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Abstract

The higher regularity estimate has been a challenging question regarding the
Boltzmann equation in bounded domains. Indeed, it is well-known to have “the
non-existence of a second order derivative at the boundary” in Guo et al. (Invent
Math 207:115–290, 2017) even for symmetric convex domains such as a disk or
sphere. In this paper, we answer this question in the affirmative by constructing
the C1,β solutions away from the grazing boundary, for any β < 1, to the sta-
tionary Boltzmann equation with the non-isothermal diffuse boundary condition in
strictly convex domains, as long as a smooth wall temperature has small fluctuation
pointwisely.

1. Introduction

An interesting physical application of the kinetic theory is its mesoscopic de-
scription of the heat transfer of rarefied gas. The quantitative description of the
stationary state and a derivation of macroscopic models (as the Knudsen number
Kn → ∞) can be achieved through the famous steady Boltzmann equation

v · ∇x F = 1

Kn
Q(F, F), (x, v) ∈ � × R

3, (1.1)

where the hard sphere collision operator Q(F, F) takes the form

Q(F1, F2) := Qgain(F1, F2) − Qloss(F1, F2)

=
∫
R3

∫
S2

|(v − u) · ω|[F1(u′)F2(v′) − F1(u)F2(v)
]
dωdu, (1.2)

with u′ = u + [(v − u) · ω]ω, v′ = v − [(v − u) · ω]ω with ω ∈ S
2.

In particular, when the gas interacts with a non-isothermal boundary it is well-
known that the non-equilibrium steady states can be constructed by the Boltzmann
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equation (1.1). The kinetic description of the boundary interaction with the gas
particles has been extensively investigated in various aspects (see [3–7,16,17,21,
22] and the references therein). In this paper we are interested in one of the basic
and physical conditions, the so-called diffuse reflection boundary condition, which
takes into account an instantaneous thermal equilibrating with the non-constant
wall temperature of a reflecting gas particle:

F(x, v)|n(x)·v<0 = MW (x, v)

∫
n(x)·u>0

F(x, u){n(x) · u}du, x ∈ ∂�. (1.3)

Here the outward normal at the boundary ∂� is denoted by n(x), and we define the
wall Maxwellian associated with the described wall temperature TW (x) at x ∈ ∂�:

MW (x, v) =
√

2π

TW
M1,0,TW := 1

2π [TW (x)]2 e
− |v|2

2TW (x) . (1.4)

Recently, a unique stationary solution of (1.1) with (1.3) in general bounded
domains has been constructed in an L∞-space when the non-constant wall tem-
perature is a small fluctuation around any constant temperature T0 in [9] (see [15]
for the construction in convex domains). Moreover, the authors prove that such
non-equilibrium solutions are dynamically and asymptotically stable. We also re-
fer to relevant literatures [11] and the references therein for the PDE aspects of
non-equilibrium steady states. As an important application of such construction the
authors further derive the Fourier law (Navier-Stokes-Fourier system, more pre-
cisely) rigorously as Kn → ∞ in [10]. On the other hand, for each fixed finite
Knudsen number Kn , they formulate a criterion of the Fourier law in mesoscopic
level in [9]. Utilizing the available numeric results, they illustrate the violation of
such a criterion, which demonstrates a deviation from the Fourier law for each fixed
finite Knudsen number Kn .

Qualitatively the kinetic and macroscopic descriptions of heat transfer are re-
markably different in the presence of boundaries in particular. In the absence of
fluid velocity flow, a macroscopic description via the Fourier law is given by the
Laplace equation with suitable boundary condition, which enjoys analytic smooth-
ness of the solutions. On the other hand, the kinetic description from the Boltzmann
equation (1.1) possesses a boundary singularity intrinsically ([18]). Such a drastic
discrepancy comes from the convection effect Knv · ∇x F , which has small factor
but non-zero for any finite Knudsen numberKn > 0. Indeed, it is very interesting to
study the quantitative effect of such a convection term Knv ·∇x F in the interaction
of the boundary and collision process in the limiting process Kn → ∞. Our work
in this paper originates from this motivation.

As the first step toward this goal, in this paper we are looking for the smoothness
of the stationary Boltzmann equation for fixedKn ∼ 1, comparable to the regularity
of the corresponding (in a sense of Kn → ∞) elliptic equation, for which the
Schauder estimates are available. More precisely the main purpose of this paper is
to develop a robust and unified higher regularity estimate in C1,β

x with the aid of
weights for the stationary Boltzmann solutions to (1.1) with the diffuse reflection
boundary condition (1.3) in the convex domains. For this purpose we focus on the
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convex domain as a discontinuous singularity appears in the non-convex domain
in general [13,18].

In general convex domains, regularity estimates atmost up to the first derivatives
away from the so-called grazing set

γ0 := {(x, v) ∈ ∂� × R
3 : n(x) · v = 0} (1.5)

has been established in [1,2,14] for the nonlinear dynamical Boltzmann equation.
The key idea of the approach is based on the so-called kinetic distance, which is
almost invariant along the characteristics. With the aid of such weight a generic
singularity 1

n(x)·v of the first order derivatives can be controlled. We refer to [8] for
the regularity of the stationary linear equation up to the first derivatives. However,
any higher regularity beyond the first order derivatives away from the boundary
has been a challenging question. Apparently any second order derivatives estimate
seems impossible due to the well-known “non-existence of second order spatial
normal derivative at the boundary” in [14] even in the convex domain, or even in
symmetric domains. We note that the mechanism of such phenomenon is against
the conventional effect of the collision in some sense, which will be described in
Section 1.2. Throughout this paper we will use the following notations:
Notations: f � g ⇔ there exists 0 < C < ∞ such that 0 � f � Cg; f ∼ g ⇔
there exists 0 < C < ∞ such that 0 � f

C � g � C f ; f 	 g ⇔ there exists a
small constant c > 0 such that 0 � f � cg; f = O(g) ⇔ | f |� g; f = o(g) ⇔
| f |	 g.

1.1. Main theorem

Throughout this paper we assume the domain is defined as � = {x ∈ R
3 :

ξ(x) < 0} via a C3 function ξ : R
3 → R. Equivalently we assume that for all

q ∈ ∂�, there exists a C3 function ηq and 0 < δ1 	 1, such that

ηq : B+(0; δ1) 
 xq := (xq,1, xq,2, xq,3) → R
3, (1.6)

where the map is one-to-one and onto to the image Oq := ηq(B+(0; δ1)) when δ1
is sufficiently small. Moreover, ηq(xq) ∈ ∂� if and only if xq,3 = 0 within the
image of ηq . We refer to [10] for the construction of such ξ and ηq . We further
assume that the domain is strictly convex in the following sense:

3∑
i, j=1

ζiζ j∂i∂ jξ(x) � |ζ |2 for all x ∈ �̄ and ζ ∈ R
3. (1.7)

Without loss of generality we may assume that ∇ξ �= 0 near ∂�.
In order to control the generic singularity at the boundarywe adopt the following

weight of [14]:

Definition 1. For sufficiently small 0 < ε 	 ‖ξ‖C2 , we define a kinetic distance

α(x, v) := χε(α̃(x, v)), (x, v) ∈ �̄ × R
3

α̃(x, v) :=
√

|v · ∇xξ(x)|2 − 2ξ(x)(v · ∇2
x ξ(x) · v), (x, v) ∈ �̄ × R

3,
(1.8)
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where χa : [0,∞) → [0,∞) stands for a non-decreasing smooth function such
that

χa(s) = s for s ∈ [0, a], χa(s) = 2a for s ∈ [4a,∞],
and |χ ′

a(τ )| � 1 for τ ∈ [0,∞).
(1.9)

We note that α ≡ 0 on the grazing set γ0. From a computation, we have |v ·
∇xα(x, v)| � |v|α(x, v), together with τχ ′

ε(τ ) � χε(τ ), this implies

e−|v|sα(x − sv, v) � α(x, v) � e|v|sα(x − sv, v) as long as x − sv ∈ �̄.

(1.10)

The definition of α, α̃ in (1.8) implies

α̃(x, v) � α(x, v). (1.11)

We extend the outward normal in the domain:

n(x) := χ ′
ε/2(dist(x, ∂�))∇ξ(x)/|∇ξ(x)| for all x ∈ �̄. (1.12)

In particular, we note that n(x) ≡ 0 when dist(x, ∂�) � 2ε. In order to explore
the “better” behavior of the tangential derivative versus the normal derivative we
define a G-derivative (which is a matrix)

∇‖ f (x) = G(x)∇x f (x), (1.13)

where
G(x) := (

I − n(x) ⊗ n(x)
)
. (1.14)

Note that near the boundary, from (1.12) we have

G(x)n(x) = 0 for dist(x, ∂�) � ε/2. (1.15)

From the definition of n in (1.12), theG-derivative is actually a full derivative away
from the boundary: if dist(x, ∂�) � 2ε, then G(x)∇x = ∇x .

MainTheorem. FixKn > 0. Assume the domain is convex (1.7) and the boundary
is C3. Suppose supx∈∂�|TW (x) − T0|	 1 for some constant T0 > 0 and TW (x) ∈
C1(∂�). For given m > 0 we construct a unique solution

F(x, v) = mM1,0,T0(v) +√
M1,0,T0(v) f (x, v) � 0, (1.16)

to the stationary Boltzmann equation (1.1) and the diffuse reflection boundary
condition (1.3) such that

∫∫
�×R3 f

√
M1,0,T0(v) = 0 , and

‖w f ‖∞ � ‖TW − T0‖L∞(∂�), w(v) := e�|v|2 for some 0 < � < 1/4.(1.17)

Moreover, f (and F) belongs to C1(�̄ × R
3\γ0) locally and satisfies

‖wθ̃ (v)α(x, v)∇x f (x, v)‖L∞(�×R3) � ‖TW − T0‖C1(∂�), (1.18)

‖wθ̃/2(v)|v|∇‖ f (x, v)‖L∞(�×R3) � ‖TW − T0‖C1(∂�), (1.19)

‖|v|2∇v f (x, v)‖L∞(�×R3) � ‖TW − T0‖C1(∂�), (1.20)

where wθ̃ (v) = eθ̃ |v|2 with 0 < θ̃ 	 �.
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If we further assume TW (x) ∈ C2(∂�), then for any 0 � β < 1, the solution
F(x, v) belongs to C1,β(�̄ × R

3\γ0) locally. Moreover,

sup
x,y∈�

∥∥∥wθ̃ (v)|v|2 min
{α(x, v)

|v| ,
α(y, v)

|v|
}2+β ∇x f (x, v) − ∇x f (y, v)

|x − y|β
∥∥∥
L∞(R3

v)

� ‖TW − T0‖C2(∂�), (1.21)

sup
x,y∈�

∥∥∥wθ̃/2(v)|v|2 min
{α(x, v)

|v| ,
α(y, v)

|v|
}1+β |∇‖ f (x, v) − ∇‖ f (y, v)|

|x − y|β
∥∥∥
L∞(R3

v)

� ‖TW − T0‖C2(∂�). (1.22)

sup
x,y∈�

∥∥∥wθ̃/2(v)|v|3 min
{α(x, v)

|v| ,
α(y, v)

|v|
}1+β ∇v f (x, v) − ∇v f (y, v)

|x − y|β
∥∥∥
L∞(R3

v)

� ‖TW − T0‖C2(∂�). (1.23)

Remark 1. The unique solvability and the pointwise estimate has been established
in [9]. We record the statement of the theorem in Section 2 for the sake of readers’
convenience.

Remark 2. The second estimate (1.19) implies that any tangential spatial deriva-
tives of f (x, v) does not blow up near the grazing set. Also comparing the C1,β

estimates (1.21) and (1.22), the weight in the semi-norm of the tangential spatial
derivative has a lower power in terms of α than the one for the normal derivative.

Remark 3. Estimating differential quotient with respect to v has some subtle (prob-
ably technical) issue, since the trajectory is not stable at v = 0 near the boundary.
Since our motivation of the paper is investigating the regularity in space we omit to
discuss them. This issue (instability of the trajectory at v = 0 in the Hölder norm
estimate) will be discussed in a forthcoming paper, [20].

1.2. Major difficulties

In this sectionwe illustrate themajor difficulties, and in the next sectionswewill
explain the key ideas and analytical development to overcome such obstacles. A
generic feature of the boundary problem of the Boltzmann equation is a singularity
of solutions, which originates mainly from 1) characteristics feature of the phase
boundary ∂�×R

3 with respect to the transport operator (i.e. the phase boundary is
always characteristic but not uniformly characteristic at the grazing set γ0 of (1.5)),
and 2) the mixing effect of the collision operator.

The effect of characteristics phase boundary can appear in several ways. De-
pending on the shape of the domain, the generic boundary singularity at γ0 can
propagate inside the domain and affect the global dynamics. Indeed, it has been
proved in [18] that any general non-convex domains admit smooth initial datum
which will produce the discontinuity for the Boltzmann solution in a stable manner,
which propagates along the trajectory. Although such discontinuity-type singular-
ities may stay near the boundary for the convex domains, its derivatives blow up
near the grazing set. Actually it is not merely the effect of characteristics phase
boundary but also the mixing effect of the collision operator: the mixing immedi-
ately produces a singular source term for the normal derivative at the boundary. In
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[14], the authors quantify the rate of the blow-up with respect to the kinetic dis-
tance of (1.8) and study the mixing effect by the collision operator in terms of the
kinetic distance. As a result they establish the first order derivatives estimate for the
dynamical Boltzmann equation. On the other hand, the kinetic distance produces a
loss of moment and they utilize a fast decay weight e−C〈v〉t to recover such a loss.
In other words, the success of the approach in [14] to the dynamic problem can
be achieved in the space losing its exponential moment quickly (exponentially).
Evidently utilizing such functional spaces is not possible in the stationary problem,
which is one of the major difficulties to establish the main theorem.

The effect of the nonlinear collision operator is complex, in particular,within the
interaction of the transport operator, which eventually restricts our regularity strictly
below two derivatives in any L p-space: the boundary singularity of Boltzmann
solutions appears as ∂F

∂n ∼ Q(F,F)
n(x)·v /∈ L1

loc, while the leading order term of any
second order derivatives ∇x,v∂n contains a factor of Q(∇x F, F)(xb(x, v), v) at a
backward exit position xb(x, v) which is defined through a backward exit time tb:

tb(x, v) := sup{s > 0 : x − sv ∈ �}, xb(x, v) := x − tb(x, v)v. (1.24)

Due to a lack of symmetry of ∂F
∂n , in particular for the diffuse reflection boundary

condition, any possibility of cancellation in the integration formula Q( ∂F
∂n , F) can

be expelled generically in [14]. Then it follows that | ∂2F
∂n2

(x, v)| = ∞ for all v

for some x ∈ ∂�. This singularity likely appears at all boundary points with all
velocities then propagates along the trajectory inside the domain, and masses up all
directional derivatives. Even strictly below the second derivatives estimate, at first
glance it is not obvious that the similar failure is avoidable in our weighted C1,β .
Moreover, we encounter similar type of, but much more geometrically involved,
terms associated with the diffuse reflection boundary condition intertwined with
the transport operator. Such non-integrable singularities could barge in the higher
order estimates, which is the other major difficulty of the proof.

1.3. Regularizing via the mixing of the binary collision, transport, and diffuse
reflection

To overcome such difficulties described in Section 1.2., we establish a novel
and robust quantitative estimate of regularization effect (in space and velocity) of
the velocity mixing via the diffuse reflection boundary condition (1.3) or/and the
binary collision (1.1) intertwined with the transport operator.

We demonstrate the scheme first for ∇x F , of which the most singular term
comes from the boundary contribution such as

∇x xb(x, v)

∫
n(xb)·v1>0

∇xbF(xb(x, v), v1)|n(xb(x, v)) · v1|dv1. (1.25)

Upon using the transport operator once again, the contribution of the collision
operator (ignoring the singularity of Q for simplicity) can be viewed as

∇x xb

∫
n(xb)·v1>0

∫ 0

tb(xb,v1)

∫
R3

∇x F(xb − sv1, u)|n(xb) · v1|dudsdv1. (1.26)
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Akeyobservation is that the x-derivative has a natural relationwith the v1-derivative
as

∇x F(xb − (t1 − s)v1, u) = ∇v1[F(xb − (t1 − s)v1, u)]
−(t1 − s)

. (1.27)

When t1−s has a positive lower bound, thanks to the v1-integral from the diffuse re-
flection boundary condition, we are able to remove such a v1-derivative completely
from F . As a result of the integration by parts, the singularity of ∇v1 tb(xb, v

1)

occurs, which will be compensated by the boundary measure and thus we obtain
a bound like ∇x xb(x, v) × ‖F‖∞. When t1 − s is small we use the so-called the
nonlocal-to-local estimate and derive O(|t1 − s|)α(x, v)−1‖α∇x F‖∞. We will
describe the nonlocal-to-local estimate and its application in detail at the next sub-
section.

On the other hand, the boundary contribution of (1.25) upon applying the trans-
port operator appears as

∇x xb(x, v)

∫
n(xb)·v1>0

∇xbF(xb(x
1, v1), v1)|n(x1) · v1|dv1, (1.28)

where x1 = xb(x, v). The key idea is to convert v1-integration to the integration in
(x2, tb(x1, v1)) = (xb(x1, v1), tb(x1, v1)), while the change of variables produces

a factor of the Jacobian as |n(x2)·v1|
tb(x1,v1)3

. Then we are able to move ∇xb -derivative from
F via the integration by parts, while the derivative to the geometric components
arise. Using the convexity and boundary measure crucially we are able to bound
this amount by ∇x xb(x, v) × ‖F‖∞.

1.4. Higher regularity

For the higher regularity estimate in the weighted C1,β -space, we 1) adopt
the idea of Section 1.3 with stronger weight in α, 2) crucially establish a “better”
estimate for the tangential derivatives, 3) use the full range of the nonlocal-to-local
estimate, and 4) carefully study the possibly harmful (which has been explained in
the last paragraph of Section 1.2.) term 1

|x−y|β
∫ tb(x,v)

tb(y,v)
Q(∇x F, F)(x − sv, v)ds.

By expressing ∇x F(x,v)−∇x F(y,v)

|x−y|β along the trajectories (see (7.36)–(7.48) for
the details), we notice that the difference is singular at least as

∇x xb(x, v) − ∇x xb(y, v)

|x − y|β
∫
n(xb)·v1>0

∇xbF(xb, v
1)|n(xb) · v1|dv1, (1.29)

where the integration is bounded using the weighted C1-estimate. By the mean
value type estimate and the computation of ∇2

x xb, for x(τ ) = τ x + (1 − τ)y, we
derive that the difference quotient of ∇x xb is bounded by

|x − y|1−β

∫ 1

0

|v|3
α3(x(τ ), v)

dτ. (1.30)
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Weprove thatα(x(τ ), v) � min{α(x, v), α(y, v)} for |x−y| < min{α(x,v)
|v| ,

α(y,v)
|v| }

in the convex domains, for which we use the weight of min{α(x,v)
|v| ,

α(y,v)
|v| }2+β for

∇x F(x,v)−∇x F(y,v)

|x−y|β . The convexity of the domain is crucial since any similar type of
the bound is false for the non-convex domains in general.

Unfortunately this estimate with the weight of the power 2+ β is too singular!
In particular the difference quotient of ∇x F contains

∇x xb(x, v)

∫ ∇xbF(xb(x, v), v1) − ∇xbF(xb(y, v), v1)

|x − y|β |n(xb) · v1|dv1,

in which the control of the possible singularity of |n(xb) · v1|−(1+β) would be non-
integrable. To overcome it, realizing that ∇xbF is ∇‖F , we establish an estimate

of the difference quotient for the tangential derivatives ∇‖F(x,v)−∇‖F(y,v)

|x−y|β with the

weight min{α(x,v)
|v| ,

α(y,v)
|v| } for a lower power than 2 + β. The optimal power is

examined through (1.29), which turns out to be 1 + β.
To estimate the difference quotient with different weights, we first employ

delicate splitting for the boundary integral and the time integral depending on how
the trajectories from two different points hit the boundary. Then we adopt the idea
of the scheme of Section 1.3 when t1 − s has a positive lower bound. On the other
hand, when t1 − s is small we use the weight and derive

∥∥∥min
{α(x, v)

|v| ,
α(y, v)

|v|
}β∇F

∥∥∥∞

×
∫
small interval

∫
1

min
{

α(x−sv,u)
|u| ,

α(y−sv,u)
|u|

}β
duds.

(1.31)

The second author and collaborators studied a similar estimate of (1.31) in [14].
In this paper we elaborate the so-called nonlocal-to-local estimate, which consists
of analytical and geometrical arguments: first we study the u-integration of the
integrand and derive a gain of power such as, for 1 < β < 3

1

min{ξ(x − sv, u), ξ(y − sv, u)} β−1
2

, (1.32)

where ξ(x) can be understood as the distance from x to the boundary. Second we
employ s �→ ξ(x−sv, u)with the Jacobian ds = 1

|u·∇ξ |dξ(x−sv, u) and recover a
power of α as in the bound of ξ through the geometric velocity lemma.We crucially
utilize such a gain of α to extract a smallness in (1.31).

Lastly we discuss the possible harmful term 1
|x−y|β

∫ tb(x,v)

tb(y,v)
Q(∇x F, F)(x −

sv, v)ds. First we apply the α-weighted bound for ∇x F and then establish
Q(∇x F, F)(x − sv, v) ∼ ln|ξ(x − sv)|. Upon the time integration on [tb(y, v),

tb(x, v)] we derive a bound
min{α(x,v)

|v| ,
α(y,v)

|v| } ln (min{α(x,v)
|v| ,

α(y,v)
|v| }). For |x − y| < min{α(x,v)

|v| ,
α(y,v)

|v| }, we
realize the difference quotient is bounded. Of course such bound blows up if β = 1.
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Now we state the outline for our paper. In Section 2 we prove several lemmas
which serve as preliminary. Section 3 and Section 4 are devoted to establish the
ideas in Section 1.3 as well as the nonlocal-to-local estimate and (1.18). In Section
5 and Section 6 we establish the rest of weighted C1 estimates. Finally, in Section
7 we prove the weighted C1,β estimate.

2. Preliminaries

2.1. Basic notions

We first record the unique existence theorem of [9].
Existence Theorem of [9] Assume the domain is open bounded and the boundary
is smooth. For m > 0 and 0 < � < 1/4, if supx∈∂�|TW (x) − T0|	 1, then there
exists a unique mild solution

F(x, v) = mM1,0,T0(v) +√
M1,0,T0(v) f (x, v) � 0, (2.1)

with
∫∫

�×R3 f
√
M1,0,T0(v) = 0 to (1.1) and (1.3) such that

‖w f ‖L∞(�̄×R3) := ‖w f ‖∞ � ‖TW − T0‖L∞(∂�),

w(v) := e�|v|2 with 0 < � < 1/4. (2.2)

Without loss of generality, we assumem = 1, T0 = 1 in (1.16). Then we define
the reference global Maxwellian and its perturbation:

μ := M1,0,1, F(x, v) = μ(v) +√
μ(v) f (x, v).

Plugging (1.16) into (1.1) and (1.3), we obtain the equation and boundary condition
for f :

v · ∇x f + ν(v) f = K ( f ) + �( f, f ), (2.3)

f (x, v)|n(x)·v<0= MW (x, v)√
μ(v)

∫
n(x)·u>0

f (x, u)
√

μ(u){n(x) · u}du
+r(x, v). (2.4)

Here ν(v), K ( f ), �( f, f ) are the linear Boltzmann operator(see [12]) given by

ν(v) f = −Q(μ,
√

μ f )√
μ

, K ( f ) = Q(
√

μ f, μ)√
μ

,

�( f, f ) = Q(
√

μ f,
√

μ f )√
μ

. (2.5)

The r(x, v) is the remainder term. By
√
2π

∫
n(x)·u>0

√
μ(u){n(x) · u}du = 1, this

term is given by

r(x, v) := MW (x, v)/
√
2π − μ(v)√

μ(v)
. (2.6)
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Consider a linear transport equation with the inflow boundary condition

v · ∇x f + ν(v) f = h(x, v), (x, v) ∈ � × R
3, (2.7)

f (x, v) = g(x, v), (x, v) ∈ γ−. (2.8)

As we can not rely on the Gronwall-type estimate, we will use the Duhamel’s
formula to express the equation along the trajectory:

f (x, v) = 1t�tbe
−ν(v)tb(x,v) f (xb(x, v), v)

+ 1t<tbe
−ν(v)t f (x − tv, v)

+
∫ t

max{0,t−tb}
e−ν(v)(t−s)h(x − (t − s)v, v)ds.

(2.9)

Here we fix t � 1.
In order to obtain C1 estimate we take the spatial derivative to (2.9) to get

∂x j f (x, v) = 1t�tbe
−ν(v)tb(x,v)∂x j [ f (xb(x, v), v)] (2.10)

− 1t�tbν(v)∂x j tb(x, v)e−ν(v)tb(x,v) f (xb(x, v), v) (2.11)

+ 1t<tbe
−ν(v)t∂x j [ f (x − tv, v)] (2.12)

+
∫ t

max{0,t−tb}
e−ν(v)(t−s)∂x j [h(x − (t − s)v, v)]ds (2.13)

− 1t�tb∂x j tbe
−ν(v)tbh(x − tbv, v), (2.14)

where xb(x, v) and tb(x, v) represent the backward exit position and timewhich are
defined in (1.24). The derivative of tb(x, v) and xb(x, v) has singular behavior as
stated in (2.32), such singularity will be cancelled by our weight α defined in (1.8).
With a compatibility condition it is standard to check the piecewise formula (2.10)–
(2.14) is actually a weak derivative of f and continuous across {t = tb(x, v)} (see
[13]) for the details.

Definition 2. Recall the backward exit position xb and backward exit time tb
in (1.24), we define a stochastic cycles as (x0, v0) = (x, v) ∈ �̄ × R

3 and in-
ductively

x1 := xb(x, v), v1 ∈ {v1 ∈ R
3 : n(x1) · v1 > 0}, (2.15)

vk ∈ {vk ∈ R
3 : n(xk) · vk > 0}, for k � 1, (2.16)

xk+1 := xb(x
k, vk), tkb := tb(x

k, vk) for n(xk) · vk � 0. (2.17)

Choose t � 0. We define t0 = t and

tk = t − {tb + t1b + · · · + tk−1
b }, for k � 1. (2.18)

Remark 4. Here xk+1 depends on (x, v, x1, v1, · · · , xk, vk), while vk is a free pa-
rameter whose domain (2.16) only depends on xk .
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Recall (1.6). Since the boundary is compact and C3, for fixed 0 < δ1 	 1
we may choose a finite number of p ∈ P̃ ⊂ ∂� and 0 < δ2 	 1 such that
Op = ηp(B+(0; δ1)) ⊂ B(p; δ2) ∩ �̄ and {Op} forms a finite covering of ∂�. We
further choose an interior covering O0 ⊂ � such that {Op}p∈P with P = P̃ ∪ {0}
forms an open covering of �̄. We define a partition of unity

1�̄(x) =
∑
p∈P

ιp(x) such that 0 � ιp(x) � 1, ιp(x) ≡ 0 for x /∈ Op. (2.19)

Without loss of generality (see [19]) we can always reparametrize ηp such that
∂xp,i ηp �= 0 for i = 1, 2, 3 at xp,3 = 0, and an orthogonality holds as

∂xp,i ηp · ∂xp, j ηp = 0 at xp,3 = 0 for i �= j and i, j ∈ {1, 2, 3}. (2.20)

At xp,3 = 0, the xp,3 derivative gives the outward normal

n p(xp) = ∂xp,3ηp

〈∂xp,3ηp, ∂xp,3ηp〉 . (2.21)

For simplicity, we denote
∂iηp(xp) := ∂xp,i ηp. (2.22)

Definition 3. For x ∈ �̄, we choose p ∈ P as in (1.6). We define

Txp =
(

∂1ηp(xp)√
gp,11(xp)

∂2ηp(xp)√
gp,22(xp)

∂3ηp(xp)√
gp,33(xp)

)t
, (2.23)

with gp,i j (xp) = 〈∂iηp(xp), ∂ jηp(xp)〉 for i, j ∈ {1, 2, 3}. Here At stands the

transpose of amatrix A. Note that when xp,3 = 0, Txp
∂iηp(xp)√
gp,i i (xp)

= ei for i = 1, 2, 3

where {ei } is a standard basis of R
3.

We define

v j (xp) = ∂ jηp(xp)√
gp, j j (xp)

· v. (2.24)

We note that from (2.20), the map Txp is an orthonormal matrix when xp,3 = 0.
Therefore both maps v → v(xp) and v(xp) → v have a unit Jacobian at xp,3 = 0.
This fact induces a new representation of boundary integration of diffuse boundary
condition in (2.4): For x ∈ ∂� and p ∈ P as in (1.6),

∫
n(x)·v>0

f (x, v)
√

μ(v){n(x) · v}dv

=
∫
vp,3>0

f (ηp(xp), T t
xpv(xp))

√
μ(v(xp))v3(xp)dv(xp).

(2.25)

We have used the fact of μ(v) = μ(|v|) = μ(|T t
xpv(xp)|) = μ(|v(xp)|) =

μ(v(xp)) and xp,3 = 0.
Now we reparametrize the stochastic cycle using the local chart defined in

Definition 2.
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Definition 4. Recall the stochastic cycles (2.16). For each cycle xk let us choose
pk ∈ P in (1.6). Then we denote

xkpk := (xkpk ,1, x
k
pk ,2, 0) such that ηpk (x

k
pk ) = xk, for k � 1,

vkpk ,i :=
∂ jηpk (x

k
pk

)√
gpk , j j (x

k
pk

)
· vk, for k � 1.

(2.26)

From (2.21) we denote the outward normal at xk as

n(xk)= n pk (x
k
pk ). (2.27)

Conventionally, we denote

x0p0 := x0 = x, v0p0 := v0 = v. (2.28)

We define

∂xk
pk ,i

[a(ηpk (x
k
pk ), v

k)] :=
∂ηpk (x

k
pk ,i

)

∂xk
pk ,i

· ∇xa(ηpk (x
k
pk ), v

k), i = 1, 2. (2.29)

Conventionally we denote

∇xk a(xk, vk) = (
∂xk

pk ,1
[a(ηpk (x

k
pk ), v

k)], ∂xk
pk ,2

[a(ηpk (x
k
pk ), v

k)]).

2.2. Properties of stochastic cycle

In this subsection we list useful properties of the stochastic cycle defined in
Definitions 2 and 4.

Lemma 2.1. For the tb and xb defined in (2.16) and (2.17), the derivative reads

∂tk+1
b

∂xk+1
j

= 1

v3(xpk+2)

∂3ηpk+2(xk+2)√
gpk+2,33(xk+2)

· e j , (2.30)

∂tk+1
b

∂vk+1
j

= − tk+1
b e j

vk+1
pk+2,3

· ∂3ηpk+2

√gpk+2,33

∣∣∣
xk+2

. (2.31)

And thus

∇x tb = n(xb)

n(xb) · v
, ∇vtb = − tbn(xb)

n(xb) · v
,

∇x xb = I d3×3 − n(xb) ⊗ v

n(xb) · v
, ∇vxb = −tb I d + tbn(xb) ⊗ v

n(xb) · v
.

(2.32)

For i = 1, 2,
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∂xk+2
pk+2,i

∂xk+1
j

= 1√
gpk+2,i i (x

k+2
pk+2)

×
⎡
⎣ ∂iηpk+2(xk+2

pk+2)√
gpk+2,i i (x

k+2
pk+2)

−
vk+2
pk+2,i

vk+2
pk+2,3

∂3ηpk+2(xk+2
pk+2)√

gpk+2,33(x
k+2
pk+2)

⎤
⎦ · e j , (2.33)

∂xk+2
pk+2,i

∂xk+1
pk+1, j

= 1√
gpk+2,i i (x

k+2
pk+2)

×
⎡
⎣ ∂iηpk+2(xk+2

pk+2)√
gpk+2,i i (x

k+2
pk+2)

−
vk+2
pk+2,i

vk+2
pk+2,3

∂3ηpk+2(xk+2
pk+2)√

gpk+2,33(x
k+2
pk+2)

⎤
⎦

× · ∂ jηpk+1(xk+1
pk+1), (2.34)

∂xk+2
pk+2,i

∂vk+1
j

= −tk+1
b e j · 1√

gpk+2,i i (x
k+2
pk+2))

[ ∂iηpk+2

√gpk+2,i i

∣∣∣
xk+2

−
vk+1
pk+1,i

vk+1
pk+2,3

∂3ηpk+2

√gpk+2,33

∣∣∣
xk+2

]
. (2.35)

Proof. First of all we have

xk+2 = ηpk+2(xk+2
pk+2) = xk+1 − tk+1

b vk+1

= ηpk+1(xk+1
pk+1) − tk+1

b vk+1. (2.36)

Proof of (2.30) We take ∂

∂xk+1
j

to (2.36) to get

∑
l=1,2

∂xk+2
pk+2,l

∂xk+1
j

∂ηpk+2

∂xk+2
pk+2,l

∣∣∣
xk+2

= −tk+1
b

∂vk+1

∂xk+1
j

− ∂tk+1
b

∂xk+1
j

vk+1 + e j

= − ∂tk+1
b

∂xk+1
j

vk+1 + e j . (2.37)

Then we take an inner product with
∂3ηpk+2√
gpk+2,33

∣∣∣
xk+2

to (2.37) to have

∑
l=1,2

∂xk+2
pk+2,l

∂xk+1
j

∂ηpk+2

∂xk+2
pk+2,l

∣∣∣
xk+2

· ∂3ηpk+2

√gpk+2,33

∣∣∣
xk+2

= − ∂tk+1
b

∂xk+1
j

vk+1 · ∂3ηpk+2

√gpk+2,33

∣∣∣
xk+2

+ e j · ∂3ηpk+2

√gpk+2,33

∣∣∣
xk+2

.

(2.38)
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Due to (2.20) the LHS equals zero. Now we consider the RHS. From (2.24)

vk+1 · ∂3ηpk+2

√gpk+2,33

∣∣
xk+2 = v3(xpk+2).

From (2.38), we conclude (2.30). ��
Proof of (2.31) We apply ∂vk+1

j to (2.36) and take · ∂3ηpk+2√
gpk+2,33

∣∣∣
xk+2

to have

∂xk+2

∂vk+1
j

· ∂3ηpk+2

√gpk+2,33

∣∣∣
xk+2

=
2∑

l=1

∂xk+2
pk+2,l

∂vk+1
j

∂ηpk+2(xk+2
pk+2)

∂xk+2
pk+2,l

· ∂3ηpk+2

√gpk+2,33

∣∣∣
xk+2

= −
{
tk+1
b e j + vk+1 ∂tk+1

b

∂vk+1
j

}
· ∂3ηpk+2

√gpk+2,33

∣∣∣
xk+2

.

Thus we apply (2.20) and (2.26) and use (2.24) to obtain (2.31). ��
Proof of (2.32) The first line of (2.32) follows directly from (2.30) and (2.31). For
the second line we take ∂xk+1

j and ∂vk+1
j to (2.36). Again using (2.30) and (2.31)

we conclude (2.32). ��
Proof of (2.33) We take inner product with

∂iηpk+2

gpk+2,i i

∣∣∣
xk+2

to (2.37) to have

∑
l=1,2

∂xk+2
pk+2,l

∂xk+1
j

∂ηpk+2

∂xk+2
pk+2,l

∣∣∣
xk+2

· ∂iηpk+2

gpk+2,i i

∣∣∣
xk+2

=
∂xk+2

pk+2,i

∂xk+1
j

= − ∂tk+1
b

∂xk+1
j

vk+1 · ∂iηpk+2

gpk+2,i i

∣∣∣
xk+2

+ e j · ∂iηpk+2

gpk+2,i i

∣∣∣
xk+2

.

By (2.24),

vk+1 · ∂iηpk+2

gpk+2,i i

∣∣∣
xk+2

= vi (xpk+2)
√gpk+2,i i

.

Then, from (2.30), we conclude (2.33). ��
Proof of (2.34) Since

∂xk+2
pk+2,i

∂xk+1
pk+1, j

= ∇xk+1xk+2
pk+2,i

· ∂xk+1
pk+1, j

ηpk+1(xk+1
pk+1),

by (2.33) we conclude (2.34). ��
Proof of (2.35) For i = 1, 2, j = 1, 2, 3, we apply ∂vk+1

j to (2.36) and take

· ∂iηpk+2√
gpk+2,i i

∣∣∣
xk+2

to obtain
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∂xk+2

∂vk+1
j

· ∂iηpk+2

√gpk+2,i i

∣∣∣
xk+2

=
2∑

l=1

∂xk+2
pk+2,l

∂vk+1
j

∂ηpk+2(xk+2
pk+2)

∂xk+2
pk+2,l

· ∂iηpk+2

√gpk+2,i i

∣∣∣
xk+2

=
∂xk+2

pk+2,i

∂vk+1
j

√
gpk+2,i i (x

k+2
pk+2))

= −
{ ∂tk+1

b

∂vk+1
j

vk+1 + tk+1
b

∂vk+1

∂vk+1
j

}
· ∂iηpk+2

√gpk+2,i i

∣∣∣
xk+2

= −
{
tk+1
b e j − tk+1

b e j

vk+1
pk+2,3

· ∂3ηpk+2

√gpk+2,33

∣∣∣
xk+2

vk+1
}

· ∂iηpk+2

√gpk+2,i i

∣∣∣
xk+2

.

Then we apply (2.31) to obtain (2.35). ��
The following two lemmas are immediate consequences of Lemma 2.1.

Lemma 2.2.

tb(x, v) � |n(xb(x, v)) · v|
|v|2 , (2.39)

and thus

|∇vtb|� 1

|v|2 , |∇vxb|� 1

|v| . (2.40)

|∇vT
t
x1p

|� ‖η‖C2

|v| . (2.41)

Proof. Clearly, (2.39) follows from n(xb)·v|v| � x − xb = tb|v|.
By (2.32) and (2.39) we have

|∇vtb|� |n(xb) · v|
|n(xb) · v|

1

|v|2 � 1

|v|2 ,

|∇vxb|� |n(xb) · v|
|v|2 + |n(xb) · v||v|

|n(xb) · v||v|2 � 1

|v| .

