∫

SO3(R)

ΔA(A · J )g(A) dA.

6 We can actually show (but we do not need it here) that L[f ] is proportional to J [f ]. Indeed,
since q �→ q · Qq is an eigenfunction of the Laplacian on the unit sphere of R4 (more precisely
a spherical harmonic of degree 2) when Q is a symmetric trace-free matrix, we get, thanks to the
local isometry Φ and Proposition (8), that A �→ A · J is also an eigenfunction of the Laplacian
on SO3(R).
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We therefore see that since the functions under the integral are smooth and bounded,
there exists C0 > 0 such that for all J ∈ M3(R) and for any integrable function g
on SO3(R),

‖L[g]‖ � C0

∫

SO3(R)

|g(A)| dA, (49)

and

‖M[g](J )‖ � C0‖J‖
∫

SO3(R)

|g(A)| dA. (50)

Therefore, defining feq(t, ·) = ρMJeq(t), and using the fact that it is a stationary
solution, thus giving by (48) that M[feq](J [feq])− L[feq] = 0, we obtain

∥
∥∥

d
dt
J [f ]

∥
∥∥ = ‖M[f ](J [f ])−M[feq](J [feq])− L[f ] + L[feq]‖
� ‖M[f ](J [f − feq])‖ + ‖M[f − feq](J [feq])‖ + ‖L[f − feq]‖.

Therefore, by using (49)–(50) and the Csiszár–Kullback–Pinsker inequalities (38)
and (45), we get that there exists a constant C1 > 0 (only depending on ρ) such that

∥
∥∥

d

dt
J [f ]

∥
∥∥ �

√
C1H(f |feq).

Combining this with (42), (47), and (46), we then get that there exists a constant C2
(not depending on f0) such that for all t � 0

∥
∥
∥

d

d t
J [f ]

∥
∥
∥ � e−λ̃t

√
C2H(f0|feq,0).

Finally, this gives that J [f ] converges exponentially fast with rate λ̃ towards a given
matrix J∞ ∈ M3(R) and since the distance between J [f ] and E∞ converges to 0
thanks to (47), we obtain that J∞ ∈ E∞. More precisely, we have

‖J [f (t, ·)] − J∞‖ �
∫ +∞

t

∥
∥
∥

d

ds
J [f (s, ·)]

∥
∥
∥dt � e−λ̃t

λ̃

√
C2H(f0|feq,0). (51)

Defining f∞ = ρMJ∞ and using (42) with feq = f∞, (46), and (51), we then get
that there exists a constant C3 > 0 (not depending on f0) such that

H(f (t, ·)|f∞) � C3e
−2̃λt H(f0|feq,0),

which ends the proof. Let us remark that this proof covers the case α = 0, but if we
only want to do this case, it can be simplified a lot since E∞ = {0}. ��
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Let us finish this section by some comments. The proof of Theorem 3 has been
done here in relative entropy. It may look similar in some points to [16], but the main
idea is above all based on the fact that we measure the relative entropy with respect
to a target measure ρMJ [f ] which is not itself a steady-state. The fine control of the
potential V around the solutions of the compatibility equation is the key to link all
these different quantities. The proof would have worked the same in L2, by using
the regularizing effect of the equation (and L∞ bounds), as was done in [17] for
the Vicsek model, but the main difference is again that we would compare D[f ]
and F [f ] − F∞ with ‖f − ρMJ [f ]‖2

2. This proof seems to be adaptable to a
lot of different models of Fokker–Planck type, such as the Doi–Onsager theory
for suspensions of rodlike polymers, for which, as far as we know, no proof of
exponential convergence is available (but the analog to the potential V has been
studied, therefore the nature of the critical points is well-known). This is left for
future work.

Finally, now that we have a good understanding of the long time behaviour of
the Fokker–Planck equation (19), we could try to further understand the limit of
the particle system as N → ∞. Since the mean-field limit is essentially a law
of large numbers, we expect fluctuations of order 1√

N
, which explains why the

order parameters of the numerical simulations in Fig. 4 are not so close to 0 for
what is expected to be the uniform distribution. More precisely, as indicated by
the estimate (18), the distance between the empirical measure and the solution to

the Fokker–Planck equation can be bounded by eC̃T√
N

, for all t in [0, T ]. Therefore

if we want such an estimate for a large time T , we cannot do better than T of
order lnN . However, since the equilibria are exponentially stable, the fluctuations
that would push the empirical distribution away from the family of stable equilibria,
are compensated by the deterministic dynamics of the Fokker–Planck equation.
Therefore the only remaining fluctuations would cause the solution to fluctuate
mainly in the tangential component of the family of equilibria. This approach has
been made rigorous in the case of identical Kuramoto oscillators in [2] (which
corresponds to the Vicsek model studied in [17] in dimension two), where it is
proved that the solution stays close to the set of equilibria up to times of order N ,
but with the center of synchronization of the distribution performing a Brownian
motion on the circle at these time scales. In analogy with this result, we could expect
in our case that, close to the family of von Mises distributions ρMαA with α > 0
and A ∈ SO3(R), the long time behaviour at time t = sN of the empirical measure
of particle system would be close to ρMαA(s), where A(s) performs a Brownian
motion on SO3(R). This is also left for future work.
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The Half-Space Problem
for the Boltzmann Equation
with Phase Transition at the Boundary

François Golse

In memory of Basil Nicolaenko (1942–2007)

Abstract Consider the steady Boltzmann equation with slab symmetry for a
monatomic, hard sphere gas in a half space above its condensed phase. The present
paper studies the existence and uniqueness of a uniformly, exponentially decaying
solution in the vicinity of the Maxwellian equilibrium with zero bulk velocity, with
the same temperature as that of the condensed phase, and whose pressure is the
saturating vapor pressure at the temperature of the interface. This problem has been
studied numerically by Y. Sone, K. Aoki and their collaborators—see section 2 of
(Bardos et al., J Stat Phys 124:275–300, 2006) for a detailed presentation of these
works. More recently Liu and Yu (Arch Ration Mech Anal 209:869–997, 2013) have
proposed a mathematical strategy to handle problems of this type. In this paper, we
describe an alternative approach to one of their results obtained in collaboration with
Bernhoff (Arch Ration Mech Anal 240:51–98, 2021).

1 The Sone Half-Space Problem
with Condensation/Evaporation

Consider a monatomic, hard sphere gas filling the half space

R3+ := {(x, y, z) ∈ R3 s.t. z > 0} ,

on top of its condensed phase, filling the domain {(x, y, z) ∈ R3 s.t. z ≤ 0}. We
are concerned with the existence and uniqueness of a steady solution with slab
symmetry to the Boltzmann equation for the gas, assuming that the state of the gas at
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Fig. 1 Interface temperature
of the liquid Tw , saturating
vapor pressure pw . As
z→+∞, the gas distribution
function converges to a
Maxwellian with temperature
T∞, pressure p∞ and bulk
velocity (0, 0, u)

Vapor (gas)
z

Phase  (liquid)
  Condensed

Tw pw

T p8 8 u

Distribution
Maxwellian

infinity is a Maxwellian equilibrium with prescribed pressure p∞, temperature T∞
and bulk velocity (0, 0, u), while the velocity distribution function of gas molecules
emitted towards the gas at the interface with the condensed phase is the centered
Maxwellian with the temperature Tw of the condensed phase at the interface, and
with pressure pw equal to the saturating vapor pressure at the temperature Tw: see
Fig. 1.

The Boltzmann equation describing this situation takes the form

vz∂zF (z, v) = C(F )(z, v) , z > 0 , v ∈ R3 . (1)

The unknown is the velocity distribution function F ≡ F(z, v) ≥ 0, which depends
on the three components of the molecular velocity v = (vx, vy , vz) ∈ R3, and on the
only height variable z > 0—this being precisely the assumption of “slab symmetry”
often used in the context of half-space problems. The Boltzmann collision integral
is given by the formula

C(F )(z, v) :=
∫∫

R3×S2
(F (z, v′)F (z, v′∗)− F(z, v)F (z, v∗))|(v − v∗) · ω|dv∗dω

(2)

(up to some unessential scaling factor involving the molecular radius), with the
notation

v′ := v − (v − v∗) · ωω , v′∗ :=v∗+ (v − v∗) · ωω . (3)

The Boltzmann equation (1) is supplemented with “boundary” conditions as z→
+∞ and as z→ 0+. Henceforth, we shall use systematically the following notation
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for Maxwellians:

Mp,u,T (v) := p

(2π)3/2T 5/2 exp

(

−v
2
x + v2

y + (vz − u)2

2T

)

. (4)

Notice that we consider only Maxwellians which are centered in the tangential
velocity variable vx and vy . In other words, the bulk velocity of all the Maxwellians
considered here is of the form (0, 0, u). Besides, we have chosen to use the pressure
p and temperature T , instead of the density and temperature as the thermodynamic
parameters in the definition of the Maxwellian.

At infinity, it is assumed that the solution of the Boltzmann equation (1)
converges to a Maxwellian equilibrium of the form

F(z, v)→Mp∞,u,T∞(v) , v ∈ R3 , z→ +∞ . (5)

On the other hand, it is assumed that, at the gas-liquid interface z = 0, the velocity
distribution function of gas molecules emitted in the direction of the gas is

F(0, v) =Mpw,0,Tw(v) , v ∈ R3 , vz > 0 . (6)

Typically, one chooses pw to be the saturating vapor pressure at the temperature
Tw. Evaporation corresponds to solutions of (1)–(5)–(6) for which u > 0, while
condensation corresponds to solutions of the same equations with u < 0.

A natural question is to understand how many of the parameters p∞, T∞, pw, Tw
and u can be chosen freely. Obvious scaling considerations show that the relevant
dimensionless parameters are the pressure ratio p∞/pw, the temperature ratio
T∞/Tw and the (signed) Mach number at infinity−u/c∞, where c∞ = √5T∞/3 is
the speed of sound at infinity. The numerical simulations conducted by Y. Sone,
K. Aoki and their collaborators from the Kyoto school suggest that there is a
dramatic change in the number of free parameters in this problem as u crosses
the values 0 and ±c∞. More precisely, the number of solvability conditions on
the parameters p∞/pw, T∞/Tw,−u/c∞ for the existence (and uniqueness) of a
solution of the steady Boltzmann equation (1) satisfying the interface condition (6)
and the condition at infinity (5) are summarized in Table 1. The interested reader
is referred to section 2.1 in the survey paper [5] for a more complete description of
these compatibility conditions, taking into account the possibility of a tangential
bulk velocity—which is set to 0 throughout the present paper for the sake of
simplicity. The relevant original references to the numerous contributions of the
Kyoto school to this important problem are [1, 2, 23, 24, 26–30] and can be found
in the bibliography section of [5]. Otherwise, a complete description is provided in
chapters 6 and 7 of [25]—see especially section 6.1 in chapter 6, which deals with
the case of a plane interface as in the present paper. Other geometries (spherical or
cylindrical interfaces) are also treated in great detail in chapter 6 of [25].
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Table 1 Sone’s solvability conditions for the problem (1)–(6)–(5)

Normal velocity Phase transition Solvability condition(s)

u > c∞ Supersonic evaporation No solution

0 ≤ u ≤ c∞ Subsonic evaporation p∞/pw = h1(u/c∞) and T∞/Tw = h2(u/c∞)
0 > u > −c∞ Subsonic condensation p∞/pw = Fs(u/c∞, T∞/Tw)
u = −c∞ Sonic condensation p∞/pw ≥ Fb(−1, T∞/Tw)
u < −c∞ Supersonic condensation p∞/pw > Fb(u/c∞, T∞/Tw)

Some parts of this table (in particular the fact that solutions corresponding to
supersonic condensation cannot exist for arbitrarily small p∞/pw) can be confirmed
by elementary computations based on conservation laws and the Boltzmann H
Theorem: see [9, 31].

From a mathematical point of view, this table indicates a change of dimension in
the set of solutions to the problem (1)–(6)–(5) as the Mach number at infinity u/c∞
varies over the real line—assuming of course that the functions h1, h2, Fs and Fb
are of class C1 at least, so that the equations in the right column of the table above
define bona fide differential manifolds. (Needless to say, the functions h1, h2, Fs
and Fb are not known explicitly, but tabulated. One can therefore not hope to check
that these functions are of class C1 by inspection.) It is natural to surmise that there
is some deep topological interpretation for this picture, yet to be fully understood.

2 Transition from Evaporation to Condensation

One of the difficulties in arriving at a complete mathematical justification of the
results reported in Table 1 is due to the global nature of the problem. In other words,
the solutions described in this table are in general not perturbations around some
well-known, explicit solution of the problem. There is however an obvious, but
important exception:

pw = p∞ , Tw = T∞ , and u = 0 )⇒ Mp∞,u,T∞ is a solution of (1)–(6)–(5).

According to Theorem 5.1 in [5], the only nonnegative, classical solution of (1)
satisfying the conservation laws of mass, momentum and energy, and Boltzmann’s
H theorem, together with the condition (5) at infinity with u = 0 is the uniform
Maxwellian F(z, v) =Mp∞,0,T∞(v), so that, with the notations used in Table 1,

h1(0) = h2(0) = 1 .

In the present paper, we seek to understand the situation described in Table 1 in the
vicinity of p∞/pw = T∞/Tw = 1 and u = 0. This is a very interesting regime,
corresponding to the transition from evaporation to condensation. Table 1 suggests
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that the dimensionality of the set of solutions of (1)–(6)–(5) jumps from 1 to 2 as
u crosses the value 0. This transition has been studied in detail by means of formal
asymptotic analysis in chapter 7 of [25], especially in sections 7.1–7.2. Besides,
Sone’s discussion of the problem reported in chapter 6 of [25] makes it clear that
this is the only explicit exact solution of (1)–(6)–(5) around which one can hope to
study the problem by perturbation arguments.

Sone’s asymptotic analysis of the transition from evaporation to condensation in
chapter 7 suggests that the sudden change of dimension of the set of solutions of
(1)–(6)–(5) comes from the existence, for u < 0 and |u|  c∞ of a slowly varying
solution, specifically of a solution which is a function of the slow variable |u|z/c∞.
This solution is a local Maxwellian up to the first order in the small parameter
|u|/c∞, with constant pressure and normal velocity fields, and with a temperature
field of the form

T∞ − aebuz ,

where b > 0 is a constant and a ∈ R a free parameter. Clearly ebuz → +∞ as
z→∞ if u > 0, so that the only admissible solution in this case is a = 0. However,
if u < 0, the term aebuz → 0 as z→ +∞, so that the first order temperature field
above remains bounded (and even converges to the constant T∞ as z→+∞). Then
these asymptotic solutions are corrected by a rapidly varying boundary layer term,
which decays exponentially fast as z → +∞. The analysis with the temperature
correction presented here explains the jump in dimensionality across u = 0 in the
set of solutions of (1)–(6)–(5): indeed, the free parameter a in the case u < 0, i.e.
in the case of condensation, accounts for the extra degree of freedom in the set of
solutions of (1)–(6)–(5).

In other words, if one eliminates the slowly varying component in solutions of
(1)–(6)–(5) for u < 0, i.e. in the case of condensation, and for |u|  1, one can
hope that the evaporation curve given by the parametric representation

p∞/pw = h1(u/c∞) and T∞/Tw = h2(u/c∞)

for 0 < u < c∞ extends in a curve drawn on the condensation surface of equation

p∞/pw = Fs(u/c∞, T∞/Tw)

for 0 < −u  c∞. This curve corresponds to solutions of (1)–(6)–(5) for u < 0
which decay exponentially fast as z→∞, uniformly as u→ 0−, i.e. near the edge
of the condensation surface.



188 F. Golse

3 Perturbation Setting and Main Result

Our purpose is to investigate the diagram represented on Fig. 2 in the vicinity of
the point where the evaporation curve C meets the condensation surface S, which
corresponds to

pw = p∞ , Tw = T∞ , and u = 0 .

Throughout the present paper, we shall operate under the following smallness
assumption:

∣
∣∣
∣
p∞
pw
− 1

∣
∣∣
∣+

∣
∣∣
∣
u

c∞

∣
∣∣
∣+

∣
∣∣
∣
T∞
Tw
− 1

∣
∣∣
∣ << 1 . (7)

Without loss of generality, we henceforth set

p∞ = T∞ = 1 ,

8

1

0
1

8
p   /p8 w

wT  / T

S
C

Condensation

varying
slowly

solutions

uniform decay

Evaporation

−u/c

Fig. 2 The blue, evaporation curve C of parametric equation p∞/pw = h1(u/c∞) and T∞/Tw =
h2(u/c∞) extends in a curve drawn on the condensation surface S of equation p∞/pw =
Fs(u/c∞, T∞/Tw). This blue curve drawn on the surface S corresponds to parameters for which
the problem (1)–(6)–(5) has a solution which decays exponentially fast as z→ +∞, uniformly in
u as u → 0−. One possible line of investigation for future work could be to perturb the solution
corresponding to the parameters on the blue curve by a slowly varying mode on the condensation
surface S. It is expected that one could obtain in this way a piece of the surface S represented
by the red cusp. Most likely, the size of the domain in the set of parameters for which a solution
of (1)–(6)–(5) can be constructed by such a perturbation argument from a point on the extended
blue curve will shrink as this point approaches the edge of the condensation surface S. This is
represented on this diagram by the red disks of diminishing radius whose envelope is precisely the
red cusp. This part of the picture, however, remains to be confirmed
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and introduce the notation

M :=M1,0,1

for the centered, reduced Gaussian distribution. Henceforth, it will be especially
convenient to shift the velocity variable by u (the bulk velocity at infinity) and to
use the velocity variable

ξ := v − (0, 0, u)

instead of the original variable v ∈ R3. In this way, the normal distribution M is the
equilibrium state at infinity, and the distribution function will be sought in the form
of a perturbation of the state at infinity, i.e.

F(z, v) = M(ξ)(1+ f (z, ξ)) .

In these new variables, and with this new unknown function, the half-space
problem (1)–(6)–(5) becomes

⎧
⎪⎪⎨

⎪⎪⎩

(ξz + u)∂zf (z, v) +Lf (z, ξ) = Q(f )(z, ξ) , z > 0, ξ ∈ R3,

f (0, ξ) = fb(ξ) for ξz > −u ,
f (z, ξ)→ 0 as z→+∞ ,

(8)

where

Lf := −M−1DC(M) · (Mf ) , Q(f ) := M−1C(Mf ) .

Translations in the velocity variables in all directions parallel to the gas-liquid
interface are much less important for this problem than in the direction orthogonal
to that interface. For this reason, we shall discuss in the present paper only the case
where the boundary data fb is an even function of (ξx, ξy), and, accordingly, seek
the unknown distribution function fluctuation f in the form

f (z, ξx, ξy , ξz) = f (z,−ξx,−ξy, ξz) .

Our main result on this problem is summarized in the following theorem. This
result—and all the work reported in the present paper—has been obtained in
collaboration with N. Bernhoff, and is discussed in detail in our joint paper [6].

Theorem 1 There exists constants ε, γ ∗, E,R > 0 such that, for each boundary
data fb ≡ f (ξ) which is even in ξx, ξy and satisfies

‖(1 + |ξ |)3√Mfb‖L∞ξ ≤ ε ,
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and for each u s.t. 0 < |u| < R, the half-space problem (8) has a solution fu ≡
f (z, ξ) which is even in ξx, ξy and satisfies the uniform decay bound

‖(1 + |ξ |)3√Mfu(z, ·)‖L∞ξ ≤ Ee−γ z

for all 0 < γ < γ ∗ if and only if

⎧
⎪⎪⎨

⎪⎪⎩

∫

R3
(ξz + u)Y1[u](ξ)Ru[fb](ξ)M(ξ)dξ = 0 ,

∫

R3
(ξz + u)Y2[u](ξ)Ru[fb](ξ)M(ξ)dξ = 0 .

(9)

In these compatibility conditions, the functions Yj [u] and Ru[fb] are defined below,
in (16) and (18) respectively.

It remains to check that Sone’s original problem is solved by the theorem above.
Indeed, Sone’s boundary data

F(0, v) =Mpw,0,Tw(v)

or, equivalently

M(ξ)(1+ fb(ξ)) =Mpw,−u,Tw(ξ) ,

satisfy the assumptions of our main theorem above. Observe indeed that

0 < Tw < 2 )⇒ sup
0≤pw+|u|≤C

Mpw,−u,Tw(ξ)√
M(ξ)

→ 0 as |ξ | → ∞ .

Therefore, provided that the smallness condition (7) is satisfied,

fb(ξ) := Mpw,−u,Tw
M

− 1 satisfies ‖(1+ |ξ |)3√Mfb‖L∞ξ < ε ,

so that such an fb is an example of boundary data to which the main theorem above
applies.

Theorem 1 shows that the three-parameter family of Sone’s boundary data must
satisfy the two compatibility conditions (9) in order for the solution fu of the half-
space problem (8) to vanish at infinity exponentially fast uniformly in 0 < |u| < ε.

Notice however that Theorem 1 does not guarantee that these two compatibility
conditions are C1 functions of (pw,−u, Tw), and that their differentials at (1, 0, 1)
are linearly independent. Therefore, we cannot apply the implicit function theorem
to deduce that applying the two compatibility conditions (9) to the Sone boundary
data

fb(ξ) := Mpw,−u,Tw
M

− 1
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results in a bona fide C1 curve in the three-dimensional set of parameters

{(pw/p∞,−u/c∞, Tw/T∞) s.t. pw, p∞, Tw, T∞ > 0 , u ∈ R} .

There is however one suggestive remark on the tangent line to this “curve” at the
point (pw/p∞,−u/c∞, Tw/T∞) = (1, 0, 1). Assume that the solution (8) whose
existence and uniqueness is predicted by Theorem 1 is a C1 function of u near
u = 0. Differentiating formally in u at u = 0 in the problem (8), and observing that

f

∣
∣
∣
u=0
= 0 according to Theorem 5.1 in [5] suggests that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξz∂z
df

du

∣
∣
∣
u=0

(z, ξ)+ L
df

du

∣
∣
∣
u=0

(z, ξ) = 0 , z > 0, ξ ∈ R3,

df

du

∣
∣
∣
u=0

(0, ξ) = dpw

du

∣
∣
∣
u=0
− ξz + dTw

du

∣
∣
∣
u=0

1
2 (|ξ |2 − 5) for ξz > 0 ,

df

du

∣
∣
∣
u=0

(z, ξ)→ 0 as z→ +∞ .

Bardos et al. [4] have proved that for each boundary data

gb ≡ gb(ξ) = gb(ξx, ξy, ξz)

in the space L2(R3; (1 + |ξ |)Mdξ) that is even in the variables ξx, ξy , the linear
half-space problem

⎧
⎪⎨

⎪⎩

ξz∂zg(z, ξ)+ Lg(z, ξ) = 0 , z > 0 , ξ ∈ R3 ,
∫

R3
ξzgMdξ = 0 , g(0, ξ) = gb(ξ) for ξz > 0 ,

has a unique solution g ≡ g(z, ξ) ∈ L∞((0,+∞);L2(R3; (1 + |ξ |)Mdξ)). This
solution satisfies

g(z, ξ)→ �1[gb] +�2[gb] 12 (|ξ |2 − 3) as z→∞ ,

where �1,�2 are continuous linear functionals on L2(R3; (1+ |ξ |)Mdξ). Assum-
ing, as in Sone’s Table 1, that our compatibility conditions are of the form

pw/p∞ = h1(u/c∞) , and Tw/T∞ = h2(u/c∞) ,

and deriving formally in u near 0 suggests that

ḣ1(0) = −
√

5
3 (�1[ξz] +�2[ξz]) , ḣ2(0) = −

√
5
3�2[ξz] .



192 F. Golse

If one could prove somehow that the solution f whose existence and uniqueness
is granted by Theorem 1 is a C1 function of u near u = 0 in some appropriate
functional setting, one could hope to conclude that the two compatibility conditions
obtained in Theorem 1 define indeed a C1 curve near the point (1, 0, 1) in the set of
parameters

{(pw/p∞,−u/c∞, Tw/T∞) s.t. pw, p∞, Tw, T∞ > 0 , u ∈ R} .

by the implicit function theorem. To the best of our knowledge, this remains at
present an open problem.

4 Comparison with Previous Results

We shall in this section discuss the differences and similarities between our
Theorem 1, and earlier, related results in the literature.

First, the result obtained in [4] is a special case of the following, more general
one. For each p, T > 0 and u ∈ R, denote

Lp,u,T f := −M−1
p,u,T DC(Mp,u,T ) · (Mp,u,T f ) ,

where

DC(F ) ·G := d

dθ
C(F + θG)

∣
∣
∣
θ=0

designates the Gateaux derivative of the Boltzmann collision integral C at F in the
direction G. In accordance with the notation used earlier in this paper, L = L1,0,1.
Consider the half-space problem for the Boltzmann equation linearized at Mp,u,T :

⎧
⎪⎪⎨

⎪⎪⎩

vz∂zh(z, v)+Lp,u,T h(z, v) = 0 , z > 0 , v ∈ R3 ,

h(0, v) = hb(v) for vz > 0 ,

h(z, v)→ 0 as z→+∞ .

(10)

It is assumed that hb ∈ L2(R3; (1 + |v|)Mp,u,T dv), and is even in vx, vy .
Cercignagni had conjectured in [12] the existence and uniqueness of an even in
vx, vy solution h of the problem above in L2((0,+∞);L2(R3; (1+|v|)Mp,u,T dv))

if and only if hb satisfies N linear compatibility conditions, where N is given in
Table 2.
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Table 2 Cercignani’s
solvability conditions for the
problem (10). Here
c := √5T /3 is the speed of
sound for the Maxwellian
state Mp,u,T

Normal velocity Number N of solvability conditions

c ≤ u 3

0 ≤ u < c 2

−c ≤ u < 0 1

u < −c 0

Equivalently,N is the maximum dimension of a subspace of KerLp,u,T on which
the quadratic form

KerLp,u,T , g �→
∫

R3
vzg(v)

2Mp,u,T (v)dv

is nonnegative, which is easily seen to be

# ({u− c, u, u+ c} ∩ R+) where c :=
√

5
3T .

Cercignagni’s conjecture has been completely proved in [14] (see [3] for a partial
result on a much simpler relaxation model of the Boltzmann equation).

Obviously,N increases from 1 to 2 as u increases across 0 (in other words, at the
transition between evaporation and condensation), exactly as in Sone’s Table 1.

Later, S. Ukai, T. Yang and S.-H. Yu studied a weakly nonlinear variant of the
Cercignani’s conjecture proved in [14]. They consider the half-space problem (8),
and study S[u], the set of boundary data fb which are even in ξx, ξy and such that
fb/
√
M is rapidly decaying in |ξ |, and such that the problem (8) has a solution. One

can think of S[u] as the stable manifold of f = 0 for the half-space equation (8),
viewed as an evolution problem in the variable z.

Of course fb ≡ 0 ∈ S[u] for all u. For u �= 0,±√5/3, S. Ukai, T. Yang and
S.-H. Yu prove in [32] that S[u] is, locally near 0, a C1-manifold of codimensionN .
How to treat the degenerate cases u ∈ {0,±√5/3} is explained in [15].

Yet, however interesting, this result does not solve Sone’s original problem,
except in the obvious case u = 0, dealt with more completely, without any smallness
assumption in Theorem 5.1 of [5]. Indeed, as u→ 0, the local stable manifold S[u]
constructed in [32] may shrink near 0 to the point that it may fail to contain Sone’s
boundary data

fb(ξ) := Mpw,−uTw
M

− 1 .

More recently, T.-P. Liu and S.-H. Yu [18] have studied Sone’s problem from a
stability point of view, obtaining solutions to the steady Boltzmann equation as long
time limits of solutions to the evolution Boltzmann equation. Their paper is based
on rather involved central manifold arguments, together with their previous work on
the structure of the Green function for the linearized Boltzmann equation [17]. They
obtain in this way a complete picture of the half-space problem with phase transition
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at the boundary, which corroborates the very precise numerical exploration of the
set of parameters conducted by Sone, Aoki and their collaborators in Kyoto in the
1980s-1990s.

As mentioned above (in the abstract and before the statement of Theorem 1),
the present paper is a survey of the results obtained in the joint article [6] with N.
Bernhoff. Our main results in this work, reported here in Theorem 1, correspond
to cases 2 and 4 in Theorem 28 of [18]. Of course, the proofs of cases 2 and 4 in
Theorem 28 of [18] are only sketched, but should follow from the general strategy
presented in that paper. At variance with the argument presented in [18], our proof
is self-contained and based on rather standard energy estimates, instead of the much
more involved theory of Green functions.

Perhaps the novel element in our work lies in the combination of two earlier
techniques: (a) the Ukai-Yang-Yu penalization technique, and (b) the much older
Nicolaenko-Thurber theory of the generalized eigenvalue problem for the linearized
Boltzmann collision integral, which we believe had not been used in the context of
half-space problems until now.

5 The Nicolaenko-Thurber Generalized Eigenvalue Problem

We henceforth consider the Hilbert space

H := {f ∈ L2(R3;Mdξ) such that f (ξx, ξy, ξz) = f (−ξx,−ξy, ξz) for a.e. ξ ∈ R3}.

For each φ ∈ L1(R3;Mdξ), we set

〈φ〉 :=
∫

R3
φ(ξ)M(ξ)dξ .

The Generalized Eigenvalue Problem
For each real u near 0, find φu ∈ H ∩Dom(L) such that

(GEP) Lφu(ξ) = τu(ξz + u)φu , 〈(ξz + u)φ2
u〉 = −u .

Our main result on this problem is summarized in the next proposition.

Proposition 1 There exists r > 0 and a real-analytic map

(−r, r) , u �→ (τu, φu) ∈ R× (H ∩ Dom(L))

of solutions to the generalized eigenvalue problem (GEP) such that

uτu < 0 for all u ∈ (−r, r) .
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In particular

τu = uτ̇0 +O(u2) with τ̇0 < 0 .

Moreover, for each s > 0, one has

sup
|u|<r
‖(1+ |ξ |)s√Mφu‖L∞ξ ≤ Cs <∞ .

Here is a good reason for studying the generalized eigenvalue problem (GEP)
in connection with the transition between evaporation and condensation in Sone’s
half-space problem for the Boltzmann equation. Define

-u(z, ξ) := e−τuzφu(ξ)

where φu is the solution of (GEP) provided by the proposition above. Observe that
-u satisfies

(ξz + u)∂z-u(z, ξ)+ L-(z, ξ) = 0 .

Besides

0 < −u 1 )⇒ -u(z, ξ) = O(exp(− 1
2 |u||τ̇0|z))→ 0 as z→+∞ ,

0 < +u 1 )⇒ exp( 1
2u|τ̇0|z) = O(-u(z, ξ))→ +∞ as z→+∞ .

This shows that the Nicolaenko-Thurber generalized eigenvalue problem (GEP)
provides us with a smooth branch of slowly varying (i.e. depending on the slow
variable ζ = |u|z for u near 0) solutions to the linearized Boltzmann equation,
depending smoothly on u, and admissible only for u < 0 (i.e. in the condensation
case). Indeed, it is only for u < 0 that these slowly varying solutions are bounded
as z→+∞.

The proof of the Proposition 1 can be obtained by following the method sketched
in [21], where the generalized eigenvalue problem is solved in the vicinity of the
sonic speed.1 Instead of following the careful description of the zeros of some
appropriate Fredholm determinant as in [21], one can apply instead the Kato theory
of holomophic families of unbounded self-adjoint operators to

L(z) := L− zξ1 .

1 The possibility of extending the Nicolaenko-Thurber theory to the case |u| << 1 was mentioned
to me by Prof. Nicolaenko in the late 1990s during one of my visits to his department at Arizona
State University in Phoenix.
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See the discussion in §3, section 1 of chapter VII in [16] (especially the penultimate
paragraph on p. 386). Proceeding in this way, we obtain uτu as a usual eigenvalue
λ(τu) of L(τu), so that one needs in the end to use the Open Mapping Theorem from
complex analysis in order to invert the relation uτu = λ0(τu). See section 3 of [6]
for a complete write-up of this argument.

6 Sketch of the Proof of Theorem 1

Before embarking on the proof of Theorem 1, we need some preparations.

6.1 The Linearized Collision Integral

First, we recall a few basic, but important facts about the linearized collision
integral.

Lemma 1 (Hilbert, 1912) The linearized collision integral L is an unbounded
self-adjoint, nonnegative and Fredholm operator on L2(R3;Mdξ), with

Dom L = L2(R3; (1+ |ξ |)Mdξ) and (Ker L) ∩ H = span {1, ξz, |ξ |2} .

This lemma is standard material in the theory of the Boltzmann equation: see for
instance Theorem 7.2.1 in chapter 7, section 2 of [13].

One easily checks that the following functions :

X± = |ξ |
2 ±√15ξz√

30
, X0 ≡ |ξ |

2 − 5√
10

form an H-orthonormal basis of (Ker L) ∩ H, which is orthogonal for the bilinear
functional on Dom L:

(φ,ψ) �→ 〈ξzφψ〉 .

Moreover

〈ξzX2±〉 = ±
√

5/3 , 〈ξzX2
0〉 = 0 .

Since L is a nonnegative, self-adjoint Fredholm operator on L2(R3;Mdξ), there
exists λ0 > 0 such that L satisfies the following spectral gap inequality

g ∈ Dom L ∩ (Ker L)⊥ )⇒ 〈gLg〉 ≥ λ0〈g2〉 .
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This inequality is not sufficient for a priori estimates on (8). In their work, C. Bardos,
R. Caflisch and B. Nicolaenko [4] have improved it into the following weighted
spectral gap inequality.

Bardos-Caflisch-Nicolaenko Weighted Spectral Gap Inequality
There exists κ0 > 0 such that

g ∈ Dom L ∩ (Ker L)⊥ )⇒ 〈gLg〉 ≥ κ0〈(1 + |ξ |)g2〉 .

6.2 Lyapunov-Schmidt Reduction

In view of the role of slowly varying solutions in the half-space problem (8) for the
Boltzmann equation, we must seek a way to filter out the slowly varying component
of solutions to (8) in the condensation case 0 < −u << 1. One way of doing this
is by using a Lyapunov-Schmidt reduction—a tool often used in connection with
bifurcation problems, and which appears for instance in the work of B. Nicolaenko
and his collaborators on the shock profile problem for the Boltzmann equation: see
[11, 19–21].

With the solution φu to the generalized eigenvalue problem obtained in Proposi-
tion 1, we construct the following pair of projections, in complete analogy with the
procedure described in [11]:

pug := −〈(ξz + u)ψug〉φu , Pug := −〈ψug〉(ξz + u)φu ,

with the notation

ψu := φu − φ0

u
.

Lemma 2 The linear maps pu and Pu introduced above, are bounded operators on
H, and satisfy the following properties:

(a) both pu and Pu are projections on H, i.e.

p2
u = pu , P2

u = Pu , rank pu = rank Pu = 1 ;

(b) one has

Ran Pu ⊂ (KerL)⊥ ;

(c) for each g ∈ Dom L, one has

Pu((ξz + u)g) = (ξz + u)pug ;
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(d) for each g ∈ H ∩ Dom L, one has

(ξz + u)g ⊥ |ξ |2 − 5 )⇒ Pu(Lg) = L(pug) .

Here is how the Lyapunov-Schmidt reduction is applied to the half-space
problem (8). Let f ≡ f (z, ξ) solve the linear half-space problem with source

⎧
⎪⎪⎨

⎪⎪⎩

(ξz + u)∂zf (z, v)+Lf (z, ξ) = Q(z, ξ) , z > 0, ξ ∈ R3,

f (0, ξ) = fb(ξ) for ξz > −u ,
f (z, ξ)→ 0 as z→+∞ .

(11)

The Lyapunov-Schmidt reduction consists in splitting f (z, ·) into its images
by pu and I − pu. The result of this procedure is summarized in the following
proposition; see [6] for a detailed proof.

Proposition 2 Assume that 0 < |u| < r and that, for some γ > max(τu, 0),

eγ zQ ∈ L∞((0,+∞);H ∩ (Ker L)⊥)

while

eγ zf ∈ L∞((0,+∞);H) .

Then f is of the form f ≡ g(x, ξ)− h(x)φu(ξ) with

g(z, ·) = (I − pu)f (z, ·) , and h(z)φu = −puf (z, ·) ,

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξz+u)∂zg(z, ξ)+Lg(z, ξ)=(I−Pu)Q(z, ξ) , ξ ∈ R3 , z > 0 ,

〈(ξz + u)ψug(z, ·)〉 = 0 , z > 0 ,

lim
z→+∞ g(z, ξ) = 0 , ξ ∈ R3 ,

h(z)=−
∫ ∞

0
eτuy〈ψuQ〉(z+y)dy , z > 0 .

(12)
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6.3 Adapting the Ukai-Yang-Yu Penalization Method

With the material prepared in the previous sections, we are ready to explain how
the Ukai-Yang-Yu penalization method introduced in [32] can be used to handle the
half-space problem (8).

Along with the non self-adjoint projections pu and Pu, it will be convenient to
use the following rank-one, self-adjoint projections:

�±g := 〈gX±〉X± , �0g := 〈gX0〉X0 , and � := �+ +�0 +�− .

Observe that, if g ∈ L∞((0,+∞);H ∩ Dom L)) satisfies

(ξz+u)∂zg+Lg=(I−Pu)Q , and lim
z→∞ g = 0 ,

with Q ∈ L∞((0,+∞); (Ker L)⊥), then

�((ξz + u)g) = 0 .

Hence, under the assumptions of, and with the notations used in Proposition 2,
the function

gγ (z, ξ) := eγ zg(z, ξ)

is a solution to the penalized problem

(ξz + u)∂zgγ (z, ξ)+Lpgγ (z, ξ) = (I − Pu)eγ zQ(z, ξ)

for all α, β, γ > 0, where the penalized collision integral is defined by the formula2

Lpg := Lg + α�+((ξz + u)g)+ βpug − γ (ξz + u)g .

2 During the meeting Prof. Schmeiser kindly reminded me that a somewhat reminiscent penal-
ization of the linearized collision integral had been used in the paper [11], which predates the
introduction of the penalization method in [32]. See the definition of the operator denoted M in
formula (3.39) of [11], and Proposition 3.3 on p. 171 in the same reference. However, the idea of
penalizing the collision integral is used quite differently in [11] and [32]. That the penalization
method of [32] escaped the notice of the authors of the first fundamental contribution [4] to the
theory of the half-space problem for the Boltzmann equation, who were obviously aware of its
importance in the shock profile problem treated in [11], says a lot about the originality and depth
of the ideas in [32].
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Conversely, if gγ solves the penalized problem for some α, β, γ > 0, then

d

dz

⎛

⎝
〈(ξz + u)X+gγ 〉
〈(ξz + u)X0gγ 〉
〈(ξz + u)ψugγ 〉

⎞

⎠+ (Au − γ I)

⎛

⎝
〈(ξz + u)X+gγ 〉
〈(ξz + u)X0gγ 〉
〈(ξz + u)ψugγ 〉

⎞

⎠ = 0 ,

where we have denoted

Au :=
⎛

⎝
α 0 −uβ〈ψuX+〉
0 0 −β〈φuX0〉

α〈ψuX+〉 τu/u τu−β〈ψuφu〉

⎞

⎠ .

One of the key ingredients in the proof of Theorem 1 is the following description
of the spectrum of the matrix Au.

First, we observe that u �→ Au is real-analytic for |u| < r , and that

det(A0 − λI) = (α − λ)(λ2 − β〈ψ0X0〉λ+ τ̇0β) .

Hence there exists r ′ ∈ (0, r) so that, for |u| < r ′, the matrix Au has 3 simple real
eigenvalues which are real-analytic functions of u and satisfy the ordering

λ1(u) > λ2(u) > 0 > λ3(u) ,

and more precisely, the uniform inequality:

inf
0<|u|<r ′

λ2(u) > 0 > sup
0<|u|<r ′

λ3(u) . (13)

Henceforth, we denote by u �→ (l1(u), l2(u), l3(u)) a real-analytic basis of
eigenvectors of AT

u for |u| < r ′, such that

AT
u lj (u) = λj (u)lj (u) , j = 1, 2, 3 .

See [6] for the missing details.

6.4 A Strategy for Proving Theorem 1

With the preparations described above, we can now explain how the proof of
Theorem 1 unfolds. It involves four main steps as indicated below.
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6.4.1 Step 1: Defining a Penalized Collision Operator

Our first task is to choose the penalization parameters α, β, γ so that the penalized
collision integralLp satisfies the Bardos-Caflisch-Nicolaenko weighted spectral gap
inequality uniformly in |u| << 1. Specifically, we prove the following lemma.

Lemma 3 There exists R,$, κ1 > 0 such that, whenever 0 < α = β = 2γ < 2$
and |u| < R, the penalized linearized collision integral

Lpg := Lg + α�+((ξz + u)g)+ βpug − γ (ξz + u)g

satisfies

g ∈ (Dom L) ∩ H )⇒ 〈gLpg〉 ≥ κ1〈(1+ |ξ |)g2〉 .

How to fit the parameters α, β, γ in order to obtain the weighted positivity
property in the lemma above is done by inspection, and involves some tedious
manipulations. However, these computations are rather elementary, and do not
require knowing more than the Bardos-Caflisch-Nicolaenko spectral gap inequality
recalled above. The argument follows [32] and [15]; see [6] for a complete proof.

The key point in connection with this lemma is that the uniform in |u| < R,
weighted spectral gap constant κ1 is related both to the exponential decay rate γ and
to the “norm of the inverse” of (ξz+u)∂z+Lp, the penalized linearized Boltzmann
operator.

6.4.2 Step 2: Solving the Linearized, Penalized Half-Space Problem

This section and the next are based on the usual energy method for the penalized
half-space problem: see for instance [15] for a detailed description of the method,
which parallels the proof in [6]. The interested reader is referred to the latter
reference for a complete write-up—which is rather lengthy, but without remarkable
difference from earlier results, such as [32] or [15]. The only difference with these
earlier references is the uniformity in |u| << 1 of the estimates so obtained, which
must be checked carefully—and ultimately depends on the result of Step 1.

With α = β = 2γ > 0 chosen as in Lemma 3, solve for gu,γ the problem

⎧
⎨

⎩

(ξz + u)∂zgu,γ (z, ξ)+Lpgu,γ (z, ξ) = eγ x(I − Pu)Q(z, ξ) , z > 0 , ξ ∈ R3,

gu,γ (0, ξ) = gb(ξ) , ξz + u > 0 .
(14)
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More precisely, we solve this problem successively

(i) in L2((0,+∞),H∩Dom L) by using some variant of the Riesz representation
theorem, then

(ii) in L2((1+|ξ |)Mdξ;L∞(0,+∞)), by using the integral equation as in [14] to
“improve” the bound on the z-dependence3 from L2 to L∞, and finally

(iii) in (1+|ξ |)−3M−1/2L∞((0,+∞)×R3) by using Grad’s decay estimates for the
gain part of the linearized collision integral, which can be found for instance
in [10].

The key point in this step is that, by filtering out the slowly varying component
of the solution, i.e. by looking at gu,γ instead of f , one manages to prove that the
linear solution map

(gb,Q) �→ gu,γ

is bounded uniformly in u for |u| < R. This uniformity will be crucial in the next
step.

6.4.3 Step 3: Solving the Nonlinear, Penalized Half-Space Problem

Apply the standard fixed point theorem, replacing the source term Q in (14) with

Q(e−γ zgu,γ − e−γ zhu,γ φu) ,

and keeping in mind that

hu,γ (z) = −e−γ z
∫ ∞

0
e(τu−2γ )y〈ψuQ(gu,γ − hu,γ φu)〉(z+ y)dy .

With the resulting fixed point (gu,γ , hu,γ ), we construct the function

(z, ξ) �→ f̃u(z, ξ) := e−γ z(gu,γ (z, ξ)− hu,γ (z)φu(ξ)) ,

3 One should pay attention to the fact that the appropriate function space used in this argument is
an anisotropic, or mixed Lebesgue space of the form L2

ξ (L
∞
z ), and not L∞z (L2

ξ ). That L2
ξ (L

∞
z ) is

the function space of interest for this type of problem has been known for a long time—for instance
it was already used in [14].
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which is a solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ξz + u)∂zf̃u +Lf̃u + α�+((ξz + u)f̃u)+ βpuf̃u = Q(f̃u) , ξ ∈ R3 , z > 0 ,

f̃u(0, ξ) = fb(ξ) , ξz + u > 0 ,

lim
z→+∞ f̃u(z, ξ) = 0 , ξ ∈ R3 .

(15)

Specifically, we prove the existence of ε > 0 such that, for each fb ≡ fb(ξ), even
in ξx, ξy and satisfying the bound

‖(1+ |ξ |)3√Mfb‖L∞(R3) ≤ ε,

the problem (15) has a unique solution such that

(1+ |ξ |)3√M|f̃u(z, ξ)| ≤ O(ε)e−γ z

for all u such that |u| < r ′′, where 0 < r ′′ < inf(r ′, R) is a small enough positive
number.

The key point in this step is that the uniform in u bound on the linear solution
operator obtained in Step 2 implies that the nonlinear solution operator is well
defined on a small neighborhood of the origin whose size is uniform in u for |u| < R.
All the constructions in the previous sections, especially the Lyapunov-Schmidt
reduction in Sect. 6.2, based on the resolution of the generalized eigenvalue problem
(GEP), and the resulting modification in the penalization method, i.e. introducing
the projection pu in the definition of Lp , are aimed at obtaining this uniformity. In
this way, we avoid the objection reported in Sect. 4 against using the result in [32]
on Sone’s half-space problem with evaporation or condensation at the gas-liquid
interface.

6.4.4 Step 4: Removing the Penalization

At the end of Step 3, we have solved the nonlinear, penalized half-space problem
(15) for all small enough boundary data fb . The solution f̃u decays exponentially
fast to 0 as z tends to infinity, and the exponential decay rate γ is uniform in u

for |u| << 1. While the uniform in u exponential decay was one of our goals, we
have not yet solved the original problem (8), which is the physically relevant one.
In other words, we still have to remove the penalization in order to arrive at a proof
of Theorem 1.

The origin of the compatibility conditions in Theorem 1 is to be found precisely
in this part of the procedure. Since these compatibility conditions are at the core
of the main result in this paper, we shall describe in full detail how to remove the
penalization, and how this leads to the compatibility conditions in Theorem 1.
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This is done as follows. Choose γ so that

0 < γ < min

(
$, inf

0<|u|<r ′
λ2(u)

)
,

where $ > 0 appeared in Lemma 3, and where we have used one of the uniform
inequalities in (13).

Set

Yj [u](ξ) = lj (u)1X+(ξ)+ lj (u)2X0(ξ)+ lj (u)3ψu(ξ) , 1 ≤ j ≤ 3 , (16)

where lj (u)k is the k-th component of the eigenvector lj (u) of A(u)T .

Lemma 4 If gγ ∈ L∞((0,+∞);H ∩ Dom L) solves the penalized problem (14),
then

�+gγ = pugγ = 0 ⇐⇒ 〈(ξz + u)Yj [u]gγ 〉
∣
∣
∣
z=0
= 0 for j = 1, 2 .

Proof Observe that, for j = 1, 2, 3, one has

d

dz
〈(ξz + u)Yj [u]gγ (z, ·)〉 =lj (u)1 d

dz
〈(ξz + u)X+gγ (z, ·)〉

+ lj (u)2
d

dz
〈(ξz + u)X0gγ (z, ·)〉

+ lj (u)3
d

dz
〈(ξz + u)ψugγ (z, ·)〉

= − lj (u)
T (Au − γ I)

⎛

⎝
〈(ξz + u)X+gγ (z, ·)〉
〈(ξz + u)X0gγ (z, ·)〉
〈(ξz + u)ψugγ (z, ·)〉

⎞

⎠ .

By definition of lj (u), one has

d

dz
〈(ξz + u)Yj [u]gγ (z, ·)〉 = − (λj (u)− γ )lj (u)

T

⎛

⎝
〈(ξz + u)X+gγ (z, ·)〉
〈(ξz + u)X0gγ (z, ·)〉
〈(ξz + u)ψugγ (z, ·)〉

⎞

⎠

=− (λj (u)− γ )〈(ξz + u)Yj [u]gγ (z, ·)〉 ,

so that

〈(ξz + u)Yj [u]gγ (z, ·)〉 = e−(λj (u)−γ )z〈(ξz + u)Yj [u]gγ (0, ·)〉 . (17)
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By the second uniform inequality in (13), one has λ3(u) < γ < 0 for 0 < |u| <
r ′′. Since

gγ ∈ L∞((0,+∞);H ∩ Dom L) )⇒ 〈(ξz + u)Yj [u]gγ (z, ·)〉 ∈ L∞(0,+∞) ,

the equality (17) for j = 3 implies that

〈(ξz + u)Y3[u]gγ (z, ·)〉 = 0 for all z ≥ 0 and 0 < |u| < r ′′ .

On the other hand, our choice of γ implies that

λj (u)− γ > 0 for all j = 1, 2 and 0 < |u| < r ′′ ,

so that (17) for j = 1, 2 implies that 〈(ξz+u)Yj [u]gγ 〉 ∈ L∞(0,+∞), without any
restriction on the values of 〈(ξz + u)Yj [u]gγ (0, ·)〉.

If one assumes that 〈(ξz + u)Yj [u]gγ (0, ·)〉 = 0 for j = 1, 2, then

〈(ξz + u)Yj [u]gγ (z, ·)〉 = 0 for all j = 1, 2, 3, all z > 0, and all 0 < |u| < r ′′ .

