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Abstract

The higher regularity estimate has been a challenging question regarding the
Boltzmann equation in bounded domains. Indeed, it is well-known to have “the
non-existence of a second order derivative at the boundary” in Guo et al. (Invent
Math 207:115-290, 2017) even for symmetric convex domains such as a disk or
sphere. In this paper, we answer this question in the affirmative by constructing
the C'# solutions away from the grazing boundary, for any 8 < 1, to the sta-
tionary Boltzmann equation with the non-isothermal diffuse boundary condition in
strictly convex domains, as long as a smooth wall temperature has small fluctuation
pointwisely.

1. Introduction

An interesting physical application of the kinetic theory is its mesoscopic de-
scription of the heat transfer of rarefied gas. The quantitative description of the
stationary state and a derivation of macroscopic models (as the Knudsen number
Kn — 00) can be achieved through the famous steady Boltzmann equation

1
v-ViF = —Q(F,F), (x,v) € Q2xR>, (1.1
Kn
where the hard sphere collision operator Q (F, F') takes the form
Ok, Fr) = anin(Fla F2) — Qioss(F1, F2)
= /3 /s2|(v —u) - o|[Fi)F (') — Fi(uw)F>(v) |dodu,  (1.2)
R
withu' =u 4+ [(v —u) - w]o, vV = v — [(v — u) - w]o withw € S2.

In particular, when the gas interacts with a non-isothermal boundary it is well-
known that the non-equilibrium steady states can be constructed by the Boltzmann
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equation (1.1). The kinetic description of the boundary interaction with the gas
particles has been extensively investigated in various aspects (see [3-7,16,17,21,
22] and the references therein). In this paper we are interested in one of the basic
and physical conditions, the so-called diffuse reflection boundary condition, which
takes into account an instantaneous thermal equilibrating with the non-constant
wall temperature of a reflecting gas particle:

F(x, V)ln@)v<o = Mw(x,v) F(x,u){n(x) -u}du, x €9%2. (1.3)
n(x)-u>0

Here the outward normal at the boundary 92 is denoted by n(x), and we define the

wall Maxwellian associated with the described wall temperature Ty (x) at x € 9€2:

M 27 v L 1.4
= = wo :
w(x, v) Ty M0ty = e (1.4)

Recently, a unique stationary solution of (1.1) with (1.3) in general bounded
domains has been constructed in an L°°-space when the non-constant wall tem-
perature is a small fluctuation around any constant temperature 7 in [9] (see [15]
for the construction in convex domains). Moreover, the authors prove that such
non-equilibrium solutions are dynamically and asymptotically stable. We also re-
fer to relevant literatures [11] and the references therein for the PDE aspects of
non-equilibrium steady states. As an important application of such construction the
authors further derive the Fourier law (Navier-Stokes-Fourier system, more pre-
cisely) rigorously as Kn — oo in [10]. On the other hand, for each fixed finite
Knudsen number X, they formulate a criterion of the Fourier law in mesoscopic
level in [9]. Utilizing the available numeric results, they illustrate the violation of
such a criterion, which demonstrates a deviation from the Fourier law for each fixed
finite Knudsen number %x.

Qualitatively the kinetic and macroscopic descriptions of heat transfer are re-
markably different in the presence of boundaries in particular. In the absence of
fluid velocity flow, a macroscopic description via the Fourier law is given by the
Laplace equation with suitable boundary condition, which enjoys analytic smooth-
ness of the solutions. On the other hand, the kinetic description from the Boltzmann
equation (1.1) possesses a boundary singularity intrinsically ([18]). Such a drastic
discrepancy comes from the convection effect nv - V, F, which has small factor
but non-zero for any finite Knudsen number X > 0. Indeed, itis very interesting to
study the quantitative effect of such a convection term Xnv - V. F in the interaction
of the boundary and collision process in the limiting process X — oo. Our work
in this paper originates from this motivation.

As the first step toward this goal, in this paper we are looking for the smoothness
of the stationary Boltzmann equation for fixed &» ~ 1, comparable to the regularity
of the corresponding (in a sense of Xn — 00) elliptic equation, for which the
Schauder estimates are available. More precisely the main purpose of this paper is
to develop a robust and unified higher regularity estimate in C,i’ﬂ with the aid of
weights for the stationary Boltzmann solutions to (1.1) with the diffuse reflection
boundary condition (1.3) in the convex domains. For this purpose we focus on the
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convex domain as a discontinuous singularity appears in the non-convex domain
in general [13,18].