For (2.41) by the definition of Txp in (2.23), and using (2.35), we have

|∇vT
t
x1p

| � ‖η‖C2 × |∇v[x1p1,1 + x1p2,1]|� ‖η‖C2
|v|tb

|n(ηp1(x
1
p1

)) · v| � ‖η‖C2

|v| ,

where we have used (2.39) in the last inequality.
Then the lemma follows. ��

Lemma 2.3. The following map is one-to-one:

vk+1 ∈ {n(xk+1) · vk+1 > 0 : xb(xk+1, vk+1) ∈ B(pk+2, δ2)}
�→ (xk+2

pk+2,1
, xk+2

pk+2,2
, tk+1

b ),
(2.42)
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with

det

⎛
⎝∂(xk+2

pk+2,1
, xk+2

pk+2,2
, tk+1

b )

∂vk+1

⎞
⎠

= 1√
gpk+2,11(x

k+2
pk+2)gpk+2,22(x

k+2
pk+2)

|tk+1
b |3

|n(xk+2) · vk+1| .
(2.43)

Proof. Combining (2.31) and (2.35) we conclude

det

⎛
⎝∂(xk+2

pk+2,1
, xk+2

pk+2,2
, tk+1

b )

∂vk+1

⎞
⎠

= |tk+1
b |3det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
vk+1
pk+2,3

∂3ηpk+2√
gpk+2,33

∣∣∣
xk+2

1√
gpk+2,11(x

k+2
pk+2 )

[
∂1ηpk+2√
gpk+2,11

∣∣∣
xk+2

− vk+1
pk+1,1

vk+1
pk+2,3

∂3ηpk+2√
gpk+2,33

∣∣∣
xk+2

]

1√
gpk+2,22(x

k+2
pk+2 )

[
∂2ηpk+2√
gpk+2,22

∣∣∣
xk+2

− vk+1
pk+1,2

vk+1
pk+2,3

∂3ηpk+2√
gpk+2,33

∣∣∣
xk+2

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −|tk+1
b |3 1

vk+1
pk+2,3

1√
gpk+2,11(x

k+2
pk+2)gpk+2,22(x

k+2
pk+2)

∂3ηpk+2

√gpk+2,33

∣∣∣
xk+2

·
([ ∂1ηpk+2

√gpk+2,11

∣∣∣
xk+2

−
vk+1
pk+1,1

vk+1
pk+2,3

∂3ηpk+2

√gpk+2,33

∣∣∣
xk+2

]

×
[ ∂2ηpk+2

√gpk+2,22

∣∣∣
xk+2

−
vk+1
pk+1,2

vk+1
pk+2,3

∂3ηpk+2

√gpk+2,33

∣∣∣
xk+2

])

= 1√
gpk+2,11(x

k+2
pk+2)gpk+2,22(x

k+2
pk+2)

|tk+1
b |3

vk+1
pk+2,3

= (2.43),

where we have used (2.20).
Now we prove the map (2.42) is one to one. Assume that there exists v and

ṽ satisfy xb(xk+1, v) = xb(xk+1, ṽ) and tb(xk+1, v) = tb(xk+1, ṽ). We choose
p ∈ ∂� near xb(xk+1, v) and use the same parametrization. Then, by an expansion,
for some v̄ ∈ {aṽ + (1 − a)v : a ∈ [0, 1]},

0 =
⎛
⎝ xp,1(xk+1, ṽ)

xp,2(xk+1, ṽ)

tb(xk+1, ṽ)

⎞
⎠−

⎛
⎝ xp,1(xk+1, v)

xp,2(xk+1, v)

tb(xk+1, v)

⎞
⎠ =

⎛
⎝∇vxp,1(xk+1, v̄)

∇vxp,2(xk+1, v̄)

∇vtb(xk+1, v̄)

⎞
⎠ (ṽ − v).

This equality can be true only if the determinant of the Jacobian matrix equals zero.
Then (2.43) implies that tb(xk+1, v̄) = 0. But this implies xk+1 = xb(xk+1, v̄) and
hence n(xk+1) · v̄ = 0 which is out of our domain. ��
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The next lemma describe the properties of a convex domain.

Lemma 2.4. Given a C2 convex domain defined in (1.7),

|n pk+ j (xk+ j
pk+ j ) · (xk+1 − ηpk+2(xk+2

pk+2))|∼ |xk+1 − ηpk+2(xk+2
pk+2)|2, j = 1, 2,

|vk+1
pk+1,3

|/|vk+1
pk+1 | ∼ |xk+1 − ηpk+2(xk+2

pk+2)|.
(2.44)

For j ′ = 1, 2,

∣∣∣∣
∂[n pk+ j (xk+ j

pk+ j ) · (xk+1 − ηpk+2(xk+2
pk+2))]

∂xk+2
pk+2, j ′

∣∣∣∣
� ‖η‖C2 |xk+1 − ηpk+2(xk+2

pk+2)|, j = 1, 2. (2.45)

Proof. First we prove (2.44). By Taylor’s expansion, for x, y ∈ ∂� and some
0 � t � 1,

ξ(y) − ξ(x) = 0 − 0 = ∇ξ(x) · (y − x) + 1

2
(y − x)T∇2ξ(x + t (y − x))(y − x).

Thus, from (1.12),

|n(x) · (x − y)|∼ (y − x)T∇2ξ(x + t (y − x))(y − x).

From the convexity (1.7), we have

|n pk+ j (xk+ j
pk+ j ) · (xk+1 − ηpk+2(xk+2

pk+2))|� C�|xk+1 − ηpk+2(xk+2
pk+2)|2.

Since ξ is C2 at least,

|{xk+1 − y} · n(xk+1)|� ‖ξ‖C2 |xk+1 − y|2.
Also notice that

|n pk+1(xk+1
pk+1) · (xk+1 − ηpk+2(xk+2

pk+2))|= |vk+1
pk+1,3

|(tk+2 − tk+1),

and thus

|vk+1
pk+1,3

|
|vk+1

pk+1 |
� 1

|vk+1
pk+1 |

C�

|tk+1 − tk+2|
∣∣∣xk+1 − xk+2

∣∣∣2

=C�|xk+1 − xk+2|= C�|xk+1 − ηpk+2(xk+2
pk+2)|.

By the same computation we can easily conclude

|vk+1
pk+1,3

|
|vk+ j

pk+ j |
� Cξ |xk+1 − ηpk+2(xk+2

pk+2)|.
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Then we prove (2.45). For j = 1, j ′ = 1, 2 we have

∣∣∣∣
∂[n pk+1(xk+1

pk+1) · (xk+1 − ηpk+2(xk+2
pk+2))]

∂xk+2
pk+2, j ′

∣∣∣∣
� |n pk+1(xk+1

pk+1) · ∂ j ′ηpk+2(xk+2
pk+2)|

=
∣∣∣n pk+1(xk+1

pk+1) · ∂ j ′ηpk+1(xk+1
pk+1)

+ n pk+1(xk+1
pk+1) · [∂ j ′ηpk+2(xk+2

pk+2) − ∂ j ′ηpk+1(xk+1
pk+1)

]∣∣∣
� 0 + ‖η‖C2 |xk+1 − ηpk+2(xk+2

pk+2)|, (2.46)

where we applied (2.20) and (2.27).
For j = 2, we have

∣∣∣∣
∂[n pk+2(xk+2

pk+2) · (xk+1 − ηpk+2(xk+2
pk+2))]

∂xk+2
pk+2, j ′

∣∣∣∣
� |n pk+2(xk+2

pk+2) · ∂ j ′ηpk+2 |+‖η‖C2 |xk+1 − ηpk+2(xk+2
pk+2)|

= ‖η‖C2 |xk+1 − ηpk+2(xk+2
pk+2)|,

where we applied (2.20) and (2.27). ��

2.3. Properties of tangential derivative

Aiming the regularity estimate of (1.19) without the α−weight, we establish
several properties of the tangential derivative. We summarize them in Lemma 2.5–
2.7.

Lemma 2.5. For x = ηp(xp) ∈ ∂�, we have the following equivalence:

|G(x)∇x f (x, v)|∼
∣∣∣ ∑
j=1,2

∂xp, j f (ηp(xp), v)

∣∣∣. (2.47)

Proof. By (2.23) we have

∂iηp(xp) =
√
gp,i i (xp)T t

xp ei .

Denote F(x) = ∇x f (x, v)T t
xp , we have

∑
j=1,2

∂xp, j f (ηp(xp), v)

=
√
gp,11(xp)∇x f (x, v)T t

xp e1 +
√
gp,22(xp)∇x f (x, v)T t

xp e2

=
√
gp,11(xp)Fe1 +

√
gp,22(xp)Fe2.
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We also have

G(x)∇x f (x, v) = ∇x f
(
T t
xp Txp − T t

xp e3e
t
3Txp

)

= F
(
Txp − e3e

t
3Txp

)
= F

(
I − e3 ⊗ e3

)
Txp

= (
Fe1 Fe2 0

)
Txp = Fe1

∂1ηp(xp)√
gp,11(xp)

+ Fe2
∂2ηp(xp)√
gp,22(xp)

.

Since ∂1ηp(xp) ⊥ ∂2ηp(xp),

|G(x)∇x f (x, v)|∼
∣∣∣
√
gp,11(xp)Fe1 +

√
gp,22(xp)Fe2

∣∣∣ ∼

∣∣∣ ∑
j=1,2

∂xp, j f (ηp(xp), v)

∣∣∣.

Lemma 2.6. For any s ∈ [0, tb], we have

|G(x) − G(x − sv)|� α̃(x, v)

|v| . (2.48)

Thus

|G(x)∇x f (x − sv)|� ‖wθ̃/2|v|∇‖ f ‖ + ‖wθ̃α∇x f ‖∞
|v|wθ̃/2(v)

. (2.49)

Proof. By the definition (1.14), we have

|G(x) − G(x − sv)| �
∣∣n(x − sv) ⊗ (n(x − sv) − n(x))

∣∣
+∣∣(n(x − sv) − n(x)) ⊗ n(x)

∣∣.
Then by (1.12) we have

|∇xn(x)| �
∣∣∣∇x

[
χ ′

ε/2(dist (x, ∂�))
]∣∣∣+

∣∣∣χ ′
ε/2(dist (x, ∂�))∇x

∇xξ(x)

|∇ξ(x)|
∣∣∣

� |χ ′′ × ∇xdist (x, ∂�)|

+
∣∣∣χ ′

ε/2(dist (x, ∂�))
|∇ξ(x)|∇2ξ(x) − ∇ξ(x) ⊗ ∇2ξ(x)∇ξ(x)

|∇ξ(x)|
|∇ξ(x)|2

∣∣∣

� 1 + χ ′
ε/2(dist (x, ∂�))

|∇2ξ(x)|
|∇ξ(x)| .

From (1.9) and (1.12) we have |∇ξ(x)|� 1 when dist (x, ∂�) 	 1. When
dist (x, ∂�) � 1 we take ε to be small enough such that χ ′

ε(dist (x, ∂�)) = 0.
Hence

|∇xn(x)|� ‖ξ‖C2 . (2.50)

Then we use (2.39) to have

|n(x − sv) − n(x)|� tb|v|‖ξ‖C2 � α̃(x, v)

|v| .

Thus we conclude (2.48).
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Last we prove (2.49). We rewrite

|G(x)∇x f (x − sv, v)|
= |G(x − sv)∇x f (x − sv, v) + [G(x) − G(x − sv)]∇x f (x − sv, v)|

�
‖wθ̃/2|v|∇‖ f ‖∞

|v|wθ̃/2(v)
+
∣∣∣ α̃(x, v)

|v| ∇x f (x − sv, v)

∣∣∣

�
‖wθ̃/2|v|∇‖ f ‖∞

|v|wθ̃/2(v)
+ ‖wθ̃/2α̃∇x f ‖∞

|v|wθ̃/2(v)

�
‖wθ̃/2|v|∇‖ f ‖∞ + ‖wθ̃α∇x f ‖∞

|v|wθ̃/2(v)
,

wherewe applied (1.10), andweused (1.8) to havewθ̃/2(v)α̃(x, v) � wθ̃ (v)α(x, v).

Then we conclude the lemma. ��
Lemma 2.7. For xb(x, v) = ηp1(x

1
p1

) and i = 1, 2, we have

∣∣∣G(x)∇xx1p1,i

∣∣∣ � 1, (2.51)
∣∣∣G(x)∇x tb(x, v)

∣∣∣ � 1

|v| . (2.52)

Proof. By (2.48) in Lemma 2.6 we have

∣∣∣G(x)∇xx1p1,i

∣∣∣ �
∣∣∣G(xb)∇xx1p1,i

∣∣∣︸ ︷︷ ︸
(2.53)1

+ α̃(x, v)

|v| |∇xx1p1,i |︸ ︷︷ ︸
(2.53)2

. (2.53)

By (2.33), the definition of v1
p1,3

, n(xb) in (2.26) and (1.15), we have

(2.53)1 � 1 +
∣∣∣|v|G(xb)

n(xb)

|n(xb) · v|
∣∣∣ = 1.

Again by (2.33) and using definition of α̃ in (1.8), we have

(2.53)2 � α̃(x, v)

|v| + α̃(x, v)

|v|
|v|

|n(xb) · v| � 1.

We conclude (2.51).
For (2.52) by (2.30) we have

(2.53) � 0 + α̃

|v|
1

|n(xb) · v| � 1

|v| .

We conclude (2.52). ��
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2.4. Properties of Hölder’s estimate

To prove the C1,β estimate (1.21)–(1.23) we need several C1,β estimate for xb
and tb. We summarize them in Lemma 2.8 and Lemma 2.10. Lemma 2.9 serves as
a key ingredient to prove Lemma 2.8.

Lemma 2.8. We have the following estimates:

∣∣ xb(x, v) − xb(y, v)

|x − y|β
∣∣ � 1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
, (2.54)

∣∣ tb(x, v) − tb(y, v)

|x − y|β
∣∣ � 1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
, (2.55)

|e−Cνtb(x,v) − e−Cνtb(y,v)|β
|x − y|β �

∣∣e−Cνtb(x,v) − e−Cνtb(y,v)

|x − y|β
∣∣

� 1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
,

(2.56)

∣∣n(xb(x, v)) − n(xb(y, v))

|x − y|β
∣∣ � ‖ξ‖C2

1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
, (2.57)

∣∣∇x xb(x, v) − ∇x xb(y, v)

|x − y|β
∣∣ � 1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
, (2.58)

∣∣∇x tb(x, v) − ∇x tb(y, v)

|x − y|β
∣∣ � 1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
, (2.59)

∣∣∇vxb(x, v) − ∇vxb(y, v)

|x − y|β
∣∣ � 1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
, (2.60)

∣∣∇vtb(x, v) − ∇vtb(y, v)

|x − y|β
∣∣ � 1

|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
, (2.61)

∣∣G(y)
∇x xb(x, v) − ∇x xb(y, v)

|x − y|β
∣∣ � 1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
, (2.62)

∣∣G(y)
∇x tb(x, v) − ∇x tb(y, v)

|x − y|β
∣∣ � 1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
, (2.63)

∣∣ fs(x, v) − fs(y, v)

|x − y|β
∣∣ �

‖w fs‖1−β∞ ‖wθ̃α∇x fs‖β∞
wθ̃ (v)min {α(x, v), α(y, v)}β . (2.64)
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For xb(x, v) = ηp1(x)(x
1
p1(x)

), xb(y, v) = ηp1(y)(x
1
p1(y)

)(see thedefinition (7.4)
in Section 7), i ∈ {1, 2}, we have

|x1
p1(x)

− x1
p1(y)

|
|x − y|β � 1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
, (2.65)

|Tx1
p1(x)

− Tx1
p1(y)

|
|x − y|β � 1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
, (2.66)

|∇xx1p1(x) − ∇xx1p1(y)|
|x − y|β � 1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
, (2.67)

|∇vx1p1(x) − ∇vx1p1(y)|
|x − y|β � 1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
, (2.68)

|∇vTx1
p1(x)

− ∇vTx1
p1(y)

|
|x − y|β � 1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (2.69)

When x, y ∈ ∂�,
|xb(x, v) − xb(y, v)|

|x − y| � 1, (2.70)

for θ̃ 	 1,
|Mw(x, v) − Mw(y, v)|√

μ(v)|x − y|β � w−1
θ̃

(v)‖Tw − T0‖C1 . (2.71)

For x = ηp(x)(xp(x)), y = ηp(y)(xp(y)) ∈ ∂�, and
xb(x, v) = ηp1(x)(x

1
p1(x)

), xb(y, v) = ηp1(y)(x
1
p1(y)

). For i, j ∈ {1, 2} we have
∣∣∂xp(x), j x1p1(x),i − ∂xp(y), j x

1
p1(y),i

∣∣
|x − y|β � 1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}3 . (2.72)

We need the next lemma to prove this

Lemma 2.9. Define

x(τ ) := (1 − τ)x + τ y, |ẋ(τ )|= |x − y|. (2.73)

If |x − y|� εmin{ α̃(x,v)
|v| ,

α̃(y,v)
|v| } 	 1, then

α̃(x(τ ), v) � min {α̃(x, v), α̃(y, v)} . (2.74)
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Proof. By the definition (1.8) we have

α̃2(x(τ ), v) = |∇ξ(x(τ )) · v|2−2ξ(x(τ ))(v · ∇2ξ(x(τ )) · v). (2.75)

We expand |∇ξ(x(τ )) ·v|2 and−2ξ(x(τ ))(v ·∇2ξ(x(τ )) ·v) separately: we expand
in τ as

|∇ξ(x(τ )) · v|2 = |∇ξ(x(0)) · v|2

+
∫ τ

0
dτ ′2(∇ξ(x(τ ′)) · v)ẋ(τ ) · ∇2ξ(x(τ ′)) · v

︸ ︷︷ ︸
(2.76)∗

, (2.76)

−2ξ(x(τ ))(v · ∇2ξ(x(τ )) · v) = −2ξ(x(τ )){v · ∇2ξ(x(0)) · v

+O(|x − y|)‖ξ‖C3 |v|2}, (2.77)

where we have used (2.73).
For (2.76)∗ we further expand in τ ′ and obtain

(2.75) =|∇ξ(x) · v|2+2(∇ξ(x) · v)O(|x − y|)|v|‖ξ‖C2

+
∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′ ẋ(τ ′′) · ∇2ξ(x(τ ′′)) · v ẋ(τ ′′) · ∇2ξ(x(τ ′′)) · v

(2.78)

+
∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′2(∇ξ(x(τ ′′)) · v)ẋ(τ ′′)ẋ(τ ′′)∇3ξ(x(τ ′′)) · v

− 2ξ(x(τ ))O(|v|2). (2.79)

From the convexity (1.7) we have

(2.78) + (2.79) = O(1)|ẋ |2‖ξ‖C3 |v|2 = O(ε2)min

{
α(x, v)

|v| ,
α(y, v)

|v|
}2

|v|2.
(2.80)

From (2.80) we have

(2.75) + 2ξ(x(τ ))O(|v|2) = |∇ξ(x) · v|2+O(ε)α(x, v)min {α(x, v), α(y, v)}
+ O(ε2)min {α(x, v), α(y, v)}2 .

(2.81)
Now we claim

−ξ(x(τ )) � min {−ξ(x),−ξ(y)} . (2.82)

From d
dτ (−ξ(x(τ ))) = −ẋ(τ ) · ∇xξ(x(τ )) and convexity (1.7),

d2

dτ 2
(−ξ(x(τ ))) = −ẋ(τ ) · ∇2

x ξ(x(τ )) · ˙x(τ ) � −|ẋ(τ )|2� 0.

Thus −ξ(x(τ )) is a concave function of τ . From 0 � τ � 1, we prove our
claim (2.82) as
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−ξ(x(τ )) = −ξ(x((1 − τ) · 0 + τ · 1)) � −(1 − τ)ξ(x(0)) − τξ(x(1))

= −(1 − τ)ξ(x) − τξ(y) � min {−ξ(x),−ξ(y)} .

Now combining (2.81) and (2.82) we conclude that

(2.75) � |∇ξ(x) · v|2+min {−ξ(x),−ξ(y)} |v|2
+ O(ε)α(x, v)min {α̃(x, v), α̃(y, v)} + O(ε2)min {α̃(x, v), α̃(y, v)}2 .

(2.83)
Similarly we can set x(τ ) = (1 − τ)y + τ x . From x(0) = y, following the same
argument we derive

(2.75) � |∇ξ(y) · v|2+min {−ξ(x),−ξ(y)}|v|2
+ O(ε)α̃(y, v)min {α̃(x, v), α̃(y, v)} + O(ε2)min {α̃(x, v), α̃(y, v)}2 .

(2.84)
From the definition of (1.8) using (2.83) and (2.84) we have

(2.75) � min
{
α̃(x, v), α̃(y, v)}2 − O(ε)min{α̃(x, v), α̃(y, v)

}2
.

Hence from ε 	 1 we conclude (2.74). ��
Now we start the proof of Lemma 2.8.

Proof of Lemma 2.8. For all estimates we assume |x − y|� εmin{ α̃(x,v)
|v| ,

α̃(y,v)
|v| },

otherwise the lemma follows immediately by (2.32). Thus we can apply (2.74)
during the whole proof. We will use the x(τ ) defined in (2.73).

Proof of (2.54) We have

|xb(x, v) − xb(y, v)|
|x − y|β = 1

|x − y|β
∫ 1

0
dτ

d

dτ
∇x xb(x(τ ), v)

= 1

|x − y|β
∫ 1

0
|ẋ(τ )||∇x xb(x(τ ), v)|dτ

� 1

|x − y|β−1

∫ 1

0

|v|
α̃(x(τ ), v)

� |v|β
min {α(x, v), α(y, v)}β ,

where we have used Lemma 2.9, (1.11), (2.32) and β < 1 in the last line. ��
Proof of (2.55) We have

|tb(x, v) − tb(y, v)|
|x − y|β = 1

|x − y|β
∫ 1

0
dτ

d

dτ
∇x tb(x(τ ), v)

= 1

|x − y|β
∫ 1

0
|ẋ(τ )||∇x tb(x(τ ), v)|dτ

= |x − y|1−β

∫ 1

0

1

α̃(x(τ ), v)
� |v|β

|v|min {α(x, v), α(y, v)}β ,

where we have used Lemma 2.9, (1.11), (2.32) and β < 1 in the last line.
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Proof of (2.56) The first inequality is clear since |e−Cνtb(x,v) − e−Cνtb(y,v)|� 1.
To prove the second inequality we have

|e−Cνtb(x,v) − e−Cνtb(y,v)|
|x − y|β

= 1

|x − y|β
∫ 1

0
dτ

d

dτ
e−Cνtb(x(τ ),v)

� 1

|x − y|β
∫ 1

0
dτ(νtb(x(τ ), v))e−Cνtb(x(τ ),v)|x − y| 1

|n(xb(x(τ ), v)) · v|
� |x − y|1−β 1

min {α̃(x, v), α̃(y, v)} � 1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
,

where we have used (2.32) in the second line, Lemma 2.9 and (1.11) in the last
line. ��
Proof of (2.57) Since

|n(xb(x, v)) − n(xb(y, v))|
|x − y|β = |n(xb(x, v)) − n(xb(y, v))|

|xb(x, v) − xb(y, v)|
|xb(x, v) − xb(y, v)|

|x − y|β
� ‖ξ‖C2

|xb(x, v) − xb(y, v)|
|x − y|β .

By (2.54) we derive (2.57). ��
Proof of (2.58) We have

|∇x xb(x, v) − ∇x xb(y, v)|
|x − y|β = 1

|x − y|β
∫ 1

0
dτ

d

dτ
∇x xb(x(τ ), v)

= 1

|x − y|β
∫ 1

0
|ẋ(τ )||∇x∇x xb(x(τ ), v)|dτ

� |x − y|1−β

∫ 1

0

|v|3
|α̃(x(τ ), v)|3 . (2.85)

Here we have used (2.32) to have

|∇x (∇x xb(x(τ ), v))|
�
[‖η‖C2 |v||n(xb(x(τ ), v)) · v|

|n(xb(x(τ ), v)) · v|2 + ‖η‖C2
|v||n(xb(x(τ ), v)) ⊗ v|
|n(xb(x(τ ), v)) · v|2

]

× |∇x xb(x(τ ), v)| (2.86)

� |v|2
|n(xb(x(τ ), v)) · v|2 + |v|3

|n(xb(x(τ ), v)) · v|3 � |v|3
|n(xb(x(τ ), v)) · v|3 ,

(2.87)

where we have used |n(xb(x(τ ), v))·v|� |v| in the last inequality. Then by Lemma
2.9 and (1.11) we obtain (2.58). ��
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Proof of (2.59) We have

|∇x tb(x, v) − ∇x tb(y, v)|
|x − y|β = 1

|x − y|β
∫ 1

0
dτ

d

dτ
∇x tb(x(τ ), v)

= 1

|x − y|β
∫ 1

0
|ẋ(τ )||∇x∇x tb(x(τ ), v)|dτ

� |x − y|1−β

∫ 1

0

|v|2
|α̃(x(τ ), v)|3 ,

where we have used (2.32) to conclude

|∇x (∇x tb(x(τ ), v))| � ‖η‖C2(|n(xb(x(τ ), v)) · v|)
|n(xb(x(τ ), v))|2 ∇x xb(x(τ ), v)

+ n(xb(x(τ )), v)‖η‖C2 |v|
|n(xb(x(τ ), v))|2 ∇x xb(x(τ ), v)

� |v|2
|n(xb(x(τ ), v)) · v|3 . (2.88)

Thus, by Lemma 2.9 and (1.11), we obtain (2.59). ��
Proof of (2.60) We have

|∇vxb(x, v) − ∇vxb(y, v)|
|x − y|β = 1

|x − y|β
∫ 1

0
dτ

d

dτ
∇vtb(x(τ ), v)

= 1

|x − y|β
∫ 1

0
|ẋ(τ )||∇x∇vxb(x(τ ), v)|dτ

� |x − y|1−β

∫ 1

0

|v|
|α̃(x(τ ), v)|2 ,

where we have used (2.32) and (2.39) to conclude that

|∇x∇vxb(x(τ ), v)| � |∇x tb(x(τ ), v)| + |∇x tb(x(τ ), v)| |v|
|n(xb(x(τ ), v)) · v|

+ |tb(x(τ ), v)| |∇x xb(x(τ ), v)|[‖η‖C2 |v|2 + |v|2]
|n(xb(x(τ ), v)) · v|2

� |v|
|n(xb(x(τ ), v)) · v|2 + |n(xb(x(τ ), v) · v)|

|v|2
|v|3

|n(xb(x(τ ), v)) · v|3

� |v|
|n(xb(x(τ )), v) · v|2 .

Thus, by Lemma 2.9 and (1.11), we conclude (2.60). ��
Proof of (2.61) We have

|∇vtb(x, v) − ∇vtb(y, v)|
|x − y|β = 1

|x − y|β
∫ 1

0
dτ

d

dτ
∇vtb(x(τ ), v)

= 1

|x − y|β
∫ 1

0
|ẋ(τ )||∇x∇vtb(x(τ ), v)|dτ

� |x − y|1−β

∫ 1

0

1

|α̃(x(τ ), v)|2 ,
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where we have used (2.32) and (2.39) to conclude that

|∇x∇vtb(x(τ ), v)|
� |∇x tb(x(τ ), v)| 1

|n(xb(x(τ ), v)) · v|
+ |tb(x(τ ), v)| |∇x xb(x(τ ), v)|[‖η‖C2 |v| + |v|]

|n(xb(x(τ ), v)) · v|2

� 1

|v||n(xb(x(τ ), v)) · v| + |n(xb(x(τ ), v) · v)|
|v|2

|v|2
|n(xb(x(τ ), v)) · v|3

� 1

|n(xb(x(τ )), v) · v|2 ,

Thus by Lemma 2.9 and (1.11) we conclude (2.61). ��
Proof of (2.62) From (2.85) and (2.86), we bound

|G(y)∇x (∇x xb(x(τ ), v))|
�
[ ‖η‖C2 |v|
|n(xb(x(τ ), v)) · v| + ‖η‖C2 |v||G(y)n(xb(x(τ ), v)) ⊗ v|

|n(xb(x(τ ), v)) · v|2
]
|∇x xb(τ, v)|

� |v|2
|n(xb(x(τ ), v)) · v|2 ,

where we have used

|G(y)n(xb(x(τ ), v))| � |G(y)n(y)|+|n(xb(x(τ, v))) − n(y)|
� |xb(x(τ ), v) − y|� |xb(x(τ ), v) − x(τ )|+|x(τ ) − y|
� min

{
α̃(x, v)

|v| ,
α̃(y, v)

|v|
}

. (2.89)

Thus

∣∣G(y)
∇x xb(x, v) − ∇x xb(y, v)

|x − y|β
∣∣ � |x − y|1−β

∫ 1

0

|v|2
|α̃(x(τ ), v)|2 ,

and we conclude (2.62) from (1.11). ��
Proof of (2.63) From (2.88) we have

|G(y)[∇x tb(x, v) − ∇x tb(y, v)]|
|x − y|β

� 1

|x − y|β ×
∫ 1

0
dτ
∣∣∣ ‖η‖C2

|n(xb(x(τ ), v)) · v|∇x xb(x(τ ), v)

+ ‖η‖C2 |v| G(y)n(xb(x(τ ), v))

|n(xb(x(τ ), v)) · v|2∇x xb(x(τ ), v)

∣∣∣

� 1

|x − y|β
∫ 1

0
dτ

|v|
|n(xb(x(τ ), v)) · v|2 � 1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
,

where we have used (2.89) to G(y)n(xb(x(τ ), v)) and (1.11). ��
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Proof of (2.64) By (2.74) in Lemma 2.9 we have

| fs(x, v) − fs(y, v)|
|x − y|β � wβ−1(v)‖w fs‖1−β∞

| fs(x, v) − fs(y, v)|β
|x − y|β

� wβ−1(v)‖w fs‖1−β∞
1

|x − y|β
∣∣∣
∫ 1

0
dτ ẋ(τ ) · ∇x fs(x(τ ), v)

∣∣∣β

� wβ−1(v)w
−β

θ̃
(v)‖w fs‖1−β∞ ‖w

θ̃
α∇x fs‖β∞

∣∣∣
∫ 1

0
dτ

1

α̃(x(τ ), v)

∣∣∣β

� w−1
θ̃

(v)
‖w fs‖1−β∞ ‖w

θ̃
α∇x fs‖β∞

min {α(x, v), α(y, v)}β ,

where we have used θ̃ 	 � to have

w
−β

θ̃
(v)wβ−1(v) = e|v|2[(β−1)�−βθ̃ ] � e−θ̃ |v|2 . ��

Proof of (2.65) From (2.33), (2.26) and (2.32),

∇xx1p1(x),i ∼ v · ∂iηp1(x)n(xb(x, v))

|n(xb(x, v)) · v| .

Then we apply the same computation as the proof of (2.54) to conclude (2.65). ��
Proof of (2.66) For this estimate we can assume |xb(x, v) − xb(y, v)| 	 1, other-
wise, for |xb(x, v) − xb(y, v)| � δ we use (2.54) and (2.23) to have

|Tx1
p1(x)

− Tx1
p1(y)

|
|x − y|β =

|Tx1
p1(x)

− Tx1
p1(y)

|
|xb(x, v) − xb(y, v)|β

|xb(x, v) − xb(y, v)|β
|x − y|β

� ‖η‖C1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
.

With |xb(x, v) − xb(y, v)| 	 1, we can assume that xb(x, v) and xb(y, v) cor-
respond to the same p in (2.19). Then we drop the dependency on p and write
p1(x) = p1(y) = p. The variable depend on x are x1

p1(x)
and x1

p1(y)
. Thus

|Tx1
p1(x)

− Tx1
p1(y)

|
|x − y|β =

|Tx1
p1(x)

− Tx1
p1(y)

|
|x1

p1(x)
− x1

p1(y)
|β

|x1
p1(x)

− x1
p1(y)

|β
|x − y|β � ‖η‖C2

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
,

where we have used intermediate value theorem to T in (2.23) and (2.65). ��
Proof of (2.67) Following the proof of (2.65), it is straightforward to verify that

∇x [∇xx1p1(x),i ] � |v|3
|n(xb(x, v)) · v|3 .

Then we follow the proof of (2.58) to conclude (2.67). ��
Proof of (2.68) Following the proof of (2.65), it is straightforward to verify that

∇v[∇xx1p1(x),i ] � |v|
|n(xb(x, v)) · v|2 .
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Then we follow the proof of (2.60) to conclude (2.68). ��
Proof of (2.69) The v-derivative reads as

∇v

∂iηp(x1p1(x))√
gp,i i (x1p1(x))

=
∑
j=1,2

∇vx1p1(x), j

∂i jη
√
gp,i i − ∂i jη∂iη√

gp,i i

gp,i i
.

Similar to the proof of (2.66), we can assume xb(x, v) and xb(y, v) correspond to
the same p. Then we apply (2.40), (2.65) and (2.68) to have

|∇v

∂iηp(x1p1(x)
)√

gp,i i (x1p1(x)
)
− ∇v

∂iηp(x1p1(y)
)√

gp,i i (x1p1(y)
)
|

|x − y|β �
∑
j=1,2

|∇vx1p1(x), j − ∇vx1p1(y), j |
|x − y|β

+ 1

|v|
|x1

p1(x)
− x1

p1(y)
|

|x − y|β
1

|x1
p1(x)

− x1
p1(y)

|β

×
[∂i jηp(x1p1(x))

√
gp,i i (x1p1(x)) − ∂i jηp(x1p1(x)

)∂iηp(x1p1(x)
)√

gp,i i (x1p1(x)
)

gp,i i (x1p1(x))

−
∂i jηp(x1p1(y))

√
gp,i i (x1p1(y)) − ∂i jηp(x1p1(y)

)∂iηp(x1p1(y)
)√

gp,i i (x1p1(y)
)

gp,i i (x1p1(y))

]

� ‖η‖C3

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
.

In the last line we used intermediate value theorem for ∂i jη. By definition of T in
(2.23) we conclude (2.69). ��
Proof of (2.70) Since |x − y|	 1, we can assume that x, y ∈ B(p; δ2), where
B(p; δ2) is defined in (2.19). Then both x, y correspond to the same p. Only for
proof of this estimate we denote

x = ηp(xp(x)), y = ηp(xp(y)),

ηp(xp(τ )) := τηp(xp(x)) + (1 − τ)ηp(xp(y)).

By mean value theorem, there exists c ∈ [0, 1] such that

x − y = ηp(xp(x)) − ηp(xp(y)) = ∇ηp
(
cxp(x) + (1 − c)xp(y)

)(
xp(x) − xp(y)

)
.

Thus

|xb(ηp(xp(x)), v) − xb(ηp(xp(y)), v)|
|x − y|

= 1

|x − y|
∣∣
∫ 1

0
dτ

d

dτ
xb(ηp(xp(τ )), v)

∣∣
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= 1

|x − y|
∣∣ ∫ 1

0
dτ∇x xb(ηp(xp(τ )), v)

d

dτ
ηp(xp(τ ))

∣∣

= 1

|x − y|
∫ 1

0
dτ∇x xb(ηp(xp(τ )), v)∇ηp

(
cxp(x) + (1 − c)xp(y)

)(
xp(x) − xp(y)

)

� |xp(x) − xp(y)|
|x − y|

∣∣∣
∫ 1

0
dτ∇xηp

(
cxp(x) + (1 − c)xp(y)

)

− n(xb(ηp(xp(τ )), v)) ⊗ v

|n(xb(ηp(xp(τ )), v)) · v|∇ηp
(
cxp(x) + (1 − c)xp(y)

)∣∣∣

� ‖η‖C1 + n(ηp
(
cxp(x) + (1 − c)xp(y)

)
)∇ηp

(
cxp(x) + (1 − c)xp(y)

)|v|
|n(xb(ηp(xp(τ )), v)) · v|

+ |v|[n(ηp
(
cxp(x)(1 − c)xp(y)

)
) − n(xb(ηp(xp(τ )), v))]

|n(xb(ηp(xp(τ )), v)) · v|
� 1 + ‖ξ‖C2 |xb(ηp(xp(τ )), v) − ηp(xp(τ ))|

|n(xb(ηp(xp(τ )), v)) · v|

+ |ηp(xp(τ )) − ηp
(
cxp(x) + (1 − c)xp(y)

)|
|n(xb(ηp(xp(τ )), v)) · v|

� 1 + α(n(xb(ηp(xp(τ ))), v)) + |v||x − y|
|n(xb(ηp(xp(τ )), v)) · v| � 1.

In the fourth line we have used (2.32). In the last three lines we have used (2.48)
and |x − y|� O(ε)min{ α̃(x,v)

|v| ,
α̃(y,v)

|v| }. ��
Proof of (2.71) Since ‖Tw −T0‖∞ 	 1 from Existence Theorem, by the definition
of Mw in (1.4) we apply the mean value theorem to have

|Mw(x, v) − Mw(y, v)|√
μ(v)|x − y|β � |Mw(x, v) − Mw(y, v)|√

μ(v)|x − y| �
∥∥∥∇x Mw(x, v)√

μ(v)

∥∥∥
L∞
x

�T0

∥∥∥∇x Tw|v|2 Mw(x)√
μ(v)

∥∥∥
L∞
x

� w−1
θ̃

(v)‖Tw − T0‖C1 .

��
Proof of (2.72) From (1.6) it is equivalent to compute

|∂ jηp(x)(xp(x))∇xx1p1(x),i − ∂ jηp(y)(xp(y))∇xx1p1(y),i |
|x − y|β

�
|∂ jηp(x)(xp(x)) − ∂ jηp(y)(xp(y))||∇xx1p1(x),i |

|x − y|β

+
∣∣∂ jηp(x)(xp(x))[∇xx1p1(x),i − ∇xx1p1(y),i ]

∣∣
|x − y|β

� ‖η‖C2 |v|
α(x, v)

+ ‖η‖C1

|∇xx1p1(x),i − ∇xx1p1(y),i |
|x − y|β ,

where we have used (2.34). Denote xb(x(τ ), v) = ηp1(x(τ ))(x
1
p1(x(τ ))

). Then
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d

dτ

(∇xx1p1(x(τ )),i

) = d

dτ
x(τ )∇x(τ )∇xx1p1(x(τ )),i

= d

dτ
x(τ )∇x(τ )x1p1(x(τ ))

∇x1
p1(x(τ ))

∇xx1p1(x(τ )),i .

Applying (2.33), we further bound

|∇xx1p1(x),i − ∇xx1p1(y),i |
|x − y|β

= 1

|x − y|β
∣∣∣
∫ 1

0
dτ

d

dτ

(∇xx1p1(x(τ )),i

)∣∣∣

= 1

|x − y|β
∫ 1

0
dτ |ẋ(τ )||∇x(τ )x1p1(x(τ ))

∇x1
p1(x(τ ))

∇xx1p1(x(τ )),i |

�
|∇xx1p1(x(τ ))

|
gp1(x(τ )),i i (x

1
p1(x(τ ))

)
‖η‖C2

[ 1

gp1(x(τ )),i i (x
1
p1(x(τ ))

)

+ |v|2
|n(xb(x(τ ), v)) · v|2gp1(x(τ )),33(x

1
p1(x(τ ))

)

]

�η

|v|3
α3(x(τ ), v)

� 1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}3 .

In the third line we have applied the derivative to (2.33). In the fourth line we have
used (1.11) and |∇xx1p1 |� |v|

|n(xb(x(τ ),v))·v| from (2.33). ��
Lemma 2.10. For any s ∈ [0,min(tb(x, v), tb(y, v))], we have
∣∣∣G(x)∇x fs(x − sv, v) − G(y)∇x fs(y − sv, v)

|x − y|β
∣∣∣

�
∣∣∣∇‖ fs(x − sv, v) − ∇‖ fs(y − sv, v)

|x − y|β
∣∣∣

+ α̃(x, v)

|v|
∣∣∣∇x fs(x − sv, v) − ∇x fs(y − sv, v)

|x − y|β
∣∣∣+ ‖wθ̃α∇x fs‖∞

wθ̃ (v)α(y − sv, v)
.

(2.90)

Proof. First we rewrite

G(x)∇x fs(x − sv, v) − G(y)∇x fs(y − sv, v)

= G(x − sv)∇x fs(x − sv, v) − G(y − sv)∇x fs(y − sv, v) (2.91)

+ (
G(x) − G(x − sv)

)∇x fs(x − sv, v) (2.92)

+ (
G(y − sv) − G(y)

)∇x fs(y − sv, v). (2.93)

Note that from (1.13) the contribution of (2.91) appears in (2.90) .
For (2.92) and (2.93) we apply (2.48) and rearrange terms to derive that
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|[G(x) − G(x − sv)]∇x fs(x − sv, v) − [G(y) − G(y − sv)]∇x fs(y − sv, v)|
= |[G(x) − G(x − sv)][∇x fs(x − sv, v) − ∇x fs(y − sv, v)]

+ [G(x) − G(y) + G(y − sv) − G(x − sv)]∇x fs(y − sv, v)|
� α̃(x, v)

|v| |∇x fs(x − sv, v) − ∇x fs(y − sv, v)|

+ |n(x) − n(y) + n(y − sv) − n(x − sv)| ‖α∇x fs‖∞
α(y − sv, u)

. (2.94)

Applying mean value theorem to n(x) − n(y), n(x − sv) − n(x − sv) with (2.50),
we conclude the lemma. ��

2.5. Properties of boundary condition and collision operators

In this subsectionwe list someproperties of the boundary condition and collision
operators. We summarize the property of diffuse boundary condition in Lemma
2.11. The property of the collision operator is summarized in Lemma 2.12 and
Lemma 2.13.