Since the eigenvectors l1(u), l2(u), l3(u) are linearly independent, this implies that

〈(ξz + u)X+gγ (z, ·)〉 = 〈(ξz + u)X0gγ (z, ·)〉 = 〈(ξz + u)ψugγ (z, ·)〉 = 0

for all z ≥ 0, which implies in turn that �+gγ = pugγ = 0.
Conversely, if �+gγ = pugγ = 0, then

(ξz + u)∂zgγ +Lgγ − γ (ξz + u)gγ = (I − Pu)Q,

so that

d

dz
〈(ξz + u)X0gγ 〉 = γ 〈(ξz + u)X0gγ 〉,

and hence

〈(ξz + u)X0gγ (z, ·)〉 = eγ z〈(ξz + u)X0gγ (0, ·)〉 .

Since

gγ ∈ L∞((0,+∞);H ∩ Dom L) )⇒ 〈(ξz + u)X0gγ 〉 ∈ L∞((0,+∞)),

we conclude from the equality above and the fact that γ > 0 that

〈(ξz + u)X0gγ (z, ·)〉 = 0 for all z ≥ 0 .
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With �+gγ = pugγ = 0, this implies that

〈(ξz + u)Yj [u]gγ (z, ·)〉 = 0 for all 1 ≤ j ≤ 3 and all z ≥ 0 .

In fact, as mentioned above, this equality is obvious for j = 3. In any case, it holds
for j = 1, 2, and this completes the proof of the lemma. ��

With Lemma 4, it is easy to conclude the proof of Theorem 1. Starting from the
solution f̃u of (15) obtained in Step 3, we define

gu,γ (z, ·) = eγ z(I − pu)f̃u(z, ·) , z > 0 ,

and we set

Ru[fb](ξ) = gu,γ (0, ·) = (I − pu)f̃u(0, ·) . (18)

Since f̃u solves (15), the function gu,γ solves (14), with Q(z, ξ) := Q(f̃u)(z, ξ).
According to Lemma 4, one can remove the penalization in (15) if and only if

0 = 〈(ξz + u)Yj [u]gγ (0, ·)〉 = 〈(ξz + u)Yj [u]Ru[fb]〉

for j = 1, 2, which are precisely the compatibility conditions in Theorem 1.
The interested reader is referred to [6] for a complete proof.

7 Conclusion

We have proved that, near the stationary (u∞ = 0) equilibrium Maxwellian state
with T∞ = Tw and p∞ = pw, there exists a unique branch of solutions to Sone’s
half-space problem with uniform in u∞ exponential decay far away from the liquid-
gas interface

This branch of solutions extends the evaporation curve into the condensation
surface in Sone’s diagram, denoted S on Fig. 2. In other words, it is defined in the
space of parameters

(p∞/pw,−u/c∞, T∞/Tw)

by the same two compatibility conditions which define admissible parameters in the
evaporation case, i.e.

p∞/pw = h1(u/c∞) , T∞/Tw = h2(u/c∞) ,

where the functions h1, h2 are extended to u < 0 with |u| << 1.
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Our analysis is based on a perturbative argument for the steady Boltzmann
equation and fails to establish positivity of the solution—exactly as in the treatment
of the weak shock profile problem by B. Nicolaenko and his collaborators [11, 19–
21]. However, it should be possible to remove this difficulty by using the Liu-Yu
stability technique described in [18].

There are several open problems in connection with the result presented here in
Theorem 1.

First, we have assumed everywhere in the paper that the bulk velocity at infinity
is (0, 0, u), in other words, that it is normal to the liquid-gas interface. One should
consider the more general situation where the bulk velocity at infinity has a nonzero
component tangential to the liquid-gas interface. In other words, one should consider
the same half-space problem (8) without seeking the solution f (z, ·) in the space H
of functions which are even in ξx, ξy . Since the tangential component of the bulk
velocity at infinity does not appear in the streaming operator (ξz + u)∂z, including
it in the discussion is not expected to lead to serious mathematical difficulties.

More serious mathematical difficulties are expected to be met if one seeks to
recover Sone’s condensation surface (denoted S on Fig. 2). Indeed, at this point, one
must face the obviously challenging problem of handling a change in the topology
(specifically, in the dimensionality, which is expected to jump from 1 to 2) of the set
of solutions to the half-space problem as u decreases across the value 0.

One possibility for handling this problem could be to perturb about a solution
of the half-space problem corresponding to parameters (p∞/pw,−u/c∞, T∞/Tw)
lying on the extension of the evaporation curve C on the condensation surface
S obtained in the present paper. One can expect that the maximal size of the
perturbation for which the existence and uniqueness of a solution including a
nontrivial slowly varying component can be proved by a standard fixed point method
will vanish as one approaches the edge of the condensation surface S. The part of the
condensation surface S which one could hope to obtain in this way is represented
as a red cusp on Fig. 2. Since this cusp intersects the edge of S only at the only
point corresponding to the temperature and pressure ratio p∞/pw = T∞/Tw = 1,
in other words to the trivial solution F =Mpw,0,Tw , this problem might be tractable
with the tools discussed in the present paper.

Finally, there obviously remains the issue of justifying completely the picture
in Table 1 for all u ∈ R, in other words, in nonperturbative regimes. While the
work of T.-P. Liu and S.-H. Yu [18] provides us with a strategy to do so, it would
certainly be interesting to investigate other approaches to this problem—or to the
related shock profile problem for the Boltzmann equation without restriction on
the shock strength. Topological methods in the style of those described in Part IV
of [22] could perhaps be of some help in both problem. The work of A. Bobylev
and N. Bernhoff [8] on shock profiles and half-space problems for discrete velocity
models of the Boltzmann equation suggests that something along these lines could
be attempted on the Boltzmann equation itself.
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Recent Developments on Quasineutral
Limits for Vlasov-Type Equations
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Abstract Kinetic equations of Vlasov type are in widespread use as models
in plasma physics. A well known example is the Vlasov-Poisson system for
collisionless, unmagnetised plasma. In these notes, we discuss recent progress on
the quasineutral limit in which the Debye length of the plasma tends to zero,
an approximation widely assumed in applications. The models formally obtained
from Vlasov-Poisson systems in this limit can be seen as kinetic formulations of
the Euler equations. However, rigorous results on this limit typically require a
structural or strong regularity condition. Here we present recent results for a variant
of the Vlasov-Poisson system, modelling ions in a regime of massless electrons.
We discuss the quasineutral limit from this system to the kinetic isothermal Euler
system, in a setting with rough initial data. Then, we consider the connection
between the quasineutral limit and the problem of deriving these models from
particle systems. We begin by presenting a recent result on the derivation of the
Vlasov-Poisson system with massless electrons from a system of extended charges.
Finally, we discuss a combined limit in which the kinetic isothermal Euler system
is derived.
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1 Introduction

Plasma is a state of matter consisting of an ionised gas, formed by the dissociation
of a neutral gas under the influence of, for example, high temperatures or a strong
magnetic field. Various mathematical models are available to describe plasma,
corresponding to different physical regimes (such as typical length and time scales).
Here we will focus on systems of Vlasov-Poisson type, which are kinetic equations
describing dilute, collisionless, weakly magnetised plasmas.

The charged particles in a plasma typically fall into two distinguished types:
electrons and positively charged ions. The respective masses of these two species
differ significantly—note that the proton-to-electron mass ratio is of order 103 [8].
The result is a separation between the relevant timescales of evolution for the two
species. As a consequence, it is a reasonable approximation to model the two species
to some extent separately, and moreover the two species require different models.

The best known version of the Vlasov-Poisson system is a kinetic model for
the electrons in a plasma, evolving in a background of ions that are assumed to
be stationary. This approximation is justified by the aforementioned separation
of timescales. For simplicity we leave aside the issue of boundary conditions by
discussing the system posed on the d-dimensional flat torus T

d , which reads as
follows:

(V P) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tf + v · ∇xf + E · ∇vf = 0 ,

E = −∇xU , −	U = ρf − 1 ,

f |t=0 = f0 ,

∫

Td×Rd

f0(x, v) dxdv = 1.

(1)

In these notes, we instead focus on a related model for the ions in a plasma. On
the ions’ timescale, the electrons are comparatively fast moving. In particular, the
electron-electron collision frequency νe is much higher than the ion-ion collision
frequency νi . For example, Bellan [8, Section 1.9] gives a relation of the form νe ∼
(me/mi)

−1/2νi for plasmas with similar ion and electron temperatures, where me

and mi denote the masses of, respectively, a single electron and a single ion. Thus,
when the mass ratio me/mi is small, the frequency of electron-electron collisions
can be significant even when ion-ion collisions are negligible.

In the massless electrons limit, the mass ratio me/mi is assumed to tend to zero,
motivated by the fact that it is small in applications. As a consequence, the electron
collision frequency tends to infinity. In the formal limiting regime, the electrons
are thermalised, instantaneously assuming their equilibrium distribution, which is a
Maxwell-Boltzmann law of the form

ρe ∼ eqeβe- ,

where qe is the charge of a single electron, βe is the inverse electron temperature,
and - is the ambient potential.



Recent Developments on Quasineutral Limits for Vlasov-Type Equations 213

Combining the Vlasov-Poisson system (1) with a Maxwell-Boltzmann law for
the electron distribution leads to the Vlasov-Poisson system with massless electrons,
or VPME system. After an appropriate rescaling of physical constants, this reads as
follows:

(V PME) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tf + v · ∇xf + E · ∇vf = 0 ,

E = −∇xU, 	U = eU − ρf ,

f |t=0 = f0,

∫

Td×Rd

f0(x, v) dx dv = 1.

(2)

This model is used in the plasma physics literature to model ion plasma. For a more
detailed introduction to the model in a physics context, see Gurevich and Pitaevsky
[31]. The VPME system has been used to study the formation of ion-acoustic shocks
[52, 58], the development of phase-space vortices behind these shocks [10], and the
expansion of plasma into vacuum [53], among other applications.

From a mathematical perspective, the VPME system has been studied less than
the electron Vlasov-Poisson system (1). The systems differ through the additional
exponential nonlinearity in the elliptic equation for the electrostatic potential in the
VPME system. The nonlinearity of this coupling leads to additional difficulties.
For example, while the well-posedness theory of the Vlasov-Poisson system is well
established (see for example [49, 50, 57, 60]), for the VPME system this theory
was developed more recently. The existence of weak solutions was shown in R

3 by
Bouchut [12], while global well-posedness was proved recently by the authors in
[28].

The massless electrons limit itself is not yet resolved in full generality. Bouchut
and Dolbeault [13] considered the problem for a one species model described by
the Vlasov-Poisson-Fokker-Planck system. Bardos, Golse, Nguyen and Sentis [7]
studied a two-species model represented by a system of coupled kinetic equations.
Under the assumption that this system has sufficiently regular solutions, in the
massless electron limit they derive the Maxwell-Boltzmann law for the electron
distribution, and a limiting system for the ions that is very similar to the VPME
system (2), but with a time-dependent electron temperature. We also refer to Herda
[44] for the massless electron limit in the case with an external magnetic field.

In these notes, we summarise some recent progress on two problems related
to the VPME system. In Sect. 2, we consider the quasineutral limit, in which
a characteristic parameter of the plasma known as the Debye length tends to
zero. The limit of the VPME system in this regime is a singular Vlasov equation
known as the kinetic isothermal Euler system. In Sect. 3 we consider the derivation
of the VPME and kinetic isothermal Euler systems from a particle system. The
underlying microscopic system consists of ‘ions’, here represented as extended
charges, interacting with each other and a background of thermalised electrons.
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2 Quasineutrality

2.1 The Debye Length

Plasmas have several important characteristic scales, one of which is the Debye
(screening) length, λD . The Debye length has a key role in describing the physics
of plasmas: broadly speaking, it governs the scale of electrostatic phenomena in
the plasma. For example, it characterises charge separation within the plasma,
describing the scale at which it can be observed that the plasma contains areas with
a net positive or negative charge, and so is not microscopically neutral.

In terms of the physical constants of the plasma, the electron Debye length λD is
defined by

λD :=
(
ε0kBTe

neq2
e

)1/2

. (3)

In the above formula, ε0 denotes the vacuum permittivity, kB is the Boltzmann
constant, Te is the electron temperature and ne is the electron density. The ions
similarly have an associated Debye length, which may differ from the electron
Debye length. It is defined by the formula (3), replacing the electron density,
temperature and charge with the corresponding values for the ions.

Since the Debye length is related to observable quantities such as the density and
temperature, it can be found for a real plasma. Typically, λD is much smaller than
the typical length scale of observation L. The parameter ε := λD/L is therefore
expected to be small. In this case the plasma is called quasineutral: since the
scale of charge separation is small, the plasma appears to be neutral at the scale
of observation. Quasineutrality is a very common property of real plasmas—for
example Chen [20, Section 1.2] includes quasineutrality as one of the key properties
distinguishing plasmas from ionised gases more generally.

The significance for Vlasov-Poisson systems becomes apparent after a rescaling.
When written in appropriate dimensionless variables, the Vlasov-Poisson systems
acquire a scaling of ε2 in front of the Laplacian in the Poisson equation for the
electric field. For example, the VPME system (2) takes the form

(V PME)ε :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tfε + v · ∇xfε + E · ∇vfε = 0 ,

E = −∇xU ,

ε2	U = eU − ρfε ,

fε |t=0 = fε(0) ,
∫

Td×Rd

fε(0, x, v) dx dv = 1.

(4)

In plasma physics literature, the approximation that ε ≈ 0 is widely used. For
this reason, it is important to understand what happens to the Vlasov-Poisson system
in the limit as ε tends to zero. This is known as the quasineutral limit. Taking this
limit leads to other models for plasma known as kinetic Euler systems.
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2.2 Kinetic Euler Systems

Formally setting ε = 0 in the system (4) results in the kinetic isothermal Euler
system (KIsE):

(KIsE) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tf + v · ∇xf −∇xU · ∇vf = 0 ,

U = logρf ,

f |t=0 = f0 ,

∫

Td×Rd

f0(x, v) dx dv = 1.

(5)

This system was described and studied in a physics context in [31–33]. The name
arises from the fact that, for monokinetic solutions f , of the form

f (t, x, v) = ρ(t, x)δ0(v − u(t, x))

for some density ρ and velocity field u, the KIsE system is equivalent to the
following isothermal Euler system:

(IsE) :=
{
∂tρ +∇x · (ρu) = 0 ,

∂t (ρu)+∇x · (ρu⊗ u)−∇xρ = 0.
(6)

The KIsE system (5) can be thought of as a kinetic formulation of the isothermal
Euler system (6) To see this, consider a solution in the form of a superposition of
monokinetic profiles: let

f (t, x, v) =
∫

�

ρθ(t, x)δ0(v − uθ (t, x))π(dθ) , (7)

for a measure space (�, π) and a family of fluids (ρθ , uθ )θ∈�. The multi-fluid
representation (7) can be used in the case where f has a density with respect to
Lebesgue measure on T

d × R
d . However, it can also accommodate more singular

situations. For example, if π is a sum of N Dirac masses, then the distribution (7)
can be used to describe a system of N phases.

With this multi-fluid representation in mind, consider the following system of
PDEs for the unknowns (ρθ , uθ )θ∈�:

(KIsE)MF :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρθ + ∇x · (ρθuθ ) = 0 ,

∂t (ρθuθ )+∇x · (ρθuθ ⊗ uθ ) = −ρθ∇xU ,

U = log
∫

�

ρθ (t, x)π(dθ).

(8)

Given a (distributional) solution of this multi-fluid system, the formula (7) then
defines a distributional solution of the KIsE system (5). Thus (8) is a multi-fluid



216 M. Griffin-Pickering and M. Iacobelli

formulation of KIsE (5) and KIsE is a kinetic formulation of the isothermal Euler
system (6). The use of multi-fluid representations of this type for Vlasov-type
equations is discussed, for example, in [16, 26, 61].

A system closely related to the KIsE system can be formally obtained by
linearising the coupling U = logρf between U and ρf around the constant density
1: since log t ≈ t − 1 for t close to one, one gets

(VDB) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tf + v · ∇xf −∇xU · ∇vf = 0 ,

U = ρf − 1 ,

f |t=0 = f0 ,

∫

Td×Rd

f0(x, v) dx dv = 1.

(9)

This system was named the Vlasov-Dirac-Benney (VDB) system by Bardos [2]. The
name ‘Benney’ was chosen due to a connection with the Benney equations for water
waves, in particular as formulated by Zakharov [61].

The VDB system formally has the structure of a general Vlasov equation, in
which the potential U is of the form U = - ∗x (ρf − 1) for some kernel -. In
this case, the kernel would be a Dirac mass; this is the origin of the reference to
Dirac. In particular, this demonstrates the additional singularity of the VDB system
in comparison to the Vlasov-Poisson system: in the Vlasov-Poisson system the
potential U gains two derivatives compared to the density ρf , while in the VDB
system this regularisation does not occur.

For the Vlasov-Poisson system for electrons (1), the quasineutral limit leads to
the following kinetic incompressible Euler system (KInE):

(KInE) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tf + v · ∇xf − ∇xU · ∇vf = 0 ,

ρf = 1 ,

f |t=0 = f0 ,

∫

Td×Rd

f0(x, v) dx dv = 1.

(10)

The force−∇xU is defined implicitly through the incompressibility constraint ρf =
1, and may be thought of as a Lagrange multiplier associated to this constraint.
The system (10) was discussed by Brenier in [15] as a kinetic formulation of the
incompressible Euler equations.

All three kinetic Euler systems described above (8), (9), and (10) as well as the
two Vlasov-Poisson systems (1), (2), have a large family of stationary solutions: the
spatially homogeneous profiles f (t, x, v) = μ(v). As is well-known for the Vlasov-
Poisson system, some of these profiles may be unstable [56]. For the kinetic Euler
systems, the corresponding linearised problems have unbounded unstable spectrum:
see [3, 6, 39]. As a consequence, they are in general ill-posed. For example, ill-
posedness in Sobolev spaces was shown for the VDB system by Bardos and Nouri
[6]. Han-Kwan and Nguyen [39] further extended this by showing that the solution
map cannot be Hölder continuous with respect to the initial datum in Sobolev
spaces, for both the VDB system (9) and the KInE system (10). See also Baradat [1]
for the generalisation when the unstable profile μ is only a measure.
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Due to these instability properties, well-posedness results for the kinetic Euler
systems typically involve either a strong regularity restriction or a structural
condition. For instance, in the monokinetic case one may appeal to the results known
for the corresponding Euler system.

Without imposing any structural condition, the most general results available are
in analytic regularity. Local existence of analytic solutions for the VDB system was
proven by Jabin and Nouri [46] in the one-dimensional case, and also follows from
[54, Section 9]. Bossy, Fontbona, Jabin and Jabir [11] proved an analogous result for
a class of kinetic equations involving an incompressibility constraint, generalising
the KInE system (10) to include, for example, noise terms. Local existence of
analytic solutions for the multi-fluid system corresponding to KInE (10) was shown
by Grenier [26] as part of a study of the quasineutral limit; note that, due to the
multi-fluid formulation, the required regularity is only imposed in the x variable.

In Sobolev regularity, local well-posedness is known for the VDB system for
initial data satisfying a Penrose-style stability criterion, following the results of
Bardos and Besse [3] and Han-Kwan and Rousset [40]. We do not know of any
global-in-time existence results for any of the kinetic Euler systems (5), (9) or (10).

The VDB system also appears in the semiclassical limit of an infinite dimensional
system of coupled nonlinear Schrödinger equations: for more details, see for
example [3–5]. See also [19, 22] for discussion of semiclassical limits involving
the KIsE model.

2.3 Failure of the Quasineutral Limit

The mathematical justification of the quasineutral limit is a non-trivial problem,
since in general the limit can be false. The failure of the limit can be linked to known
phenomena in plasma physics. We note for instance the example of Medvedev
[53] regarding the expansion of ion plasma into vacuum. For a one-dimensional
hydrodynamic model it is found that the quasineutral approximation U = logρ is
not valid everywhere, and this is corroborated by numerical simulations for a kinetic
model.

Another important issue, well-known in plasma physics, is the ‘two stream’
instability. From a physics perspective, this instability is typically introduced
through a model problem in which two jets of electrons are fired towards each other
(whence the name). Configurations of this kind are known to be unstable (see for
example [8, Section 5.1], [20, Section 6.6]), with the resulting dynamics producing
a vortex-like behaviour in phase space. See [9] for simulations and experimental
results on this phenomenon. The streaming instability is seen in kinetic models by
considering profiles with a ‘double bump’ structure in the velocity variable. These
profiles are unstable for the linearised problem in the Penrose sense discussed above.

The relevance of instability for the quasineutral limit can be indicated by looking
at a time rescaling of the Vlasov-Poisson system. If f is a solution of the unscaled
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Vlasov-Poisson system (1), then fε(t, x, v) = f
(
t
ε
, x
ε
, v

)
is a solution of the system

with quasineutral scaling. The limit as ε tends to zero is thus a form of long time
limit. Grenier outlined this obstruction to the quasineutral limit in [26, 27], for a
one-dimensional two-stream configuration. Subsequently, Han-Kwan and Hauray
[35] constructed counterexamples to the quasineutral limit in the Sobolev spaces
Hs for arbitrary large s, by considering initial data around unstable profiles.

2.4 Results on the Quasineutral Limit

Positive results on the quasineutral limit can be categorised along the lines of the
well-posedness results known for the kinetic Euler systems; these problems are
closely related. The mathematical study of the quasineutral limit can be traced back
to the 1990s, with the works of Brenier and Grenier [18] and Grenier [25], using
an approach based on defect measures, and the result of Grenier [27] for the one-
dimensional case.

A particular case is the ‘cold electrons’ or ‘cold ions’ regime, in which the
initial data for the Vlasov-Poisson system is assumed to converge to a monokinetic
profile. The limiting kinetic Euler system is therefore reduced to its corresponding
Euler system. Brenier [17] and Masmoudi [51] considered the electron case, from
the Vlasov-Poisson system to the incompressible Euler equations. Han-Kwan [34]
considered the ions case, from the VPME system to the isothermal Euler equations.
See also the work of Golse and Saint-Raymond [24], obtaining a ‘2.5 dimensional’
incompressible Euler system through a combined quasineutral and gyrokinetic limit
(a limit of strong magnetic field).

In [26], Grenier proved the quasineutral limit from the electron Vlasov-Poisson
system to KInE in analytic regularity. The result is framed in terms of the
corresponding multi-fluid formulations. If the initial data for the multi-fluid Vlasov-
Poisson system are uniformly analytic in x, then the quasineutral limit to the
multi-fluid KInE system holds locally in time. By the same techniques, similar
results can be shown for the ion quasineutral limits, obtaining the VDB and KIsE
systems, as observed in [37], in the discussion after Proposition 4.1.

Under a Penrose-type stability criterion, Han-Kwan and Rousset [40] proved that
the quasineutral limit holds in Sobolev regularity, for the passage from a variant of
the VPME system, with linearised Poisson-Boltzmann coupling for the electric field,
to the VDB system.

2.5 Quasineutral Limit with Rough Data

An alternative direction for relaxing the regularity constraint for the quasineutral
limit was investigated in a series of works, by Han-Kwan and the second author
[36, 37] and by the authors [30]. In this setting, one considers rough initial
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data (measures in the one-dimensional case, L∞ for d = 2, 3) that are small
perturbations of the uniformly analytic case. The smallness of the perturbation is
measured in a Wasserstein (Monge-Kantorovich) distance.

Definition 1 (Wasserstein Distances) Let p ∈ [1,∞). Let μ and ν be probability
measures on T

d ×R
d for which the moment of order p is finite. Then the pth order

Wasserstein distance between μ and ν, Wp(μ, ν), is defined by

Wp(μ, ν) =
(

inf
∫

(z1,z2)∈(Td×Rd )2
d(z1, z2)

p dπ(z1, z2)

)1/p

,

with the infimum taken over measures π on (Td × R
d)2 such that for all Borel sets

A ⊂ T
d ×R

d ,

π(A× T
d × R

d) = μ(A) , π(Td × R
d ×A) = ν(A) ,

and d denotes the standard metric on T
d × R

d .

The article [37] deals with the one-dimensional case for both electron and ion
models, while in higher dimensions d = 2, 3, the limit for the electron models is
considered in [36]. Then, for the VPME system, we proved a rough data quasineutral
limit in [30].

Below we give the statement of this result. We use the notation expn to denote
the n-fold iteration of the exponential function, for example

exp3(x) = exp exp exp(x).

We also use the analytic norms ‖·‖Bδ , defined for δ > 1 by

‖g‖Bδ :=
∑

k∈Zd
|ĝ(k)|δ|k| ,

where ĝ(k) denotes the Fourier coefficient of g of index k.

Theorem 1 (Quasineutral Limit) Let d = 2, 3. Consider initial data fε(0)
satisfying the following conditions:

• (Uniform bounds) fε(0) is bounded and has bounded energy, uniformly with
respect to ε: for some constant C0 > 0,

‖fε(0)‖L∞(Td×Rd ) ≤ C0 ,

1

2

∫

Td×Rd

|v|2f dx dv + ε2

2

∫

Td

|∇U |2 dx +
∫

Td

UeU dx ≤ C0.
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• (Control of support) There exists C1 > 0 such that

fε(0, x, v) = 0 for |v| > exp(C1ε
−2). (11)

• (Perturbation of an analytic function) There exist gε(0) satisfying, for some δ >
1, η > 0, and C > 0,

sup
ε>0

sup
v∈Rd

(1+ |v|d+1)‖gε(0, ·, v)‖Bδ ≤ C ,

sup
ε>0

∥∥
∥
∥

∫

Rd

gε(0, ·, v) dv − 1

∥∥
∥
∥
Bδ

≤ η ,
(12)

as well as the support condition (11), such that, for all ε > 0,

W2(fε(0), gε(0)) ≤
[

exp4(Cε
−2)

]−1
(13)

for C sufficiently large with respect to C0, C1.
• (Convergence of data) gε(0) has a limit g(0) in the sense of distributions as
ε→ 0.

Let fε denote the unique solution of (4) with bounded density and initial datum
fε(0). Then there exists a time horizon T∗ > 0, independent of ε but depending on
the collection {g0,ε}ε, and a solution g of (5) on the time interval [0, T∗] with initial
datum g(0), such that

lim
ε→0

sup
t∈[0,T∗]

W1(fε(t), g(t)) = 0.

Remark 1 As an example of a choice of initial data satisfying these assumptions,
consider any compactly supported, spatially homogeneous profile μ = μ(v) ≥ 0
with unit mass. Then

fε(0) = μ(v) (1+ sin(2πNεx1)) , Nε � exp4(Cε
−2)

satisfies the assumptions of Theorem 1.

2.6 Remarks on the Strategy

The strategy of proof for the rough data quasineutral limits [30, 36, 37] is based on
stability results for the Vlasov-Poisson systems in Wasserstein distances. Stability
results of this type have been known for Vlasov-type equations since the work of
Dobrushin [21] for the case of Lipschitz force kernels.
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The Vlasov-Poisson case was considered by Loeper [50], for solutions whose
mass density ρf is bounded in L∞. This is an estimate of the form

W2(f1(t), f2(t)) ≤ F
[
W2(f1(0), f2(0)), max

i=1,2
‖ρfi‖L∞([0,t ]×Td)

]
,

for some suitable F . The corresponding estimate for the VPME system was proved
recently in [28].

The proof of Theorem 1 relies on a quantification of the W2 stability estimate in
terms of ε. This has two steps: first, the stability estimate itself is quantified, in the
sense that

W2(f
(1)
ε (t), f (2)

ε (t)) ≤ Fε
[
W2(f

(1)
ε (0), f (2)ε (0)), max

i=1,2
‖ρ

f
(i)
ε
‖L∞([0,t ]×Td)

]
.

Then, a bound is proved for the mass density ‖ρ
f
(i)
ε
‖L∞([0,t ]×Td) in terms of the

initial data. This is achieved by controlling the rate of growth of the support of
a solution fε in terms of the initial data, via an analysis of the characteristic
trajectories of the system. This is the reason for the compact support assumption
in Theorem 1.

The quantified stability estimate is then used to make a perturbation around the
analytic regime. More specifically, we consider the analytic functions gε(0) defined
in the statement as initial data for the VPME system (2). The assumptions (12) are
chosen precisely so that the resulting solutions gε satisfy the quasineutral limit: on
some time interval [0, T∗], as ε tends to zero, gε converges to a solution g of the
KIsE system (5). This follows from the techniques of Grenier [26], and implies
convergence in a Wasserstein distance.

The proof is concluded by the triangle inequality:

W1(fε(t), g(t)) ≤ W1(fε(t), gε(t))+W1(gε(t), g(t)) ,

choosing the envelope of initial data (13) so that the perturbation term
W1(fε(t), gε(t)) vanishes in the limit.

3 Derivations from Particle Systems

It is a fundamental problem to derive effective equations, such as Vlasov-Poisson
systems, from the physical systems they are intended to describe. In a reasonably
general setting, we may consider a system of N point particles with binary
interactions. The dynamics of such a system are modelled in classical mechanics
by a system of ODEs of the following form, describing the phase space positions
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(Xi, Vi)
N
i=1 of the particles:

⎧
⎪⎨

⎪⎩

Ẋi = Vi ,

V̇i = α(N)
∑

j �=i
∇W(Xi −Xj)+∇V (Xi).

(14)

In this setting ∇W denotes the interaction force between pairs of particles, which
here depends only on the spatial separation of the particles and is derived from
an interaction potential W . We also include an external force ∇V . The parameter
α(N) rescales the system with N and can be thought of as a rescaling of the physical
constants of the system. The choice of α(N) determines the model that is obtained
as N tends to infinity.

The case α(N) = 1/N is known as the mean field limit. The formal limiting
system is the Vlasov-type equation

∂tf + v · ∇xf + (∇W ∗x ρf + ∇V ) · ∇vf = 0 , (15)

in the sense that the empirical measures μN defined by the formula

μN := 1

N

N∑

i=1

δ(Xi,Vi)

are expected to converge to a solution of the Vlasov equation (15) in the limit as N
tends to infinity. The Vlasov-Poisson system fits into this framework by choosing
∇V = 0 and ∇W to be the Coulomb kernel K on the torus Td . This is the function
K = −∇G, where G satisfies

−	G = δ0 − 1 on T
d .

The corresponding microscopic system (14) then describes a system of interacting
electrons modelled as point charges, while (15) is the Vlasov-Poisson system (1).

To derive the VPME system, a natural choice for the underlying microscopic
system is to consider the dynamics of N ions, modelled as point charges, in a
background of thermalised electrons. On the torus, this is modelled by an ODE
system of the form

⎧
⎪⎪⎨

⎪⎪⎩

Ẋi = Vi ,

V̇i = 1

N

N∑

j �=i
K(Xi − Xj)−K ∗ eU ,
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where the electrostatic potential U satisfies

	U = eU − 1

N

N∑

i=1

δXi .

We can think of this system as being of the form (14) by taking ∇W = K and an
‘external’ force ∇V = K ∗ eU , even though ∇V is not truly external due to its
nonlinear dependence on the particle configuration through U . In this way it can be
seen that the VPME system formally describes the limit as N tends to infinity.

Other choices are possible for α(N), in which case the limit as N tends to
infinity may produce models of other forms. This approach can be used to derive
the kinetic Euler systems discussed above in Sect. 2.2. In the papers [29, 30], the
scaling α(N) ≈ 1

N log logN is used to derive the kinetic Euler systems (10) and (5).
The method is based on passing via the associated Vlasov-Poisson system, and this
limit can thus be thought of as a simultaneous mean field and quasineutral limit. In
the recent paper [38], a similar limit is proved in the monokinetic regime, to derive
the incompressible Euler equations.

3.1 Mean Field Limits

For a detailed survey of mathematical results on the mean field limit, see [23, 45].
For our purposes we emphasise that the theory of mean field limits depends on the
regularity of the interaction force ∇W chosen in the system (15).

Early contributions on the problem include the works of Braun–Hepp [14],
Neunzert–Wick [55] and Dobrushin [21]. In particular, the limit holds in the case
where the forces are Lipschitz: ∇W, ∇V ∈ W 1,∞.

However, the Vlasov-Poisson system is not included in this setting, due to the

singularity of the Coulomb kernel. Identifying the torus T
d with

[
− 1

2 ,
1
2

]d
, with

appropriate identifications of the boundary, we note the following properties of the
Coulomb kernel K . K ∈ C∞(Td \ {0}) is smooth function apart from a point
singularity at the origin. In a neighbourhood of the origin, K can be written in the
form

K(x) = Cd
x

|x|d +K0(x) , K0 ∈ C∞.

The kernel therefore has a strong singularity of the form K ∼ |x|−(d−1).
Forces with a point singularity are of interest in physical applications, since

this class includes inverse power laws. From here on, we discuss forces satisfying
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bounds of the following form: for some β ∈ (0, d − 1],

|∇W(x)|
|x|β ≤ C ,

|∇2W(x)|
|x|β+1 ≤ C for all x ∈ R

d \ {0}. (16)

Note that the Vlasov-Poisson case corresponds to β = d − 1.
Several works have studied the mean field limit problem for singular forces of

the form (16) by considering a regularisation of the limit. The singular force ∇W
is replaced by a smooth approximation ∇Wr such that limr→0∇Wr = ∇W . Then,
the limits as N tends to infinity and as r tends to zero are taken simultaneously. In
this way, one derives the Vlasov equation with singular force in the limit from a
sequence of regularised particle systems. In this formulation, the goal is to optimise
the regime r = r(N) for which this limit is valid. That is, r should be as small as
possible, so that the regularised particle systems are close to the original particle
system with singular interaction.

Hauray and Jabin [43] considered the case β < d−1. The force is regularised by
truncation at a certain distance from the singularity. In this case the regularisation
parameter r(N) represents the order of this truncation distance. If r(N) tends to
zero sufficiently slowly as N tends to infinity, they prove that the regularised mean
field limit holds for a large set of initial configurations. For ‘weakly singular’ forces
with β < 1, in [42, 43] they also prove the mean field limit without truncation.

For Coulomb interactions, the results available depend on the dimension of the
problem. In one dimension, the interaction force is less singular. As a consequence,
the mean field limit holds, as proved by Hauray [41]. The corresponding result for
the VPME system was proved by Han-Kwan and the second author in [37].

In higher dimensions, the Coulomb force is of the form (16). It has a strong
singularity corresponding to the endpoint case β = d − 1 not covered by the results
of Hauray and Jabin [43]. Regularised approaches were considered by Lazarovici
[47] and Lazarovici and Pickl [48]. By a truncation method, Lazarovici and Pickl
prove a regularised mean field limit for the Vlasov-Poisson system, for a truncation
radius of order r(N) ∼ N−1/d+η for any η > 0. To put this in context, note that
N−1/d is the order of separation of particles in x if their spatial distribution is close
to uniform.

In a recent breakthrough [59], Serfaty introduced a modulated energy method
to prove the validity of the mean-field limit for systems of points evolving along
the gradient flow of their interaction energy when the interaction is the Coulomb
potential or a super-coulombic Riesz potential, in arbitrary dimension. In the
appendix (in collaboration with Duerinckx), they adapt this method to prove the
mean-field convergence of the solutions to Newton’s law with Coulomb interaction
in the monokinetic case to solutions of an Euler-Poisson type system.

For the VPME system, a regularised mean field limit was considered by the
authors in [30]. The regularisation used is a regularisation by convolution, similar
to the setting of Lazarovici [47] that we describe below in Sect. 3.1.1. With this
regularisation, the resulting microscopic system represents a system of interacting
extended charges, where the parameter r gives the order of the radius of the charges.
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Lazarovici [47] derived the Vlasov-Poisson system from a system of extended

electrons for r(N) ≥ CN
− 1

d(d+2)+η for some η > 0. In [30], the authors proved
a similar derivation for the VPME system from a system of extended ions, for the
same range of r . We present this result below in Sect. 3.1.1. To our knowledge, this is
the first derivation of the VPME system from a particle system in three dimensions.

3.1.1 Mean Field Limits for VPME

For the VPME system, the mean field limit was proved in the one-dimensional
setting in [37]. In the article [30], we considered the problem in higher dimensions
d = 2, 3, deriving the VPME system from a particle system. The microscopic
system is regularised with the regularisation used by Lazarovici [47] for the Vlasov-
Poisson system. It consists of a system of ‘extended ions’: instead of representing
the ions as point charges, we consider charges of shape χ for some non-negative,
radially symmetric function χ ∈ C∞c (Rd) with unit mass (see Fig. 1). The charges
are rescaled as follows: for r > 0, let

χr(x) := r−dχ
(x
r

)
.

The extended ions interact with a background of thermalised electrons, leading
to the following system of ODEs:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẋi = Vi ,

V̇i = −χr ∗ ∇xUr(Xi) ,

	Ur = eUr − 1

N

N∑

i=1

χr(Xi).

(17)

We are able to derive the VPME system (2) from this regularised system, under
a condition on the initial data that is satisfied with high probability for r(N) ≥
CN

− 1
d(d+2)+η. This matches the rate found in Lazarovici’s result for the Vlasov-

Poisson system.

Fig. 1 A system of extended
charges. Here χ is supported
in the unit ball and thus r
represents the radius of each
charge
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Theorem 2 (Regularised Mean Field Limit) Let d = 2, 3, and let f0 ∈ L1 ∩
L∞(Td × R

d) be compactly supported. Let f denote the unique bounded density
solution of the VPME system (2) with initial datum f0. Fix T∗ > 0.

Assume that r = r(N) and the initial configurations for (17) are chosen such that
the corresponding empirical measures satisfy, for some sufficiently large constant
C > 0, depending on T∗ and the support of f0,

lim sup
N→∞

W 2
2 (f0, μ

N
r (0))

rd+2+C| log r |−1/2 < 1.

Then the empirical measure μNr associated to the particle system dynamics starting
from this configuration converges to f :

lim
N→∞ sup

t∈[0,T∗]
W2(f (t), μ

N
r (t)) = 0. (18)

In particular, choose r(N) = N−γ for some γ < 1
d(d+2) . For each N , let the initial

configurations for the regularised N-particle system (17) be chosen by taking N

independent samples from f0. Then (18) holds with probability one.

This theorem is proved by introducing a regularised version of the VPME system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tfr + v · ∇xfr + Er · ∇vfr = 0 ,

E = −χr ∗x ∇xU, 	U = eU − χr ∗x ρf ,

fr |t=0 = f0 ,

∫

Td×Rd

f0(x, v) dx dv = 1.

(19)

The solution fr of this system is used as an intermediate step between the particle
system and the VPME system, as illustrated in Fig. 2.

The proof proceeds as follows:

• We estimate the discrepancy between μNr and fr , and that between fr and f ,
in a Wasserstein distance. This uses similar techniques to the stability estimate
discussed in Sect. 2.6.

• This estimate is carefully quantified and the regularisation parameter r is allowed
to depend on N . This allows us to identify a relationship between r and N

such that μNr converges to f for almost all initial data drawn as N independent
samples from f0.

Fig. 2 Strategy for the proof
of Theorem 2
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3.2 Derivation of Kinetic Euler Systems

The kinetic Euler systems (5) and (10) can be derived from particle systems, by
using a modified scaling instead of the mean field scaling. In the articles [29, 30]
we consider an approach based on a combined mean field and quasineutral limit.
In terms of the scaling α(N), this means that we write α = (Nε2)−1, and then
consider allowing ε to depend on N . We then seek a rate of decay of ε(N) to zero
as N tends to infinity for which it possible to take the mean field and quasineutral
limits simultaneously.

Due to the challenges involved in the mean field limit for Vlasov-Poisson system,
as discussed above, we again use the extended charges model. For the KIsE system
we therefore work with the following microscopic system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ẋi = Vi ,

V̇i = −χr ∗ ∇xU(Xi) ,

ε2	U = eU − 1

N

N∑

i=1

χr(x −Xi).

(20)

In [30], we prove the following result.

Theorem 3 (From Extended Ions to Kinetic Isothermal Euler) Let d = 2 or 3,
and let fε(0), gε(0) and g(0) satisfy the assumptions of Theorem 1. Let T∗ > 0 be
the maximal time of convergence from Theorem 1 and let g denote the solution of
the KIsE system (5) with initial data g(0) on the time interval [0, T∗] appearing in
the conclusion of Theorem 1.

Let r = r(N) be of the form

r(N) = cN
− 1

d(d+2)+η , for some η > 0 , c > 0.

There exists a constantC, depending on d , η, c and {fε(0)}ε, such that the following
holds.

Let ε = ε(N) satisfy

ε(N) ≥ C√
log log logN

, lim
N→∞ ε(N) = 0.

For each N , let the initial conditions for the regularised and scaled N-particle
ODE system (20) be chosen randomly with law fε(N)(0)⊗N . Let μNε,r(t) denote the
empirical measure associated to the solution of (20).

Then, with probability one,

lim
N→∞ sup

t∈[0,T∗]
W1

(
μNε,r (t), g(t)

)
= 0.



228 M. Griffin-Pickering and M. Iacobelli

Fig. 3 Strategy for the proof
of Theorem 3

This theorem is proved using the strategy illustrated in Fig. 3. Here fε,r denotes
the solution of a version of the regularised VPME system (19) with quasineutral
scaling.

The proof proceeds as follows:

• As in the proof of Theorem 2, we estimate the Wasserstein distance between μNε,r
and fε,r and between fε,r and fε .

• We carefully quantify these estimates in terms of all three parameters N , r and
here also ε.

• For the convergence of fε to g, we appeal to Theorem 1.
• Using this, we are able to identify a dependence r = r(N) and ε = ε(N) of the

parameters on the number of particles, and a relation between r and ε, so that
the convergence from the particle system to the KIsE system holds for almost all
initial data drawn as independent samples from fε(0).
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A Note on Acoustic Limit
for the Boltzmann Equation

Juhi Jang and Chanwoo Kim

Abstract We introduce a new Hilbert-type expansion of the Boltzmann equation
with the acoustic scaling. By using recentLp-L∞ theory of the Boltzmann equation,
we show the validity of the acoustic limit in optimal scaling. In particular, our
scheme requires only the second order of the expansion with a remainder, and
thereby it gives less restrictions on the initial data.

1 Introduction

We study the rescaled Boltzmann equation

St∂tF + v · ∇xF = 1

Kn
Q(F,F) (1)

with dimensionless numbers: Strouhal number St and the Knudsen number Kn. Here
F = F(t, x, v) ≥ 0 is the distribution function of the gas particles with the time
variable t ∈ R+ := {t ≥ 0}, the space variable x = (x1, x2, x3) ∈ � = R

3 or
T

3 (a periodic box), and the velocity variable v = (v1, v2, v3) ∈ R
3. We consider

the hard sphere model for which the corresponding Boltzmann collision operator
Q(·, ·) takes the form

Q(F,G) = 1

2

∫

R3

∫

S2
|(v − v∗) · u|{F(v′)G(v′∗)+G(v′)F (v′∗)

− F(v)G(v∗)−G(v)F (v∗)}dudv∗,
(2)

where v′ := v − ((v − v∗) · u)u and v′∗ := v∗ + ((v − v∗) · u)u.
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The Boltzmann operator Q satisfies so-called the collision invariance

∫

R3
Q(F,G)(v)

(
1, v,

|v|2 − 3√
6

)
dv = (0, 0, 0) (3)

which represents the local conservation laws of mass, momentum and energy.
An equilibrium, satisfying Q(·, ·) = 0, is given by a local Maxwellian associated

with the density R > 0, the macroscopic velocity U ∈ R
3 and the temperature

T > 0

MR,U,T (v) := R

(2πT )
3
2

exp

{
−|v − U |2

2T

}
. (4)

If (R,U, T ) are constant in t and x, it is called a global Maxwellian.
In addition to the Strouhal number and Knudsen number we introduce the Mach

number Ma. By passing some or all of St,Kn, and Ma to zero, one may formally
derive PDEs of hydrodynamic variables for the fluctuations around the reference
state (1, 0, 1), which are determined as

(
σ(t, x), u(t, x), θ(t, x)

)
= lim

Ma↓0

1

Ma

∫

R3
{F(t, x, v) −M1,0,1(v)}

(
1, v,

|v|2 − 3√
6

)
dv.

(5)

In fact, fundamental fluid equations such as Euler and Navier-Stokes equations can
be derived as the hydrodynamic limit of the Boltmzann equation with appropriate
scalings and there has been a lot of mathematical progress over the decades to justify
various fluid equations in both compressible and incompressible regimes [1–19].

In this note, we are interested in the following acoustic scaling:

St = 1, Kn = ε, Ma = δ with δ = δ(ε) ↓ 0 as ε ↓ 0 (6)

where multi-scale parameters (ε, δ) appear. Under the scale (6), the hydrodynamic
variables (5) in the limit satisfy the acoustic system:

∂tσA +∇x · uA = 0,

∂tuA + ∇x(σA + θA) = 0,

3
2∂t θA +∇x · uA = 0.

(7)

As far as the rigorous justification of the acoustic system under (6) is concerned,
the relative strength of δ with respect to ε turns out to be playing an important

role. In particular, δ(ε) = O(ε
1
2 ) is a well-known threshold for the acoustic limit

in the framework of renormalized solutions [3, 6, 14], while the optimal scaling of
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δ = δ(ε) ↓ 0 as ε ↓ 0 has been validated in the framework of smooth solutions [9]
based on the truncated Hilbert expansion.

The goal of this note is to introduce a new Hilbert-type expansion for the
Boltzmann equation with (6) in optimal scaling and to provide another proof of
the acoustic limit that requires fewer expansions than the ones used in the previous
works. We hope that this new multi-scale Hilbert expansion will be useful for other
problems.

In the next section, we introduce a Hilbert-type expansion with the multi-scale
parameters and discuss the formal derivation of the acoustic equations under (6).

2 Hilbert Expansion and the Result

We take the scaling (6) for the rescaled Boltzmann equation (1) and let

δ→ 0 and
ε

δ
→ 0 as ε→ 0. (8)

The second condition has been added to address the optimal scaling. The acoustic
limit is closely related to the compressible Euler limit, as the acoustic system (7) is
the linearization of the compressible Euler system around the trivial state (1, 0, 1).
Following the strategy of [9], we will make use local Maxwellians induced by the
Euler system to derive the acoustic system. To this end, we first recall that a local
Maxwellian MR,U,T satisfies

∫

R3

{
∂tMR,U,T + v ·∇xMR,U,T

} [
1 v − U |v − U |2]T

dv = 0, (9)

if and only if (R,U, T ) solves the compressible Euler system

∂tR +∇x ·(ρU) = 0,

∂t (RU)+ ∇x ·(RU ⊗U)+∇xp = 0,

∂t

[
R(e + 1

2 |U |2)
]
+∇x ·

[
RU(e + 1

2 |U |2)
]
+∇x ·(pU) = 0,

(10)

with the equation of state

p = RT = 3
2Re. (11)

With the expectation of (σA, uA, θA) satisfying (7) being close to 1
δ
(R − 1, U,

T − 1), we introduce a local Maxwellian corresponding to (R,U, T ) = (1 +
δσ (t, x), δu(t, x), 1 + δθ(t, x)) solving the Euler equations (10) with initial con-
dition (σ, u, θ)|t=0 = (σA, uA, θA)|t=0 = (σ 0

A , u
0
A, θ

0
A):

μδ :=M1+δσ,δu,1+δθ (12)
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and consider a Boltzmann solution Fε of (1) in a form of

Fε = μδ + δεF1δ + δε2F2δ + ε
3
2FRε,δ. (13)

A linearized operator with μδ is given by

Lδf := − 2√
μδ

Q(μδ,
√
μδf ). (14)

From (3) the kernel of Lδ , KerLδ = 〈{ϕi√μδ}5i=1〉L2
v(R

3), has five orthonormal basis

ϕ0 := 1√
1+ δσ

, ϕi := 1√
1+ δσ

vi − δui√
1+ δθ

for i = 1, 2, 3, ϕ4 := 1√
1+ δσ

∣∣ v−δu√
1+δθ

∣∣2 − 3
√

6
.

(15)

We denote an L2
v-projection Pδ on KerLδ such as

Pδg :=
4∑

j=0

(Pjg)ϕj
√
μδ, Pδg := (P0g, P1g, P2g, P3g, P4g), (16)

where Pjg :=
∫
R3 gϕj

√
μδdv for j = 0, 1, · · · , 4. We remark that for the purpose

of notational convenience, we have omitted the dependence on δ of ϕi , Pi , which
should read as ϕi = ϕiδ , Pi = Piδ .