In general convex domains, regularity estimates at most up to the first derivatives
away from the so-called grazing set

o = {(x, v) cIQ xR3 cn(x)-v =0} (1.5)

has been established in [1,2, 14] for the nonlinear dynamical Boltzmann equation.
The key idea of the approach is based on the so-called kinetic distance, which is
almost invariant along the characteristics. With the aid of such weight a generic
singularity m of the first order derivatives can be controlled. We refer to [8] for
the regularity of the stationary linear equation up to the first derivatives. However,
any higher regularity beyond the first order derivatives away from the boundary
has been a challenging question. Apparently any second order derivatives estimate
seems impossible due to the well-known “non-existence of second order spatial
normal derivative at the boundary” in [14] even in the convex domain, or even in
symmetric domains. We note that the mechanism of such phenomenon is against
the conventional effect of the collision in some sense, which will be described in
Section 1.2. Throughout this paper we will use the following notations:
Notations: f < g < thereexists 0 < C <oosuchthat0 L f < Cg; f ~g &
there exists 0 < C < oo such that 0 < % < g S Cf; f < g © there exists a
small constant ¢ > Osuchthat 0 £ f S cg; f = 0(g) © |fIS g f =o0(g) &
Ifl<g.

1.1. Main theorem

Throughout this paper we assume the domain is defined as Q@ = {x € R3 :
£(x) < 0} via a C? function & : R3 — R. Equivalently we assume that for all
q € 0%2, there exists a C3 function ng and 0 < 81 < 1, such that

Ng : B1(0:81) 3 X4 = (X1, %42, %¢.3) > R, (1.6)

where the map is one-to-one and onto to the image O, := n,(B4+(0; §1)) when §;
is sufficiently small. Moreover, n,(x,) € 02 if and only if x; 3 = 0 within the
image of n,. We refer to [10] for the construction of such & and n,. We further
assume that the domain is strictly convex in the following sense:

3
D Ggj0i0;E(x) 2 |¢|* forallx € Qand ¢ € R, (1.7)
ij=1

Without loss of generality we may assume that V& # 0 near 9<2.
In order to control the generic singularity at the boundary we adopt the following
weight of [14]:

Definition 1. For sufficiently small 0 < ¢ < ||&]| 2, we define a kinetic distance

a(x,v) = xo(@(x,v)), (x,v)eQx R3

- (1.8)
ax,v) = \/|v SVREM)|2 = 28(x) (v - V2E(x) - v), (x,v) € Q x R?,
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where x, : [0, 00) — [0, co) stands for a non-decreasing smooth function such

that
Xa(s) = s fors € [0, al, xa(s) =2a fors € [4a, 00], (1.9)
and | x,(7)| < 1for T € [0, 00). :

We note that « = 0 on the grazing set yp. From a computation, we have |v -
Vea(x, v)| £ |v]a(x, v), together with T x/(t) < x¢(7), this implies

e e (x —sv,v) L ax,v) < ea(x —sv, v) as long as x — sv € Q.

(1.10)
The definition of «, @ in (1.8) implies
a(x,v) 2 alx,v). (1.1D)
We extend the outward normal in the domain:
n(x) := Xg/z(dist(x, dRQ))VE(x)/IVE(x)| forall x € Q. (1.12)

In particular, we note that n(x) = 0 when dist(x, 92) = 2¢. In order to explore
the “better” behavior of the tangential derivative versus the normal derivative we
define a G-derivative (which is a matrix)

Vi f(x) =Gx)Vy f(x), (1.13)
where
G(x) := (I —nx)® n(x)). (1.14)
Note that near the boundary, from (1.12) we have
G (x)n(x) = 0 for dist(x, IQ) < ¢/2. (1.15)

From the definition of n in (1.12), the G-derivative is actually a full derivative away
from the boundary: if dist(x, 2) = 2¢, then G(x)Vy = V.