Lemma 2.11. For the diffuse boundary condition of f in (2.4), let xb(x, v) =
ηp1(x)(x

1
p1(x)

) ∈ ∂� ( see (7.4) ), we have

‖r‖∞ < ∞, |∂x1
p1,i

r(ηp1(x
1
p1), v)|� ‖TW − T0‖C1 , (2.95)

||v|2∇v[r(xb(x, v), v)]|� ‖TW − T0‖C1 ,

∣∣∣wθ̃ (v)|v|2
∂x1

p1(x),i
r(ηp1(x)(x

1
p1(x)

), v) − ∂x1
p1(y),i

r(ηp1(y)(x
1
p1(y)

), v)

|xb(x, v) − xb(y, v)|β
∣∣∣ (2.96)

� ‖TW − T0‖C2 ,

∣∣∣wθ̃ (v)|v|2
∂x1

p1(x),i
MW (ηp1(x)(x

1
p1(x)

), v) − ∂x1
p1(y),i

MW (ηp1(y)(x
1
p1(y)

), v)

√
μ(v)|xb(x, v) − xb(y, v)|β

∣∣∣
� ‖TW − T0‖C2 , (2.97)

1

|xb(x, v) − xb(y, v)|β
×
∣∣∣
∫
n(xb(x,v))·v1>0

f (xb(x, v), v1)
√

μ(v1){n(xb(x, v)) · v1}dv1

−
∫
n(xb(y,v))·v1>0

f (xb(y, v), v1)
√

μ(v1){n(xb(y, v)) · v1}dv1
∣∣∣

� ‖wθ̃α∇x f ‖∞. (2.98)

Proof. From (2.6), it is straightforward to derive the estimate for ‖r‖∞. We take
derivative to r to obtain

|∂x1
p1,i

r(ηp1(x
1
p1), v)|
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=
∣∣∣∂iηp1(x

1
p1

)
√
2πμ(v)

∇x

( 1

2π [TW (xb(x, v))]2 e
− |v|2

2TW (xb(x,v))

)∣∣∣

=
∣∣∣∂iηp1(x

1
p1

)∇x TW (xb(x, v))
√
2πμ

( −1

π [TW (xb(x, v))]3 + |v|2
4π [TW (xb(x, v))]4

)

× e
− |v|2

2TW (xb(x,v))

∣∣∣
�T0 ‖TW − T0‖C1 , (2.99)

where we have used ‖TW − T0‖∞ 	 1 from Existence Theorem. Here we note
that the ∇x above represents the partial derivative.

Then we take v derivative to have

|∇vr(xb(x, v), v)|

= |∇v

MW√
2πμ

− ∇v
√

μ|�
∣∣∣∇v

e
− |v|2

2TW (xb(x,v))

√
μ(v)[TW (xb(x, v))]2

∣∣∣

� ‖TW − T0‖C1
1

μ(v)
×
∣∣∣∇ve

− |v|2
2TW (xb(x,v))

√
μ(v)

+ ∇v[
√

μ(v)T 2
W (xb(x, v))]e− |v|2

2TW (xb(x,v))

∣∣∣
� ‖TW − T0‖C1

1

μ(v)
× e

− |v|2
2TW (xb(x,v))

√
μ(v)|v|2|∇vxb(x, v)|

� ‖TW − T0‖C1
e
− |v|2

2TW (xb(x,v)) |v|√
μ(v)

, (2.100)

where we have used (2.40) in the last line. Since the coefficient for |v|2 in exponent
is negative, we conclude (2.95).

For (2.96) from (2.99) we apply the mean value theorem to bound

|∂iηp1(x)(x
1
p1(x)

) − ∂iηp1(y)(x
1
p1(y)

)|
|xb(x, v) − xb(y, v)|β � ‖η‖C2 ,

|∇x TW (xb(x, v)) − ∇x TW (xb(y, v))|
|xb(x, v) − xb(y, v)|β � ‖∇2

x TW‖∞,

wθ̃ (v)|v|2
∣∣e− |v|2

2TW (xb(x,v)) − e
− |v|2

2TW (xb(y,v))
∣∣

|xb(x, v) − xb(y, v)|β � ‖∇x TW‖∞,

wθ̃ (v)|v|2
∣∣∣

−1
π [TW (xb(x,v))]3 + 1

π [TW (xb(y,v))]3 + |v|2
4π [TW (xb(x,v))]4 − |v|2

4π [TW (xb(x,v))]4
|xb(x, v) − xb(y, v)|β

∣∣∣

× e
− |v|2

2TW (xb(x,v))

� ‖TW‖C1 |v|4e− |v|2
2TW (xb(x,v)) � ‖∇2

x TW‖∞,
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and thus (2.96) follows from θ̃ 	 1
TW (x) .

Since ∂x1
p1,i

r(ηp1(x
1
p1

), v) = 1√
2π

∂x1
p1,i

MW (ηp1(x
1
p1

), v), (2.97) also follows.

Last we prove (2.98). We rewrite the LHS of (2.98) as

1

|xb(x, v) − xb(y, v)|β ×
[ ∫

n(xb(x,v))·v1>0,n(xb(y,v))·v1>0
dv1

f (xb(x, v), v1)

√
μ(v1)|n(xb(x, v)) · v1|− f (xb(y, v), v1)

√
μ(v1)|n(xb(y, v)) · v1|

]
(2.101)

+

∫
|n(xb(x,v))−n(xb(y,v))|� n(xb(x,v))·v1

|v1| >0
f (xb(x, v), v1)

√
μ(v1)|n(xb(x, v)) · v1|

|xb(x, v) − xb(y, v)|β

+

∫
|n(xb(x,v))−n(xb(y,v))|� n(xb(x,v))·v1

|v1| >0
f (xb(y, v), v1)

√
μ(v1)|n(xb(y, v)) · v1|

|xb(x, v) − xb(y, v)|β .

(2.102)

Clearly from (2.64) and (2.57), we have

|(2.101)| �
∫
n(xb(x,v))·v1>0,n(xb(y,v))·v1>0

dv1

[ ‖w f ‖1−β∞ ‖wθ̃α∇x f ‖β∞
√

μ(v1)

min
{
α(xb(x, v), v1), α(xb(y, v), v1)

}β + ‖η‖C2‖w f ‖∞
√

μ(v1)
]

� ‖wθ̃α∇x f ‖∞ + ‖w f ‖∞,

where we have used Young’s inequality with 1− β + β = 1 and definition of α in
(1.8) with β < 1.

For (2.102), from (2.57) we bound
∫
|n(xb(x,v))−n(xb(y,v))|� n(xb(x,v))·v1

|v1| >0
f (xb(x, v), v1)

√
μ(v1)|n(x) · v1|

|xb(x, v) − xb(y, v)|β
� |n(xb(x, v)) − n(xb(y, v))|

|xb(x, v) − xb(y, v)|β
∫

f (xb(x, v), v1)
√

μ(v1)|v1|� ‖w f ‖∞.

Then we conclude the lemma. ��
Aside from the boundary condition, we also need to estimate the collision

operator. The next two lemmas describe the properties of the collision operator K
and �.

Lemma 2.12. The linear Boltzmann operator K ( f ) in (2.5) is given by

K f (x, v) =
∫
R3

k(v, u) f (x, u)du.

The kernel k(v, u) satisfies:

|k(v, u)|� k�(v, u), |∇uk(v, u)|
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� 〈u〉k�(v, u)/|v − u|, k�(v, u) := e−�|v−u|2/|v − u|. (2.103)

And for 3 > c � 0, ∫
R3

k�(v, u)
1

|u|c du � 1

|v|c . (2.104)

Moreover, for the operator ν and � in (2.5), we have

|K ( f ) + �( f, f )|= O(1)‖w f ‖∞, (2.105)

ν = O(
√

|v|2+1) � 1, |∇vν|� 1, (2.106)

|∇v�( f, f )|� ‖w f ‖2∞
|v|2 + ‖w f ‖∞‖|v|2∇v f ‖∞

|v|2 , (2.107)

|∇x�( f, f )(v)|= O(‖w f ‖∞)
{
|∇x f (v)|+

∫
R3

k�(v, u)|∇x f (u)|du
}
, (2.108)

|G(x)∇x�( f, f )(x, v)|= O(‖w f ‖∞){|G(x)∇x f (x, v)|
+
∫
R3

k�(v, u)|G(x)∇x f (x, u)|}. (2.109)

Proof of (2.103) We define

�gain( f1, f2) = Qgain(
√

μ f1,
√

μ f2)√
μ

, �loss( f1, f2) = Qloss(
√

μ f1,
√

μ f2)√
μ

,

(2.110)
where Qgain, Qloss are defined in (1.2).

By the Grad estimate in [12],

�gain(
√

μ, f ) + �gain( f,
√

μ) =
∫
R3

k2(v, u) f (u)du, (2.111)

ν(
√

μ f ) =
∫
R3

k1(v, u) f (u)du,

where

k1(v, u) = Ck1 |u − v|e− |v|2+|u|2
2 , (2.112)

k2(v, u) = Ck2
1

|u − v|e
− 1

4 |u−v|2− 1
4

(|u|2−|v|2)2

|u−v|2 . (2.113)

We compute the derivative:

|∇uk1(v, u)|� e− |u|2+|v|2
2 + |u||u − v|e− |u|2+|v|2

2 � e− |v−u|2
4 � e−�|v−u|2

|v − u|2 .

And

|∇uk2(v, u)| � 1

|v − u|2 e
− 1

4 |v−u|2 + 1

|v − u|e
− 1

4 |v−u|2− 1
4

(|u|2−|v|2)2

|v−u|2
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×
[
|v − u|+

|u|
∣∣∣|u|2−|v|2

∣∣∣|v − u|2−(|u|2−|v|2)2|v − u|
|v − u|4

]

� e−�|v−u|2〈u〉
|v − u|2 ,

where we have used

e
− 1

4
(|u|2−|v|2)2

|v−u|2
|u|
∣∣∣|u|2−|v|2

∣∣∣|v − u|2
|v − u|4 � |u|

|v − u| ,

e
− 1

4
(|u|2−|v|2)2

|v−u|2 (|u|2−|v|2)2|v − u|
|v − u|4 � 1

|v − u| .
��

Proof of (2.104) We consider two cases. When |u|> |v|
2 , we have

∫
|u|> |v|

2

k�(v, u)
1

|u|c du �
∫

|u|> |v|
2

e−�|v−u|2

|v − u|
1

|u|c du

� 1

|v|c
∫
R3

e−�|v−u|2

|v − u| du � 1

|v|c .

When |u|� |v|
2 we bound |v − u|� |v|

2 , and thus

∫
|u|� |v|

2

k(v, u)
1

|u|c du � e−�|v|2/2

|v|
∫

|u|� |v|
2

1

|u|c du

� e−�|v|2/2

|v|
∫
0�r� |v|

2

∫
∂B(0,r)

dS
1

|r |c dr

� e−�|v|2/2

|v| |v|3−c � e−�|v|2/2|v|2
|v|c � 1

|v|c .

In the second line we used the polar coordinate with |u|= r . In the third line we
used c < 3 to compute the r integral.

Then we conclude (2.104). ��
Proof of (2.105) For K ( f ) we bound

K ( f ) � ‖ f ‖∞
∫
R3

|k(v, u)|du � ‖ f ‖∞ � ‖w f ‖∞,

where we have used |k(v, u)|� k�(v, u) ∈ L1
u .

For �, clearly

|�gain( f, f )| � |�gain(e
−�|v|2 , | f |)|×‖w f ‖∞. (2.114)

By (2.111) we bound |�gain(e−�|v|2 , | f |)| using different exponent of k2(v, u), we
conclude that

�gain( f, f ) � ‖w f ‖2∞ � ‖w f ‖∞.
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For the other term we bound

|ν(
√

μ f ) f (v)| � ‖w f ‖∞
∫
R3

|v − u|e−�|v|2√μ(u)| f (u)|

� ‖w f ‖2∞
∫
R3

|v − u|e−C|v−u|2 � ‖w f ‖∞, (2.115)

where we have used

e−�|v|2e−�|u|2 � e−C(|v|2+|u|2) � e−C
2 |v−u|2 . ��

The proof for (2.106) is standard (see Chapter 3 in [12]).
Proof of (2.107) The velocity derivative for the nonlinear Boltzmann operator reads

∇v�( f, f ) = ∇v

(
�gain( f, f ) − �loss( f, f )

)
= �gain(∇v f, f ) + �gain( f,∇v f ) − �loss(∇v f, f ) − �loss( f,∇v f ) (2.116)

+ �v,gain( f, f ) − �v,loss( f, f ). (2.117)

Here we have defined

�v,gain( f, f ) − �v,loss( f, f )

:=
∫
R3

∫
§2

|u · ω| f (v + u⊥) f (v + u‖)∇v

√
μ(v + u)dωdu

−
∫
R3

∫
§2

|u · ω| f (v + u) f (v)∇v

√
μ(v + u)dωdu. (2.118)

From (2.114) we have

|�gain( f, ∂v f ) + �gain(∂v f, f )|� ‖w f ‖∞
∫
R3

e−�|v−u|2

|v − u| |∂v f |du. (2.119)

For |ν(
√

μ∂v f ) f (v)| we have

|ν(
√

μ∂v f ) f (v)| � ‖w f ‖∞e−�|v|2ν(
√

μ∂v f )(v)

� ‖w f ‖∞
∫
R3

|v − u|e−�|v|2√μ(u)|∂v f (u)|

� ‖w f ‖∞
∫
R3

e−�|v−u|2

|v − u| |∂v f (u)|du, (2.120)

where we have used e−�|v|2 |v − u|√μ(u) � e−�|v−u|2
|v−u| .

Then we combine (2.119) and (2.120), and use (2.104) with c = 2 to conclude

(2.116) � ‖w f ‖∞
∫
R3

e−�|v−u|2

|v − u| |∇v f |

� ‖w f ‖∞‖|v|2∇v f ‖∞
∫
R3

e−�|v−u|2

|v − u|
1

|u|2
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� ‖w f ‖∞
‖|v|2∇v f ‖∞

|v|2 .

Then we further compute

(2.117) � ‖w f ‖2∞
∫
R3

|u|[e−�|v+u⊥|2e−�|v+u‖|2 + e−�|v+u|2e−�|v|2 ]e− |v+u|2
2

� ‖w f ‖2∞
∫
R3

|u|e−c|v|2e−c|u|2du

� ‖w f ‖2∞
|v|2e−c|v|2

|v|2 � ‖w f ‖2∞
|v|2 ,

where we have used

e−�|v+u⊥|2e−�|v+u‖|2 = e−(�|v|2+2v·(u⊥+u‖)+�|u|2)e−�|v|2

= e−�|v+u|2e−�|v|2 ,

and

e−�|v+u|2e−�|v|2 = e−�|v|2/2e−�(3|v|2/2+2v·u+|u|2)

= e−�|v|2/2e−�(
√
3/2v+√

2/3u)2e−u2/3.

��
Proof of (2.108) Replacing the ∇v by ∇x in (2.119) and (2.120), we have

|�gain( f, ∂x f ) + �gain(∂x f, f )|� ‖w f ‖∞
∫
R3

e−�|v−u|2

|v − u| |∂x f |du,

|ν(
√

μ∂x f ) f (v)| � ‖w f ‖∞
∫
R3

e−�|v−u|2

|v − u| |∂x f (u)|du.

��
Proof of (2.109) Since

G(x)∇x�( f, f )(x, v) = G(x)�(∇x f, f ) + G(x)�( f,∇x f )

= �(G(x)∇x f, f ) + �( f,G(x)∇x f ), (2.121)

from (2.108), we conclude (2.109). ��
Lemma 2.13. If 0 < θ̃

4 < � and if 0 < �̃ < � − θ̃
4 ,

k
eθ̃ |v|2

eθ̃ |u|2 � k�̃(v, u), (2.122)

where k is defined in (2.103). Also,

|∇vk(v, u)|e
θ̃ |v|2

eθ̃ |u|2 �
〈v〉k�̃(v, u)

|v − u| . (2.123)

As a consequence, when θ̄ 	 �, we have

wθ̄ (v)|K ( f ) + �( f, f )|� ‖wθ̄ f ‖∞ � ‖w f ‖∞. (2.124)
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Proof of (2.122) Note that the k in (2.103) equals to k1(v, u)+k2(v, u) in (2.112),
(2.113), then

k(v, u)
eθ̃ |v|2

eθ̃ |u|2 � 1

|v − u| exp
{
−�|v − u|2−�

||v|2 − |u|2|2
|v − u|2 + θ̃ |v|2 − θ̃ |u|2

}
.

Let v − u = η and u = v − η. Then the exponent equals

−�|η|2−�
||η|2−2v · η|2

|η|2 − θ̃{|v − η|2−|v|2}

= −2�|η|2+4�v · η − 4�
|v · η|2
|η|2 − θ̃{|η|2−2v · η}

= (−2� − θ̃ )|η|2+(4� + θ̄ )v · η − 4�
{v · η}2

|η|2 .

If 0 < θ̃ < 4� then the discriminant of the above quadratic form of |η| and v·η
|η| is

(4� + θ̄ )2 − 4(−2� − θ̃ )(−4�) = 4θ̃2 − 16�θ̃ < 0.

Hence, the quadratic form is negative definite. We thus have, for 0 < �̃ < � − θ̃
4 ,

the following perturbed quadratic form is still negative definite:−(�−�̃)|η|2−(�−
�̃)

||η|2−2v·η|2
|η|2 − θ̃{|η|2−2v · η} � 0. ��

Proof of (2.123) Taking the derivative to (2.112) and (2.113) we have

∇vk1(v, u) = v − u

|v − u|k1(v, u) − vk1(v, u),

∇vk2(v, u) = v − u

|v − u|2 k2(v, u)

− k2(v, u)
[v − u

2
+ v(|u|2 − |v|2)|v − u|2 − (|u| − |v|2)2|v − u|

2|v − u|4
]
.

Thus

|∇vk(v, u)
eθ̃ |v|2

eθ̃ |u|2 | �
[ 1

|v − u| + |v − u| + 〈v〉][k1(v, u) + k2(v, u)]e
θ̃ |v|2

eθ̃ |u|2

�
[ 1

|v − u| + |v − u| + 〈v〉]k�̃(v, u) � 〈v〉kc(v, u)

|v − u|
for c < �̃. In the last line we have applied (2.122). ��
Proof of (2.124) By Lemma 2.12, we have

|wθ̄ (v)K f | �
∫
R3

k�(v, u)
wθ̄ (v)

wθ̄ (u)
wθ̄ (u)| f (u)|du

� ‖wθ̄ f ‖∞
∫
R3

k�̃(v, u)du � ‖wθ̄ f ‖∞, (2.125)

where we have used k�̃(v, u) ∈ L1
u .
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For �, we follow (2.114) and have

wθ̄ (v)|�gain( f, f )| � ‖w f ‖∞wθ̄ (v)|�gain(e
−θ |v|2 , f )|� ‖wθ̄ f ‖∞,

here we bound |�gain(e−θ |v|2 , f )| using different exponent of k2(v, u) in (2.111),
and we apply the same computation as (2.125) to have

wθ̄ (v)|�gain(e
−θ |v|2 , f )|� wθ̄ (v)

∫
R3

k�(v, u)| f (u)|� ‖wθ̄ f ‖∞.

For the other term we follow (2.115) to have

wθ̄ (v)|ν(
√

μ f ) f (v)| � ‖w f ‖∞
∫
R3

|v − u|e−(�−θ̄ )|v|2√μ(u)| f (u)|� ‖wθ̄ f ‖∞.

��

3. Differentiation Along the Stochastic Cycles: Mixing via Diffuse Reflection
and Transport

The main purpose of this section is to provide crucial differentiation form of
the transport equation with the diffuse reflection boundary condition, which will
be stated in Proposition 1. Several geometric integration by parts will be employed
as being described in Section 1.3.

Consider a sequence of linear transport equation for � � 1 with the inflow
boundary condition

v · ∇x f
� + ν(v) f � = h�(x, v), (x, v) ∈ � × R

3, (3.1)

f �(x, v) = g�(x, v), (x, v) ∈ γ−. (3.2)

Here we set f 0 = 0.
Later we will substitute the h� by the sequence of collision operator defined as

h�(x, v) := K ( f �−1) + �( f �−1, f �−1), (3.3)

and g� by the sequence of boundary condition:

f �(x, v)|γ− = MW (x, v)√
μ(v)

∫
n(x)·v1>0

f �−1(x, v1)
√

μ(v1){n(x) · v1}dv1 + r(x, v),

(3.4)
where r(x, v) is defined in (2.6).

Note that from the collision operator (3.3) and boundary condition (3.4) and
f 0 = 0,

h1(x, v) = 0, g1(x, v) = r(x, v).

We have the following expansion:
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Proposition 1. Suppose f solves inhomogeneous steady transport equation (3.1)
with the diffuse BC (3.4). Then

wθ̃ (v)∂xi f
�(x, v)

= O(1)wθ̃ (v)
ni (x1)

α(x, v)

×
{

ν(v)

wθ̄ (v)
‖wθ̄ f

�‖L∞(∂�) + |v|MW (x1, v)√
μ(v)

‖wθ̄ f
�−1‖L∞(∂�) (3.5)

+ |v||∇x1r(x
1)|(1 + ‖wθ̄ f

�−1‖L∞(∂�))

}

+ O(1)

α(x, v)
e−ν(v)t (wθ̃α∂xi f

�)(x − tv, v) (3.6)

+
∫ t

max{0,t−tb}
e−ν(v)(t−s)wθ̃ (v)∂xi h

�(x − (t − s)v, v)︸ ︷︷ ︸
(3.7)∗

ds (3.7)

+ O(1)e−ν(v)tb ni (x
1)|v|

α(x, v)

wθ̃ (v)MW (x1, v)√
μ(v)

∫
n(x1)·v1>0

dv1{n1 · v1}
√

μ(v1)

(3.8)

×
{
e−ν(v1)t1 1

α(x1, v1)
(α∇x1 f

�−1)(x1 − t1v1, v1) (3.9)

+
∫ t1

max{0,t1−t1b }
e−ν(v1)(t1−s1)∇x1 h

�−1(x1 − (t1 − s1)v1, v1)︸ ︷︷ ︸
(3.10)∗

ds1
}
. (3.10)

Here θ̄ > θ̃ , ∇x1a(x1 + ·) stands the tangential derivative ∇x1
p1

[a(ηp1(x
1
p1

) + ·)]
in a local coordinate of (1.6) as in (2.29).

To estimate the trace of f � in (3.5), we need the following lemma:

Lemma 3.1. (Theorem (9.2.1) in [5])For f � satisfying (3.1), we have the following
property for the trace of f �:

‖ f �‖L∞(∂�) � ‖ f �‖∞ + ‖h�‖∞. (3.11)

The following lemma is a direct consequence of Lemma 3.1

Lemma 3.2. Let h�(x, v) := K ( f �−1) + �( f �−1, f �−1), then the trace of f � is
well-defined. Moreover, for some θ̄ > θ̃ , we have

‖ f �‖L∞(∂�) � ‖wθ̄ f
�‖L∞(∂�) � ‖w f �‖∞ + ‖w f �−1‖∞. (3.12)

Proof. wθ̄ f
� satisfies

v · ∇x (wθ̄ f
�) + ν(v)(wθ̄ f

�) = wθ̄h
�(x, v).
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Applying Lemma 3.1 to the above equation, we have

‖wθ̄ f
�‖L∞(∂�) � ‖wθ̄ f

�‖∞ + ‖wθ̄h
�‖∞

� ‖w f �‖∞ + ‖w f �−1‖∞,

where we have applied (2.124) to h�. ��
Proof of Proposition 1. Consider f � solves (3.1) and (3.4). Choose t � 1. Recall
(2.29). Same as (2.10)–(2.13), for k � 1, n(xk

pk
) · vk > 0, and i = 1, 2, or k = 0

with i = 1, 2, 3,

wθ̃ (v
k)∂xk

pk ,i
[ f �(ηpk (x

k
pk ), v

k)]

= 1tk�tkb
e−νk tkbwθ̃ (v

k)∂xk
pk ,i

[ f �(xb(ηpk (x
k
pk ), v

k), vk)] (3.13)

− 1tk�tkb
νk∂xk

pk ,i
t kbe

−νk tkbwθ̃ (v
k) f �(xb(ηpk (x

k
pk ), v

k), vk) (3.14)

+ 1tk<tkb
e−νk tkwθ̃ (v

k)∂xk
pk ,i

[ f �(ηpk (x
k
pk ) − tkvk, vk)] (3.15)

+
∫ tk

max{0,tk−tkb }
e−νk (tk−sk )wθ̃ (v

k)∂xk
pk ,i

[h�(ηpk (x
k
pk ) − (tk − sk)vk, vk)]dsk

(3.16)

+ ∂xk
pk ,i

t kbe
−νk tkbwθ̃ (v

k)h�(xb(ηpk (x
k
pk ), v

k), vk), (3.17)

where we denoted νk = ν(vk).

Estimate of (3.13). From (3.4) and (2.25) with replacing f by f �, for k � 1
with i = 1, 2, or k = 0 with i = 1, 2, 3, if xb(ηpk (x

k
pk

), vk) ∈ Opk+1 then

wθ̃ (v
k)∂xk

pk ,i
[ f �(xb(ηpk (x

k
pk ), v

k), vk)]

=
∑
j=1,2

∂xk+1
pk+1, j

∂xk
pk ,i

wθ̃ (v
k)∂xk+1

pk+1, j
[ f �(ηpk+1(xk+1

pk+1), v
k)] (3.18)

=
∑
j=1,2

∂xk+1
pk+1, j

∂xk
pk ,i

[wθ̃ (v
k)MW (ηpk+1(xk+1

pk+1), v
k)√

μ(vk)

×
∫
vk+1
pk+1,3

>0

√
μ(vk+1

pk+1)v
k+1
pk+1,3

dvk+1
pk+1 (3.19)

× ∂xk+1
pk+1, j

[ f �−1(ηpk+1(xk+1
pk+1), T

t
xk+1
pk+1

vk+1
pk+1)]

︸ ︷︷ ︸
(3.19)∗

+ O(1)
∑
j=1,2

wθ̃ (v
k)∂xk+1

pk+1, j
r(ηpk+1(xk+1

pk+1), v
k){1 + ‖ f �−1‖L∞(∂�)}

]
. (3.20)
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Note that the above equalities for k = 0 gives an identity of ∂xi [ f �(xb(x, v), v)].
It is relatively simple to derive that, from (2.34),

(3.20) = O(1)|wθ̃r(x
k+1)|{1 + ‖wθ̄ f

�−1‖L∞(∂�)}. (3.21)

Now we consider (3.19). We compute (3.19)∗ = (2.29)(k,i,a)→(k+1, j, f �−1) +
(3.22). Here (3.22) is given by

(
∂xk+1

pk+1, j
T t
xk+1
pk+1

vk+1
pk+1

)
· ∇v f

�−1(ηpk+1(xk+1
pk+1), T

t
xk+1
pk+1

vk+1
pk+1)

=
∑
l,m

∂

∂xk+1
pk+1, j

⎛
⎝ ∂mηpk+1,l(x

k+1
pk+1)√

gpk+1,mm(xk+1
pk+1)

⎞
⎠ vk+1

pk+1,m

× ∂vl f
�−1(ηpk+1(xk+1

pk+1), T
t
xk+1
pk+1

vk+1
pk+1)

=
∑
m,n

(3.23)mnv
k+1
pk+1,m

∂vk+1
pk+1,n

[ f �−1(ηpk+1(xk+1
pk+1), T

t
xk+1
pk+1

vk+1
pk+1)], (3.22)

where

(3.23)mn :=
∑
l

∂

∂xk+1
pk+1, j

⎛
⎝ ∂mηpk+1,l(x

k+1
pk+1)√

gpk+1,mm(xk+1
pk+1)

⎞
⎠ ∂nηpk+1,l(x

k+1
pk+1)√

gpk+1,nn(x
k+1
pk+1)

. (3.23)

Here we have used (2.23) and (2.24).
First we consider the contribution of (3.22) in (3.19). We substitute (3.22)–

(3.23) for (3.19)∗ and then apply the integration by parts with respect to ∂vk+1
pk+1

to

derive that∫
vk+1
pk+1,3

>0
f �−1(ηpk+1(xk+1

pk+1), T
t
xk+1
pk+1

vk+1
pk+1)

×
∑
m,n

(3.23)mn∂vk+1
pk+1,n

[
vk+1
pk+1,m

vk+1
pk+1,3

√
μ(vk+1

pk+1)
]
dvk+1

pk+1

= O(1)‖η‖C2‖wθ̄ f
�−1‖L∞(∂�). (3.24)

Here we have used
f �−1(ηpk+1(xk+1

pk+1), T
t
xk+1
pk+1

vk+1
pk+1)

∑
m,n

(3.23)mnv
k+1
pk+1,m

vk+1
pk+1,3

√
μ(vk+1

pk+1)

≡ 0 when vk+1
pk+1,3

= 0

for ‖ f �−1‖L∞(∂�) < ∞ by Lemma 3.2.
Estimate of the contribution of (2.29)(k,i,a)→(k+1, j, f �−1) in (3.19). Since the

velocity variables of
(2.29)(k,i,a)→(k+1, j, f �−1) is written in Cartesian coordinate as vk+1 (not vk+1

pk+1 )

we rewrite the vk+1
pk+1 -integration of (3.19) in vk+1-integration. Then, along the tra-

jectory, (2.29)(k,i,a)→(k+1, j, f �−1) canbe representedby (3.13)–(3.16)with (k, i, �) →
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(k + 1, j, � − 1). Here we further replace (3.13)(k,i,�)→(k+1, j,�−1) by 1tk+1�tk+1
b

×
e−νk+1tk+1

b (3.18)(k,i, j,�)→(k+1, j, j ′,�−1). We note that we do not use a further expan-
sion of (3.19)–(3.20). Throughout the process, we derive an identity

(3.19) with [(3.19)∗ = (2.29)(k,i,a)→(k+1, j, f �−1)]
=
∫
nk+1·vk+1>0

1tk+1�tk+1
b

e−νk+1tk+1
b

∑
pk+2∈P

ιpk+2(xb(x
k+1, vk+1))

×
∑
j ′=1,2

∂xk+2
pk+2, j ′

∂xk+1
pk+1, j

∂xk+2
pk+2, j ′

[ f �−1(ηpk+2(xk+2
pk+2), v

k+1)]

×
√

μ(vk+1){nk+1 · vk+1}dvk+1 (3.25)

+
∫
nk+1·vk+1>0

∑
pk+2∈P

ιpk+2(xb(x
k+1, vk+1))

× [(3.14) + (3.15) + (3.16)](k,i,�)→(k+1, j,�−1)

×
√

μ(vk+1){nk+1 · vk+1}dvk+1. (3.26)

Here we have denoted nk+1 = n(xk+1). It is relatively easy to derive

(3.26) = O(1)‖wθ̄ f
�−1‖L∞(∂�)

+ O(1)[(3.9) + (3.10)](t1,x1,v1, f )→(tk+1,xk+1,vk+1, f �−1),
(3.27)

where we have used |∂xk+1
pk+1, j

t k+1
b | � 1

n(xk+2)·vk+1 from (2.32).

In order to take off ∂xk+2
pk+2, j ′

from f �−1 in (3.25) we use the change of variables

of (2.42). Note that

vk+1 = (xk+1 − ηpk+2(xk+2
pk+2))/t

k+1
b . (3.28)

Now we apply the change of variables of (2.42) and derive that

=
∑

pk+2∈P

∫∫
|xk+2

pk+2 |<δ1

∫ tk+1

0
e−ν(vk+1)tk+1

b ιpk+2(ηpk+2(xk+2
pk+2))

×
∑
j ′=1,2

∂xk+2
pk+2, j ′

∂xk+1
pk+1, j

∂xk+2
pk+2, j ′

[ f �−1(ηpk+2(xk+2
pk+2), v

k+1)]

×
n pk+2(xk+1

pk+1) · (xk+1 − ηpk+2(xk+2
pk+2))

tk+1
b

×
n pk+2(xk+2

pk+2) · (xk+1 − ηpk+2(xk+2
pk+2))

|tk+1
b |4

×
√

μ(vk+1)dtk+1
b

√
gpk+2,11gpk+2,22dx

k+2
pk+2,1

dxk+2
pk+2,2

. (3.29)
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Here we read gpk+2,i i at x
k+2
pk+2 .

We apply the integration by parts with respect to ∂xk+2
pk+2, j ′

for j ′ = 1, 2. For

ιpk+2(ηpk+2(xk+2
pk+2)) = 0 when |xk+2

pk+2 | = δ1 from (2.19), such contribution of

|xk+2
pk+2 | = δ1 vanishes. Then we derive

(3.25) =
∑

pk+2∈P

∫∫ ∫ tk+1

0
∂xk+2

pk+2, j ′

×
[
e−ν(vk+1)tk+1

b

√
μ(vk+1)ιpk+2(ηpk+2(xk+2

pk+2))
]
· · · (3.30)

+
∑

pk+2∈P

∫∫ ∫ tk+1

0
∂xk+2

pk+2, j ′

[ ∑
j ′=1,2

∂xk+2
pk+2, j ′

∂xk+1
pk+1, j

√
gpk+2,11gpk+2,22

]
· · ·

(3.31)

+
∑

pk+2∈P

∫∫ ∫ tk+1

0
∂xk+2

pk+2, j ′

[n pk+1(xk+1
pk+1) · (xk+1 − ηpk+2(xk+2

pk+2))

tk+1
b

·
n pk+2(xk+2

pk+2) · (xk+1 − ηpk+2(xk+2
pk+2))

|tk+1
b |4

]
· · · . (3.32)

From (2.34) and (2.44), (2.45), we derive that
∣∣∣∣ ∂

∂xk+2
pk+2, j ′

( ∑
j ′=1,2

∂xk+2
pk+2, j ′

∂xk+1
pk+1, j

√
gpk+2,11gpk+2,22

)∣∣∣∣

� ‖η‖C2

{
1 +

|vk+2
pk+2,‖|

|vk+2
pk+2,3

|2 |∂3ηpk+2(xk+2
pk+2) · ∂ jηpk+1(xk+1

pk+1)|
}

� O(‖η‖C2)
{
1 +

|vk+2
pk+2 |

|vk+2
pk+2,3

|2 |xk+1 − ηpk+2(xk+2
pk+2)|

}

� O(‖η‖C2)
1

|vk+2
pk+2,3

| = O(‖η‖C2)
|tk+1
b |

|n pk+2(xk+1
pk+1) · (xk+1 − ηpk+2(xk+2

pk+2)|
.

(3.33)

Now using (3.28) for (3.30), (3.33) for (3.31), and (2.45) for (3.32), we derive
that

|(3.25)|

� ‖η‖C2‖ f �−1‖L∞(∂�)

∫∫ ∫ tk+1

0
e−ν0t

k+1
b

×
[ |xk+1 − ηpk+2(xk+2

pk+2)|3
|tk+1
b |5 +

|xk+1 − ηpk+2(xk+2
pk+2)|2

|tk+1
b |4

]
e
−

|xk+1−η
pk+2 (xk+2

pk+2 )|2

4|tk+1
b |2
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� ‖η‖C2‖wθ̄ f
�−1‖L∞(∂�)

∫ ∞

0

e−ν0t
k+1
b

|tk+1
b |1/2

∫∫
1

|xk+1 − ηpk+2(xk+2
pk+2)|3/2

� ‖η‖C2‖wθ̄ f
�−1‖L∞(∂�), (3.34)

where we have used Lemma 3.2 and

[ |xk+1 − ηpk+2(xk+2
pk+2)|3

|tk+1
b |5 +

|xk+1 − ηpk+2(xk+2
pk+2)|2

|tk+1
b |4

]
e
−

|xk+1−η
pk+2 (xk+2

pk+2 )|2

4|tk+1
b |2

� 1

|tk+1
b |1/2

1

|xk+1 − ηpk+2(xk+2
pk+2)|3/2

×
[ |xk+1 − ηpk+2(xk+2

pk+2)|9/2
|tk+1
b |9/2 +

|xk+1 − ηpk+2(xk+2
pk+2)|7/2

|tk+1
b |7/2

]
e
−

|xk+1−η
pk+2 (xk+2

pk+2 )|2

4|tk+1
b |2

� 1

|tk+1
b |1/2

1

|xk+1 − ηpk+2(xk+2
pk+2)|3/2

.

Finally collecting terms (3.13)–(3.16), and (3.21), (3.34) and setting k = 0, we
prove the Proposition 1. ��

4. Mixing via the Binary Collision and Transport

In this section wemainly establish the integration by parts technique mentioned
in Section 1.3 using the mixing of the binary collision and the transport operator.
In particular, we will prove Proposition 2. As direct consequence of Proposition 1
and Proposition 2 we will give a proof of the (1.18) in Main Theorem.

We consider a solution of the Boltzmann equation (3.1) with h�(x, v) given by
(3.3), and the diffuse BC (3.4). The main result is an estimate of (3.3)-contribution
in (3.7) and (3.10).

Proposition 2. We bound (3.7)(3.7)∗=K f �−1 , (3.7)(3.7)∗=�( f �−1, f �−1), and (3.8) ·
(3.10)(3.10)∗=K f �−2+�( f �−2, f �−2) respectively as

∫ t

max{0,t−tb}
e−ν(v)(t−s)wθ̃ (v)∂xi K f �−1(x − (t − s)v, v)ds

� O(1)

α(x, v)

{(
ε + sup

0�i��−1
‖w f �−1−i‖∞

)
sup

0�i��−1
‖α∇x f

�−1−i‖∞

+ ε−1 sup
0�i��−1

‖w f �−1−i‖∞
}
, (4.1)

e−ν(v)tb ni (x
1)|v|

α(x, v)

wθ̃ (v)MW (x1, v)√
μ(v)

∫
n(x1)·v1>0

dv1{n1 · v1}
√

μ(v1)
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×
∫ t1

max{0,t1−t1b }
e−ν(v1)(t1−s1)∇x1K f �−1(x1 − (t1 − s1)v1, v1)ds1

� O(1)

α(x, v)
×
{
ε sup
0�i��−1

‖wθ̃α∇x f
�−1−i‖∞ + ε−1 sup

0�i��−1
‖w f �−1−i‖∞

}
,

(4.2)∫ t

max{0,t−tb}
e−ν(v)(t−s)wθ̃ ∂xi �( f �−1, f �−1)(x − (t − s)v, v)ds

+ e−ν(v)tb ni (x
1)|v|

α(x, v)

wθ̃ (v)MW (x1, v)√
μ(v)

∫
n(x1)·v1>0

dv1{n1 · v1}
√

μ(v1)

×
∫ t1

max{0,t1−t1b }
e−ν(v1)(t1−s1)∇x1�( f �−1, f �−1)(x1 − (t1 − s1)v1, v1)ds1

� O(1)

α(x, v)

(
ε + sup

0�i��−1
‖w f �−1−i‖∞

)
sup

0�i��−1
‖wθ̃α∇x f

�−1−i‖∞. (4.3)

Proof of (1.18) in Main Theorem By Lemma 3.2, we have

sup
i�0

‖wθ̄ f
i‖L∞(∂�) � sup

i�0
‖w f i‖∞ + sup

i�1
‖w f i−1‖∞.

Combining Proposition 1 and Proposition 2we obtain that for t � 1 and ε 	 1,

‖wθ̃α∇x f
�‖∞ � o(1) sup

i��−1
‖wθ̃α∇x f

i‖∞ + C(ε)‖TW − T0‖C1 sup
i�0

‖w f i‖∞,

where the ‖TW − T0‖C1 comes from |∇x1r(x
1)| in (3.5).

By a standard argument we pass the limit and conclude that the unique solution
in Existence Theorem satisfies the weighted C1 estimate (1.18). ��

In Section 4.2 we give a proof of the proposition. In Section 4.1 we give a key
lemma for the proof.