Then the equation of FRε,δ with (13) is given by

∂tFRε,δ + v ·∇xFRε,δ − 2

ε
Q(μδ, FRε,δ)− 1

ε1− 3
2

Q(FRε,δ, FRε,δ) (17)

= δ

ε
3
2

{−∂tμδ − v ·∇xμδ
δ

+ 2Q(μδ, F1δ)
}

(18)

+ δε

ε
3
2

{
− ∂tF1δ − v ·∇xF1δ + 2δQ(F1δ, F1δ)+ 2Q(μδ, F2δ)

}
(19)

+ δε2

ε
3
2

{
− ∂tF2δ − v ·∇xF2δ + 2δQ(F1δ, F2δ)+ δεQ(F2δ, F2δ)

}
(20)

+ ε
3
2

ε
3
2

{
2δQ(F1δ, FRε,δ)+ 2δεQ(F2δ, FRε,δ)

}
. (21)

We first claim that (18) and (19) vanish upon the suitable choice of μδ and F1δ.
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By the Fredholm and the collision invariance (3), the whole line of (18) vanishes
if

∫

R3
{∂tμδ + v ·∇xμδ}ϕjdv = 0 for all j = 0, 1, · · · , 4 (22)

and

(I− Pδ)(
F1δ√
μδ

) = −Lδ−1
(
∂tμδ + v ·∇xμδ

δ
√
μδ

)
(23)

where I is the identity operator. Realizing that (22) is equivalent to (9), the line
of (18) vanishes if (1 + δσ, δu, 1 + δθ) solves the Euler system (10). From the
standard theory on the classical solutions of the Euler system, a smooth solution
(1+ δσ, δu, 1+ δθ) persists with lifespan bounded from below by

τδ ≥ C

δ
for some C > 0. (24)

On the other hand, the acoustic system (7) is the linearization of (10) around
(1, 0, 1). A smooth solution of this linear system persists global in time and it stays
close to the perturbation of the Euler solution as

sup
0≤t≤τδ

‖(σ − σA, u− uA, θ − θA)‖Hs � δ (25)

with initial condition (σ, u, θ)|t=0 = (σA, uA, θA)|t=0 = (σ 0
A , u

0
A, θ

0
A). See Lemmas

3.1 and 3.2 of [9] for the proofs. Therefore we have

μδ = μ0 + δ
{
σA + uA · v + θA

|v|2 − 3

2

}
μ0 + o(δ)μ1−

0 for 0 ≤ t ≤ τδ. (26)

Likewise, the whole line of (19) vanishes if F1δ satisfies

∫

R3
{∂tF1δ + v ·∇xF1δ}ϕjdv = 0 for all j = 0, 1, · · · , 4. (27)

(I− Pδ)(
F1δ√
μδ
) is determined by (23) and hence, the condition (27) gives rise to the

equations for Pj (
F1δ√
μδ
). The standard theory of linear hyperbolic system induces a

smooth solution of (27) (see Appendix). Further by (27), the microscopic part of
F2δ is completely determined by F1δ:

(I− Pδ)(
F2δ√
μδ

) = −Lδ−1
(
∂tF1δ + v · ∇xF1δ − 2δQ(F1δ, F1δ)√

μδ

)
. (28)
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We set Pδ(
F2δ√
μδ
) = 0 for simplicity. With (22) and (27), the equation of FR is (17),

(20), (21) without (18) and (19).
The main result of this note is the rigorous justification of the acoustic limit by

using the expansion (13) to the rescaled Boltzmann equation (1) with (6):

Theorem 1 Assume 0 < ε  1 and δ in (8). Assume (ρ0
A, u

0
A, θ

0
A) ∈ Hs(�) and

Pδ(
F1δ√
μδ
)|t=0 ∈ Hs(�) for s > 5, and also assume (23) holds at t = 0. Then there

exist smooth F1δ and F2δ uniformly bounded in δ for t ≥ C
δ

. Suppose the initial
datum satisfies (75), then for 0 < δ  1

sup
0≤t≤ C

δ

∥
∥
∥
Fε(t)− μ0

δ
− (

σA + uA · v + θA
|v|2 − 3

2

)
μ0

∥
∥
∥
L2
x,v

� δ, (29)

where C does not depend on δ, t.

Remark 1 The initial conditions are “well-prepared” as in the assumptions of
Theorem 1, but they are less restrictive than in the previous setting [9] as the
expansion order is 2. And the required initial compatibility conditions avoid initial
layers.

Remark 2 Other collision operators for the hard potential and soft potential with an
angular cutoff can be treated in the same way as in [9].

Remark 3 Multi-scale Hilbert expansion introduced in this section sheds some light
on other hydrodynamic limit problems. For instance, see [20] for a multi-scale
Hilbert expansion to the incompressible Euler limit from the Boltzmann equation
with diffuse boundary, where the scaling is given St = ε, Ma = ε, Kn =
κε with κ = κ(ε) ↓ 0 as ε ↓ 0 and κ " ε.

With smooth coefficients μδ , F1δ and F2δ obtained in the Hilbert expansion in
the above using (13) and (26), in order to prove Theorem 1, it suffices to derive the
uniform bounds of the remainder FR . To that end, we invoke the Lp−L∞ theory of
the Boltzmann equation and a recent L6-integrability of Pδf in [21]. Key estimates
and ingredients of the proof are presented in the following sections.

3 L2 Theory

In order to utilize the L2-theory with symmetric linear operator (14) we introduce

FRε,δ = √μδfRε,δ, Fi δ = √μδfiδ for i = 1, 2. (30)
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The equation of fRε,δ is given by

[
∂t + v ·∇x + ε−1Lδ

]
fRε,δ

= ε
1
2$δ(fRε,δ, fRε,δ)+ 2δ$δ(f1δ, fRε,δ)+ δrε,δ − 1

2

[∂t + v ·∇x ]μδ
μδ

fRε,δ,

(31)

where

rε,δ :=2ε$δ(f2δ, fRε,δ)+ δε
1
2 {2$δ(f1δ, f2δ)+ ε$δ(f2δ, f2δ)}

+ ε
1
2
{− ∂tf2δ − v ·∇xf2δ −

1

2

[∂t + v ·∇x ]μδ
μδ

f2δ
}
.

(32)

Here we have used the notation

$δ(f, g) := 1√
μδ

Q(
√
μδf,

√
μδg).

From (3) and (15) we have
∫

R3
$δ(f, g)hdv =

∫

R3
$δ(f, g)(I − Pδ)hdv.

The same holds for L:
∫

R3
Lδf f dv =

∫

R3
Lδf (I− Pδ)f dv =

∫

R3
Lδ(I− Pδ)f (I− Pδ)f dv.

A standard decomposition yields

Lδf = νδf −
∫

R3
k(v, v∗)f (v∗)dv∗, (33)

where νδ(v) :=
∫
R3

∫
S2 B(v−v∗, ω)μδ(v∗)dωdv∗ ∼ 〈v〉. Here we assume 1+δσ >

0 and 1+ δθ > 0, which are valid for 0 ≤ t ≤ τδ .
Our analysis will involve the estimates of ∂tfRε,δ. The equation of ∂tfRε,δ is

given by

[
∂t + v ·∇x + ε−1Lδ

]
∂tfRε,δ = −ε−1Lδt (I− Pδ)fRε,δ + ε−1Lδ(Pδ tfRε,δ)

+ 2ε
1
2$δ(fRε,δ, ∂t fRε,δ)+ ε

1
2$δt (fRε,δ, fRε,δ)+ 2δ$δ(f1δ, ∂t fRε,δ)

+ 2δ$δ(∂tf1δ, fRε,δ)+ 2δ$δt (f1δ, fRε,δ)

+ δ∂trε,δ − 1

2

[∂t + v ·∇x ]μδ
μδ

∂tfRε,δ −
1

2
∂t

( [∂t + v ·∇x ]μδ
μδ

)
fRε,δ

(34)
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where the commutators Lδt , Pδt , and $δt are given as

Lδtg = ∂t (Lδg)− Lδ(∂tg), Pδt g = ∂t (Pδg)− Pδ(∂t g),

$δt (g1, g2) = ∂t ($δ(g1, g2))− $δ(∂tg1, g2)− $δ(g1, ∂t g2).
(35)

We now define the energy and dissipation as

Eε,δ(t) := ‖fRε,δ(t)‖2
L2
x,v
+ ε‖∂tfRε,δ(t)‖2

L2
x,v

(36)

and

Dε,δ(t) := [ε− 1
2 ‖√νδ(I− Pδ)fRε,δ‖L2

x,v
]2 + ‖√νδ(I− Pδ)∂tfRε,δ‖2

L2
x,v
. (37)

From the standard spectral gap estimate, we have the following L2 estimate:

Eε,δ(t)+
∫ t

0
Dε,δ(t) (38)

� Eε,δ(0)+
∫ t

0

∥
∥
∥

ε√
νδ
$δ(fRε,δ, fRε,δ)

∥
∥
∥

2

L2
x,v

+
∥
∥
∥
ε

3
2√
νδ
$δ(fRε,δ, ∂tfRε,δ)

∥
∥
∥

2

L2
x,v

(39)

+
∫ t

0

∥∥
∥
δε

1
2√
νδ
$δ(f1δ, fRε,δ)

∥∥
∥

2

L2
x,v

(40)

+
∫ t

0

∥∥
∥
δε√
νδ
$δ(f1δ, ∂tfRε,δ)

∥∥
∥

2

L2
x,v

+
∥∥
∥
δε√
νδ
$δ(∂tf1δ, fRε,δ)

∥∥
∥

2

L2
x,v

(41)

+
∫ t

0

∫∫

�×R3
{|Lδt (I− Pδ)fRε,δ| + |Lδ(Pδ tfRε,δ)| + ε

3
2 |$δt (fRε,δ, fRε,δ)|

+δε|$δt (f1δ, fRε,δ)|}|∂tfRε,δ| (42)

+sup
0≤s≤t

‖(σ, u, θ)‖C2
t,x

×
∫ t

0

∫∫

�×R3
δ〈v〉3|fRε,δ|2 + δε〈v〉3(|fRε,δ||∂tfRε,δ| + |∂tfRε,δ|2) (43)

+ δ

∫ t

0

∫∫

�×R3
|rε,δfRε,δ| + ε|∂trε,δ∂tfRε,δ|. (44)
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4 L∞ Estimate

The main obstacle arising from the L2 estimate around a local Maxwellian μδ is the
unpleasant velocity growth coming from the term μδ

−1(∂t + v ·∇x )μδfRε,δ , which
is a cubic polynomial in v as in (43). To remedy this difficulty, following Caflisch
[9, 22], we introduce a global Maxwellian

μM = 1

(2πTM)3/2 exp

{
− |v|

2

2TM

}

where TM satisfies the following condition

TM < T (t, x) = 1+ δθ(t, x) < 2TM for all (t, x) ∈ [0, τ ] ×�. (45)

This moderate temperature variation condition is achieved for sufficiently small
initial perturbations. Note that under the assumption (45), there exist constants
c1 , c2 such that for some 1/2 < α < 1

c1μM ≤ μδ ≤ c2μ
α
M for all (t , x , v) ∈ [0, τ ] ×�× R

3. (46)

We further define

hε,δ := w√
μM

FRε,δ, w = 〈v〉β (47)

for any fixed β ≥ 9.
We also define

LδMg = − 2√
μM

Q(μδ,
√
μMg) = νδg −Kδg (48)

where

Kδg =
∫

R3
k(v, v∗)

√
μδ(v)

√
μM(v∗)√

μδ(v∗)
√
μM(v)

g(v∗)dv∗. (49)

We may write for any m > 0,

Kδg = Kδ
mg +Kδ

cg (50)

where

|Kδ
mg(v)| � m4νδ‖g‖∞ (51)
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and

Kδ
cg(v) =

∫

R3
l(v, v∗)dv∗ where l(v, v∗) �m

e−c|v−v∗|2

|v − v∗| for some c > 0.

(52)

See Lemma 2.3 of [9] for the proof.
Now by letting Kδwg = wKδ(

g
w
),

[
∂t + v ·∇x + νδ

ε

]
hε,δ(t, x, v)

= 1

ε
Kδwhε,δ + ε1/2 w√

μM
Q

(
hε,δ
√
μM

w
,
hε,δ
√
μM

w

)
+ δr̃ε,δ

(53)

where

r̃ε,δ = w√
μM

[
2Q

(
F1,

hε,δ
√
μM

w

)
+ 2εQ

(
F2δ,

hε,δ
√
μM

w

)]

+ ε
1
2

w√
μM
[−∂tF2δ − v ·∇xF2δ + 2δQ(F1δ, F2δ)+ δεQ(F2δ, F2δ)].

(54)

Then we may integrate (53) along the trajectory:

hε,δ(t, x, v) = exp{−1

ε

∫ t

0
νδdτ }hε,δ(0, x − vt, v)

−
∫ t

0
exp{−1

ε

∫ t

s

νδdτ }
(

1

ε
Kδ

m
whε,δ

)
(s, x − v(t − s), v)ds

−
∫ t

0
exp{−1

ε

∫ t

s

νδdτ }
(

1

ε
Kδ

c
whε,δ

)
(s, x − v(t − s), v)ds

+
∫ t

0
exp{−1

ε

∫ t

s

νδdτ }
(
ε1/2w√
μM

Q(
hε,δ
√
μM

w
,
hε,δ
√
μM

w
)

)
(s, x − v(t − s), v)ds

+
∫ t

0
exp{−1

ε

∫ t

s

νδdτ }δr̃ε,δ(s, x − v(t − s), v)ds.

(55)

Recall
∣
∣
∣
∣

w√
μM

Q

(
hε,δ
√
μM

w
,
hε,δ
√
μM

w

)∣
∣
∣
∣ � νδ‖hε,δ‖2∞. (56)
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From μM � μδ and (51), (52), we first obtain for N " 1,

|hε,δ(t, x, v)|
� e−

νδ
ε
t‖hhε,δ(0)‖L∞x,v

+
∫ t

0

νδ

ε
e−

νδ
ε
t ε

{
o(1)+ sup

0≤s≤t
ε

1
2 ‖e νδ

2ε shε,δ(s)‖L∞x,v
}

sup
0≤s≤t

‖e νδ
2ε shε,δ(s)‖L∞x,v ds

+
∫ t

0
e−

νδ
ε
(t−s)δ|r̃ε,δ|ds ++o(1)e−

ν0
2ε t sup

0≤s≤t
‖e νδ

2ε shε,δ(s)‖L∞x,v

+
∫ t

0

∫

|v∗|≤N,|v−v∗|≥ 1
N

e−
νδ
ε (t−s)

ε
lw(v, v∗)|hε,δ(s, x − (t − s)v, v∗)|dv∗ds.

(57)

Iterating once again and splitting the time integration in s∗ ∈ [0, s − o(1)ε] ∪ [s −
o(1)ε, s] we bound (57) by

e−
νδ
ε t‖hε,δ(0)‖L∞x,v

+ ε
{
o(1)+ sup

0≤s≤t
ε

1
2 ‖e− νδ

2ε (t−s)hε,δ(s)‖L∞x,v
}

sup
0≤s≤t

‖e− νδ
2ε (t−s)hε,δ(s)‖L∞x,v

+ εδ sup
0≤s≤t

‖e− νδ
2ε (t−s)r̃ε,δ‖L∞x,v

+
∫ t

0

e−
νδ (v)

ε (t−s)
ε

∫

|v∗|≤N,|v−v∗|≥ 1
N

∫ s−o(1)ε
0

e−
νδ (v∗)

ε (s−s∗)
ε

∫

|v∗∗|≤N,|v∗−v∗∗|≥ 1
N

× lw(v, v∗)lw(v∗, v∗∗)w(v∗∗)|fRε,δ(s∗, x − (t − s)v − (s − s∗)v∗, v∗∗)|dv∗∗ds∗dv∗ds.
(58)

Note that lw(v, v∗)lw(v∗, v∗∗)w(v∗∗) �N 1 within the above integration regime. We
first split fRε,δ into PδfRε,δ + (I− Pδ)fRε,δ and then use Hölder inequality for any
1 < p1, p2 <∞ to bound the last two whole lines of (58) by

∫ t

0

e−
ν0
ε
(t−s)

ε

∫ s−o(1)ε

0

e−
ν0
ε
(s−s∗)

ε

{‖PδfRε,δ(s∗,X(v∗), v∗∗)‖Lp1
v∗,v∗∗

+ ‖(I− Pδ)fRε,δ(s∗,X(v∗), v∗∗)‖Lp2
v∗,v∗∗

}
ds∗ds.

(59)
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Then applying the change of variables v∗ �→ X(v∗) := x − (t − s)v − (s − s∗)v∗
with det

(
∂(x−(t−s)v−(s−s∗)v∗)

∂v∗
)
� o(1)ε3 for s∗ ∈ [0, s − o(1)ε], we derive

‖PδfRε,δ(s∗,X(v∗), v∗∗)‖Lp1
v∗,v∗∗

� ε
− 3

p1 ‖PδfRε,δ(s∗)‖Lp1
x,v
,

‖(I− Pδ)fRε,δ(s∗,X(v∗), v∗∗)‖Lp2
v∗,v∗∗

� ε
− 3

p2 ‖(I− Pδ)fRε,δ(s∗)‖Lp2
x,v
.

(60)

From (57)–(60) we conclude that

‖hε,δ(t)‖L∞x,v � ‖hε,δ(0)‖L∞x,v + ε
{
o(1)+ sup

0≤s≤t
ε

1
2 ‖hε,δ(s)‖L∞x,v

}
sup

0≤s≤t
‖hε,δ(s)‖L∞x,v

+ εδ‖r̃ε,δ‖L∞x,v + sup
0≤s≤t

{
ε
− 3

p1 ‖PδfRε,δ(s)‖Lp1
x,v
+ ε
− 3

p2 ‖(I− Pδ)fRε,δ(s)‖Lp2
x,v

}
.

(61)

Analogously, we have the equation for ∂thε,δ:

[
∂t + v ·∇x + νδ

ε

]
∂thε,δ(t, x, v)

=1

ε
Kδw∂thε,δ + 2ε1/2 w√

μM
Q

(
hε,δ
√
μM

w
,
∂thε,δ

√
μM

w

)
+ δ∂t r̃ε,δ

+ 1

ε
(Kδw)thε,δ − (νδ)thε,δ

ε

(62)

where the last line represents the commutators typically containing δ〈v〉3. By a
similar trajectory argument, we deduce that for h̃ε,δ = 〈v〉−3∂thε,δ

‖h̃ε,δ‖L2
t L
∞
x,v

� ‖h̃(0)‖L∞x,v + ε
{
o(1)+ sup

0≤s≤t
ε

1
2 ‖hε,δ(s)‖L∞x,v

}‖h̃ε,δ‖L2
t L
∞
x,v
+ εδ‖〈v〉−3∂t r̃ε,δ‖L2

t L
∞
x,v

+ δ

{
‖hε,δ‖L∞t,x,v + ε

− 3
p1 ‖PδfRε,δ(s)‖L2

t L
p1
x,v
+ ε−

3
2 ‖(I− Pδ)fRε,δ(s)‖L2

t,x,v

}

+ ε
− 3

p1 ‖Pδ∂tfRε,δ(s)‖L2
t L

p1
x,v
+ ε−

3
2 ‖(I− Pδ)∂tfRε,δ(s)‖L2

t,x,v
.

(63)
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5 PδfRε,δ Estimate in L2
t L

3
x and L∞

t L6
x

In this section we estimate PδfRε,δ in (16). The first estimate is a direct consequence

of the Average lemma (e.g. [23]) and the Sobolev embedding H
1
2
x ⊂ L3

x in 3D:

∫ t

0
‖ε 1

2PδfRε,δ‖2
L3
x
+

∫ t

0
‖εP∂tfRε,δ‖2

L3
x

(64)

�
∫ t

0
Eε,δ +

∫ t

0
Dε,δ +

∫ t

0
‖ε 1

2 δ$δ(f1δ, fRε,δ)‖2
L2
x,v

(65)

+
∫ t

0
‖ε$δ(fRε,δ, fRε,δ)‖2

L2
x,v
+

∫ t

0
‖ε 3

2$δ(fRε,δ, ∂tfRε,δ)‖2
L2
x,v

(66)

+
∫ t

0
‖εδ$δ(f1δ, ∂t fRε,δ)‖2

L2
x,v
+ ‖εδ$δ(∂tf1δ, fRε,δ)‖2

L2
x,v

(67)

+
∫ t

0
‖Lδt (I− Pδ)fRε,δ‖2

L2
x,v
+ ‖Lδ(Pδ tfRε,δ)‖2

L2
x,v

+ ‖ε 3
2$δt (fRε,δ, fRε,δ)‖2

L2
x,v
+ ‖δε$δt (f1δ, fRε,δ)‖2

L2
x,v

(68)

+
∫ t

0
‖ε 1

2 δ〈v〉3fRε,δ‖2
L2
x,v
+ ‖εδ〈v〉3∂tfRε,δ‖2

L2
x,v

(69)

+
∫ t

0
‖ε 1

2 δrε,δ‖2
L2
x,v
+ ‖εδ∂t rε,δ‖2

L2
x,v
. (70)

The second estimate comes from the test function method of [21, 24]. We employ
a weak formulation of (31)

∫ ∫

�×R3
−ε 1

2 PδfRε,δv ·∇xψ

=
∫∫

�×R3
{−ε 1

2 ∂tfRε,δ − ε−
1
2LδfRε,δ + ε$δ(fRε,δ, fRε,δ)+ ε

1
2 δrε,δ

− ε
1
2

2

[∂t + v · ∇x]μδ
μδ

fRε,δ}ψ + ε
1
2 (I− Pδ)fRε,δv ·∇xψ.

(71)



246 J. Jang and C. Kim

with special test functions

ψj := (|v − δu|2 − βj )v · ∇xφj√μδ for j = 0, 4

ψ1
i,j :=

(
(vi − δui)

2 − β
)
∂jφj
√
μδ for i, j ∈ {1, 2, 3},

ψ2
i,j := |v − δu|2(vi − δui)(vj − δuj )∂iφj

√
μδ for i, j ∈ {1, 2, 3}, i �= j,

(72)

with−	xφj = (Pj fRε,δ)
5− 1
|�|

∫
�
(PjfRε,δ)

5dx with some condition on β, β0, β4.

Then following the strategy of [20, 21], we use these test functions in (71), Hölder

inequality and the embeddingW 1, 6
5 (R3

x) ⊂ L2(R3
x)with 1

2 = 1
6/5− 1

3 which implies
that

‖∇x(−	x)
−1|ε 1

2 PδfRε,δ|5‖2

� ‖∇x(−	x)
−1|ε 1

2 PδfRε,δ|5‖
W

1, 6
5 (R3

x)

� ‖|ε 1
2 PδfRε,δ|5‖

L
6
5 (R3

x)

� ‖ε 1
2 PδfRε,δ‖5

L6(R3
x)

to deduce that

‖ε 1
2PfRε,δ(t)‖6 �‖ε− 1

2
√
ν(I− Pδ)fRε,δ(t)‖L2

x,v
+√

Eε,δ(t)

+ ‖ε$δ(fRε,δ(t), fRε,δ(t))‖L2
x,v
+ ε

1
2 δ‖rε,δ(t)‖L2

x,v
,

(73)

as long as ‖(σA, uA, θA)‖C1 � 1. We refer to [20, 21] for more detail.

6 Closing the Estimates

Define the final energy and dissipation with a parameter 0 < a  1

Ẽε,δ(t) := sup
0≤s≤t

{
Eε,δ(t)+ a‖εhε,δ(s)‖2

L∞x,v + a‖ε 1
2 PδfRε,δ(t)‖2

L6
x

}
,

D̃ε,δ(t) := Dε,δ(t)+ a‖ε 1
2PδfRε,δ(t)‖2

L3
x
+ a‖εPδ∂tfRε,δ(t)‖2

L3
x
+ a‖ε 3

2 h̃ε,δ(s)‖2
L∞x,v .

(74)
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We further assume the initial data satisfy with some 0 < b  1 which will be
specified later

Ẽε,δ(0)+ ‖ε− 1
2 (I− Pδ)fRε,δ(0)‖2

L2
x,v
< bδ. (75)

Define

Tδ := sup{t ≥ 0 : Ẽε,δ(t) < δ}. (76)

To prove Theorem 1, it suffices to show the following:

Lemma 1 Assume the same as in Theorem 1. Then there exists a constant C > 0
independent of δ such that

Tδ ≥ C

δ
. (77)

Proof First from the Hölder inequality we obtain

‖$δ(g1, g2)‖L2
x,v

� ‖g1/μ
0+
0 ‖L6

x,v
‖g2/μ

0+
0 ‖L3

x,v
,

‖$δ(g1, g2)‖L2
x,v

� ‖〈v〉3+g1‖L∞x,v ‖
√
νδg2‖L2

x,v
.

These yield

‖$δ(PδfRε,δ,PδfRε,δ)‖L2
x,v

� ‖PδfRε,δ‖L6
x
‖PδfRε,δ‖L3

x
,

‖$δ(PδfRε,δ,Pδ∂tfRε,δ)‖L2
x,v

� ‖PδfRε,δ‖L6
x
‖Pδ∂tfRε,δ‖L3

x
,

‖$δ(fRε,δ, (I− Pδ)fRε,δ)‖L2
x,v

� ‖hε,δ‖L∞x,v ‖(I− Pδ)fRε,δ‖L2
x,v
,

‖$δ(fRε,δ, (I− Pδ)∂tfRε,δ)‖L2
x,v

� ‖hε,δ‖L∞x,v ‖(I− Pδ)∂tfRε,δ‖L2
x,v
.

(78)

We also note that from |A(t)|2 = |A(0)|2+ 1
2

∫ t

0
d
ds
|A(s)|2ds � |A(0)|2+∫ t

0 |A|2+∫ t

0 |∂tA|2,

‖g‖L∞t Lp � ‖g(0)‖Lp + ‖g‖L2
tL
p + ‖∂tg‖L2

tL
p . (79)

From (31), for 0 ≤ t ≤ τδ

‖rε,δ(t)‖L2
x,v
+ ‖∂trε,δ(t)‖L2

x,v
� ε

1
2 + ε

1
2
√
Eε,δ(t),

‖rε,δ(t)‖L∞x,v � ‖hε,δ‖L∞t,x,v + ε
1
2 .

(80)



248 J. Jang and C. Kim

Applying (78), (79), (80)–(61), (64), (73) we derive

‖εhε,δ‖2
L∞t,x,v

� ‖εhε,δ(0)‖2
L∞x,v + ε

{
ε

1
2 + ‖εhε,δ‖L∞t,x,v

}2‖εhε,δ‖2
L∞t,x,v + ε4δ2‖rε,δ‖2

L∞t,x,v

+ ‖ε 1
2PδfRε,δ‖2

L∞t L6
x
+ ‖ε− 1

2 (I− Pδ)fRε,δ(0)‖2
L2
x,v
+

∫ t

0
Dε,δ

≤ C∞
{
Ẽε,δ(0)+ ‖ε− 1

2 (I− Pδ)fRε,δ(0)‖2
L2
x,v
+ ε4δ2 + Ẽε,δ(t)+

∫ t

0
Dε,δ

}

for 0 ≤ t ≤ Tδ,

(81)
‖ε 1

2PδfRε,δ‖2
L∞t L6

x

� {1+ ε
1
2 ‖εhε,δ‖L∞t,x,v }2

{
‖ε− 1

2 (I− Pδ)fRε,δ(0)‖2
L2
x,v
+

∫ t

0
Dε,δ

}

+ Eε,δ(t)+ εδ2‖rε,δ‖2
L2
x,v

+ {‖ε 1
2PδfRε,δ(0)‖2

L3
x
+ ‖ε 1

2PδfRε,δ‖2
L2
t L

3
x
+ ‖εPδ∂tfRε,δ‖2

L2
t L

3
x
}‖ε 1

2PδfRε,δ‖2
L∞t L6

x

≤ C6

{
Eε,δ + δ2Ẽε,δ(t)+

∫ t

0
Dε,δ + δ2

}
for 0 ≤ t ≤ Tδ,

(82)

‖ε 1
2PδfRε,δ‖2

L2
t L

3
x
+ ‖εPδ∂tfRε,δ‖2

L2
t L

3
x

� {1+ ε
1
2 ‖εhε,δ‖L∞t,x,v }2

∫ t

0
Dε,δ +

∫ t

0
Eε,δ +

∫ t

0
‖ε 1

2 δrε,δ‖2
L2
x,v
+ ‖ε 1

2 δ∂trε,δ‖2
L2
x,v

+ ‖ε 1
2PδfRε,δ‖2

L∞t L6
x
{‖ε 1

2PδfRε,δ‖2
L2
t L

3
x
+ ‖εPδ∂tfRε,δ‖2

L2
t L

3
x
} + (68)+ (69)

≤ C3

{∫ t

0
Ẽε,δ +

∫ t

0
Dε,δ + εt

}
+ (68)+ (69) for 0 ≤ t ≤ Tδ.

(83)

From (39),

RHS of (39) � ‖ε 1
2PδfRε,δ‖2

L∞t L6
x
{‖ε 1

2PδfRε,δ‖2
L2
t L

3
x

+ ‖εPδ∂tfRε,δ‖2
L2
t L

3
x
} + ε‖εhε,δ‖L∞t,x,v

∫ t

0
Dε,δ

≤ C1

{
δ2

a

∫ t

0
Dε,δ + δε

∫ t

0
Dε,δ

}
.

(84)
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Now we consider (43). From the decomposition fRε,δ = PδfRε,δ+(I−Pδ)fRε,δ
and ∂tfRε,δ = Pδ∂tfRε,δ+(I−Pδ)∂tfRε,δ the terms containing PδfRε,δ or Pδ∂t fRε,δ
in (43) are bounded as δ‖(σA, uA, θA)‖C1

t,x

∫ t

0 Eε,δ. For the other terms consist of only

(I − Pδ)fRε,δ and (I − Pδ)∂tfRε,δ we split {v ∈ R
3} = {|v| ≤ ε−κ } ∪ {|v| ≥ ε−κ }

as in [9] to derive

∫ t

0

∫ ∫

�×R3
δ〈v〉3{|(I− Pδ)fRε,δ||(I− Pδ)fRε,δ|

+ ε|(I− Pδ)∂tfRε,δ||(I− Pδ)∂tfRε,δ|
}

�
∫ t

0

∫∫

�×R3
1|v|≤ε−κ δε〈v〉3{|ε− 1

2 (I− Pδ)fRε,δ|2 + |(I− Pδ)∂tfRε,δ|2}

+
∫ t

0

∫∫

�×R3
1|v|≥ε−κ δ

〈v〉3
w
‖hε,δ‖L∞x,v |fRε,δ| + δε

〈v〉6
w
‖h̃ε,δ‖L∞x,v |∂tfRε,δ|

� δ

∫ t

0
Dε,δ + δ

∫ t

0
Ẽε,δ

for some 1/(β − 6) ≤ κ ≤ 1/3. Hence,

(43) ≤ Ccub

{
δ

∫ t

0
Ẽε,δ + δ

∫ t

0
Dε,δ

}
. (85)

Similar estimates hold for (42), (68), and (69).
Finally by adding a × {(83)+ (82)+ (81)} to (39)–(44) and using (84) and (85)

Ẽε,δ(t)+
∫ t

0
D̃ε,δ ≤ δ

2
+ Cδ

∫ t

0
Ẽε,δ,

for some 0 < a, b 1. Then by the Gronwall’s equality

Ẽε,δ(t) ≤ δ

2
eCδt , (86)

and hence δ−1 � Tδ and this finishes the argument. ��
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7 Solvability of (27)

By the Fredholm we have a unique solution g ∈ (KerLδ)⊥ of Lδg = h if and only
if Pδh = 0. We denote

Lδ
−1h = g ∈ (KerLδ)⊥. (87)

From (18) and (22)

(I− Pδ)f1δ = −Lδ−1
(
∂tμδ + v ·∇xμδ

δ
√
μδ

)
. (88)

We write and equivalent equation of (27) as

∂

∂t
Pjf1δ + Pj (v ·∇xPδf1δ)+ Pj

(
∂tμδ + v ·∇μδ

2
√
μδ

Pδf1δ

)

= −Pj (v ·∇x(I− Pδ)f1δ)− Pj

(
∂tμδ + v ·∇μδ

2
√
μδ

(I− Pδ)f1δ

)
.

(89)

Then

Pj (v ·∇xPδf1δ)

=
3∑

m=1

∫

R3
vm∂m

( 4∑

i=0

(Pif1δ)ϕi
√
μδ

)
ϕj
√
μδdv

=√1+ δθ
√

1+ δσ

3∑

m=1

4∑

i=0

( ∫

R3
ϕmϕiϕjμδdv

)
∂m(Pif1δ)+ δu · ∇(Pjf1δ)

+√1+ δθ
√

1+ δσ

4∑

i=0

( 3∑

m=1

∫

R3
ϕm∂m(ϕi

√
μδ)ϕj

√
μδdv

)
Pif1δ.

(90)

By direct computation,

∫

R3
ϕmϕiϕjμδdv

=

⎧
⎪⎪⎨

⎪⎪⎩

1√
1+δσ for {i = 0 & j = m = 1, 2, 3} or {j = 0 & i = m = 1, 2, 3},
√

6√
1+δσ for {i = 4 & j = m = 1, 2, 3} or {j = 4 & i = m = 1, 2, 3},
0 otherwise.
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Now (89) equals

∂

∂t

⎡

⎢
⎢
⎢
⎢
⎢
⎣

P0f1δ

P1f1δ
P2f1δ
P3f1δ

P4f1δ

⎤

⎥
⎥
⎥
⎥
⎥
⎦
=

3∑

i=1

⎡

⎣
δui

√
1+ δθeTi 0√

1+ δθei δuiI3×3
√

6
√

1+ δθei

0
√

6
√

1+ δθeTi δui

⎤

⎦ ∂

∂xi

⎡

⎢
⎢
⎢
⎢
⎢
⎣

P0f1δ

P1f1δ
P2f1δ
P3f1δ

P4f1δ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+O(1)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

P0f1δ

P1f1δ
P2f1δ
P3f1δ

P4f1δ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= O((I− Pδ)f1δ).

For the existence we need some regularity on the initial datum such as

Pδf1δ|t=0 ∈ Hs(�). (91)

On the other hand the initial condition of (I− Pδ)f1δ has to be chosen as

(I− Pδ)f1δ|t=0 = −Lδ−1

⎛

⎝∂tμ
0
δ + v ·∇xμ0

δ

δ

√
μ0
δ

⎞

⎠ . (92)
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Thermal Boundaries in Kinetic
and Hydrodynamic Limits

Tomasz Komorowski and Stefano Olla

Abstract We investigate how a thermal boundary, modelled by a Langevin dynam-
ics, affect the macroscopic evolution of the energy at different space-time scales.

1 Introduction

Chains of an-harmonic oscillators are commonly used models in non-equilibrium
statistical mechanics, in particular to study macroscopic energy transport. To treat
mathematically non-linear dynamics is a very hard task, even for a small non linear
perturbation of the harmonic chain, see [15]. In the purely harmonic chain the
energy transport is ballistic, see [14]. Numerical evidence, see e.g. [13], shows
that non-linear perturbations can cause the transport in a one-dimensional system
to become diffusive, in case of optical chains and superdiffusive for acoustic
chains. Replacing the non-linearity by a stochastic exchange of momenta between
neighboring particles makes the problem mathematically treatable (see the review
[2] and the references therein). This stochastic exchange can be modelled in various
ways: e.g. for each pair of the nearest neighbor particles the exchange of their
momenta can occur independently at an exponential rate (which models their
elastic collision). Otherwise, for each triple of consecutive particles, exchange of
momenta can be performed in a continuous, diffusive fashion, so that its energy and
momentum are preserved. The energy transport proven for such stochastic dynamics
is qualitatively similar to the one expected in the case of the non-linear deterministic
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dynamics. In particular, for a one-dimensional acoustic chain it could be proved
that the macroscopic thermal energy density evolves according to a fractional heat
equation corresponding to the fractional laplacian (−	)3/4, see [6].

In the recent years we have been interested in the macroscopic effects of a heat
bath in contact with the chain at a point.

In Sect. 3 we consider first a purely harmonic chain in contact with a stochastic
Langevin thermostat at temperature T , see (6) and (5). In the absence of a
thermostat, its dynamics is completely integrable and the energy of each frequency
(the Fourier mode k) is conserved. Rescaling space-time by the same parameter, the
energy of mode k, localized by Wigner distribution W(t, y, k), evolves according to
a linear transport equation

∂tW + ω̄′(k)∂yW = 0,

with velocity ω̄′(k) = ω′(k)/2π , where ω(k) is the dispersion relation of the
harmonic chain. We can interpret W(t, y, k) as the energy density of phonons of
mode k at time t in the position y. The presence of a Langevin thermostat results in
the emergence of a boundary (interface) condition at y = 0 ([9]):

W(t, 0+, k) = p−(k)W(t, 0+,−k)+ p+(k)W(t, 0−, k)+ g(k)T , for k > 0

W(t, 0−, k) = p−(k)W(t, 0−,−k)+ p+(k)W(t, 0+, k)+ g(k)T , for k < 0.
(1)

The coefficients appearing in the boundary condition correspond to probabilities
of the phonon transmission p+(k), reflection p−(k) and absorption ı(k). These
parameters are non-negative and satisfy p+(k) + p−(k) + ı(k) = 1. In addition,
T ı(k) is the intensity of the phonon creations. The transmission, reflection and
absorption parameters depend in a quite complicated way on the dispersion relation
ω(·) and the strength of the thermostat γ > 0 (cf. (39), (42), and (50)). Some of their
properties and an explicit calculation for the nearest-neighbor interactions are pre-
sented in Appendix 1, the results contained there are original and are not part of [9]).

It is somewhat surprising that an incident phonon of mode k after scattering,
if not absorbed, can produce only an identical transmitted phonon, or a reflected
phonon of mode −k (at least for a unimodal dispersion relation). This stands in
contrast with what takes place at the microscopic scale. Then, an incident wave
of frequency k scatters and produces waves of all possible frequencies. In the
macroscopic limit, all frequencies produced by the scattering on the thermostat,
except those corresponding to ±k, are damped by oscillations.

In [7] we have considered the same problem after adding the bulk noise that
conserves energy and momentum, see Sect. 4. The noise is properly rescaled in such
a way that finite total amount of momentum is exchanged locally in the macroscopic
unit time (in analogy to a kinetic limit). The effect of the bulk noise is to add a
macroscopic scattering term to the transport equation:

∂tW + ω̄′(k)∂yW = γ0

∫

T

R(k, k′)
(
W(k′)−W(k)

)
dk′, (2)
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i.e. a phonon of mode k changes to the one of mode k′, with intensity γ0R(k, k
′),

given by (58). The case when no heat bath is present, has been studied in [1]. In [7]
we prove that the heat bath adds to (2) the same boundary condition (1), see Sect. 4.

Since in (2) the energies of different modes are mixed up by the bulk scattering,
we can further rescale space-time in this equation in order to obtain an autonomous
equation for the evolution of the total energy. Without the thermal bath this case has
been studied in [5] and the following results have been obtained:

• For optical chains the velocity of the phonon behaves like ω̄′(k) ∼ k for small
k, while for the total scattering rate R(k) = ∫

R(k, k′)dk′ ∼ k2. This means
that phonons of low frequency rarely scatter, but move very slowly so they
have the time to diffuse under an appropriate (diffusive) scaling. The phonons
corresponding to other modes also behave diffusively at the respective scales.
Consequently, in the optical chain, under diffusive space-time scaling, all modes
homogenize equally, contributing to the macroscopic evolution of the energy
e(t, y), i.e. W(t/δ2, y/δ, k)−→δ→0 e(t, y), that follows the linear heat equation
(∂t −D∂2

y )e(t, y) = 0 with an explicitly given D > 0, see (86).
• In acoustic chains, the bulk scattering rate is the same, but ω̄′(k) ∼ O(1) for

small k. Consequently low frequency phonons scatter rarely but they still move
with velocities of order 1, and the resulting macroscopic limit is superdiffusive.
In particular, in this case the low frequency modes are responsible for the
macroscopic transport of the energy. The respective superdiffusive space-time
scaling limit W(t/δ3/2, y/δ, k)−→δ→0 e(t, y), described by the solution of a
fractional heat equation (∂t − ĉ|∂2

y |3/4)e(t, y) = 0, with ĉ > 0 given by (94).

The thermal bath adds a boundary condition at y = 0 to the diffusive,
or superdiffusive equations described above. More precisely the situation is as
follows.

• In the optical chain we obtain a Dirichlet boundary condition e(t, 0) = T

for the respective heat equation (see (85)): phonons trajectories behave like
Brownian motions, and since they can cross the boundary infinitely many times,
they are absorbed almost surely. In effect, there is no energy transfer through
the boundary at the macroscopic scale. This is proven in [3] using analytic
techniques, see Sect. 5.1.

• In the acoustic chain, the long wave phonons, are responsible for the macro-
scopic energy transport. Their trajectories behave in the limit like superdiffusive
symmetric, 3/2–stable Levy processes: they can jump over the boundary on the
macroscopic scale and there is a positive probability of survival, i.e. of energy
macroscopic transmission across the thermal boundary. Since the absorption
probability ı(k) remains strictly positive as k → 0 (as we prove here in
Appendix 1, at least for the nearest neighbor acoustic chain, see (119)), the
thermal boundary affects the transport. The macroscopic energy evolution is
given by a fractional heat equation with boundary defined by (93) and (87). This
is proven in [10] using probabilistic techniques, see Sect. 5.2.
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In Sect. 2 we review the results of [9] for the harmonic chain with the thermostat
attached at a point. Since the calculations for the transmission and reflection
scattering of [9] are quite complex, we present their somewhat simplified version
(conveying nevertheless their gist) in Appendix 2. We hope that the outline would
help the reader to understand how the macroscopic scattering emerges.

In Sect. 3 we review the results of [7] in the presence of the conservative bulk
noise. Section 4 contains the review of the diffusive and superdiffusive limits proven
in [3, 10]. In Sect. 5 we mention some open problems, in particular the question of
the direct hydrodynamic limit, without passing through the kinetic limit, in the spirit
of [6].

Appendix 1 contains some original results that are not present in the discussed
articles, concerning the properties of the scattering coefficients and their behaviour
for k→ 0.

2 Notation

Given a > 0 by Ta we denote the torus of size a > 0, i.e. the interval [−a/2, a/2]
with identified endpoints. When a = 1 we shall write T := T1 for the unit torus.
Let T± := [k ∈ T : 1/2 > ±k > 0]. We also let R+ := (0,+∞), R∗ := R \ {0}
and T∗ := T \ {0}.

By 1p(Z), Lp(T), where p ≥ 1, we denote the spaces of all complex valued
sequences (fx)x∈Z and functions f : T → C that are summable with p-th power,
respectively. The Fourier transform of (fx)x∈Z ∈ 12(Z) and the inverse Fourier
transform of f̂ ∈ L2(T) are given by

f̂ (k) =
∑

x∈Z
fx exp{−2πixk}, fx =

∫

T

f̂ (k) exp{2πixk}dk, x ∈ Z, k ∈ T.

(3)

We use the notation

(f 
 g)y =
∑

y ′∈Z
fy−y ′gy ′

for the convolution of two sequences (fx)x∈Z, (gx)x∈Z that belong to appropriate
spaces 1p(Z). In most cases we shall assume that one of the sequences rapidly
decays, while the other belongs to 12(Z).

For a function G : R× T→ C that is either L1, or L2-summable, we denote by
Ĝ : R× T→ C its Fourier transform, in the first variable, defined as

Ĝ(η, k) :=
∫

R

e−2πiηxG(x, k)dx, (η, k) ∈ R× T. (4)
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Denote by C0(R × T) the class of functions G that are continuous and satisfy
lim|y|→+∞ supk∈T |G(y, k)| = 0.

3 Harmonic Chain in Contact with a Langevin Thermostat

We consider the evolution of an infinite particle system governed by the Hamiltonian

H(p, q) := 1

2

∑

y∈Z
p2
y +

1

2

∑

y,y ′∈Z
αy−y ′qyqy ′ . (5)

Here, the particle label is y ∈ Z, (qy, py) is the position and momentum of the
y’s particle, respectively, and (q, p) = {(qy, py), y ∈ Z} denotes the entire
configuration. The coupling coefficients αy are assumed to have exponential decay
and chosen positive definite such that the energy is positive. We couple the particle
with label 0 to a Langevin thermostat at temperature T . Then the evolution of the
system can be described using the stochastic differential equations:

q̇y(t) = py(t),

dpy(t) = −(α 
 q(t))ydt +
(− γ p0(t)dt +

√
2γ T dw(t)

)
δ0,y, y ∈ Z.

(6)

Here, {w(t), t ≥ 0} is a standard Wiener process, while γ > 0 is a coupling
parameter with the thermostat.

Assumptions on the Dispersion Relation and Its Basic Properties
We assume (cf [1]) that the coupling constants (αx)x∈Z satisfy the following:

(a1) they are real valued and there exists C > 0 such that |αx | ≤ Ce−|x|/C for all
x ∈ Z,

(a2) α̂(k) = ∑
x∈Z αxe−2πikx is also real valued and α̂(k) > 0 for k �= 0 and in

case α̂(0) = 0 we have α̂′′(0) > 0.

The above conditions imply that both functions x �→ αx and k �→ α̂(k) are even.
In addition, α̂ ∈ C∞(T) and in case α̂(0) = 0 we have α̂(k) = k2φ(k2) for some
strictly positive φ ∈ C∞(T). The dispersion relation ω : T→ R̄+, given by

ω(k) :=
√
α̂(k), k ∈ T. (7)

is obviously also even. Throughout the paper it is assumed to be unimodal, i.e.
increasing on T̄+ and then, in consequence, decreasing on T̄−. Its unique minimum
and maximum are attained at k = 0, k = 1/2, respectively. They are denoted
by ωmin ≥ 0 and ωmax, correspondingly. Denote the two branches of its inverse
by ω± : [ωmin, ωmax] → T̄±.
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In order to avoid technical problems with the definition of the dynamics, we
assume that the initial conditions are random but with finite energy: H(p, q) <∞.
This property will be conserved in time. For such configurations we can define the
complex wave function

ψy(t) := (ω̃ 
 q(t))y + ipy(t) (8)

where
(
ω̃y

)
y∈Z is the inverse Fourier transform of the dispersion relation. We have

H(p(t), q(t)) =∑
y |ψy(t)|2.

The Fourier transform of the wave function is given by

ψ̂(t, k) := ω(k)q̂(t, k)+ ip̂(t, k), k ∈ T, (9)

so that

p̂ (t, k) = 1

2i
[ψ̂(t, k)− ψ̂∗(t,−k)], p0(t) =

∫

T

Im ψ̂(t, k)dk.

Using (6), it is easy to verify that the wave function evolves according to

dψ̂(t, k) = (− iω(k)ψ̂(t, k)− iγ p0(t)
)
dt + i

√
2γ T dw(t). (10)

Introducing a (small) parameter ε ∈ (0, 1), we wish to study the behaviour of
the distribution of the energy at a large space-time scale, i.e. for the wave function
ψ[x/ε](t/ε), (t, x) ∈ R+ × R, when ε → 0. In this scaling limit we would like to
maintain each particle contribution to the total energy to be of order O(1), on the
average, and therefore keep the total energy of the chain to be order ε−1. For this
reason, we choose random initial data that is distributed by probability measures με
defined on the phase space ( p, q), in such a way that

sup
ε∈(0,1)

ε〈H(p, q)〉με = sup
ε∈(0,1)

∑

y∈Z
ε〈|ψy |2〉με = sup

ε∈(0,1)
ε〈‖ψ̂‖2

L2(T)
〉με <∞.

(11)

The symbol 〈·〉με denotes, as usual, the average with respect to measure με . To
simplify our calculations we will also assume that

〈ψ̂(k)ψ̂(1)〉με = 0, k, 1 ∈ T. (12)

This condition is easily satisfied by local Gibbs measures like

∏

y∈Z

e−β
ε
y |ψy |2/2

Zβεy
dψy (13)
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for a proper choice of temperature profiles (βεy)
−1 > 0, decaying fast enough to 0,

as |y| → +∞. Here Zβεy is the normalizing constant.

Wigner Distributions
Wigner distributions provide an effective tool to localize in space energy per
frequency, separating microscopic from macroscopic scale. The (averaged) Wigner
distribution (or Wigner transform) is defined by its action on a test function G ∈
S(R× T) as

〈G,W(ε)(t)〉 := ε

2

∑

y,y ′∈Z

∫

T

e2πik(y ′−y)
Eε

[
ψy

(
t

ε

)
(
ψy ′

)∗
(
t

ε

)]
G∗

(
ε
y + y′

2
, k

)
dk.

(14)

The Fourier transform of the Wigner distribution, or the Fourier-Wigner function
is defined as

Ŵε(t, η, k) := ε

2
Eε

[
ψ̂∗

(
t

ε
, k − εη

2

)
ψ̂

(
t

ε
, k + εη

2

)]
, (t, η, k) ∈ [0,∞) × T2/ε × T,

(15)

so that

〈G,W(ε)(t)〉 =
∫

T×R
Ŵε(t, η, k)Ĝ

∗(η, k)dηdk, G ∈ S(R× T). (16)

Taking G(x, k) := G(x) in (14) we obtain

〈G,W(ε)(t)〉 = ε

2

∑

y∈Z
Eε

[∣
∣
∣
∣ψy

(
t

ε

)∣
∣
∣
∣

2
]

G(εy). (17)

In what follows we assume that the initial data, after averaging, leads to
a sufficiently fast decaying (in η) Fourier-Wigner function. More precisely, we
suppose that there exist C, κ > 0 such that

|Ŵε(0, η, k)| ≤ C

(1+ η2)3/2+κ , (η, k) ∈ T2/ε × T, ε ∈ (0, 1). (18)

In addition, we assume that there exists a distribution W0 ∈ S′(R×T) such that for
any G ∈ S(R× T)

lim
ε→0+〈G,W

(ε)(0)〉 = 〈G,W0〉. (19)

Note that, thanks to (18), distributionW0 is in fact a function that belongs to C0(R×
T) ∩ L2(R× T).
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3.1 The Thermostat Free Case: γ = 0

If the thermostat is not present (γ = 0), the equation of motion (10) can be explicitly
solved and the soution is ψ̂(t, k) = ψ̂(k)e−iω(k)t . Defining

δεω(k, η) := 1

ε

[
ω

(
k + εη

2

)
− ω

(
k − εη

2

)]
, (20)

we can compute explicitly the Wigner transform:

Ŵε(t, η, k) = e−iδεω(k,η)t/εŴε(0, η, k)−→
ε→0

e−iω′(k)ηtŴ0(η, k), (21)

assuming the corresponding convergence at initial time, see (19). The inverse
Fourier transform gives

W(t, y, k) = W0(y − ω̄′(k)t, k), (22)

where ω̄′(k) := ω′(k)/(2π), i.e. it solves the simple linear transport equation

∂tW(t, y, k)+ ω̄′(k)∂yW(t, y, k) = 0, W(0, y, k) = W0(y, k). (23)

We can view this equation as the evolution of the density in independent particles
(phonons), labelled by the frequency mode k ∈ T, and moving with velocity ω̄′(k).