Main Theorem. Fix Kn > 0. Assume the domain is convex (1.7) and the boundary
is C3. Suppose sup,caalTw (x) — To|< 1 for some constant Ty > 0 and Tw (x) €
C'(9). For given m > 0 we construct a unique solution

F(.X, U) = li,(),To(v) + vV Ml,O,To(v)f(x7 U) z 09 (116)

to the stationary Boltzmann equation (1.1) and the diffuse reflection boundary
condition (1.3) such that [[q, g3 f/M1,0,7,(v) =0, and

lwflloo S 1Tw — TollL=pe), w):= @' for some 0 < 0 < 1/4.(1.17)

Moreover, f (and F) belongs to C L@ x RS\)/O) locally and satisfies

lwgW)ee(x, V) Vi f(x, V)l po@xrdy S I1Tw — Tollerae) (1.18)
llwg , @IV f & V)l oo @xrsy S HTw = Tollctag)» (1.19)
0PV £ (. )l oo anryy S 1w = Tollcr g (1.20)

where wj (v) = VP with 0 < § < o.
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If we further assume Z"W (x) € C2(3), then for any 0 < B < 1, the solution
F(x, v) belongs to C#(Q x R3\yp) locally. Moreover,

a(x,v) a(y,v) }2+/3 Vi f(x,v) = Vi f(y,v) H
Ix — ylf L (R})

sup H wé(v)lv|2 min {

X, yeQ |U| ' |U|

S 1 Tw — T0||C2(;)Q)7 (1.21)
2 el v) aly, ) BV, v) = V) f(y, )l

sup Hw(;/z(v)\w mm{ R } B H N

x.yeQ [v] [v lx — vl L®(R3)

S ITw = Tollczg)- (1.22)
3 . [l v) aly, VAV, f(x,v) =V f(y,v)

sup Hwé/z(v)\vl m1n{ , } B H R

x.yeQ [v] [v] lx — ¥ L®(R3)

5 1Tw — T0||c2(39)- (1.23)

Remark 1. The unique solvability and the pointwise estimate has been established
in [9]. We record the statement of the theorem in Section 2 for the sake of readers’
convenience.

Remark 2. The second estimate (1.19) implies that any tangential spatial deriva-
tives of f(x, v) does not blow up near the grazing set. Also comparing the C-#
estimates (1.21) and (1.22), the weight in the semi-norm of the tangential spatial
derivative has a lower power in terms of « than the one for the normal derivative.

Remark 3. Estimating differential quotient with respect to v has some subtle (prob-
ably technical) issue, since the trajectory is not stable at v = 0 near the boundary.
Since our motivation of the paper is investigating the regularity in space we omit to
discuss them. This issue (instability of the trajectory at v = 0 in the Holder norm
estimate) will be discussed in a forthcoming paper, [20].

1.2. Major difficulties

In this section we illustrate the major difficulties, and in the next sections we will
explain the key ideas and analytical development to overcome such obstacles. A
generic feature of the boundary problem of the Boltzmann equation is a singularity
of solutions, which originates mainly from 1) characteristics feature of the phase
boundary 9 x R3 with respect to the transport operator (i.e. the phase boundary is
always characteristic but not uniformly characteristic at the grazing set yp of (1.5)),
and 2) the mixing effect of the collision operator.

The effect of characteristics phase boundary can appear in several ways. De-
pending on the shape of the domain, the generic boundary singularity at yp can
propagate inside the domain and affect the global dynamics. Indeed, it has been
proved in [18] that any general non-convex domains admit smooth initial datum
which will produce the discontinuity for the Boltzmann solution in a stable manner,
which propagates along the trajectory. Although such discontinuity-type singular-
ities may stay near the boundary for the convex domains, its derivatives blow up
near the grazing set. Actually it is not merely the effect of characteristics phase
boundary but also the mixing effect of the collision operator: the mixing immedi-
ately produces a singular source term for the normal derivative at the boundary. In
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[14], the authors quantify the rate of the blow-up with respect to the kinetic dis-
tance of (1.8) and study the mixing effect by the collision operator in terms of the
kinetic distance. As a result they establish the first order derivatives estimate for the
dynamical Boltzmann equation. On the other hand, the kinetic distance produces a
loss of moment and they utilize a fast decay weight e =€)’ to recover such a loss.
In other words, the success of the approach in [14] to the dynamic problem can
be achieved in the space losing its exponential moment quickly (exponentially).
Evidently utilizing such functional spaces is not possible in the stationary problem,
which is one of the major difficulties to establish the main theorem.