4.1. Nonlocal-to-local estimate and small time contributions

The key lemma to prove Proposition 2 is the following Nonlocal-to-Local esti-
mate:

Lemma 4.1. Denote x ′ = x − (t − s)v, y′ = y − (t − s)v. Assume (t, x, v) ∈
[0,∞) × �̄ × R

3 and t − tb(x, v) � t − t1 � t − t2 � t . Then for 0 < β < 1 and
some C1 > 0,

∫ t−t1

t−t2

∫
R3

e−C〈v〉(t−s)e−�|v−u|2

|v − u|α(x ′, u)
duds

� |e−C1νt1 − e−C1νt2 |β[〈v〉−1/2(1 + | ln |v|| + | ln α(x, v)|)+ 1

|v|1−β

]
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� |e−C1νt1 − e−C1νt2 |β
α(x, v)

. (4.4)

Thus

∫ t

t−tb(x,v)

∫
R3

e−C〈v〉(t−s)e−�|v−u|2

|v − u|α(x ′, u)
duds � 1

α(x, v)
, (4.5)

and for ε 	 1,

∫ t

t−tb(x,v)

∫
R3

1s�t−ε

e−C〈v〉(t−s)e−�|v−u|2

|v − u|α(x ′, u)
duds � O(ε)

α(x, v)
. (4.6)

For 1 < p < 3, we have

int tt−tbe
−ν(t−s)ds

∫
R3

du
k(v, u)

|u|2 min
{

α(x ′,u)
|u| ,

α(y′,u)
|u|

}p

� min{1, O(t)}
|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}p , (4.7)

and
∫ t

t−tb
e−ν(t−s)ds

∫
R3

du1s�t−ε

k(v, u)

|u|2 min
{

α(x ′,u)
|u| ,

α(y′,u)
|u|

}p

� ε

|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}p .

(4.8)

For β < 1,

∫ t

t−tb(x,v)

e−C〈v〉(t−s)

|v|min {ξ(x ′), ξ(y′)}β/2 � 1

|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
. (4.9)

∫
R3

k(v, u)
1

[α(x, u)]β du � 1. (4.10)

∫ t

t−tb(x,v)

∫
R3

e−C〈v〉(t−s)e−�|v−u|2

|v − u|2
1

min {α(x ′, u), α(y′, u)}β duds

� 1

min {α(x, v), α(y, v)}β . (4.11)

Remark 5. We note that (4.6) can be considered as a boarderline case of Lemma 10
in [14] in which the integral 1/αβ is considered for β � 1.

The proof of Proposition 2 only require (4.5) and (4.6). But in the Section 7, in
the proof of the weighted C1,β estimate (1.21), the nonlocal-to-local type estimate
will be involved with different power of α. We summarize all these estimates in
this single lemma.
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Proof. During the whole proof we assume α = α̃. For the other case, when α � 1,
the lemma follows from k(v, u) ∈ L1

u . ��
Proof of (4.4) (4.5) and (4.6) We only prove (4.4). (4.5) and (4.6) follow directly
from (4.4).

Step 1. We claim that, for y ∈ �̄ and � > 0,
∫
R3

e−�|v−u|2

|v − u|
1

α(y, u)
du � 1 + | ln |ξ(y)|| + | ln |v||. (4.12)

Recall (2.24) and set v = v(y) and u = u(y). For |u| � O(1)|v|,
[|u3(y)|2 + |ξ(y)||u|2]1/2 �

[|u3(y)|2 + |ξ(y)||v|2]1/2. (4.13)

Thus ∫
|v|
4 �|u|�4|v|

�
∫∫

e−�|v‖−u‖|2

|v‖ − u‖| du‖
∫ 4|v|

0

du3[|u3|2 + |ξ(y)||v|2]1/2

�
∫ 4|v|

0

du3[|u3|2 + |ξ(y)||v|2]1/2
= ln

(√
|u3|2 + |ξ(y)||v|2 + |u3|

)∣∣∣4|v|
0

= ln(
√
16|v|2 + |ξ(y)||v|2 + 16|v|2) − ln(

√
|ξ(y)||v|2)

� ln |v| + ln |ξ(y)|. (4.14)

If |u| � 4|v| then |u − v|2 � |v|2
4 + |u|2

4 and hence e−�|v−u|2

� e− �
8 |v|2e− �

8 |u|2e− �
2 |v−u|2 . This, together with (4.13), implies

∫
|u|�4|v|

� e− �
8 |v|2

∫∫
e− �

2 |v‖−u‖|2

|v‖ − u‖| du‖
∫ ∞

0

e− �
8 |u3|2

[|u3|2 + |ξ(y)||v|2]1/2 du3

� e− �
8 |v|2

∫ ∞

0

e− �
8 |u3|2

[|u3|2 + |ξ(y)||v|2]1/2 du3

� e− �
8 |v|2 + e− �

8 |v|2
∫ 1

0

du3[|u3|2 + |ξ(y)||v|2]1/2
= e− �

8 |v|2 + e− �
8 |v|2 ln

(√
|u3|2 + |ξ(y)||v|2 + |u3|

)∣∣∣1
0

= e− �
8 |v|2{1 + ln(

√
1 + |ξ(y)||v|2 + 1) − ln(

√
|ξ(y)||v|2)

}

� e− �
8 |v|2{ln |v| + ln |ξ(y)|}. (4.15)

For |u| � |v|
4 , we have |v − u| �

∣∣|v| − |u|∣∣ � |v| − |v|
4 � |v|

2 . We have

∫
|u|� |v|

4

� e− �
4 |v|2

|v|
∫

|u3|+|u‖|� |v|
2

du3du‖[
|u3|2 + |ξ(y)||u‖|2

]1/2
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� |v|e− �
4 |v|2

∫
|ũ3|� 1

2

∫
|ũ‖|� 1

2

dũ‖dũ3[
|ũ3|2 + |ξ(y)||ũ‖|2

]1/2 ,

where we have used |v|ũ = u. Using the polar coordinate ũ1 = |ũ‖| cos ρ, ũ2 =
|ũ‖| sin ρ, we have

∫
|u|� |v|

4

� |v|e− �
4 |v|2

∫ 1
2

0
dũ3

∫ 2π

0

∫ √
1/2

0

|ũ‖|d|ũ‖|dρ[
|ũ3|2 + |ξ(y)||ũ‖|2

]1/2

� |v|e− �
4 |v|2

∫ 1
2

0
dũ3

∫ 1/2

0

d|ũ‖|2[
|ũ3|2 + |ξ(y)||ũ‖|2

]1/2

= |v|e− �
4 |v|2

∫ 1
2

0
dũ3

1

|ξ(y)|
(√

|ũ3|2 + |ξ(y)|
2

− |ũ3|
)

= |v|e− �
4 |v|2

|ξ(y)|
×
{
1

2
|ũ3|

√
|ũ3|2 + |ξ |

2
+ |ξ |

4
log

(√
|ũ3|2 + |ξ |

2
+ |ũ3|

)
− 1

2
|ũ3|1/2

}∣∣∣∣
|ũ3|=1/2

|ũ3|=0

= |v|e−C|v|2

|ξ |
{
1

4

√
1

4
+ |ξ |

2
+ ξ

4
log

(√1

4
+ |ξ |

2
+ 1

2

)
− |ξ |

4
log

(√ |ξ |
2

)
− 1

8

}

� |v|e−C|v|2

|ξ |
[
|ξ | log(|ξ |) + |ξ | log

(
1 +√

1 + |ξ |
)]

� 1 + log(|ξ(y)|). (4.16)

Collecting terms from (4.14), (4.15), and (4.16), we prove (4.12).
Step 2. We prove the following statement: for x ∈ ∂�, we can choose 0 <

δ̃ 	� 1 such that

δ̃1/2|v · ∇ξ(x − (t − s)v)| �� |v|√−ξ(x − (t − s)v),

for s ∈
[
t − tb(x, v), t − tb(x, v) + t̃

]
∪
[
t − t̃, t

]
,

(4.17)

δ̃1/2 × α(x, v) �� |v|√−ξ(x − (t − s)v),

for s ∈
[
t − tb(x, v) + t̃, t − t̃

]
, (4.18)

here t̃ = min
{
tb(x,v)

2 , δ̃
α(x,v)

|v|2
}
. We note that when t̃ < δ̃

α(x,v)

|v|2 , (4.18) vanishes.

If v = 0 or v · ∇ξ(x) � 0, since x ∈ ∂�, then (4.17) and (4.18) hold
clearly with tb(x, v) = t̃ = 0. We may assume v �= 0 and v · ∇ξ(x) > 0. Since
v · ∇ξ(x) > 0, from (1.10), we have |v · ∇ξ(xb(x, v))| > 0. Then we must have
v · ∇ξ(xb(x, v)) < 0, otherwise v · ∇ξ(xb) > 0 implies xb is not the backward
exit position defined in (1.24). By the mean value theorem there exists at least one
t∗ ∈ (t − tb(x, v), t) such that v · ∇ξ(x − t∗v) = 0. Moreover due to the convexity
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in (1.7) we have d
ds

(
v · ∇ξ(x − (t − s)v)

) = v · ∇2ξ(x − (t − s)v) · v � Cξ |v|2,
and therefore t∗ ∈ (t − tb(x, v), t) is unique.

Let s ∈ [
t − t̃, t

]
for 0 < δ̃ 	 1 and t̃ � δ̃

α(x,v)

|v|2 . Then from the fact that

v · ∇xξ(x − (t − τ)v) is non-decreasing function in τ ∈ [t − t∗, t] and x ∈ ∂�,

|v|2(−1)ξ(x − (t − s)v) =
∫ t

s
|v|2v · ∇xξ(x − (t − τ)v)dτ

� δ̃α(x, v)|v · ∇xξ(x)|. (4.19)

Since |v ·∇xξ(x)| � α(x, v) � C�α(x−(t−s)v, v) � C�{|v ·∇ξ(x−(t−s)v)|+
‖∇2

x ξ‖∞|v|√−ξ(x − (t − s)v)}, we choose δ̃ 	 (C�‖∇2
x ξ‖−2∞ and absorb

δ̃α(x, v) × C�{|v · ∇ξ(x − (t − s)v)| + ‖∇2
x ξ‖∞|v|√−ξ(x − (t − s)v)}

� δ̃ × {C�‖∇2
x ξ‖∞|v|√−ξ(x − (t − s)v)}2

by the left hand side of (4.19). This gives (4.17) for s ∈ [
t − t̃, t

]
. The proof for

s ∈ [t − tb(x, v), t − tb(x, v) + t̃
]
is same.

For (4.18), we assume t̃ = δ̃
α(x,v)

|v|2 , otherwise (4.18) vanishes. For ξ(x − (t −
s)v) is non-increasing in s ∈ [t − t∗, t], we have |v|2(−1)ξ(x − (t − s)v) �
|v|2(−1)ξ

(
x − δ̃

α(x,v)

|v|2 v
)
for s ∈ [

t − t∗, t − δ̃
α(x,v)

|v|2
]
. By an expansion, for

s∗ := t − δ̃
α(x,v)

|v|2 ,

|v|2(−1)ξ
(
x − δ̃

α(x, v)

|v|2 v
)

= |v|2(v · ∇xξ(x))δ̃
α(x, v)

|v|2 +
∫ t

s∗

∫ τ

s∗
|v|2v · ∇2

x ξ(x − (t − τ ′)v) · vdτ ′dτ.
(4.20)

The last termof (4.20) is boundedby‖∇2
x ξ‖∞δ̃2

(
α(x,v)

|v|2
)2|v|4 � ‖∇2

x ξ‖∞δ̃2α(x, v)2.

Since v · ∇xξ(x) � α(x, v), for δ̃ 	 ‖∇2
x ξ‖−1/2∞ , the right hand side of (4.20)

is bounded below by δ̃
2α(x, v)2. This completes the proof of (4.18) when s ∈[

t − t∗, t − δ̃
α(x,v)

|v|2
]
. The proof for the case of s ∈ [t − tb(x, v) + δ̃

α(x,v)

|v|2 , t − t∗
]

is same.
Step 3. From (4.12), for the proof of (4.4), it suffices to estimate

∫ t

t−tb(x,v)

1t−t2�s�t−t1e
−C〈v〉(t−s)

∣∣ ln |ξ(x − (t − s)v)|∣∣ds

+
∫ t

t−tb(x,v)

1t−t2�s�t−t1e
−C〈v〉(t−s)(1 + ∣∣ ln |v|∣∣)ds.

(4.21)

We simply bound the second term of (4.21) as

(1 + | ln |v||)
∫ t−t2

t−t1
e−C〈v〉(t−s) � (1 + | ln |v||)〈v〉−1|e−C〈v〉t2 − e−C〈v〉t1 |.

(4.22)
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For the first term of (4.21), we first assume x ∈ ∂�. For utilizing (4.17) and (4.18),
we split the first term of (4.21) as

∫ t

t−t̃
+
∫ t−tb(x,v)+t̃

t−tb(x,v)︸ ︷︷ ︸
(4.23)1

+
∫ t−t̃

t−tb(x,v)+t̃︸ ︷︷ ︸
(4.23)2

. (4.23)

Without loss of generality,we assume t−t2 ∈ [t−t̃, t], t−t1 ∈ [t−tb(x, v)+t̃, t−t̃].
For the first term (4.23)1 we use a change of variables s �→ −ξ(x − (t − s)v) in
s ∈ [t − tb(x, v), t − t∗] and s ∈ [t − t∗, t] separately with ds = |v · ∇xξ(x −
(t − s)v)|−1d|ξ |. From (4.19) we have |ξ(x − (t − s)v)| � δ̃

α2(x,v)

|v|2 . Then applying
Hölder inequality with β + (1 − β) = 1 and using (4.17), we get

(4.23)11{t−t2∈[t−t̃,t]},t−t1∈[t−tb(x,v)+t̃,t−t̃]

�
([ ∫ t−t2

t−t̃
e−C〈v〉(t−s)/βds

]β + [ ∫ t−tb(x,v)+t̃

t−t1
e−C〈v〉(t−s)/βds

]β)

×
[ ∫ δ̃

α2(x,v)

|v|2

0
| ln |ξ ||1/(1−β) d|ξ |

δ̃−1/2|v|√|ξ |
]1−β

� |e−C〈v〉t2/β − e−C〈v〉t1/β |β 1

|v|1−β
, (4.24)

where we have used t − t̃ > t − t1, t − t2 > t − tb(x, v) + t̃ and | ln |ξ ||1/(1−β)√
ξ

∈
L1
loc(0,∞) for β < 1 in the last line.
On the other hand, from (4.18),

(4.23)2 �
∫ t−t2

t−t1
e−C〈v〉(t−s)

∣∣∣ ln
(
δ̃
α(x, v)2

|v|2
)∣∣∣ds

� 2
∫ t−t2

t−t1
e−C〈v〉(t−s){| ln δ̃| + | ln α(x, v)| + | ln |v||}ds

� 2|e−C〈v〉t2 − e−C〈v〉t1 |〈v〉−1/2{| ln δ̃| + | ln α(x, v)| + | ln |v||}, (4.25)

where we have used a similar estimate of (4.22).
Now as assume x /∈ ∂�. We find x̄ ∈ ∂� and t̄ so that

x = x̄ − (t̄ − t)v and t̄ > t.

Then clearly, x − (t − s)v = x̄ − (t̄ − s)v. Since x̄ ∈ ∂�, applying the same
computation as (4.24) and (4.25), the first term of (4.21) is bounded by

∫ t̄

t̄−tb(x̄,v)

1t−t2�s�t−t1e
−C〈v〉(t̄−s)| ln |ξ(x̄ − (t̄ − s)v)||ds

� (4.24) + |e−C〈v〉t2 − e−C〈v〉t1 |〈v〉−1/2{| ln δ̃| + | ln α(x̄, v)| + | ln |v||}.
(4.26)
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Here we used α(x̄, v) ∼ α(x, v) from Lemma 1.10 to obtain the same upper bound
as (4.24). Again using α(x̄, v) ∼ α(x, v), we conclude

(4.26) � (4.24) + (4.25).

Then we conclude the first inequality in (4.4) using β < 1.
For the second inequality, from (1.8) and (1.9) we bound a term of the upper

bound of second line of (4.4) as

{〈v〉−1/2(1 + | ln |v|| + | ln α(x, v)|)+ 1

|v|1−β
} × α(x, v)

α(x, v)

�{1 + 〈v〉−1/2 min {1, |v|} | ln |v|| + α| ln |α|| + α(x, v)

|v|1−β
} × 1

α(x, v)
� 1

α(x, v)
,

where we have used α(x, v) � min{1, |v|} and 1 − β < 1. ��
Proof of (4.7) and (4.8) Again we only prove (4.7). Clearly, we have

∫ t

0
e−ν(t−s)ds

∫
R3

du
k(v, u)

|u|2 min
{

α(x−(t−s)v,u)
|u| ,

α(y−(t−s)v,u)
|u|

}p

�
∫ t

0
e−ν(t−s)ds

∫
R3

du
k(v, u)

|u|2(α(x−(t−s)v,u)
|u|

)p

+
∫ t

0
e−ν(t−s)ds

∫
R3

du
k(v, u)

|u|2(α(y−(t−s)v,u)
|u|

)p .

By Lemma 1 in [14], we have
∫ t

0
e−ν(t−s)ds

∫
R3

du
k(v, u)

α p(x − (t − s)v, u)

|u|p−2

|v|p−2 |v|p−2

� |v|p−2
[
min{1, t} × min{ 1

|v|2α p−2(x, v)
,
α1/2−p/2(x, v)

|v|p−1 }

+ 1

α p−1(x, v)

∫ t

0
e−C

2 〈v〉(t−s)ds
]
.

We bound

1

|v|2α p−2(x, v)
� α2(x, v)

|v|2
1

α p(x, v)
� 1

α p(x, v)
,

α1/2−p/2(x, v)

|v|p−1 � α p−1(x, v)

|v|p−1

1

α p/2−1/2+p−1(x, v)

� 1

α3p/2−3/2(x, v)
� 1

α p(x, v)
,

1

α p−1(x, v)

∫ t

0
e−C

2 〈v〉(t−s)ds � min{1, O(t)} 1

α p(x, v)
,

where we have used α � 1 and p < 3.
Then we conclude (4.7). ��
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Proof of (4.9) Since 1
min{ξ(x ′),ξ(y′)}β/2 � 1

ξβ/2(x ′) + 1
ξβ/2(y′) , we only need to prove

∫ t

t−tb(x,v)

e−C〈v〉(t−s)

|v|ξ(x ′)β/2 � 1

|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
.

We split the integral as

∫ t

t−δ̃
α̃(x,v)

|v|2
+
∫ t−tb(x,v)+δ̃

α̃(x,v)

|v|2

t−tb(x,v)

+
∫ t−δ̃

α̃(x,v)

|v|2

t−tb(x,v)+δ̃
α̃(x,v)

|v|2
.

Similarly to (4.24), the first two terms are bounded by

2
∫ δ̃

α2(x,v)
|v|

0

1

|v||ξ |β/2

d|ξ |
δ̃−1/2|v|√|ξ | � 1

|v|2 .

Similarly to (4.25), the third term is bounded by

∫ t

0

e−C〈v〉(t−s)

|v|
1

|δ̃|β/2 αβ(x,v)

|v|β
ds � 1

|v|〈v〉min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
.

��
Proof of (4.10) Similarly to the proof of (4.6) we consider three cases: |v|

4 � |u| �
4|v|, |u| � 4|v|, |u| � |v|

4 .
By a similar computation as to that for (4.14),(4.15) and (4.16), we obtain

∫
|v|
4 �|u|�4|v|

�
∫∫

e−�|v‖−u‖|2

|v‖ − u‖| du‖
∫ 4|v|

0

du3[|u3|2 + |ξ(y)||v|2]β/2 � 1,

∫
|u|�4|v|

� e− �
8 |v|2

∫∫
e− �

2 |v‖−u‖|2

|v‖ − u‖| du‖
∫ ∞

0

e− �
8 |u3|2

[|u3|2 + |ξ(y)||v|2]β/2 du3 � 1,

∫
|u|� |v|

4

� |v|e− �
2 |v|2

∫
|ũ3|� 1

2

∫
|ũ‖|� 1

2

dũ‖dũ3
|ũ3|β � 1.

Here we used 1
|u|β ∈ L1

u . ��
Proof of (4.11) By Hölder inequality with 1

3 + 1
3/2 = 1 and split |v − u|2 =

|v − u|4/3+ε|v − u|2/3−ε we have
∫ t

t−tb(x,v)

dse−C〈v〉(t−s)

×
∫
R3

e−�|v−u|2

|v − u|2
1

min {α(x − (t − s)v, u), α(y − (t − s)v, u)}β du

�
∫ t

t−tb(x,v)

e−C〈v〉(t−s)ds
( ∫

R3

e�|v−u|2

|v − u|2+ε
du
)2/3
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×
( ∫

R3

e−�|v−u|2

|v − u|2−ε

1

min {α(x − (t − s)v, u), α(y − (t − s)v, u)}3β du
)1/3

�
( ∫ t

t−tb(x,v)

e−C〈v〉(t−s)

×
∫
R3

e−�|v−u|2

|v − u|2−ε

1

min {α(x − (t − s)v, u), α(y − (t − s)v, u)}3β du
)1/3

×
( ∫ t

t−tb(x,v)

e−C〈v〉(t−s)
)2/3

. (4.27)

Since 3β < 3 by (4.7) we have

(4.27) �
( 1

min {α(x, v), α(y, v)}3β
)1/3

,

then we finish the proof. ��

4.2. Proof of Proposition 2

Step 1. Convert ∇x for ∇v along the trajectory using binary collision
Expansionof (3.7)(3.7)∗=K f �−1(x−(t−s)v,v).Firstwe consider (3.7)with (3.7)∗ =

K f �−1(x−(t−s)v, v) = ∫
R3 k(v, u) f �−1(x−(t−s)v, u)du. Temporarily denote

y = x − (t − s)v. Proposition 1 gives a formula of wθ̃ (u)∂xi f
�−1(y, u) by (3.5)–

(3.10) with h� = (3.3) and (x, v, �) → (y, u, � − 1). We split the contribution of
(3.7) with (3.7)∗ = K f �−2(y − (s − s0)u, u), which is (4.34), and the rest. The
rest is given as

∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

∫
R3

du k(v, u)
wθ̃ (v)

wθ̃ (u)

{
O(1)

ni (x1)wθ̃ (u)

α(y, u)

×
(

ν(u)

wθ̄ (u)
‖wθ̄ f

�−1‖L∞(∂�) + |u|MW (x1, u)√
μ(u)

‖wθ̄ f
�−2‖L∞(∂�) (4.28)

+ |u||∇x1r(x
1)|(1 + ‖wθ̄ f

�−2‖L∞(∂�))

)

+ O(1)

α(y, u)
e−ν(u)s(wθ̃α∂xi f

�−1)(y − su, u) (4.29)

+
∫ s

max{0,s−tb}
e−ν(u)(t−s)wθ̃ (u)∂xi �( f �−2, f �−2)(y − (s − s′)v, v)ds′ (4.30)

+ O(1)e−ν(u)tb ni (x
1)|u|

α(y, u)

wθ̃ (u)MW (x1, u)√
μ(u)

∫
n(x1)·v1>0

dv1{n1 · v1}
√

μ(v1)

(4.31)

×
(
e−ν(v1)t1 1

α(x1, v1)
(α∇x1 f

�−2)(x1 − t1v1, v1) (4.32)
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+
∫ t1

max{0,t1−t1b }
e−ν(v1)(t1−s1)∇x1 h

�−2(x1 − (t1 − s1)v1, v1)︸ ︷︷ ︸
h�−2 in (3.3)

ds1
)}

, (4.33)

where we intentionally have abused the notations as x1 = x1(y, u), t1 = s −
tb(y, u) for the sake of simplicity (see (2.16) and (2.17)). We will estimate (4.28)–
(4.33) later together with the other expansions.

Nowwe focus on the contribution of (3.7) of (3.7)∗ = K f �−2(y−(s−s0)u, u).
We split the time integration in s0 as

∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

∫
R3

du k(v, u)wθ̃ (v)

×
∫ s

max{0,s−tb(y,u)}
ds0 e−ν(u)(s−s0){1s0�s−ε + 1s0>s−ε}

×
∫
R3

du′ k(u, u′)∂x j f �−2(x − (t − s)v − (s − s0)u, u′). (4.34)

Note that ∂xi f
�−2(x− (t−s)v− (s−s0)u, u′) = −1

s−s0
∂ui [ f �−2(x− (t−s)v−

(s − s0)u, u′)]. Applying an integration by parts with respect to ∂ui , we derive an
identity of the contribution of {s0 � s − ε} in (4.34) as

∫ t

max{0,t−tb}
ds e−ν(v)(t−s)wθ̃ (v)

∫
R3

du

×
∫ s

max{0,s−tb(y,u)}
ds0 e−ν(u)(s−s0)

1s0�s−ε

s − s0

×
∫
R3

du′ ∂ui [k(v, u)k(u, u′)] f �−2(x − (t − s)v − (s − s0)u, u′)

−
∫ t

max{0,t−tb}
ds e−ν(v)(t−s)wθ̃ (v)

∫
R3

du

×
∫ s

max{0,s−tb(y,u)}
ds0 ∂ui ν(u)e−ν(u)(s−s0)1s0�s−ε

×
∫
R3

du′ k(v, u)k(u, u′) f �−2(x − (t − s)v − (s − s0)u, u′)

+
∫ t

max{0,t−tb}
ds e−ν(v)(t−s)wθ̃ (v)

∫
R3

du

× 1s�tb(y,u)e
−ν(u)tb(y,u)

1tb(y,u)�ε

tb(y, u)

∂tb(y, u)

∂ui

×
∫
R3

du′ k(v, u)k(u, u′) f �−2(x − (t − s)v − tb(y, u)u, u′). (4.35)

From (2.103) and Lemma 2.13, for the first term in (4.35) we have

wθ̃ (v)∂ui [k(v, u)k(u, u′)] f �−2(x − (t − s)v − (s − s0)u, u′)
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�
wθ̃ (v)

wθ̃ (u)

wθ̃ (u)

wθ̃ (u
′)

(
∂uik(v, u)k(u, u′) + ∂uik(u, u′)k(v, u)

)wθ̃ (u
′)

w(u′)
‖w f �−2‖∞

� k�̃(v, u)k�̃(u, u′)
( 1

|v − u| + 1

|u − u′|
) 〈u〉
〈u′〉

wθ̃ (u
′)〈u′〉

w(u′)
‖w f �−2‖∞

� k�̃(v, u)k�̃/2(u, u′)
( 1

|v − u| + 1

|u − u′|
)
‖w f �−2‖∞. (4.36)

Since
k�(v,u)

|v−u| ,
k�(u,u′)
|u−u′| ∈ L1

u , the first term of (4.35) is bounded by

O(ε−1)‖w f �−2‖∞. (4.37)

For the second term in (4.35), similarly to (4.36) we have

wθ̃ (v)k(v, u)k(u, u′) f �−2(x − (t − s)v − (s − s0)u, u′)
� k�̃(v, u)k�̃(u, u′)‖w f �−2‖∞.

Thus the second term is bounded by

O(ε−1)‖w f �−2‖∞. (4.38)

From (2.103) and (2.32), we conclude the third term in (4.35) is bounded by

‖ f �−2‖L∞(∂�)

∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

×
∫
R3

duk�(v, u)
1tb(y,u)�ε

tb(y, u)

∂tb(y, u)

∂ui

∫
R3

du′k�(u, u′)

� ‖wθ̄ f
�−2‖L∞(∂�)

∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

∫
R3

du
k�(v, u)

α(y, u)
. (4.39)

This term will be estimated later using Lemma 4.1.
On the other hand by Lemma 2.13 the contribution of {s0 > s − ε} in (4.34) is

controlled by
‖wθ̃α∇x f

�−2‖∞
∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

∫
R3

du k(v, u)
wθ̃ (v)

wθ̃ (u)

×
∫ s

max{0,s−tb(y,u)}

∫
R3

1s0>s−ε

× e−ν0(u)(s−s0)k(u, u′)
wθ̃ (u)

wθ̃ (u
′)α(y − (s − s0)u, u′)

du′ds0

� ‖wθ̃α∇x f
�−2‖∞

∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

∫
R3

du k�̃(v, u)

×
∫ s

max{0,s−tb(y,u)}

∫
R3

1s0>s−ε

× e−ν0〈u〉(s−s0)k�̃(u, u′) 1

α(y − (s − s0)u, u′)
du′ds0. (4.40)



1156 Hongxu Chen & Chanwoo Kim

This term will be estimate later using Lemma 4.1.
Expansion of (3.10)(3.10)∗=K f �−2(x1−(t1−s1)v1,v1) and

(4.33)h�−2=K f �−3(x1−(t1−s1),v1). We split

(3.10)(3.10)∗=K f �−2(x1−(t1−s1)v1,v1)

=
∫ t1

max{0,t1−t1b }
1s1�t1−ε · · ·

︸ ︷︷ ︸
(4.41)1

+
∫ t1

max{0,t1−t1b }
1s1�t1−ε · · ·

︸ ︷︷ ︸
(4.41)2

, (4.41)

(4.33)h�−2=K f �−3(x1−(t1−s1),v1)

=
∫ t1

max{0,t1−t1b }
1s1�t1−ε · · ·

︸ ︷︷ ︸
(4.42)1

+
∫ t1

max{0,t1−t1b }
1s1�t1−ε · · ·

︸ ︷︷ ︸
(4.42)2

. (4.42)

We simply derive an intermediate estimate (see (2.29))

|(4.41)2| + |(4.42)2|

�
∑
i=0,1

∫ t1

max{t2,t1−ε}
e−ν0〈v1〉(t1−s1)

×
∫
R3

k�(v1, u′)|∇x1
p1

ηp1 |
α|∇x f �−2−i (x1 − (t1 − s1)v1, u′)|

α(x1 − (t1 − s1)v1, u′)
du′ds1

� ‖η‖C1

∑
i=0,1

‖α∇x f
�−2−i‖∞ sup

t1,x1,v1

∫ t1

max{t2,t1−ε}
e−ν0〈v1〉(t1−s1)

×
∫
R3

k�(v1, u′) 1

α(x1 − (t1 − s1)v1, u′)
du′ds1. (4.43)

This term, together with (4.40), will be estimate later using Lemma 4.1.
Nowwe consider (4.41)1 and (4.42)1. Recall (2.29). The key observation is the

following interchange of spatial derivatives and velocity derivatives: for t1 �= s1

and i = 0, 1,

∂x1
p1, j

[ ∫
R3

k(v1, u′) f �−2−i (ηp1(x
1
p1) − (t1 − s1)v1, u′)du′]

=
3∑

�=1

∂ηp1,�(x
1
p1

)

∂x1
p1, j

∫
R3

k(v1, u′)∂x�
f �−2−i (ηp1(x

1
p1) − (t1 − s1)v1, u′)du′

= − 1

t1 − s1

3∑
�=1

∂ηp1,�(x
1
p1

)

∂x1
p1, j

×
∫
R3

k(v1, u′)∂v1�
[ f �−2−i (ηp1(x

1
p1) − (t1 − s1)v1, u′)]du′

= − 1

t1 − s1

3∑
�=1

∂ηp1,�(x
1
p1

)

∂x1
p1, j
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× ∂v1�

[ ∫
R3

k(v1, u′) f �−2−i (ηp1(x
1
p1) − (t1 − s1)v1, u′)du′] (4.44)

+ 1

t1 − s1

3∑
�=1

∂ηp1,�(x
1
p1

)

∂x1
p1, j

×
∫
R3

∂v1�
k(v1, u′) f �−2−i (ηp1(x

1
p1) − (t1 − s1)v1, u′)du′. (4.45)

Now we consider the contribution of (4.44) in (4.41)1 and (4.42.)1 inside v1-
integration in (3.8) and (4.31). From the integration by parts with respect to ∂v1�

,
for i = 0, 1,

∫
n1·v1>0

[the contribution of (4.44) in (4.41)1 and (4.42)1]

×
√

μ(v1){n1 · v1}dv1

=
∫
n1·v1>0

∫ t1

max{0,t1−t1b }
1s1�t1−εe

−ν(v1)(t1−s1) 1

t1 − s1

3∑
�=1

∂ηp1,�(x
1
p1

)

∂x1
p1, j

× ∂v1�

[ ∫
R3

k(v1, u′) f �−2−i (ηp1(x
1
p1) − (t1 − s1)v1, u′)du′]ds1

×
√

μ(v1){n1 · v1}dv1

= −
∫
n1·v1>0

∫ t1

max{0,t1−t1b }

1ε�t1−s1

t1 − s1

3∑
�=1

∂ηp1,�(x
1
p1

)

∂x1
p1, j

× ∂v1�

[√
μ(v1){n1 · v1}e−ν(v1)(t1−s1)]

×
∫
R3

k(v1, u′) f �−2−i (ηp1(x
1
p1) − (t1 − s1)v1, u′)du′ds1dv1

+
∫
n1·v1=0

∫ t1

max{0,t1−t1b }
· · ·
∫
R3

k(v1, u′) f �−2−i (·, u′)du′ds1

×
√

μ(v1){n1 · v1}dv1

+
∫
n1·v1>0

1t1�t1b�ε

e−ν(v1)t1b

t1b
∂x1

p1, j
η · ∇v1 t

1
b

×
∫
R3

k(v1, u′) f �−2−i (x2, u′)du′√μ(v1){n1 · v1}dv1

= O(ε−1)‖η‖C1 [‖w f �−2−i‖∞ + ‖ f �−2−i‖L∞(∂�)]

×
{
1 +

∫
n1·v1>0

|n1 · v1|
|n2 · v1|

√
μ(v1)dv1

}

= O(ε−1)‖η‖C1 [‖w f �−2−i‖∞ + ‖wθ̄ f
�−2−i‖L∞(∂�)]. (4.46)

Here we have used (2.32) and (1.10). Also we have used ‖w f �−2−i‖∞ < ∞ and
‖ f �−2−i‖L∞(∂�) < ∞ from Lemma 3.2 to derived

∫
n1·v1=0 · · · = 0.
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From (2.103), (1.6) and t1 − s1 � ε, we bound the contribution of (4.45) in
(4.41)1 and (4.42)1 by∫

n(x1)·v1>0
[the contribution of (4.45) of (4.41)1 and (4.42)1]

×
√

μ(v1){n1 · v1}dv1 = O(ε−1)‖η‖C1 sup
i=0,1

‖w f �−2−i‖∞.
(4.47)

Now we consider contributions of � in (3.7), (3.10), (4.30), and (4.33). From
(2.108)

|(3.7)(3.7)∗=�( f �−1, f �−1)| + |(3.10)(3.10)∗=�( f �−2, f �−2)|
+ |(4.30)| + |(4.33)h=�( f �−3, f �−3)|

� sup
i

O(‖w f �−1−i‖∞)

× sup
i

∑
j=0,1

{ ∫ t j

max{0,t j−t jb }
e−ν0〈v j 〉(t j−s j )wθ̃ (v

j )

× |∇x f
�−1−i (x j − (t j − s j )v j , v j )|duds j

+
∫ t j

max{0,t j−t jb }
e−ν0〈v j 〉(t j−s j )

×
∫
R3

k(v j , u)
wθ̃ (v)

wθ̃ (u)
|∇x f

�−1−i (x j − (t j − s j )v j , u)|duds j
}

� sup
i

O(‖w f �−1−i‖∞) sup
i

‖wθ̃α∇x f
�−1−i‖∞

×
{ ∑

j=0,1

∫ t j

max{0,t j−t jb }
e−ν0〈v j 〉(t j−s j ) 1

α(x j − (t j − s j )v j , v j )
ds (4.48)

+
∑
j=0,1

∫ t j

max{0,t j−t jb }
e−ν0〈v j 〉(t j−s j )

×
∫
R3

k�̃(v j , u)
1

α(x j − (t j − s j )v j , u)
duds j

}
, (4.49)

where we have used Lemma 2.13 in the last line.
From (1.10)

(4.48) � eC�
∑
j=0,1

∫ t

0
e−ν0〈v j 〉(t j−s j )ds j × α(x j , v j )−1 � C�

ν0〈v j 〉α(x j , v j )−1.

(4.50)

Step 2. Estimate of (4.49), (4.43), (4.40) and (4.39) using Lemma 4.1.
Clearly ‖α∇x f �‖∞ � ‖wθ̃α∇x f �‖∞, applying Lemma 4.1 we bound

|(4.39)| � O(‖ f �−2‖L∞(∂�))

α(x, v)
,
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|(4.40)| + |(4.43)| � O(ε)

α(x, v)
sup

0�i��−1
‖wθ̃α∇x f

�−1−i‖∞, (4.51)

|(4.49)| �
O(sup0�i��−1 ‖w f �−1−i‖∞)

α(x, v)
sup

0�i��−1
‖wθ̃α∇x f

�−1−i‖∞.

First we prove (4.1). From (4.6)
∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

∫
R3

du k(v, u)(4.28)

� 1 + ‖θ‖C1

α(x, v)
(1 + sup

i=0,1
‖wθ̄ f

�−1−i‖L∞(∂�)),

∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

∫
R3

du k(v, u){(4.29) + (4.31)(4.32)}

� e−ν0t

α(x, v)
‖wθ̃α∇x f

�−1‖∞.

From (4.48)–(4.50) and (4.51)
∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

×
∫
R3

du k(v, u){(4.30) + (4.31)(4.33)h�−2=�( f �−3, f �−3)}

�
O(sup0�i��−1 ‖w f �−1−i‖∞)

α(x, v)
sup

0�i��−1
‖wθ̃α∇x f

�−1−i‖∞.

From (4.42) � (4.42)1 + (4.43) and (4.46), (4.47), (4.51)
∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

∫
R3

du k(v, u)(4.33)h�−2=K f �−3(x1−(t1−s1),v1)

� 1

α(x, v)
×
{
O(ε) sup

0�i��−1
‖α∇x f

�−1−i‖∞

+ O(ε−1)[ sup
0�i��−1

‖w f �−1−i‖∞ + sup
0�i��−1

‖wθ̄ f
�−1−i‖L∞(∂�)]

}
.

From |(4.34)| � |(4.35)| + |(4.40)| and (4.51),

|(4.34)| � 1

α(x, v)
×
{
O(ε−1)[‖w f �−2‖∞ + sup

0�i��−1
‖wθ̄ f

�−1−i‖L∞(∂�)]

+ O(ε) sup
0�i��−1

‖wθ̃α∇x f
�−1−i‖∞

}
.

By Lemma 3.2, we have

sup
i�0

‖wθ̄ f
i‖L∞(∂�) � sup

i�0
‖w f i‖∞ + sup

i�1
‖w f i−1‖∞. (4.52)
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Collecting the terms and applying (4.52), we complete the proof of (4.1).
The proof of (4.2) comes from (4.41), (4.43), (4.46), (4.47) and (4.52). We

prove (4.3) from (4.48)–(4.50) and (4.2).

5. C1 Estimate of Tangential Derivative and Continuity of C1 Solution

5.1. C1 estimate of tangential derivative

In this subsection we prove (1.19) in the Main Theorem. Section 3 and 4
already conclude the estimate (1.18), from now on we will drop the super index in
f � and only analyze the property of ∇x f .
Proof of (1.19) For x ∈ � we use (2.10)–(2.14) to have

G(x)∇x f (x, v) =1t�tbe
−ν(v)tbG(x)

∑
i=1,2

∇xx1p1,i∂x1
p1,i

f (ηp1(x
1
p1), v) (5.1)

− 1t�tbν(v)∇x tbe
−ν(v)tbG(x) f (xb(x, v), v) (5.2)

+ 1t<tbe
−ν(v)tG(x)∇x f (x − tv, v) (5.3)

−1t�tbG(x)∇x tbe
−ν(v)tbh(x − tbv, v) (5.4)

+
∫ t

max{0,t−tb}
G(x)e−ν(v)(t−s)∇xh(x − (t − s)v, v)ds, (5.5)

where h = K ( f ) + �( f, f ).
We focus on the estimate of (5.5). (5.1)-(5.4) will be estimated with (5.5) to-

gether.
Estimate of (5.5) with h = K ( f ). Let y = x − (t − s)v. Rewriting G(x) =

G(x) − G(y) + G(y) and applying (2.48) in Lemma 2.6 to G(x) − G(y) we have

|(5.5)1h=K ( f )| �
∣∣∣
∫ t

max{0,t−tb}
e−ν(v)(t−s)G(y)

∫
R3

k(v, u)∇x f (y, u)duds
∣∣∣
(5.6)

+
∣∣∣ α̃(x, v)

|v|
∫ t

max{0,t−tb}

∫
R3

k(v, u)∇x f (y, u)duds
∣∣∣. (5.7)

Then applying (4.5) in Lemma 4.1 with y = x − (t − s)v and (2.122) we obtain

(5.7) � α̃(x, v)

|v|wθ̃ (v)

∫ t

max{0,t−tb}

∫
R3

k(v, u)

α(y, u)

wθ̃ (v)

wθ̃ (u)
wθ̃ (u)α(y, u)∇x f (y, u)duds

� ‖wθ̃α∇x f ‖∞
α(x, v)

wθ̃/2(v)|v|
∫ t

max{0,t−tb}

∫
R3

k�̃(v, u)

α(y, u)
duds �

‖wθ̃α∇x f ‖∞
wθ̃/2(v)|v| .