3.2 The Evolution with the Langevin Thermostat: γ > 0

We use the mild formulation of (10):

ψ̂(t, k) = e−iω(k)t ψ̂(0, k)− iγ

∫ t

0
e−iω(k)(t−s)p0(s)ds + i

√
2γ T

∫ t

0
e−iω(k)(t−s)dw(t).

(24)

Integrating both sides in the k-variable and taking the imaginary part in both sides,
we obtain a closed equation for p0(t):

p0(t) = p0
0(t)− γ

∫ t

0
J (t − s)p0(s)ds +

√
2γ T

∫ t

0
J (t − s)dw(s), (25)
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where

J (t) =
∫

T

cos (ω(k)t) dk, (26)

and

p0
0(t) =

∫

T

Im
(
ψ̂(0, k)e−iω(k)t

)
dk, (27)

is the momentum at y = 0 for the free evolution with γ = 0 (without the
thermostat).

Taking the Laplace transform

p̃0(λ) =
∫ +∞

0
e−λtp0(t)dt, Re λ > 0,

in (25) we obtain

p̃0(λ) = g̃(λ)p̃0
0(λ)+

√
2γ T g̃(λ)J̃ (λ)w̃(λ). (28)

Here, g̃(λ) is given by

g̃(λ) := (1+ γ J̃ (λ))−1. (29)

and

J̃ (λ) :=
∫ ∞

0
e−λtJ (t)dt =

∫

T

λ

λ2 + ω2(k)
dk, Re λ > 0. (30)

We will show below that g̃(λ) is the Laplace transform of a signed locally finite
measure g(dτ). Then, the term (λ+ iω(k))−1g̃(λ)p̃0

0(λ), that appears in (33), is the
Laplace transform of the convolution

∫ t

0
φ(t − s, k)p0

0(s)ds, (31)

where

φ(t, k) =
∫ t

0
e−iω(k)(t−τ )g(dτ). (32)
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Next, taking the Laplace transform of both sides of (24) and using (28), we arrive at
an explicit formula for the Fourier-Laplace transform of ψy(t):

ψ̃(λ, k) = ψ̂(0, k)− iγ p̃0(λ)+ i
√

2γ T w̃(λ)

λ+ iω(k)

= ψ̂(0, k)− iγ g̃(λ)(p̃0
0(λ)+

√
2γ T J̃ (λ)w̃(λ))+ i

√
2γ T w̃(λ)

λ+ iω(k)

= ψ̂(0, k)− iγ g̃(λ)p̃0
0(λ)+ ig̃(λ)

√
2γ T w̃(λ)

λ+ iω(k)
.

(33)

The Laplace inversion of (33) yields an explicit expression for ψ̂(t, k):

ψ̂(t, k) =e−iω(k)t ψ̂(0, k)− iγ

∫ t

0
φ(t − s, k)p0

0(s) ds

+ i
√

2γ T
∫ t

0
φ(t − s, k) dw(s).

(34)

3.3 Phonon Creation by the Heat Bath

Since the contribution to the energy given by the thermal term and the initial energy
are completely separate, we can assume first that Ŵ0 = 0. In this case ψ̂(0, k) = 0
and (34) reduces to a stochastic convolution:

ψ̂(t, k) = i
√

2γ T
∫ t

0
φ(t − s, k) dw(s). (35)

To shorten the notation, denote

φ̃(t, k) =
∫ t

0
eiω(k)τg(dτ) = eiω(k)tφ(t, k),

We can compute directly the Fourier-Wigner function

Ŵε(t, η, k) = γ T

∫ t

0
e−iδεω(k,η)s φ̃

(
s/ε, k + εη

2

)
φ̃∗

(
s/ε, k − εη

2

)
ds.
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Taking its Laplace transform we obtain

ŵε(λ, η, k) = γ T

∫ ∞
0

dte−λt
∫ t

0
dse−iδεω(k,η)s φ̃

(
ε−1s, k + εη

2

)
φ̃∗

(
ε−1s, k − εη

2

)

= γ T

λ

∫ ∞
0

dse−(λ+iδεω(k,η))sφ̃
(
ε−1s, k + εη

2

)
φ̃∗

(
ε−1s, k − εη

2

)
.

(36)

Using the inverse Laplace formula for the product of functions we obtain, for any
c > 0,

ŵε(λ, η, k) = γ T

λ

1

2πi
lim
1→∞

∫ c+i1

c−i1
{
σ (λ+ iδεω(k, η)− σ)

}−1

× g̃
(
εσ − iω(k + εη

2
)
)
g̃∗

(
ε(λ+ iδεω(k, η)− σ)− iω(k − εη

2
)
)
dσ.

(37)

Since g̃ is bounded and Reλ > 0, we can take the limit as ε→ 0, obtaining

ŵ(λ, η, k) = γ T |ν(k)|2
λ (λ+ iω′(k)η)

, (38)

where

ν(k) := lim
ε→0

g̃(ε − iω(k)). (39)

The limit in (39) is well defined everywhere, see Appendix 1 for details.
The inverse Laplace transform of (38) gives

Ŵ (t, η, k) = 1− e−iω′(k)ηt

iω′(k)η
γ T |ν(k)|2. (40)

Performing the inverse Fourier transform, according to (30), we obtain

W(t, y, k) = T ı(k)1[[0,ω̄′(k)t ]](y) (41)

where ω̄(k) = ω(k)/2π ,

ı(k) := γ |ν(k)|2
|ω̄′(k)| (42)
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and

[[0, a]] :=
{
[0, a], if a > 0

[a, 0], if a < 0.

We can interpret (41) as the energy density of k-phonons that are created at the
interface y = 0 by the heat bath with intensity T ı(k) and then move with velocity
ω̄′(k). The Wigner function W(t, y, k) can be viewed as a formal solution of

∂tW(t, y, k)+ ω̄′(k)∂yW(t, y, k) = |ω̄′(k)|T ı(k)δ(y), W(0, y, k) = 0.
(43)

3.4 Phonon Scattering and Absortion by the Heat Bath

The scattering of incoming waves can be studied at temperature T = 0, by looking
at the deterministic equation

ψ̂(t, k) = e−iω(k)t ψ̂(0, k)− iγ

∫ t

0
φ(t − s, k)p0

0(s) ds, (44)

Proceeding along the lines of the calculation of the previous section we obtain

Ŵε(t, η, k) = Ŵ 0
ε (t, η, k)+ Ŵ 1

ε (t, η, k)+ Ŵ 2
ε (t, η, k), (45)

where Ŵε(t, η, k) is given by (15),

Ŵ0
ε (t, η, k) := e−iδεω(k,η)t/εŴε(0, η, k),

Ŵ1
ε (t, η, k) := −i

εγ

2

∫ t/ε

0

{
Eε

[
ψ̂

(
0, k − εη

2

)∗
p0

0(s)
]
eiω(k−

εη
2 )

t
ε φ

(
t

ε
− s, k + εη

2

)

− Eε

[
ψ̂

(
0, k + εη

2

)
p0

0(s)
]
e−iω(k+

εη
2 )

t
ε φ

(
t

ε
− s, k − εη

2

)∗ }
ds,

Ŵ2
ε (t, η, k) :=

εγ 2

2

∫ t/ε

0
ds1

∫ t/ε

0
ds2Eε

[
p0

0(s1)p
0
0(s2)

]

× φ

(
t

ε
− s1, k − εη

2

)∗
φ

(
t

ε
− s2, k − εη

2

)
.

(46)

The limit behavior of Ŵ 0
ε (t, η, k) is already described by (21). The calculations

for the other two terms Ŵ 1
ε and Ŵ 2

ε are more involved. Their outline is presented in
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Appendix 2 below. We have

lim
ε→0+ Ŵ

1
ε (t, η, k) = −γReν(k)e−iω′(k)t

∫

R

1− e−iω′(k)(η′−η)t

iω′(k)(η′ − η)
Ŵ (0, η′, k)dη′

(47)

and

lim
ε→0+ Ŵ

2
ε (t, η, k) =

|ν(k)|2
4|ω̄′(k)|

∑

ι=±

∫

R

dη

λ+ iω′(k)η

∫

R

Ŵ (0, η′, ιk)dη′

λ+ iω′(ιk)η′
. (48)

Putting together the limits of the solutions for T ≥ 0 and Ŵ0 = 0, given by (41),
and the solution of the deterministic equation for T = 0 and a non-vanishing Ŵ0,
obtained by taking the sum of the limits of Ŵ j

ε (t, η, k), j = 0, 1, 2, we conclude the
formula for the limit as ε→ 0, of Wigner function Ŵε(t, η, k), see (15), for φ̂(t, k),
given by (34), equals:

W(t, y, k) = 1[[0,ω̄′(k)t ]]c(y)W(0, y − ω̄′(k)t, k)

+ p+(k)1[[0,ω̄′(k)t ]](y)W(0, y − ω̄′(k)t, k)

+ p−(k)1[[0,ω̄′(k)t ]](y)W(0,−y + ω̄′(k)t,−k)+ T ı(k)1[[0,ω̄′(k)t ]](y),

(49)

where the coefficient ı(k) is given by (42) and

p+(k) :=
∣
∣
∣∣1−

γ ν(k)

2|ω̄′(k)|
∣
∣
∣∣

2

, p−(k) :=
(
γ |ν(k)|
2|ω̄′(k)|

)2

. (50)

By a direct inspection we can verify that W(t, y, k), given by (49), solves the
transport equation

∂tW(t, y, k)+ ω̄′(k)∂yW(t, y, k) = 0, y �= 0, (51)

with the transmission/reflection and phonon creation boundary condition at y = 0:

W(t, 0+, k) = p−(k)W(t, 0+,−k)+ p+(k)W(t, 0−, k)+ g(k)T , for k ∈ T+

W(t, 0−, k) = p−(k)W(t, 0−,−k)+ p+(k)W(t, 0+, k)+ g(k)T , for k ∈ T−.
(52)

In Appendix 1 below we show that

p+(k)+ p−(k)+ ı(k) = 1. (53)
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Coefficients p+(k) and p−(k) can be interpreted therefore as the probabilities of
phonon transmission and reflection, respectively. Since p+(k)+p−(k) = 1− ı(k),
the coefficient ı(k) is the phonon absorption probability at the interface.

4 Harmonic Chain with Bulk Conservative Noise in Contact
with Langevin Thermostat

4.1 The Model and the Statement of the Result

In [7] we consider a stochastically perturbed chain of harmonic oscillators ther-
mostatted at a fixed temperature T ≥ 0 at x = 0. Its dynamics is described by the
system of Itô stochastic differential equations

dqx(t) = px(t)dt, x ∈ Z,

dpx(t) =
[
−(α 
 q(t))x − εγ0

2
(θ 
 p(t))x

]
dt

+√εγ0

∑

k=−1,0,1

(Yx+k px(t))dwx+k(t)+
(
−γ p0(t)dt +

√
2γ T dw(t)

)
δ0,x.

(54)

Here the coupling constants (αx)x∈Z are as in (5),

Yx := (px − px+1)∂px−1
+ (px+1 − px−1)∂px + (px−1 − px)∂px+1

(55)

and (wx(t))t≥0, x ∈ Z with (w(t))t≥0, are i.i.d. one dimensional independent
Brownian motions. In addition,

θx = 	θ(0)x := θ
(0)
x+1 + θ

(0)
x−1 − 2θ(0)x

with

θ(0)x =
⎧
⎨

⎩

−4, x = 0
−1, x = ±1

0, if otherwise.

Parameters εγ0 > 0, γ describe the strength of the inter-particle and thermostat
noises, respectively. In what follows we shall assume that ε > 0 is small, that
corresponds to the low density hypothesis that results in atoms suffering finitely
many “collisions” in a macroscopic unit of time (the Boltzmann-Grad limit).
Although the noise considered here is continuous we believe that the results extend
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to other type of conservative noises, such as e.g. Poisson exchanges of velocities
between nearest neighbor particles.

Since the vector field Yx is orthogonal both to a sphere p2
x−1+p2

x+p2
x+1 ≡ const

and plane px−1 + px + px+1 ≡ const, the inter-particle noise conserves locally
the kinetic energy and momentum. Because these conservation laws are common
also for chaotic hamiltonian system, this model has been used to understand energy
transport in presence of momentum conservation, see [2] and references there.

The case without the Langevin thermostat, i.e. with γ = 0, was studied in [1],
where it is proved that

Wε(t, y, k)−→
ε→0

W(t, y, k) (56)

where W(t, y, k) is the solution of the transport equation

∂tW(t, y, k)+ ω̄′(k)∂yW(t, y, k) = γ0

∫

T

R(k, k′)
(
W(t, y, k′)−W(t, y, k)

)
dk′,

(57)

where

R(k, k′) = 32 sin2(πk) sin2(πk′)
{

sin2(πk) cos2(πk′)+ sin2(πk′) cos2(πk)
}
.

(58)

We have therefore

R(k) =
∫

T

R(k, k′)dk′ = 4 sin2(πk)
(
1+ 3 cos2(πk)

)
. (59)

In [7] we have proved the following result.

Theorem 1 Suppose that γ0, γ > 0 and the initial data satisfies (18), Then,

lim
ε→0+

∫ +∞

0
dt

∫∫

T2/ε×T
Wε(t, y, k)G(t, y, k)dydk

=
∫ +∞

0
dt

∫ ∫

R×T
W(t, y, k)G(t, y, k)dydk

(60)

for any G ∈ C∞0 ([0,+∞)×R×T), where the limiting Wigner W(t, y, k) function
satisfies (57) for (t, y, k) ∈ R+ × R∗ × T∗, with the boundary conditions (52), at
the interface y = 0.
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4.2 A Sketch of the Proof of Theorem 1

Consider the wave function ψ(t) that corresponds to the dynamics (54) via (8) and
ψ̂(t) its Fourier transform. In contrast with the situation described in Sect. 3.2 (the
case γ0 = 0) we no longer have an explicit expression for the solution of the
equation for ψ̂(t), see (24), so we cannot proceed by a direct calculation of the
Wigner distributions as in Sect. 3 and Appendix 2.

In order to close the dynamics of the Fourier-Wigner function, we shall need all
the components of the full covariance tensor of the Fourier transform of the wave
field. Define therefore the Wigner distribution tensor Wε(t), as a 2×2-matrix tensor,
whose entries are distributions, given by their respective Fourier transforms

Ŵε(t, η, k) :=
[
Ŵε,+(t, η, k) Ŷε,+(t, η, k)
Ŷε,−(t, η, k) Ŵε,−(t, η, k)

]
, (η, k) ∈ T2/ε × T, (61)

with

Ŵε,+(t, η, k) := Ŵε(t, η, k) = ε

2
Eε

[
ψ̂

(
t/ε, k + εη

2

)
ψ̂


(
t/ε, k − εη

2

)]
,

Ŷε,+(t, η, k) := ε

2
Eε

[
ψ̂

(
t/ε, k + εη

2

)
ψ̂

(
t/ε,−k + εη

2

)]
,

Ŷε,−(t, η, k) := Ŷ 
ε,+(t,−η, k), Ŵε,−(t, η, k) := Ŵε,+(t, η,−k).

By a direct calculation we show that the following energy bound is satisfied, see
Proposition 2.1 of [7]

sup
ε∈(0,1]

ε

2
Eε‖ψ̂(t/ε)‖2

L2(T)
≤ sup

ε∈(0,1]
ε

2
Eε‖ψ̂(0)‖2

L2(T)
+ γ T t, t ≥ 0. (62)

The above estimate implies in particular that

sup
ε∈(0,1]

‖Wε,+‖L∞([0,τ ];A′) < +∞, for any τ > 0, (63)

where A′ is the dual to A—the Banach space obtained by the completion of S(R×
T) in the norm

‖G‖A :=
∫

R

sup
k∈T
|Ĝ(η, k)|dη, G ∈ S(R× T). (64)

Similar estimates hold also for the remaining entries of Wε(t).
In consequence (Wε(·)) is sequentially 
-weakly compact in L∞loc([0,+∞),A′)

and the problem of proving its 
-weak convergence reduces to the limit identifica-
tion.
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4.2.1 The Case of Zero Temperature at the Thermostat

Suppose first that T = 0. We can treat then the microscopic dynamics (54) as a
small (stochastic) perturbation of the purely deterministic dynamics when all the
terms containing the noises (wx(t)) and (w(t)) are omitted. Denote by φ̂(ε) (t, k)

the Fourier transform of the wave function corresponding to the latter dynamics, cf
(9). We consider then the respective Wigner distribution tensor Wun

ε (t, y, k) whose
Fourier transform is given by an analogue of (61), where the wave function of the
“true” (perturbed) dynamics ψ̂ (t, k) is replaced by φ̂ (t, k), which corresponds to
the deterministic dynamics:

dqx(t) = px(t)dt, x ∈ Z,

dpx(t) =
[
−(α 
 q(t))x − εγ0

2
(θ 
 p(t))x

]
dt − γ p0(t)δ0,xdt.

(65)

Denote by L2,ε the Hilbert space made of the 2 × 2 matrix valued distributions
on R× T, such that the Fourier transforms of their entries belong to L2(T2/ε × T).
The Hilbert norm on L2,ε is defined in an obvious way using the L2 norms of the
Fourier transforms.

Using the equations for the microscopic dynamics of φ̂ (t, k) we conclude that
the tensor Wun

ε (t) can be described by an L2,ε strongly continuous semigroup(
Wun

ε (t)
)

, i.e.

Wun
ε (t) =Wun

ε (t)
(

Wun
ε (0)

)
, t ≥ 0. (66)

Using a very similar argument to that used in the case of γ0 = 0 (remember no noise
is present in the unperturbed dynamics) we can prove, see Theorem 5.7 of [7], that

Theorem 2 Under the assumptions on the initial data made in (18) and (19), we
have

lim
ε→0+〈G,Wun

ε (t)〉 = 〈G,Wun(t)〉, t ≥ 0, G ∈ S(R× T)

where

Wun(t, y, k) =
[
W un+ (t, y, k) 0

0 W un+ (t, y,−k)
]
, (y, k) ∈ R× T,

and

∂tW
un(t, y, k)+ ω̄′(k)∂yW un(t, y, k) = −γ0R(k)W

un(t, y, k), (t, y, k) ∈ R+ × R∗ × T∗,
(67)

with the interface conditions (52) for T = 0.
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Similarly to (51) Eq. (67) can be solved explicitly and we obtain W un(t) =
Wun

t (W
un(0)), where W un(t, y, k) = e−γ0R(k)tW̃

un
(t, y, k) and W̃

un
(t, y, k) is

given by (49). Consider a semigroup defined by

Wun
t (W

un(0)) (y, k) := W un(t, y, k). (68)

One can show that
(
Wun

t

)
t≥0 forms a strongly continuous semigroup of contrac-

tions on any Lp(R× T), 1 ≤ p < +∞.
We can use the semigroup Wun

ε (t) to write a Duhamel type equation for

wε(λ) =
[
ŵε,+(λ, η, k) ŷε,+(λ, η, k)
ŷε,−(λ, η, k) ŵε,−(λ, η, k)

]
=

∫ +∞

0
e−λtWε(t)dt

the Laplace transform of the Wigner tensor of (61) defined for Re λ > λ0 and some
sufficiently large λ0 > 0. It reads

wε(λ) = W̃un
ε (λ)Wε(0)+ γ0

2
W̃un

ε (λ) vε (λ) , Re λ > λ0. (69)

Here

Wun
ε (λ) :=

∫ +∞

0
e−λtWun

ε (t)dt, (70)

and vε (λ) := Rεwε(λ). The operator Rε acts on 2 × 2 matrix valued w whose
entries belong to L2,ε and whose Fourier transform (in y) is given by

ŵ(η, k) :=
[
ŵ+(η, k) ŷ+(η, k)
ŷ−(η, k) ŵε,−(η, k)

]
, (η, k) ∈ T2/ε × T

as follows. The Fourier transform R̂εw have entries of the form

±
∫

T

r0(k, k
′, εη)

[
ŵε,+(η, k′)+ ŵε,−(η, k′)− ŷε,+(η, k′)− ŷε,−(η, k′)

]
dk′.

Here r0(k, k
′, εη) is a scattering kernel that satisfies R(k, k′) = r0(k, k

′, 0) +
r0(k,−k′, 0), with R(k, k′) given by (58). Suppose now that we test both sides of
(69) against a 2×2-matrix valued smooth function G whose entries have compactly
supported Fourier transforms in the y variable, say in the interval [−K,K] for some

K > 0. Denote by
(
Wun

ε (λ)
)∗

and R∗ε the adjoints of the respective operators in

L2,ε.

We already know that from any sequence
(

wεn(λ)
)

, where εn → 0+, we can

choose a subsequence, that will be denoted by the same symbol, converging 
-
weakly in A′ to some w(λ). Using Theorem 2 and the strong convergence of the
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sequence 1[−K,K](η)R∗εn
(
Wun

εn
(λ)

)∗G, n → +∞ in L2(R × T) we can prove the
following, see Theorem 5.7 of [7].

Theorem 3 Suppose that W is the 
-weak limit of
(
Wεn

)
in

(
L1([0,+∞);A)

)′
for

some sequence εn→ 0+. Then, it has to be of the form

W(t, y, k) =
[
W(t, y, k) 0

0 W(t, y,−k)
]
, (y, k) ∈ L2(R× T), (71)

where W(t, y, k) satisfies the equation

W(t) =Wun
t

(
W(0)

)
+ γ0

∫ t

0
Wun

t−s
(
RWs

)
ds, (72)

and R : L2(R× T)→ L2(R× T) is given by

RF(y, k) :=
∫

T

R(k, k′)F
(
y, k′

)
dk′, (y, k) ∈ R× T, F ∈ L2(R× T).

(73)

The convergence claimed in Theorem 1 is then a direct consequence of Theorems 2
and 3.

It turns out that the microscopic evolution of the Wigner transform given by (61)
allows us to define a strongly continuous semigroup on L2(T2/ε × T) by letting

Wε(t)
(

Wε(0)
)
:= Wε(0). The norms of the semigroups L2(T2/ε × T) remain

bounded with ε ∈ (0, 1], see Corollary 4.2 of [7]. Using Theorems 2 and 3 we can
show therefore that for any G ∈ L1([0,+∞),A) we have

lim
ε→0+

∫ +∞

0
〈 Wε(t)Wε(0),G(t)〉dt =

∫ +∞

0
〈 WtW(0),G(t)〉dt, (74)

where WtW(0) :=W(t) is given by (71).

4.2.2 The Case of Positive Temperature at the Thermostat

Finally we consider the case T > 0. Suppose that χ ∈ C∞c (R) is an arbitrary real
valued, even function satisfying

χ(y) =
⎧
⎨

⎩

1, for |y| ≤ 1/2,
0, for |y| ≥ 1,
belongs to [0, 1], if otherwise.

(75)
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Then its Fourier transform χ̂ ∈ S(R). Let χ̂ε ∈ C∞(T2/ε) be given by

χ̂ε(η) :=
∑

n∈Z
χ̂

(
η + 2n

ε

)
, η ∈ T2/ε.

and

V̂ε(t, η, k) := Ŵε(t, η, k)− T χ̂ε(η)I2,

where I2 is the 2× 2 identity matrix. In fact, Vε(t) is a solution of the equation

Vε(t) =Wε(t)Vε(0)+
∫ t

0
Wε(s)

(
Fε

)
ds, (76)

where

F̂ε(η, k) := − iT χ̂ε(η)
ε

[
ω

(
k + εη

2

)
− ω

(
k − εη

2

)] [
1 0
0 −1

]
.

Using the convergence of (74) we conclude that

lim
ε→0+

∫ +∞

0
〈Vε(t),G(t)〉dt =

∫ +∞

0
〈V(t),G(t)〉dt, (77)

where

V(t, y, k) =
[
V (t, y, k) 0

0 V (t, y,−k)
]

and

V (t, y, k) := W(t, y, k)+ T

∫ t

0
Ws

(
ω̄′(k)χ ′(y)

)
ds. (78)

We can identify therefore W(t, y, k) with the solution of the equation

W(t, y, k) :=Wt (W̃0)(y, k)+
∫ t

0
Ws(F )(y, k)ds + T χ(y), (t, y, k) ∈ R̄+ × R× T.

(79)

Here

F(y, k) := −T ω̄′(k)χ ′(y), W̃0(y, k) := W0(y, k)− T χ(y). (80)

This ends the proof of Theorem 1 for an arbitrary T ≥ 0.
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5 Diffusive and Superdiffusive Limit from the Kinetic
Equation with Boundary Thermostat

We are now interested in the space-time rescaling of the solution of the Eq. (57) with
the boundary condition (52). We should distinguish here two cases:

• the optical chain, when ω′(k) ∼ k for small k,
• the acoustic chain, when ω(k) ∼ |k| for small k.

In the optical chain, the long-wave phonons (corresponding to small k) have a small
velocity, consequently even if the bulk scattering rate is small (R(k) ∼ k2), they still
have time to diffuse. In fact, all other phonons (i.e. those corresponding to other k)
have their non-trivial contribution to the diffusive limit.

In the acoustic chain the long-wave phonons move with the speed that is bounded
away from 0 and rarely scatter. Therefore, they are responsible for a superdiffusion
of the Levy type arising in the macroscopic limit. In the superdiffusive time-scale all
other phonons (corresponding to non-vanishng k) do not yet move, their contribution
to the asymptotic limit is therefore negligible.

5.1 The Optical Chain: Diffusive Behavior

This case was studied in [3]. The diffusive rescaling of the solution of (57) is defined
by

Wδ(t, y, k) = W(t/δ2, y/δ, k), (81)

with an initial condition that varying in the macroscopic space scale

Wδ(0, y, k) = W0(y, k). (82)

We assume here thatW0(y, k) = T +W̃0(y, k), with W̃0 ∈ L2(R×T). This rescaled
solution solves

∂tW
δ(t, y, k)+ 1

δ
ω̄′(k)∂yWδ(t, y, k) = γ0

δ2

∫

T

R(k, k′)
(
Wδ(t, y, k′)−Wδ(t, y, k)

)
dk′,
(83)

with the boundary condition (52) in y = 0.
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In [3] it is proven that, for any test function ϕ(t, y, k) ∈ C∞0 ([0,+∞)×R×T),

lim
δ→0

∫ +∞

0
dt

∫∫

R×T
Wδ(t, y, k)ϕ(t, y, k) dy dk =

∫ +∞

0
dt

∫∫

R×T
ρ(t, y)ϕ(t, y, k) dy dk,

(84)

where ρ(t, y) is the solution of the heat equation

∂tρ(t, y) = D∂2
y ρ(t, y), y �= 0,

ρ(t, 0) = T , ∀t > 0,

ρ(0, y) = ρ0(y) :=
∫

T

W0(y, k)dk.

(85)

The diffusion coefficient is given by

D := 1

γ0

∫

T

ω̄′(k)2

R(k)
dk. (86)

Notice that, under the condition of the optical dispersion relation, D < +∞.
The proof in [3] follows a classical Hilbert expansion method, with a modification
needed to account for the boundary condition.

Intuitively, the result can be explained in the following way: phonons of
all frequencies behave diffusively, under the scaling they converge to Brownian
motions with diffusion D, that has continuous path. As they get close to the
thermostat boundary, they cross it many times till they get absorbed with probability
1 in the macroscopic time scale. Consequently there is no (macroscopic) trasmission
of energy from one side to the other. Phonons are created with intensity T, and this
explain the value at the boundary y = 0.

5.2 The Acoustic Chain: Superdiffusive Behavior

This limit was studied in [10], while the case without thermostat had been previously
considered in [5]. In a one dimensional acoustic chain, long wave phonons (small
k) move with finite velocities but still scatter very rarely. Consequently these
longwaves phonons on the microscopic scale move ballistically with some rare
scattering of their velocities. Under the superdiffusive rescaling δ−3/2t, δ−1y they
converge to corresponding Levy processes, generated by the fractional laplacian
−|	|3/4. The effect of the thermal boundary is more complex than in the diffusive
case, as now the phonons have a positive probability to cross the boundary without
absorption and jump at a macroscopic distance on the other side. This causes a
particular boundary condition for the fractional laplacian at the interface y = 0,
that we explain below. Let us define the fractional laplacian −|	|3/4, admitting an
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interface value T , with absorption g0, transmission p+ and reflection p−, as the L2

closure of the singular integral operator

�3/4F(y) =p.v.
∫

yy ′>0
q(y − y ′)[F(y ′)− F(y)]dy ′

+ g0[T − F(y)]
∫

yy ′<0
q(y − y ′)dy ′

+ p−
∫

yy ′<0
q(y − y ′)[F(−y ′)− F(y)]dy ′

+ p+
∫

yy ′<0
q(y − y ′)[F(y ′)− F(y)]dy ′, y �= 0, F ∈ C∞0 (R),

(87)

where, cf [12, Theorem 1.1 e)],

q(y) = c3/4

|y|5/2
, c3/4 = 23/2$(5/4)√

π |$(−3/4)| =
3

25/2√π . (88)

The first integral appearing in the right hand side of (87) is understood in the
principal value (p.v.) sense. The choice of constant c3/4 is made in such a way
that the “free” fractional laplacian, defined by the kernel q(·), coincides with the
definition using the “usual” Fourier symbol, see [12, Theorem 1.1 a)]. To define
�3/4F(0), note that, due to the fact that g0 > 0, the finiteness of the second integral
forces the condition F(0) = T on any function belonging to the domain of the
generator. We can define �3/4F(0) using (87) for any continuous function that
satisfies F(0) = T , for which the integrals appearing in the right hand side (without
the principal value) converge.

Notice that in the case without thermal interface, g0 = 0, p− = 0, p+ = 1,
and we recover the usual “free” fractional laplacian on the real line. The absorption,
transmission and reflection coefficients that arise here are given by

g0 = lim
k→0

g(k), p± = lim
k→0

p±(k). (89)

For the nearest neighbor acoustic chain, with the dispersion relation ω(k) :=
ωa | sin(πk)| (cf (111)) it turns out that, see (119),

p+ =
(

ωa

ωa + γ

)2

, p−(k) :=
(

γ

ωa + γ

)2

ı0 =
2γωa

(ωa + γ )2
. (90)

The rescaled solution of the kinetic equation, see (57), is defined now by

Wδ(t, y, k) = W(t/δ3/2, y/δ, k) (91)
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In [10] it is proven that for any t > 0 and ϕ ∈ C∞0 (R× T)

lim
δ→0

∫ ∫

R×T
Wδ(t, y, k)ϕ(y, k) dy dk =

∫∫

R×T
ρ(t, y)ϕ(y, k) dy dk,

(92)

where ρ(t, y) is the solution of

∂tρ(t, y) = ĉΛ3/4ρ(t, y), (93)

where

ĉ := π2ω
3/2
a

(25γ0)1/2

∫ +∞

0

(1− cos λ)dλ

λ5/2 =
(
π5ω3

a

6γ0

)1/2

, (94)

cf [4, formula 3.762, 1, p. 437]
The proof of (92), presented in [10], is based on the probabilistic representation

of the phonon trajectory process associated with the kinetic equation (57). It is
shown that superdiffusively scaled trajectories of the process converge in law
to those of a Levy process, with corresponding probabilities to be absorbed,
transmitted or reflected when crossing y = 0, with a creation in the same point
(its generator is given by (87)).

Remark Notice that the convergence in (92) holds for every time t > 0, while
in the diffusive case it is only weakly in time (cf (84)). The explanation comes
from different methods adopted in the respective proofs. The proof of (92) is of
probabilistic nature, and uses the fact that the corresponding limiting transmit-
ted/reflected/absorbed process jumps over the thermostat interface only finitely
many times before being absorbed. On the other hand, the proof of (84) is analytic,
and it would be difficult to establish, by a probabilistic method, a result for every
time, since the corresponding Brownian motion crosses the thermostat infinitely
many times before being absorbed by it.

6 Perspectives and Open Problems

6.1 Direct Hydrodynamic Limit

The results presented in the previous sections are obtained in the typical two-step
procedure: we first take a kinetic limit (rarefied collisions) and obtain a kinetic
equation with a boundary condition for the thermostat, next we rescale (diffusively
or superdiffusively) this equation getting a diffusive or superdiffusive equation with
an appropriate boundary condition.
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It would be interesting to obtain a direct hydrodynamic limit, rescaling dif-
fusively or superdiffusively the microscopic dynamics, without rarefaction of the
random collision in the bulk. This means considering the evolution equations (54)
with ε = 1, then setting a scale parameter δ (that does not appear in the evolution
equations) and define the Wigner distribution by

〈G,W(δ)(t)〉 := δ

2

∑

y,y ′∈Z

∫

T

e2πik(y ′−y)
E

[
ψy

(
t

δα

)
(
ψy ′

)∗
(
t

δα

)]
G∗

(
δ
y + y′

2
, k

)
dk.

(95)

with α = 2, or α = 3/2 in the diffusive, or superdiffusive case, respectively. Then
one would like to show that, in some sense,

W(δ)(t, y, k)−→
δ→0

ρ(t, y), (96)

where ρ(t, y) is solution of (85) or (93), depending on the scaling. In absence of a
thermostat, this has been proved in [6].

6.2 More Thermostats

In non-equilibrium statistical mechanics it is always interesting to put the system
in contact with a number of heat baths at various temperatures. If, in the case of
dynamics defined by (6) or (54), we add another Langevin thermostat at the site
[ε−1y0] with y0 �= 0, at a temperature T1, we expect to obtain the same kinetic
equations with added boundary conditions at the point y0 analogous to (52) but of
course the phonon production rate g(k)T1. The difficulty in constructing the proof,
lies in the fact that we no longer have an explicit formula for a solution in the case
the inter-particle scattering is absent, that has been quite essential in our argument.

6.3 Poisson Thermostat

A different model for a heat bath at temperature T is given by a renewal of
the velocity p0(t) at random times given by a Poisson process of intensity γ :
each time the Poisson clock rings, the velocity is renewed with value chosen
with a Gaussian distribution of variance T , independently of anything else. This
mechanism represents the interaction with an infinitely extended reservoir of
independent particles in equilibrium at temperature T and uniform density.

From a preliminary calculation (cf [8]) it seems that the scattering rates in the
high frequency-kinetic limit are different, implying their dependence on the micro-
scopic model of the thermostat. Obviously, in the hydrodynamic limit, diffusive or
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superdiffusive, we expect that there boundary conditions will not depend anymore
on the microscopic model of the thermostat.

Appendix 1: Properties of the Scattering Coefficients

Some Properties of the Scattering Coefficient for a Unimodal
Dispersion Relation

Recall that ν(k) is defined by (39). From (30), we have

lim
ε→0

J̃ (ε − iω(k)) = iG
(
ω(k)

)+ iH
(
ω(k)

)
, for ω(k) �= 0

where

G(u) :=
∫

T+

d1

u+ ω(1)
, H(u) := 1

2
lim
ε→0

∫

T

d1

iε + u− ω(1)
. (97)

If ω(k) = 0, then k = 0 and, according to (30),

lim
ε→0

J̃ (ε) = π

|ω′(0+)| . (98)

If the dispersion relation ω(k) is unimodal and ωmin := ω(0), ωmax := ω(1/2),
then we can write H(ω(k)) = Hr(ω(k)) + iH i(ω(k)), with Hr(u), Hi(u) real
valued functions equal

Hr(u) := lim
ε→0

∫ ωmax

ωmin

(u− v)dv

|ω′(ω−1+ (v))|[ε2 + (u− v)2] (99)

and

Hi(u) := − lim
ε→0

∫ ωmax

ωmin

εdv

|ω′(ω−1+ (v))|[ε2 + (u− v)2] = −
π

|ω′(ω−1+ (u))| .
(100)

Here ω−1+ : [ωmin, ωmax] → [0, 1/2] is the inverse of the increasing branch of ω(·).
For u ∈ (ωmin, ωmax) we can write

Hr(u) = 1

ω′(ω−1+ (u))
log

ωmax − u

u− ωmin
+

∫ ωmax

ωmin

[(
ω−1+

)′
(v) −

(
ω−1+

)′
(u)

]
dv

u− v
.

(101)
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According to (29) and (39)

ν(k) =

⎧
⎪⎪⎨

⎪⎪⎩

{1− γH i(ω(k))+ iγ [G(ω(k))+Hr(ω(k))]}−1, if ω(k) �= 0,

2|ω̄′(0+)|
2|ω̄′(0+)| + γ

, if ω(k) = 0.

(102)

Summarizing, from the above argument we conclude the following.

Theorem 4 For a unimodal dispersion relation ω(·) the following are true:

(i) we have

|ν(k)| ≤ 2|ω̄′(k)|
γ + 2|ω̄′(k)| , k ∈ T, (103)

(ii) if k∗ is such that ω′(k∗) = 0, then

lim
k→k∗

ν(k) = 0 and lim
k→k∗

ı(k) = 0, (104)

(iii)

Re ν(k) > 0, for all k ∈ T \ {0, 1/2}, (105)

(iv)

p+(k) > 0 and p−(k) < 1 for all k such that ω′(k) �= 0 (106)

and

p−(k) > 0 for all k ∈ T \ {0, 1/2}, (107)

(v) we have the formula

Re ν(k) =
(

1+ γ

2|ω̄′(k)|
)
|ν(k)|2, k ∈ T. (108)

Proof Substituting into (102) from (99) and (100) immediately yields (108).
Estimate (105) follows directly from (102), formulas (97), (100), and (101).

Statement (109) is a consequence of (100) and (102). Part (ii) follows from
part (i), cf (42). Estimates (106) follow directly from (109), while (107) is a
straightforward consequence of part (iii), cf (50). ��

From part (v) of Theorem 4 we immediately conclude the following.
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Corollary 1 Suppose that ν(k) �= 0 is real valued. Then,

ν(k) = |ω′(k)|
|ω′(k)| + γπ

. (109)

Proof of (53)

To conclude (53) we invoke (50). Then, thanks to (108), we can write

p+(k)+ p−(k)+ ı(k) = 1+ γ

|ω̄′(k)|
[
|ν(k)|2

(
1+ γ

2|ω̄′(k)|
)
− Re ν(k)

]
= 1

and (53) follows.

An Example: Scattering Coefficient ν(k) for a Nearest Neighbor
Interaction Harmonic Chain—Computation of J̃ (λ) Using
Contour Integration

Assume that ω(k) is the dispersion relation of a nearest neighbor interaction
harmonic chain. We let α0 := (ω2

0 + ω2
a)/2 and α±1 := −ω2

a/4, and ω0 ≥ 0,
ωa > 0. Then, see Sect. 3,

α̂(k) = ω2
0 + ω2

a

2
− ω2

a

4

(
e2πik + e−2πik

)
= ω2

0

2
+ ω2

a sin2(πk) (110)

and, according to (7),

ω(k) :=
√
ω2

0

2
+ ω2

a sin2(πk). (111)

Using the definition of J̃ (λ), see (30), and (110) for any λ ∈ C such that Re λ > 0
we can write

J̃ (λ) =
∫

T

λd1

λ2 + α̂(1)
= − 4λ

ω2
a

∫ 1/2

−1/2

e2πi1d1

e4πi1 − 2W(λ)e2πi1 + 1
, (112)

where

W(λ) = 1+
(
ω0

ωa

)2

+ 2

(
λ

ωa

)2

. (113)

Note that W(λ) ∈ C \ [−1, 1], if Re λ > 0.
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The expression for J̃ (λ) can be rewritten using the contour integral over the unit
circle C(1) on the complex plane oriented counterclockwise and

J̃ (λ) = − 2λ

iπω2
a

∫

C(1)

dζ

ζ 2 − 2W(λ)ζ + 1
. (114)

When w ∈ C \ [−1, 1] the equation

z2 − 2wz+ 1 = 0

has two roots. They are given by -+,-−, holomorphic functions on C \ [−1, 1],
that are the inverse branches of the Joukowsky function J(z) = 1/2(z+z−1), z ∈ C

taking values in D̄
c and D, respectively. Here D := [z ∈ C : |z| < 1] is the unit

disc. We have

lim
ε→0+

1

2

(
-+(a − εi)−-−(a − εi)

)
= −i

√
1− a2, for a ∈ [−1, 1]. (115)

Using the Cauchy formula for contour integrals, from (114) we obtain

J̃ (λ) = 4λ

ω2
a

(
-+(W(λ)) −-−(W(λ))

) . (116)

For the dispersion relation ω(k) given by (111) and ε > 0 we have, cf (113),

W(ε − iω(k)) = cos(2πk)+ 2

(
ε

ωa

)2

− 4i
ω(k)ε

ω2
a

.

As a result we get, cf (115) and (116),

lim
ε→0+ J̃ (ε − iω(k)) = 2

ω2
a sin(2π |k|)

√
ω2

0

2
+ ω2

a sin2(πk)

and the following result holds.

Theorem 5 For the dispersion relation given by (111) we have

ν(k) = ω2
a sin(2π |k|)

⎧
⎨

⎩
ω2
a sin(2π |k|)+ 2γ

√
ω2

0

2
+ ω2

a sin2(πk)

⎫
⎬

⎭

−1

, k ∈ T.

(117)
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In particular, if ω0 = 0 (the acoustic case) we have, cf (42) and (50),

ν(k) = ωa cos(πk)

ωa cos(πk)+ γ
, k ∈ T (118)

and

p+(k) :=
(

ωa cos(πk)

ωa cos(πk)+ γ

)2

, p−(k) :=
(

γ

ωa cos(πk)+ γ

)2

ı(k) = 2γωa cos(πk)

(ωa cos(πk)+ γ )2
, k ∈ T.

(119)

Appendix 2: Proofs of (47) and (48)

Proof of (47)

Using (27) and (12) we can write

Ŵ 1
ε (t, η, k) = −

γ

2

{
I

(
t

ε
, η, k

)
+ I∗

(
t

ε
,−η, k

)}
, (120)

where

I(t, η, k) := ε

2

∫

T

dk′Eε
[
ψ̂

(
0, k − εη

2

)∗
ψ̂

(
0, k′

) ] ∫ t

0
ei[ω(k−

εη
2 )t−ω(k′)s]φ

(
t − s, k + εη

2

)
ds.

(121)

The Laplace transform of I
(
t
ε
, η, k

)
equals

Ĩε(λ, η, k) := ε2

2

∫ +∞

0
e−ελtI (t, η, k) dt

= ε2

2

∫ +∞

0
eiω(k+

εη
2 )τ g(dτ)

∫ +∞

τ

ei[ω(k′)−ω(k+
εη
2 )]sds

∫ +∞

s

e−{ελ+i[ω(k′)−ω(k−
εη
2 )]}t dt

×
∫

T

dk′Eε
[
ψ̂

(
0, k − εη

2

)∗
ψ̂

(
0, k′

) ]
.

(122)
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Performing the integration over the temporal variables we conclude that

Ĩε(λ, η, k) =
∫

T

Eε

[
ψ̂

(
0, k − εη

2

)∗
ψ̂

(
0, k′

) ]

× g̃
(
λε − iω(k − εη

2 )
)
dk′

2{λ+ iε−1[ω(k − εη
2 )− ω(k′)]}{λ+ iε−1[ω(k + εη

2 )− ω(k − εη
2 )]}

.

(123)

Using (39) we conclude that for any test function G ∈ S(R× T)

∫

R×T
Ĩε(λ, η, k)Ĝ

∗(η, k)dηdk

≈
∫

R×T2

Eε

[
ψ̂ (0, k)∗ ψ̂

(
0, k′

) ]
Ĝ∗(η, k)ν(k)dηdkdk′

2{λ+ iε−1[ω(k′)− ω(k)]}{λ+ iε−1[ω(k + εη)− ω(k)]} ,
(124)

as ε  1. Changing variables k := 1− εη′/2 and k′ := 1+ εη′/2 we obtain that

lim
ε→0+

∫

R×T
Ĩε(λ, η, k)Ĝ

∗(η, k)dηdk

=
∫

R2×T
Ŵ (0, η′, 1)Ĝ∗(η, 1)ν(1)dηdη′d1
(λ+ iω′(1)η′)(λ+ iω′(1)η)

.

(125)

The limit of ŵ1
ε (λ, η, k)—the Laplace transform of Ŵ 1

ε (t, η, k)—is therefore given
by

ŵ1(λ, η, k) = − γReν(k)

λ+ iω′(k)η

∫

R

Ŵ (0, η′, k)dη′

λ+ iω′(k)η′
. (126)

Therefore

lim
ε→0+ Ŵ

1
ε (t, η, k) = −γReν(k)e−iω′(k)t

∫

R

1− e−iω′(k)(η′−η)t

iω′(k)(η′ − η)
Ŵ (0, η′, k)dη′

(127)

and, performing the inverse Fourier transform, (47) follows.
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Proof of (48)

Concerning the term Ŵ 2
ε (t, η, k), from the third formula of (46), (12) and (27) we

obtain

Ŵ 2
ε (t, η, k) =

γ 2

2

{
J

(
t

ε
, η, k

)
+ R

(
t

ε
, η, k

)}
, (128)

where

J(t, η, k) := ε

4

∫

[0,t ]2
dsds′

∫

T2
d1d1′φ

(
t − s, k − εη

2

)∗
φ

(
t − s′, k + εη

2

)

× ei[ω(1)s−ω(1′)s ′]Eε
[
ψ̂(0, 1)∗ψ̂(0, 1′)

]
,

R(t, η, k) := ε

4

∫

[0,t ]2
dsds′

∫

T2
d1d1′φ

(
t − s, k − εη

2

)∗
φ

(
t − s′, k + εη

2

)

× e−i[ω(1)s−ω(1′)s ′]Eε
[
ψ̂(0, 1)ψ̂(0, 1′)∗

]
.

(129)

A simple computation shows that

J(t, η, k) = ε

4

∫

[0,t ]2
dsds′

∫ s

0
g(dτ)g(dτ ′)

∫

T2
d1d1′Eε

[
ψ̂(0, 1)∗ψ̂(0, 1′)

]

× ei[ω(k−εη/2)(s−τ )−ω(k+εη/2)(s ′−τ ′)]e−i[ω(1′)(t−s ′)−ω(1)(t−s)].
(130)

The respective Laplace transform equals

J̃ε(λ, η, k) := ε

∫ +∞

0
e−ελτ0J(τ0, η, k)dτ0

= ε

∫ +∞

0

∫ +∞

0
δ(τ0 − τ ′0)e−ελτ0/2e−ελτ ′0/2J(τ0, η, k)J(τ ′0, η, k)dτ0dτ

′
0

= ε2

4

∫

R̄
4+×R̄4+

dτ0,2g(dτ3)dτ
′
0,2g(dτ

′
3)

∫

T2
d1d1′

× δ(τ0 − τ ′0)δ

⎛

⎝τ0 −
3∑

j=1

τj

⎞

⎠ δ

⎛

⎝τ ′0 −
3∑

j=1

τ ′j

⎞

⎠ e
−ελ∑3

j=0 τj /4
e
−ελ∑3

j=0 τ
′
j /4

× ei[ω(k−εη/2)τ2+ω(1)τ1]e−i[ω(k+εη/2)τ ′2+ω(1′)τ ′1]Eε
[
ψ̂(0, 1)∗ψ̂(0, 1′)

]
.

(131)
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Here, for abbreviation sake we write dτ0,3 = dτ0dτ1dτ2 and likewise for the prime
variables. Using the identity δ(t) = (2π)−1

∫
R
eiβtdβ and integrating out the τ and

τ ′ variables we obtain

J̃ε(λ, η, k) = ε2

25π3

∫

R3
dβ0dβ1dβ

′
1

∫

T2
d1d1′Eε

[
ψ̂(0, 1)∗ψ̂(0, 1′)

]

× g̃(ελ/4 + iβ1)

[ελ/4− i(β0 + β1)][ελ/4+ i(β1 − ω(1))][ελ/4 + i(β1 − ω(k − εη/2))]

× g̃(ελ/4 + iβ ′1)
[ελ/4+ i(β0 − β ′1)][ελ/4+ i(β ′1 + ω(1′))][ελ/4+ i(β ′1 + ω(k + εη/2))] .

(132)

We integrate β1 and β ′1 variables using the Cauchy integral formula

1

2π

∫

R

f (iβ)dβ

z− iβ
= f (z), z ∈ H, (133)

valid for any holomorphic function f on the right half-plane H := [z ∈ C : Re z >
0] that belongs to the Hardy class Hp(H) for some p ≥ 1, see e.g. [11, p. 113].
Performing the above integration and, subsequently, changing variables εβ ′0 := β0+
ω(k − εη/2) we get

J̃ε(λ, η, k) = 1

23πε

∫

R

dβ0

λ/2 − iβ0

∫

T2
d1d1′Eε

[
ψ̂(0, 1)∗ψ̂(0, 1′)

]

× |g̃(
ελ/2− iεβ0 + iω(k − εη/2)

)|2
λ/2 − iε−1(ω(1)− ω(k − εη/2))− iβ0

× 1

λ/2 + iε−1(ω(1′)− ω(k − εη/2))+ iβ0

× 1

λ/2 + iε−1(ω(k + εη/2)− ω(k − εη/2))+ iβ0
.