The effect of the nonlinear collision operator is complex, in particular, within the
interaction of the transport operator, which eventually restricts our regularity strictly
below two derivatives in any L7”-space: the boundary singularity of Boltzmann
solutions appears as %—5 ~ Qn((f)? ¢ L lla .» while the leading order term of any
second order derivatives Vy , 9, contains a factor of Q(V,F, F)(xp(x,v), v) ata
backward exit position xp (x, v) which is defined through a backward exit time f:

tp(x,v) :=sup{s > 0:x —sv € Q}, xp(x,v) :=x—tp(x,v)v. (1.24)

Due to a lack of symmetry of %, in particular for the diffuse reflection boundary
condition, any possibility of cancellation in the integration formula Q( 9F ' F) can

on’

be expelled generically in [14]. Then it follows that |%2712:(x, v)| = oo for all v
for some x € 9. This singularity likely appears at all boundary points with all
velocities then propagates along the trajectory inside the domain, and masses up all
directional derivatives. Even strictly below the second derivatives estimate, at first
glance it is not obvious that the similar failure is avoidable in our weighted C1-#.
Moreover, we encounter similar type of, but much more geometrically involved,
terms associated with the diffuse reflection boundary condition intertwined with
the transport operator. Such non-integrable singularities could barge in the higher
order estimates, which is the other major difficulty of the proof.

1.3. Regularizing via the mixing of the binary collision, transport, and diffuse
reflection

To overcome such difficulties described in Section 1.2., we establish a novel
and robust quantitative estimate of regularization effect (in space and velocity) of
the velocity mixing via the diffuse reflection boundary condition (1.3) or/and the
binary collision (1.1) intertwined with the transport operator.

We demonstrate the scheme first for V, F, of which the most singular term
comes from the boundary contribution such as

Vixp(x, v) Vi, F(xp(x, v), v1)|n(xb(x, v)) - v1|dv1. (1.25)

n(xp)-v!>0

Upon using the transport operator once again, the contribution of the collision
operator (ignoring the singularity of Q for simplicity) can be viewed as

0
Vxxb/ / /VXF(xb—svl,u)|n(xb)~v1|dudsdvl. (1.26)
n(xp)-v!>0 Joy(xp,v!) JR3
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Akey observation is that the x-derivative has a natural relation with the v!-derivative
as

Vi lF(xp — (1" = s)v', u)]

VeF o~ 1! = sy ) = !

(1.27)

When ¢! — s has a positive lower bound, thanks to the v!-integral from the diffuse re-
flection boundary condition, we are able to remove such a v'!-derivative completely
from F. As a result of the integration by parts, the singularity of Vi (xp, v')
occurs, which will be compensated by the boundary measure and thus we obtain
a bound like Vyxp(x, v) X || F|lco. When t! — s is small we use the so-called the
nonlocal-to-local estimate and derive O (|t! — s)a(x, v) @V, Flloo. We will
describe the nonlocal-to-local estimate and its application in detail at the next sub-
section.

On the other hand, the boundary contribution of (1.25) upon applying the trans-
port operator appears as

Vyxp (X, v) Vi, FOp(x', oY), vhnGeh - olide!,  (1.28)

n(xp)-v!>0

where x! = xp(x, v). The key idea is to convert v'-integration to the integration in
(x2, 5 (x1, v1)) = (p (6L, VY, i (x!, v1)), while the change of variables produces
t‘:((;lz )vlf;l . Then we are able to move V,, -derivative from
F via the integration by parts, while the derivative to the geometric components
arise. Using the convexity and boundary measure crucially we are able to bound

this amount by V,xp(x, v) X || F |l co-

a factor of the Jacobian as

1.4. Higher regularity

For the higher regularity estimate in the weighted C!#-space, we 1) adopt
the idea of Section 1.3 with stronger weight in «, 2) crucially establish a “better”
estimate for the tangential derivatives, 3) use the full range of the nonlocal-to-local
estimate, and 4) carefully study the possibly harmful (which has been explained in
the last paragraph of Section 1.2.) term m fttb(x’v) Q(V, F, F)(x — sv, v)ds.

b(y.v)
W along the trajectories (see (7.36)—(7.48) for

the details), we notice that the difference is singular at least as

By expressing

Vixp(x, v) — Vixp(y, v)