We focus on (5.6). We further expand G(y)∇x f (y, u) along u:

(5.6)

�
∣∣∣
∫ t

max{0,t−tb}
e−ν(v)(t−s)
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×
∫
R3

k(v, u)G(y)
∑
i=1,2

∇xx1p1(u),i∂x1
p1(u),i

f (ηp1(u)(x
1
p1(u)

), u)duds
∣∣∣ (5.8)

+
∣∣∣
∫ t

max{0,t−tb}
e−ν(v)(t−s)

∫
R3

k(v, u)G(y)∇x tb(y, u) f (y − tb(y, u)u, u)duds
∣∣∣

(5.9)

+
∣∣∣
∫ t

max{0,t−tb}
e−ν(v)(t−s)e−ν(u)s

∫
R3

k(v, u)G(y)∇x f (y − su, u)duds
∣∣∣
(5.10)

+
∣∣∣
∫ t

max{0,t−tb}
e−ν(v)(t−s)

×
∫
R3

k(v, u)G(y)∇x tb(y, u)e−ν(u)tb(y,u)h(y − tb(y, u)u, u)duds
∣∣∣ (5.11)

+
∣∣∣
∫ t

max{0,t−tb}
e−ν(v)(t−s)ds

×
∫
R3

k(v, u)duG(y)
∫ s

max{0,s−tb(y,u)}
ds′

∫
R3

k(u, u′)∇x f (y − (s − s′)u, u′)
∣∣∣

(5.12)

+
∣∣∣
∫ t

max{0,t−tb}
e−ν(v)(t−s)ds

×
∫
R3

k(v, u)duG(y)
∫ s

max{0,s−tb(y,u)}
ds′∇x�( f, f )(y − (s − s′)u, u′)

∣∣∣.
(5.13)In (5.8) we denoted xb(x − (t − s)v, u) = ηp1(u)(x

1
p1(u)

).

Then we estimate (5.1)–(5.4) together with (5.8)–(5.11).
First we estimate (5.1) and (5.8). We start from (5.1). From Section 3 we have

|∂x1
p1,i

f (ηp1(x
1
p1), v)| = (3.19) + (3.20) � (3.21) + (3.24) + (3.27) + (3.34)

� MW (xb, v)√
μ(v)

‖TW − T0‖C1 [‖w f ‖∞ + ‖wθ̄ f ‖L∞(∂�)].

Thus by (2.51)

|(5.1)| � ‖TW − T0‖C1 [‖w f ‖∞ + ‖wθ̄ f ‖L∞(∂�)]
wθ̃/2(v)|v| . (5.14)

For (5.8) similarly by (2.51) we apply (2.122) and (2.104) with c = 1 to have

(5.8) � ‖TW − T0‖C1 [‖w f ‖∞ + ‖wθ̄ f ‖L∞(∂�)]
wθ̃/2(v)

×
∫ t

max{0,t−tb}
e−ν(v)(t−s)

∫
R3

k(v, u)
wθ̃/2(v)

wθ̃/2(u)

1

|u|duds

� [‖w f ‖∞ + ‖wθ̄ f ‖L∞(∂�)]
wθ̃/2(v)|v| . (5.15)
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Then we estimate (5.2) and (5.9). We start from (5.2). By (2.52) we conclude

|(5.2)| �
‖wθ̃/2 f ‖L∞(∂�)

wθ̃/2(v)|v| � ‖wθ̄ f ‖L∞(∂�)

wθ̃/2(v)|v| . (5.16)

For (5.9) similarly by (2.52) we apply (2.104) with c = 1 to have

(5.9) �
‖w

θ̃/2 f ‖L∞(∂�)

w
θ̃/2(v)

∫ t

max{0,t−tb}

∫
R3

k(v, u)
w

θ̃/2(v)

w
θ̃/2(u)

1

|u|duds �
‖wθ̄ f ‖L∞(∂�)

w
θ̃/2(v)|v| .

(5.17)

Then we estimate (5.3) and (5.10). For (5.3) we apply (2.49) to have

|(5.3)| � e−t [‖wθ̃/2|v|∇‖ f (x, v)‖∞
wθ̃/2(v)|v| + ‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v|
]
. (5.18)

Similarly for (5.10) applying (2.49) and (2.104) with c = 1 we have

(5.10) � e−t
‖wθ̃/2|v|∇‖ f ‖∞ + ‖wθ̃α∇x f ‖∞

wθ̃/2(v)

×
∫ t

max{0,t−tb}

∫
R3

k(v, u)
wθ̃/2(v)

wθ̃/2(u)

1

|u|duds

� e−t
[‖wθ̃/2|v|∇‖ f (x, v)‖∞

|v| + ‖wθ̃α∇x f ‖∞
wθ̃/2(v)|v|

]
. (5.19)

Then we estimate (5.4) and (5.11). For (5.4), by (2.52) and (3.3) we have

|(5.4)| � K ( f ) + �( f, f )

|v| � (‖ f ‖L∞(∂�) + 1)

|v|
∫
R3

|k(v, u) f (x − tbv, u)|du

�
(‖ f ‖L∞(∂�) + 1)‖wθ̃/2 f ‖L∞(∂�)

wθ̃/2(v)|v|
∫
R3

k�(v, u)
wθ̃/2(v)

wθ̃/2(u)
du

�
‖wθ̄ f ‖L∞(∂�) + ‖wθ̄ f ‖2L∞(∂�)

wθ̃/2(v)|v| . (5.20)

For (5.11) similarly by (2.52) and (2.104) with c = 1 we have

(5.11) �
‖wθ̄ f ‖L∞(∂�) + ‖wθ̄ f ‖2L∞(∂�)

wθ̃/2(v)

×
∫ t

max{0,t−tb}
e−ν(v)(t−s)

∫
R3

k(v, u)
wθ̃/2(v)

wθ̃/2(u)

1

|u|

�
‖wθ̄ f ‖L∞(∂�) + ‖wθ̄ f ‖2L∞(∂�)

wθ̃/2(v)|v| . (5.21)

Last we estimate (5.12), this estimate is the most delicate one. We apply the
decomposition (4.34) to ds′.
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When s′ > s − ε, we apply (2.49) in Lemma 2.6 to have

(5.12)1s′>s−ε

�
‖|v|∇‖ f ‖∞ + ‖wθ̃α∇x f ‖∞

wθ̃/2(v)
(5.22)

×
∫ t

max{0,t−tb}

∫
R3

k(v, u)
wθ̃/2(v)

wθ̃/2(u)
duds

∫ s

s−ε

ds′
∫
R3

k(u, u′)
wθ̃/2(u)

wθ̃/2(u
′)

|u|
|u′|

|v|
|u|

� o(1)
‖wθ̃α∇x f ‖∞ + ‖wθ̃/2|v|∇‖ f ‖∞

wθ̃/2(v)|v| , (5.23)

where we have applied (2.104) twice with c = 1.
On the other hand when s′ � s − ε, we exchange ∇x for ∇u :

∇x f (x − (t − s)v − (s − s′)u, u′) = −1

s − s′ ∇u[ f (x − (t − s)v − (s − s′)u, u′)].

Then we perform an integration by parts with respect to du and obtain

(5.12)1s′�s−ε

=
∣∣∣
∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

∫
R3

du

×
∫ s

max{0,s−tb(y,u)}
ds′ e−ν(u)(s−s′) 1s′�s−ε

s − s′

×
∫
R3

du′G(y)∇u[k(v, u)k(u, u′)] f (y − (s − s′)u, u′)

−
∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

∫
R3

du

×
∫ s

max{0,s−tb(y,u)}
ds′ ∇uν(u)e−ν(u)(s−s′)1s′�s−ε

×
∫
R3

du′G(y)k(v, u)k(u, u′) f (y − (s − s′)u, u′)

+
∫ t

max{0,t−tb}
ds e−ν(v)(t−s)

∫
R3

du

× 1s�tb(y,u)e
−ν(u)tb(y,u)

1tb(y,u)�ε

tb(y, u)
∇utb(y, u)

×
∫
R3

du′G(y)k(v, u)k(u, u′) f (y − tb(y, u)u, u′)
∣∣∣. (5.24)

We bound |G(y)| � 1. Then applying (2.103) and (2.106) the first and second
terms of (5.24) are bounded by

O(ε−1)‖wθ̃ f ‖∞
wθ̃/2(v)

∫ t

max{0,t−tb}
dse−ν(v)(t−s)

∫
R3

∫ s

max{0,s−tb(y,u)}
ds′e−ν(u)(s−s′)
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×
∫
R3

k(v, u)〈u〉2
|v − u|

wθ̃/2(v)

wθ̃ (u)

|u|
|u|

k(u, u′)
|u − u′|

wθ̃ (u)

wθ̃ (u
′)

� O(ε−1)‖w f ‖∞
wθ̃/2(v)

∫ t

max{0,t−tb}
dse−ν(v)(t−s)

∫
R3

∫ s

max{0,s−tb(y,u)}
ds′e−ν(u)(s−s′)

×
∫
R3

k(v, u)

|v − u|
wθ̃/2(v)

wθ̃/2(u)

1

|u|
k�̃(u, u′)
|u − u′| � O(ε−1)‖w f ‖∞

wθ̃/2(v)|v| .

where we have used (2.122), 〈u〉2|u|w−1
θ̃

(u) � w−1
θ̃/2

(u) and (2.104) with c = 1.

For the third term we apply (2.32) and (2.48) to have

∣∣∣G(y)
∇utb(y, u)

tb(y, u)

∣∣∣ =
∣∣∣G(y)n(xb(y, u))

n(xb(y, u)) · u
∣∣∣

=
∣∣∣ [G(y) − G(xb(y, u))]n(xb(y, u))

n(xb(y, u)) · u + G(xb(y, u))n(xb(y, u))

n(xb(y, u)) · u
∣∣∣

� α̃(y, u)

|n(xb(y, u)) · u||u| � 1

|u| . (5.25)

Thus applying (2.104) with c = 1 the third term is bounded by

‖wθ̃/2 f ‖L∞(∂�)

wθ̃/2(v)

∫ t

max{0,t−tb}
dse−ν(v)(t−s)

×
∫
R3

duk(v, u)
wθ̃/2(v)

wθ̃/2(u)

1

|u|e
−νtb(y,u)

∫
R3

k(u, u′) � ‖wθ̄ f ‖L∞(∂�)

wθ̃/2(v)|v| .

Therefore, we conclude

(5.12)1s′<s−ε � O(ε−1)
‖w f ‖∞ + ‖wθ̄ f ‖L∞(∂�)

wθ̃/2(v)|v| . (5.26)

We estimate (5.13) togetherwith (5.5)1h=� .We apply (2.109), (2.49) and (4.11)
with c = 1 to have

|(5.5)1h=�|
�
∫ t

max{t−tb}
e−ν(v)(t−s)‖w f ‖‖wθ̄ f ‖∞

×
∣∣∣G(x)∇x f (x − (t − s)v) +

∫
R3

k�(v, u)|G(x)∇x f (x − (t − s)v, u)|
∣∣∣

�
‖w f ‖∞[‖wθ̃/2|v|∇‖ f ‖∞ + ‖wθ̃α∇x f ‖∞]

wθ̃/2(v)

×
[ 1

|v| +
∫ t

max{0,t−tb}
e−ν(v)(t−s)

∫
R3

k�(v, u)
wθ̃/2(v)

wθ̃/2(u)

1

|u|duds
]

� ‖w f ‖∞
‖wθ̃/2|v|∇‖ f ‖∞

|v| + ‖w f ‖∞‖wθ̃α∇x f ‖∞
|v|
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�
‖w f ‖∞[‖wθ̃/2|v|∇‖ f ‖∞ + ‖wθ̃α∇x f ‖∞]

wθ̃/2(v)|v| . (5.27)

Then, similarly, we have

(5.13)

�
∫ t

max{t−tb}
e−ν(v)(t−s)

∫
R3

k�(v, u)
‖w f ‖∞[‖wθ̃/2|v|∇‖ f ‖∞ + ‖wθ̃α∇x f ‖∞]

wθ̃/2(u)|u|

�
‖w f ‖∞[‖wθ̃/2|v|∇‖ f ‖∞ + ‖wθ̃α∇x f ‖∞]

wθ̃/2(v)

×
∫ t

max{t−tb}
e−ν(v)(t−s)

∫
R3

k�(v, u)
wθ̃/2(v)

wθ̃/2(u)

1

|u|

�
‖w f ‖∞[‖wθ̃/2|v|∇‖ f ‖∞ + ‖wθ̃α∇x f ‖∞]

wθ̃/2(v)|v| . (5.28)

Now we estimate ‖wθ̃ f ‖L∞(∂�). Similar to Lemma 3.2, we let h = K ( f ) +
�( f, f ), following the same proof as to that of Lemma3.2 andExistenceTheorem,
we have

‖wθ̄ f ‖L∞(∂�) � ‖w f ‖∞ = o(1). (5.29)

With the above estimate, we combine (5.15), (5.17),(5.19),(5.21),(5.23), (5.26),
(5.27) and (5.28), then we conclude

(5.5) �
[
o(1) + e−t ][ ‖w f ‖∞

wθ̃/2(v)|v| + ‖wθ̃/2|v|∇‖ f ‖∞
wθ̃/2(v)|v|

]
+ ‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v| . (5.30)

Combining (5.18),(5.14), (5.30),(5.16) and (5.29) we conclude

|∇‖ f | � O(ε−1)
[‖w f ‖∞
wθ̃/2|v| + ‖wθ̃α∇x f ‖∞

wθ̃/2|v|
]

+[‖w f ‖∞ + e−t ]‖wθ̃/2|v|∇‖ f ‖∞
wθ̃/2|v| . (5.31)

Then from t � 1 and ‖w f ‖∞ 	 1 in the Existence Theorem we conclude (1.19).
��

5.2. Continuity of C1 solution

In this section we prove the continuity of ∇x f . The continuity of G(x)∇x f
will follow directly from the continuity of ∇x f . We only need to prove ∇x f is
continuous at t = tb(x, v). We consider (5.1) - (5.5) without G(x). When t =
tb(x, v), (5.3) reads

e−νtb∇x f (x − tbv, v).
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At the boundary x − tbv = xb(x, v) = ηp1(x
1
p1

), we use the notation (2.28),(2.29)
and decompose the spatial derivative as

v · ∇x f =
2∑

i=1

v1p1,i

∂x1
p1,i

f
√
gp1,i i (xp1)

+ v1p1,3

∂x1
p1,3

f
√
gp1,33(xp1)

.

Then from the equation (2.3), we derive

∂x1
p1,3

f
√
gp1,33(xp1)

= −
2∑

i=1

v1
p1,i

∂x1
p1,i

f

v1
p1,3

√
gp1,i i (xp1)︸ ︷︷ ︸

(5.32)1

− ν(v) f

v1
p1,3︸ ︷︷ ︸

(5.32)2

+ K ( f ) + �( f, f )

v1
p1,3︸ ︷︷ ︸

(5.32)3

.(5.32)

Plugging these terms back to the spatial derivative ∇x f , we derive that

∇x f = ∇x f T T
t

=
( ∂x1

p1,1
f

√
gp1,11(xp1)

,

∂x1
p1,2

f
√
gp1,22(xp1)

, (5.32)
)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂1ηp1 (x1
p1

)√
gp1,11(x

1
p1

)

∂2ηp1 (x1
p1

)√
gp1,22(x

1
p1

)

∂3ηp1 (x1
p1

)√
gp1,33(x

1
p1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.33)

Then the contribution of (5.32)1 in (5.33) is

( ∂x1
p1,1

f
√
gp1,11(xp1)

,

∂x1
p1,2

f
√
gp1,22(xp1)

, (5.32)1
)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂1ηp1 (x1
p1

)√
gp1,11(x

1
p1

)

∂2ηp1 (x1
p1

)√
gp1,22(x

1
p1

)

∂3ηp1 (x1
p1

)√
gp1,33(x

1
p1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑2
i=1

[ ∂x1
p1,i

f

√
gp1,i i (xp1 )

∂iηp1 (x1
p1

)√
gp1,i i (x

1
p1

)
−

v1
p1,i

∂x1
p1,i

f

v1
p1,3

√
gp1,i i (xp1 )

∂3ηp1 (x1
p1

)√
gp1,33(x

1
p1

)

]
· e1

∑2
i=1

[ ∂x1
p1,i

f

√
gp1,i i (xp1 )

∂iηp1 (x1
p1

)√
gp1,i i (x

1
p1

)
−

v1
p1,i

∂x1
p1,i

f

v1
p1,3

√
gp1,i i (xp1 )

∂3ηp1 (x1
p1

)√
gp1,33(x

1
p1

)

]
· e2

∑2
i=1

[ ∂x1
p1,i

f

√
gp1,i i (xp1 )

∂iηp1 (x1
p1

)√
gp1,i i (x

1
p1

)
−

v1
p1,i

∂x1
p1,i

f

v1
p1,3

√
gp1,i i (xp1 )

∂3ηp1 (x1
p1

)√
gp1,33(x

1
p1

)

]
· e3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t

,

which is exactly the same as
∑

i=1,2 ∇xx1p1,i∂x1p1,i
f (ηp1(x

1
p1

), v) in (5.1) by apply-

ing (2.33).
The contribution of (5.32)2 and (5.32)3 in (5.33) are

((5.32)2 + (5.32)3) ·
∂3ηp1(x

1
p1

)√
gp1,33(x

1
p1

)
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= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ν(v) f
v1
p1,3

∂3ηp1 (x1
p1

)√
gp1,33(x

1
p1

)
· e1

ν(v) f
v1
p1,3

∂3ηp1 (x1
p1

)√
gp1,33(x

1
p1

)
· e2

ν(v) f
v1
p1,3

∂3ηp1 (x1
p1

)√
gp1,33(x

1
p1

)
· e3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

t

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

K ( f )+�( f, f )
v1
p1,3

∂3ηp1 (x1
p1

)√
gp1,33(x

1
p1

)
· e1

K ( f )+�( f, f )
v1
p1,3

∂3ηp1 (x1
p1

)√
gp1,33(x

1
p1

)
· e2

K ( f )+�( f, f )
v1
p1,3

∂3ηp1 (x1
p1

)√
gp1,33(x

1
p1

)
· e3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

t

,

which is exactly the same as −ν(v)∇x tb f in (5.3) and ∇x tbh in (5.4) by apply-
ing (2.32).

Thus ∇x f is continuous at t = tb.

6. C1
v Estimate

In this section we prove the C1
v estimate, which is (1.20) in Main Theorem.

Proof of (1.20) We take the v derivative to (2.9) and have

∇v f (x, v) =1t�tbe
−νtb∇v[ f (xb, v)] (6.1)

− 1t�tbν∇vtb(x, v)e−νtb f (xb, v) (6.2)

− 1t�tb∇vν(v)tbe
−νtb f (xb, v) (6.3)

+ 1t�tbe
−νt∇v[ f (x − tv, v)] (6.4)

− 1t�tb∇vν(v)te−νt f (x − tv, v) (6.5)

−
∫ t

max{0,t−tb}
∇vν(v)e−ν(t−s)(t − s)h(x − (t − s)v, v)ds (6.6)

+
∫ t

max{0,t−tb}
e−ν(t−s)∇v[h(x − (t − s)v, v)]ds (6.7)

− 1t�tb∇vtb(x, v)e−νtbh(x − tbv, v). (6.8)

Note that from Section 5.2, we have ‖w f ‖L∞(∂�) � ‖w f ‖∞, then in the fol-
lowing estimate we will not specify the norm on ∂�.

First we estimate (6.1) and (6.7), which are the most delicate.
For (6.1), we apply the boundary condition (2.25) to obtain

|(6.1)| � ∇v

[MW (xb, v)√
μ(v)

∫
v13>0

f (xb, T
t
x1p
v1)
√

μ(v1)v13dv
1 + r(xb, v)

]

� ‖w f ‖∞‖TW − T0‖C1 + ‖|v|2∇v[r(xb, v)]‖∞
|v|2 (6.9)

+ |v|2MW (xb, v)√
μ(v)|v|2

∣∣∣
∫
v13>0

∇v[ f (xb, T t
x1p
v1)]

︸ ︷︷ ︸
(6.10)∗

√
μ(v1)v13dv

1
∣∣∣. (6.10)
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In the second line we used the same computation as (2.100) to have

∣∣∣∇v

MW (xb, v)√
μ(v)

∣∣∣ �TW
e
− |v|2

2TW (xb(x,v)) |v|√
μ(v)

� 1

|v|2 .

Applying (2.95) we have

(6.9) � ‖w f ‖∞ + 1

|v|2 . (6.11)

Using chain rule we have

(6.10)∗ = ∇vxb∇x f (xb, T
t
x1p
v1)

︸ ︷︷ ︸
(6.10)1

+∇vT
t
x1p
v1∇v f (xb, T

t
x1p
v1)

︸ ︷︷ ︸
(6.10)2

.

Then we estimate the contribution of both terms above in (6.10). Applying (2.40),
the contribution of (6.10)1 is bounded by

1

|v|2
∫
n(xb)·v1>0

α(xb, v1)

|v1| |∇x f (xb, v
1)|μ1/4(v1)dv1

� 1

|v|2
∫
n(xb)·v1>0

‖α∇x f ‖∞
|v1| μ1/4(v1)dv1 � ‖α∇x f ‖∞

|v|2 , (6.12)

where we have used (1.8) to have |n(xb) · v1|√μ(v1) � α(xb, v1)μ1/4(v1).

For the contribution of (6.10)2, we exchange the v derivative into v1 derivative:

∇v f (xb, T
t
x1p
v1) = ∇v1[ f (xb, T t

x1p
v1)]Tx1p .

Then the contribution of (6.10)2 in (6.12) can be written as
∣∣∣O(1)

|v|
∫
v13>0

∇vT
t
x1p
v1∇v1[ f (xb, T t

x1p
v1)]Tx1pv13

√
μ(v1)dv1

∣∣∣

=
∣∣∣O(1)

|v|
∫
v13>0

∇vT
t
x1p

f (xb, T
t
x1p
v1)Tx1p∇v1

[
v1v13

√
μ(v1)

]
dv1

∣∣∣

� O(1)

|v|
∫
v13>0

1

|v| ‖η‖C2‖w f ‖∞μ1/4(v1)dv1 � ‖w f ‖∞
|v|2 , (6.13)

where we applied an integration by parts to dv1 in the second line, and used (2.41)
in the third line.

Combining (6.12), (6.13) and (6.11) we conclude

|(6.1)| � ‖w f ‖∞ + ‖α∇x f ‖∞
|v|2 . (6.14)

Then we estimate (6.7). For h = K ( f ), we compute
∫ t

max{0,t−tb}
e−ν(t−s)

∫
R3

|∇v

[
k(v, u) f (x − (t − s)v, u)

]|ds
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=
∫ t

max{0,t−tb}
e−ν(t−s)

×
∫
R3

∣∣∇vk(v, u) f (x − (t − s)v, u) + k(v, u)∇v[ f (x − (t − s)v, u)]∣∣

�
∫ t

max{0,t−tb}
e−ν(t−s)

×
∫
R3

[‖w f ‖∞
w−1(u)〈v〉k�(v, u)

|v − u| + |k(v, u)(t − s)∇x f (x − (t − s)v, u)|]

�
∫ t

max{0,t−tb}
e−ν(t−s)

∫
R3

[
‖w f ‖∞

e−�|v−u|2/2

|v − u|2
1

|v|2

+ tb‖wθ̃α∇x f ‖∞
wθ̃ (v)k(v, u)

wθ̃ (u)α(x − (t − s)v, u)

1

wθ̃ (v)

]

� ‖w f ‖∞
|v|2 + α̃(x, v)

wθ̃ (v)|v|2
‖wθ̃α∇x f ‖∞

α(x − (t − s)v, v)
�

‖w f ‖∞ + ‖wθ̃α∇x f ‖∞
|v|2 .

(6.15)

In the sixth line we have used

w−1(u)e−�|v−u|2〈v〉 = e−�|v−u|2/2e−�|v−u|2/2e−�|u|2〈v〉

� e−�|v−u|2/2 e−C|v|2〈v〉|v|2
|v|2 � e−�|v−u|2/2

|v|2 .

In the last line we have applied e−�|v−u|2/2

|v−u|2 ∈ L1
u , (4.5) in Lemma 4.1 and (2.39).

For h = �( f, f ) we apply (2.107) to have

|(6.7)1h=�( f, f )| � 1

|v|2
∫ t

max{0,t−tb}
e−ν(t−s)[‖w f ‖2∞ + ‖w f ‖∞‖|v|2∇v f ‖∞]

� ‖w f ‖2∞ + ‖w f ‖∞‖|v|2∇v f ‖∞
|v|2 . (6.16)

Then we estimate all the other terms, which follow from more direct compu-
tation. For (6.2) we apply (2.40) and (2.106); for (6.3) we apply (2.106); for (6.4)
we apply (2.40) and t � tb � α̃(x,v)

|v|2 ; for (6.5) we apply (2.106); for (6.6) we
apply (2.106) and (2.124); for (6.8) we apply (2.40) and (2.105), then we obtain
the following bound:

|(6.2)| � ‖ν f ‖∞
|v|2 � ‖w f ‖∞

|v|2 , (6.17)

|(6.3)| � ‖|v|2 f ‖∞
|v|2 � ‖w f ‖∞

|v|2 , (6.18)

|(6.4)| � e−t t∇x f (x − tv, v) + e−t∇v f (x − tv, v)

� e−t ‖α∇x f ‖∞
|v2| + e−t ‖|v|2∇v f ‖∞

|v|2 , (6.19)
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|(6.5)| � te−t ‖|v|2 f ‖∞
|v|2 � ‖w f ‖∞

|v|2 , (6.20)

|(6.6)| � ‖|v|2h‖∞
|v|2

∫ t

max{0,t−tb}
(t − s)e−ν(t−s)ds �

‖wθ̃h‖∞
|v|2

� ‖w f ‖∞
|v|2 , (6.21)

|(6.8)| � ‖w f ‖∞
|v|2 . (6.22)

Combining (6.14)–(6.22) we conclude

|∇v f | � ‖TW − T0‖C1
(e−t + ‖w f ‖∞)‖|v|2∇v f ‖∞ + ‖w f ‖∞ + ‖α∇x f ‖∞

|v|2 .

Since e−t 	 1 from t � 1 and ‖w f ‖∞ 	 1 from Existence Theorem, we
conclude the proof. ��

7. C1,β Solutions in Convex Domains

7.1. Proof of (1.21) and (1.22)

Given the continuity of the C1 solution in Section 5.2, in this section we prove
the Hölder regularity, which are (1.21) and (1.22) in the Main Theorem.

For simplicity we denote

[∇x f (·, v)]
C0,β
x;2+β

:= sup
x,y∈�

∥∥wθ̃ (v)|v|2 min

{
α(x, v)

|v| ,
α(y, v)

|v|
}2+β ∇x f (x, v) − ∇x f (y, v)

|x − y|β
∥∥
L∞

v
, (7.1)

[∇x‖ f (·, v)]
C0,β
x;1+β

:= sup
x,y∈�

∥∥wθ̃/2(v)|v|2 min

{
α(x, v)

|v| ,
α(y, v)

|v|
}1+β |∇‖ f (x, v) − ∇‖ f (y, v)|

|x − y|β
∥∥
L∞

v
. (7.2)

Here ∇‖ = G(x)∇x and G is defined in (1.14). We note that the weight in (7.1)
and (7.2) are different in terms of the power.

To prove the weighted C1,β we will estimate the characteristics starting from
two different positions x and y. In result we define the backward exit time and
position that correspond to x and y.

The first backward exit position and time are denoted using the same notation
as

xb(x, v), xb(y, v), tb(x, v), tb(y, v).

For simplicity we denote the second backward exit position and time as

x2b(x) = xb(xb(x, v), v1), x2b(y) = xb(xb(y, v), v1),

t2b(x) = tb(xb(x, v), v1), t2b(y) = tb(xb(y, v), v1).
(7.3)



Regularity of Stationary Boltzmann Equation in Convex Domains 1171

Similarly to Definition 4, we choose p1(x), p2(x), p1(y), p2(y) ∈ P such that

xi
pi (x)

:= (xi
pi (x),1

, xi
pi (x),2

, 0) such that ηpi (x)(x
i
pi (x)

) =
{
xb(x, v), i = 1;
x2b(x), i = 2.

(7.4)

xi
pi (y)

:= (xi
pi (y),1

, xi
pi (y),2

, 0) such that ηpi (y)(x
i
pi (y)

) =
{
xb(y, v), i = 1;
x2b(y), i = 2.

(7.5)

Since ‖w f ‖∞, ‖|v|∇‖ f ‖∞, ‖|v|2∇v f ‖∞, ‖wθ̃α∇x f ‖∞ are all bounded from
previous sections, for simplicity, throughout this section we assume

max{‖w f ‖∞, ‖|v|∇‖ f ‖∞, ‖|v|2∇v f ‖∞}
� ‖α∇x f ‖∞ � ‖α∇x f ‖2∞ � ‖wθ̃α∇x f ‖2∞.

(7.6)

Note that the above assumption implies ‖wθ̃α∇x f ‖∞ � 1. Then the bound of (7.1)
and (7.2) are given by the following proposition.

Proposition 3. Suppose F = μ+√
μ f solves the steady Boltzmann equation (1.1)

with boundary condition (1.3), then

[∇x f (·, v)]
C0,β
x;2+β

� o(1)[∇x‖ f (·, v)]
C0,β
x;1+β

+ Cε‖TW − T0‖C2‖wθ̃α∇x f ‖2∞,

(7.7)

and

[∇x‖ f (·, v)]
C0,β
x;1+β

� o(1)[∇x f (·, v)]
C0,β
x;2+β

+ Cε‖TW − T0‖C2‖wθ̃α∇x f ‖2∞,

(7.8)

where Cε � 1.

These two estimates together conclude (1.21) and (1.22).
Below we present two lemmas regarding the collision operators. These two

lemmas will be used to estimate the difference of the collision operators.

Lemma 7.1. For h(x, v) = K f (x, v) + �( f, f )(x, v), we have

|h(x, v) − h(y, v)|
|x − y|β �

‖wθ̃α∇x f ‖∞
wθ̃ (v)min {α(x, v), α(y, v)}β , (7.9)

|∇xh(x, v)| �
‖wθ̃α∇x f ‖∞

wθ̃ (v)

∫
R3

k�̃(v, u)

α(x, u)
du + ‖wθ̃α∇x f ‖∞

wθ̃ (v)α(x, v)
. (7.10)

Proof. Since

|�( f, f )(x, v) − �( f, f )(y, v)|
= �( f (x) − f (y), f (x))(v) + �( f (y), f (x) − f (y))(v)

� ‖w f ‖∞
( ∫

R3
k(v, u)| f (x, u) − f (y, u)|du + | f (x, v) − f (y, v)|), (7.11)
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we have

|h(x, v) − h(y, v)|
|x − y|β

= |K [ f (x, v) − f (y, v)] + �( f, f )(x, v) − �( f, f )(y, v)|
|x − y|β

�
∫
R3

k(v, u)
f (x, u) − f (y, u)

|x − y|β du

+ ‖w f ‖∞
∫
R3

k(v, u)
f (x, u) − f (y, u)

|x − y|β du + | f (x, v) − f (y, v)|
|x − y|β

�
‖w f ‖∞‖wθ̃α∇x f ‖∞

wθ̃ (v)

×
[ ∫

R3

wθ̃ (u)k�(v, u)

wθ̃ (u)min {α(x, u), α(y, u)}β + 1

wθ̃ (v)min {α(x, v), α(y, v)}β
]

�
‖wθ̃α∇x f ‖∞

wθ̃ (v)min {α(x, v), α(y, v)}β ,

where we have applied (2.64) and (4.10) in Lemma 4.1.
Then we prove (7.10). Clearly from Lemma 2.13,

|∇x K f (x, v)| = |
∫
R3

k(v, u)∇x f (x, u)| �
‖wθ̃α∇x f ‖∞

wθ̃ (v)

∫
R3

k(v, u)

α(x, u)

wθ̃ (v)

wθ̃ (u)

�
‖wθ̃α∇x f ‖∞

wθ̃ (v)

∫
R3

k�̃(v, u)

α(x, u)
.

For �, we bound

|∇x�( f, f )(x, v)| = |�(∇x f, f ) + �( f,∇x f )|
� ‖w f ‖∞

[
|∇x f (x, v)| +

∫
R3

|k(v, u)∇x f (x, u)|
]

�
‖wθ̃α∇x f ‖∞
wθ̃ (v)α(x, v)

+ ‖wθ̃α∇x f ‖∞
wθ̃ (v)

∫
R3

k(v, u)

α(x, u)

wθ̃ (v)

wθ̃ (u)
du,

again by Lemma 2.13 we conclude the lemma. ��
Lemma 7.2. Denote x ′ = x − (t − s)v, y′ = y − (t − s)v. For the difference of
∇x�, we have

∫ t

0
e−ν(v)(t−s)

∣∣∣∇x�( f, f )(x ′, v) − ∇x�( f, f )(y′, v)

|x − y|β
∣∣∣

�
o(1)[∇x f (·, v)]

C0,β
x,2+β

+ ‖wθ̃α∇x f ‖2∞
wθ̃ (v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}2+β

, (7.12)
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and ∫ t

0
e−ν(v)(t−s)

∣∣∣G(x ′)∇x�( f, f )(x ′, v) − G(y′)∇x�( f, f )(y′, v)

|x − y|β
∣∣∣

�
o(1)[∇‖ f (·, v)]

C0,β
x,1+β

+ ‖wθ̃α∇x f ‖2∞
wθ̃/2(v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}1+β

. (7.13)

Proof. We rewrite the difference of ∇x� as

∇x�( f, f )(x, v) − ∇x�( f, f )(y, v)

= �(∇x f (x) − ∇x f (y), f (x))(v) + �( f (x) − f (y),∇x f (x))(v)

+ �(∇x f (y), f (x) − f (y))(v) + �( f (y),∇x f (x) − ∇x f (y))(v).

Then by (2.114) we bound

|�(∇x f (x) − ∇x f (y), f (x))(v)| � ‖w f ‖∞
∫
R3

k�(v, u)|∇x f (x, u) − ∇x f (y, u)|du,

|�( f (y),∇x f (x) − ∇x f (y))(v)| � ‖w f ‖∞
(∇x f (x, v) − ∇x f (y, v)

)

+ ‖w f ‖∞
∫
R3

k�(v, u)|∇x f (x, u) − ∇x f (y, u)|.

For �( f (x) − f (y),∇x f (x))(v), we bound �loss in (2.110) as

|�loss( f (x) − f (y),∇x f (x))(x)| � |∇x f (x, v)|ν(
√

μ( f (x) − f (y)))

� |∇x f (x, v)|
∫
R3

k�(v, u)| f (x, u) − f (y, u)|.

Then we use Carleman’s representation (see [14]) to write the �gain in (2.110) as

|�gain( f (x) − f (y),∇x f (x))(v)|
|x − y|β

�
∫
R3

du
|∇x f (x, u)|

|v − u|
∫

(u−v)·ω=0

| f (x, v + ω) − f (y, v + ω)|
|x − y|β

�
∫
R3

duk(v, u)|∇x f (x, u)|
∫
S2

w−1
θ̄

(v + ω)‖wθ̃α∇x f ‖∞
min {α(x, v + ω), α(y, v + ω)}β

�
‖wθ̃α∇x f ‖2∞

wθ̃ (v)

∫
R3

du
wθ̃ (v)k(v, u)

wθ̃ (u)α(x, u)min {ξ(x), ξ(y)}β/2

×
∫
S2
dωe−θ̃ |v|2/2w−1

θ̃
(v + ω)

|v + ω|β

�
‖wθ̃α∇x f ‖2∞

w
3/2
θ̃

(v)

∫
R3

du
k�̃(v, u)

α(x, u)min {ξ(x), ξ(y)}β/2

�
w

−3/2
θ̃

(v)

min {ξ(x), ξ(y)}β/2 [1 + log |ξ(y)| + | log |v||]. (7.14)
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Here we applied (2.64) in the third line. In the fourth line we have used that for
|ω| � 1,

w−1
θ̄

(v + ω) = w−1
θ̃

(v + ω)w−1
θ̃

(v + ω) � w−1
θ̃

(v + ω)e−θ̃ |v|2eθ̄v·ω

� w−1
θ̃

(v + ω)e−θ̃ |v|2e
θ̃ |v|2
2 eθ̄ |w|2 � w−1

θ̃
(v + ω)e−θ̃ |v|2/2.

and α(x, v) �
√−ξ(x)|v|. In the sixth line we use Lemma 2.13 and in the last line

we use (4.12).
Thus by (2.64) with (7.6) we obtain

|∇x�( f, f )(x ′, v) − ∇x�( f, f )(y′, v)|
|x − y|β

�
[
O(‖w f ‖∞)

|∇x f (x ′, v) − ∇x f (y′, v)|
|x − y|β

+ O(‖w f ‖∞)

∫
R3

k(v, u)
|∇x f (x ′, u) − ∇x f (y′, u)|

|x − y|β
]

(7.15)

+
[
|∇x f (x

′, v)|
∫
R3

k(v, u)
| f (x ′, u) − f (y′, u)|

|x − y|β du

+ | f (x ′, v) − f (y′, v)|
|x − y|β

∫
R3

k(v, u)|∇x f (x
′, u)|du

]
(7.16)

+ ‖wθ̃α∇x f ‖2∞
w

3/2
θ̃

(v)

[ | log |ξ(x ′)||
min {ξ(x ′), ξ(y′)}β/2 + | log |v||

min {ξ(x ′), ξ(y′)}β/2

]
. (7.17)

We bound w
−3/2
θ̃

(v)|v| � w−1
θ̃

(v). By (4.7) and (4.10) in Lemma 4.1 we have

∫ t

0
e−ν(v)(t−s)(7.15)

�
‖w fs‖∞[∇x fs(·, v)]

C0,β
x,2+β

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β

+
‖w fs‖∞[∇x fs(·, v)]

C0,β
x,2+β

wθ̃ (v)

∫ t

0
e−ν(v)(t−s)

×
∫
R3

wθ̃ (v)k(v, u)

wθ̃ (u)|u|2 min
{

α(x ′,u)
|u| ,

α(y′,u)
|u|

}2+β

�
‖w fs‖∞[∇x fs(·, v)]

C0,β
x,2+β

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
. (7.18)

By (2.64),(4.7) and (4.10) in Lemma 4.1 we have
∫ t

0
e−ν(v)(t−s)(7.16)
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�
w−2

θ̃
(v)|v|‖wθ̃α∇x f ‖2∞

|v|α(x, v)

∫ t

0
e−ν(v)(t−s)

∫
R3

wθ̃ (v)k�(v, u)

wθ̃ (u)min {α(x ′, u), α(y′, u)}β

+
w−2

θ̃
(v)|v|‖wθ̃α∇x f ‖2∞

|v|min {α(x, v), α(y, v)}β
∫ t

0
e−ν(v)(t−s)

∫
R3

wθ̃ (v)k�(v, u)

wθ̃ (u)α(x ′, u)

�
‖wθ̃α∇x f ‖2∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

�
‖wθ̃α∇x f ‖2∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
. (7.19)

For (7.17), we bound | log ξ(x ′)| � 1
min{ξ(x ′),ξ(y′)}ε andw

−3/2
θ̃

(v)|v| � w−1
θ̃

(v).
Then we have
∫ t

0
e−ν(v)(t−s)(7.17)

� ‖wθ̃α∇x f ‖2∞
[ ∫ t

0

w
−3/2
θ̃

(v)e−ν(v)(t−s)

min {ξ(x ′), ξ(y′)}β/2+ε
+
∫ t

0

w
−3/2
θ̃

(v)e−ν(v)(t−s)| log |v||
min {ξ(x ′), ξ(y′)}β/2

]

� ‖wθ̃α∇x f ‖2∞
[ ∫ t

0

w
−3/2
θ̃

(v)|v|e−ν(v)(t−s)

|v|min {ξ(x ′), ξ(y′)}β/2+ε

+
∫ t

0

w
−3/2
θ̃

(v)|v|| log |v||e−ν(v)(t−s)

|v|min {ξ(x ′), ξ(y′)}β/2

]

� ‖wθ̃α∇x f ‖2∞
[ ∫ t

0

w−1
θ̃

(v)e−ν(v)(t−s)

|v|min {ξ(x ′), ξ(y′)}β/2+ε
+
∫ t

0

w−1
θ̃

(v)e−ν(v)(t−s)

|v|min {ξ(x ′), ξ(y′)}β/2

]

�
‖wθ̃α∇x f ‖2∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
, (7.20)

where we have applied Lemma 4.1 in the last line with small enough ε such that
β/2 + ε 	 1.