(134)

Change variables 1, 1′ according to the formulas 1 := k′−εη′/2 and 1′ := k′+εη′/2
and use (cf (39))

|g̃(
ελ/2 − iεβ0 + iω(k − εη/2)

)|2 ≈ |ν(k)|2, as ε  1.
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We obtain then

J̃ε(λ, η, k) ≈ |ν(k)|
2

23πε

∫

R

dβ0

λ/2− iβ0

∫

R×T
Ŵ (0, η′, k′)dη′dk′

× 1

λ/2 − iε−1(ω(k′ − εη′/2)− ω(k − εη/2))− iβ0

× 1

λ/2 + iε−1(ω(k′ + εη′/2)− ω(k − εη/2))+ iβ0

× 1

λ/2 + iε−1(ω(k + εη/2)− ω(k − εη/2))+ iβ0
.

(135)

Since ω(k) is unimodal we can write

J̃ε(λ, η, k) ≈ |ν(k)|
2

23πε

∑

ι=±

∫

R

dβ0

λ/2 − iβ0

∫

R×[ιk−δ,ιk+δ]
Ŵ (0, η′, k′)dη′dk′

× 1

λ/2 − iε−1(ω(k′ − εη′/2)− ω(k − εη/2))− iβ0

× 1

λ/2 + iε−1(ω(k′ + εη′/2)− ω(k − εη/2))+ iβ0

× 1

λ/2 + iε−1(ω(k + εη/2)− ω(k − εη/2))+ iβ0
.

(136)

for a (small) fixed δ > 0. Changing variables k′ = k + εη′′ and using the
approximations ε−1[ω(k + εξ) − ω(k)] ≈ ω′(k)ξ and Ŵ (0, η′, ιk + εη′′) ≈
Ŵ (0, η′, ιk) we conclude that

J̃ε(λ, η, k) ≈ |ν(k)|
2

23π

∑

ι=±

∫

R

dβ0

λ/2 − iβ0

∫

R2
Ŵ (0, η′, ιk + εη′′)dη′dη′′

× 1

λ/2− iε−1(ω(ι(k + εη′′)− εη′/2)− ω(k − εη/2))− iβ0

× 1

λ/2+ iε−1(ω(ι(k + εη′′)+ εη′/2)− ω(k − εη/2))+ iβ0

× 1

λ/2+ iε−1(ω(k + εη/2)− ω(k − εη/2))+ iβ0

(137)
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≈ |ν(k)|
2

23π

∑

ι=±

∫

R

dβ0

(λ/2 − iβ0)(λ/2 + iω′(k)η + iβ0)

∫

R

Ŵ (0, η′, ιk)dη′

×
∫

R

1

λ/2− iω′(k)(η′′ + η/2− ιη′/2)− iβ0

× dη′′

λ/2 + iω′(k)(η′′ + η/2+ ιη′/2)+ iβ0
.

Integrating, first with respect to η′′ and then β0 variables, using e.g. (133), we get

lim
ε→0+ J̃ε(λ, η, k) = |ν(k)|

2

4|ω̄′(k)|
∑

ι=±

∫

R

dη

λ+ iω′(k)η

∫

R

Ŵ (0, η′, ιk)dη′

λ+ iιω′(k)η′
(138)

From the second equality of (129) we can see that formula for R̃ε(λ, η, k) can be
obtained from (135) by changing ω(1) and ω(1′) to −ω(1) and−ω(1′) respectively
and altering the complex conjugation by the wave functions. It yields

R̃ε(λ, η, k) ≈ |ν(k)|
2

23πε

∑

ι=±

∫

R

dβ0

λ/2 − iβ0

∫

R×[ιk−δ,ιk+δ]
Ŵ (0, η′, k′)dη′dk′

× 1

λ/2 + iε−1(ω(k′ − εη′/2)+ ω(k − εη/2))− iβ0

× 1

λ/2 − iε−1(ω(k′ + εη′/2)+ ω(k − εη/2))+ iβ0

× 1

λ/2 + iε−1(ω(k + εη/2)− ω(k − εη/2))+ iβ0
≈ 0,

(139)

as both the second and third lines are of order ε, while the fourth one is of order 1.
Summarizing, we have shown that (see [9] for a rigorous derivation)

1

2π
lim
ε→0+

∫

R

eiηyŴ 2
ε (t, η, k)dη

= γ 2|ν(k)|2
4|ω̄′(k)|2 1[[0,ω̄′(k)t ]](y)

(
W(0, y − ω̄′(k)t, k)+W(0,−y + ω̄′(k)t,−k))

(140)

and (48) follows.
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Control of Collective Dynamics
with Time-Varying Weights

Benedetto Piccoli and Nastassia Pouradier Duteil

Abstract This paper focuses on a model for opinion dynamics, where the influence
weights of agents evolve in time. We formulate a control problem of consensus type,
in which the objective is to drive all agents to a final target point under suitable
control constraints. Controllability is discussed for the corresponding problem with
and without constraints on the total mass of the system, and control strategies are
designed with the steepest descent approach. The mean-field limit is described both
for the opinion dynamics and the control problem. Numerical simulations illustrate
the control strategies for the finite-dimensional system.

1 Introduction

Social dynamics models are used to describe the complex behavior of large systems
of interacting agents. Application areas include examples from biology, such as the
collective behavior of animal groups [3, 6, 10, 16], aviation [22], opinion dynamics
[13] and other. In most applications, a key phenomenon observed is that of self-
organization, that is the spontaneous emergence of global patterns from local
interactions. Self-organization patterns include consensus, alignment, clustering,
or the less studied dancing equilibrium [1, 5]. In another direction, the control of
such systems was addressed in the control community with a wealth of different
approaches, see [4, 14, 21].

This paper focuses on models for opinion dynamics. A long history started back
in the 1950s, see [9, 11], then linear models were studied by De Groot [7] and
others, while among recent approaches we can mention the bounded-confidence
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model by Hegselmann and Krause of [13], see also [12, 15]. In most of the existing
models, interactions take place between pairs of individuals (typically referred to as
agents) and depend only on the distance separating the two agents. More recently,
a model was introduced in which the interactions are proportional to the agents’
weights of influence, which can evolve over time according to their own dynamics
[2, 17, 18, 20]. This augmented framework allows us to model opinion dynamics
in which an agent’s capacity to influence its neighbors depends not only on their
proximity but also on an internal time-varying characteristic (such as charisma,
popularity, etc.). Four models were proposed in [17] for the time-varying weights:
the first model allows agents to gain mass in pairwise interactions depending on
midpoint dynamics; the second increases the weights of agents that influence the
most the other agents; and the third and fourth focus on the capability to attract the
most influential agents. In particular, the developed theory allows to address control
problems, which is the focus of the present paper.

The main idea is that an external entity (for instance with global control) may
influence the dynamics of agents by increasing the weights of some of them. We thus
assume that a central controller is able to act on each agent but possibly influence
just a few at a time, thus also looking for sparse control strategies. We first formulate
the control problem by allowing a direct control of weights but imposing the total
sum of weights to be constant, resulting in a linear constraint on allowable controls.
Under natural assumptions on the interaction kernel we show that the convex hull
of the agents’ positions is shrinking, thus we look for control strategies stabilizing
to a specific point of the initial convex hull.

The constraints on the control and given by the dynamics (shrinking convex hull)
prevent a complete controllability of the system. However, we show that any target
position strictly within the initial convex hull of the system can be reached given
large enough bounds on the control.

We then look for a greedy policy by maximizing the instantaneous decrease of the
distance from the target point. This gives rise to a steepest descent algorithm which
is formulated via the linear constraints of the problem. Under generic conditions, the
solution is expected to be at a vertex of the convex set determined by constraints.

As customary for multi-agent and multi-particle systems, we consider the mean-
field limit obtained when the number of agents tends to infinity. In classical models
without mass variation, the limit measure satisfies a transport-type equation with
non-local velocity. Here, due to the presence of the weight dynamics, our mean-
field equation presents a non-local source term. We formulate a control problem
for the mean-field limit and show how to formulate the control constraints in this
setting.

In the last section we provide simulations for the finite-dimensional control
algorithm and illustrate how the control strategies reach the final target in the various
imposed constraints.
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2 Control Problems

We consider a collective dynamics system with time-varying weights, introduced
in [17]. Let x0 ∈ (Rd)N represent the N agents’ initial positions (or opinions)
and m0 ∈ (R+)N represent their initial weights of influence. We denote by a ∈
C(R+,R+) the interaction function. Lastly, let M = ∑N

i=1 m
0
i denote the initial

mass of the system. In this model, the evolution of each agents’ state variable xi(t)
depends on its interaction with other agents through the interaction function a (as
in the classical Hegselmann-Krause dynamics [13]), weighted by the other agents’
weights of influence mi(t). The weights of influence also evolve in time due to their
own dynamics. More precisely, the evolution of theN positions and weights is given
by the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋi(t) = 1

M

N∑

j=1

mj(t)a(‖xi(t)− xj (t)‖)
(
xj (t)− xi(t)

)
,

ṁi(t) = mi(t)ψi (x(t),m(t))

xi(0) = x0
i , mi(0) = m0

i .

(1)

We have established in [17] the well-posedness of (1) along with the following
hypotheses:

Hypothesis 1 The function s �→ a(‖s‖)s is locally Lipschitz in R
d , and the

function ψ is locally bounded in (Rd)N × R
N .

Hypothesis 2 For all (x,m) ∈ (Rd)N × R
N ,

N∑

i=1

miψi(x,m) = 0. (2)

Note that Hypothesis 2 is not necessary for the well-posedness of (1). It is a
modeling choice which enforces conservation of the total mass of the system, so
that the weights mi are allowed to shift continuously between agents, but their sum
remains constant. We refer the reader to [17] for a detailed analysis of this system
for various choices of the weight dynamics, exhibiting behaviors such as emergence
of a single leader, or emergence of two co-leaders.

In the present paper, we aim to study the control of system (1) by acting only on
the weights of influence. Let �(x) denote the convex hull of x, defined as follows.

Definition 1 Let (xi)i∈{1,··· ,N} ∈ (Rd)N . Its convex hull � is defined by:

� =
{

N∑

i=1

ξixi | ξ ∈ [0, 1]N and
N∑

i=1

ξi = 1

}

.
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It was shown in [17] that for the dynamics (1)–(2), the convex hull �(x(t)) is
contracting in time, i.e. for all t2 ≥ t1 ≥ 0, �(x(t2)) ⊆ �(x(t1)).

Given α ∈ R
+ and A ∈ R

+, we define two control sets Uα∞ and UA
1 :

{
Uα∞ = {u : R+ → R

N measurable, s.t. |ui | ≤ α}
UA

1 = {u : R+ → R
N measurable, s.t.

∑N
i=1 |ui | ≤ A}.

We also define a set of controls that conserve the total mass M of the system: UM =
{u : R+ → R

N measurable, s.t.
∑N

i=1 miui = 0}. From here onwards,U will stand
for a general control set, equal to either UA

1 , Uα∞, UA
1 ∩ UM or Uα∞ ∩ UM .

We aim to solve the following control problem:

Problem 1 For all x∗ ∈ �(x0), find u ∈ U such that the solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋi = 1

M

N∑

j=1

mja(‖xi − xj‖)
(
xj − xi

)
,

ṁi (t) = mi (ψi(m, x)+ ui)

xi(0) = x0
i , mi(0) = m0

i ,

(3)

satisfies: for all i ∈ {1, · · · , N}, limt→∞ ‖xi(t)− x∗‖ = 0.

We also suppose that the interaction function satisfies a(s) > 0 for all s > 0.
Then from [17], if the total mass is conserved, the system converges asymptotically
to consensus. Let x̄ := 1∑N

i=1 mi

∑N
i=1 mixi denote the weighted barycenter of the

system. Then the control problem simplifies to:

Problem 2 Find u ∈ U such that the solution to (3) satisfies

lim
t→∞‖x̄(t)− x∗‖ = 0.

We seek a control that will vary the weights of the system so that its barycenter
converges to the target position x∗. In (3), the control u must also compensate for
the inherent mass dynamics. Here we will only consider the simpler case in which
there is no inherent mass dynamics, i.e. ψi ≡ 0 for all i ∈ {1, · · · , N}. The control
problem re-writes:

Problem 3 For all x∗ ∈ �(0), find u ∈ U such that the solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋi = 1

M

N∑

j=1

mja(‖xi − xj‖)
(
xj − xi

)
,

ṁi (t) = miui

xi(0) = x0
i , mi(0) = m0

i ,

(4)

satisfies: limt→∞ ‖x̄(t)− x∗‖ = 0.



Control of Collective Dynamics with Time-Varying Weights 293

The solution to the more general Problem 2 can be recovered by the feedback
transformation ui �→ ui − ψi , hence without loss of generality we will focus
on Problem 3. It was proven in [17] that without control (i.e. with non-evolving
weights), the weighted average x̄ is constant. The control strategy will consist of
driving x̄ to x∗.

3 Control with Mass Conservation

In this section, we explore the controllability of the system when constraining the
total mass of the system

∑N
i=1 mi(t) to M , by imposing u ∈ UM . This amounts to

looking for a control that will redistribute the weights of the agents while preserving
their sum. It was shown in [17] that this condition implies that the convex hull �(t)
is contracting in time. We remind an even stronger property of the system in the case
of constant total mass (see [17], Prop. 10):

Proposition 1 Let (x,m) be a solution to (1)–(2), and let D(t) := sup{‖xi −
xj‖(t) | (i, j) ∈ {1, · · · , N}2} be the diameter of the system. If inf{a(s) | s ≤
D(0)} := amin > 0 then the system (1)–(2) converges to consensus, with the rate
D(t) ≤ D(0)e−amint .

Remark 1 As a consequence, the convex hull converges to a single point �∞ :=
∩t≥0�(x(t)) = {limt→∞ x̄(t}).
The properties of contraction of the convex hull and convergence to consensus
imply that the target position x∗ is susceptible to exit the convex hull in finite time.
However, we show that that given sufficiently large upper bounds on the strength of
the control, the system is approximately controllable to any target position within
the interior of the convex hull, that we denote by �̊. We state and demonstrate the
result for the control constraints u ∈ Uα∞ ∩UM , but the proof can be easily adapted
to the case u ∈ UA

1 ∩ UM .

Theorem 1 Let (x0
i )i∈{1,··· ,N} ∈ R

dN , (m0
i ) ∈ (0,M)N such that

∑N
i=1 m

0
i = M

and let x∗ ∈ �̊(x0). Then for all ε > 0, there exists α > 0, tε ≥ 0 and u ∈ Uα∞∩UM

such that the solution to (4) satisfies: ‖x̄(tε)− x∗‖ ≤ ε.

Proof First, notice that since m0
i > 0 for all i ∈ {1, · · · , N}, ‖xi(t) − x0

i ‖ >

0 for all t > 0. Notice also that since the shrinking hull is contracting, we have
‖xi(t)− xj (t)‖ ≤ D0 for all (i, j) ∈ {1, · · · , N}2 and t ≥ 0, where D0 denotes the
initial diameter of the system. Let

δ := sup
s∈[0,D0]

{sa(s)}. (5)
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From Hypothesis 1, δ < ∞. Then for all u ∈ UM ,
∑N

j=1 mj ≡ M , hence for all
t > 0,

d

dt
‖xi − x0

i ‖ =
1

‖xi − x0
i ‖
〈xi − x0

i , ẋi〉 ≤
1

‖xi − x0
i ‖
‖xi − x0

i ‖
1

M

N∑

j=1

mjδ = δ

from which we deduce that for all t ≥ 0, ‖xi(t) − x0
i ‖ ≤ δt . Since x∗ ∈ �̊(x0),

there exists η > 0 such that B(x∗, η) ⊂ �̊(x0). So for t ≤ η
δ

, x∗ ∈ �̊(x(t)) for any
control u. We now look for a control strategy that can drive x̄ to a distance ε of x∗
in time tε := η

δ
.

Let us compute the time derivative of the weighted barycenter. For u ∈ UM , the
sum of masses is conserved and x̄ = 1

M

∑N
i=1 mixi . Then

d

dt
x̄ = 1

M

N∑

i=1

(ṁixi +miẋi) = 1

M

N∑

i=1

miuixi,

as the second term vanishes by antisymmetry of the summed coefficient. While
‖x̄ − x∗‖ > 0, we have

d

dt
‖x̄ − x∗‖ = 1

M‖x̄ − x∗‖
N∑

i=1

〈x̄ − x∗,miuixi 〉 = 1

M‖x̄ − x∗‖
N∑

i=1

〈x̄ − x∗, xi − x∗〉miui

since
∑N

i=1 miuix
∗ = 0. Let i− and i+ be defined as follows: for all i ∈ {1, · · · , N},

{
mi−〈x̄ − x∗, xi− − x∗〉 ≤ mi〈x̄ − x∗, xi − x∗〉
mi+〈x̄ − x∗, xi+ − x∗〉 ≥ mi〈x̄ − x∗, xi − x∗〉.

Note that i− and i+ are time-dependent, but we keep the notation i− = i−(t) and
i+ = i+(t) for conciseness. For all t ≤ tε, x∗ ∈ �̊(x(t)) so necessarily

〈x̄ − x∗, xi− − x∗〉 ≤ 0 ≤ 〈x̄ − x∗, xi+ − x∗〉.

Notice also that the following holds (by summing over all indices):

mi+〈x̄ − x∗, xi+ − x∗〉 ≥ M

N
‖x̄ − x∗‖2.

Let α̃ > 0. We now design a control u such that:

ui− = α̃
mi+
mi−
; ui+ = −α̃; ui = 0 for all i ∈ {1, · · · , N}, i �= i−, i �= i+.
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One can easily check that u ∈ UM . With this control, we compute:

d

dt
‖x̄ − x∗‖ = 1

M‖x̄ − x∗‖ [mi−〈x̄ − x∗, xi− − x∗〉ui− +mi+〈x̄ − x∗, xi+ − x∗〉ui+]

≤ 1

M‖x̄ − x∗‖mi+〈x̄ − x∗, xi+ − x∗〉(−α̃)

≤− α̃

M‖x̄ − x∗‖
M

N
‖x̄ − x∗‖2 ≤ −α̃ ‖x̄ − x∗‖

N
.

Then ‖x̄−x∗‖(t) ≤ ‖x̄0−x∗‖e− α̃
N
t . If α̃ ≥ N

tε
ln

( ‖x̄0−x∗‖
ε

)
, then ‖x̄−x∗‖(tε) ≤ ε.

It remains to show that there exists α > 0 such that u ∈ Uα∞. By construction of
the control u, for all t ≥ 0 it holds:

ṁi−(t)(t) = α̃mi+(t)(t); ṁi+(t)(t) = −α̃mi+(t)(t); ṁi(t) = 0 for all i �= i−, i �= i+.

From the first equation, for all i ∈ {1, · · · , N}, ṁi(t) ≤ α̃maxj {mj(t)}, which
implies that for all i ∈ {1, · · · , N}, mi(t) ≤ maxj {m0

j }eα̃t .
From the second equation, for all i ∈ {1, · · · , N}, ṁi(t) ≥ −α̃mi(t), which

implies that mi(t) ≥ minj {m0
j }e−α̃t .

We deduce that for all t ≤ tε,

|ui−(t)(t)| ≤ α̃
maxj {m0

j }
minj {m0

j }
≤ α̃

maxj {m0
j }eα̃tε

minj {m0
j }e−α̃tε

= α̃
maxj {m0

j }
minj {m0

j }
e2α̃tε := α,

where α depends on δ, η, (m0
i )i∈{1,··· ,N} and tε . Since |ui+(t)(t)| = α ≤ α̃ and for

all i �= i+(t), i−(t), |ui(t)| = 0, we deduce that u ∈ Uα∞, which concludes the
proof. ��
Remark 2 The proof can be easily adapted to the case u ∈ UA

1 ∩ UM by replacing
α by A/N .

We have shown that any target position strictly within the initial convex hull of
the system can be reached given sufficient control strength. The converse problem
of determining the set of reachable positions given a control bound is much more
difficult and remains open.

We now focus on designing feedback control strategies. Let us define the
functional

X : t �→ X(t) = ‖x̄(t)− x∗‖2.
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We propose a gradient-descent control strategy to minimize instantaneously the
time-derivative of X, i.e. we define u ∈ U such that for almost all t ∈ [0, T ],

u(t) ∈ arg min
v∈U

d

dt
Xv(t). (6)

We have

d

dt
X = 2〈x̄ − x∗, ˙̄x〉 = 2〈x̄ − x∗, 1

M

N∑

i=1

uimixi 〉 = 2

M

N∑

i=1

mi 〈x̄ − x∗, xi − x∗〉ui
(7)

since
∑N

i=1 uimix
∗ = 0 if u ∈ U . Hence, for all t ∈ R

+, we seek

min
u∈U Ft (u)

where we define the linear functional Ft as Ft : u �→ Ft (u) = ∑N
i=1 mi(t)〈x̄(t) −

x∗, xi(t) − x∗〉ui . We minimize a linear functional on a convex set U . Hence the
minimum is achieved at extremal points of U . Notice that the control set Uα∞ ∩UM

is the intersection of the hypercube Uα∞ and of the hyperplane UM . Similarly, the
control set UA

1 ∩ UM is the intersection of the diamond UA
1 and of the hyperplane

UM . These intersections are non-empty since Uα∞, UA
1 and UM contain the origin.

The condition u ∈ UM renders even this simple instantaneous-decrease control
strategy not straightforward. Notice that despite the condition u ∈ UA

1 that promotes
sparse control, no control satisfying u ∈ UM can have just one active component.
We will provide illustrations of this phenomenon in Sect. 6.

4 Control with Mass Variation

In this section, we remove the total mass conservation constraint on the control,
and consider Problem 3 for U = Uα∞ or U = UA

1 . Remark that this problem can
be solved with the controls found in Sect. 3 (thus satisfying the mass conservation
constraint). However we purposefully look for a different solution in order to exploit
the larger control possibilities that appear due to the fewer constraints.

We first point out a fundamental difference in the behavior of the system
compared to that of the previous section: with a varying total mass, one can break
free of the convergence property stated in Properties 1.

Proposition 2 Let (x,m) be a solution to (1). Then there exist mass dynamics ψ
that do not satisfy Hypothesis 2, such that the system does not converge to consensus.
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Proof Consider the constant mass dynamics given by: ψi(x,m) ≡ −R for all i ∈
{1, · · · , N}. Then for all i ∈ {1, · · · , N}, mi(t) = m0

i e
−Rt and we can compute:

d(‖xi − x0
i ‖2)

dt
= 〈xi − x0

i ,

N∑

j=1

2mj

M
a(‖xi − xj‖)(xj − xi)〉 ≤ 2‖xi − x0

i ‖δe−Rt ,

where δ was defined in (5). From this we get: ‖xi − x0
i ‖ ≤ δ

R
(1− e−tR). Hence for

R big enough, each xi is confined to a neighborhood of its initial position, which
prevents convergence to consensus. ��
Remark 3 As a consequence, in such cases the convex hull tends to a limit set
�∞ := ∩t≥0�(x(t)) not restricted to a single point.

The dynamics of the barycenter of the system are now less trivial than in the
previous section due to the total mass variation. Nevertheless, as previously, we
prove approximate controllability to any target position strictly within the initial
convex hull.

Theorem 2 Let (x0
i )i∈{1,··· ,N} ∈ R

dN , (m0
i ) ∈ (0,M)N such that

∑N
i=1 m

0
i = M

and let x∗ ∈ �̊(x0). Then for all ε > 0, there exists α > 0, tε ≥ 0 and u ∈ Uα∞\UM

such that the solution to (4) satisfies: ‖x̄(tε)− x∗‖ ≤ ε.

Proof Let x∗ ∈ �̊(x0) and let ε > 0. Then there exists (τ 0
i )i∈{1,··· ,N} with τ 0

i ∈
[0, 1]N ,

∑N
i=1 τ

0
i = 1 and τ 0

i > 0 for all i ∈ {1, · · · , N} such that

x∗ =
N∑

i=1

τ 0
i x

0
i .

We will show that we can drive each weightmi to a multiple κτ 0
i of its target weight,

while maintaining the positions withing close distance of the initial ones, ensuring
that the target position remains in the shrinking convex hull. Define

⎧
⎪⎪⎨

⎪⎪⎩

rmin = min{ln
(
m0
i

τ 0
i

)
| i ∈ {1, · · · , N}}

rmax = max{ln
(
m0
i

τ 0
i

)
| i ∈ {1, · · · , N}}.

Let α̃ ≥ δ
ε
, with δ defined in (5) and let α > α̃ > 0. Let T := rmax−rmin

α−α̃ and

κ := ermin−α̃T . Now consider the constant control defined by: for all i ∈ {1, · · · , N},

ui = − 1

T
ln

(
m0
i

κτ 0
i

)

.
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One can easily show that for all i ∈ {1, · · · , N}, −α ≤ ui ≤ −α̃, and furthermore,
mi(T ) = κτ 0

i . From the proof of Properties 2, for all t ∈ [0, T ], ‖xi(t)− x0
i ‖ ≤ δ

α̃
,

where δ was defined in (5). From this we compute:

‖x̄(T )− x∗‖ =
∥
∥∥
∥
∥

∑N
i=1 mi(T )xi(T )
∑N

i=1 mi(T )
−

N∑

i=1

τ 0
i x

0
i

∥
∥∥
∥
∥
=

∥
∥∥
∥
∥

N∑

i=1

τ 0
i (xi(T )− x0

i )

∥
∥∥
∥
∥

≤
N∑

i=1

τ 0
i

∥
∥
∥xi(T )− x0

i

∥
∥
∥ ≤ δ

α̃
≤ ε,

which proves the theorem. ��
Remark 4 As for Theorem 1, the proof can be easily adapted to the case u ∈ UA

1
by replacing α by A

N
.

As in the previous section, we design a feedback control strategy that minimizes
the time-derivative of the functional X instantaneously. With a total mass now
varying in time, we have:

d

dt
X = 2

∑N
i=1 mi

N∑

i=1

mi〈x̄ − x∗, xi − x̄〉ui. (8)

Since we removed the constraint u ∈ UM , the control strategy minimizing dX
dt

is
straightforward. For u ∈ Uα∞, we have:

{
ui = −α if 〈x̄ − x∗, xi − x̄〉 > 0

ui = α if 〈x̄ − x∗, xi − x̄〉 < 0.
(9)

For u ∈ UA
1 , we define the set I := arg max{|mi〈x̄−x∗, xi−x̄〉|, i ∈ {1, · · · , N}},

and we have:

{
ui = − A

|I |sgn(〈x̄ − x∗, xi − x̄〉) if i ∈ I
ui = 0 otherwise,

(10)

where | · | represents the cardinality of a set.
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5 Mean-Field Limit

5.1 Mean-Field Limit of Mass-Varying Dynamics Without
Control

In this section, we recall the definition of mean-field limit. Consider System (1).
The goal of the mean-field limit is to describe the behavior of the system when the
number of agentsN tends to infinity. Instead of following the individual trajectory of
each individual, we aim to describe the group by its limit density μ, which belongs
to M(Rd), the set of Radon measures with finite mass. We endow M(Rd) with the
topology of the weak convergence of measures, i.e.

μi ⇀i→∞ μ ⇔ lim
i→∞

∫
f dμi =

∫
f dμ

for all f ∈ C∞c (Rd). Let μ0 ∈ M(Rd). We consider the following transport
equation for μ:

{
∂tμ+ ∇ · (V [μ]μ) = h[μ]
μ(0) = μ0.

(11)

We recall conditions for well-posedness of (11), see [18]:

Hypothesis 3 The function V [·] :M(Rd)→ C1(Rd) ∩ L∞(Rd ) satisfies

• V [μ] is uniformly Lipschitz and uniformly bounded
• V is uniformly Lipschitz with respect to the generalized Wasserstein distance

(see [18])

Hypothesis 4 The source term h[·] :M(Rd)→M(Rd) satisfies

• h[μ] has uniformly bounded mass and support
• h is uniformly Lipschitz with respect to the generalized Wasserstein distance (see

[18])

We now recall the definition of mean-field limit.

Definition 2 Let (x,m) ∈ R
dN × (R+)N be a solution to (1). We denote by μN the

corresponding empirical measure defined by

μN(t) = 1

M

N∑

i=1

mi(t)δxi(t).
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The transport equation (11) is the mean-field limit of the collective dynamics (1) if

μN(0) ⇀N→∞ μ(0) ⇒ μN(t) ⇀N→∞ μ(t)

where μ is the solution to (11) with initial data μ(0).

The definition of empirical measure requires a crucial property of the finite-
dimensional system (1): that of indistinguishability of the agents. Indeed, notice
that there isn’t a one-to-one relationship between the set of empirical measures
(finite sums of weighted Dirac masses) and the set of coupled positions and weights
(x,m) ∈ R

dN × (R+)N . For instance, two pairs (x(t),m(t)) ∈ R
dN × (R+)N and

(y(t), q(t)) ∈ R
d(N−1) × (R+)N−1 satisfying x0

1 = x0
N = y0

1 , m0
1 + m0

N = q0
1 and

(x0
i , m

0
i ) = (y0

i , q
0
i ) for all i ∈ {2, · · · , N − 1} correspond to the same empirical

measure. Hence if we want the concept of mean-field limit to make sense, we
must consider discrete systems that give the same dynamics to (x(t),m(t)) and
(y(t), q(t)).

Definition 3 Let t �→ (x(t),m(t)) ∈ R
dN × (R+)N and t �→ (y(t), q(t)) ∈

R
d(N−1)× (R+)N−1 be two solutions to system (1). We say that indistinguishability

is satisfied if

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0
1 = x0

N = y0
1

m0
1 +m0

N = q0
1

xi = yi, i ∈ {2, · · · , N − 1}
mi = qi, i ∈ {2, · · · , N − 1}

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 ≡ xN ≡ y1

m1 +mN ≡ q1

xi ≡ yi, i ∈ {2, · · · , N − 1}
mi ≡ qi, i ∈ {2, · · · , N − 1}.

Indistinguishability is a strong property, and it is not necessarily satisfied by the
general function ψ defining the weights’ dynamics in (1). We refer the reader to
[2, 17, 20] for examples of mass dynamics satisfying or not the indistinguishability
property. From here onward, we will focus on the following particular form of mass
dynamics that does satisfy indistinguishability:

ψi(x,m) = 1

M

N∑

j=1

mjS(xi, xj ), (12)

with S ∈ C(Rd ×R
d ,R).

In order for a transport equation to be the mean-field limit of a finite-dimensional
system, it is sufficient for it to satisfy the following two properties (see [23]):

(i) When the initial data μ0 is an empirical measure μ0
N associated with an initial

data (x0,m0) ∈ R
dN × R

N of N particles, then the dynamics (11) can be
rewritten as the system of ordinary differential equations (1).

(ii) The solution μ(t) to (11) is continuous with respect to the initial data μ0.
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The following holds:

Proposition 3 Consider System (1) with mass dynamics given by (12), where S ∈
C(Rd ×R

d,R) is skew-symmetric: S(x, y) = −S(y, x). Then its mean-field limit is
the transport equation with source (11) with the interaction kernel

V [μ](x) =
∫

Rd

a(‖x − y‖)(y − x)dμ(y) (13)

and the source term

h[μ](x) =
∫

Rd

S(x, y)dμ(y)μ(x). (14)

The proof of this result should consist of proving the two properties (i) and (ii)
above. Notice that well-posedness of (11)–(13)–(14) and continuity with respect
to the initial data cannot be obtained by applying directly the results of [18] since
h does not satisfy Hypothesis 4. Nevertheless, well-posedness and continuity can
be proven, using the total conservation of mass coming from the skew-symmetric
property of S, see [20]. In the present paper, we focus on proving the first
property (i).

Proof We prove that the transport equation (11) with the vector field (13) and the
source term (14) satisfies the property (i) above. Let (x,m) : R+ → R

dN × R
N be

the solution to the system (1) with the weight dynamics given by (12) and initial
data (x0,m0) ∈ R

dN × R
N . We show that the empirical measure μN(t, x) =

1
M

∑N
i=1 mi(t)δxi(t)(x) is the solution to the PDE (11)–(13)–(14) with initial data

μ0
N(x) =

∑N
i=1 m

0
i δx0

i
(x). Let f ∈ C∞c (Rd). We show that

d

dt

∫
f dμN −

∫
∇f · V [μN ]dμN =

∫
f dh[μN ]. (15)

We compute each term independently. Firstly, we have:

d

dt

∫
f dμN = d

dt

1

M

N∑

i=1

mif (xi) = 1

M

N∑

i=1

(ṁif (xi)+miẋi · ∇f (xi ))

= 1

M2

N∑

i=1

N∑

j=1

mimj

[
S(xi , xj )f (xi)+ a(‖xi − xj‖)(xj − xi ) · ∇f (xi )

]
.

(16)
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Secondly,

∫
∇f · V [μN ]dμN =

∫
∇f (x) ·

∫
a(‖x − y‖)(x − y)dμN(y)dμN(x)

= 1

M2

N∑

i=1

N∑

j=1

mimja(‖xi − xj‖)(xj − xi) · ∇f (xi).

(17)

Thirdly,

∫
f dh[μN ] =

∫
f (x)

∫
S(x, y)dμN (y)dμN (x) = 1

M2

N∑

i=1

N∑

j=1

mimjf (xi )S(xi , xj ).

(18)

Putting together (16), (17), and (18) and using the fact that (x,m) satisfies (1)–(12),
we deduce that μN satisfies (15)–(13)–(14). ��

The general weight dynamics (12) include special cases studied in previous
works. Indeed:

• if S(x, y) := S0(x), the mass dynamics can be simply written as h[μ](x) =
|μ|S0(x)μ(x) (see [18])

• if S(x, y) := S1(y − x), the mass dynamics can be rewritten as the convolution
h[μ] = (S1 ∗ μ)μ (see [18])

• if ṁi = 1
M

∑N
j=1

∑N
k=1 mjmkS(xi, xj , xk), we can show in a similar way that

the mean-field limit is the PDE (11) with the source term

h[μ](x) =
(∫

Rd

∫

Rd

S(x, y, z)dμ(y)dμ(z)

)
μ(x).

In particular, this applies to the following mass-conserving dynamics, which are
a slight modification of Model 2 proposed in [17]:

ṁi = mi

M

⎛

⎝
N∑

j=1

mja(‖xi − xj‖)‖xi − xj‖ − 1

M

N∑

j=1

N∑

k=1

mjmka(‖xj − xk‖)‖xj − xk‖)
⎞

⎠

where S(xi , xj , xk) := 1
M
(a(‖xi − xj‖)‖xi − xj‖ − a(‖xj − xk‖)‖xj − xk‖).
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5.2 Control Problem

From the mean-field limit of the system without control, we extract a natural control
problem corresponding to the mean-field limit of (3). Consider the controlled PDE:

{
∂tμ+ ∇ · (V [μ]μ) = μu

μ(0) = μ0.
(19)

We define the kinetic variance X(t) = ‖ ∫
Rd (x − x∗)dμ(t, x)‖2. We seek a control

function u : R+ ×R
dN that minimizes instantaneously d

dt
X(t). Similarly to Sect. 3,

we can further restrict the set of controls to functions satisfying

∫

Rd

u(t, x)dμ(t, x) = 0 for a.e t ∈ R
+.

We can also extend theL1 andL∞ bounds on the control to the mean-field setting:

• L∞ condition: ‖u‖L∞(R+×Rd ) ≤ α

• L1 condition: ‖u(t, ·)‖L1(Rd) ≤ A

We can compute:

d

dt
X(t) =2〈

∫

Rd

(x − x∗)dμ(t, x), d
dt

∫

Rd

(x − x∗)dμ〉 = 2〈
∫

Rd

(x − x∗)dμ(t, x),

−
∫

Rd

(x − x∗)d(∇ · (V [μ]μ))〉 + 2〈
∫

Rd

(x − x∗)dμ(t, x),
∫

Rd

(x − x∗)u(t, x)dμ〉.

6 Numerical Simulations

We now provide simulations of the evolution of System (4) with the various control
strategies presented in Sects. 3 (u ∈ Uα∞ ∩ UM and u ∈ UA

1 ∩ UM ) and 4 (u ∈ Uα∞
and u ∈ UA

1 ).
Four simulations were run with the same set of initial conditions x0 ∈ R

dN for
d = 2, N = 10, and control bounds α = 2 and A = 10. In each simulation,
the control maximizes the instantaneous decrease of the functional X, with one of
the various constraints exposed in Sects. 3 and 4. Figure 1 shows that in all cases,
the control successfully steers the weighted barycenter x̄ to the target position x∗.
The evolution of the functional t �→ ‖x̄(t) − x∗‖ (Fig. 4 (right)) shows that the
target is reached faster with controls that allow for mass variation than for controls
constrained to the set UM . Figure 2 shows the evolution of each agent’s individual
weight for each of the four cases of Fig. 1. Interestingly, when mass variation is



304 B. Piccoli and N. P. Duteil

Fig. 1 Trajectories of the positions xi(t) in R
2 corresponding to the controlled system (4) with

N = 10 and a : s �→ e−s2
. The top row corresponds to controls satisfying u ∈ UM (Sect. 3)

while the second row corresponds to controls allowing total mass variation (Sect. 4). In each row,
the left column corresponds to u ∈ Uα∞ and the right one corresponds to u ∈ UA

1 . In each plot,
different agents are represented by different colors, and the size of each dot is proportional to the
weight of the corresponding agent at that time. The gray dotted trajectory represents the weighted
barycenter x̄. The black star represents the target position, inside the convex hull of the initial
positions (dashed polygon). The convex hull of the positions at final time is represented by the
dot-dashed polygon

allowed, we observe a general decrease in the total mass of the system in the case
u ∈ Uα∞ (dotted grey line, Fig. 2-left) and a general increase in the case u ∈ UA

1
(dotted grey line, Fig. 2-right). Figure 3 shows the control values ui(t) for each
i ∈ {1, · · · , N} and each t ∈ [0, 1]. Notice that in the case of mass-preserving
control u ∈ UM (top row), the controls do not saturate the constraints u ∈ Uα∞ or
u ∈ UA

1 . In the case of varying total mass, as shown in Sect. 4, the control strategies
minimizing dX

dt
saturate the constraints.
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Fig. 2 Evolution of the weights t �→ mi(t) corresponding to control strategies u ∈ Uα∞ (left)
and u ∈ UA

1 (right). In each plot, the continuous lines correspond to the mass-preserving control
u ∈ UM of Sect. 3, and the dashed lines to the controls of Sect. 4. Each colored line (respectively
dashed or continuous) shows the evolution of the corresponding colored agent of Fig. 1, and the
grey lines represent the evolution of the average weight 1

N

∑N
i=1 mi

Figure 4 (left) shows that the constraint u ∈ UA
1 promotes a sparse control

strategy. A control is said to be sparse if it is active only on a small number of
agents. As mentioned in Sect. 3, mass-varying controls cannot be strictly sparse,
and need to have at least two non-zero components at each time. Indeed, the control
strategy u ∈ UA

1 ∩ UM has either two or three active components at all time.

7 Conclusion

In this paper we aimed to control to a fixed consensus target a multi-agent system
with time-varying influence, by acting only on each agent’s weight of influence. We
proved approximate controllability of the system to any target position inside the
convex hull of the initial positions. We then focused on designing control strategies
with various constraints on the control bounds and on the total mass of the system.

We also presented the mean-field limit of the discrete model for general mass
dynamics that satisfy the indistinguishability property. The population density
satisfies a transport equation with source, where both the source term and the
velocity are non-local.

The combination of our analysis with numerical simulations allows us to
compare the control performances of the four strategies. Firstly, the control strate-
gies allowing total mass variation are more efficient than the control strategies
conserving the total mass, as the weighted barycenter reaches the target position
faster.Interestingly, this is not obvious a priori from Eqs. (7) and (8), as the time
derivatives of the functional X = ‖x̄ − x∗‖2 are of the same order of magnitude in
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Fig. 3 Evolution of the control functions t �→ ui(t) corresponding to the systems of Fig. 1. The
top row corresponds to controls satisfying u ∈ UM (Sect. 3) while the second row corresponds
to controls allowing total mass variation (Sect. 4). In each row, the left column corresponds to
u ∈ Uα∞ and the right one corresponds to u ∈ UA

1 . Each control function ui is colored according
to the corresponding agent xi of Fig. 1

Fig. 4 Left: Evolution of the number of active components of the control with the various
strategies corresponding to Fig. 1. Right: Distance of the barycenter to the target position t �→
‖x̄(t) − x∗‖
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the two cases. We also remark that the controls allowing mass variation can either
increase or decrease the total mass of the system.

The constraint u ∈ UA
1 is usually enforced to promote sparsity (see [8, 19]),

that is the activation at any given time of as few control components as possible.
However, the added constraint u ∈ UM renders strict sparsity impossible, and we
already remarked that in order to preserve the total mass, the control has to be active
on at least two components at any given time. Simulations shows that indeed, the
control u ∈ UA

1 ∩UM oscillates between two and three active components, whereas
the control u ∈ UA

1 maintains strict sparsity. On the other hand, the controls u ∈ Uα∞
and u ∈ Uα∞ ∩ UM act simultaneously on all components at all time.

Although in the illustrating simulations, all four controls manage to drive
the system’s weighted barycenter to the target position x∗, this would not have
necessarily been achievable with either a target closer to the initial convex hull
boundary or with stricter control bounds α and A. The question of determining the
set of achievable targets given an initial distribution of positions and weights and
control bounds remains open and is an intriguing future direction of this work, as is
the control of the mean-field model obtained as limit of the finite-dimensional one
when the number of agents tends to infinity.
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Kinetic Modelling of Autoimmune
Diseases

M. Piedade M. Ramos, C. Ribeiro, and Ana Jacinta Soares

Abstract In this paper, we review previous results obtained by the authors,
concerning the mathematical modelling of autoimmune diseases when the kinetic
theory approach is used in order to describe the microscopic interactions between
cells. Three cell populations are considered and the distribution function of each
population depends on the biological activity variable defining the functional state
relevant for that population. We revisit the wellposedness of the kinetic system and
focus our study on the numerical simulations with the kinetic system in view of
investigating the sensitivity of the solution to certain parameters of the model with
biological significance.

Keywords Mathematical modelling · Kinetic theory · Cellular interactions ·
Autoimmune diseases

1 Introduction

The main job of the immune system is to protect the organism against disease
whether caused by external factors such as bacteria and viruses, or internal aspects
such as the existence of cancerous tumour cells in the human body. In order to
provide this protection, the main players of the immune system must distinguish
between pathogens and healthy tissue.

An autoimmune disease is an illness in which the immune system wrongly
attacks healthy cells by reacting to self-antigens. In many cases it is chronic,
and patients alternate between periods of relapse, having suffering symptoms, and
periods of remittance, in which symptoms are absent.

Autoimmune diseases can affect just about any part of the body, and depending
on which part of the body is affected by the such a perverse mechanism, a different
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autoimmune disease can be identified. The consequence of this is that over one
hundred types of autoimmune diseases exist, some of the most common include type
1 diabetes, rheumatoid arthritis, multiple sclerosis, lupus, psoriasis, thyroid diseases,
and inflammatory bowel disease. Although these diseases are not, in general, deadly,
they are, in most cases, chronic. The chronic nature of autoimmunity can have
serious implications on the quality of life of patients suffering from these diseases.
Unfortunately, in spite of a significant increase in the number of patients suffering
from these conditions, particularly in the developed world, much about the process
of autoimmunity remains a mystery, although environmental changes associated
with industrialization have been long suspected as well as genetic factors. See, for
example, papers [1–4].

Motivated by the idea of developing a mathematical model in order to describe,
in a rigorous way, the complex dynamics of the variables involved in some
autoimmune disease, we have initiated a research project with this objective in
mind. We have proposed in paper [5] a rather simple, but mathematically robust,
model with the aim of describing the immune system interactions in the context of
autoimmune disease. The interacting populations are self-antigen presenting cells,
self reactive T cells and the set of immunosuppressive cells consisting of Regulatory
T (Treg) cells and Natural Killer (NK) cells. In paper [5], we have developed
a rather complete qualitative analysis of the model equations and investigated
the existence of biologically realistic solutions. Then, in paper [6], a new model
has been proposed by considering a further population of IL-2 cytokines and an
artificial inlet of external drug therapy with the aim of studying optimal policies
for the immunotherapeutic treatment of autoimmune diseases. Paper [6] focus on
the macroscopic formulation of this new model, whereas paper [7] introduces the
kinetic system approach and exploits the corresponding cellular dynamics. We
believe that the kinetic approach, where the model is developed at the cellular
scale, can give some insights concerning the biological processes involved in
autoimmunity.

In these proceedings, we revisit the model proposed in [5] and summarize
the results there obtained. Then we further develop a sensitivity analysis of the
parameters involved in the model equations in order to investigate which trends
and outcomes, that are common in autoimmune diseases, can be replicated with
our numerical simulations. On the one hand, the sensitivity analysis presented here
studies the effect of immunotolerance on the evolution of the main populations of
cells involved in autoimmunity by, for example, decreasing or increasing certain
proliferative parameters defined in the model and on the other hand it shows the
effect of immunosupression in the evolution of the same populations by changing
certain destructive parameters appearing in the model. A sensitivity analysis of
the model to certain conservative parameters is also given, showing the effect
of increasing or decreasing these parameters on the number of more active cells
participating in the process.

To the best of our knowledge, only few contributions are known on the mathe-
matical modelling of the process of autoimmunity. Some examples of these models
prior to our work can be found in [8–10]. On the other hand, several well-known
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studies on the mathematical modeling of the tumour-immune system interactions
can be found in [11–15].

The content of these proceedings is organized as follows. In Sect. 2 we briefly
describe how the immune system can be represented within a mathematical
framework, introducing the cellular populations considered in our model and their
main role in the dynamics. Then, in Sects. 3 and 4, we revisit the model proposed in
[5] and summarize the results concerning the wellposedeness of the kinetic system.
Section 5 is devoted to the numerical simulations and their biological interpretation
and contains a sensitivity analysis of the parameters involved in the model equations.
Finally, in Sect. 6 we state our conclusions and present future ideas in terms of
research perspectives.

2 The Mathematical Representation of the Immune System

The immune system can be considered, at the cellular level, as a system constituted
by a large number of cells belonging to different interacting populations, and
therefore a kinetic theory approach can be used to describe the dynamics of the
populations.

In our model, we consider three interacting cell populations pi , i = 1, 2, 3,
that are involved in the development of autoimmunity, namely the population p1
of SAPCs (self-antigen presenting cells), the population p2 of SRTCs (self-reactive
T cells), and the population p3 of ISCs (immunosuppressive cells).

These populations interact at the cellular level, and the relevant effects that are
considered in our description are the following.

• SAPCs transport self-antigens to their encounter with SRTCs.
• SRTCs are activated when they encounter a SAPC that has digested a self-

antigen.
• ISCs regulate the activity of SRTCs and SAPCs.

2.1 The Functional Activity at the Cellular Level

The functional state of each population is described by a positive real variable
u ∈ [0, 1], called activation variable or activity, whose biological meaning is
characterized as follows.

• The activity u of SAPCs is the ability to stimulate and activate SRTCs. When
u = 0, SAPCs do not activate SRTCs and, therefore, any autoimmune response
is induced in the body.

• The activity u of SRTCs is the ability of promoting the secretion of cytokines
which, in turn, can induce an inflammatory process. When u = 0, SRTCs do
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not produce cytokines, meaning that SRTCs are not sensitive to the stimulus by
SAPCs and no inflammatory process is triggered.

• The activity u of ISCs is the ability to inhibit the autoimmune response by either
suppressing the activity of SAPCs and SRTCs or eliminating SAPCs or SRTCs.
When u = 0, the ISCs are neither able to inhibit the activity of SAPCs and
SRTCs nor to eliminate SAPCs or SRTCs.

2.2 The Cellular Interactions

The dynamics at the cellular level is modelled under the following assumptions.

(i) Interactions are homogeneous in space and instantaneous modify the state of
the participating cells.

(ii) Only binary interactions between cells of different populations are significant
for the evolution of the system.

(iii) Interactions among cells of populations p1 (SAPCs), p2 (SRTCs) and p3
(ISCs) can create SAPCs, SRTCs and ISCs (proliferative type), or destroy
SAPCs and SRTCs (destructive type), and they can also simply change the
activity of SAPCs and SRTCs (conservative type).

(iv) The population p3 (ISCs) is homogeneous with respect to its biological
activity, so that interactions involving ISCs can be only proliferative or
destructive type.