7 Vi, F O, v In(xp) - o' [dv',  (1.29)
lx — vl n(xp)-v!>0

where the integration is bounded using the weighted C!-estimate. By the mean
value type estimate and the computation of V%xb, forx(t) =tx+ (1 — 1)y, we
derive that the difference quotient of V, xy, is bounded by

1 3
Ix—yl“ﬁ/ S L (1.30)
0

(), 0)
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We prove thata (x (1), v) = min{a(x, v), a(y, v)} for |x—y| < min{"‘ﬂf}*l”), “(‘{;lv)}
in the convex domains, for which we use the weight of min{%, %}”’3 for
Vi F(x,0)=Vi F(y,v)
lx—yl?
the bound is false for the non-convex domains in general.
Unfortunately this estimate with the weight of the power 2 4- 8 is too singular!

In particular the difference quotient of V, F' contains

. The convexity of the domain is crucial since any similar type of

V. F Ju), o) =V, F , v), v
Vxxb(x’v)/ o F (p(x, v), v7) — Vi Fxp(y, v), v )|n(Xb)_v1|dv1’

lx — ylP

in which the control of the possible singularity of |n(xp) - v!|~*+#) would be non-
integrable. To overcome it, realizing that Vy, F is V| F, we establish an estimate

VEEDZVIFO0) Gith the

of the difference quotient for the tangential derivatives TP

weight min{%, %} for a lower power than 2 + . The optimal power is

examined through (1.29), which turns out to be 1 + S.

To estimate the difference quotient with different weights, we first employ
delicate splitting for the boundary integral and the time integral depending on how
the trajectories from two different points hit the boundary. Then we adopt the idea
of the scheme of Section 1.3 when ¢! — s has a positive lower bound. On the other
hand, when 7! — s is small we use the weight and derive

Jmin (=5 S v

i " ol

1 (1.31)
X / / ﬂduds.
small interval min {a(x@slv,u) , a(ymu,u) }

The second author and collaborators studied a similar estimate of (1.31) in [14].
In this paper we elaborate the so-called nonlocal-to-local estimate, which consists
of analytical and geometrical arguments: first we study the u-integration of the
integrand and derive a gain of power such as, for 1 < 8 < 3

1

T (1.32)
min{é(x — sv, u), E(y —sv,u)} 2

where &(x) can be understood as the distance from x to the boundary. Second we
employ s — &(x —sv, u) with the Jacobiands = mdé (x —sv, u) and recover a
power of « as in the bound of & through the geometric velocity lemma. We crucially
utilize such a gain of « to extract a smallness in (1.31).

Lastly we discuss the possible harmful term Ix—lyl 5 fz:,h((;bv)) OV F,F)(x —

sv, v)ds. First we apply the a-weighted bound for V, F" and then establish
Q(VyF, F)(x — sv,v) ~ In|é(x — sv)|. Upon the time integration on [tp(y, v),
tp(x, v)] we derive a bound

min.{a(mv), .a([f,"v)}ln (mip{a(ff)’lv), a(l'f)"v)}). For |x — y| < min{“—(lfj’lv), “(l.f)’l") 1, we
realize the difference quotient is bounded. Of course such bound blows upif 8 = 1.
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Now we state the outline for our paper. In Section 2 we prove several lemmas
which serve as preliminary. Section 3 and Section 4 are devoted to establish the
ideas in Section 1.3 as well as the nonlocal-to-local estimate and (1.18). In Section
5 and Section 6 we establish the rest of weighted C' estimates. Finally, in Section
7 we prove the weighted C!-# estimate.

2. Preliminaries
2.1. Basic notions

We first record the unique existence theorem of [9].
Existence Theorem of [9] Assume the domain is open bounded and the boundary
is smooth. Form > O and 0 < ¢ < 1/4,if sup,cyq|Tw (x) — Tp|< 1, then there
exists a unique mild solution

F(x,v) = mM) 0,7,(v) + v/My,0,7,) f (x,v) =0, (2.1)
with [[q g3 f/Mi,0,1,(v) = 0to (1.1) and (1.3) such that
lwfllo@xrsy = lwflloo S I1Tw — TollLe oo,
w(v) = e?"’ with 0 < 0 < 1/4. (2.2)

Without loss of generality, we assume m = 1, 7o = 1 in (1.16). Then we define
the reference global Maxwellian and its perturbation:

wi=Mio1, F(x,v)=p@) +/u@)f(x, v).