Using ‖w f ‖∞ 	 1 from Existence Theorem we conclude (7.12).
Then we prove (7.13). From (7.15)–(7.17) we can rewrite

|G(x ′)∇x�( f, f )(x ′, v) − G(y′)∇x�( f, f )(y′, v)|
|x − y|β

=
∣∣∣G(y′) − G(x ′)

|x − y|β ∇x�( f, f )(y′, v) + G(x ′)∇x�( f, f )(x ′, v) − ∇x�( f, f )(y′, v)

|x − y|β
∣∣∣

� |G(y′) − G(x ′)|
|x ′ − y′|β ‖w f ‖∞‖wθ̃α∇x f ‖∞

×
[ w−1

θ̃
(v)|v|

|v||α(y, v)| + w−1
θ̃/2

(v)

∫
R3

wθ̃/2(v)|u|k(v, u)

wθ̃ (u)|u|α(y − (t − s)v, u)

]
(7.21)

+ |G(x ′) × [
(7.15) + (7.16) + (7.17)

]|. (7.22)
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We bound w−1
θ̃

(v)|v| � w−1
θ̃/2

(v). Then we have

∫ t

0
e−ν(v)(t−s)(7.21)

�
‖wθ̃α∇x f ‖2∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}

+ ‖wθ̃α∇x f ‖2∞
wθ̃/2(v)

∫ t

0
e−ν(v)(t−s)

∫
R3

k�̃(v, u)

|u|2 min
{

α(x ′,u)
|u| ,

α(y′,u)
|u|

}du

�
‖wθ̃α∇x f ‖2∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
,

where we have used (2.57) in the first line, (2.122) in the second line and (4.5) in
Lemma 4.1 with α(x,v)

|v| � 1 in the last line.
For (7.22), since |G| � 1, from (7.20) and (7.19) the contribution of (7.16)(7.17)

is already included in (7.13). Then we consider the contribution of (7.15), which
reads

‖w f ‖∞
|G(x ′)[∇x f (x ′, v) − ∇x f (y′, v)]|

|x − y|β

+ ‖w f ‖∞
∫
R3

k�(v, u)
|G(x ′)[∇x f (x ′, u) − ∇x f (y′, u)]|

|x − y|β .

Since w−1
θ̃

(v)|v| � w−1
θ̃/2

(v), we rewrite

∣∣∣G(x ′)∇x f (x ′, v) − ∇x f (y′, v)

|x − y|β
∣∣∣

=
∣∣∣∇‖ f (x ′, v) − ∇‖ f (y′, v)

|x − y|β +
[
G(x ′) − G(y′)

]
∇x f (y′, v)

|x − y|β
∣∣∣

�
∣∣∣∇‖ f (x ′, v) − ∇‖ f (y′, v)

|x − y|β
∣∣∣+ w−1

θ̃
(v)|v|‖wθ̃α∇x f ‖∞

|v|α(y′, v)

�
[∇‖ f (·, v)]

C0,β
x,1+β

wθ̃/2(v)|v|2 min
{

α(x ′,v)
|v| ,

α(y′,v)
|v|

}1+β

+ ‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v|2 min
{

α(x ′,v)
|v| ,

α(y′,v)
|v|

}1+β
.

Thus applying (2.122) and (4.7) in Lemma 4.1 with p = 1 + β we obtain

∫ t

0
e−ν(v)(t−s)|G(x ′)(7.15)|



Regularity of Stationary Boltzmann Equation in Convex Domains 1177

� ‖w f ‖∞
[∇‖ f (·, v)]

C0,β
x,1+β

+ ‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

+ ‖w f ‖∞
wθ̃/2(v)

∫ t

0
e−ν(v)(t−s)

×
∫
R3

wθ̃/2(v)k(v, u)

[∇‖ f (·, v)]
C0,β
x,1+β

+ ‖wθ̃α∇x f ‖∞

wθ̃/2(u)|u|2 min
{

α(x ′,u)
|u| ,

α(y′,u)
|u|

}1+β

� ‖w f ‖∞
[∇‖ f (·, v)]

C0,β
x,1+β

+ ‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
.

Finally by ‖w f ‖∞ 	 1 from the Existence Theorem we conclude the
lemma. ��

We need one more lemma before the proof. In the following lemma we express
the difference quotient in (7.1),(7.2) along the characteristics. This lemma will
significantly simplify the proof of Proposition 3.

Lemma 7.3. Suppose f solves inhomogenenous steady transport equation with the
diffuse BC. Then

∂xi f (x, v) − ∂xi f (y, v)

|x − y|β

=
O(1)‖wθ̃α∇x f ‖∞ + o(1)[∇x f (·, v)]

C0,β
x;2+β

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
(7.23)

+ O(1)

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

} |xb(x, v) − xb(y, v)|β
|x − y|β

× wθ̃ (v)|v|2
|∂x1

p1(x),i
f (xb(x, v), v) − ∂x1

p1(y),i
f (xb(y, v), v)|

|xb(x, v) − xb(y, v)|β (7.24)
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+
∫ t

max{0,t−min{tb(x,v),tb(y,v)}}
e−ν(t−s)[∂xi h(x − (t − s)v, v) − ∂xi h(y − (t − s)v, v)]

|x − y|β . (7.25)

We denote [G(x)∇x f (x, v)]i as the i-th component of G(x)∇x f , then

[G(x)∇x f (x, v)]i − [G(y)∇x f (y, v)]i
|x − y|β

= α̃(x, v) × (7.25)

|v| (7.26)

+
O(1)‖wθ̃α∇x f ‖∞ + o(1)[∇x‖ f (·, v)]

C0,β
x;1+β

+ o(1)[∇x f (·, v)]
C0,β
x;2+β

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

(7.27)

+
∫ t

max{0,t−min{tb(x,v),tb(y,v)}}[e−ν(t−s)[G(x − (t − s)v)∇xh(x − (t − s)v, v)]i
|x − y|β (7.28)

− e−ν(t−s)[G(y − (t − s)v)∇xh(y − (t − s)v, v)]i
]

|x − y|β
]

+ O(1)
|xb(x, v) − xb(y, v)|β

|x − y|β
|∂x1

p1(x),i
f (xb(x, v), v) − ∂x1

p1(y),i
f (xb(y, v), v)|

|xb(x, v) − xb(y, v)|β .

(7.29)

Proof. For f satisfying (2.7), different to (2.10)–(2.14),weusemin{tb(x, v), tb(y, v)}
to split the cases. For simplicity, denote tm(v) = min{tb(x, v), tb(y, v)}.We express
∇x f (x, v) along the trajectory as:

∂xi f (x, v) =1t�tm (v)

∑
i=1,2

e−νtb∂xx1p1(x),i∂x1
p1(x),i

f (xb(x, v), v) (7.30)

− 1t�tm (v)ν∇x tb(x, v)e−νtb(x,v) f (xb(x, v), v) (7.31)

+ 1t<tm (v)e
−νt∂xi f (x − tv, v) (7.32)

+ 1t<tm (v)

∫ t

0
e−ν(t−s)∂xi [h(x − (t − s)v, v)]ds (7.33)

+ 1t�tm (v)

∫ t

t−tb(x,v)

e−ν(t−s)∂xi [h(x − (t − s)v, v)]ds (7.34)

−1t�tm (v)∂xi tm(v)e−νtm (v)h(x − tm(v)v, v)ds. (7.35)

Here we note that when t � tm(v), we evaluate ∂xi f (x, v) along the characteristics
at xb(x, v) regardless the relationship between tb(x, v) and tb(y, v).
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Taking the difference of ∂xi f (x, v) and ∂yi f (y, v) using (7.30)–(7.35) we ob-
tain

∂xi f (x, v) − ∂xi f (y, v)

|x − y|β

= 1t�tm (v)

O(1)ν|∂xi tb(x, v) − ∂xi tb(y, v)|e−νtb(x,v) f (xb(x, v), v)

|x − y|β (7.36)

+ 1t�tm (v)

∂xi tb(y, v)ν|xb(x, v) − xb(y, v)|
|x − y|β

× e−νtb f (xb(x, v), v) − e−νtb f (xb(y, v), v)

|xb(x, v) − xb(y, v)| (7.37)

+ 1t�tm (v)

∂xi tb(y, v)ν
[
e−νtb f (xb(y, v), v) − e−νtb(y,v) f (xb(y, v), v)

]
|x − y|β

(7.38)

+ 1t�tm (v)

∑
i=1,2

∂xi x
1
p1(x),i

− ∂xi x
1
p1(y),i

|x − y|β e−ν(v)tb(x,v)∂x1
p1(x),i

f (xb(x, v), v)

(7.39)

+ 1t�tm (v)

∑
i=1,2

∂xi x
1
p1(y),i

e−νtb(x,v) − e−νtb(y,v)

|x − y|β ∂x1
p1(y),i

f (xb(y, v), v)

(7.40)

+ 1t<tm (v)

e−νt [∂xi f (x − tv, v) − ∂xi f (y − tv, v)]
|x − tv − (y − tv)|β (7.41)

+ 1t�tm (v)

∑
i=1,2

e−ν(v)tb(x,v)|∂xi x1p1(x),i |
|xb(x, v) − xb(y, v)|β

|x − y|β

×
|∂x1

p1,i
f (xb(x, v), v) − ∂x1

p1,i
f (xb(y, v), v)|

|xb(x, v) − xb(y, v)|β (7.42)

+ 1t<tm (v)

∫ t

0

e−ν(t−s)
[
∂xi h(x − (t − s)v, v) − ∂xi h(y − (t − s)v, v)

]
|x − y|β

(7.43)

+ 1t�tm (v)

∫ t

t−tm (v)

e−ν(t−s)
[
∂xi h(x − (t − s)v, v) − ∂xi h(y − (t − s)v, v)

]
|x − y|β

(7.44)

+ 1t�tm (v)

∫ t−tm (v)

min{t−tb(x,v),t−tb(y,v)}[
1tb(x,v)>tb(y,v)

e−ν(t−s)∂xi h(x − (t − s)v, v)

|x − y|β (7.45)

+ 1tb(y,v)>tb(x,v)

e−ν(t−s)∂xi h(y − (t − s)v, v)

|x − y|β
]
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+ 1t�tm (v)∂xi tb(x, v)e−ν(v)tb(x,v) h(x − tb(x, v)v, v) − h(y − tb(y, v)v, v)

|x − y|β
(7.46)

−1t�tm (v)

∂xi tb(x, v) − ∂xi tb(y, v)

|x − y|β e−ν(v)tb(x,v)h(y − tb(y, v)v, v) (7.47)

−1t�tm (v)

e−ν(v)tb(x,v) − e−ν(v)tb(y,v)

|x − y|β ∂xi tb(y, v)h(y − tb(y, v), v). (7.48)

First we estimate (7.36)–(7.41). For (7.36) we apply (2.59); for (7.37) we apply
(2.32),(2.64),(2.54) and (7.6); for (7.38) we apply (2.32) and (2.56), then we obtain

(7.36) = O(1)w
θ̃
(v)|v| f (xb(x, v), v)

w
θ̃
|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}2+β

= O(1)‖w f ‖∞
w

θ̃
(v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}2+β

,

(7.49)

(7.37) = O(1)∂xi tb(x, v)
f (xb(x, v), v) − f (xb(y, v), v)

|xb(x, v) − xb(y, v)|
|xb(x, v) − xb(y, v)|

|x − y|β

= O(1)

min {α(x, v), α(y, v)}
‖w

θ̃
(v)α∇x f ‖∞

w
θ̃
(v)min {α(x, v), α(y, v)}

1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β

= O(1)‖α∇x f ‖∞
w

θ̃
(v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}2+β

, (7.50)

(7.38) = O(1)‖w
θ̃
f ‖∞

w
θ̃
(v)α(x, v)

1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β

= O(1)‖w f ‖∞
w

θ̃
(v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}1+β

(7.51)

= O(1)‖w f ‖∞
w

θ̃
(v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}2+β

. (7.52)

From Section 4,

∂x1
p1(x),i

f (ηp1(x
1
p1(x)), v) = (3.19)

+(3.20) = O(1)
MW (ηp1(x)(x

1
p1(x)

), v)
√

μ(v)
‖α∇x f ‖∞,

thus with θ̃ 	 1,

max{∣∣|v|∂x1
p1(x),i

f (ηp1(x)(x
1
p1(x)), v)

∣∣, ∣∣|v|2∂x1
p1(x),i

f (ηp1(x)(x
1
p1(x)), v)

∣∣}
= O(1)

‖α∇x f ‖∞
wθ̃ (v)

.
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Then for (7.39) we apply (2.58); for (7.40) we apply (2.32) and (2.56), then we
obtain

(7.39) =
O(1)|v|2∂x1

p1,i
f (xb(x, v), v)

|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
= O(1)‖α∇x f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
,

(7.53)

(7.40) =
O(1)|v|∂x1

p1,i
f (xb(x, v), v)

|v|2 min
{

α(x,v)
|v| ,

α(x,v)
|v|

}1+β
= O(1)‖α∇x f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(x,v)
|v|

}1+β

(7.54)

= O(1)‖α∇x f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(x,v)
|v|

}2+β
, (7.55)

(7.41) = O(1)
e−νt

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
[∇x f (·, v)]

C0,β
x,2+β

. (7.56)

Therefore, from (7.6) and t � 1, we conclude

(7.36) + · · · + (7.41) = (7.23).

For (7.42), from (2.33), such contribution is included in (7.24).
The contribution of (7.43) and (7.44) are already included in (7.25).
Then we estimate (7.45)–(7.48). We apply (7.10) to (7.45) to have

(7.45) = O(1)
‖w

θ̃
α∇x f ‖∞
w

θ̃
(v)

∫ max{t−tb(x,v),t−tb(y,v)}
min{t−tb(x,v),t−tb(y,v)}

∫
R3

e−ν(t−s)k�̃(v, u)

α(x − (t − s)v, u)|x − y|β

= O(1)‖w
θ̃
α∇x f ‖∞

w
θ̃
(v)α(x, v)

|e−C1νtb(x,v) − e−C1νtb(y,v)|β
|x − y|β

= O(1)‖w
θ̃
α∇x f ‖∞

w
θ̃
(v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}1+β

(7.57)

= O(1)‖w
θ̃
α∇x f ‖∞

w
θ̃
(v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}2+β

, (7.58)

where we have applied (4.4) of Lemma 4.1 in second line, (2.56) in the third line.
Then for (7.46) we apply (2.32),(2.54) and (7.9); for (7.47) we apply (2.59) and

(2.105); for (7.48) we apply (2.56) and (2.105), then we obtain

(7.46) = O(1)
1

α(x, v)

h(xb(x, v), v) − h(xb(y, v), v)

|xb(x, v) − xb(y, v)|β
|xb(x, v) − xb(y, v)|β

|x − y|β

= O(1)‖w
θ̃
α∇x f ‖∞

w
θ̃
(v)min {α(x, v), α(y, v)}2

1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
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= O(1)‖w
θ̃
α∇x f ‖∞

w
θ̃
(v)|v|2 min {α(x, v), α(y, v)}2+β

, (7.59)

(7.47) = O(1)
‖w

θ̃
|v|h‖∞

w
θ̃
(v)|v|

∇x tb(x, v) − ∇x tb(y, v)

|x − y|β

= O(1)‖w f ‖∞
w

θ̃
(v)|v|2 min {α(x, v), α(y, v)}2+β

, (7.60)

(7.48) = O(1)‖w
θ̃
h‖∞

w
θ̃
(v)α(y, v)

e−νtb(x,v) − e−νtb(y,v)

|x − y|β = O(1)‖w f ‖∞
w

θ̃
(v)|v|2 min {α(x, v), α(y, v)}1+β

(7.61)

= O(1)‖w f ‖∞
w

θ̃
(v)|v|2 min {α(x, v), α(y, v)}2+β

. (7.62)

Therefore, by (7.6), collecting (7.58),(7.59), (7.60),(7.62) we conclude

(7.45) + · · · + (7.48) = (7.23).

Then we prove the estimate (7.26)-(7.29).
We rewrite

G(x)∇x f (x, v) − G(y)∇x f (y, v)

|x − y|β = G(y) − G(x)

|x − y|β ∇x f (x, v) (7.63)

+ G(y)
∇x f (x, v) − ∇x f (y, v)

|x − y|β . (7.64)

By (2.57) we conclude that

(7.63)i = O(1)
‖wθ̃α∇x f ‖∞
wθ̃ (v)α(x, v)

. (7.65)

Then we consider (7.64). Note that (7.36-(7.48)) represent the i-th component
of ∇x f (x, v) − ∇x f (y, v), for convenience we define a notation that represents
the vector consists of the element (7.36):

[(7.36)] = [(7.36)i=1, (7.36)i=2, (7.36)i=3].
Similarly we can define the same notation for (7.37)–(7.48). We can use this rep-
resentation to express G(y)∇x f (x,v)−∇x f (y,v)

|x−y|β .
Then for G(y)[(7.36)] we apply (2.63); for G(y)[(7.37)] we apply

(2.52),(2.54),(2.64) and (7.6); forG(y)[(7.38)]weapply |G| = O(1); forG(y)[(7.39)]
weapply (2.62) and (2.47); forG(y)[(7.40)]weapply |G| = O(1); forG(y)[(7.42)]
we apply (2.51), then we obtain

[G(y)[(7.36)]]i = O(1)
‖wθ̃ |v| f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

= O(1)‖w f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
,

(7.66)
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[G(y)[(7.37)]]i = O(1)
‖wθ̃α∇x f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
, (7.67)

[G(y)[(7.38)]]i = O(1)(7.51) = O(1)
‖w f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
, (7.68)

[G(y)[(7.39)]]i = O(1)
‖wθ̃ (v)|v|2∂x1

p1,i
f ‖∞

|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

= O(1)
‖w f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
,

(7.69)

[G(y)[(7.40)]]i = O(1)(7.54) = O(1)
‖w f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)

|v|2
}1+β

,

[G(y)[(7.42)]]i = (7.28). (7.70)

For [G(y)[(7.41)]]i , we rewrite
G(y)

∇x f (x − tv, v) − ∇x f (y − tv, v)

|x − y|β

= G(x)∇x f (x − tv, v) − G(y)∇x f (y − tv, v)

|x − y|β︸ ︷︷ ︸
(7.71)1

+
[
G(y) − G(x)

]∇x f (x − tv, v)

|x − y|β︸ ︷︷ ︸
(7.71)2

.

(7.71)

We apply (2.57) to have

[(7.71)2]i = O(1)
‖|v|2wθ̃/2α∇x f ‖∞

wθ̃/2(v)|v|2 = O(1)‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v|2 min
{

α(x,v)

|v|2 ,
α(y,v)

|v|
}1+β

.

For (7.71)1 we apply (2.90) and conclude

|(7.71)1| = O(1)
[∇x‖ f (·, v)]

C0,β
x;1+β

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

+
α̃(x,v)

|v| [∇x f (·, v)]
C0,β
x;2+β

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β

+ |v|O(1)‖wθ̃α∇x f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

= O(1)
[∇x‖ f (·, v)]

C0,β
x;1+β

+ [∇x f (·, v)]
C0,β
x;2+β

+ ‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
,
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where we have used α̃(v)w−1
θ̃

(v) � α(v)w−1
θ̃/2

(v), |v|w−1
θ̃

(v) � w−1
θ̃/2

(v). Thus

with e−νt 	 1 when t � 1,

[G(y)[(7.41)]]i = o(1)
‖wθ̃α∇x f ‖∞ + [∇x‖ f (·, v)]

C0,β
x;1+β

+ [∇x f (·, v)]
C0,β
x;2+β

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
,

(7.72)

which is already included in (7.27).
Then we estimate [G(y)[(7.43)]]i . We rewrite

G(y)[∇xh(x − (t − s)v) − ∇xh(y − (t − s)v)]
|x − y|β

= G(x)∇xh(x − (t − s)v) − G(y)∇xh(y − (t − s)v)

|x − y|β︸ ︷︷ ︸
(7.73)1

+ G(y) − G(x)

|x − y|β ∇xh(x − (t − s)v)

︸ ︷︷ ︸
(7.73)2

. (7.73)

We bound w−1
θ̃

(v)|v| � w−1
θ̃/2

(v). From (2.57) and (7.10) the contribution

of (7.73)2 in [G(y)[(7.43)]]i is

O(1)‖ξ‖C2
‖wθ̃α∇x f ‖∞

wθ̃ (v)

∫ t

0

∫
R3

e−ν(t−s)k�̃(v, u)

α(x − (t − s)v, u)

= O(1)‖ξ‖C2

‖wθ̃α∇x f ‖∞|v|w−1
θ̃

(v)

|v|α(x, v)

= O(1)‖ξ‖C2
‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
,

which is included in (7.27).
For (7.73)1 we apply (2.90) in Lemma 2.10. Then such contribution in

[G(y)[(7.43)]]i equals to
[∇‖h(x − (t − s)v, u)]i − [∇‖h(y − (t − s)v, u)]i

|x − y|β
+ α̃(x, v)

|v|
∂xi h(x − (t − s)v, v) − ∂xi h(y − (t − s)v, v)

|x − y|β
+ ‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
,

which are included in (7.26),(7.27) and (7.29) respectively.
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Last we estimate (7.45)–(7.48). For (7.45) we apply |G(y)| = O(1); for (7.46)
we apply (2.54),(7.9) and (2.63); for (7.47) we apply (2.105),(2.32) and (2.63) ;
for (7.48) we apply |G| = O(1), then we obtain

[G(y)[(7.45)]]i = O(1)(7.57) = O(1)‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
, (7.74)

[G(y)[(7.46)]]i = O(1)

|v|
h(xb(x, v), v) − h(xb(y, v), v)

|xb(x, v) − xb(y, v)|β
|xb(x, v) − xb(y, v)|β

|x − y|β
�

‖wθ̃α∇x f ‖∞
wθ̃ (v)|v|min {α(x, v), α(y, v)}

1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β

� 1

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
, (7.75)

[G(y)[(7.47)]]i = O(1)|v|‖h‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

= O(1)‖w f ‖∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
, (7.76)

[G(y)[(7.48)]]i = O(1)(7.61) = O(1)
‖w f ‖∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
.

(7.77)

These four estimates are all included in (7.27).
We conclude the lemma. ��
Now are ready to prove Proposition 3.

Proof of Proposition 3. We will use 3 steps to prove this proposition. Since we al-
ready expand thedifferencequotient inLemma7.3,wemainly estimate (7.24),(7.25)
and (7.26),(7.28),(7.29). The estimate of (7.24) is put in Step 1 and the estimate of
(7.25) is put in Step 2. Thus Step 1 and Step 2 together conclude (7.7). In Step 3
we estimate (7.26),(7.28),(7.29) and conclude (7.8).

Before going into these steps we first list some estimates for the α-weight. We
will heavily rely on these estimates to make the computation more precise. For
0 � s � tb(xb(x, v), v1), we have

α(xb(x, v), v1) ∼ α(xb(x, v) − sv1, v1) ∼ α(xb(xb(x, v), v1), v1), (7.78)

and

|n(xb(x, v)) · v1|e−C|v1|2

= [1|n(xb(x,v))·v1|�1 + 1|n(xb(x,v))·v1|<1]|n(xb(x, v)) · v1|e−C|v1|2
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� α(xb(x, v), v1)
|n(xb(x, v)) · v1|
α(xb(x, v), v1)

e−C|v1|2 + α(xb(x, v), v1)e−C|v1|2

� α(xb(x, v), v1)e−C|v1|2/2, (7.79)

where we have used (1.8) and (1.10) in the derivation.
Suppose α(xb(x, v)) � α(xb(y, v)). We let ε 	 1 such that β + ε < 1 and

1−β
1−β−ε

< 2. Then we apply the Hölder’s inequality with (β + ε)+ (1−β − ε) = 1
to have

∫
n(xb(x,v))·v1>0

e−C|v1|2 |n(xb(x, v)) · v1|
|v1|2 min

{
α(xb(x,v),v1)

|v1| ,
α(xb(x,v),v1)

|v1|
}1+β

dv1

=
∫
n(xb(x,v))·v1>0

e−C|v1|2

|v1|1−βαβ(xb(x, v), v1)
dv1

�
( ∫ e−C|v1|2

|v1| 1−β
1−β−ε

)1−β−ε( ∫ e−C|v1|2

α
β

β+ε (xb(x, v), v1)

)β+ε

� 1, (7.80)

where we have used

∫
e−C|v1|2

α
β

β+ε (xb(x, v), v1)

�
∫
n(xb(x,v))·v1>0

1α(xb(x,v),v1)�1
e−C|v1|2

α
β

β+ε (xb(x, v), v1)

dv1

+
∫
n(xb(x,v))·v1>0

1α(xb(x,v),v1)�1
e−C|v1|2

|n(xb(x, v)) · v1| β
β+ε

dv1 � 1.

Then we start the proof. ��
Step 1: estimate of (7.24).
We focus on

wθ̃ (v)|v|2
|∂x1

p1(x),i
f (xb(x, v), v) − ∂x1

p1(y),i
f (xb(y, v), v)|

|xb(x, v) − xb(y, v)|β . (7.81)

Applying the diffuse boundary condition (2.4) we get

∂x1
p1(x),i

f (xb(x, v), v)

= MW (xb(x, v), v)√
μ(v)

∫
v1
p1(x),3

>0{[ (
∂x1

p1(x),i
T t
x1
p1(x)

v1
p1

)
· ∇v f (ηp1(x)(x

1
p1(x)), T

t
x1
p1(x)

v1p1(x))︸ ︷︷ ︸
(7.82)1



Regularity of Stationary Boltzmann Equation in Convex Domains 1187

+ ∂x1
p1(x), j

f (ηp1(x)(x
1
p1(x)), T

t
x1
p1(x)

v1p1(x))︸ ︷︷ ︸
(7.82)2

]√
μ(v1

p1(x)
)v1p1(x),3dv

1
p1(x)

+
∂x1

p1(x),i
MW (xb(x, v), v)

√
μ(v)

×
∫
n(xb(x,v))·v1>0

f (xb(x, v), v1)
√

μ(v1){n(xb(x, v)) · v1}
}
dv1

+ ∂x1
p1(x),i

r(xb(x, v), v). (7.82)

From Lemma 2.11 the contribution of the last two terms of (7.82) in (7.81) is
bounded by

‖TW − T0‖C2 [‖wθ̃α∇x f ‖∞ + 1].
Velocity derivative: first we consider the contribution of (7.82)1 in (7.24).

From (3.22), we rewrite (7.82)1 as∫
v1
p1,3

>0

∑
m,n

(3.23)mn,k+1→1(x)v1p1,m

× ∂v1
p1,n

[ f (ηp1(x)(x
1
p1(x)), T

t
x1
p1(x)

v1p1)]
√

μ(v1
p1

)v1p1,3dv
1
p1

=
∫
v1
p1,3

>0

∑
m,n

(3.23)mn,k+1→1(x)

× f (ηp1(x
1
p1(x)), T

t
x1
p1(x)

v1p1)∂v1
p1,n

[√
μ(v1

p1
)v1p1,3v

1
p1,m

]
dv1p1 . (7.83)

Here we dropped the x dependence in v1
p1(x)

since it becomes a dummy variable.

From Section 5.2, ‖w f ‖L∞(∂�) � ‖w f ‖∞, for the rest estimate we will not
specify the norm on ∂�. We apply (3.24) to have

(7.83) = O(1)‖η‖C2‖w f ‖∞. (7.84)

Then the contribution of (7.82)1 in (7.24) can be written as

w
θ̃
(v)|v|2

|xb(x, v) − xb(y, v)|β
[
MW (xb(x, v), v) − MW (xb(y, v), v)√

μ(v)
× (7.83) (7.85)

+ MW (xb(y, v), v)√
μ(v)

×
∫
v1
p1,3

>0

[
f (ηp1(x

1
p1(x)), T

t
x1
p1(x)

v1p1) − f (ηp1(x
1
p1(y)), T

t
x1
p1(y)

v1p1 )
]

×
∑
m,n

(3.23)mn,k+1→1(x)∂v1
p1,n

[√
μ(v1

p1
)v1p1,3v

1
p1,m

]
dv1p1 (7.86)

+ MW (xb(y, v), v)√
μ(v)

∫
v1
p1,3

>0

∑
m,n

∂v1
p1,n

[√
μ(v1

p1
)v1p1,3v

1
p1,m

]
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× f (ηp1(y)(x
1
p1(y)), T

t
x1
p1(y)

v1p1 )
[
(3.23)mn,k+1→1(x) − −(3.23)mn,k+1→1(y)

]
dv1

]
.

(7.87)

For (7.85), since θ̃ 	 1, from (7.84) we derive that

(7.85) � ‖η‖C2‖w f ‖∞
wθ̃ (v)|v|2[MW (xb(x, v), v) − MW (xb(y, v), v)]√

μ(v)|xb(x, v) − xb(y, v)|β
� ‖η‖C2‖w f ‖∞‖TW‖C1 . (7.88)

For (7.86), from (2.64) with (7.6) and (2.54) we compute

fs(ηp1(x)(x
1
p1(x)

), T t
x1
p1(x)

v1
p1

) − fs(ηp1(y)(x
1
p1(y)

), T t
x1
p1(y)

v1
p1

)

|xb(x, v) − xb(y, v)|β

�
fs(ηp1(x)(x

1
p1(x)

), T t
x1
p1(x)

v1
p1

) − fs(ηp1(y)(x
1
p1(y)

), T t
x1
p1(x)

v1
p1

)

|ηp1(x)(x
1
p1(x)

) − ηp1(y)(x
1
p1(y)

)|β

+
fs(ηp1(y)(x

1
p1(y)

), T t
x1
p1(x)

v1
p1

) − fs(ηp1(y)(x
1
p1(y)

), T t
x1
p1(y)

v1
p1

)

|T t
x1
p1(x)

v1
p1

− T t
x1
p1(y)

v1
p1

|

×
|T t

x1
p1(x)

v1
p1

− T t
x1
p1(y)

v1
p1

|
|ηp1(x)(x

1
p1(x)

) − ηp1(y)(x
1
p1(y)

)|

� ‖α∇x fs‖∞

min

{
α(ηp1(x)(x

1
p1(x)

), T t
x1
p1(x)

v1
p1

), α(ηp1(y)(x
1
p1(y)

), T t
x1
p1(y)

v1
p1

)

}β

+
‖|v|2∇v f ‖∞‖η‖C2 |v1p1 |

|v1
p1

|2 , (7.89)

where we have used the definition of Txp in (2.23) and the mean value theorem
regarding ∇v f in the last line.

Since
∑

m,n(3.23)mn,k+1→1(x)∂v1
p1,n

[√
μ(v1

p1
)v1

p1,3
v1
p1,m

]
� 1, we have

(7.86) � ‖α∇x f ‖∞
wθ̃ (v)|v|2MW (xb(y, v), v)√

μ(v)

×
∫
v1
p1,3

>0

μ1/4(v1
p1

)

min

{
α(ηp1(x)(x

1
p1(x)

), T t
x1
p1(x)

v1
p1

), α(ηp1(y)(x
1
p1(y)

), T t
x1
p1(y)

v1
p1

)

}β
dv1p1

+ ‖η‖C2‖|v|2∇v f ‖∞
wθ̃ (v)|v|2MW (xb(y, v), v)√

μ(v)

∫
v1
p1,3

>0

μ1/4(v1
p1

)

|v1
p1

| dv1p1

�
(‖α∇x f ‖∞ + ‖|v|2∇v f ‖∞

) |v|2MW (xb(y, v), v)√
μ(v)
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×
[ ∫

R3

( μ1/4(v1
p1

)

|n(xb(x, v)) · T t
x1
p1(x)

v1
p1

|β +
μ1/4(v1

p1
)

|n(xb(y, v)) · T t
x1
p1(y)

v1
p1

|β dv
1
p1
)

+
∫
R3

μ1/4(v1
p1

)

|v1
p1

| v1p1
]

� ‖α∇x f ‖∞ + ‖|v|2∇v f ‖∞, (7.90)

where we have used β < 1 in the last line.
Last we estimate (7.87). From (3.23) and (2.32) we compute

(3.23)mn(x) − −(3.23)mn(y)

|ηp1(x)(x
1
p1(x)

) − ηp1(y)(x
1
p1(y)

)|β

�
[ ∂

∂x1
p1(x), j

⎛
⎝ ∂mηp1(x),l(x

1
p1(x)

)√
gp1(x),mm(x1

p1(x)
)

⎞
⎠

∂nηp1(x),l (x
1
p1(x)

)√
gp1(x),nn(x

1
p1(x)

)
− ∂nηp1(y),l (x

1
p1(y)

)√
gp1(y),nn(x

1
p1(y)

)

|ηp1(x)(x
1
p1(x)

) − ηp1(y)(x
1
p1

(y))|β

+
∂

∂x1
p1(x), j

(
∂mηp1(x),l (x

1
p1(x)

)√
gp1(x),mm(x1

p1(x)
)

)
− ∂

∂x1
p1(y), j

(
∂mηp1(y),l (x

1
p1(y)

)√
gp1(y),mm(x1

p1(y)
)

)

|ηp1(x)(x
1
p1(x)

) − ηp1(y)(x
1
p1(y)

)|β

×
∂nηp1(y),l(x

1
p1(y)

)√
gp1(y),nn(x

1
p1(y)

)

]
� ‖η‖C3 ,

where we have used η ∈ C3 and mean value theorem in the last line. Thus we
conclude

(7.87) � ‖η‖C3‖w f ‖∞. (7.91)

Combining (7.88),(7.90) and (7.91), we conclude that the contribution of the
velocity derivative (7.82)1 in (7.81) has an upper bound

|(7.81)(7.82)1
| � ‖η‖C3‖TW‖C1‖α∇x f ‖∞, (7.92)

where we used (7.6).
Spatial derivative:we consider the contribution of the spatial derivative (7.82)2

in (7.24). We rewrite the v1
p1
-integration using v1 integration and get

(7.82)2 = e−νtb(x,v) MW (xb(x, v), v)√
μ(v)

×
∫
n(xb(x,v))·v1>0

∂x1
p1(x),i

[
f (ηp1(x)(x

1
p1(x)), v

1)
]√

μ(v1)|n(xb(x, v)) · v1|
︸ ︷︷ ︸

(7.93)∗

dv1.

(7.93)
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Then the contribution of (7.82)2 in (7.24) can be written as
[
wθ̃ (v)|v|2[MW (xb(x, v), v) − MW (xb(y, v), v)]

|xb(x, v) − xb(y, v)|β√
μ(v)

× (7.93) (7.94)

+ |v|2MW (xb(y, v), v)√
μ(v)|xb(x, v) − xb(y, v)|β

×
( ∫

n(xb(x,v))·v1>0

∂

∂x1
p1(x),i

f (ηp1(x)(x
1
p1(x)), v

1)
√

μ(v1)|n(xb(x, v)) · v1|dv1

−
∫
n(xb(y,v))·v1>0

∂

∂x1
p1(y),i

f (ηp1(x
1
p1(y)), v

1)
√

μ(v1)|n(xb(y, v)) · v1|dv1
)]

.

(7.95)

From (2.47) in Lemma 2.5,

(7.93) � ‖|v|∇‖ f ‖∞
∫ √

μ(v1)
|n(xb(x, v)) · v1|

|v1| dv1 � ‖|v|∇‖ f ‖∞.

Thus applying (2.54) and (2.71) we derive that

(7.94) � ‖η‖C2‖|v|∇‖ f ‖∞. (7.96)

For (7.95), we express∑
i=1,2 ∂x1

p1(x),i
f (ηp1(x)(x

1
p1(x)

), v1) and
∑

i=1,2 ∂x1
p1(y),i

f (ηp1(y)(x
1
p1(y)

), v1)

using (7.30)–(7.35) with the notation (7.3):

1t1�min
{
t2b (x),t2b (y)

}e−νt2b (x)
∑
i=1,2

∂x1
p1(x),i

[
f (xb(ηp1(x)(x

1
p1(x)), v

1), v1)
]

(7.97)

− 1t1�min
{
t2b (x),t2b (y)

}ν
∑
i=1,2

∂x1
p1(x),i

t2b(x)e−νt2b (x) f (x2b(x), v
1) (7.98)

+ 1t1�min
{
t2b (x),t2b (y)

}e−νt1
∑
i=1,2

∂x1
p1(x),i

[
f (ηp1(x)(x

1
p1(x)) − t1v1, v1)

]
(7.99)

+ 1t1�min
{
t2b (x),t2b (y)

}

×
∫ t1

0
e−ν(t1−s1)

∑
i=1,2

∂x1
p1(x),i

[
h(ηp1(x)(x

1
p1(x)) − (t1 − s1)v1, v1)

]
ds1

(7.100)

+ 1t1�min
{
t2b (x),t2b (y)

}

×
∫ t1

t1−t2b (x)
e−ν(t1−s1)

∑
i=1,2

∂x1
p1(x),i

[
h(ηp1(x)(x

1
p1(x)) − (t1 − s1)v1, v1)

]
ds1

(7.101)

+ 1t1�min
{
t2b (x),t2b (y)

} ∑
i=1,2

∂x1
p1(x),i

t2b(x)e−νt2b (x)h(x2b(x), v
1). (7.102)
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We first estimate the boundary term (7.97). We split (7.97) into two cases using
min{α(xb(x, v), v1), α(xb(y, v), v1)}. We put the discussion for
min{α(xb(x, v), v1), α(xb(y, v), v1)} � ε, or |v| � ε together with the estimate
of (7.98)–(7.102). Here we discuss the case that
min{α(xb(x, v), v1), α(xb(y, v), v1)} � ε and |v| � ε−1.

For this case the difference quotient of (7.97) reads as

1{min{n(xb(x,v))·v1,n(xb(y,v))·v1}�ε,|v|�ε−1}
|xb(x, v) − xb(y, v)|β

×
( ∫

n(xb(x,v))·v1>0
(7.97)(x)

√
μ(v1)|n(xb(x, v)) · v1|dv1

−
∫
n(xb(y,v))·v1>0

(7.97)(y)
√

μ(v1)|n(xb(y, v)) · v1|dv1
)
. (7.103)

We perform the change of variable (2.42) and use (3.29) to rewrite thing’s as
∫
n(xb(x,v))·v1>0

∂

∂x1
p1,i

[ f (ηp2(x
2
p2), v

1)]
√

μ(v1)|n(xb(x, v)) · v1|dv1

=
∑
p2∈P

∫∫
|x2

p2
|<δ1

∫ t−tb(x,v)

0
e−ν(v1)t1b ιp2(ηp2(x

2
p2))

×
∑
j ′=1,2

∂x2
p2, j ′

∂x1
p1(x), j

∂x2
p2, j ′

[ f (ηp2(x
2
p2), v

1)]

×
n p1(x)(x

1
p1(x)

) · (xb(x, v) − ηp2(x
2
p2

))

t2b

n p2(x
2
p2

) · (xb(x, v) − ηp2(x
2
p2

))

|t2b |4

× e
−

|xb(x,v)−η
p2

(x2
p2

)|
4|t2b | dt2b

√
gp2,11gp2,22dx

2
p2,1dx

2
p2,2. (7.104)

Here we dropped the x dependence on p2(x) since x2
p2

becomes dummy variable
after the change of variable.