Assumption (i) indicates that the interactions occur without time delay. Assumption
(ii) is rather natural and common when modelling biological systems, and means
that interactions involving more than two cells are not effective in our model.
Assumption (iii) is motivated by the immunobiology associated to autoimmune
diseases. We consider that interactions among cells of populations p1 (SAPCs),
p2 (SRTCs) and p3 (ISCs) can create SAPCs, SRTCs and ISCs (proliferative
type), or destroy SAPCs and SRTCs (destructive type), and they can also simply
change the activity of SAPCs and SRTCs (conservative type). In fact, during an
immune response, a proliferation of both SRTCs and ISCs occurs and an increase
of circulating APCs also occurs. Simultaneously, the role of ISCs is to control
proliferation of both magenta SRTCs and SAPCs and, decrease their activity.
Assumption (iv) results from the fact that we do not consider internal degrees of
freedom for ISCs population. In fact, we do not consider the impact of the cellular
interactions on the activity of both Treg and NK cells and, therefore, the population
of ISCs is considered homogeneous with respect to its biological activity.

The admissible interactions in our model are described as follows.

• Interactions between SAPCs and SRTCs can be of conservative type, increasing
the activity of both SAPCs and SRTCs, of proliferative type, enlarging the
number of SRTCs and also that of SAPCs.
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Fig. 1 Illustration of the
immune system interactions
among SAPCs, SRTCs and
ISCs. Proliferative
interactions are represented
by blue starred arrows
whereas destructive
interactions are represented
by purple crossed arrows

• Interactions between SAPCs and ISCs can be of conservative type, decreasing
the activity of SAPCs, of proliferative type, enlarging the number of ISCs, as
well as of destructive type, decreasing the number SAPCs.

• Interactions between SRTCs and ISCs can be of conservative type, decreasing
the activity of SRTCs, and of destructive type, decreasing the number SRTCs.

The populations considered in our biological system and the non-conservative
interactions among them are illustrated in Fig. 1. The proliferation of SRTCs by
stimulation by SAPCs (blue starred arrow) induces an inflammatory response, in
which the immune system mistakenly attacks the body. A cytokine storm produced
by SRTCs increases the number of SAPCs (blue starred arrow) which, in turn, will
activate more SRTCs. Additionally, ISCs, on the one hand, downgrade the function
of both SAPCs (purple crossed arrow) and SRTCs (purple crossed arrow) and, on
the other hand, eliminate both SAPCs and SRTCs.

3 The Kinetic Model for Autoimmune Diseases

The overall state of the biological system is described by the distribution functions
associated to the populations p1, p2, p3, namely fi : [0,∞] × [0, 1] → R

+, i =
1, 2, 3, such that fi(t, u) gives the expected number of cells of population pi with
activity u at time t . Integration of each function fi over the activity variable leads to
the number density of pi population,

ni(t) =
∫ 1

0
fi(t, u)du, i = 1, 2, 3, (1)

which defines the expected number of cells of population pi at time t .



314 M. P. M. Ramos et al.

Note that, as a consequence of Assumption D introduced in Sect. 2.2, the
distribution function of the population p3 is independent of its functional state, that
is f3 = f3(t).

The time evolution of the distribution functions fi is described by the kinetic
equations, that require a detailed description of the interaction balance operators,
regarding the encounter rates and transition probability densities of cells in con-
servative interactions, as well as the proliferation rates and destructive rates of cell
of different populations. See paper [5], where the complete structure of the kinetic
system is explained in detail.

The kinetic system consists of the following coupled integro-differential equa-
tions

∂f1

∂t
(t, u)= 2c12

∫ u

0
(u− v)f1(t, v)dv

∫ 1

0
f2(t,w)dw − c12(u− 1)2f1(t, u)

∫ 1

0
f2(t,w)dw

+ 2c13f3(t)

∫ 1

u

(v − u)f1(t, v)dv − c13u
2f1(t, u)f3(t)

+p12 f1(t, u)

∫ 1

0
f2(t,w)dw − d13 f1(t, u)f3(t), (2)

∂f2

∂t
(t, u) = 2c21

∫ u

0
(u− v)f2(t, v)dv

∫ 1

w


f1(t,w)dw − c21(u− 1)2f2(t, u)

∫ 1

w∗
f1(t,w)dw

+ 2c23f3(t)

∫ 1

u

(v − u)f2(t, v)dv − c23u
2f2(t, u)f3(t)

+p21f2(t, u)

∫ 1

0
f1(t,w)dw − d23f2(t, u)f3(t), (3)

df3

dt
(t) = p31f3(t)

∫ 1

0
f1(t,w)dw, (4)

where parameters pij , dij and cij indicate constant rates of proliferative, destructive
and conservative interactions, respectively, and parameter w
∈ ]0, 1[ describes the
tolerance of SRTCs towards self-antigens, in the sense that the greater the value of
w∗ the less efficient are SAPCs in increasing the activity of SRTCs after encounter.
We have considered that during proliferative encounters, cloned cells inherit the
same aggressive state as their mother cell, at a constant proliferation rate, and,
additionally, that the destructive encounters occur at a constant destruction rate. See
paper [5] for more details about the derivation of Eqs. (2)–(4).

The initial conditions for the system (2)–(4) are given by

f1(0, u) = f 0
1 (u), f2(0, u) = f 0

2 (u), f3(0) = f 0
3 . (5)

The kinetic system (2)–(4) describes the microscopic dynamics at the cellular
level starting from the initial data (5). The system reflects how the cellular
interactions affect the activity of the various populations and how they contribute
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to the evolution of the distribution functions fi , i = 1, 2, 3. This system is used in
the numerical simulations presented in Sect. 5.

4 The Mathematical Analysis of the Model

The mathematical analysis of the kinetic system (2)–(4) is in general a complex
problem. Conversely, the mathematical analysis of the macroscopic system derived
from kinetic equations is obviously an easier task, with the particularity that, under
certain assumptions, relevant information on the solution to the kinetic system can
be extracted from the mathematical analysis of the macroscopic equations. This
is the case of our model. These observations motivate the content of the present
section.

4.1 On the Initial Value Problem for the Kinetic System

The existence of a unique local solution to the initial value problem (2)–(4) and (5)
can be stated, as follows.

Theorem 1 (Local Existence) Assume initial data f 0
i (u) in L1[0, 1]. Then, there

exists T0>0 such that a unique positive solution to the Cauchy problem (2)–(4) and
(5) exists in L1[0, 1], for t ∈[0, T0].

A general local result has been proven in paper [12] for a rather vast class of
kinetic systems with conservative, proliferative and destructive interactions. The
solution does not exist globally in time, since a blow-up can occur due to the
proliferative interactions. However, a local result is enough when the system is
solved numerically and an approximate solution is obtained in the considered
biological context.

As it will become clear in the following, Theorem 1, together with the assumption
of constant proliferation and destruction rates, assure that the basic information on
the kinetic model is contained in the corresponding macroscopic system. Therefore,
we introduce now the macroscopic model and present the main results concerning
its qualitative analysis.

4.2 The Macroscopic Equations

From the kinetic equations (2)–(4), we formally derive the corresponding macro-
scopic balance equations describing the time evolution of the number of cells of each
population, namely ni(t), i = 1, 2, 3, defined as in (1). These balance equations
are obtained by integration of the kinetic equations (2)–(4) over the biological
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activity variable u ∈ [0, 1]. As expected, conservative interactions do not give any
contribution to the equations for ni(t), since they do not modify the number of
cells of each population and are lost through the integration process. Therefore, the
system of ordinary differential equations (ODEs) obtained in this way is

dn1

dt
(t) = p12n1(t)n2(t)− d13n1(t)n3(t), (6)

dn2

dt
(t) = p21n2(t)n1(t)− d23n2(t)n3(t), (7)

dn3

dt
(t) = p31n3(t)n1(t). (8)

For this system, we consider the following initial data

n1(0) = n0
1, n2(0) = n0

2, n3(0) = n0
3, with n0

i > 0 for i = 1, 2, 3.
(9)

The description obtained with the balance equations (6)–(8) gives information at
a macroscopic scale and only reflects information concerning the changes on the
number of cells of each population. All aspects related to the cellular activity are
embedded in the macroscopic dynamics but are not directly recognizable in the
balance equations.

4.3 The Qualitative Analysis of the Macroscopic Model
Equations

The starting point of this analysis is the local existence result stated in Theorem 1.
In fact, Theorem 1, together with the assumption of constant proliferation and
destruction rates, assure that the boundedness of the solution to the macroscopic
system (6)–(8) implies the boundedness of the L1-norm ||fi(t, ·)||1. See also paper
[13]. This is an immediate consequence of the positivity of the local L1-solution
stated in Theorem 1. The estimates on the solution to the macroscopic system (6)–
(8) provide a priori estimates on the solution to the kinetic system (2)–(4), due to
the relationship kinetic-macro given by Eq. (1) of the population densities ni(t) in
terms of the distribution functions fi(t, u).

Starting from Theorem 1, we prove in paper [5] the following results on the
existence of a global, positive solution of the Cauchy problem for the macroscopic
system (6)–(8) and (9).

Theorem 2 (Positivity) Let n(t)=(n1(t), n2(t), n3(t)) be a solution of the Cauchy
problem (6)–(8) and (9) defined on [0, T ], 0<T <+∞. Then n1(t) > 0, n2(t) >

0, n3(t) > 0, for t ∈ [0, T ].
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Theorem 3 (Global Solution and Asymptotic Behaviour) Assume that p21 <

p31. Then the Cauchy problem (6)–(8) and (9) has a unique solution n(t) =(
n1(t), n2(t), n3(t)

)
defined on R+, satisfying the conditions

lim
t→+∞n1(t) = 0, lim

t→+∞n2(t) = 0, lim
t→+∞n3(t) = σ <+∞,

whatever are the corresponding initial data.

From the biological point of view, condition p21<p31, considered in Theorem 3,
corresponds to assume that the proliferation of SRTCs resulting from the encounters
with SAPCs is dominated by the proliferation of ISCs resulting from the encounters
with SAPCs. In this case, the solution of the system does not possess blowups.

Theorems 2 and 3 are crucial to assure the consistency of the model and therefore
to validate the numerical simulations to be performed with the kinetic system (2)–
(4). These properties are important, not only from the mathematical point of view,
but also from the biological point of view, to obtain solutions that are biologically
significant. In particular, the positivity and the boundedness of the solution are
essential features in the present context.

5 Numerical Simulations for the Biological System

In this section, we perform some numerical simulations with the kinetic system (2)–
(4) in order to investigate the sensitivity of the solution to certain parameters of the
model. Different scenarios are considered with the aim of analyzing if the solution is
capable of describing the behavior of autoimmune diseases. The simulations show
the evolution of the number density of the SRTCs, this being biologically the main
indicator of an autoimmune reaction.

5.1 The Numerical Scheme

System (2)–(4) is solved numerically by discretizing the integro-differential equa-
tions in the activation variable u and using a trapezoidal quadrature rule to perform
the numerical integration of the interaction terms.

More specifically, we choose a uniform discrete grid for the activation state
variable u ∈ [0, 1] and introduce the set U of m + 1 (m ∈ N) equidistant grid
points uk ∈ [0, 1], k = 0, . . . ,m, defined by

uk = kΔu,
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where Δu = 1/m is the step size. We assume that parameter w
, describing the
tolerance of SRTCs towards self-antigens and appearing in Eq. (3), coincides with
the grid-point on the 1-position in U , that is w
 = u1.

Grid points uk are used to approximate both the distribution function fi(t, u) and
the integral collision terms in Eqs. (2)–(4). Therefore, we introduce the notation

f ki (t) = fi(t, uk), (10)

where i stands for the populationpi and k indicates the localization of the activation
state variable u ∈ [0, 1], with i = 1, 2 and k = 0, 1, . . . ,m. Moreover, we consider
the integral approximations

∫ uβ

uα

g(t, v)dv ≈ Qβ
α [g(t, v)], 0 ≤ α < β ≤ m, (11)

with

Qβ
α[g(t, v)] =

g(t, vα)+ g(t, vβ)

2
Δv +

β−1∑

s=α+1

g(t, vs)Δv, 0 ≤ α < β ≤ m,

(12)

to obtain the quadrature approximations

∫ 1

0
fj (t, v)dv ≈ Qm

0 [fj (t, v)],
∫ 1

0
vfj (t, v)dv ≈ Qm

0 [vfj (t, v)], j = 1, 2,

∫ 1

uk

fj (t, v)dv ≈ Qm
k [fj (t, v)],

∫ 1

uk

vfj (t, v)dv ≈ Qm
k [vfj (t, v)], j = 1, 2,

∫ uk

0
fj (t, v)dv ≈ Qk

0[fj (t, v)],
∫ uk

0
vfj (t, v)dv ≈ Qk

0[vfj (t, v)], j = 1, 2,

∫ 1

w∗
f1(t, v)dv ≈ Qm

1 [f1(t, v)].
(13)

Proceeding in this way, we obtain the following system of 2(m+ 1)+ 1 ODEs,

df k1
dt

(t)=2c13f3(t)
(
Qm
k [vf1(t, v)] − ukQ

m
k [f1(t, v)]

)
− c13u

2
kf

k
1 (t)f3(t) (14)

+c12

[
2

(
ukQ

k
0[f1(t, v)] −Qk

0[vf1(t, v)]
)
− (uk − 1)2f k1 (t)

]
Qm

0 [f2(t, v)]

+p12f
k
1 (t)Q

m
0 [f2(t, v)] − d13f

k
1 (t)f3(t), k = 0, . . . , m,
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df k2
dt

(t)=2c23f3(t)
(
Qm
k [vf2(t, v)] − ukQ

m
k [f2(t, v)]

)
− c23u

2
kf

k
2 (t)f3(t) (15)

+c21

[
2
(
ukQ

k
0[f2(t, v)] −Qk

0[vf2(t, v)]
)
Qm
1 [f1(t, v)]

−(uk − 1)2f k2 (t)Q
m
1 [f1(t, v)]

]

+p21f
k
2 (t)Q

m
0 [f1(t, v)] − d23f

k
2 (t)f3(t), k = 0, . . . , m,

df3

dt
(t)=p31f3(t)Q

m
0 [f1(t, v)]. (16)

The ODE system (14)–(16) constitutes the numerical scheme to approximate the
solution to the full kinetic system (2)–(4).

5.2 The Numerical Solution

We solve system (14)–(16) using the standard Maple dsolve command with the
numeric option. A considerable number of simulations have been performed and
we have selected a representative sample of figures to show the common features
of the evolution of autoimmune diseases. These figures show the evolution of the
number density of the SRTCs when different scenarios are considered.

In all simulations, the initial data are taken to be

f 0
i = 10−2, for i = 1, 2, 3. (17)

The parameters that are not investigated in the present simulations are fixed as

c12 = 2 and c13 = 0.01. (18)

They are associated to the SAPCs conservative interactions with SRTCs (c12) and
with ISCs (c13).

All other parameters are varied in order to appreciate their influence on the
solution to the kinetic system. In particular, parameters

w
, p21, d23, c21 and c23 (19)

have a direct influence on the number density of SRTCs, since they represent the
tolerance parameter of the SRTCs with respect to SAPCs or, equivalently, the
capacity of SAPCs to activate SRTCs (w
), the proliferative rate of SRTCs after
interaction with SAPCs (p21), the destructive rate of SRTCs after interaction with
ISCs (d23), the conservative rate of SRTCs after interaction with SAPCs (c21) and
the conservative rate of SRTCs after interaction with ISCs (c23). On the other hand,
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parameters

p12, p31 and d13 (20)

have an indirect influence on the number density of SRTCs, because they represent
the proliferative rate of SAPCs after interaction with SRTCs (p12), the proliferative
rate of ISCs after interaction with SAPCs (p31) and the destructive rate of SAPCs
after interaction with ISCs (d13).

We underline that the influence of the conservation rates c21 and c23 on the
number density of the SRTCs is quite recognizable, because we are dealing with a
kinetic system which retains the conservative cellular interactions in the dynamics.
On the other hand, the simulations show that the effect of the other conservation
parameters, c12 and c13, is not as recognizable in the evolution of the number density
of the SRTCs because the related conservative interactions have an indirect impact
on the evolution of SRTCs.

We consider different scenarios in view of illustrating the sensitivity of the
solution when varying the parameters (19) and (20) that have biological significance
in the present modelling of autoimmunity. More specifically, we have a first scenario
describing the trend to illness and three other scenarios in which the autoimmune
reaction is controlled to a certain extent.

(A) The scenario where there is development of an autoimmune disease corre-
sponds to the situation in which the ISCs are unable to regulate the autoimmune
reaction, resulting in a full autoimmune cascade and trending to illness. In this
scenario, we consider

w
 = 1/30, p21 = 19, d23 = 0.025, c21 = 10, c23 = 0.01,

p12 = 1, p31 = 20, d13 = 0.35,
(21)

and the corresponding solution is depicted in Fig. 2. We can observe a
considerable mass proliferation of very active SRTCs, of the order 104 of the

Fig. 2 Scenario (A)—trend
to illness. The evolution of
SRTCs is determined by the
approximating solution to the
kinetic system (2)–(4), when
the parameters are given by
(21). The figure shows a
considerable mass
proliferation of very active
SRTCs
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Fig. 3 Scenario
(B)—Immunotolerance.
Effect of increasing the
parameter w
, as described
in. The evolution of SRTCs is
determined by the
approximating solution to the
kinetic system (2)–(4), when
the parameters are given by
(22), and in particular
w
 = 29/30

initial data, due to insufficient regulation by ISCs and low tolerance of SRTCs
to SAPCs.

(B) The scenario where SRTCs become more tolerant to SAPCs corresponds to the
situation in which SAPCs are less efficient in increasing the activity of SRTCs.
In this scenario, we consider

w
 = 29/30, p21 = 19, d23 = 0.025, c21 = 10, c23 = 0.01,

p12 = 1, p31 = 20, d13 = 0.35,
(22)

and the corresponding solution is illustrated in Fig. 3. We can observe that, in
comparison with Fig. 2, a moderate decrease in the mass proliferation of very
active SRTCs is observed, whereas a slight decrease in the mass proliferation
of low active SRTCs is recognizable.

(C) The scenario where there is immunosuppression of the autoimmune reaction
corresponds to the situation in which the biological system is able to abort
the autoimmune reaction in an efficient manner, by controlling different
proliferative or destructive rates.

In this scenario, we maintain all parameters of scenario (A) with exception
of one that is varying once per time. In particular, we consider a lower value of
p21 or p12, or a greater value of p31, d13 or d23. The corresponding solutions
are shown in diagrams (a)–(e) of Fig. 4. From the qualitative point of view, the
behaviour represented in these diagrams is the same and all pictures exhibit a
very low proliferation of active SRTCs.
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(a) (b)

(c) (d)

(e)

Fig. 4 Scenario (C)—Immunosupression. The evolution of SRTCs is determined by the approx-
imating solution to the kinetic system (2)–(4), when the parameters are given by (21), with
exception of one parameter. (a) Decreasing the proliferative rate p21 to p21 = 17 . (b) Decreasing
the proliferative rate p12 to p12 = 0.5 . (c) Increasing the proliferative rate p31 to p31 = 23 . (d)
Increasing the destructive rate d13 to d13 = 0.7 . (e) Increasing the destructive rate d23 to d23 = 0.1 .
Each diagram shows that, by varying one parameter with respect to the value considered in (21), the
biological system is able to reduce considerably the mass proliferation of the SRTCs and therefore
to abort the autoimmune reaction in an efficient manner
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• In Fig. 4a, the reduction of SRTCs proliferative encounters with SAPCs
(lower value of p21) obviously implies a significant impact on the mass
production of SRTCs capable of avoiding the trend to illness. The figure
shows the effect of p21 on the suppression of the autoimmune reaction.

• In Fig. 4b, the reduction of SAPCs proliferative encounters with SRTCs
(lower value of p12) has an indirect impact on the mass production of SRTCs
since the concentration of SAPCs decreases and the activation of SRTCs
by SAPCs is weakened, so that the trend to illness is avoided. The figure
illustrates the effect of p12 on the suppression of the autoimmune reaction.

• In Fig. 4c, the number of ISCs produced by the biological system is
increased by proliferative interactions with SAPCs (greater value of p31),
the result being that the trend to illness is avoided in an efficient manner.
The figure shows the effect of p31 on the suppression of the autoimmune
reaction.

• In Fig. 4d, the results show that for the number of SAPCs destroyed as
a consequence of their interaction with ISCs (greater value of d13) will
ultimately control the proliferation of SRTCs and therefore avoid illness.
The figure shows the consequences of d13 on the suppression of the
autoimmune reaction.

• In Fig. 4e, the results show that the number of SRTCs destroyed as a
consequence of their interaction with ISCs (greater value of d23) can
definitively avoid a full blown autoimmune reaction. The figure shows the
impact of d23 on the suppression of the autoimmune reaction.

(D) The scenario where there is control of the disease also corresponds to the
situation in which the biological system is able to abort the autoimmune
reaction in an efficient manner, due to a reduction of the activity of the SRTCs
after conservative interactions with SAPCs or ISCs.

In this scenario, we maintain all parameters of scenario (A) with exception
of one that is varying once per time. In particular, we consider lower values of
c21 or greater values of c23. The corresponding solutions are shown in diagrams
(a)–(d) of Fig. 5.

The comparison between this scenario and scenario (A) shows that the
total number of SRTCs for u ∈ [0, 1] is exactly the same, because we only
modify the rates of certain conservative encounters. As a consequence, the
mass proliferation of SRTCs shows a moderate reduction and the aggressive
nature of the autoimmnune reaction is only slightly weakened.

• Diagrams (a) and (b) of Fig. 5 show that the mass proliferation of very active
SRTCs is slightly reduced when the conservative rate c21 is decreased. This
is a consequence of a lower production of cytokines by SRTC since these
encounters reduce the activity of SRTCs and, therefore, control the trig-
gering of an inflammatory process and the development of an autoimmune
disease to a certain extent.
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Fig. 5 Immunosupression. The disease is controlled by decreasing the conservative rate c21,
diagrams (a) and (b), or by increasing the conservative rate c23, diagrams (c) and (d), as described
in scenario (D). (a) c21 = 2 . (b) c21 = 0.5 . (c) c23 = 0.03 . (d) c23 = 0.05 . The evolution
of SRTCs is determined by the approximating solution to the kinetic system (2)–(4), when the
parameters are given by (21) with exception of c21 and c23

• Diagrams (c) and (d) of Fig. 5 also show that the mass proliferation of very
active SRTCs is slightly reduced when the conservative rate c23 is increased.
This is a consequence of a lower production of cytokines by SRTC due
to a greater inhibiting effect of ISCs on the SRTC function and, therefore
moderating the autoimmune disease.
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6 Conclusion and Perspectives

The mathematical model that has been proposed in [5], based on a kinetic theory
approach, is here revisited. The mathematical analysis of the model, showing
existence, uniqueness, positivity and boundedness of the solution, is also reviewed
here.

Starting from the model proposed in [5], we develop here some numerical
simulations in order to investigate the sensitivity of the model to certain parameters
that are involved in the biological description. We consider different scenarios with
the aim of describing different behaviors occurring in autoimmunity. In particular,
we study the influence of certain parameters related to immunotolerance and
immunosupression on the evolution of the variables characterizing this model for
autoimmunity. The conclusion of this study is that increasing the parameters related
to immunotolerance and immnunosupression is effective in reducing the production
of highly active SRTCs and thefore controlling the progression of an autoimmune
episode.

Therefore the numerical simulations developed here and the corresponding
biological interpretation of the results constitute a valuable complement of the
mathematical model proposed in [5].

Other extensions of the model proposed in [5] have been already considered and
others are still open to further developments. We have extended our research work
in view of introducing drug therapies on the dynamics and investigating optimal
treatment strategies. The results have been submitted for publication, see [6, 7].

Another extension has been considered in order to introduce recurrence in the
macroscopic model presented in [5] by considering a constant input by the host
environment of self-antigen presenting cells (SAPCs) and the natural death of all
cell populations involved. Such a model is able to study the chronic character of the
autoimmune diseases. The results are presented in [16].

Other interesting problems that we plan to study is the introduction of delay terms
in the equations in order to describe the delay in the reaction to cellular impulses.
Memory terms may also be introduced with the aim of describing the ability of cells
to retain information related to past experienced cell interactions.

Acknowledgments This work is partially supported by the Portuguese FCT Projects
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A Generalized Slip-Flow Theory
for a Slightly Rarefied Gas Flow Induced
by Discontinuous Wall Temperature

Satoshi Taguchi and Tetsuro Tsuji

Abstract A system of fluid-dynamic-type equations and their boundary conditions
derived from a system of the Boltzmann equation is of great importance in kinetic
theory when we are concerned with the motion of a slightly rarefied gas. It
offers an efficient alternative to solving the Boltzmann equation directly and, more
importantly, provides a clear picture of the flow structure in the near-continuum
regime. However, the applicability of the existing slip-flow theory is limited to the
case where both the boundary shape and the kinetic boundary condition are smooth
functions of the boundary coordinates, which precludes, for example, the case where
the kinetic boundary condition has a jump discontinuity. In this paper, we discuss
the motion of a slightly rarefied gas caused by a discontinuous wall temperature in a
simple two-surface problem and illustrate how the existing theory can be extended.
The discussion is based on our recent paper [Taguchi and Tsuji, J. Fluid Mech.
897, A16 (2020)] supported by some preliminary numerical results for the newly
introduced kinetic boundary layer (the Knudsen zone), from which a source-sink
condition for the flow velocity is derived.

1 Introduction

Let us consider a rarefied gas in contact with a smooth boundary (or boundaries).
We are concerned with the steady behavior of the gas. Suppose that the molecular
mean free path is small compared with the characteristic system size (the Knudsen
number is small). Then, it is often advantageous to solve the fluid-dynamic system
derived from the Boltzmann system. This approach is known as the generalized
slip-flow theory and was developed notably by Sone and his coworkers [13–16].

The generalized slip-flow theory is based on the asymptotic analysis of the
Boltzmann system for small Knudsen numbers. Both the boundary shape and the
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boundary condition need to be smooth. This smoothness condition is required for the
Knudsen-layer problem to be reduced to a half-space problem of a kinetic equation
in space one dimension, from which the slip/jump boundary conditions are obtained.

The smoothness condition can be, however, restrictive in some situations. For
example, S.T. considered in [17] a rarefied gas flow around a sharp edge with
different surface temperatures on each side. But due to the limitation, only a
qualitative argument was possible for the flow structure around the edge. Motivated
by this, in this article, we discuss the possibility to extend the generalized slip-
flow theory to the case where the boundary condition has a jump discontinuity in a
simple two-surface problem. That is, we consider a steady rarefied gas flow between
two parallel plates with a discontinuous wall temperature in the framework of the
generalized slip-flow theory. The discussion is based on our recent paper [18] with
some new numerical result, which supports the present theory.

Finally, we remark the following. In our problem (to be stated next), the boundary
condition has a jump discontinuity (through the plate’s temperature distribution).
This induces discontinuities of the velocity distribution function on the boundary,
and they propagate into the gas region. This feature is important in a numerical
analysis and was taken into account in [2], where a similar temperature-driven flow
has been considered (see also [18]). It is also considered in our numerical results
shown in Sect. 5, although the numerical approach is different. The propagation of
boundary-induced discontinuity in kinetic equations is also a mathematical concern
and has been investigated in, e.g., [1, 6–9].

2 Problem and Formulation

2.1 Problem

Let L be the reference length and let ρ0, T0, and p0 be the reference density,
temperature, and pressure of the gas, respectively. We consider a monatomic rarefied
gas occupying the space between two parallel plates located at x1 = −π

2 and
x1 = π

2 , where (Lx1, Lx2, Lx3) is the Cartesian coordinate system, as shown in
Fig. 1. The upper halves of the plates (x2 > 0) are kept at temperature T0(1 + τw),
while the lower halves (x2 < 0) at temperature T0(1 − τw), where τw is a constant.
Henceforth, we assume τw > 0. Therefore, the surfaces’ temperature has a step-like
distribution, which is discontinuous at x2 = 0 with the jump 2T0τw. We also assume
that the gas is subject to no pressure gradient nor external force. We investigate the
steady behavior of the gas under the following assumptions: (i) the behavior of the
gas is described by the Boltzmann equation; (ii) the gas molecules make diffuse
reflection on the plates; (iii) τw is so small that the equation and boundary conditions
can be linearized around the reference equilibrium state at rest with density ρ0 and
temperature T0; (iv) the Knudsen number defined by the molecular mean free path
at the reference state divided by L is small.



A Generalized Slip-Flow Theory for a Slightly Rarefied Gas Flow 329

Fig. 1 Schematic of the
problem. A rarefied gas
between two parallel plates
located at x1 = ±π/2 with a
step-like temperature
distribution is considered.
The temperature of the plates
is discontinuous at x2 = 0

Gas

H
o
t

C
o
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2.2 Formulation

Let us denote by (2RT0)
1/2(ζ1, ζ2, ζ3) the molecular velocity (R is the specific gas

constant) and by ρ0(2RT0)
−3/2(1 + φ(x, ζ ))E the velocity distribution function,

where E = π−3/2 exp(−|ζ |2). The time-independent Boltzmann equation reads

ζi∂iφ = 1

ε
L(φ), (1)

where ∂i = ∂/∂xi , L is the linearized collision operator [16], and ε is a parameter
defined by

ε =
√
π

2
Kn =

√
π

2

10

L
(Kn: Knudsen number).

Here, 10 is the mean free path of the gas molecules in the equilibrium state at rest
with temperature T0 and density ρ0. Note that ε is the Knudsen number multiplied
by
√
π/2. The operator L is given by

L(F ) =
∫

(ζ∗,e)∈R3×S2
E∗(F ′∗ + F ′ − F∗ − F)B d�(e)dζ ∗, (2a)

F = F(ζ ), F∗ = F(ζ ∗), F ′ = F(ζ ′), F ′∗ = F(ζ ′∗), (2b)

ζ ′ = ζ + [(ζ ∗ − ζ ) · e]e, ζ ′∗ = ζ ∗ − [(ζ∗ − ζ ) · e]e, (2c)

B = B

( |e · (ζ ∗ − ζ )|
|ζ ∗ − ζ | , |ζ ∗ − ζ |

)
, E∗ = 1

π3/2 e
−|ζ ∗|2, (2d)

where d�(e) is the solid angle element in the direction of e, B is a non-negative
function whose functional form is determined by the designated intermolecular
force. For example, B = 1

4
√

2π
|e · (ζ ∗ − ζ )| for a hard-sphere gas. The diffuse
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reflection boundary conditions on the plates are summarized as

φ = 2
√
π

∫

ζ1<0
|ζ1|φEdζ ± (|ζ |2 − 2)τw, ζ1 > 0

(
x1 = −π

2
, x2 ≷ 0

)
,

(3a)

φ = 2
√
π

∫

ζ1>0
|ζ1|φEdζ ± (|ζ |2 − 2)τw, ζ1 < 0

(
x1 = π

2
, x2 ≷ 0

)
,

(3b)

where dζ = dζ1dζ2dζ3.
The macroscopic quantities of interest, namely, the density, the flow velocity,

the temperature, and the pressure of the gas denoted by ρ0(1 + ω), (2RT0)
1/2ui ,

T0(1+ τ ), and p0(1+ P), respectively, are defined in terms of φ as

ω = 〈φ〉, ui = 〈ζiφ〉, τ = 2

3

〈(
|ζ |2 − 3

2

)
φ

〉
, P = 2

3
〈|ζ |2φ〉 = ω + τ,

(4)

where 〈·〉 designates

〈F 〉 =
∫

R3
F(ζ )Edζ . (5)

In the present two-dimensional problem, we may assume that φ is independent
of x3. Nevertheless, the x3-dependency has not been precluded in the above
formulation for later convenience.

The study on the behavior of a slightly rarefied gas (i.e., the gas with small
Knudsen numbers) has a long history (see, e.g., references in [15]). In the case of a
smooth boundary, Sone and his coworkers have extensively studied the question
both for the steady [13–16] and unsteady [16, 19] settings. It is based on the
asymptotic analysis of the Boltzmann system for small Knudsen numbers, and
the theory is nowadays known as the generalized slip-flow theory. However, the
approach above precludes the discontinuous boundary data. One of the paper’s
purposes is to show that we can extend Sone’s asymptotic theory to include the
latter situation.

3 Case of a Smooth Temperature Distribution

Before we discuss the discontinuous surface temperature case, it is useful to review
the case of a smooth temperature distribution. Let the temperature of the two plates
be given by T0(1+ τw), where τw is a smooth function of (x2, x3). Then, assuming
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the diffuse reflection condition, the boundary conditions (3a) and (3b) are replaced
by

φ = 2
√
π

∫

ζ1≶0
|ζ1|φEdζ + (|ζ |2 − 2)τw, ζ1 ≷ 0

(
x1 = ∓π

2
, −∞ < x2 <∞, −∞ < x3 <∞

)
. (6)

We consider the asymptotic behavior of the solution φ of the linear system (1) and
(6) for small ε following Sone’s method [15, 16]. It should be noted that for the
linearization, |∂iτw|  1 should be assumed.

By the symmetry of the problem, one can assume that the solution is even with
respect to x1 = 0. Therefore, in the sequel, we consider the problem only in the
left-half domain D− = {(x1, x2, x3) | − π

2 < x1 < 0, −∞ < x2 < ∞, −∞ <

x3 < ∞}. The solution in the right-half domain is obtained from that of D− by
φ(x1, x2, x3, ζ1, ζ2, ζ3) = φ(−x1, x2, x3,−ζ1, ζ2, ζ3).

According to [15], the solution is expressed in the form

φ = φH + φK, (7)

where φH is called the Hilbert solution and describes the overall behavior of the
gas, while φK is a correction to φH required in the vicinity of the boundary (the
Knudsen-layer correction). More precisely, φH is a solution to Eq. (1) subject to the
condition ∂iφH = O(φH) (i.e., moderately varying solution). On the other hand,
φK is appreciable only in a thin layer (the Knudsen layer) adjacent to the boundary
x1 = −π

2 , whose thickness is of the order of ε. The Knudsen-layer correction φK is
subject to the conditions

∂1φK = O(φK/ε), (δij − ninj )∂jφK = O(φK), (8)

where δij is Kronecker’s delta and n = (1, 0, 0). The φH and φK are expanded in ε
as

φH = φH0 + εφH1 + ε2φH2 + · · · , (9a)

φK = εφK1 + ε2φK2 + · · · . (9b)

Accordingly, the macroscopic quantities h (h = ω, ui, τ, P ) are also expressed as

h = hH + hK, (10a)

hH = hH0 + εhH1 + ε2hH2 + · · · , (10b)

hK = εhK1 + ε2hK2 + · · · , (10c)
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where

ωHm = 〈φHm〉, uiHm = 〈ζiφHm〉, τHm = 2

3

〈(
|ζ |2 − 3

2

)
φHm

〉
, (11a)

PHm = ωHm + τHm, (11b)

(m = 0, 1, . . .), and

ωKm = 〈φKm〉, uiKm = 〈ζiφKm〉, τKm = 2

3

〈(
|ζ |2 − 3

2

)
φKm

〉
, (12a)

PKm = ωKm + τKm, (12b)

(m = 1, 2, · · · ).
Then, it is shown in [15] that φH0, φH1, and φK1 are expressed in the form

φH0 = φeH0, (13a)

φH1 = φeH1 − ζiA(|ζ |)∂iτH0 − 1

2
ζiζjB(|ζ |)(∂juiH0 + ∂iujH0), (13b)

φK1 = ϕ
(0)
1 (η, ζ1, |ζ |) (∂1τH0)0

+ ζ i

[
ϕ
(1)
1 (η, ζ1, |ζ |) nj (∂juiH0 + ∂iujH0)0

+ϕ(1)2 (η, ζ1, |ζ |) (∂iτH0)0

]
, η = x1 + π

2

ε
. (13c)

Here,

1. φeHm is a linear combination of (1, ζi, |ζ |) forming the (linearized) local
Maxwellian

φeHm = PHm + 2ζiuiHm +
(
|ζ |2 − 5

2

)
τHm, m = 0, 1.

2. The functions A(|ζ |) and B(|ζ |) are the solutions to the integral equations

L(ζiA) = −ζi
(
|ζ |2 − 5

2

)
, with 〈|ζ |2A〉 = 0,

L(ζijB) = −2ζij ,

where ζij = ζiζj − |ζ |23 δij .
3. η is a stretched coordinate of x1 near the boundary x1 = −π

2 , adequate to
describe the Knudsen-layer corrections.
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4. ζ is a projection of ζ onto a plane orthogonal to n = (1, 0, 0), i.e.,

ζ i = ζj (δij − ninj ).

5. The symbol (·)0 indicates the value on x1 = −π
2 .

6. The functions ϕ(0)1 = ϕ
(0)
1 (η, ζ1, |ζ |) and ϕ(1)j = ϕ

(1)
j (η, ζ1, |ζ |), j = 1, 2, solve

the following half-space problems (Knudsen-layer problems):

ζ1∂ηϕ
(0)
1 = L(ϕ

(0)
1 ), (14a)

ϕ
(0)
1 = −(|ζ |2 − 2)c(0)1 + ζ1A(|ζ |)

+ 4
∫ ∞

0

∫ 0

−∞
|ζ1||ζ |ϕ(0)1 e−|ζ |2dζ1d|ζ |, ζ1 > 0, η = 0, (14b)

ϕ
(0)
1 → 0, as η→∞; (14c)

ζ1∂ηϕ
(1)
j = L(ϕ

(1)
j ), j ∈ {1, 2}, (15a)

ϕ
(1)
j = −2b(1)j + Jj , ζ1 > 0, η = 0, (15b)

ϕ
(1)
j → 0, as η→∞, (15c)

with

J1 = ζ1B(|ζ |), J2 = A(|ζ |), (16a)

c
(0)
1 , b

(1)
j (j = 1, 2) : constants. (16b)

Note that |ζ | =
√
ζ 2

1 + |ζ |2. It is known that there exists a solution to the problem

if and only if the constant c(0)1 or b(0)j takes a special value and that the solution is
unique [3, 5, 15]. It has also been proved that the solution decays exponentially
fast as η→∞.

Suppose that the functions A, B, ϕ(0)1 , and ϕ
(1)
i , i = 1, 2, are known. Then,

the functional dependency of φHm and φKm on the molecular velocity ζ is
prescribed through these auxiliary functions and φeHm. On the other hand, the spatial
dependency enters through those of uiHm(x), τHm(x), and PHm(x) (and their spatial
derivatives when m ≥ 1). The dependency of uiHm, τHm, and PHm, and ωHm on x

are obtained via the fluid-dynamic-type problems stated next.
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Stokes Problem The expansion coefficients of the macroscopic quantities hHm
(h = ω, ui, τ, P ) are described by the following equations and boundary
conditions on x1 = −π

2 . The equations are

∂iPH0 = 0, (17)

∂iuiHm = 0, (continuity equation) (18a)

γ1	uiHm − ∂iPHm+1 = 0, (equation of motion) (18b)

	τHm = 0, (energy equation) (18c)

ωHm = PHm − τHm, (equation of state) (18d)

(m = 0, 1, . . .). The boundary conditions on x1 = −π
2 are

Order ε0 : u1H0 = u2H0 = u3H0 = 0, τH0 = τw, (19a)

Order ε1 : u1H1 = 0, τH1 = c
(0)
1 ∂1τH0, (19b)

ujH1tj = b
(1)
1 tj nk(∂j ukH0 + ∂kujH0)+ b

(1)
2 tj ∂j τH0. (19c)

Here, 	 = ∂2
1 + ∂2

2 + ∂2
3 is the Laplacian, the viscosity γ1 > 0 is defined by

γ1 = 2

15
〈|ζ |4B〉, (20)

ti is any unit vector orthogonal to n = (1, 0, 0), and b
(1)
i (i = 1, 2) and c

(0)
1 ,

known as the slip/jump coefficients, are the same constants arising in the Knudsen-
layer problem introduced above. The numerical value of γ1 and those of the
slip/jump coefficients for a hard-sphere gas are obtained as γ1 = 1.270042427 and
(b

(1)
1 , b

(1)
2 , c

(0)
1 ) = (−k0,−K1, d1) = (1.2540, 0.6465, 2.4001), where k0, K1, and

d1 are the notations used in [15, 16].
It should be noted that, since we are seeking a solution that is symmetric with

respect to x1 = 0, the above system should be supplemented by an appropriate
reflection condition at x1 = 0. A similar comment applies throughout the paper and
will not be repeated in the sequel.

Solution Procedure For a given τw, the process to obtain the solution φ to order ε
is as follows:

1. From Eq. (17), PH0 = C0 (constant).
2. Solve Eqs. (18a)–(18c) for m = 0 under the condition (19a) to obtain uH0,

PH1, and τH0. Note that PH1 is determined up to an additive constant (say, C1).
Compute ωH0 from Eq. (18d) with m = 0. The leading-order solution φH0 is
derived from Eq. (13a).
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3. Solve Eqs. (18a)–(18c) for m = 1 under the conditions (19b) and (19c) to obtain
uH1, PH2, and τH1. Note that PH2 is determined up to an additive constant (say,
C2). ComputeωH1 from Eq. (18d) with m = 1. The first order solution φH1+φK1
is obtained from Eqs. (13b) and (13c).

In the above procedure, PHm, ωHm, and φHm are determined up to a (common)
additive constant Cm at each m, although uiHm and τHm are determined without
such ambiguities. A physical argument can single out a solution. For example, we
can specify the gas pressure at a certain point in the domain or specify the average
gas density in the domain. Another possibility to remove the ambiguity might be
through a symmetry argument (depending on τw), as in the next section.

4 Case of a Discontinuous Wall Temperature

Now we return to the original problem. Again, we assume that the solution is
symmetric with respect to x1 = 0 and restrict the domain to D−. Moreover, we
seek the solution that is antisymmetric with respect to x2 = 0, i.e.,

φ(x1,−x2, x3, ζ1,−ζ2, ζ3) = −φ(x1, x2, x3, ζ1, ζ2, ζ3). (21)

Henceforth, we assume that the solution is x3-independent, i.e., ∂3 = 0, and even in
ζ3 (hence, u3 = 0).

First, leaving aside the fact that the boundary condition is discontinuous at
(x1, x2) = (−π

2 , 0), we look for a solution to the system (1)–(3) in the form

φ = φHK = φH + φK. (22)

Here, φH is the Hilbert solution, φK the Knudsen-layer correction, and φHK their
sum. Hereafter, we call φHK the Hilbert-Knudsen (HK) solution. Note that φH and
φK are subject to the conditions

∂iφH = O(φH), i = 1, 2, ∂1φK = O(φK/ε), ∂2φK = O(φK). (23)

As in the previous section, φH and φK, and thus φHK, are expanded in ε as

φH = φH0 + εφH1 + · · · , (24a)

φK = εφK1 + · · · , (24b)

φHK = φHK0 + εφHK1 + · · · , (24c)

with

φHK0 = φH0, φHK1 = φH1 + φK1. (25)
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To obtain φHK0 and φHK1, we apply the solution algorithm given in the previous
section.

Step 1 The leading-order pressure is PH0 = C0 (constant). We chose PH0 = C0 =
0 in view of the antisymmetry of the solution.

Step 2 The Stokes problem to determine uiH0 and τH0 reads

∂iuiH0 = 0, γ1	uiH0 − ∂iPH1 = 0, 	τH0 = 0, ωH0 = −τH0, in D−,
(26a)

uiH0 = 0, τH0 = ±τw, on x1 = −π
2
, x2 ≷ 0. (26b)

The solution is given by

uiH0 = 0, PH1 = 0, (27a)

τH0 = −ωH0 = τw

π
Arg

(
1+ sin z

1− sin z

)
, z = x1 + i x2, (27b)

where i is the imaginary unit, and the additive constant in PH1 is chosen to be zero
because of the solution’s antisymmetry. Hence, we obtain the leading-order HK
solution as

φHK0 = φH0 =
(
|ζ |2 − 5

2

)
τH0 =

(
|ζ |2 − 5

2

)
τw

π
Arg

(
1+ sin z

1− sin z

)
. (28)

Step 3 The Stokes problem for the first order in ε is reduced to

∂iuiH1 = 0, γ1	uiH1 − ∂iPH2 = 0, 	τH1 = 0, ωH1 = −τH1, in D−,

(29a)

uiH1 = 0, τH1 = −2τwc
(0)
1

π

1

sinh x2
, on x1 = −π

2
, x2 �= 0. (29b)

The solution is given by

uiH1 = 0, PH2 = 0, (30a)

τH1 = −ωH1 = −8τwc
(0)
1

π2

x2 cos x1 cosh x2 + x1 sin x1 sinh x2

cos(2x1)+ cosh(2x2)
, (30b)
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where the additive constant in PH2 is chosen to be zero because of the solution’s
antisymmetry. Hence, we obtain the first-order HK solution φHK1 as

φH1 =
(
|ζ |2 − 5

2

)
τH1 − ζiA(|ζ |)∂iτH0

= −8τwc
(0)
1

π2

(
|ζ |2 − 5

2

)
x2 cos x1 cosh x2 + x1 sin x1 sinh x2

cos(2x1)+ cosh(2x2)

− 4τw

π
A(|ζ |) ζ1 sin x1 sinh x2 + ζ2 cos x1 cosh x2

cos(2x1)+ cosh(2x2)
, (31a)

φK1 = −2τw

π

1

sinh x2
ϕ
(0)
1

(
x1 + π

2

ε
, ζ1, |ζ |

)
, (31b)

φHK1 = φH1 + φK1. (31c)

Drawbacks We have obtained the first two terms of the HK solutionφHK = φHK0+
εφHK1 disregarding the fact that the boundary data are discontinuous at (x1, x2) =
(−π

2 , 0). This solution has the following drawbacks.

1. The solution does not produce any non-zero flow velocity, which is not mean-
ingful. Note that a non-uniform surface temperature of a body usually causes
a rarefied gas flow such as the thermal creep. This remains true even if the
temperature distribution is piecewise uniform with a jump discontinuity [2].

2. Near the point (x1, x2) = (−π
2 , 0), the φHK0 and φHK1 have the following

asymptotic properties:

φHK0 = τw

(
|ζ |2 − 5

2

) (
2

π
θ + r2

6π
sin(2θ)+O(r4)

)
, (32a)

φHK1 =− 2τw

π

[
c
(0)
1 sin θ

r

(
|ζ |2 − 5

2

)
+ ζθ

r
A(|ζ |)+ 1

x2
ϕ
(0)
1

(
x1 + π

2

ε
, ζ1, |ζ |

)]

+O(r), (32b)

as r ↘ 0, where

r =
√(

x1 + π

2

)2 + x2
2 , θ = Arctan

(
x2

x1 + π
2

)
,

and ζθ = −ζ1 sin θ + ζ2 cos θ . Thus, |φHK1| grows indefinitely with the rate r−1

as r ↘ 0. In other words, the ε-expansion of φHK is meaningful only in the
region r " ε in D−.
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4.1 Knudsen Zone

Motivated by the above observation, we now look for a solution in the form

φ =

⎧
⎪⎪⎨

⎪⎪⎩

φHK = φH + φK in D− ∩
{
(x1, x2) | r " ε, r =

√(
x1 + π

2

)2 + x2
2

}
,

φZ in D− ∩
{
(x1, x2) | r  1, r =

√(
x1 + π

2

)2 + x2
2

}
,

(33)

allowing φHK and φZ to overlap in the region ε  r  1. Here, φZ replaces φHK in
the region close to the point of discontinuity (x1, x2) = (−π

2 , 0) (i.e., the Knudsen
zone). In the Knudsen zone, the length scale of variation of φZ is assumed to be of
the order of ε, i.e., ∂iφZ = O(φZ/ε) (i = 1, 2).

To analyze φZ, we introduce new spatial variables by

xi = −π
2
δi1 + εyi, i = 1, 2, (34)

and assume that φZ = φZ(y1, y2, ζ ). Expanding φZ in the form

φZ = φZ0 + εφZ1 + · · · , (35)

the zeroth-order term φZ0 satisfies the following equation and boundary conditions:

ζ1
∂φZ0

∂y1
+ ζ2

∂φZ0

∂y2
= L(φZ0), (y1 > 0, −∞ < y2 <∞), (36a)

φZ0 = 2
√
π

∫

ζ1<0
|ζ1|φZ0E ± (|ζ |2 − 2)τw, ζ1 > 0, (y1 = 0, y2 ≷ 0),

(36b)

φZ0 → 2τw$
(1)
z

|y| ζr sin(2θ)+ 2τw

π

(
|ζ |2 − 5

2

) (

θ − c
(0)
1

|y| sin θ

)

− 2τw

π

(
ζθ

|y|A(|ζ |)+
1

y2
ϕ
(0)
1 (y1, ζ1, |ζ |)

)
, as |y| → ∞, (36c)

θ = Arctan

(
y2

y1

)
, ζr = ζ1 cos θ + ζ2 sin θ, ζθ = −ζ1 sin θ + ζ2 cos θ,

(36d)

where $(1)z is a constant that represents the far-field asymptotic property of φZ0,
and should be determined together with the solution. This problem can be viewed
as a two-dimensional analog of the thermal creep flow [10–12], and represents a
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“reaction” of a rarefied gas to a forced temperature variation in the gas. We give
further details on the derivation of (36c) in Appendix.