Plugging (1.16) into (1.1) and (1.3), we obtain the equation and boundary condition
for f:

vV f+v) f=K()+T 1) (2.3)
_ My (x,v) .

S x|y v<0= ol - S w)y/ p){n(x) - uldu

+r(x, v). 2.4)

Here v(v), K(f), I'(f, f) are the linear Boltzmann operator(see [12]) given by

b()f = —Q("’Tfﬂ, K(f) = W,
C(f f) = W. 2.5)

The r(x, v) is the remainder term. By +/27 fn<x)‘u>0 Ju){n(x) - uldu = 1, this
term is given by

My (x,v)/v/27 — p(v)

2.6
O] 0

r(x,v) =
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Consider a linear transport equation with the inflow boundary condition

vV f v f = hx,v), (x,v) € QxR 2.7
fx,v) =g(x,v), (x,v)€y_. (2.8)
As we can not rely on the Gronwall-type estimate, we will use the Duhamel’s
formula to express the equation along the trajectory:
FO0) =15, e OO £ (x, ), v)

+ 1t<tbeiv(v)tf(x —tv, U) (29)

t
+ / e VW=D p(x — (+ — 5)v, v)ds.

max{0,t—1tp}

Here we fix t > 1.
In order to obtain C! estimate we take the spatial derivative to (2.9) to get

O, f(x,0) = 1,5, e OPEDG [ f (o (x, v), V)] (2.10)
— 1,54, v()dy, iy (x, V)P £ (xp(x, v), V) (2.11)
F Loye 0, [f (x — 1, )] (2.12)
t
+ / eV [h(x — (t —s)v,v)lds (2.13)
max{0,t—1,}
= 1,5, 06" h(x — 1yv, V), (2.14)

where xp (x, v) and 1}, (x, v) represent the backward exit position and time which are
defined in (1.24). The derivative of #,(x, v) and xp(x, v) has singular behavior as
stated in (2.32), such singularity will be cancelled by our weight o defined in (1.8).
With a compatibility condition it is standard to check the piecewise formula (2.10)—
(2.14) is actually a weak derivative of f and continuous across {t = tp(x, v)} (see
[13]) for the details.

Definition 2. Recall the backward exit position xj and backwa_rd exit time #p
in (1.24), we define a stochastic cycles as (x99 = (x,v) € © x R? and in-
ductively

xl = xp(x, v), vl e {v1 ceR: n(xl) ol s 0}, (2.15)
e e R n(xF) - of >0}, fork >1, (2.16)
K= (K 08, 1 = (K, 0 for n(xF) - o 2 0. 2.17)

Choose ¢t > 0. We define 1 = r and
K=t 1, k= >
=t—{tp+ty+---+1, |}, fork=>1. (2.18)

Remark 4. Here x*+1 depends on (x, v, xb ol oo Xk, vk), while v* is a free pa-

rameter whose domain (2.16) only depends on x*.
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Recall (1.6). Since the boundary is compact and C3, for fixed 0 < §; < 1
we may choose a finite number of p € P cCcoQand 0 < 8 < 1 such that
Op =np(B4(0;81)) C B(p; 82) N Q and {O)} forms a finite covering of Q2. We
further choose an interior covering Op C €2 such that {O,} ,ep with P = P U{0}
forms an open covering of 2. We define a partition of unity

15(x) = Z tp(x)suchthat 0 < ¢,(x) =1, 1,(x) =0forx ¢ O,. (2.19)
peP

Without loss of generality (see [19]) we can always reparametrize 1, such that
ax,,.l. np #0fori =1,2,3atx, 3 =0, and an orthogonality holds as

Ox,;Mp - 0x, ;np =0 at xp3 =0fori # jandi, j€{l,2,3}. (2.20)
Atx, 3 = 0, the x,, 3 derivative gives the outward normal

3
np(xy) = — 3 2.21)

(ax,,,3 Np> ax,,_g ﬂp)

For simplicity, we denote
0inp(Xp) == 3xp,,-77p. (2.22)