In (7.104) the variables that depend on x are tb(x, v), xb(x, v), x1
p1(x)

. Thus we
have

(7.103) = (7.104)(x) − (7.104)(y)

|xb(x, v) − xb(y, v)|β

= 1

|xb(x, v) − xb(y, v)|β
[ ∑
p2∈P

∫∫
|x2

p2
|<δ1

∫ t−min{tb(x,v),tb(y,v)}
t−max{tb(x,v),tb(y,v)}

· · · (7.105)

+
∑
p2∈P

∫∫
|x2

p2
|<δ1

∫ t−max{tb(x,v),tb(y,v)}
0

[ ∂x2
p2, j ′

∂x1
p1(x), j

−
∂x2

p2, j ′

∂x1
p1(y), j

]
· · · (7.106)

+
[n p1(x)(x1p1(x)) · (xb(x, v) − ηp2 (x

2
p2

))

t2b
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−
n p1(y)(x

1
p1(y)

) · (xb(y, v) − ηp2 (x
2
p2

))

t2b

]
· · · (7.107)

+
[n p2 (x2p2 ) · (xb(x, v) − ηp2 (x

2
p2

))

|t2b |4 −
n p2 (x

2
p2

) · (xb(y, v) − ηp2 (x
2
p2

))

|t2b |4
]
· · ·

(7.108)

+
[
e
−

|xb(x,v)−η
p2

(x2
p2

)|
4|t2b | − e

−
|xb(y,v)−η

p2
(x2
p2

)|
4|t2b |

]]
· · · . (7.109)

Since min{α(xb(x, v), v1), α(xb(y, v), v1)} � ε, from (1.11), clearly we have
|n(xb(x, v)) · v1| � ε. Moreover, due to |v1| � ε−1, we have a lower bound for t2b
from (2.39):

t2b � 1

|v1|
min

{|n(xb(x, v)) · v1|, |n(xb(y, v)) · v1|}
|v1| � ε3.

From (2.47) in Lemma 2.5 and Lemma 2.8 we obtain the following estimate:

∣∣∣∂x2
p2, j ′

[ f (ηp2(x
2
p2), v

1)]
∣∣∣ � ‖|v|∇‖ f ‖∞ < ∞,

∣∣∣∂x
2
p2, j ′

∂x1
p1, j

∣∣∣ � 1,

∣∣∣n p1(x)(x
1
p1(x)

) · (xb(x, v) − ηp2(x
2
p2

))

t2b

∣∣∣ �� O(ε−3),

∣∣∣n p2(x
2
p2

) · (xb(x, v) − ηp2(x
2
p2

))

|t2b |4
∣∣∣ �� O(ε−12).

Now we estimate (7.105)–(7.109). By (2.56) we compute

|(7.105)|
|xb(x, v) − xb(y, v)|β

� O(ε−15)

|xb(x, v) − xb(y, v)|β
∫∫ ∫ t−min{tb(x,v),tb(y,v)}

t−max{tb(x,v),tb(y,v)}
e−νt2b

� O(ε−15)

∣∣e−νtb(x,v) − e−νtb(y,v)
∣∣

|xb(x, v) − xb(y, v)|β

= O(ε−15)

∣∣e−νtb(x,v) − e−νtb(y,v)
∣∣

|x − y|β
|x − y|β

|xb(x, v) − xb(y, v)|β

� O(ε−15)

min
{
α(xb(x, v), v1), α(xb(y, v), v1)

} |x − y|β
|xb(x, v) − xb(y, v)|β

� O(ε−16)
|x − y|β

|xb(x, v) − xb(y, v)|β . (7.110)

The extra term |x−y|β
|xb(x,v)−xb(y,v)|β will be cancelled by |xb(x,v)−xb(y,v)|β

|x−y|β in (7.24).
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Then we estimate (7.106). By (2.72) we have

∣∣∣ ∂x2
p2, j ′

∂x1
p1(x), j

− ∂x2
p2, j ′

∂x1
p1(y), j

∣∣∣
|xb(x, v) − xb(y, v)|β 1min{α(xb(x,v),v1),α(xb(y,v),v1)}�ε

� |v1|3
min

{
α(xb(x, v), v1), α(xb(y, v), v1)

}3 � O(ε−6).

Thus

|(7.106)|
|xb(x, v) − xb(y, v)|β � O(ε−15)

∫ ∞

0
e−ν0t2b

∣∣∣ ∂x2
p2, j ′

∂x1
p1(x), j

− ∂x2
p2, j ′

∂x1
p1(y), j

∣∣∣
|xb(x, v) − xb(y, v)|β � O(ε−21).

(7.111)

Then we estimate (7.107). By (2.57) we compute

|n p1(x)(x
1
p1(x)

) · (xb(x, v) − ηp2(x
2
p2

)) − n p1(y)(x
1
p1(y)

) · (xb(y, v) − ηp2(x
2
p2

))|
t2b |xb(x, v) − xb(y, v)|β

� O(ε−3)
[ |n p1(x)(x

1
p1(x)

) − n p1(y)(x
1
p1(y)

)||xb(x, v) − ηp2(x
2
p2

)|
|xb(x, v) − xb(y, v)|β

+ |xb(x, v) − xb(y, v)|
|xb(x, v) − xb(y, v)|β

]
� O(ε−3).

Thus

|(7.107)|
|xb(x, v) − xb(y, v)|β � O(ε−15). (7.112)

For (7.108) we compute the difference as

|n p2(x
2
p2

) · (xb(x, v) − ηp2(x
2
p2

)) − n p2(x
2
p2

) · (xb(y, v) − ηp2(x
2
p2

))|
|t2b |4|xb(x, v) − xb(y, v)|β

� O(ε−12)
|xb(x, v) − xb(y, v)|
|xb(x, v) − xb(y, v)|β � O(ε−12).

Thus

|(7.108)|
|xb(x, v) − xb(y, v)|β � O(ε−12). (7.113)

Last we estimate (7.109). By mean value theorem,

∣∣∣e−
|xb(x,v)−η

p2
(x2
p2

)|
4|t2b | − e

−
|xb(y,v)−η

p2
(x2
p2

)|
4|t2b |

∣∣∣
|xb(x, v) − xb(y, v)|β
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�

∣∣∣e−
|xb(x,v)−η

p2
(x2
p2

)|
4|t2b | − e

−
|xb(y,v)−η

p2
(x2
p2

)|
4|t2b |

∣∣∣
|xb(x, v) − ηp2(x

2
p2

) − xb(y, v) + ηp2(x
2
p2

)|β/|t2b |β
1

|t2b |β � O(ε3β).

Thus

|(7.109)|
|xb(x, v) − xb(y, v)|β � O(ε−15−3β). (7.114)

Therefore, from (7.6), we collect (7.110),(7.111),(7.112),(7.113) and (7.114)
to conclude

|(7.103)|
�
[
O(ε−21) + O(ε−16)

|x − y|β
|xb(x, v) − xb(y, v)|β

]‖wθ̃α∇x f ‖2∞. (7.115)

Then we estimate the rest terms in (7.97)–(7.102). First we rewrite the contri-
bution of these terms in (7.95) into∫

n(xb(x,v))·v1>0(7.97)1···(x) + · · · + (7.102)(x)

|xb(x, v) − xb(y, v)|β

−
∫
n(xb(y,v))·v1>0(7.97)1···(y) + · · · + (7.102)(y)

|xb(x, v) − xb(y, v)|β

=

∫
|n(xb(x,v))−n(xb(y,v))|� n(xb(x,v)·v1)

|v1| >0
· · ·

|xb(x, v) − xb(y, v)|β

−

∫
|n(xb(x,v))−n(xb(y,v))|� n(xb(y,v)·v1)

|v1| >0
· · ·

|xb(x, v) − xb(y, v)|β (7.116)

+
∫
n(xb(x,v))·v1>0,n(xb(y,v))·v1>0

|n(xb(x, v)) · v1| − |n(xb(y, v)) · v1|
|xb(x, v) − xb(y, v)|β

√
μ(v1)

× [
(7.97)1···(x) + · · · + (7.102)(x)

]
(7.117)

+
∫
n(xb(x,v))·v1>0,n(xb(y,v))·v1>0

|n(xb(y, v)) · v1|
√

μ(v1)

× (7.97)1···(x) + · · · + (7.102)(x) − (7.97)1···(y) − · · · − (7.102)(y)

|xb(x, v) − xb(y, v)|β .

(7.118)

By (2.47) in Lemma 2.5,

|(7.97) + · · · + (7.102)| � (5.1) + · · · (5.5)
� (5.31) � ‖|v|∇‖ f ‖∞ + ‖α∇x f ‖∞

|v1| .

For (7.116), from (2.57) and (7.6) we have

1

|xb(x, v) − xb(y, v)|β
∫

|n(xb(x,v))−n(xb(y,v))|� n(xb(x,v))·v1
|v1| >0

|(7.97) + · · · + (7.102)|
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� ‖η‖C2‖α∇x f ‖∞
|xb(x, v) − xb(y, v)|β

×
∫

|n(xb(x,v))−n(xb(y,v))|� n(xb(x,v))·v1
|v1| >0

|n(xb(x, v)) · v1|
|v|1

√
μ(v1)

� ‖η‖C2‖α∇x f ‖∞|n(xb(x, v)) − n(xb(y, v))|
|xb(x, v) − xb(y, v)|β � ‖η‖C2‖α∇x f ‖∞.

Similarly

1

|xb(x, v) − xb(y, v)|β
∫

|n(xb(x,v))−n(xb(y,v))|� n(xb(y,v))·v1
|v1| >0

· · · � ‖η‖C2‖α∇x f ‖∞.

Thus

|(7.116)| � ‖η‖C2‖α∇x f ‖∞. (7.119)

For (7.117), applying (2.57) we have

|(7.117)| �
∫ |n(xb(x, v)) · v1| − |n(xb(y, v)) · v1|

|xb(x, v) − xb(y, v)|β
√

μ(v1) · · ·
� ‖η‖C2‖α∇x f ‖∞. (7.120)

Then we focus (7.118), this estimate is the most delicate one. First of all we
bound

|n(xb(y, v) · v1)| � |n(xb(x, v)) − n(xb(y, v))||v1|︸ ︷︷ ︸
(7.121)1

+ min
{
n(xb(x, v)) · v1, n(xb(y, v)) · v1

}
︸ ︷︷ ︸

(7.121)2

.
(7.121)

By (2.57) the contribution of (7.121)1 in (7.118) is bounded by

|(7.118)(7.121)1
|

|xb(x, v) − xb(y, v)|β
�
∫
n(xb(x,v))·v1>0,n(xb(y,v))·v1>0

|n(xb(x, v)) · v1| − |n(xb(y, v)) · v1|
|xb(x, v) − xb(y, v)|β

√
μ(v1) · · · dv1

� ‖η‖C2‖α∇x f ‖∞
∫
n(xb(x,v))·v1>0,n(xb(y,v))·v1>0

√
μ(v1) � ‖η‖C2‖α∇x f ‖∞.

(7.122)

We focus on the contribution of (7.121)2 in (7.118). Then without loss gener-
ality, we can assume

|n(xb(y, v)) · v1| = min
{
|n(xb(x, v)) · v1|, |n(xb(y, v)) · v1|

}
. (7.123)
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In result we can replace |n(xb(y, v)) ·v1| or |n(xb(y, v)) ·v1| by min{|n(xb(x, v)) ·
v1|, |n(xb(y, v)) · v1|}.

Note that from (2.47) in Lemma 2.5,∑
i=1,2

∂x1
p1(x),i

f (ηp1(x)(x
1
p1(x)), v

1) ∼ G(xb(x, v))∇x f (xb(x, v), v1),

and we have an expression of

G(xb(x, v))∇x f (xb(x, v), v1) − G(xb(y, v))∇x f (xb(y, v), v1)

from Lemma 7.3. Thus the contribution of (7.97)–(7.102) in (7.118) can be ex-
pressed using (7.26)-(7.29), with replacing x → xb(x, v), y → xb(y, v), v → v1,
x1
p1,i

→ xi
p2,i

, xb(x, v) → ηp2(x)(x
2
p2(x)

), xb(y, v) → ηp2(y)(x
2
p2(y)

).
From (7.80) we derive that the contribution of (7.27) is bounded by∫
n(xb(x,v))·v1>0,n(xb(y,v))·v1>0

|n(xb(y, v)) · v1|√μ(v1)

|v1|2 min
{

α(xb(x,v),v1)

|v1| ,
α(xb(y,v),v1)

|v1|
}1+β

× [‖wθ̃α∇x f ‖∞ + o(1)[∇x f (·, v)]
C0,β
x;2+β

+ o(1)[∇‖ f (·, v)]
C0,β
x;1+β

]

� ‖wθ̃α∇x f ‖∞ + o(1)[∇x f (·, v)]
C0,β
x;2+β

+ o(1)[∇‖ f (·, v)]
C0,β
x;1+β

, (7.124)

where we have used (7.80).
Then we estimate the contribution of (7.28), (7.29) and (7.26).
We begin with (7.29). Note that we only need to consider the case of

min{α(xb(x, v), v1), α(xb(y, v), v1)} � ε, or |v1| � ε−1. We derive∫
1min{α(xb(x,v),v1),α(xb(y,v),v1)}�ε, or |v1|�ε−1

√
μ(v1)|n(xb(y, v) · v1)|

×
∑
j=1,2

[
e−νt2b (x) |x2b(x) − x2b(y)|β

|xb(x, v) − xb(y, v)|β

×
∂x2

p2(x), j
f (ηp2(x)(x

2
p2(x)

), v1) − ∂x2
p2(y), j

f (ηp2(y)(x
2
p2(y)

), v1)

|ηp2(x)(x
2
p2(x)

) − ηp2(y)(x
2
p2(y)

)|β
]

�
∫

ε>n(xb(x,v))·v1>0,ε>n(xb(y,v))·v1>0, or |v1|�ε−1

√
μ(v1)|n(xb(x, v)) · v1|

×
[∇x‖ f (·, v)]

C0,β
x;1+β

|v1|2 min
{

α(xb(x,v),v1)

|v1| ,
α(xb(y,v),v1)

|v1|
}1+β

� O(ε)[∇x‖ f (·, v)]
C0,β
x;1+β

, (7.125)

where we have applied (2.70) and (2.47) in Lemma 2.5 to the fourth line, (7.123)
and (7.80) to the integral in the last line.
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Then we focus on the contribution of (7.25). First we consider h = K ( f ).
Denote

xs = xb(x, v) − (t1 − s1)v1, ys = xb(y, v) − (t1 − s1)v1,

we need to compute

∫ √
μ(v1)|n(xb(y, v)) · v1|

∫ t1

0
ds1e−ν(v1)(t1−s1)

×
∫
R3

duk(v1, u)
G(xs)∇x f (xs, u) − G(ys)∇x f (ys, u)

|xb(x, v) − xb(y, v)|β︸ ︷︷ ︸
(7.126)∗

.
(7.126)

We use the decomposition (4.41) for the ds1 integral. When t1 − s1 � ε, we
apply (4.8) in Lemma 4.1 with p = 1 + β and (7.123) to conclude that

|(7.126)1t1−s1�ε|

� [∇x‖ f (·, v)]
C0,β
x;1+β

∫ √
μ(v1)|n(xb(y, v)) · v1|dv1

×
∫ t1

t1−ε
ds1e−ν(v1)(t1−s1)

∫
R3

duk(v1, u)
1

|u|2 min
{

α(xs ,u)
|u| ,

α(ys ,u)
|u|

}1+β

� O(ε)[∇x‖ f (·, v)]
C0,β
x;1+β

∫ √
μ(v1)

|n(xb(y, v), v1)|
|v1|2 min

{
α(xb(x,v),v1)

|v|1 ,
α(xb(y,v),v1)

|v1|
}1+β

dv1

� O(ε)[∇x‖ f (·, v)]
C0,β
x;1+β

.

When t1 − s1 � ε. We rewrite things as

(7.126)∗ =
[
G(xs) − G(ys)

]
∇x f (ys , u)

|xb(x, v) − xb(y, v)|β︸ ︷︷ ︸
(7.127)1

+
G(ys)

[
∇x f (xs , u) − ∇x f (ys , u)

]

|xb(x, v) − xb(y, v)|β︸ ︷︷ ︸
(7.127)2

.

(7.127)

By (2.57) we have (7.127)1 � ‖α∇x f ‖∞
α(ys ,u)

. Thus, the contribution in (7.126) is
bounded by

‖α∇x f ‖∞
∫ √

μ(v)1|n(xb(y, v)) · v1|dv1
∫ t1

0
ds1e−ν(v1)(t1 − s1)

∫
R3

du
k(v1, u)

α(ys , u)

� ‖α∇x f ‖∞
∫ √

μ(v1)
|n(xb(y, v)) · v1|

min
{
α(xb(x, v), v1), α(xb(y, v), v1)

}dv1 � ‖α∇x f ‖∞,

where we have used (4.5) in Lemma 4.1 and (7.121).
Then we focus on the contribution of (7.127)2. We exchange ∇x for ∇v1 :

∇x f (x
s , u) = ∇x f (xb(x, v) − (t1 − s1)v1, u) = ∇v1 f (xb(x, v) − (t1 − s1)v1, u)

−(t1 − s1)
.
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Thenweperforman integrationbyparts for dv1. Thedv1 integral in (7.126)1t1−s1�ε

becomes

∣∣∣
∫

∇v1

[
|n(xb(y, v)) · v1|

√
μ(v1)

∫ t1

max{t1−t2b (x),t1−t2b (y)}

× e−ν(v1)(t1−s1)

−(t1 − s1)
k�(v1, u)G(ys)

] f (xs, u) − f (ys, u)

|xb(x, v) − xb(y, v)|β
∣∣∣

�
∣∣∣
∫ ∫ t1

max{t1−t2b (x),t1−t2b (y)}
∇v1

[|n(xb(y, v)) · v1|
√

μ(v1)e−ν(v1)(t1−s1)] · · ·
∣∣∣

(7.128)

+
∣∣∣
∫ ∫ t1

max{t1−t2b (x),t1−t2b (y)}
∇v1k�(v1, u) · · ·

∣∣∣ (7.129)

+
∣∣∣
∫ ∫ t1

max{t1−t2b (x),t1−t2b (y)}
∇v1G(xb(y, v) − (t1 − s1)v1) · · ·

∣∣∣ (7.130)

+
∣∣∣
∫

∇v1 min
{
t2b(x), t2b(y)

} e−ν(v1)min
{
t2b (x),t2b (y)

}

min
{
t2b(x), t2b(y)

} · · ·
∣∣∣. (7.131)

For (7.128), since

|∇v1[n(xb(y, v) · v1)
√

μ(v1)e−ν(v1)(t1−s1)]| � μ1/4(v1)e−ν(v1)(t1−s1)/2,

by (2.64) with (7.6) and (4.10) we have

(7.128) � O(ε−1)‖α∇x f ‖∞
∫

μ1/4(v1)

∫
e−ν(v1)(t1−s1)/2ds1

×
∫
R3

k�(v1, u)

min
{
α(xs, v1), α(ys, v1)

}β du

� O(ε−1)‖α∇x f ‖∞
∫

μ1/4(v1) � O(ε−1)‖α∇x f ‖∞.

For (7.129) from (2.103), we have ∇v1k(v1, u) � 〈v1〉k(v1,u)

|v1−u| . Then by (4.11) in
Lemma 4.1 we have

(7.129) � O(ε−1)‖α∇x f ‖∞
∫

|n(xb(y, v)) · v1|
√

μ(v1)〈v1〉dv1

×
∫

e−ν(v1)(t1−s1)ds1
∫
R3

k�(v1, u)

|v1 − u||min
{
α(xs, v1), α(ys, v1)

}β du

� O(ε−1)‖α∇x f ‖∞
∫ |n(xb(y, v)) · v1|μ1/4(v1)

min
{
α(xb(x, v), v1), α(xb(y, v), v1)

}β
� O(ε−1)‖α∇x f ‖∞.
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For (7.130), since |∇v1G(xb(y, v) − (t1 − s1)v1)| � ‖ξ‖C2(t1 − s1), and

(t1 − s1)e−ν(v1)(t1−s1) � e−ν(v1)(t1−s1)/2, we have

(7.130) � O(ε−1)‖α∇x f ‖∞
∫

μ1/4(v1)dv1 � O(ε−1)‖ξ‖C2‖α∇x f ‖∞.

For (7.131), since we consider t1− s1 � ε, min{t2b(x), t2b(y)} � ε. From (2.32)
we have

∇v1 min
{
t2b(x), t2b(y)

} e−ν(v1)min
{
t2b (x),t2b (y)

}

min
{
t2b(x), t2b(y)

} � O(ε−1).

Denote

xb = xb(x, v) − min
{
t2b(x), t2b(y)

}
v1, yb = xb(y, v) − min

{
t2b(x), t2b(y)

}
v1.

Using (2.32) and from (4.10) in Lemma 4.1 we have

(7.131) � O(ε−1)‖α∇x f ‖∞
∫ |n(xb(y, v)) · v1|

|n(xb(y, v)) · v1|
√

μ(v1)

×
∫
R3

k�(v1, u)

min
{
α(xb, u), α(yb, u)

}β
� O(ε−1)‖α∇x f ‖∞

∫ √
μ(v1) � O(ε−1)‖α∇x f ‖∞.

Thus the contribution of (7.127)2 in (7.126) is bounded by

O(ε−1)‖α∇x f ‖∞. (7.132)

Then we obtain

|(7.126)| � O(ε−1)‖α∇x f ‖∞ + O(ε)[∇x‖ f (·, v)]
C0,β
x;1+β

. (7.133)

Then we consider h = �( f, f ). We use (7.13) in Lemma 7.2 and (7.123)
and (7.78) to obtain

∫
|n(xb(y, v)) · v1|

√
μ(v1)

∫ t1

max{t x ,t y}
ds1e−ν(v1)(t1−s1)

× |G(xb(x, v))∇x�( f, f )(xs, v1) − G(xb(y, v))∇x�( f, f )(ys, v1)|
|xb(x, v) − xb(y, v)|β

�
(‖α∇x f ‖2∞ + ‖w f ‖∞[∇x‖ f (·, v)]

C0,β
x;1+β

)

×
∫ √

μ(v1)
|n(xb(y, v)) · v1|

|v1|2 min
{
α(xb(x, v), v1), α(xb(y, v), v1)

}1+β
dv1

� ‖α∇x f ‖2∞ + o(1)[∇x‖ f (·, v)]
C0,β
x;1+β

. (7.134)
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The last term is (7.26). This estimate is similar to the contribution of (7.28).
Note that

√
μ(v1)α̃(xb(x, v), v1) � μ1/4(v1)α(xb(x, v), v1),we need to compute

∫
μ1/4(v1)|n(xb(y, v)) · v1|

∫ t1

0
ds1e−ν(v1)(t1−s1)

×
∫
R3

du
α(xb(x, v), v1)

|v1| k(v1, u)
∇x f (xs, u) − ∇x f (ys, u)

|xb(x, v) − xb(y, v)|β .

(7.135)

Againwefirst consider t1−s1 � ε.We apply (4.8) inLemma4.1with p = 2+β

and (7.123) to obtain

|(7.135)1t1−s1�ε|

� [∇x f (·, v)]
C0,β
x;2+β

∫
μ1/4(v1)|n(xb(y, v), v1)|α(xb(x, v), v1)

|v1|

×
∫ t1

t1−ε

ds1e−ν(v1)(t1−s1)
∫
R3

duk(v1, u)
1

|u|2 min
{

α(xs ,u)
|u| ,

α(ys ,u)
|u|

}2+β

� O(ε)[∇x f (·, v)]
C0,β
x;2+β

∫
μ1/4(v1)

|n(xb(y, v), v1)|
|v1|2 min

{
α(xb(x,v),v1)

|v1| ,
α(xb(y,v),v1)

|v1|
}1+β

� O(ε)[∇x f (·, v)]
C0,β
x;2+β

.

For t1−s1 � ε, we apply the same integration by parts technique as in (7.128)–
(7.131). The only difference is, here we do not have an extra term G(ys). But this
term does not apply a role in the estimates of (7.128),(7.129) and (7.131). Thus for
this case, we have the same upper bound as (7.132).

Combining (7.115),(7.119),(7.120),(7.122),(7.124), (7.133),(7.125), (7.134)
and (7.135), we conclude that

(7.95) � o(1)
[
[∇x f (·, v)]

C0,β
x,2+β

+ [∇‖ f (·, v)]
C0,β
x,1+β

]

+ [
O(ε−21) + O(ε−16)

|x − y|β
|xb(x, v) − xb(y, v)|β

]‖wθ̃α∇x f ‖2∞.

(7.136)

This, together with (7.96) and (7.92), leads to the conclusion:

(7.24) � ‖TW − T0‖C2

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

×
[
o(1)

[
[∇x f (·, v)]

C0,β
x,2+β

+ [∇‖ f (·, v)]
C0,β
x,1+β

]

+ O(ε−21)‖wθ̃α∇x f ‖2∞
]
,

(7.137)

where we have applied (2.54) to |xb(x,v)−xb(y,v)|β
|x−y|β .
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Step 2: estimate of (7.25).
Now we estimate the contribution of the collision operator. First we consider

h = �( f, f ). Applying (7.12) in Lemma 7.2 we have

(7.25)1h=� �
o(1)[∇x f (·, v)]

C0,β
x,2+β

+ ‖wθ̃α∇x f ‖2∞
wθ̃ (v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}2+β

. (7.138)

Now we focus on the estimate for h = K ( f ), which is∫ t

t−tm (v)
dse−ν(t−s)

∫
R3

duk(v, u)
∂xi f (x − (t − s)v, u) − ∂xi f (y − (t − s)v, u)

|x − y|β︸ ︷︷ ︸
(7.139)∗

.

(7.139)

Since |x− y| = |x−(t−s)v−[y−(t−s)v]|, we express (7.139)∗ by (7.23)-(7.25).
The contribution of (7.23) in (7.139) is bounded by[
o(1)[∇x‖ f (·, v)]

C0,β
x;1+β

+ ‖wθ̃α∇x f ‖∞
]

wθ̃ (v)

×
∫ t

t−tm (v)

dse−ν(t−s)
∫
R3

du
wθ̃ (v)k(v, u)

wθ̃ (u)|u|2 min
{

α(x−(t−s)v,u)
|u| ,

α(x−(t−s)v,u)
|u|

}2+β

�
o(1)[∇x‖ f (·, v)]

C0,β
x;1+β

+ ‖wθ̃α∇x f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
, (7.140)

where we have applied Lemma 4.1.
Then we consider the contribution of (7.24) in (7.139). By (7.137), (2.122)

and (4.7), such contribution is bounded by

‖TW − T0‖C2

o(1)
[
[∇x f (·, v)]

C0,β
x,2+β

+ [∇‖ f (·, v)]
C0,β
x,1+β

]
+ O(ε−21)‖α∇x f ‖2∞

w
θ̃
(v)

×
∫ t

0
dse−ν(t−s)

∫
R3

du
w

θ̃
(v)k(v, u)

w
θ̃
(u)|u|2 min

{
α(x−(t−s)v,u)

|u| ,
α(y−(t−s)v,u)

|u|
}1+β

� ‖TW − T0‖C2

o(1)
[
[∇x f (·, v)]

C0,β
x,2+β

+ [∇‖ f (·, v)]
C0,β
x,1+β

]
+ O(ε−21)‖α∇x f ‖2∞

w
θ̃
(v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}1+β

.

(7.141)

Then we focus the contribution of the collision operator, the (7.25) in (7.139).
We first estimate h = �( f, f ). By Lemma 7.2, such contribution in (7.139) is
bounded by

1

w
θ̃
(v)

∫ t

t−tm (v)
dse−ν(t−s)

∫
R3

duw
θ̃
(v)k(v, u)

o(1)[∇x f (·, v)]
C0,β
x,2+β

+ ‖w
θ̃
α∇x f ‖2∞

w
θ̃
(u)|u|2 min

{
α(x,u)

|u| ,
α(y,u)

|u|
}2+β
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�
o(1)[∇x f (·, v)]

C0,β
x,2+β

+ ‖w
θ̃
α∇x f ‖2∞

w
θ̃
(v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}2+β

, (7.142)

where we have used Lemma 4.1 and Lemma 2.13.
Thenwe estimate h = K ( f ), which is themost delicate one.Wedenote t sm(u) =

min{tb(x − (t − s)v, u), tb(y − s(t − s)v, u)}. We need to compute
∫ t

t−tm (v)
dse−ν(t−s)

∫
R3

duk(v, u)

∫ s

s−t sm (u)
ds′e−ν(s−s′)

∫
R3

du′

× k(u, u′)∇x f (x − (t − s)v − (s − s′)u, u′) − ∇x f (y − (t − s)v − (s − s′)u, u′)
|x − y|β .

(7.143)

We first decompose the s′ integration as
∫ s

s−ε

dssps
︸ ︷︷ ︸

(7.144)1

+
∫ s−ε

0
ds′

︸ ︷︷ ︸
(7.144)2

. (7.144)

Applying (4.8) in Lemma 4.1 with p = 2+β we conclude that the contribution
of (7.144)1 in (7.143) is bounded by

[∇x f (·, v)]
C0,β
x,2+β

wθ̃ (v)

∫ t

tm (s)
dse−ν(v)(t−s)

∫
R3

du
k(v, u)wθ̃ (v)

wθ̃ (u)

∫ s

s−ε

ds′e−ν(u)(s−s′)

×
∫
R3

du′ k(u, u′)wθ̃ (u)

wθ̃ (u
′)|u′|2 min

{
α(x−(t−s)v−(s−s′)u,u′)

|u′| ,
α(y−(t−s)v−(s−s′)u,u′)

|u′|
}2+β

�
O(ε)[∇x f (·, v)]

C0,β
x,2+β

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
.

Then we consider contribution of (7.144)2. For simplicity we denote

x ′′ = x − (t − s)v − (s − s′)u, y′′ = y − (t − s)v − (s − s′)u,

x ′′ − y′′ = x − y. (7.145)

We exchange ∇x for ∇u :

∇x f (x − (t − s)v − (s − s′)u, u′) − ∇x f (y − (t − s)v − (s − s′)u, u′)

= ∇u[ f (x ′′, u′) − f (y′′, u′)] −1

s − s′ .

Since s − s′ � ε the contribution of (7.144)2 in (7.143) is∫ t

t−tm (v)

dse−ν(v)(t−s)
∫
R3

duk(v, u)

∫ s−ε

s−t sm (u)

e−ν(u)(s−s′)ds′1s−s′�ε

×
∫
R3

du′k(u, u′)∇u[ f (x ′′, u′) − f (y′′, u′)]
|x − y|β

−1

s − s′ .
(7.146)
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Then we integrate by part for du to have

(7.146)

=
∫ t

t−tm(v)

dse−ν(v)(t−s)
∫
R3

du1s−s′�ε

×
[
∇u[k(v, u)k(u, u′)]

∫ s−ε

s−t sm (u)

e−ν(u)(s−s′)

s − s′ ds′
∫
R3

du′ f (x ′′, u′) − f (y′′, u′)
|x − y|β

(7.147)

+ k(v, u)

∫ s−ε

s−t sm (u)

∇ue−ν(u)(s−s′)

s − s′ ds′
∫
R3

du′k(u, u′) f (x ′′, u′) − f (y′′, u′)
|x − y|β

(7.148)

+ k(v, u)∇ut
s
m(u)

e−νt sm (u)

t sm(u)

∫
R3

du′k(u, u′) f (xb, u′) − f (yb, u′)
|x − y|β

]
. (7.149)

Here we denoted

xb = x − (t − s)v − t sm(u)u, yb = y − (t − s)v − t sm(u)u. (7.150)

First we estimate (7.147). We begin with∇uk(u, u′). Sincew−1
θ̃

(u′)〈u′〉|u′|2 �
1, from (2.64) with (7.6) and (2.103) we have

|(7.147)|
� O(ε−1)

‖wθ̃α∇x f ‖∞
wθ̃ (v)

∫ t

t−tm (v)

dse−ν(v)(t−s)
∫
R3

du
k(v, u)wθ̃ (v)

wθ̃ (u)

×
∫ s−ε

s−t sm (u)

e−ν(u)(s−s′)ds′
∫
R3

du′|u′|2w−1
θ̃

(u′)

× ∇uk(u, u′)wθ̃ (u)

wθ̃ (u
′)

1

|u′|2 min {α(x ′′, u′), α(y′′, u′)}β

�
O(ε−1)‖wθ̃α∇x f ‖∞

wθ̃ (v)

∫ t

t−tm (v)

dse−ν(v)(t−s)

×
∫
R3

duk�̃(v, u)

|u|2 min {α(x − (t − s)v, u), α(y − (t − s)v, u)}β

�
O(ε−1)‖wθ̃α∇x f ‖∞

wθ̃ (v)|v|2 �
O(ε−1)‖wθ̃α∇x f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
, (7.151)

where we have used (4.11), (2.122) and (2.123) in the fifth line, (4.10) in the last
line.

The term with ∇uk(v, u) can be similarly bounded by

O(ε−1)‖wθ̃α∇x f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
. (7.152)



1204 Hongxu Chen & Chanwoo Kim

Then we estimate (7.148). From (2.64) with (7.6) we have

|(7.148)|
�

‖wθ̃α∇x f ‖∞
wθ̃ (v)

∫ t

0
dse−ν(v)(t−s)

∫
R3

du
wθ̃ (u)k(v, u)

wθ̃ (v)

∫ s−ε

0
e−ν(u)(s−s′)ds′

×
∫
R3

du′|u′|2w−1
θ̃

(u′)
wθ̃ (u)k(u, u′)

wθ̃ (u
′)|u′|2 min {α(x ′′, u′), α(y′′, u′)}β

�
‖wθ̃α∇x f ‖∞

wθ̃ (v)

∫ t

0
dse−ν(v)(t−s)

∫
R3

du
1

|u|2 k�̃(v, u)

�
‖wθ̃α∇x f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
, (7.153)

where we have used Lemma 2.13 in the second line and (4.10) in Lemma 4.1 in the
fourth line.

Last we estimate (7.149). Since we are considering s − s′ � ε, we have tb(x −
(t − s)v, u) � ε. From (2.64) with (7.6) and (2.32), we have

|(7.149)|

�
‖wθ̃α∇x f ‖∞

wθ̃ (v)

∫ t

t−tm (v)

dse−ν(v)(t−s)
∫
R3

wθ̃ (u)k(v, u)

wθ̃ (v)
du

e−ν(u)t sm (u)

t sm(u)

× ∇ut
s
m(u)

∫
R3

du′|u′|w−1
θ̃

(u′)
wθ̃ (u)k(u, u′)

|u′|wθ̃ (u
′)min

{
α(xb, u′), α(yb, u′)

}β

� O(ε−1)
‖wθ̃α∇x f ‖∞

wθ̃ (v)

∫ t

t−tm(v)

dse−ν(v)(t−s)

×
∫
R3

k�̃(v, u)

|u|2 min
{

α(x−(t−s)v,u)
|u| ,

α(y−(t−s)v,u)
|u|

}du

�
O(ε−1)‖wθ̃α∇x f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

} �
O(ε−1)‖wθ̃α∇x f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
,

(7.154)

where we have used Lemma 2.13 in the fourth line and (4.10) in Lemma 4.1 in the
last line.

Then combining (7.151), (7.152), (7.153) and (7.154) we conclude

|(7.143)| �
o(1)[∇x f (·, v)]

C0,β
x,2+β

+ O(ε−1)‖wθ̃α∇x f ‖∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β
. (7.155)
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Combining (7.155), (7.142), (7.141), (7.140) and (7.138) we conclude that

(7.25) � ‖TW − T0‖C2

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β

×
[
o(1)

[
[∇x f (·, v)]

C0,β
x,2+β

+ [∇‖ f (·, v)]
C0,β
x,1+β

]
+ O(ε−21)‖wθ̃α∇x f ‖2∞

]
.

(7.156)

Finally from (7.23)–(7.25) and the estimate (7.156), (7.137), we conclude the
proof of (7.7).

Step 3: proof of (7.8).
Nowwe prove (7.8). From Lemma 7.3, (7.24) is already bounded from (7.137).
For (7.26), since w−1

θ̃
(v)α̃(x, v) � w−1

θ̃/2
(v)α(x, v), by (7.156) we conclude

(7.26) � α̃(x, v)

|v| × (7.156)

=
o(1)

[
[∇x f (·, v)]

C0,β
x,2+β

+ [∇‖ f (·, v)]
C0,β
x,1+β

]
+ O(ε−21)‖wθ̃α∇x f ‖2∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
.

(7.157)

Then we only need to estimate (7.28). First we consider h = �( f, f ). Such
contribution is directly bounded using (7.13) in Lemma 7.2, thus

(7.28)h=� �
o(1)[∇‖ f (·, v)]

C0,β
x,1+β

+ ‖wθ̃α∇x f ‖2∞
wθ̃/2(v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}1+β

. (7.158)

Then we consider h = K ( f ), which reads
∫ t

t−tm(v)
dse−ν(t−s)

∫
R3

duk(v, u)

× G(x − (t − s)v)∇x f (x − (t − s)v, u) − G(y − (t − s)v)∇x f (y − (t − s)v, u)

|x − y|β .

(7.159)

We express (7.159) by (7.26)-(7.29) along u.
Note that

(7.26) � (7.157), (7.29) � (7.137),

we conclude that the contribution of (7.26),(7.27) and (7.29) in (7.159) are bounded
by
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1

wθ̃/2(v)

∫ t

t−tm (v)

dse−ν(t−s)
∫
R3

duwθ̃/2(v)k(v, u)

×
o(1)

[
[∇x f (·, v)]

C0,β
x,2+β

+ [∇‖ f (·, v)]
C0,β
x,1+β

]
+ O(ε−21)‖wθ̃α∇x f ‖2∞

wθ̃/2(u)|u|2 min
{

α(x−(t−s)v,u)
|u| ,

α(y−(t−s)v,u)
|u|

}1+β

�
o(1)

[
[∇x f (·, v)]

C0,β
x,2+β

+ [∇‖ f (·, v)]
C0,β
x,1+β

]
+ O(ε−21)‖wθ̃α∇x f ‖2∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
,

(7.160)

where we have used (4.7) in Lemma 4.1 with p = 1 + β.
Then we focus on the contribution of the double collision operator (7.28). By

Lemma 7.2 the contribution of h = � is bounded by

1

wθ̃/2(v)

∫ t

t−tm (v)

dse−ν(t−s)
∫
R3

duwθ̃/2(v)k(v, u)

×
o(1)[∇‖ f (·, v)]

C0,β
x,1+β

+ ‖wθ̃α∇x f ‖2∞
wθ̃/2(u)|u|2 min

{
α(x−(t−s)v,u)

|u| ,
α(y−(t−s)v,u)

|u|
}1+β

�
o(1)[∇‖ f (·, v)]

C0,β
x,1+β

+ ‖wθ̃α∇x f ‖2∞
wθ̃/2(v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}1+β

. (7.161)

Last we focus on the contribution of h = K ( f ). Recall the notation x ′′, y′′
in (7.145). We need to compute

∫ t

t−tm (v)

dse−ν(t−s)
∫
R3

duk(v, u)

∫ s

s−t sm (u)

ds′e−ν(s−s′)
∫
R3

du′k(u, u′)

× G(x ′′)∇x f (x ′′, u′) − G(y′′)∇x f (y′′, u′)
|x − y|β︸ ︷︷ ︸
(7.162)∗

. (7.162)

We apply the decomposition (7.144) for ds′.
When s − s′ � ε, by (4.8) in Lemma 4.1 with p = 1 + β we have

(7.162)1s−s′�ε

1

wθ̃/2(v)

�
∫ t

t−tm (v)

dse−ν(t−s)
∫
R3

du
wθ̃/2(v)k(v, u)

wθ̃/2(u)

∫ s

s−ε

ds′e−ν(s−s′)

×
∫
R3

du′wθ̃/2(u)k(u, u′)
[∇‖ f (·, v)]

C0,β
x,1+β

wθ̃/2(u
′)|u′|2 min {α(x ′′, u′), α(y′′, u′)}1+β
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� O(ε)

[∇‖ f (·, v)]
C0,β
x,1+β

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.163)

When s − s′ � ε, we rewrite

(7.162)∗ = [G(x ′′) − G(y′′)]∇x f (x ′′, u′)
|x − y|β (7.164)

+ G(y′′)[∇x f (x ′′, u′) − ∇x f (y′′, u′)]
|x − y|β . (7.165)

For (7.164), since |u′|w−1
θ̃

(u′) � w−1
θ̃/2

(u′), we apply (2.57) to conclude that

the contribution of (7.164) in (7.162) is bounded by

‖wθ̃α∇x f ‖∞
wθ̃/2(v)

∫ t

t−tm(v)

dse−ν(t−s)
∫
R3

du
wθ̃/2(v)k(v, u)

wθ̃/2(u)

×
∫ s

s−t sm (u)

ds′e−ν(s−s′)
∫
R3

du′|u′| wθ̃/2(u)k(u, u′)
wθ̃/2(u

′)|u′|α(x ′′, u′)

�
‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
, (7.166)

where we have applied Lemma 2.13 and (4.5) in Lemma 4.1.