4.2 A Source-Sink Condition for the Flow Velocity

Let us assume that φZ0 is known including $
(1)
z . We consider a point in D− such

that ε  r =
√
(x1 + π

2 )
2 + x2

2  1, and consider the asymptotic behavior of φZ

in the limit ε ↘ 0, keeping r (= ε|y|) fixed. With the aid of (36c), this is obtained
as

φZ = ε
2τw$

(1)
z

r
ζr sin(2θ)+ 2τw

π

(
|ζ |2 − 5

2

) (

θ − ε
c
(0)
1

r
sin θ

)

− ε
2τw

π

(
ζθ

r
A(|ζ |)+ 1

x2
ϕ
(0)
1

(
x1 + π

2

ε
, ζ1, |ζ |

))

= 2τw

π

(
|ζ |2 − 5

2

)
θ + ε

[
2τw$

(1)
z

r
ζr sin(2θ)− 2τw

π

(
|ζ |2 − 5

2

)
c
(0)
1

r
sin θ

− 2τw

π

ζθ

r
A(|ζ |)− 2τw

π

1

x2
ϕ
(0)
1

(
x1 + π

2

ε
, ζ1, |ζ |

) ]
, as ε ↘ 0 with r fixed,

(37)

where θ = Arctan( x2
x1+ π

2
). Hence, φHK is matched to the first two terms of φZ if

φHK1 → 2τw$
(1)
z

r
ζr sin(2θ)− 2τw

π

(
|ζ |2 − 5

2

)
c
(0)
1

r
sin θ

− 2τw

π

ζθ

r
A(|ζ |)− 2τw

π

1

x2
ϕ
(0)
1

(
x1 + π

2

ε
, ζ1, |ζ |

)
, as r → 0. (38)

Separating the Hilbert part from the Knudsen-layer part, we have

φH1 → 2τw$
(1)
z

r
ζr sin(2θ)− 2τw

π

(
|ζ |2 − 5

2

)
c
(0)
1

r
sin θ − 2τw

π

ζθ

r
A(|ζ |),

(39)

as r → 0. Thus, the radial and circumferential components of the flow velocity
urH1 = 〈ζrφH1〉 and uθH1 = 〈ζθφH1〉 near the point of discontinuity behave as

urH1 → τw$
(1)
z

r
sin(2θ), uθH1 → 0, as r → 0, (40)
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with

r =
√(

x1 + π

2

)2 + x2
2 , θ = Arctan

(
x2

x1 + π
2

)
. (41)

The condition describes a source-sink pair located at (x1, x2) = (−π
2 , 0) and serves

as a “boundary condition” that provokes a non-vanishing flow velocity in the Stokes
system. As we will see later (Sect. 5), $(1)z is likely to be a positive number. Thus, a
sink flow toward the discontinuity point appears in the region x2 < 0 and a source
flow in the region x2 > 0.

To summarize, after the consideration of the Knudsen zone, Step 3 should be
replaced by

Step 3’ The Stokes problem for the first order in ε is given by

∂iuiH1 = 0, γ1	uiH1 − ∂iPH2 = 0, 	τH1 = 0, ωH1 = −τH1, in D−,

(42a)

uiH1 = 0, τH1 = −2τwc
(0)
1

π

1

sinh x2
, on x1 = −π

2
, x2 �= 0, (42b)

urH1 → τw$
(1)
z

r
sin(2θ), uθH1 → 0, as r =

√(
x1 + π

2

)2 + x2
2 → 0.

(42c)

The solution τH1 is given by (30b), while (u1H1, u2H1) can be obtained, for instance,
by applying the Fourier transform. With these solutions, the first-order HK solution
φHK1 is given by

φH1 = 2ζ1u1H1 + 2ζ2u2H1

− 8τwc
(0)
1

π2

(
|ζ |2 − 5

2

)
x2 cos x1 cosh x2 + x1 sin x1 sinh x2

cos(2x1)+ cosh(2x2)

− 4τw

π
A(|ζ |) ζ1 sin x1 sinh x2 + ζ2 cos x1 cosh x2

cos(2x1)+ cosh(2x2)
, (43a)

φK1 = −2τw

π

1

sinh x2
ϕ
(0)
1

(
x1 + π

2

ε
, ζ1, |ζ |

)
, (43b)

φHK1 = φH1 + φK1. (43c)

Note that φK1 has not been changed from (31b).
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5 Numerical Results for the Knudsen-Zone Problem

Finally, we show some preliminary results for the Knudsen-zone problem. To
simplify the numerical analysis, we employ the Bhatnagar-Gross-Krook (BGK)
collision operator [4, 20] instead of the Boltzmann collision operator. The linearized
BGK collision operator is well-known and its explicit form is omitted [16].
Figure 2a shows the streamlines of the flow velocity (u1Z0, u2Z0) and the (perturbed)
temperature τZ0 in the upper-half domain y1 ≥ 0 and y2 ≥ 0. Here, uiZ0 and τZ0 are
defined by

uiZ0 = 〈ζiφZ0〉, i = 1, 2, τZ0 = 2

3

〈(
|ζ |2 − 3

2

)
φZ0

〉
. (44)

Note that the wall temperature is discontinuous at y2 = 0 along y1 = 0 (the plates’
temperature is T0(1 ± τw) for y2 ≷ 0). Figure 2b shows the flow-velocity vector
(u1Z0, u2Z0) and its absolute value near the origin. As seen from these figures, a flow
is induced in the positive y2 direction, which exhibits a diverging flow pattern in the
region far from the origin. Note that, by the antisymmetry, it implies that there is a
shrinking flow toward the origin in the region y2 < 0. The flow speed is strongest

near the discontinuity point and decreases as
√
y2

1 + y2
2 increases (see Fig. 2b). In

this way, the flow field obtained by the numerical analysis of the BGK model clearly
indicates the presence of a source-sink flow pattern in the far field. This becomes the

Fig. 2 Numerical results for the Knudsen-zone problem based on the (linearized) BGK collision
operator. (a) The thick gray curves with arrows show the streamlines of the flow velocity
τ−1

w (u1Z0, u2Z0), and the dashed contours show the temperature τZ0/τw. (b) A magnified figure
near the origin. The arrow indicates the flow-velocity vector τ−1

w (u1Z0, u2Z0) at its starting point,
and the contours visualize the absolute value
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source-sink condition near the point of discontinuity when rescaled with the spatial
variables xi and the limit ε→ 0 is approached, as discussed in the previous section.

6 Discussions

We have considered a slightly rarefied gas confined between two parallel plates
whose common temperature distribution has a jump discontinuity along them. In the
case of a smooth temperature distribution without jump discontinuities, the Hilbert
expansion and the Knudsen-layer correction yield a practical tool (i.e., the Stokes
system) to investigate a thermally-driven flow between the two plates (Sect. 3).
On the other hand, the case of the discontinuous surface temperature cannot be
handled solely by the Hilbert solution and the Knudsen-layer correction. Indeed,
the term φHK1 can grow indefinitely near the point of discontinuity, which disproves
the validity of the HK solution there (Sect. 4). Given this observation, we have
introduced the Knudsen zone near the point (x1, x2) = (−π

2 , 0), in which the
solution is allowed to undergo abrupt spatial variations in both x1 and x2 directions.

The Knudsen zone is described by the system (36), which is a half-space problem
for the linearized Boltzmann equation in two space dimensions. In this problem, the
constant $(1)z occurring in the far-field asymptotic property (36c) is essential from
the macroscopic view points. Indeed, $(1)z is inherited to the source-sink condition
(42c) in the Stokes system and plays a role to induce a non-zero flow velocity
uiH1. In this sense, $(1)z is of equal importance as the viscosity or the slip/jump
coefficients.

Finally, let us make a brief comment on the global flow structure when ε is
small. Since the zeroth-order flow velocity uiH0 is identically zero, the overall flow
vanishes as ε tends to zero except in the Knudsen zone. In the Knudsen zone,
the nonzero flow of the order τwO(1) is induced as seen from Fig. 2 and remains.
However, the Knudsen zone shrinks to (x1, x2) = (−π

2 , 0) with the decrease of ε.
Therefore, the strong flow of τwO(1) is gradually localized near (x1, x2) = (−π

2 , 0)
as ε becomes smaller. The localized flow affects the global flow at the order ε
through the source-sink condition for uiH1 and induces an overall flow with the
magnitude τwO(ε). In this way, a global flow of the order τwO(ε) is established as
a result of the piecewise uniform temperature distribution of the plates. The present
analysis successfully provides a clear picture of the flow structure, which is also
consistent with the picture inferred in [2].
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Appendix

In this appendix, we briefly explain the derivation of the condition (36c). Our stating
point is the asymptotic behaviors of the leading order HK solution φHK = φHK0 =
φH0 near (x1, x2) = (−π

2 , 0), i.e.,

φHK0 = 2τw

π

(
|ζ |2 − 5

2

)
θ +O(r2), r  1, θ = Arctan

(
x2

x1 + π
2

)
.

(45)

This suggests that the leading-order term of φZ is of the form

φZ0 = 2τw

π

(
|ζ |2 − 5

2

)
θ, as |y| → ∞, y1 > 0, θ = Arctan

(
y2

y1

)
.

(46)

Thus, the problem for φZ0 consists of (36a), (36b), and (46). We regard this problem
as a kind of “scattering problem” and seek a solution with the following asymptotic
property [18]:

φZ0 → 2τw$
(1)
z

|y| ζr sin(2θ)+ 2τw

π

(
|ζ |2 − 5

2

) (

θ − c
(0)
1 sin θ

|y|

)

− 2τw

π

(
ζθ

|y|A(|ζ |)+
1

y2
ϕ
(0)
1 (y1, ζ1, |ζ |)

)
, as |y| → ∞, (47)

where $(1)z is a constant. Note that the terms inversely proportional to |y| represent
the “reaction” to the imposed external condition (46).
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A Revisit to the Cercignani–Lampis
Model: Langevin Picture and Its
Numerical Simulation

Shigeru Takata, Shigenori Akasobe, and Masanari Hattori

Abstract The Cercignani–Lampis (CL) model for the gas–surface interaction is
revisited from the Langevin dynamics viewpoint. Starting from a time-independent
Fokker–Planck formalism by Cercignani, its time-dependent extension and the
corresponding Langevin description are introduced. The Langevin description sheds
light on dynamical features of a stochastic process corresponding to the CL model.
Numerical simulations on the basis of the Langevin description are performed
as well to reproduce the scattering kernel and reflection intensity distribution
numerically. Although the noise in the stochastic process is apparently simple, the
Milstein scheme rather than the Euler–Maruyama scheme has to be adopted to
achieve a satisfactory numerical convergence in time discretisation.

1 Introduction

Gas flows in low pressure and small-scale circumstances, which we generically call
rarefied gas flows, require the kinetic theory description rather than the usual fluid
dynamics description because the latter is implicitly limited to the local equilibrium
states [4, 16]. Inter-molecular collisions inside the gas are not necessarily frequent
in such circumstances, and sometimes molecular velocities inside the gas can be
traced back without changes to the velocities just after the reflection on a container
surface, i.e., a wall. Hence, the velocity distribution of reflected molecules can have
a direct impact on the gas behavior in the bulk region. An enough simple but realistic
gas–surface interaction model has been desired for a long time.
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Many efforts have been devoted even in rather recent years by Molecular Dynam-
ics (MD), theoretical, and experimental approaches (e.g., [1, 2, 18] and references
therein; a very good survey of the gas–surface interaction models before 1990s can
be found in [4]). Nevertheless, the progress so far is not necessarily satisfactory,
probably due to difficulties of background physics in such interface problems.
Even now, the diffuse reflection condition and/or its convex combination with
the specular reflection condition, the so-called Maxwell condition, are primarily
used and regarded as the standard in the literature [4, 16]. The former implicitly
assumes perfect accommodation of incident molecules with the wall and reproduces
the Lambert cosine law of the reflection intensity, while the latter introduced by
Maxwell takes account of imperfect accommodation. Although the latter reproduces
some effects of the imperfect accommodation at a macroscopic level, the specular
reflection part induces a spike in the reflection intensity distribution, which is
different from observations in molecular beam experiments.

After Maxwell, the concept of accommodation has been developed to introduce
different coefficients to represent a possible difference of accommodation in
momentum and energy exchanges [4, 11, 15]. Cercignani and Lampis [5] proposed
in 1971 a mathematical physical model, which is now called the Cercignani–Lampis
(CL) model. A similar model was independently proposed by Kǔscer et al. [12].
Their models have an impact in their capability to reproduce typical features of the
reflection intensity distributions experimentally observed.

The CL model has been enjoying successful practical applications, including
its extension and easy implementation [13] to the Direct Simulation Monte Carlo
(DSMC) algorithm since 1990s. Nevertheless, it seems that the dynamical back-
ground is still behind a mysterious veil, though its physical interpretation and
alternative derivation were reported in 1970s (e.g., [6, 17]). No further attempts
have been made to shed light on the dynamical aspects of the model. It is the main
motivation of the present study.

In the present paper, we discuss the CL model mainly along the lines laid
by Cercignani in [4]. We, however, modify his original discussions for a time-
dependent problem in order to have a stochastic dynamical picture, the Langevin
equation description. Results of numerical simulations and scheme accuracy in time
discretisation will be presented as well.

2 Scattering Kernel and Cercignani–Lampis (CL) Model

Let us denote by f (t, x, ξ ) the velocity distribution function of gas molecules,
where t is a time, x is a position, and ξ is a molecular velocity. Assuming that a
resting solid wall occupies the region x1 < 0, the reflection law for gas molecules
on the wall is expressed as

f (t, x‖, x1 = 0, ξ ) =
∫

ξ1<0
K(x‖, ξ , ξ )f (t, x‖, x1 = 0, ξ)dξ , ξ1 > 0, (1)
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or equivalently as

ξ1f (t, x‖, x1 = 0, ξ ) =
∫

ξ1<0
R(x‖, ξ , ξ )|ξ1|f (t, x‖, x1 = 0, ξ )dξ , ξ1 > 0.

(2)

Here x‖ = (x2, x3), which will be suppressed mostly in what follows because the
discussion is not concerned with the variation of K (or R) in that direction. In the
present paper, we shall call K the scattering kernel and R the reflection probability,
respectively.1 They are related to each other as

|ξ1|K(ξ , ξ ) = |ξ 1|R(ξ , ξ ), (3)

and are usually supposed to be independent of f both in physics and mathematics.
Physically, it implies that the microscopic properties of the wall do not change by the
interaction with the gas. We follow this convention, and thus the right-hand sides of
(1) and (2) are linear with respect to f . Experiments of mono-collimated molecular
beam scattering are performed on the basis of the same convention, though it is not
explicitly mentioned. In the case of the diffuse reflection condition, the scattering
kernel reads

K = |ξ1|
2π(RTw)2

exp(− |ξ |
2

2RTw
), (4)

where Tw is the wall temperature and R is the specific gas constant (the Boltzmann’s
constant kB divided by the mass of a molecule m; R = kB/m). Cercignani and
Lampis [5] proposed the following form of the scattering kernel:

K = |ξ1|
2π(RTw)2

1

αt (2− αt )αn
I0(

ξ1ξ1

RTw

√
1− αn

αn
) exp(−ξ

2
1 + ξ

2
1(1− αn)

2RTwαn
)

× exp(−|ξ‖ − ξ‖(1− αt)|2
2RTwαt (2− αt )

), (5)

where ξ‖ = (ξ2, ξ3) and I0 is the modified Bessel function of the first kind and
zeroth order:

I0(x) ≡ 1

2π

∫ 2π

0
exp(x cosϕ)dϕ. (6)

The boundary condition (1) with the kernel (5) is called the Cercignani–Lampis
(CL) model and contains two adjustable parameters: 0 ≤ αn ≤ 1 and 0 ≤ αt ≤ 2.
When αn = αt = 1, it recovers the diffuse reflection condition (4).

1 We have adopted the terminology in [16]. In [4], R is called the scattering kernel, which is a flux
based terminology like (2). As

∫
ξ1>0 Rdξ = 1 and R ≥ 0, R can be interpreted as the probability

density of finding a reflected molecule at a specific value of the velocity.
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3 Cercignani’s Fokker–Planck (FP) System

In [3], Cercignani introduced a time-independent Fokker–Planck system for the
probability density P(x1, ξ ) of a molecule at position x1 with velocity ξ . It
reproduces the CL model in the parameter range 0 ≤ αn ≤ 1 and 0 ≤ αt ≤ 1
and reads

ξ1
∂P

∂x1
+∂P
∂ξi

Xi = LP, (−d < x1 < 0), (7a)

LP = ∂2

∂ξj ∂ξi

(
DijP

)+ ∂

∂ξi

[(
Fij ξj − ∂Dij

∂ξj

)
P

]
, (7b)

b.c. P(x1 = 0, ξ1 < 0, ξ‖) = δ(ξ − ξ in), (7c)

P(x1 = −d, ξ1, ξ‖) = P(x1 = −d,−ξ1, ξ‖), ξ1 > 0. (7d)

Here ξ in is the molecular velocity of incidence, the interaction with the wall is
supposed to occur in x1 < 0, and x1 = −d is the position of the potential barrier
beyond which a molecule is forbidden to proceed (Fig. 1). The Xi , Dij , and Fij in
the above are defined as follows:

Xi = 0, D11 = 2RTw
1n
|ξ1|, D22 = D33 = 2RTw

1t
|ξ1|, (7e)

Dij = 0 (i �= j), Fij = 1

RTw
Dij , (7f)

Fig. 1 Schematics of
scattering of a gas molecule

0-d
position of 
potential barrier

Solid

solid surface
(the bound of the interaction range)
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where 1t and 1n are a characteristic length of molecular velocity diffusion in the
x2x3-plane and that in the x1-direction, respectively. By solving the above system
(7), we have the velocity distribution P(x1 = 0, ξ1 > 0, ξ‖) of reflected molecules
against the incident molecular beam δ(ξ − ξ in). Substitution of f = δ(ξ − ξ in) into
(1) or (2) gives the relation

R(ξ1 > 0, ξ in) =
|ξ1|
|ξin1|K(ξ1 > 0, ξ in) =

|ξ1|
|ξin1|P(x1 = 0, ξ1 > 0), (8)

(see [4, Sec. III. 2, Eq. (2.12)]). Hence, finding the form of K is identical to finding
P at x1 = 0 for ξ1 > 0. Here and in what follows, we suppress ξ‖ in the argument
of K etc., if no confusion is expected.

4 From Fokker–Planck to Langevin System

The time-independent Fokker–Planck (FP) system in Sect. 3 is the starting point
of our discussions. We first introduce its simple but natural extension to the time-
dependent situation. Then, we identify the Langevin system, namely the stochastic
dynamics of a test particle, that is equivalent to the extended system.

4.1 Time-Dependent Fokker–Planck System

In order to draw out a dynamical picture behind the CL model, we simply add a
time derivative term to the left-hand side of (7a), allow the spatial dependence in
(x2, x3)-directions, and modify the condition (7c) in accordance with the time and
spatial localization of the incident molecular beam. Then, we have the following
initial- and boundary-value problem:

∂Q

∂t
= −ξi ∂Q

∂xi
+ ∂2

∂ξj ∂ξi

(
DijQ

)+ ∂

∂ξi

[(
Fij ξj − ∂Dij

∂ξj

)
Q

]
, (−d < x1 < 0),

(9a)

b.c. Q(t, x, ξ ) = δ(t)δ(x)δ(ξ − ξ in), ξ1 < 0, x1 = 0, (9b)

Q(t, x1 = −d, ξ1) = Q(t, x1 = −d,−ξ1), ξ1 > 0, (9c)

where Q(t, x, ξ ) is the probability density finding a molecule at time t , position
x, and velocity ξ . As Q is the fundamental solution (the Green function) to the
initial- and boundary-value problem for the same FP equation, we switch its notation
to G(0, 0, ξ in; t, x, ξ ) from now on. Here, the first three arguments of G indicate
that the time, position, and velocity of incidence are t = 0, x = 0, and ξ = ξ in,
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respectively. Since the microscopic property of the wall, or the coefficients Dij and
Fij , are independent of t and x‖, the solution is invariant under the translation both
in time and in the x2x3-plane:

G(s, xin, ξ in; t, x, ξ ) = G(0, 0, ξ in; t − s, x − xin, ξ ), s ≤ t, (10)

where xin = (0, xin‖). This motivates us to define G ≡ ∫ t

−∞
∫
R2 G(s, xin, ξ in; t,

x, ξ )dx‖ds. The following property holds:

G =
∫ t

−∞

∫

R2
G(s, xin, ξ in; t, x, ξ )dx‖ds

=
∫ t

−∞

∫

R2
G(0, 0, ξ in; t − s, x − xin, ξ )dx‖ds

=
∫ ∞

0

∫

R2
G(0, 0, ξ in; τ, x, ξ )dx‖dτ. (11)

It is seen from the last equality that G is a solution of (9a) independent of xin‖ as
well as t and x‖; accordingly it will be denoted as G(ξ in; x1, ξ ). Note that G solves
(7a) as well. It is readily seen from (9b) and (9c) that G satisfies the conditions (7c)
and (7d). Thus, G is a solution of the system (7).

In Sect. 4.2, we present the Langevin system corresponding to the above system
(9). The observation on G tells that the scattering kernel K is identical with
G(ξ in; x1 = 0, ξ) and thus can be constructed from G. This implies that the kernel
of the CL model can be reproduced by many samples of a test particle simulation of
the Langevin system. We will come back to this issue in Sect. 5.2.

4.2 Langevin System for the CL Model: A Stochastic
Dynamical Picture

We first consider the following Langevin equation:

dxi = ξidt, dξi = (−γij ξj + Fi)dt + Sij dWj , (12)

where Wj is the Wiener process that satisfies 〈dWidWj 〉 = dt δij . Just for
convenience, let us introduce a six-dimensional vector variable yα (α = 1, . . . , 6)
defined by yi = xi and yi+3 = ξi (i = 1, . . . , 3) and rewrite (12) as follows:

dyα = (Aαβyβ + Bα)dt +�αidWi, (13a)
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where

[Aαβ ] =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −γ11 −γ12 −γ13

0 0 0 −γ21 −γ22 −γ23

0 0 0 −γ31 −γ32 −γ33

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

, (13b)

[Bα] =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

0
0
0
F1

F2

F3

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

, [�αi] =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0
S11 S12 S13

S21 S22 S23

S31 S32 S33

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

. (13c)

The corresponding Fokker–Planck equation is known to take the following form [7]:

∂g

∂t
= − ∂

∂yα
([Aαβyβ + Bα]g)+ 1

2

∂2

∂yα∂yβ
(�αi�βig). (14)

Using the original pair of three-dimensional vector variables (xi , ξi ) in place of yα,
(14) is rewritten as

∂g

∂t
= − ∂

∂xi
(ξig)− ∂

∂ξi
(−γij ξjg + Fig)+ 1

2

∂2

∂ξi∂ξj
(SikSjkg). (15)

Now, comparing (15) and (9a) leads us to find the correspondence of coefficients:

1

2
SikSjk = Dij , γij ξj − Fi = Fij ξj − ∂Dij

∂ξj
. (16)

Note that, because of the definition (7e),

∂Dij

∂ξj
= ξ1

|ξ1|
2RTw
1n

δi1. (17)
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Thus, γij , Sij , and Fi are identified as

γij = Fij = 1

RTw
Dij = 2[ |ξ1|

1n
δi1δj1 + |ξ1|

1t
(δi2δj2 + δi3δj3)], (18a)

Fi = ξ1

|ξ1|
2RTw
1n

δi1, (18b)

Sij = 2

√

RTw
|ξ1|
1n

δi1δj1 + 2

√

RTw
|ξ1|
1t

(δi2δj2 + δi3δj3). (18c)

Here, we have chosen Sij to be symmetric.
To summarize, we have identified the Langevin system corresponding to the

time-dependent FP system (9):

dxi = ξidt, (i = 1, 2, 3), (19a)

dξ1 = − 2

1n
(|ξ1|ξ1 − ξ1

|ξ1|RTw)dt + 2

√

RTw
|ξ1|
1n

dW1, (19b)

dξ2 = − 2

1t
|ξ1|ξ2dt + 2

√

RTw
|ξ1|
1t

dW2, (19c)

dξ3 = − 2

1t
|ξ1|ξ3dt + 2

√

RTw
|ξ1|
1t

dW3, (19d)

supplemented by the specular reflection at the potential barrier x1 = −d and the
initial condition

x(0) = 0, ξ (0) = ξ in. (19e)

5 Discussions

5.1 Dynamical Aspects of the CL Model

The Langevin system (19) tells that, after the incidence, a molecule changes its
velocity under two types of interactions with the wall. One is the first term on the
right-hand side of (19b)–(19d), which we call a drift part. The other is the second
term on the same side of (19b)–(19d), which we call a diffusion part. Below we
discard the spatial translation (19a) and concentrate on the dynamics described by
(19b)–(19d). Before going into details, it should be noted that the motion in the
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normal direction is seen to be independent of those in tangential directions. The
reverse is not true.

Role of the Drift Part
In the direction normal to the surface, the drift part decelerates a molecule if the
kinetic energy (1/2)mξ2

1 in that direction is beyond the thermodynamic energy
(1/2)kBTw distributed by the equipartition law [8]. If not, it accelerates the molecule
until the kinetic energy (1/2)mξ2

1 reaches that energy. To see the mechanism more
closely, discard the second term in (19b) and integrate it in time. Then, we have for
ξ1 < 0

ξ1 = −
√
RTw

1∓ c− exp(− 4
√
RTw
1n

t)

1± c− exp(− 4
√
RTw
1n

t)
, −√

RTw ≶ ξ1(< 0), (20a)

and for ξ1 > 0

ξ1 =
√
RTw

1± c+ exp(− 4
√
RTw
1n

t)

1∓ c+ exp(− 4
√
RTw
1n

t)
,

√
RTw ≶ ξ1(> 0), (20b)

where c± is a positive constant not larger than unity. Hence, there is no reversal of
motion in the normal direction if neither thermal noise nor potential barrier exist.
The drift part thus drives ξ1 towards ±√RTw depending on its sign exponentially
in time.2

In directions tangential to the surface, the drift part always decelerates the
molecular motion in proportion to the momentum transferred by the incoming
molecule, i.e., −|ξ1|ξ‖, where ξ‖ = (ξ2, ξ3). Thus, it works on the molecule in a
similar way to the viscous drag. To see the effect more closely, consider the motion
in the x2-direction. The motion in the x3-direction follows the same dynamics, as
is clear from (19c) and (19d). As before, discarding the second term in (19c) and
integrating it in time give

ξ2 = c0 exp(− 2

1t

∫
|ξ1|dt), (21)

2 Using the relation (31) that appears later, the exponential factor can be rewritten as

exp(−4
√
RTw

1n
t) = (1 − αn)

√
RTw
2d t .

Hence, if |ξ1| < √RTw , the molecule stays longer than 2d/
√
RTw in the interaction region,

making the above factor smaller and smaller until leaving. If |ξ1| > √RTw , the molecule stays
shorter, keeping the same factor between 1− αn and unity.
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where c0 is a constant. Hence, as far as ξ1 �= 0, the drift-part force decelerates ξ2
and makes it vanish if the integration of |ξ1| in time is not bounded. It is also seen
that the larger |ξ1| is, the larger the decaying rate is.

Role of the diffusion Part and Competition with the drift Part
In order to see the role of the diffusion part and its competition with the drift part,
we go back to the time-dependent FP system, (9a) without the spatial translation
term and (9b).

Let us first single out the diffusion part. The FP system without the spatial
translation and the drift part admits a stationary solution inversely proportional to
|ξ1| in the normal direction, provided that the integrability condition is discarded. In
the tangential directions, it is just a usual diffusion process without center shifting,
and only its time scale depends on |ξ1|. A couple of examples of particle simulations
of (19b) and (19c) without the drift part are shown in Fig. 2a,b, which clearly
demonstrate those features. The diffusion part competes with the drift part to form
the half-range Maxwellian in the normal direction and the full Maxwellian with the
zero mean velocity in the tangential directions as a stationary state; see Fig. 2c,d.
The admitted stationary solution under the competition corresponds to the full
accommodation situation, namely the diffuse reflection model. In the CL model,
however, molecules spatially translate in the interaction region and may leave there
before reaching the full accommodation.

5.2 Langevin System and the Reflection Intensity Distribution

We first consider the way how to recover G from the samples (test particles) of the
Langevin system simulation. The base of our discussion is the identity

G(ξ ; 0, ξ) =
∫ ∞

0

∫

R2
G(0, 0, ξ ; τ, x1 = 0, x‖, ξ )dx‖dτ, (22)

which has already appeared in Sect. 4.1. Remind that solving the Langevin system
is identical to getting the above integrand G.

Taking account of the time and the spatial integration in (22), let us first count the
number of sample molecular velocities at the instance of exit from the interaction
region x1 < 0, irrespective of the x‖ position and exit time. Then, N samples for the
common velocity of incidence ξ yields a normalized distribution in the molecular
velocity:

1

N

N∑

i=1

δ(ξ − ξ (i)), (23)
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(a) (b)

(c) (d)

Fig. 2 The diffusion-part effect and the competition between the drift and the diffusion part in the
case |ξ in|/

√
2RTw = 1.56718 with (ξin2, ξin3)/

√
2RTw = (−0.78359, 0). No spatial translation

is considered. (a) the diffusion-part effect in the normal direction, (b) the diffusion-part effect
in the incident tangential direction, (c) the competition between the drift- and the diffusion-part
in the normal direction, and (d) the competition between the drift- and the diffusion-part in the
incident tangential direction. Here, t̂ = (

√
2RTw/1)t with 1 being 1 = −(1/8)(ln 0.7)1n =

−(1/4)(ln 0.9)1t and Fα(ξα) = ∑N
i=1 χ[ξα ,ξα+	ξα ](ξ

(i)
α )/(N	ξα/

√
2RTw) (α = 1, 2) with ξ (i)

and χA being the molecular velocity of the i-th sample of simulation and the characteristic function
of A, respectively [see the sentence following (29) that appears later]. The Milstein scheme to be
explained later is used with the timestep 	t = 0.0002(1/

√
2RTw), and the number of sampling

and the intervals for the histogram of Fα in molecular velocity are respectively N = 107 and
	ξ1 = 	ξ2 = 0.05

√
2RTw
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where ξ (i) is the molecular velocity at the instance of exit in the i-th sample of
simulation. The above simple counting is, however, not directly connected with G

(or more precisely G) because G (or G) is the quantity that is concerned with the
small interval [0, dx1]. The time duration for which the molecule is in the small
interval should have been taken into account in (23) to have a direct connection
with G. Hence, the counting with weight dx1/ξ

(i)
1 should be taken

G(ξ ; 0, ξ)dx1 ∝ 1

N

N∑

i=1

dx1

ξ
(i)
1

δ(ξ − ξ (i)). (24)

Remember that the left-hand side is nothing else than K(ξ , ξ )dx1. Thus, from (8)
and

∫
ξ1>0 R(ξ , ξ )dξ = 1 (see footnote 1), we arrive at the relation (in the sense of

weak formulation) that

|ξ1|G = |ξ1|
N

N∑

i=1

δ(ξ − ξ (i)), (25)

which establishes the way how to construct the scattering kernel from the Langevin
system simulation.

Next, we proceed to the reflection intensity distribution. Introducing the polar
coordinates (ξ, θ, ϕ) of the molecular velocity with positive x1 being the polar
direction, the normalized intensity distribution I (θ, ϕ) is expressed as

I (θ, ϕ) = 1

Iin

∫ ∞

0
f (ξ ) ξ cos θ ξ2dξ, cos θ > 0, (26a)

Iin =
∫

ξ1<0
|ξ1|f (ξ )dξ , (26b)

where f is the velocity distribution function of molecules on the wall. Substitution
of (2) into (26a) gives

I (θ, ϕ) = 1

Iin

∫ ∞

0

( ∫

ξ1<0
|ξ 1|R(ξ , ξ )f (ξ )dξ

)
ξ2dξ, ξ1 > 0. (27)

In the case of the mono-collimated molecular beam, f (ξ ) = δ(ξ−ξ in), the intensity
distribution is reduced to

I (θ, ϕ) =
∫ ∞

0
R(ξ , ξ in) ξ

2dξ = 1

|ξin1|
∫ ∞

0
ξ2ξ1 Gdξ

= 1

|ξin1|
∫ ∞

0
ξ3 cos θ Gdξ, (cos θ > 0). (28)
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Here it has been used that Iin =
∫
ξ1<0 |ξ 1|δ(ξ − ξ in)dξ = |ξin1|. Note that I follows

the Lambert cosine law, if G is isotropic as the diffuse reflection case. The deviation
from the cosine law implies the non-isotropy of G. Now using (25), the intensity
distribution can be reproduced by the following sample counting of the Langevin
system simulation:

I sin θ	θ	ϕ = 1

N

N∑

i=1

∫ ∞

0
dξ ξ2

∫ ϕ+	ϕ

ϕ

dϕ

∫ θ+	θ

θ

dθ sin θ
δ(ξ − ξ (i))δ(θ − θ (i))δ(ϕ − ϕ(i))

ξ2 sin θ

= 1

N

N∑

i=1

χ[θ,θ+	θ ](θ (i))χ[ϕ,ϕ+	ϕ](ϕ(i)), (29)

where (θ(i), ϕ(i)) are the polar and the azimuth angle of ξ (i) and χA(x) is the
characteristic function: it takes unity when x ∈ A and zero otherwise. The results
of the above sample counting (29) are to be compared with the following intensity
distribution ICL for the CL model (5):

ICL = 1

|ξin1|
∫ ∞

0
dξ

ξ2ξ1

2π(RTw)2
|ξin1|

αt (2− αt )αn
I0(

ξ1ξin1

RTw

√
1− αn

αn
)

× exp(−ξ
2
1 + ξ2

in1(1− αn)

2RTwαn
) exp(−|ξ‖ − ξ in‖(1− αt )|2

2RTwαt (2− αt )
)

= 1

2π(RTw)2
cos θ

αt (2− αt )αn

∫ ∞

0
dξ ξ3I0(

ξξin cos θ cos θin

RTw

√
1− αn

αn
)

× exp(−ξ
2 sin2 θ + ξ2

in sin2 θin(1− αt)
2

2RTwαt (2− αt )
− ξ2 cos2 θ + ξ2

in cos2 θin(1− αn)

2RTwαn

+ ξξin sin θin sin θ cos(ϕ − ϕin)(1− αt )

RTwαt (2− αt )
). (30)

Figure 3 shows a couple of comparisons of the simulation results of (29) with
(30). Good agreement is achieved, telling that the present construction of the
Langevin system is appropriate. In the numerical simulations of the Langevin
system, the Milstein scheme [10] has been adopted to achieve a sufficient numerical
convergence with respect to the time-step size, see Sect. 5.3. Comparisons are made
in the figure by using the relation between the parameters (αn, αt ) and (1n, 1t , d) in
[4]:3

αn = 1− exp(−8d

1n
), αt = 1− exp(−4d

1t
). (31)

3 There are misprints in (7.23) of [4], probably due to the inconsistent use of the notations 1n and
1t between [3] and [4].
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(a) (b)

Fig. 3 In-plane and off-plane reflections of the mono-collimated molecular beam obtained by
108 particle simulations of the Langevin system (19): the case αn = 0.3 and αt = 0.1. The
speed of the incident molecule is set as |ξ in|/

√
2RTw = 0.522394. (a) θC

in = 30◦, (b) θC
in = 75◦,

where θC
in(≡ π − θin) is the angle of incidence of the velocity of the molecular beam ξ in. ϕ is the

azimuth angle measured clockwise from the direction of the projection of ξ in to the ξ2-ξ3 plane
(−π < ϕ ≤ π). Symbols indicate the simulation results. Corresponding ICL’s in (30) are also
shown for reference by solid lines. The arrow in each panel indicates the direction of ξ in. Note the
relation (31). The Milstein scheme with 	t = 0.002 d/

√
2RTw and p = 2 has been used

5.3 Some Aspects of the Numerical Method for the Langevin
System

Probably the simplest and widespread numerical algorithm for solving the Langevin
equation is the Euler–Maruyama method, the scheme of which reads in the present
case

x
(n+1)
i =x(n)i + ξ

(n)
i 	t, (i = 1, 2, 3), (32a)

ξ
(n+1)
1 =ξ(n)1 − 2

1n
{|ξ(n)1 |ξ(n)1 − ξ

(n)
1

|ξ(n)1 |
RTw}	t + 2

√

RTw
|ξ(n)1 |
1n

	t	B
(n)
1 ,

(32b)

ξ
(n+1)
2 =ξ(n)2 − 2

1t
|ξ(n)1 |ξ(n)2 	t + 2

√

RTw
|ξ(n)1 |
1t

	t	B
(n)
2 , (32c)

ξ
(n+1)
3 =ξ(n)3 − 2

1t
|ξ(n)1 |ξ(n)3 	t + 2

√

RTw
|ξ(n)1 |
1t

	t	B
(n)
3 . (32d)
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(a) (b)

Fig. 4 Numerical convergence: the Euler–Maruyama scheme vs. the Milstein scheme. The results
for the in-plane reflection of molecules (ϕ = 0◦, 180◦) for the same parameters as Fig. 3b, except
for the time step. (a) The Euler–Maruyama scheme, (b) the Milstein scheme with p = 2. Here,
	t̂ = (

√
2RTw/d)	t . Symbols indicate the simulation results, while thick solid lines indicate ICL

in (30). Note the difference of 	t̂ between (a) and (b). Common symbols are used for common
values of 	t̂

Here, x(n)i = xi(tn), ξ
(n)
i = ξi(tn), tn = n	t (n = 0, 1, 2, . . . ) is the discretised

time, 	t is the size of time step, and 	B(n)
i (i = 1, 2, 3) are mutually independent

standard Gaussian random variables and are related to Wi as
√
	t	B

(n)
i =

Wi(tn+1) −Wi(tn). The Euler–Maruyama scheme is 1/2-order in the strong-order
of convergence. In fortunate cases where Sij is constant, the scheme becomes first-
order [9, 10], which does not apply in the present case because of (18c). Indeed,
the implementation of the Euler–Maruyama scheme shows a very slow convergence
with respect to the size of time discretisation, see Fig. 4a. The difficulty of the slow
convergence is, however, resolved dramatically by switching to the Milstein scheme,
which is known to be first-order in the strong-order of convergence [10], see Fig. 4b.
In the present case, as the noise is not commutative4 for ξ2 and ξ3, the scheme

4 The noise is said to be commutative, if �αi in (13a) satisfies the condition �βi(∂�αj/∂yβ ) =
�βj (∂�αi/∂yβ).
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becomes rather complicated as5

ξ
(n+1)
1 = ξ(n)1 − 2

1n
(|ξ(n)1 |ξ(n)1 − ξ

(n)
1

|ξ(n)1 |
RTw)	t + 2

√

RTw
|ξ(n)1 |
1n

	t	B
(n)
1

+ ξ
(n)
1

|ξ(n)1 |
2RTw
1n

I
(n)
11 , (33a)

ξ
(n+1)
2 = ξ(n)2 − 2

1t
|ξ(n)1 |ξ(n)2 	t + 2

√

RTw
|ξ(n)1 |
1t

	t	B
(n)
2 + ξ

(n)
1

|ξ(n)1 |
2RTw√
1t 1n

I
(n)p

12 ,

(33b)

ξ
(n+1)
3 = ξ(n)3 − 2

1t
|ξ(n)1 |ξ(n)3 	t + 2

√

RTw
|ξ(n)1 |
1t

	t	B
(n)
3 + ξ

(n)
1

|ξ(n)1 |
2RTw√
1t 1n

I
(n)p

13 ,

(33c)

where

I
(n)
11 =

	t

2
{(	B(n)

1 )2 − 1}, (34a)

I
(n)p
12 =	t

2
	B

(n)
1 	B

(n)
2 + 	t

2π

p∑

q=1

1

q
{ζ2q(

√
2	B(n)

1 − η1q)− ζ1q(
√

2	B(n)
2 − η2q)}

+	t

√
ρ(p)(μ

(p)

2 	B
(n)
1 − μ

(p)

1 	B
(n)
2 ), (34b)

I
(n)p
13 =	t

2
	B

(n)
1 	B

(n)
3 + 	t

2π

p∑

q=1

1

q
{ζ3q(

√
2	B(n)

1 − η1q)− ζ1q(
√

2	B(n)
3 − η3q)}

+	t

√
ρ(p)(μ

(p)
3 	B

(n)
1 − μ

(p)
1 	B

(n)
3 ), (34c)

ρ(p) = 1

12
− 1

2π2

p∑

q=1

1

q2 . (34d)

5 See [10, pp. 346–347] for the details. Unfortunately, there are misprints in the corresponding
formula in Sec. 6.4.3 of [9], though the latter reference is an excellent textbook. Incidentally, in
[9], the Milstein scheme for the non-commutative noise is referred to as Kloeden and Platen’s
approximation.
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Fig. 5 Influence of the
truncation number p in the
Milstein scheme: the in-plane
reflection of molecules
(ϕ = 0◦, 180◦) for the same
parameters as Fig. 3b, though
a coarser time step
	t = 0.2 d/

√
2RTw is used

here. Symbols indicate the
simulation results, while the
solid line indicates ICL in
(30)

Here, μ(p)i , ηiq , and ζiq are mutually independent standard Gaussian random
variables,6 and p is the truncation number of the infinite series, which should be
chosen so that p > C/	t for a positive constant C. As is clear from (33) and (34),
the Milstein scheme requires the generation of 6(p+1) standard Gaussian variables
at each time step, which is 2(p + 1)-times as many as in the Euler–Maruyama
scheme and looks a serious drawback at a glance. Fortunately, however, numerical
experiments show that the convergence rate with respect to p is excellent and that
the setting p = 2 is found to be good enough, see Fig. 5.

5.4 A Further Observation: Some Features of Time Delay
in Exit

We have so far focused on the way to construct the scattering kernel and/or the
reflection intensity distribution without time delay. The scattering model without
time delay supposes that the time duration of interaction with the wall is so short
that the process may be considered to be instantaneous in the time scale of our

6 Originally, μ(p)i is defined as

μ
(p)
i = 1

√
ρ(p)	t

∞∑

q=p+1

1

πq

√
	t

2
ζiq .

According to [10], however, μ(p)i thus defined becomes a standard Gaussian random variable. This
property is very useful from the actual computational point of view.
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Fig. 6 Distribution of
reflected molecules with
respect to the exit time τ for
various angle of incidence θC

in.
The parameters are the same
as Fig. 3, except for a part of
values of θC

in. Here P(τ̂ ) =
∑N

i=1 χ[τ̂,τ̂+	τ̂ ]/(N	τ̂) with
τ̂ = τ(2RTw)1/2/d,
	τ̂ = 0.05, and N = 108

interest. However, if we change the sample counting to that at a specified exit time
τ , a closer observation of the dynamics is possible. It would also give a hint toward
the construction of the scattering kernel with a time-delay effect. Here, we present
a few examples of such sample counting.

Figure 6 shows the distribution of the exit time of samples in the same simulation
as Fig. 3. As is observed, the larger the angle of incidence is, the longer the time
duration of interaction is. We have also observed that there are no test particles that
experience the reversal of motion in the normal direction except for the reflection
at the potential barrier [see also Fig. 2c]. Hence, they commonly travel 2d in depth.
These numerical observations suggest that in the CL model molecules of tangential
incidence have more chance to remain at a low speed in the normal direction, and
thus to need a longer time duration before leaving.

The common travelling distance 2d in depth implies that
∫ |ξ1|dt = 2d holds,

so that the drift-part deceleration yields ξ‖ = ξ in‖ exp(−4d/1t ) = ξ in‖(1 − αt ) at
the exit time; see (21). This coincides with the central velocity of the Gaussian in
tangential directions in the kernel of CL model; see (5). Finally, an example of the
in-plane reflection intensity distribution in a specified interval of exit time is shown
in Fig. 7. The distribution inclines more to the tangential direction for the molecules
of larger exit time.

6 Conclusion

In the present paper, we have revisited the Cercignani–Lampis model for the gas–
surface interaction, along the lines of Cercignani in [4]. Starting from his time-
independent Fokker–Planck system, we have introduced its simple and natural time-
dependent extension and have identified the corresponding Langevin system.

In the Langevin system, there are two types of interactions with the wall. One
is a stochastic thermal agitation, which we call the diffusion part, and the size of
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(a) (b)

Fig. 7 Time-dependent in-plane reflection intensity distribution I: the same case as Fig. 3. (a)
θC

in = 30◦, (b) θC
in = 75◦. I is computed by the sample counting I(τ̂ ∈ A, θ, ϕ)	τ̂A sin θ	θ	ϕ =

(1/N)
∑N

i=1 χA(τ̂
(i))χ[θ,θ+	θ ](θ(i))χ[ϕ,ϕ+	ϕ](ϕ(i)), where N = 1010, 	τ̂A is the size of time

interval A, and τ̂ (i) is the dimensionless time of exit of the i-th sample

agitation depends on the random variable ξ1. The other is what we call the drift
part, which leads |ξ1| toward the speed of kinetic energy given by the equipartition
law. In the tangential directions it decelerates the molecule by the viscous-like drag
proportional to the moment transferred by that molecule.

The appropriate sample counting of the Langevin system simulation has also
been discussed, and the capability of reproducing the scattering kernel and/or the
reflection intensity distribution have been numerically demonstrated. It has also
been remarked that the present stochastic noise causes the application of the Euler–
Maruyama method to be inefficient and requires the Milstein method.

Finally, we stress that, from a numerical point of view, the Langevin system
is advantageous to the FP system in that the incident mono-collimated molecular
beam is easily handled to allow a close observation as in Sect. 5.4. Indeed, the
sampling there gives a way toward a construction of the time-delay effect in the
scattering model. Such an extension has a potential importance for such as an
evacuation-speed prediction in vacuum technologies. Modifications of the dynamics
by coupling with strong scatterings suggested in [4] will also be possible in
the same numerical framework, if desired. Unlike the concise expression of the
original CL model, the extensions above suggested might require a data fitting to
construct a ready-to-use kinetic boundary condition. Nevertheless, a flexibility of
the present simple approach is an advantage of modern computational facilities over
the tools/techniques available in 1970s.
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Appendix

The numerical simulation of the Langevin system is performed particle by particle.
The process of computations for each test particle, say k-th particle (k = 1, 2, . . . ),
is as follows.

Suppose that the size of time step 	t is given. Set the initial position x(0) and
velocity ξ (0) of the test particle as x(0) = 0 and ξ (0) = ξ in. Let x(n) and ξ (n) be
known, where x(n)1 ∈ [−d, 0] and n = 0, 1, 2, . . .

Step 1. Compute the particle position x(n+1) at time t(n+1) by (32a). If x(n+1)
1 <

−d , discard it and reset x(n+1)
1 as x(n+1)

1 = −2d − x
(n)
1 − ξ

(n)
1 	t . This is

due to the specular reflection at the potential barrier.
Step 2. Compute the particle velocity ξ (n+1) at time t(n+1) by (33) with (34).

2a. If x(n+1)
1 < −d occurs in Step 1, change the sign of ξ(n+1)

1 ; then go to
2c.

2b. If x(n+1)
1 > 0, put 	t4 = 	t − x

(n+1)
1 /ξ

(n)
1 , and compute x4 and ξ 4 by

(32a) and (33) using 	t4 in place of 	t . If ξ41 ≥ 0, which is the case
usually, record n	t+	t4, x4, and ξ4 as the exit instance, position, and
velocity of the k-th particle, and stop the computation. In case ξ41 < 0
happens to occur, continue the computation to reset x(n+1) and ξ (n+1)

by (32a) and (33) using (	t − 	t4), x4, and ξ 4 in place of 	t , x(n),
and ξ (n); then go to 2c.

2c. If x(n+1)
1 ≤ 0, go back to Step 1 and shift n to n+ 1.

Repeat the above steps until an enough number of samples have been collected. In
the actual computations, the Mersenne Twister pseudo-random number generator
[14] has been used in generating the standard Gaussian variables.
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On the Accuracy of Gyrokinetic
Equations in Fusion Applications

Edoardo Zoni and Stefan Possanner

Abstract This article concerns the asymptotic derivation of equations of motion
for gyro-centers in strongly magnetized fusion plasmas. In particular, we focus on
the role of the electron–ion mass ratio in the gyrokinetic coordinate transformation.
We discuss the ordering assumptions for the ITER and ASDEX Upgrade Tokamaks
in detail. A system of generating differential equations is derived and solved by
asymptotic expansion to second order for ions and to fourth order for electrons. It
is shown that the higher-order expansion for electrons is necessary for achieving
first-order accuracy in the gyro-center equations of motion, which is usually desired
for gyrokinetic simulations.

1 Gyrokinetic Theory in a Nutshell

The physics application considered in this article is magnetic confinement fusion.
In particular, we are interested in the mathematical modeling of high-temperature
plasmas created inside experimental fusion reactors, such as, for example, the
Tokamaks ASDEX Upgrade [17] and ITER [22]. Such plasmas are macroscopic
physical systems composed of a very large number of microscopic particles, of the
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order of 1020 particles per cubic meter in the case of the two Tokamaks mentioned
above. Moreover, we are mostly interested in the study of non-equilibrium physical
phenomena, such as plasma turbulence. Based on these observations, we apply the
principles of the kinetic theory of gases and derive suitable kinetic models, such as
the Vlasov–Maxwell model described in Sect. 2.

However, such models are defined on a six-dimensional phase space (three
dimensions for the position of the plasma particles and three dimensions for their
velocity) and exhibit a variety of space and time scales that vary within a large
range. When the model equations need to be solved through computer simulations,
the high-dimensionality of the phase space and the multi-scale nature of the problem
become significant computational limitations, resulting in long run times and heavy
memory footprints. Therefore, it becomes useful to develop reduced models that
retain a physically meaningful description of the system and decrease, at the same
time, the computational cost of the model. Gyrokinetic theory [4] is an example of
such reduced kinetic models.