Definition 3. For x € ©, we choose p € P asin (1.6). We define

T. _( 31’7[)("[)) 3277,,(7(],) 33'7]7(Xp) )t
Xp T \/gp,ll(xp) «/gp,22(xp) \/gp,33(xp) ’

with g, (Xp) = (8inp(Xp), djnp(xp)) for i, j € {1,2,3}. Here A’ stands the

(2.23)

. inp(Xp) .
transpose of a matrix A. Note that whenx,, 3 = 0, Ty, —E —e;fori =1,2,3
’ > 8p.ii Xp)

where {e;} is a standard basis of R3.
We define

djnp(xp) v
V&p.jj Xp)

We note that from (2.20), the map Ix, is an orthonormal matrix when x, 3 = 0.
Therefore both maps v — v(x,,) and v(X;,) — v have a unit Jacobian atx, 3 = 0.
This fact induces a new representation of boundary integration of diffuse boundary
condition in (2.4): For x € 92 and p € P as in (1.6),

vi(xp) = (2.24)

/ VG -

_ / o T ) T YO V) 5 ) ),

We have used the fact of u(v) = wu(jv]) = u(|T,§pV(x,,)|) = u(vxy)) =
n(v(xp)) and x, 3 = 0.

Now we reparametrize the stochastic cycle using the local chart defined in
Definition 2.

(2.25)
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Definition 4. Recall the stochastic cycles (2.16). For each cycle x* let us choose
pk € P in (1.6). Then we denote

x];k = (X];)k,l’ x];k,z, 0) such that ﬂpk(X];k) =xk, fork =1,
3 (xk) 2.26
ka.:z#w}k, fork 2> 1. ( )
PR Je i (x6 )
8p*.jj X pk
From (2.21) we denote the outward normal at x* as
n()=n o). (2.27)
Conventionally, we denote
xgo =x"=rx, Vgg =00 = v. (2.28)
We define
I (xk, )
g la(nu(xt), v9] = ——  Via(n (b0, 05, i =1,2. (2.29)
ki p 3ka i p

Conventionally we denote

Yuath o) = (0, a0 (0. V) 0y [alnp (k0. v9))).

2.2. Properties of stochastic cycle

In this subsection we list useful properties of the stochastic cycle defined in
Definitions 2 and 4.

Lemma 2.1. For the ty, and xy, defined in (2.16) and (2.17), the derivative reads

! 1 e ()
Ty x 2) e, (2.30)
axj 3(X k2 \/m
atl/;+l tl];-l-lej a3npk+2
Pa] = T N e (2.31)
j P23 prt=.33
And thus
1
thb = —n(Xb) s vlb — _—bn(Xb) s
n(xp) - v n(xp) - v
n(xp) @ v tyn(xp) @ v (2.32)
Vixp = Id3x3 — AL Voxp = —tpld + el i ag
n(xp) - v n(xp) - v

Fori=1,2,
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k+2
axpk+2,l' 1
k1 k+2
dx; 82, (X i 2)
k+2 k+2 k+2
0in pe+2 (X 05) Vot Bmpe (X 05)
J P2 P
% — cej, (2.33)
k+2 vi2 k+2 /
gpk+2,ii(xpk+2) P23 gpk+2,33(xpk+2)
k+2
BXPIH—ZJ- 1
k+1 k+2
3ka+1’j gpk+2’ii(xpk+2)
k+2 k+2 k+2
8 0i ka+2(xpk+2) B Vpk+2,i 3377pk+2 (ka+2)
k+2 k+2 k+2
gpk+2,ii(xpk+2) Vit 3 gpk+2,33(xpk+z)
k+1
X - 0N ph+1 (ka+1)s (2.34)
k+2
3ka+2’l. fil 1 0in pr+2
Jokt] =L e€j- % [ T k2
vj 8pr2,ii (X i 2)) VP
k+1
Vpk+1,,~ 83npk+2 (235)
Tkt k+2:|' ’
Vo2 3 v/ 8pkt233
Proof. First of all we have
k+2 k+2 k1 k1 k1
X + :npk+2(xpk+2) = X + _ b v +
- k+1 k1 k+1
—T]karl(kaJrl ol AR (2.36)
Proof of (2.30) We take a;’Tﬂ to (2.36) to get
J
k+2
ox k+1 k+1
3 P21 O B eSS LAl S U R
k+1 k42 |2 T b k+1 k-+1 J
=12 ij 8ka+2,1 x ij ij
k+1
ot,
=——b e (2.37)
ax_-i-l
J
. . 031 jk+2
Then we take an inner product with —-—— to (2.37) to have
/8 k+2 33 | xk+2
k+2
Z axpk+2’l 8T)pk+2 837’]pk+2
k+1 o k+2 ' :
1=1,2 8ijr 8szr+2,1 A2 82 33 X2 (2.38)
_ o - 03mpe 3311 k-2
k2’

k+1
axj

/gpk+2,33

e']' - ——
/gpk+2,33

xk+2
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Due to (2.20) the LHS equals zero. Now we consider the RHS. From (2.24)