For (7.165), we exchange∇x f (x ′′, u′) = ∇u f (x ′′,u′)
−(s−s′) and perform an integration

by parts to du. Since |G(y′′)| � 1, the contribution of (7.165) in (7.162) is bounded
by (7.147),(7.148),(7.149) and with an extra term that corresponds to the derivative
of G(y′′):

∣∣∣
∫ t

t−tm(v)

dse−ν(v)(t−s)
∫
R3

du1s−s′�ε

× k(v, u)

∫ s−ε

s−t sm (u)

∇uG(y′′)e−ν(u)(s−s′)ds′

×
∫
R3

du′k(u, u′) f (x ′′, u′) − f (y′′, u′)
|x − y|β

∣∣∣

�
‖wθ̃α∇x f ‖∞

wθ̃/2(v)

∫ t

0
dse−ν(v)(t−s)

∫
R3

du
wθ̃/2(u)k(v, u)

wθ̃/2(v)

×
∫ s−ε

0
e−ν(u)(s−s′)(s − s′)‖ξ‖C2ds′

×
∫
R3

du′wθ̃/2(u)k(u, u′) |u′|2
wθ̃ (u

′)|u′|2 min {α(x ′′, u′), α(y′′, u′)}β



1208 Hongxu Chen & Chanwoo Kim

�
‖wθ̃α∇x f ‖∞

wθ̃/2(v)

∫ t

0
dse−ν(v)(t−s)

∫
R3

du
k�̃(v, u)

|u|2
∫ s−ε

s−t sm (u)

e−ν(u)(s−s′)/2ds′

�
‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.167)

Here we have used (2.64) with (7.6) in the fourth line and Lemma 2.13 in the second
last line.

Thus the contribution of (7.165) in (7.162) is bounded by

(7.147) + (7.148) + (7.149) + (7.167)

� (7.151) + (7.153) + (7.154) + (7.167)

�
O(ε−1)‖wθ̃α∇x f ‖∞

wθ̃/2(v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.168)

This, together with (7.166) and (7.163), leads to the conclusion:

(7.162) �
o(1)

[
[∇x f (·, v)]

C0,β
x,2+β

+ [∇‖ f (·, v)]
C0,β
x,1+β

]
+ O(ε−21)‖w

θ̃
α∇x f ‖2∞

w
θ̃/2(v)|v|2 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}1+β

.

(7.169)

Finally collecting (7.169),(7.161),(7.160),(7.158),(7.157) and Lemma 7.3 we
conclude the proof of (7.8). ��

7.2. Proof of (1.23)

In this section we prove the Hölde regularity (1.23). For simplicity, we denote

[∇v fs(·, v)]
C0,β
x;1+β

:= sup
x,y∈�

∥∥∥∥wθ̃/2(v)|v|3 min

{
α(x, v)

|v| ,
α(y, v)

|v|
}1+β |∇v fs(x, v) − ∇v fs(y, v)|

|x − y|β
∥∥∥∥
L∞

v

.

(7.170)

We will use (7.6) for simplifying the proof.
Proof of (1.23) Similaly to (7.30) - (7.35) and (6.1) - (6.8), we use
tm(v) = min{tb(x, v), tb(y, v)} to express ∇v fs(x, v) as

∇v fs(x, v) =1t�tm e
−νtb(x,v)∇v[ fs(xb(x, v), v)]

− 1t�tmν∇vtb(x, v)e−νtb(x,v) fs(xb(x, v), v)

− 1t�tm∇vν(v)tb(x, v)e−νtb(x,v) fs(xb(x, v), v)

+ 1t�tm e
−νt∇v[ fs(x − tv, v)]

− 1t�tm∇vν(v)te−νt fs(x − tv, v)
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− 1t�tm

∫ t

t−tb(x,v)

∇vν(v)e−ν(t−s)(t − s)h(x − (t − s)v, v)ds

+ 1t�tm

∫ t

t−tb(x,v)

e−ν(t−s)∇v[h(x − (t − s)v, v)]ds

− 1t�tm

∫ t

0
∇vν(v)e−ν(t−s)(t − s)h(x − (t − s)v, v)ds

+ 1t�tm

∫ t

0
e−ν(t−s)∇v[h(x − (t − s)v, v)]ds

− 1t�tm∇vtb(x, v)e−νtb(x,v)h(x − tb(x, v)v, v).

Taking the difference of ∇v fs(x, v) and ∇v fs(y, v) using the above equation we
have

∇v fs(x, v) − ∇v fs(y, v)

|x − y|β

= 1t�tm
e−νtb(x,v) − e−νtb(y,v)

|x − y|β ∇v[ fs(xb(x, v), v)] (7.171)

+ 1t�tm e
−νtb(y,v) ∇v[ fs(xb(y, v), v)] − ∇v[ fs(xb(x, v), v)]

|x − y|β (7.172)

− 1t�tm
ν[∇v tb(x, v) − ∇v tb(y, v)] + ∇vν(v)[tb(x, v) − tb(y, v)]

|x − y|β
× e−νtb(x,v) fs(xb(x, v), v) (7.173)

− 1t�tm [ν∇v tb(y, v) + ∇vνtb(y, v)] e
−νtb(y,v) − e−νtb(x,v)

|x − y|β fs(xb(x, v), v)

(7.174)

− 1t�tm [ν∇v tb(y, v) + ∇vνtb(y, v)]e−νtb(y,v) fs(xb(y, v), v) − fs(xb(x, v), v)

|x − y|β
(7.175)

+ 1t�tm e
−νt ∇v[ fs(x − tv, v)] − ∇v[ fs(y − tv, v)]

|x − y|β (7.176)

− 1t�tm∇vνte−νt fs(x − tv, v) − fs(y − tv, v)

|x − y|β (7.177)

− 1t�tm

∫ t

t−tm
∇vνe−ν(t−s)(t − s)

h(x − (t − s)v, v) − h(y − (t − s)v, v)

|x − y|β ds

(7.178)

− 1t�tm
1

|x − y|β
∫ t−tm

min{t−tb(x,v),t−tb(y,v)}
×
[
1tb(x,v)�tb(y,v)∇vνe−ν(t−s)h(x − (t − s)v, v)

+ 1tb(x,v)�tb(y,v)∇vνe−ν(t−s)h(y − (t − s)v, v)
]
ds (7.179)

+ 1t�tm

∫ t

t−tm
e−ν(t−s) ∇v[h(x − (t − s)v, v)] − ∇v[h(y − (t − s)v, v)]

|x − y|β ds

(7.180)
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+ 1t�tm
1

|x − y|β
∫ t−tm

min{t−tb(x,v),t−tb(y,v)}
×
[
1tb(x,v)�tb(y,v)e

−ν(t−s)∇v[h(x − (t − s)v, v)]
+ 1tb(x,v)�tb(y,v)e

−ν(t−s)∇v[h(y − (t − s)v, v)]
]
ds (7.181)

− 1t�tm

∫ t

0
∇vνe−ν(t−s)(t − s)

h(x − (t − s)v, v) − h(y − (t − s)v, v)

|x − y|β ds

(7.182)

+ 1t�tm

∫ t

0
e−ν(t−s) ∇v[h(x − (t − s)v, v)] − ∇v[h(y − (t − s)v, v)]

|x − y|β ds (7.183)

− 1t�tm
∇v tb(x, v)e−νtb(x,v) − ∇v tb(y, v)e−νtb(y,v)

|x − y|β h(x − tb(x, v)v, v) (7.184)

− 1t�tm∇v tb(y, v)e−νtb(y,v) h(y − tb(y, v), v) − h(x − tb(x, v), v)

|x − y|β . (7.185)

The estimate of (7.172), (7.180) and (7.183) are the most delicate, we will
estimate them in Step 2 and Step 3. Now we estimate the rest terms in Step 1.

Step 1: Estimate of the rest of the terms.
We will use the estimate

|v|c
wθ̃ (v)

� 1

wθ̃/2(v)|v|3 , for c � −2. (7.186)

For (7.171) we apply (2.56), (2.40) and (7.186) to have

|(7.171)|
� 1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
[|∇vxb(x, v)||∇x fs(xb(x, v), v)|

+ |∇v fs(xb(x, v), v)|]
� 1

wθ̃/2(v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
[‖wθ̃α∇x fs‖∞

+ ‖wθ̃/2(v)|v|2∇v fs‖∞].
For (7.173) we apply (2.61) and (2.56) to have

|(7.173)| � ‖w fs‖∞
1

wθ̃ (v)|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
.

For (7.174) we apply (2.39), (2.40) and (2.56) to have

|(7.174)| � ‖w fs‖∞
1

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
.
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For (7.175) we apply (2.39), (2.40), (2.54) and (2.64) to have

|(7.175)| � 1

|v| ‖w fs‖∞
1

wθ̃ (v)min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2β .

For (7.176) we use t � tm and (2.39) to have

|(7.176)|
� e−νt

[ t[∇x fs(x − tv, v) − ∇x fs(y − tv, v)] + ∇v fs(x − tv, v) − ∇v fs(y − tv, v)

|x − y|β
]

�
[∇x fs(·, v)]

C0,β
x;2+β

w
θ̃
(v)|v|min

{
α(x,v)

|v| ,
α(y,v)

|v|
}1+β

+
o(1)[∇v fs(·, v)]

C0,β
x;1+β

w
θ̃/2(v)|v|3 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}1+β

.

For (7.177) we apply (2.64) and (7.6) to have

|(7.177)| �
‖wθ̃α∇x fs‖2∞

wθ̃ (v)min {α(x, v), α(y, v)}β .

For (7.178) we apply (7.9) to have

|(7.178)| � ‖w fs‖∞
wθ̃ (v)min {α(x, v), α(y, v)}β .

For (7.179) we apply (2.56) and (2.124) to have

|(7.179)| � ‖w fs‖∞
wθ̃ (v)

|tb(x, v) − tb(y, v)|
|x − y|β � ‖w fs‖∞

wθ̃ (v)|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
.

For (7.181) we apply the same computation in (6.16) and (6.15), and use (7.6),
(2.56) to have

|(7.181)| � |tb(x, v) − tb(y, v)|
|x − y|β

‖w fs‖∞
wθ̃/2(v)|v|2 �

‖wθ̃α∇x fs‖2∞
wθ̃/2(v)|v|3 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}β

.

For (7.182) we apply (7.9) to have

|(7.182)| � ‖w fs‖∞
wθ̃ (v)min {α(x, v), α(y, v)}β .

For (7.184), we apply (2.61), (2.56), (2.40) and (2.124) to have

|(7.184)|

� ‖w fs‖∞
wθ̃ (v)

×
[ |∇vtb(x, v) − ∇vtb(y, v)|

|x − y|β + |∇vtb(y, v)||e−νtb(x,v) − e−νtb(y,v)|
|x − y|β

]

� ‖w fs‖∞
wθ̃ (v)

×
[ 1

|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
+ 1

|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β

]
.
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For (7.185) we apply (2.40), (7.9) and (7.6) to have

|(7.185)| �
‖wθ̃α∇x fs‖2∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
.

Combining all the estimates above we use (7.6), (7.186) and Proposition 3 to con-
clude

(7.171) − − (7.185) except (7.172), (7.180), (7.183)

�
‖wθ̃α∇x fs‖2∞ + o(1)[∇v fs(·, v)]

C0,β
x;1+β

wθ̃/2(v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
.

(7.187)

Step 2: estimate of (7.172). We apply the boundary condition (2.25) with the
notation (7.4) to have

∇v fs(xb(x, v), v)

= ∇v

[Mw(xb(x, v), v)√
μ0(v)

∫
v13>0

fs(xb(x, v), T t
x1
p1(x)

v1)
√

μ0(v1)v13dv
1

+ r(xb(x, v), v)
]

= ∇v

[Mw(xb(x, v), v)√
μ0(v)

] ∫
v13>0

fs(xb(x, v), T t
x1
p1(x)

v1)
√

μ0(v1)v13dv
1 (7.188)

+ ∇v[r(xb(x, v), v)] (7.189)

+ Mw(xb(x, v), v)√
μ0(v)

∫
v13>0

∇v[ fs(xb(x, v), T t
x1
p1(x)

v1)]
√

μ0(v1)v13dv
1.

(7.190)

First we consider the contribution of (7.188) in (7.172), which equals

∇v

[
Mw(xb(x,v),v)√

μ0(v)

]
− ∇v

[
Mw(xb(y,v),v)√

μ0(v)

]

|x − y|β
×
∫
v13>0

fs(xb(x, v), T t
x1
p1(x)

v1)
√

μ0(v1)v13dv
1 (7.191)

+ ∇v

[Mw(xb(x, v), v)√
μ0(v)

]

×
∫
v13>0

fs(xb(x, v), T t
x1
p1(x)

v1) − fs(xb(y, v), T t
x1
p1(y)

v1)

|x − y|β
√

μ0(v1)v13dv
1.

(7.192)

For (7.191) we apply the definition in (1.4) to have

∇v

[Mw(xb(x, v), v)√
μ0(v)

]
= ∇v

e
− |v|2

2Tw(xb(x,v)) e
|v|2
4T0 T0√

2π [Tw(xb(x, v))]2
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= T0√
2π

1

[Tw(xb(x, v))]2
(
e
− |v|2

2Tw(xb(x,v)) e
|v|2
4T0 [−∇v(

|v|2
2Tw(xb(x, v))

) + v

2
]
)

+ T0√
2π

e
− |v|2

2Tw(xb(x,v)) e
|v|2
4T0 ∇v

( 1

[Tw(xb(x, v))]2
)
.

Then we apply (2.60), (2.54) and (2.40) to bound

|∇v(
|v|2

2Tw(xb(x,v))
) − ∇v(

|v|2
2Tw(xb(y,v))

)|
|x − y|β

� |xb(x, v) − xb(y, v)|β
|x − y|β ×

[ | |v|
Tw(xb(x,v))

− |v|
Tw(xb(y,v))

|
|xb(x, v) − xb(y, v)|β

+
|v|2| ∇vxb(x,v)

[Tw(xb(x,v))]2 − ∇vxb(y,v)

[Tw(xb(x,v))]2 + ∇vxb(y,v)

[Tw(xb(y,v))]2 − ∇vxb(y,v)

[Tw(xb(x,v))]2 |
|xb(x, v) − xb(y, v)|β

]

� ‖Tw‖C1 |v|
min

{
α(x,v)

|v| ,
α(y,v)

|v|
}β

+ |v|
min

{
α(x,v)

|v| ,
α(y,v)

|v|
}1+β

.

Similarly, we have

|∇v(
1

2Tw(xb(x,v))
) − ∇v(

1
2Tw(xb(y,v))

)|
|x − y|β

�
| 1
Tw(xb(x,v))

− 1
Tw(xb(y,v))

|
|x − y|β

+
| ∇vxb(x,v)

[Tw(xb(x,v))]2 − ∇vxb(y,v)

[Tw(xb(x,v))]2 + ∇vxb(y,v)

[Tw(xb(y,v))]2 − ∇vxb(y,v)

[Tw(xb(x,v))]2 |
|x − y|β

� ‖Tw‖C1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
+ 1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

+ ‖Tw‖C1

|v|min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
.

We combine the estimate above to bound (7.191) as

(7.191) � ‖w fs‖∞

wθ̃ (v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

∫
v13>0

√
μ0(v1)v13dv

1

� ‖w fs‖∞

wθ̃ (v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
, (7.193)

where we have used that for c ∈ {1, 0,−1} and ‖Tw − T0‖∞ 	 1,

e
− |v|2

2Tw(xb(x,v)) e
|v|2
4T0 |v|c � 1

wθ̃ (v)|v|3 .
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For (7.192) we apply the above estimate, the same computation as (2.100) and
(7.89), (7.90), then use (2.54) and (7.6) to obtain

(7.192) �
‖wθ̃α∇x fs‖2∞

wθ̃ (v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.194)

Then we consider the contribution of (7.189) in (7.172). By the definition of r
in (2.6), we apply the same bound in (7.193) to bound such contribution as

1

wθ̃ (v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.195)

Then we consider the contribution of (7.190) in (7.172), which equals

1√
μ0(v)

Mw(xb(x, v)) − Mw(xb(y, v))

|x − y|β
×
∫
v13>0

∇v[ fs(xb(x, v), T t
x1
p1(x)

v1)]
√

μ0(v1)v13dv
1 (7.196)

+ Mw(xb(y, v))√
μ0(v)

∫
v13>0

∇v[ fs(xb(x, v), T t
x1
p1(x)

v1)] − ∇v[ fs(xb(y, v), T t
x1
p1(y)

v1)]
|x − y|β

×
√

μ0(v1)v13dv
1. (7.197)

Applying (2.71) and (2.54) we have

(7.196)

� ‖w fs‖∞ + ‖α∇x fs‖∞√
μ0(v)

Mw(xb(x, v)) − Mw(xb(y, v))

|xb(x, v) − xb(y, v)|β
|xb(x, v) − xb(y, v)|β

|x − y|β
� ‖w fs‖∞ + ‖α∇x fs‖∞

wθ̃ (v)min
{

α(x,v)
|v| ,

α(y,v)
|v|

}β
. (7.198)

Here for the v1 integral we apply the bound (6.12), (6.13) for (6.10).
Then we focus on (7.197). We use the notation (7.4) and (7.5) the partial x

derivative, then we have

(7.197) = Mw(xb(y, v))√
μ0(v)

∫
v13>0

dv1
√

μ0(v1)v13

×
[ ∑
i=1,2

(∇vx1p1(x),i∂x1p1(x),i
fs(ηp1(x)(x

1
p1(x)

), T t
x1
p1(x)

v1)

|x − y|β

−
∇vx1p1(y),i∂x1p1(y),i

fs(ηp1(y)(x
1
p1(y)

), T t
x1
p1(y)

v1)

|x − y|β
)

(7.199)
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+
∇vT t

x1
p1(x)

v1∇v fs(xb(x, v), T t
x1
p1(x)

v1) − ∇vT t
x1
p1(y)

v1∇v fs(xb(y, v), T t
x1
p1(y)

v1)

|x − y|β
]
.

(7.200)

For (7.199) we have

(7.199) = Mw(xb(y, v))wθ̃ (v)|v|2√
μ0(v)wθ̃ (v)|v|2

∫
v13>0

dv1
√

μ0(v1)v13

×
∑
i=1,2

[ |∇vx1p1(x),i − ∇vx1p1(y),i |
|x − y|β ∂x1

p1(x),i
fs(ηp1(x)(x

1
p1(x)), T

t
x1
p1(x)

v1)

+ |xb(x, v) − xb(y, v)|β
|x − y|β ∇vx1p1(y),i

×
∂x1

p1(x),i
fs(ηp1(x)(x

1
p1(x)

), T t
x1
p1(x)

v1) − ∂x1
p1(y),i

fs(ηp1(y)(x
1
p1(y)

), T t
x1
p1(y)

v1)

|xb(x, v) − xb(y, v)|β
]
.

By changing the dv1 integral back to dv1 integral in (2.25) and applying (2.60) and
(2.40), we have

(7.199)

� 1

wθ̃ (v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

×
[ ∫

n(xb(y,v))·v1>0
‖α∇x fs‖∞

√
μ0(v1)

|n(xb(y, v)) · v1|
|n(xb(y, v)) · v1|dv

1 (7.201)

+ 1

|xb(x, v) − xb(y, v)|β
× ∣∣

∫
n(xb(x,v))·v1>0

√
μ0(v1)|n(xb(x, v)) · v1|∂x1

p1(x),i
fs(xb(x, v), v1)dv1

−
∫
n(xb(y,v))·v1>0

√
μ0(v1)|n(xb(y, v)) · v1|∂x1

p1(y),i
fs(xb(y, v), v1)dv1

∣∣].
(7.202)

Clearly

(7.201) � ‖α∇x fs‖∞

wθ̃ (v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.203)

The other term is the same as (7.95), which is bounded by (7.136). Thus by Propo-
sition 3,

(7.202) �
‖wθ̃α∇x fs‖2∞

wθ̃ (v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.204)
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For (7.200) we have

(7.200) �
Mw(xb(y, v))wθ̃ (v)|v|2√

μ0(v)wθ̃ (v)|v|2
[ ∫

v13>0
dv1

√
μ0(v1)v13

×

∣∣∣∇vT t
x1
p1(x)

− ∇vT t
x1
p1(y)

∣∣∣
|x − y|β

|v1|‖|v|2∇v fs‖∞
|v1|2 (7.205)

+
∣∣∣
∫
v13>0

dv1
√

μ0(v1)v13∇vT
t
x1
p1(y)

v1

×
∇v fs(xb(x, v), T t

x1
p1(x)

v1) − ∇v fs(xb(y, v), T t
x1
p1(y)

v1)

|x − y|β
∣∣∣
]
. (7.206)

Applying (2.69) we have

(7.205) � ‖|v|2∇v fs‖∞

wθ̃ (v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.207)

For the other term (7.206), we exchange the v-derivative to v1-derivative, then

(7.206)

= 1

wθ̃ (v)|v|3
∫
v13>0

dv1
√

μ0(v1)v13∇vT
t
x1
p1(y)

v1

×
Tx1

p1(x)
∇v1 fs(xb(x, v), T t

x1
p1(x)

v1) − Tx1
p1(y)

∇v1 fs(xb(y, v), T t
x1
p1(y)

v1)

|x − y|β
� 1

wθ̃ (v)|v|3
∫
v13>0

dv1
√

μ0(v1)v13|∇vT
t
x1
p1(y)

|v1

×
∣∣Tx1

p1(x)
− Tx1

p1(y)

∣∣
|x − y|β |T t

x1
p1(x)

| ‖|v|2∇v fs‖
|v1|2

+ 1

wθ̃ (v)|v|3
∫
v13>0

dv1
√

μ0(v1)v13∇vT
t
x1
p1(y)

v1Tx1
p1(y)

×
∇v1

[
fs(xb(x, v), T t

x1
p1(x)

v1) − fs(xb(y, v), T t
x1
p1(y)

v1)
]

|x − y|β

� 1

wθ̃ (v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β

∫
v13>0

dv1
√

μ0(v1)v13
‖|v|2∇v fs‖∞

|v1|

+ 1

wθ̃ (v)|v|3
∣∣∣
∫
v13>0

dv1∇v1[
√

μ0(v1)v13v
1]∇vT

t
x1
p1(y)

Tx1
p1(y)

×
fs(xb(x, v), T t

x1
p1(x)

v1) − fs(xb(y, v), T t
x1
p1(y)

v1)

|x − y|β
∣∣∣
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� 1

wθ̃ (v)|v|3 ×
[ 1

min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
‖|v|2∇v fs‖∞ + |xb(x, v) − xb(y, v)|β

|x − y|β

×
∫
v13>0

dv1μ1/4
0 (v1)

| fs(xb(x, v), T t
x1
p1(x)

v1) − fs(xb(y, v), T t
x1
p1(y)

v1)|
|xb(x, v) − xb(y, v)|β

]

� ‖|v|2∇v fs‖∞ + ‖α∇x fs‖∞

wθ̃ (v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.208)

In the sixth last line we have used (2.66), (2.54), (2.41) and applied an integration
by part for dv1. In the third last line, we have used (2.41). In the last line we have
used (2.54) and applied the same computation as (7.89), (7.90).

Combining (7.193), (7.194), (7.195), (7.198), (7.203), (7.204), (7.207) and
(7.208), we use (7.6) and (7.186) to conclude

(7.172) �
‖wθ̃α∇x fs‖2∞

wθ̃/2(v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.209)

Step 3: estimate of (7.180) and (7.183). We focus on (7.180), the estimate of
(7.183) is the same. First we consider h = K ( fs), we compute
∫ t

t−tm
e−ν(t−s)

∫
R3

du
∇v[k(v, u)[ f (x − (t − s)v, u) − f (y − (t − s)v, u)]]

|x − y|β ds

=
∫ t

t−tm
e−ν(t−s)

∫
R3

du
∇v[k(v, u)][ f (x − (t − s)v, u) − f (y − (t − s)v, u)]

|x − y|β ds

(7.210)

+
∫ t

t−tm
e−ν(t−s)

∫
R3

du
k(v, u)∇v[ f (x − (t − s)v, u) − f (y − (t − s)v, u)]

|x − y|β ds.

(7.211)

For (7.210) we have

(7.210)

�
∫ t

t−tm
e−ν(t−s)

∫
R3

du
k�̃(v, u)

|v − u|
〈v〉‖w

θ̃
α∇x fs‖2∞

w
θ̃
(v)min {α(x − (t − s)v, u), α(y − (t − s)v, u)}β ds

�
∫ t

t−tm
e−ν(t−s) 〈v〉‖w

θ̃
α∇x fs‖2∞

w
θ̃
(v)min {α(x, v), α(y, v)}β ds

�
〈v〉‖w

θ̃
α∇x fs‖2∞

w
θ̃
(v)min {α(x, v), α(y, v)}β . (7.212)

In the second line we have used (2.64), Lemma 2.13, (7.6) and (2.103). In the third
line we have used (4.11).

For (7.211) we have

(7.211)
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=
∫ t

t−tm
e−ν(t−s)

∫
R3

du

× (t − s)k(v, u)[∇x f (x − (t − s)v, u) − ∇x f (y − (t − s)v, u)]
|x − y|β ds

=
∫ t

t−tm
e−ν(t−s)

∫
R3

dutmk(v, u)

×
wθ̃ (v)[∇x fs(·, v)]

C0,β
x;2+β

wθ̃ (v)wθ̃ (u)|u|2 min
{

α(x−(t−s)v,u)
|u| ,

α(y−(t−s)v,u)
|u|

}2+β
ds

�
‖wθ̃α∇x fs‖2∞

wθ̃ (v)|v|2 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}2+β

min {α(x, v), α(y, v)}
|v|2

= ‖wθ̃α∇x fs‖2∞
wθ̃ (v)|v|3 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}1+β

. (7.213)

In the second line we have used (t − s) � tm . In the last two lines we have used
(4.7), (2.39) and Lemma 2.13.

Next we consider h = �( fs, fs). We use (2.117) and (2.116) to compute
∫ t

t−tm
e−ν(t−s) ∇v[�( fs , fs)(x − (t − s)v, v) − �( fs , fs)(x − (t − s)v, v)]

|x − y|β ds

=
∫ t

t−tm
e−ν(t−s) �(∇v fs , fs)(x − (t − s)v, v) − �(∇v fs , fs)(y − (t − s)v, v)

|x − y|β ds (7.214)

+
∫ t

t−tm
e−ν(t−s) �( fs ,∇v fs)(x − (t − s)v, v) − �( fs ,∇v fs)(y − (t − s)v, v)

|x − y|β ds

(7.215)

+
∫ t

t−tm
e−ν(t−s)(t − s)

�(∇x fs , fs)(x − (t − s)v, v) − �(∇x fs , fs)(y − (t − s)v, v)

|x − y|β ds

(7.216)

+
∫ t

t−tm
e−ν(t−s)(t − s)

�( fs ,∇x fs)(x − (t − s)v, v) − �( fs ,∇x fs)(y − (t − s)v, v)

|x − y|β ds

(7.217)

+
∫ t

t−tm
e−ν(t−s) �v,gain( fs , fs)(x − (t − s)v, v) − �v,gain( fs , fs)(y − (t − s)v, v)

|x − y|β ds

(7.218)

−
∫ t

t−tm
e−ν(t−s) �v,loss( fs , fs)(x − (t − s)v, v) − �v,loss( fs , fs)(y − (t − s)v, v)

|x − y|β ds.

(7.219)

Applying (2.39) for t − s � tm , we use Proposition 3 to have
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|(7.216) + (7.217)| � min {α(x, v), α(y, v)}
|v|2 × (7.12)

�
‖wθ̃α∇x fs‖2∞

wθ̃ (v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.220)

For (7.214) and (7.215), we apply the same estimate as (7.15) and (7.16) with
replacing∇x derivative by∇v derivative. By the same computation as (7.14), (7.17)
change to

∫
R3

duk(v, u)|∇v fs(x, u)|
∫
S2

w−1
θ̃

(v + ω)‖wθ̃α∇x fs‖
min {α(x, v + ω), α(y, v + ω)}β

�
‖wθ̃α∇x fs‖∞‖wθ̃/2|v|2∇v fs‖∞

wθ̃/2(v)

∫
R3

du
wθ̃/2(v)

wθ̃/2(u)|u|2 min {ξ(x), ξ(y)}β/2

×
∫
S2
dωe−θ̃ |v|2/2w−1

θ̃
(v + ω)

|v + ω|β

�
‖wθ̃α∇x fs‖∞‖wθ̃/2|v|2∇v fs‖∞

wθ̃ (v)

∫
R3

du
k�̃(v, u)

|u|2 min {ξ(x), ξ(y)}β/2

�
‖wθ̃α∇x fs‖∞‖wθ̃/2|v|2∇v fs‖∞w−1

θ̃
(v)

|v|2 min {ξ(x), ξ(y)}β/2 .

Applying the same computation as (7.20), the contribution of the above term is
bounded by

‖wθ̃α∇x fs‖∞‖wθ̃/2|v|2∇v fs‖∞

wθ̃ (v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.221)

For the contribution of (7.15) with replacing ∇x by ∇v , we apply the same
computation as (7.18) to bound such contribution by

‖w fs‖∞[∇v fs(·, v)]
C0,β
x,1+β

wθ̃/2(v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.222)

For the contribution of (7.16) with replacing ∇x by ∇v , we apply the same
computation as (7.19) to bound such contribution by

‖w
θ̃
α∇x fs‖∞‖w

θ̃/2|v|2∇v fs‖∞
w
3/2
θ̃

(v)|v|2
∫ t

0
e−ν(v)(t−s)

∫
R3

w
θ̃
(v)k(v, u)

w
θ̃
(u)min

{
α(x ′, u), α(y′, u)

}β

+
‖w

θ̃
α∇x fs‖∞‖w

θ̃/2|v|2∇v fs‖∞
w
3/2
θ̃

(v)|v|2 min {α(x, v), α(y, v)}β
∫ t

0
e−ν(v)(t−s)

∫
R3

w
θ̃/2(v)k(v, u)|v|2

w
θ̃/2(u)|u|2
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�
‖w

θ̃
α∇x fs‖∞‖w

θ̃/2|v|2∇v fs‖∞

w
θ̃
(v)|v|3 min

{
α(x,v)

|v| ,
α(y,v)

|v|
}1+β

. (7.223)

Combining (7.221), (7.222), (7.223) and using (7.6), (7.186), ‖w fs‖∞ 	 1
from the Existence Theorem, we conclude that

|(7.214) + (7.215)| �
‖wθ̃α∇x fs‖2∞ + o(1)[∇v fs(·, v)]

C0,β
x;1+β

wθ̃/2(v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.224)

For (7.218) and (7.219), we use (2.118) to have

�v,gain( fs , fs)(x, v) − �v,gain( fs , fs)(y, v) =
∫
R3

∫
S2

dωdu|u · ω| |v + u|
2Tw

√
μ(v + u)

×
(
[ fs(x, v + u⊥) − fs(y, v + u⊥)] fs(x, v + u‖)

+ [ fs(x, v + u‖) − fs(y, v + u‖) fs(y, v + u⊥)]
)
.

Clearly |v+u|
2Tw

√
μ(v + u) � μ1/4(v+u), using such bound for |v+u|

2Tw

√
μ(v + u) the

above term has the same form as�gain( fs(x)− fs(y), fs(x))+�gain( fs(y), fs(x)−
fs(y)) in (2.110). Thus we can use (7.9) to bound (7.218) as

(7.218) �
‖wθ̃α∇x fs‖∞

wθ̃ (v)min {α(x, v), α(y, v)}β . (7.225)

Similarly for (7.219) we also have

(7.219) �
‖wθ̃α∇x fs‖∞

wθ̃ (v)min {α(x, v), α(y, v)}β . (7.226)

Combining (7.212), (7.213), (7.220), (7.224), (7.225) and (7.226)weuse (7.186)
and (7.6) to conclude

(7.180) �
‖wθ̃α∇x fs‖2∞ + o(1)[∇v fs(·, v)]

C0,β
x;1+β

wθ̃/2(v)|v|3 min
{

α(x,v)
|v| ,

α(y,v)
|v|

}1+β
. (7.227)

Finally, we combine (7.187), (7.209) and (7.227), and conclude (1.23). ��

Acknowledgements. The authors thank Yan Guo for his interest. C.K. thanks Ikun Chen for
earlier discussions on the same subject and a kind hospitality of National Taiwan University
during his visit in 2014. This research is supported in part by National Science Foundation
under Grant Nos. 1501031, 1750488, and 1900923, and the Wisconsin Alumni Research
Foundation and UW-Madison Data Science Initiative.

Data Availibility All data generated or analysed during this study are included in
this published article.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.



Regularity of Stationary Boltzmann Equation in Convex Domains 1221

References

1. Cao, Y.: Regularity of Boltzmann equation with external fields in convex domains of
diffuse reflection. SIAM J. Math. Anal. 51(4), 3195–3275, 2019

2. Cao, Y.: Rarefied gas dynamics with external fields under specular reflection boundary
condition, preprint

3. Cao, Y., Kim, C., Lee, D.: Global strong solutions of the Vlasov–Poisson–Boltzmann
system in bounded domains. Arch. Rational . Mech. Anal. 233(3), 1027–1130, 2019

4. Cao, Y., Kim, C.: Lipschitz continuous solutions of the Vlasov-Maxwell systems with a
conductor boundary condition. https://doi.org/10.48550/arXiv.2203.01615

5. Cercignani, C., Illner, R.,Pulvirenti,M.:TheMathematical Theory of DiluteGases.
Applied Mathematical Sciences, 106. Springer, New York, 1994

6. Chen, H., Kim, C., Li, Q.: Local Well-posedness of Vlasov–Possion–Boltzmann system
with generalized diffuse boundary condition. J. Stat. Phys. 179, 535–631, 2020

7. Chen, H.: Cercignani-Lampis boundary in the Boltzmann theory. Kinet. Relat. Models
13(3), 549–597, 2020

8. Chen, I., Hsia, C., Kawagoe, D.: Regularity for diffuse reflection boundary problem to
the stationary linearized Boltzmann equation in a convex domain. Ann. Inst. H. Poincare
Anal. Non Lineaire 36(3), 745–782, 2019

9. Esposito, R., Guo, Y., Kim, C.,Marra, R.: Non-isothermal boundary in the Boltzmann
theory and Fourier law. Commun. Math. Phys 323(1), 177–239, 2013

10. Esposito, R., Guo, Y., Kim, C., Marra, R.: Stationary solutions to the Boltzmann
equation in the Hydrodynamic limit. Ann. PDE 4(1), 1, 2018

11. Esposito, R.,Marra, R.: Stationary Non equilibrium States in Kinetic Theory. J. Stat.
Phys, 2020

12. Glassey, R.: The Cauchy Problem in Kinetic Theory. Vol. 52. SIAM, 1996
13. Guo, Y., Kim, C., Tonon, D., Trescases, A.: BV-regularity of the Boltzmann equation

in non-convex domains. Arch. Ration. Mech. Anal. 220, 1045–1093, 2016
14. Guo, Y., Kim, C., Tonon, D., Trescases, A.: Regularity of the Boltzmann Equation in

Convex Domains. Invent. Math 207, 115–290, 2017
15. Guiraud, J.P.: Probleme aux limites interieur pour l’equation de Boltzmann en regime

stationnaire, faiblement non lineaire. J. de Méc. 11(2), 443–490, 1972
16. Jin, J.,Kim, C.: Damping of kinetic transport equation with diffuse boundary condition.

https://doi.org/10.48550/arXiv.2011.11582
17. Jang, J., Kim, C.: Incompressible Euler limit from Boltzmann equation with Diffuse

Boundary Condition for Analytic data. Ann. PDE 7(2), 1–103, 2021
18. Kim, C.: Formation and Propagation of Discontinuity for Boltzmann Equation in Non-

Convex Domains. Commun. Math. Phys. 308, 641–701, 2011
19. Kim, C., Lee, D.: The Boltzmann equation with specular boundary condition in convex

domains. Commun. Pure Appl. Math. 71(3), 411–504, 2018
20. Kim, C.,Lee, D.: Holder Regularity of the Boltzmann equation Past anObstacle. https://

doi.org/10.48550/arXiv.2111.07558
21. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157,

49–88, 1866
22. Sone, Y.: Molecular Gas Dynamics. Theory, Techniques, and Applications. Modeling

and Simulation in Science, Engineering and Technology. Birkhäuser Inc., Boston (2007)

https://doi.org/10.48550/arXiv.2203.01615
https://doi.org/10.48550/arXiv.2011.11582
https://doi.org/10.48550/arXiv.2111.07558
https://doi.org/10.48550/arXiv.2111.07558


1222 Hongxu Chen & Chanwoo Kim

Hongxu Chen & Chanwoo Kim
Department of Mathematics,

The University of Wisconsin-Madison,
Madison
USA.

e-mail: hchen463@wisc.edu
e-mail: chanwoo.kim@wisc.edu

(Received June 25, 2020 / Accepted March 28, 2022)
Published online April 21, 2022

© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part of Springer
Nature (2022)


	Regularity of Stationary Boltzmann Equation in Convex Domains
	Abstract
	1 Introduction
	1.1 Main theorem
	1.2 Major difficulties
	1.3 Regularizing via the mixing of the binary collision, transport, and diffuse reflection
	1.4 Higher regularity

	2 Preliminaries
	2.1 Basic notions
	2.2 Properties of stochastic cycle
	2.3 Properties of tangential derivative
	2.4 Properties of Hölder's estimate
	2.5 Properties of boundary condition and collision operators

	3 Differentiation Along the Stochastic Cycles: Mixing via Diffuse Reflection and Transport
	4 Mixing via the Binary Collision and Transport
	4.1 Nonlocal-to-local estimate and small time contributions 
	4.2 Proof of Proposition 2

	5 C1 Estimate of Tangential Derivative and Continuity of C1 Solution
	5.1 C1 estimate of tangential derivative
	5.2 Continuity of C1 solution

	6 C1v Estimate
	7 C1,β Solutions in Convex Domains
	7.1 Proof of (1.21) and (1.22)
	7.2 Proof of (1.23)

	Acknowledgements.
	References