The fundamental idea of gyrokinetic theory is to separate the fast time scale
associated with the motion of gyration of the charged plasma particles around
the field lines of the confining magnetic field from the slower time scales of the
problem. This is achieved by choosing new phase-space coordinates, different than
the physical positions and velocities of the particles, defined in such a way that
the fast motion of gyration is decoupled from the particle dynamics. The resulting
dynamical equations govern the evolution of the so-called “gyro-centers”. They
are defined on a five-dimensional phase space and enable more efficient computer
simulations of plasma turbulence in fusion reactors. The basics of this method have
been outlined many decades ago [2, 11] and the understanding of gyrokinetics and
its application have come a long way since then [3–5, 8, 12, 18, 19, 21, 23]. Indeed,
many of the large production computer codes for fusion research are based on
gyrokinetics [1, 7, 9, 10].

In this work we aim to investigate the electron gyro-center equations of motion
on an equal footing with the ion equations. Electron gyrokinetic modeling has not
received a lot of attention on its own, meaning that usually the ion gyro-center
equations are used also for electrons, with the adequate adjustment of physical
parameters such as mass and charge. This can be dangerous when judging the
validity of such a model, or when trying to assess its accuracy. Here, we present
a rigorous two-species gyro-center reduction that takes into account the mass ratio
between electrons and ions.
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2 The Vlasov–Maxwell Model

We consider a non-collisional plasma made of ions and electrons described in terms
of particle distribution functions fs : R+ ×R

3 ×R
3 , (t, x, v) �→ fs(t, x, v) ∈ R

+
that obey the non-collisional Vlasov equation1

∂fs

∂t
+ v ·∇fs + qs

ms
(E+ v× B) · ∂fs

∂v
= 0 , (1)

where qs ∈ R and ms ∈ R
+ denote the particle charge and mass, respectively.

The electric and magnetic fields E : R+ × R
3 , (t, x) �→ E(t, x) ∈ R

3 and
B : R+ ×R

3 , (t, x) �→ B(t, x) ∈ R
3 satisfy Maxwell’s equations

∇ · E = �

ε0
(2a)

∇ · B = 0 (2b)

∇ × E = −∂B
∂t

(2c)

∇ × B = μ0 J+ ε0 μ0
∂E
∂t

(2d)

where ε0 and μ0 denote the vacuum electric permittivity and the vacuum magnetic
permeability, respectively. The sources � : R+ × R

3 , (t, x) �→ �(t, x) ∈ R and
J : R+ × R

3 , (t, x) �→ J(t, x) ∈ R
3 are expressed in terms of the distribution

functions as

� =
∑

s

∫
d3v qs fs , J =

∑

s

∫
d3v qs v fs . (3)

The derivation of the Vlasov–Maxwell system (1)–(3) from an action principle was
recognized first by Low [16]. Denoting by φ : R+ × R

3 , (t, x) �→ φ(t, x) ∈ R

and A : R+ × R
3 , (t, x) �→ A(t, x) ∈ R

3 the electric scalar potential and the
magnetic vector potential associated with the electric and magnetic fields via
E = −∇φ − ∂A/∂t and B = ∇ × A, Low’s action principle reads

δ

∫ t1

t0

dt (LEM + LP) = 0 , (4)

1 All equations in this article are written in SI units.
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where δ denotes the Fréchet derivative and the Lagrangian is the sum of the
electromagnetic free-field Lagrangian

LEM(φ,A) = ε0

2

∫
d3x

∣
∣
∣
∣∇φ +

∂A
∂t

∣
∣
∣
∣

2

− 1

2μ0

∫
d3x |∇ × A|2 , (5)

and the particle Lagrangian

LP(x(t), v(t)) =
∑

s

∫
d3x0 d3v0 fs 0 Ls(x(t), v(t)) . (6)

Here, fs 0 := fs(t0, x0, v0) and Ls denotes the single-particle Lagrangian for the
particle species s, which in the phase-space coordinates (x, v) reads

Ls(x(t), v(t)) = (msv(t)+ qsA) · ẋ(t)−Hs , Hs = ms

2
|v(t)|2 + qsφ , (7)

where Hs denotes the particle Hamiltonian and the potentials are evaluated at
(t, x(t)). We remark that Ls depends implicitly on the potentials φ and A and
describes the self-consistent interaction between the plasma particles and the
electromagnetic fields.

The variational principle (4) leads to: the characteristics of the Vlasov equation
(1), by computing variations of Ls with respect to single-particle trajectories
(x(t), v(t)); Coulomb’s law (2a), by computing variations of Ls with respect to φ;
Ampère–Maxwell’s law (2d), by computing variations of Ls with respect to A. We
remark that only the non-homogeneous Maxwell’s equations, featuring source terms
coupling to the plasma particles, can be derived from the variational principle. The
homogeneous Maxwell’s equations (Faraday’s law (2c) and magnetic Gauss law
(2b)) follow from the definition of E and B through φ and A. With appropriate
initial and boundary conditions, this results in a well-posed system for (fs,E,B),
which describes the self-consistent interaction between the plasma particles and the
electromagnetic fields.

3 Normalization and Ordering

The formulation of the Vlasov–Maxwell system as a perturbation problem requires
the non-dimensionalization of the physical equations, also referred to as scaling
or normalization. The process of quantifying the size of the non-dimensional
coefficients appearing in the normalized equations in terms of a single small
perturbation parameter ε  1 is referred to as ordering. Different orderings lead
to different perturbation theories and to reduced models with different physical
content. In other words, an ordering is the mathematical expression of a specific
physical scenario. Two such scenarios for magnetic confinement fusion experiments
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Table 1 Physical parameters for the Tokamak ASDEX Upgrade [17]

Ions Electrons

Major radius R0 = 1.6 m

Minor radius a = 0.8 m

Toroidal magnetic field BT = 3.9 T

Average particle density 〈ns〉 2.0 × 1020/m3 2.0× 1020/m3

Average thermal energy kB〈Ts〉 8.7 keV 8.7 keV

Cyclotron frequency ωcs = qsBT/ms 1.9 × 108 Hz 6.9× 1011 Hz

Thermal velocity vs = (kB〈Ts〉/ms)
1/2 6.4 × 105 m/s 3.9× 107 m/s

Thermal frequency ωs = vs/a 8.0 × 105 Hz 4.9× 107 Hz

Larmor radius ρs = vs/ωcs 3.4 × 10−3 m 5.7× 10−5 m

Debye length λs = (ε0 kB 〈Ts〉/q2
s 〈ns〉)1/2 4.9 × 10−5 m 4.9× 10−5 m

Table 2 Physical parameters for the Tokamak ITER [22]

Ions Electrons

Major radius R0 = 6.2 m

Minor radius a = 2.0 m

Toroidal magnetic field BT = 5.3 T

Average particle density 〈ns〉 1.0 × 1020/m3 1.0× 1020/m3

Average thermal energy kB〈Ts〉 8.0 keV 8.8 keV

Cyclotron frequency ωcs = qsBT/ms 2.5 × 108 Hz 9.3× 1011 Hz

Thermal velocity vs = (kB〈Ts〉/ms)
1/2 6.2 × 105 m/s 3.9× 107 m/s

Thermal frequency ωs = vs/a 3.1 × 105 Hz 2.0× 107 Hz

Larmor radius ρs = vs/ωcs 2.4 × 10−3 m 4.2× 10−5 m

Debye length λs = (ε0 kB 〈Ts〉/q2
s 〈ns〉)1/2 6.6 × 10−5 m 7.0× 10−5 m

are shown in Tables 1 and 2. In this section we present a detailed normalization
and ordering analysis, where we consider a plasma consisting of deuterium ions
and electrons in a realistic physical scenario relevant for existing and future fusion
experimental reactors, such as, for example, the Tokamaks ASDEX Upgrade [17]
and ITER [22]. These two scenarios do not differ significantly for modeling
purposes. However, from a physics point of view, the ITER scenario is significantly
larger in plasma volume and certainly one step closer towards self-sustained fusion
energy gains.

In order to write the Vlasov–Maxwell model in non-dimensional form, we
introduce reference scales for times, frequencies, lengths, and velocities,

t = t ′/ωi , ω = ωi ω
′ , x = a x′ , vs = vs v′ , (8)

where primed quantities are non-dimensional. Here, we choose as characteristic
length and time scales of observation the minor radius a of the fusion reactor and
the inverse of the ion thermal frequency ωi = vi/a, that is, the time required for an
ion to travel the distance a. The reference velocity vs denotes the average thermal
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velocity per species, defined as vs = (kB〈Ts〉/ms)
1/2, where kB〈Ts〉 represents the

average thermal energy per species over the plasma volume.
The ion thermal frequency ωi is close to the characteristic frequency of micro-

turbulence observed in Tokamaks [12, 13, 24]. Since gyrokinetics is ultimately the
theory of low-frequency dynamics in strongly-magnetized plasmas, the perturbation
parameter ε is typically defined around the ratio between the characteristic ion
turbulence frequency and the ion cyclotron frequency ωci := qiBT/mi:

ε := 10−3 ≈ ωi

ωci
. (9)

We remark that the numerical values reported here and in the following are
computed by taking the mean of the physical parameters given in Tables 1 and 2
for each species.

It is also common to express the magnetic field as the sum of a static background
B0 and dynamic fluctuations B1. The amplitudes of the corresponding magnetic
vector potentials satisfy A0/a ∼ B0 ≈ BT and k⊥A1 ∼ B1, where k⊥ denotes the
characteristic wave number of the turbulent fluctuations on the planes perpendicular
to the magnetic field, and A0 := |A0| and so forth for the other vectors. With the
symbol ∼ we mean, for example, A0 = O(aB0) as the value of a is changed in the
physical setup. Similarly, the amplitude φ of the electric potential satisfies k⊥φ ∼
E. Following the standard gyrokinetic ordering [4] we assume k⊥ ρi ∼ 1, where ρi
denotes the ion Larmor radius.

The single-particle Lagrangians (7) are then normalized with respect to the
thermal energy, Ls = msv

2
s L
′
s, which leads to

L′s =
(
a ωi

vs
v′ + a ωi

vs

qsBT

ms

a

vs
A′0 +

a ωi

vs

qsBT

ms

a

vs

B1

BT

1

a k⊥
A′1

)
· ẋ′

− |v
′|2
2
− qsφ

msv2
s
φ′ .

(10)

The non-dimensional coefficients in (10) can be computed by using the physical
parameters given in Tables 1 and 2, combined with the observation that measure-
ments in Tokamaks have shown that fluctuation levels in turbulent plasmas satisfy
[4, 13, 24]

B1

BT
≈ E

BTvi
≈ 10−3 , (11)

which means that fluctuations are small compared to the corresponding background
quantities and that the E×B velocity is small compared to the ion thermal velocity.
The values of the non-dimensional coefficients in (10) for ions and electrons are
summarized in Table 3. The ordering of these coefficients in terms of powers of ε is
done by logarithmic comparison: for example, the order p of the coefficient a ωi/vs
is determined by minimizing | log10(a ωi/vs)− p|, where p ∈ Z.
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Table 3 Non-dimensional coefficients in (10)

Ions Electrons
a ωi

vs
1 1.6 × 10−2 ≈ ε

a ωi

vs

qsBT

ms

a

vs
4.9× 102 ≈ 1

ε
4.7 × 102 ≈ 1

ε

a ωi

vs

qsBT

ms

a

vs

B1

BT

1

a k⊥
10−3 ≈ ε 9.5 × 10−4 ≈ ε

qsφ

msv2
s

10−3 ≈ ε 9.5 × 10−4 ≈ ε

Applying our ordering yields the following normalized Lagrangian (with primes
omitted for readability):

L =
(
εsv+ A0

ε
+ εA1

)
· ẋ− |v|

2

2
− ε φ , (12)

where s = 0 for ions and s = 1 for electrons, and the sign of the charge is absorbed
into the definition of the potentials. Our ordering is the standard gyrokinetic
ordering [4], with the exception that we take the mass ratio me/mi into account.
The only place in the Lagrangian where this plays a role is the first term of (12),
where a ωi/ve = vi/ve ∼ (me/mi)

1/2 ≈ ε appears because ẋ is normalized to the
ion thermal velocity for both species. This, in turn, is motivated by the fact that
ẋ ∼ a ωi is not related to the thermal velocity of a species, but rather to the chosen
space and time scales.

The Euler–Lagrange equations corresponding to (12), evaluated at the particle
trajectory (x(t), v(t)), yield

εs
dx
dt
= v , εs

dv
dt
= E+ v× B0

ε
+ v× B1 . (13)

Here, we used the fact that lengths have been normalized to the minor radius a and
that we also assumed k⊥a ∼ 1/ε as well as k‖a ∼ 1, such that in non-dimensional
variables we have

E = ε

(
1

ε
∇⊥φ + b0∇‖φ − b0

∂A‖
∂t

)
, B1 = ∇⊥A‖ × b0 . (14)

Here, ∇⊥ := −b0 × b0 × ∇, ∇‖ := b0 · ∇ denote the gradients with respect to the
direction perpendicular and parallel to the background magnetic field, respectively,
with b0 := B0/B0. Moreover, we assumed a static and homogeneous background
magnetic field B0, we introduced the parallel vector potential A‖ := A1 · b0 and
assumed b0×A1×b0 = 0. These assumptions allow us to simplify our calculations
in order to focus on the novelty of this work, namely the inclusion of the electron–
ion mass ratio in the gyrokinetic reduction.
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4 Guiding-Center Reduction

We start with the guiding-center transformation [14, 15] to decouple the rapid
gyration around the static and homogeneous background magnetic field B0 from
the slower dynamical variables. We define first a “semi-canonical” set (x,p) of
phase-space coordinates via the transformation p := v + ε1−sA‖b0. This leads
to the single-particle Lagrangian L = S − H , where the symplectic part S and the
Hamiltonian H read

S =
(
εsp+ A0

ε

)
· ẋ , H = |p|

2

2
− ε1−sp‖A‖ + ε2−2s

A2‖
2
+ ε φ . (15)

We then switch to the angle representation p = p‖b0 +√2μB0 c0 defined by

p‖ = p · b0 , μ := |b0 × p× b0|2
2B0

, θ := arctan

(
p · e1

p · e2

)
, (16)

where (e1, e2,b0) represents a local static orthonormal basis of R3, given an arbi-
trary unit vector e1 perpendicular to b0, and (a0,b0, c0) represents a θ -dependent
orthonormal basis, with c0 := −e1 sin θ − e2 cos θ and a0 := e1 cos θ − e2 sin θ .
We remark that the Jacobian determinant of the transformation leading to the angle
representation is B0.

The guiding-center transformation reads x = X + ρ, where X denotes the
guiding-center position and ρ the generating vector field of the transformation,
to be determined. Substituting the guiding-center transformation into S, expanding
A0(X+ρ) around X as A0(X)+ρ ·∇A0(X), using the equivalence of Lagrangians
under the addition of total differentials (denoted by ∼ here and in the following),

namely A0(X) · ρ̇ ∼ −Ȧ0(X) · ρ = −Ẋ · ∇A0(X) · ρ, and the vector identity
∇A0 · ρ − ρ · ∇A0 = ρ × (∇ ×A0), finally yields

S =
(

εsp‖b0 + εs
√

2μB0 c0 + A0(X)

ε
− ρ × B0

ε

)

· Ẋ

+
(

εsp‖b0 + εs
√

2μB0 c0 + ρ · ∇A0(X)

ε

)

· ρ̇ .
(17)

Defining the generating vector field as

ρ = ε1+s
√

2μB0

B2
0

B0 × c0 = ε1+s
√

2μ

B0
a0 (18)



On the Accuracy of Gyrokinetic Equations in Fusion Applications 375

removes the θ -angle dependence from S and yields the well-known guiding-center
Lagrangian [15]

L =
(

εsp‖b0 + A0(X)

ε

)

· Ẋ ± ε1+2s μ θ̇ −H . (19)

Here, the positive sign is to be used for ions and the negative sign for electrons. We
also note that ρ is positive for ions and negative for electrons, due to the term B0 in
(18) and our convention that the fields carry the sign of the particle species.

5 Gyrokinetic Reduction

As a result of the guiding-center transformation, the problem of gyrokinetic reduc-
tion has been reduced to removing the θ -angle dependence from the HamiltonianH
in (19). This is usually accomplished by canonical Lie-transforms, which leave the
symplectic part of the Lagrangian unchanged [3, 4, 6, 23]. In this work we follow a
different approach, which closely resembles the guiding-center formalism and has
been applied recently in the drift-kinetic regime [19, 21] and in the gyrokinetic
regime in the electrostatic case [18], and apply it to the electromagnetic case.

5.1 Generating Differential Equations (GDEs)

We introduce first the “preliminary” gyro-center coordinates (X, P‖, μ̂,�) via the
transformation

X = X+ ρ , p‖ = P‖ +G‖ , μ = μ̂+Gμ , θ = �+G� , (20)

where (ρ,G‖,Gμ,G�) is the generating vector field of the transformation, to be
determined as a function of the new gyro-center coordinates. Moreover, we shall
make use of the equivalence L ∼ L+ Ṡ, for a total differential Ṡ of the form

Ṡ =
(

1

ε
∇⊥S+∇‖Sb0

)
· Ẋ+ ∂S

∂P‖
Ṗ‖ + ∂S

∂μ̂
˙̂μ+ ∂S

∂�
�̇+ ∂S

∂t
. (21)

Here, the factor 1/ε in front of ∇⊥ appears because we assume S with the same
scale lengths as the potentials φ and A1, namely k⊥a ≈ 1/ε and k‖a ≈ 1 as in (14).
We will check the validity of this assumption a posteriori. Substituting (20) in the
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guiding-center Lagrangian (19) and adding (21) leads to

L =
[
εs(P‖ +G‖)b0 + A0(X+ ρ)

ε

]
· (Ẋ+ ρ̇)

± ε1+2s (μ̂+Gμ) (�̇+ Ġ�)−H + ∂S
∂t

+
(

1

ε
∇⊥S+∇‖Sb0

)
· Ẋ+ ∂S

∂P‖
Ṗ‖ + ∂S

∂μ̂
˙̂μ+ ∂S

∂�
�̇ ,

(22)

where the Hamiltonian reads

H = (P‖ +G‖)2

2
+ (μ̂+Gμ)B0 − ε1−s(P‖ +G‖)A‖ + ε2−2s

A2‖
2
+ ε φ . (23)

The next step is to identify in this Lagrangian the components of the symplectic
form and the complete Hamiltonian in the new coordinates. In other words, we aim
to express ρ̇ and Ġ� in terms of the “basis vectors” (Ẋ, Ṗ‖, ˙̂μ, �̇) and a Hamiltonian
part (corresponding to ṫ ), as in (21).

Let us briefly describe the steps that lead to the desired form of the Lagrangian
(22). First, we can use (P‖+G‖)b0 ·ρ̇ ∼ −(Ṗ‖+Ġ‖)b0 ·ρ and introduce the notation
ρ‖ := b0 · ρ. Moreover, we use μ̂ Ġ� ∼ − ˙̂μG� and apply the same manipulations
to the term A0(X+ ρ) · (Ẋ+ ρ̇), as in the guiding-center transformation. This leads
to the Lagrangian

L =
[
εs

(
P‖ +G‖ + 1

εs
∇‖S

)
b0 + A0(X)

ε
+ (∇⊥S− ρ × B0)

ε

]
· Ẋ

+
(
∂S
∂P‖
− εsρ‖

)
Ṗ‖ +

(
∂S
∂μ̂
∓ ε1+2s G�

)
˙̂μ

± ε1+2s
(

μ̂+Gμ ± 1

ε1+2s

∂S
∂�

)
�̇± ε1+2s GμĠ� − εs ρ‖Ġ‖

−H + ∂S
∂t

.

(24)

An additional term quadratic in ρ, which can be shown to be zero up to second
order, is neglected in the Ẋ component for simplicity. Other scalar terms quadratic
in the generators are instead kept in order to illustrate the method. The terms Ġ�

and Ġ‖ can be expanded as in (21). From (24) we can define a system of “generating
differential equations” (GDEs) for the functionsG introduced in the transformation
(20). The GDEs follow from the simple principle of eliminating as many terms as
possible from L by suitably choosing the generating functions G and the auxiliary
function S. The former are the degrees of freedom in the change of coordinates
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(20) and the latter is a degree of freedom due to the invariance of Lagrangian
dynamics under the addition of total time derivatives. We can now see why the
particular representation (24) of L is favorable for our purpose. Each component of
the symplectic form contains one degree of freedom that can be used to eliminate
terms:

• the component Ẋ · b0 contains G‖;
• the component Ẋ⊥ contains ρ⊥;
• the component Ṗ‖ contains ρ‖;
• the component ˙̂μ contains G�;
• the component �̇ contains ∂S/∂�;
• the Hamiltonian terms contain Gμ.

The component �̇ is particularly important because it contains the partial derivative
of S with respect to �. This means that only gyro-fluctuations can be absorbed
via ∂S/∂�, whereas gyro-averaged terms cannot be removed without introducing
secularities. Hence, these gyro-averaged terms in front of �̇ stay in the Lagrangian
and yield eventually higher-order corrections to the gyro-center magnetic moment.
In order to compute these corrections we need to introduce the gyro-average 〈G〉
and gyro-fluctuations G̃ of a function G(�) via

〈G〉 := 1

2π

∫ 2π

0
G(�) d� , G̃ := G− 〈G〉 . (25)

The gyro-center motion will be determined by the gyro-averaged potentials 〈φ〉
and

〈
A‖

〉
. We therefore write the Hamiltonian (23) as the sum H = Hgc+δH , where

Hgc contains the gyro-averaged potentials,

Hgc =
P 2‖
2
+ μ̂B0 − ε1−sP‖

〈
A‖

〉+ ε2−2s

〈
A2‖

〉

2
+ ε 〈φ〉 , (26)

and δH contains the remainders,

δH = P‖G‖ +
G2‖
2
+GμB0 − ε1−s (P‖Ã‖ +G‖A‖)+ ε2−2s

Ã2‖
2
+ ε φ̃ . (27)

In order to remove all dependencies on � from the Lagrangian (24), we demand
that the generating functions G and the gauge function S satisfy the following
system of equations, each of which can be attributed to a particular component of
the symplectic form in (24):

• component Ẋ · b0:

G‖ + 1

εs
∇‖S± ε1+s Gμ∇‖G� − ρ‖∇‖G‖ = 0 ; (28)
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• component Ẋ⊥:

∇⊥S− ρ × B0 ± ε1+2s Gμ∇⊥G� − εs ρ‖∇⊥G‖ = 0 ; (29)

• component Ṗ‖:

∂S
∂P‖
− εs ρ‖ ± ε1+2s Gμ

∂G�

∂P‖
− εs ρ‖

∂G‖
∂P‖

= 0 ; (30)

• component ˙̂μ:

∂S
∂μ̂
∓ ε1+2s G� ± ε1+2s Gμ

∂G�

∂μ̂
− εs ρ‖

∂G‖
∂μ̂
= 0 ; (31)

• component �̇:

G̃μ ± 1

ε1+2s

∂S
∂�
±

(
˜

Gμ

∂G�

∂�

)

− 1

ε1+s

(
˜

ρ‖
∂G‖
∂�

)

= 0 ; (32)

• Hamiltonian (component ṫ):

− δH + ∂S
∂t
± ε1+2s Gμ

∂G�

∂t
− εs ρ‖

∂G‖
∂t
= 0 . (33)

The system (28)–(33) is a non-linear system of PDEs for (ρ,G‖,Gμ,G�,S),
termed the GDEs. Assuming that the generating functions satisfy the GDEs, the
Lagrangian (24) reads

L =
[
εsP‖b0 + A0(X)

ε

]
· Ẋ−Hgc

± ε1+2s
(

μ̂+ 〈
Gμ

〉+
〈
Gμ

∂G�

∂�

〉
− 1

ε1+s

〈
ρ‖
∂G‖
∂�

〉 )
�̇ .

(34)

This is the most general gyro-center Lagrangian, containing all possible corrections
to the gyro-center magnetic moment μ̂, at any order in ε. In order to leverage
absence of the coordinate � in L one usually adopts as one of the coordinates the
conjugate momentum

μ := ∂L

∂�̇
= μ̂+ 〈

Gμ

〉+
〈
Gμ

∂G�

∂�

〉
− 1

ε1+s

〈
ρ‖
∂G‖
∂�

〉
, (35)

which in the literature is typically referred to as gyro-center magnetic moment.
Then, since L is independent of the gyro-angle �, the coordinate μ is a constant



On the Accuracy of Gyrokinetic Equations in Fusion Applications 379

of the motion. The corresponding Lagrangian in the final gyro-center coordinates
(X, P‖, μ,�) reads

L =
[
εsP‖b0 + A0(X)

ε

]
· Ẋ± ε1+2s μ �̇−Hgc , (36)

with the Hamiltonian

Hgc =
P 2‖
2
+ μ̂(μ)B0 − ε1−sP‖

〈
A‖

〉+ ε2−2s

〈
A2‖

〉

2
+ ε 〈φ〉 , (37)

where μ̂(μ) is the inverse of (35). We remark the following comments:

1. The Lagrangian (34) is equivalent to the exact Lagrangian if and only if the GDE
system (28)–(33) has a solution. It is known, and we will show again in the next
section, that it has at least asymptotic solutions as ε→ 0. Such solutions can be
computed via Lie-transforms for the generating functions, but also with a simple
power series expansions, as shown below. Depending on the order of truncation
of these asymptotic solutions, gyrokinetic theories of different accuracy can be
obtained.

2. A particular complication for solving the GDEs arises from the fact that the
dynamical potentials φ and A‖ are evaluated at the true particle position:

x
ε
= X+ ρ

ε
± εs

√
2(μ̂+Gμ)

B0
a0(�+G�) . (38)

Here, we indicate the strong variations in the perpendicular direction,2 k⊥a ∼
1/ε. It will be shown below that |ρ| ∼ ε2 such that a Taylor expansion around
X/ε is possible for electrons (s = 1) but not for ions (s = 0). Therefore,
our gyrokinetic reduction will result in a drift-kinetic Lagrangian for electrons
(without gyro-average operators) and a gyrokinetic Lagrangian for ions (with
gyro-average operators).

3. The Lagrangian (36) is equivalent to the exact Lagrangian if and only if system
(28)–(33) has a solution, and moreover if the mapping μ̂ �→ μ in (35) is
invertible. Again, the inverse mapping can be found asymptotically as ε→ 0.

4. The symplectic part of the gyro-center Lagrangian L in (36) is the same as in the
guiding-center Lagrangian (19). Hence, with the ansatz (20) we have obtained
the same result as with canonical Lie transforms, which leave the symplectic part
unchanged by construction.

2 The argument x/ε is a consequence of our normalization of the spatial coordinate with respect
to a. We note however that k‖a ∼ 1 is still assumed. A more rigorous notation would be x/ε =
(x‖, x⊥/ε).
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5. The Euler–Lagrange equations corresponding to (36) read

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX
dt
= 1

εs

∂H

∂P‖
b0 + ε

b0 ×∇H
B0

,
dμ

dt
= 0 ,

dP‖
dt
= − 1

εs
∇‖H ,

d�

dt
= 1

ε1+2s

∂H

∂μ
.

(39)

The explicit form of the Hamiltonian is determined by the inverse μ̂(μ) of (35).
Hence, H is an asymptotic series in ε, as it depends on the generating functions
G. Moreover, H is not necessarily convergent when the number of terms in the
expansion is increased, and thus needs to be truncated. This results in an error
with respect to the exact dynamics. The truncation error is larger for electrons. In
particular, the phase �(t) has an error that is by a factor ε−2 larger for electrons
(s = 1) than for ions (s = 0), if both Hamiltonians are truncated at the same
order.3 The same is true for the parallel coordinates X(t) · b0 and P‖(t), where
the error amplification for electrons is ε−1 larger than for ions. We conclude that
in order to have the same truncation error for ions and electrons with respect
to their exact slow-manifold dynamics, the electron Hamiltonian should contain
one order more in the ε-expansion. If truncated at the same order, the electron
dynamics will be less accurate and possibly lead to erroneous dynamics in the
long time limit.

5.2 Asymptotic Solution of the GDEs

We now aim to solve the system (28)–(33) for the generating vector field, which
we denote by F = (ρ,G‖,Gμ,G�).4 Since we are not able to solve the GDEs
exactly, we try an asymptotic expansion of the solution in ε. There exist different
approaches to constructing such an asymptotic expansion, the most popular in the
context of gyrokinetics being Lie transforms [2, 11, 23]. In this work we use a simple
power series for the unknowns F and S,

F =
∞∑

n=0

Fn εn , S =
∞∑

n=0

Sn εn , (40)

3 Since the phase �(t) is decoupled from the rest of the gyro-center motion, the phase error is not
relevant when looking at gyro-tropic particle distributions.
4 The function S plays the role of an auxiliary function.
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as well as for the dynamical potentials φ and A‖,

φ =
∞∑

n=0

φn ε
n , A‖ =

∞∑

n=0

A‖,n εn . (41)

We compute the coefficients Fn,Sn by substituting this ansatz into system (28)–(33)
and comparing coefficients of the same power in ε. By convention, coefficients with
a negative index vanish. From the component Ẋ · b0 in (28) we obtain

G‖,n−s +∇‖Sn ±
n−1−2s∑

1=0

Gμ,1∇‖G�,n−1−2s−1 −
n−s∑

1=0

ρ‖,1∇‖G‖,n−s−1 = 0 .

(42)

From the component Ẋ⊥ in (29) we obtain

∇⊥Sn − ρn × B0 ±
n−1−2s∑

1=0

Gμ,1∇⊥G�,n−1−2s−1 −
n−s∑

1=0

ρ‖,1∇⊥G‖,n−s−1 = 0 .

(43)

From the component Ṗ‖ in (30) we obtain

∂Sn
∂P‖

− ρ‖,n−s ±
n−1−2s∑

1=0

Gμ,1
∂G�,n−1−2s−1

∂P‖
−

n−s∑

1=0

ρ‖,1
∂G‖,n−s−1

∂P‖
= 0 . (44)

From the component ˙̂μ in (31) we obtain

∂Sn
∂μ̂
∓G�,n−1−2s ±

n−1−2s∑

1=0

Gμ,1
∂G�,n−1−2s−1

∂μ̂
−

n−s∑

1=0

ρ‖,1
∂G‖,n−s−1

∂μ̂
= 0 .

(45)

From the component �̇ in (32) we obtain

˜Gμ,n−1−2s ± ∂Sn
∂�
±

(
˜

Gμ
∂G�

∂�

)

n−1−2s

−
(

˜

ρ‖
∂G‖
∂�

)

n−s
= 0 . (46)
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From the Hamiltonian component ṫ in (33) we obtain

− P‖G‖,n −
n∑

1=0

G‖,1G‖,n−1
2

−Gμ,nB0

+ P‖ ˜A‖,n−1+s +
n−1+s∑

1=0

G‖,1A‖,n−1+s−1 −
n−2+2s∑

1=0

˜(A‖,1A‖,n−2+2s−1)
2

− φ̃n−1 + ∂Sn
∂t
±

n−1−2s∑

1=0

Gμ,1
∂G�,n−1−2s−1

∂t
−

n−s∑

1=0

ρ‖,1
∂G‖,n−s−1

∂t
= 0 .

(47)

Proposition 1 (Order n = 0) For electrons, let A‖,0 =
〈
A‖,0

〉
. Then a solution of

the Eqs. (42)–(47) at order n = 0 for ions (s = 0) and electrons (s = 1) is given by

n = 0 Ions Electrons

ρ‖,0 0 Undetermined

ρ⊥,0 0 0

G‖,0 0 Undetermined

Gμ,0 0 0

G�,0 Undetermined Undetermined

The auxiliary function is S0 = 0 for both ions and electrons in this case.

Proof Setting n = 0 in (42)–(47) yields

0 = (1− s)G‖,0 +∇‖S0 − (1− s)ρ‖,0∇‖G‖,0 , (48a)

0 = ∇⊥S0 − ρ0 × B0 − (1− s)ρ‖,0∇⊥G‖,0 , (48b)

0 = ∂S0

∂P‖
− (1− s)ρ‖,0 − (1− s)ρ‖,0

∂G‖,0
∂P‖

, (48c)

0 = ∂S0

∂μ̂
− (1− s)ρ‖,0

∂G‖,0
∂μ̂

0 , (48d)

0 = ∂S0

∂�
− (1− s)

(
˜

ρ‖,0
∂G‖,0
∂�

)
, (48e)



On the Accuracy of Gyrokinetic Equations in Fusion Applications 383

0 = −P‖G‖,0 −
G2‖,0

2
−Gμ,0B0 + s

(
P‖Ã‖,0 +

Ã2‖,0
2

)

+ ∂S0

∂t
− (1− s)ρ‖,0

∂G‖,0
∂t

.

(48f)

By assuming ρ‖,0 = 0 for the ions, Eq. (48e) yields S0 = 0 for both ions
and electrons. The other results can then be deduced easily from the remaining
equations. In Eq. (48f) for electrons (s = 1) we use the assumption A‖,0 =

〈
A‖,0

〉

(or equivalently Ã‖,0 = 0). ��
Proposition 2 (Order n = 1) For electrons, let φ0 = 〈φ0〉. Then a solution of the
Eqs. (42)–(47) at order n = 1 for ions (s = 0) and electrons (s = 1) is given by

n = 1 Ions (s = 0) Electrons (s = 1)

ρ‖,1−s 0 0

ρ⊥,1 0 0

G‖,1−s 0 0

Gμ,1
1

B0
(P‖Ã‖,0 − φ̃0)

1

B0
(P‖Ã‖,1 − ˜A‖,0A‖,1)

G�,0 0 Undetermined

The auxiliary function is S1 = 0 for both ions and electrons in this case. The
generators G�,1 remain undetermined at this order and the generator ρ‖,1 remains
undetermined for electrons at this order.

Proof Setting n = 1 in (42)–(47) and substituting the results obtained from n = 0
yields

0 = G‖,1−s +∇‖S1 − s ρ‖,0∇‖G‖,1−s , (49a)

0 = ∇⊥S1 − ρ1 × B0 , (49b)

0 = ∂S1

∂P‖
− ρ‖,1−s , (49c)

0 = ∂S1

∂μ̂
− (1− s)G�,0 , (49d)

0 = ∂S1

∂�
− s

(
˜

ρ‖,0
∂G‖,1
∂�

)
, (49e)
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0 = −P‖G‖,1 −Gμ,1B0 + P‖Ã‖,s

+ s
(
G‖,1A‖,0 − ˜A‖,0A‖,1

)
− φ̃0 + ∂S1

∂t
.

(49f)

By assuming ρ‖,0 = 0 for the electrons, Eq. (49e) yields S1 = 0 for both ions
and electrons. The other results can then be deduced easily from the remaining
equations. In Eq. (49f) for electrons (s = 1) we use the assumption φ0 = 〈φ0〉
(or equivalently φ̃0 = 0). ��
Proposition 3 (Order n = 2) A solution of the Eqs. (42)–(47) at order n = 2 for
ions and electrons is given by

n = 2 Ions (s = 0) Electrons (s = 1)

ρ‖,2−s
∂S2

∂P‖
0

ρ⊥,2
b0

B0
×∇⊥S2 0

G‖,2−s −∇‖S2 0

Gμ,2
1

B0

(
− P‖G‖,2 + P‖Ã‖,1 − φ̃1 −

Ã2‖,0
2
+ ∂S2

∂t

)
1

B0

(
P‖Ã‖,2 − φ̃1 − Ã‖,0A‖,2 −

Ã2‖,1
2

)

G�,1
∂S2

∂μ̂
Undetermined

The auxiliary function S2 is given by

S2(�) = (1− s)

B0

∫ �

−∞
(
φ̃0 − P‖Ã‖,0

)
d�′ , (50)

and therefore vanishes for electrons. The generators G�,2 remain undetermined at
this order and the generator ρ‖,2 remains undetermined for electrons at this order.
Moreover, the generators G�,0 and G�,1 also remain undetermined at this order
for electrons.

Proof Setting n = 2 in (42)–(47) and substituting the results obtained from n = 0
and n = 1 leads to

0 = G‖,2−s +∇‖S2 , (51a)

0 = ∇⊥S2 − ρ2 × B0 , (51b)

0 = ∂S2

∂P‖
− ρ‖,2−s , (51c)
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0 = ∂S2

∂μ̂
− (1− s)G�,1 , (51d)

0 = (1− s)G̃μ,1 + ∂S2

∂�
, (51e)

0 = −P‖G‖,2 −Gμ,2B0 + P‖Ã‖,1+s − (1− s)
Ã‖,0A‖,0

2

+ s

(

G‖,2A‖,0 − ˜A‖,0A‖,2 −
˜A‖,1A‖,1

2

)

− φ̃1 + ∂S2

∂t
.

(51f)

Equation (51e) yields

S2(�) = (1− s)

B0

∫ �

−∞
(
φ̃0 − P‖Ã‖,0

)
d�′ . (52)

The other results can then easily be deduced from the remaining equations. ��
Proposition 4 (Order n = 3 for electrons) For electrons (s = 1), a solution of the
Eqs. (42)–(47) at order n = 3 is given by

n = 3 Electrons (s = 1)

ρ‖,2 0

ρ⊥,3 0

G‖,2 0

Gμ,3
1

B0

(
P‖Ã‖,3 − φ̃2 − ˜A‖,0A‖,3 − ˜A‖,1A‖,2

)

G�,0 0

The auxiliary function is S3 = 0 and the generators G�,1, G�,2, G�,3 and ρ‖,3
remain undetermined at this order for electrons.

Proof Setting n = 3 and s = 1 in (42)–(47) and substituting the results obtained
from n = 0, n = 1 and n = 2 leads to

0 = G‖,2 +∇‖S3 , (53a)

0 = ∇⊥S3 − ρ3 × B0 , (53b)

0 = ∂S3

∂P‖
− ρ‖,2 , (53c)

0 = ∂S3

∂μ̂
+G�,0 , (53d)
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0 = ∂S3

∂�
, (53e)

0 = −P‖G‖,3 −Gμ,3B0 + P‖Ã‖,3

+
(
G‖,3A‖,0 − ˜A‖,0A‖,3 − ˜A‖,1A‖,2

)
− φ̃2 + ∂S3

∂t
.

(53f)

We try a solution with G�,0 = 0. Substituting the assumption A‖,0 =
〈
A‖0

〉
(or

equivalently Ã‖,0 = 0) into Eq. (53e) yields S3 = 0. The other results can then be
deduced easily from the remaining equations. ��
Proposition 5 (Order n = 4 for electrons) For the electrons (s = 1), a solution of
the Eqs. (42)–(47) at order n = 4 is given by

n = 4 Electrons (s = 1)

ρ‖,3
∂S4

∂P‖

ρ⊥,4
b0

B2
0

×∇⊥S4

G‖,3 −∇‖S4

Gμ,4
1

B0

(
− P‖G‖,4 + P‖Ã‖,4 +G‖,4A‖,0 − ˜A‖,0A‖,4 − ˜A‖,1A‖,3 −

Ã2
‖,2
2

)
− φ̃3 + ∂S4

∂t

G�,1 − ∂S4

∂μ̂

The auxiliary function S4 for the electrons is given by

S4(�) = 1

B0

∫ �

−∞

(
P‖Ã‖,1 − ˜A‖,0A‖,1

)
d�′ . (54)

The generators G�,2, G�,3, G�,4 and ρ‖,4 remain undetermined at this order for
electrons.

Proof Setting n = 4 and s = 1 in (42)–(47) and substituting the results obtained
from n = 0, n = 1, n = 2 and n = 3 leads to

0 = G‖,3 +∇‖S4 , (55a)

0 = ∇⊥S4 − ρ4 × B0 , (55b)

0 = ∂S4

∂P‖
− ρ‖,3 , (55c)
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0 = ∂S4

∂μ̂
+G�,1 , (55d)

0 = 1

B0

(
P‖Ã‖,1 − ˜A‖,0A‖,1

)
− ∂S4

∂�
, (55e)

0 = −P‖G‖,4 −Gμ,4B0 + P‖Ã‖,4

+
(
G‖,4A‖,0 − ˜A‖,0A‖,4 − ˜A‖,1A‖,3 −

Ã2‖,2
2

)
− φ̃3 + ∂S4

∂t
.

(55f)

Equation (55e) yields

S4(�) = 1

B0

∫ �

−∞

(
P‖Ã‖,1 − ˜A‖,0A‖,1

)
d�′ . (56)

The other results can then be deduced easily from the remaining equations. ��
Let us make the following remarks on the above propositions:

1. It is not hard to conclude from the above propositions that all generating
functions can be determined up to arbitrary order n for both ions and electrons
from the GDEs (42)–(47).

2. The derivation presented here and the resulting system of Eqs. (42)–(47) for the
gyro-center generators at arbitrary order represents a good starting point for the
future implementation of computer algebra software for gyrokinetic reductions,
such as the ones mentioned in [5, 20].

5.3 Ion and Electron Gyrokinetic Hamiltonians

In order to get truncation errors of first order O(ε) for both species in the slow-
manifold dynamics (Ẋ and Ṗ‖) of (39), it is sufficient to use the first-order ion
Hamiltonian and the full second-order electron Hamiltonian. The second-order
contributions to the ion Hamiltonian can be used to determine polarization and
magnetization of the particles [4]. Based on the preceding propositions, we can
compute the explicit form of the gyro-center Hamiltonian (37) up to second order
in ε for both ions and electrons. This will be done in three steps:

1. Computation of the conjugate momentum (35);
2. Expansion of the averaged potentials 〈φ〉 and

〈
A‖

〉
in ε for ions and electrons;

3. Collection of the results to determine the second-order Hamiltonians for both
species.
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For both ions and electrons, the conjugate momentum (35) can be expanded as

μ = μ̂+ ε2
〈
Gμ,1

∂G�,1

∂�

〉
+O(ε3) , (57)

where we already used the results from the preceding propositions: ρ‖,0 = ρ‖,1 = 0,
G‖,0 = G‖,1 = 0, Gμ,0 = 0,

〈
Gμ,1

〉 = 〈
Gμ,2

〉 = 0, G�,0 = 0, and
G‖,2 = 0 (for electrons only). By substituting (57) and expanding the potentials
as φ = φ0 + ε φ1 + . . . in (37), the second-order gyro-center Hamiltonian reads

Hgc =
P 2‖
2
+ μB0 − ε2 B0

〈
Gμ,1

∂G�,1

∂�

〉
+ ε

(
〈φ0〉 + ε 〈φ1〉

)
(58)

− ε1−sP‖
( 〈
A‖,0

〉+ ε
〈
A‖,1

〉+ ε2 〈
A‖,2

〉 )

+ ε2−2s

⎛

⎝

〈
A2‖,0

〉

2
+ ε

〈
A‖,0A‖,1

〉+ ε2

〈
A2‖,1

〉

2
+ ε2 〈

A‖,0A‖,2
〉
⎞

⎠ .

It follows that for the ions (s = 0) we need first-order expansions of φ and A‖;
for the electrons (s = 1) we need additionally A‖,2. Given that the potentials are
evaluated at the particle position (38), using that ρ0 = ρ1 = 0 for ions and electrons
and ρ2 = 0 for electrons, and introducing the guiding-center displacement vector

ρgc =
√

2μ̂

B0
a0(�) , (59)

we have

x
ε
= X

ε
± εsρgc + ε (1− s)ρ2 + ε2ρ3

± ε1+s
(
Gμ,1

∂ρgc

∂μ̂
+G�,1

∂ρgc

∂�

)
+ · · ·

(60)
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Taylor expansion of the potentials then leads to

Ions Electrons

φ0 φ
(
X/ε + ρgc

)
φ (X/ε)

A‖,0 A‖
(
X/ε + ρgc

)
A‖ (X/ε)

φ1

(
ρ2 +Gμ,1

∂ρgc

∂μ̂
+G�,1

∂ρgc

∂�

)
·

∇φ (
X/ε + ρgc

)
−ρgc · ∇φ (X/ε)

A‖,1
(

ρ2 +Gμ,1
∂ρgc

∂μ̂
+G�,1

∂ρgc

∂�

)
·

∇A‖
(
X/ε + ρgc

)
−ρgc · ∇A‖ (X/ε)

A‖,2 not needed
1

2
(ρgc · ∇)2A‖ (X/ε)
+

(
ρ3,‖b0 −Gμ,1

∂ρgc

∂μ̂

−G�,1
∂ρgc

∂�

)
· ∇A‖ (X/ε)

In particular, for ions we can write more elegantly

φ1 = ρ2 · ∇φ +Gμ,1
d

dμ̂
φ +G�,1

d

d�
φ , (61)

A‖,1 = ρ2 · ∇A‖ +Gμ,1
d

dμ̂
A‖ +G�,1

d

d�
A‖ , (62)

which leads to

− P‖
〈
A‖,1

〉+ 〈φ1〉 = −B0
〈
ρ2 · ∇Gμ,1

〉− B0
d

dμ̂

〈
G2

μ,1

〉
. (63)

Here, we used 〈ρ2〉 = 0,
〈
Gμ,1

〉 = 0 and
〈
G�,1

〉 = 0. For electrons we find

〈φ1〉 =
〈
A‖,1

〉 = 0 , (64)

〈
A‖,2

〉 = μ̂

2B0
	⊥A‖,0 − 1

B2
0

∣
∣∇⊥A‖,0

∣
∣2
(A‖,0 − P‖) , (65)

〈
Ã‖,1

2
〉
= μ̂

B0
|∇⊥A‖,0|2 , (66)
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where we substituted

〈
(ρgc · ∇2)A‖,0

〉
= μ̂

B0
	⊥A‖,0 ,

〈
ρgcρ



gc

〉
= μ̂

B0

⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ , (67)

and 	⊥ denotes the Laplace operator in the perpendicular direction to the back-
ground field. With regards to the generating functions, from the preceding proposi-
tions we deduce

Ions Electrons

Gμ,1
1

B0

(
P‖Ã‖,0 − φ̃0

) 1

B0

(
P‖Ã‖,1 − ˜A‖,0A‖,1

)

∂G�,1

∂�
− ∂Gμ,1

∂μ̂
− ∂Gμ,1

∂μ̂
〈
Gμ,1

∂G�,1

∂�

〉
−1

2

d

dμ̂

〈
G2

μ,1

〉
−1

2

d

dμ̂

〈
G2

μ,1

〉

With this we can state our final result by inserting the above findings in the general
Lagrangian (36) and the Hamiltonian (58), respectively. The second-order gyro-
center Lagrangian for both ions (s = 0) and electrons (s = 1) then reads

L =
[
εsP‖b0 + A0(X)

ε

]
· Ẋ± ε1+2sμ �̇−H 0

gc −H 1
gc −H 2

gc , (68)

with the Hamiltonians

Ions Electrons

H 0
gc P 2‖ /2+ μB0 P 2‖ /2+ μB0 − P‖A‖,0 + A2‖,0/2

H 1
gc −P‖

〈
A‖,0

〉+ 〈φ0〉 φ0

H 2
gc

1

2

〈
A2
‖,0

〉
− B0

2

d

dμ

〈
G2

μ,1

〉

− B0
〈
ρ2 · ∇Gμ,1

〉

B0

2

d

dμ

〈
G2

μ,1

〉
+ μ

B0
|∇⊥A‖,0|2

+ (A0,‖ − P‖)
〈
A‖,2

〉
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Written fully explicitly, the second-order gyro-center Hamiltonian for ions reads

H 2
gc =

1

2

〈
A2‖,0

〉
− 1

2B0

d

dμ

〈(
P‖Ã‖,0 − φ̃0

)2
〉

−
〈[

b0

B2
0

× ∇⊥
∫ �

−∞
(
φ̃0 − P‖Ã‖,0

)
d�′

]

· ∇ (
P‖Ã‖,0 − φ̃0

)
〉

+
〈[

b0

B0

∫ �

−∞
Ã‖,0 d�′

]
· ∇ (

P‖Ã‖,0 − φ̃0
)
〉
.

(69)

This result corresponds to the findings in [23], where canonical Lie transforms were
applied for the asymptotic expansion. The explicit version of the second-order gyro-
center Hamiltonian for electrons reads

H 2
gc =

1

B0
|∇⊥A‖,0|2

[
μ− (P‖ − A‖,0)2

2B0

]
− (P‖ − A0,‖)

μ

2B0
	⊥A‖,0 .

(70)

According to our analysis of the truncation errors in the gyro-center Eqs. (39), this
term should be included in the electron equations to obtain an accuracy that is
consistent with the ion equations with first-order Hamiltonian.

Future work will address the implementation of the new electron model derived
in this section within existing gyrokinetic codes, for the purpose of verifying
numerically the accuracy of the truncation error estimates presented here.

6 Conclusions

In this article we studied the asymptotic derivation of gyro-center equations of
motion in strongly magnetized fusion plasmas. We presented a consistent normal-
ization procedure that takes into account the role of the electron–ion mass ratio in the
gyrokinetic coordinate transformation and we applied a physical ordering relevant
for realistic magnetic confinement fusion devices, such as the Tokamaks ITER
and ASDEX Upgrade. We derived a system of generating differential equations
for the generating vector field of the gyrokinetic coordinate transformation and
presented its solution by means of asymptotic expansions. We finally discussed the
accuracy of the gyrokinetic transformation for both ions and electrons necessary
to achieve overall first-order accuracy in the gyro-center equations of motion. As a
consequence of the ordering assumptions used in the early steps of our gyrokinetic
reduction, we showed that higher-order asymptotic expansions for electrons, in
particular the term (70), are necessary for achieving consistent accuracy overall with
respect to ions.
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