031 jit2
k+1 P
v + . |xk+2 - V3 (ka+2).

/gpk+2,33
From (2.38), we conclude (2.30). ]
k+1 031 pk+2
Proof of (2.31) We apply 8v to (2.36) and take - —m L2 to have

2 3Xk+

oxkt2 93 1 pk+2 PEt2.] 877pk+2 (X k+2) 03 1 i+

1 k42 =2 = k2
I V8 pk+2,33 1 = 0v; ox ey 4/gpk+2,33

k+1 k+1 atb 930 phe+2
—1 e +v el
81)]. /gpk+2y33

Thus we apply (2.20) and (2.26) and use (2.24) to obtain (2.31). ]
Proof of (2.32) The first line of (2.32) follows directly from (2.30) and (2.31). For
the second line we take 8)chrl and au’;“ to (2.36). Again using (2.30) and (2.31)
we conclude (2.32). O

k2

k2

Proof of (2.33) We take inner product with IZJ:;H i 10 (2.37) to have
p St X
k
Z ox ;f+21 91 p+2 0i M pr+2
5 axk-i-] axk;:%z[ xk+2 gpk+2,ii xk+2
k+2
ox k2 8t]];+1 o 3i17pk+2 8i77pk+2
= =— . ej- .
ax §§+1 8x§+1 gy g 1642 J g phra,jj 1k +2
By (2.24),
ey ajﬂpk+2 B V,'(ka+2)
gpk+2 i X2 g
Then, from (2.30), we conclude (2.33). |
Proof of (2.34) Since
3Xk;<~_+22
— k+2 k+1
Bk, = Vi e e (),
o
by (2.33) we conclude (2.34). O

Proof of (2.35) For i = 1,2, j = 1,2,3, we apply 0vi*' to (2.36) and take
in k+2

JEAT2 i | k2

to obtain
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axk+2 ;i 1 pk+2

k+1
81}].+ /g,,k+2,,-l~

2 8Xk+2

xk+2

k42
_ Z P21 01 k2 (ka+2) ‘ 0in pr+2
- k+1 k42 -

=1 9Y; X 2 VEpkt2ii
8Xk+2

k+2
_ Pt k+2
- 5 k+1 gpk+2,ii(xpk+2))
Vi

k+1 k+1 .
Z_{atb kel | et1 OV } Oimphr2

k2

v
av§+1 b av§+1 \/gka,” xk+2
{tk+1 iy lej B3 k+1} i ph2
= - ej — . — .
b J V];;:}z \ M k42 m k2
Then we apply (2.31) to obtain (2.35). |
The following two lemmas are immediate consequences of Lemma 2.1.
Lemma 2.2. )
(e, v) < R0 V) o] (2.39)
lv|?
and thus
1 1
IVutp|S —5.,  [VoxplS —. (2.40)
lv] lv]
w7, < 1z (2.41)
Xp [v]
Proof. Clearly, (2.39) follows from % > x —xp = vl
By (2.32) and (2.39) we have
. 1 1
Dyl ool Lo L
In(xp) - v| |v] [v]
n(xp) - v n(xp) - vljv 1
Ivab|§| (b)2 |+ In(xp) - vl| |25__
[v] [n(xp) - vllv] lv]
For (2.41) by the definition of Ix, in (2.23), and using (2.35), we have
i, _ Il

3

Vo T4 1S Il x VXL, +x2, 1S Il <
vix) vitpla p*.1 |n(77pl(X;,1)) - vl |v|

where we have used (2.39) in the last inequality.
Then the lemma follows. m|

Lemma 2.3. The following map is one-to-one:

vk+1 c {n(xk+l) ) vk+l >0: )Cb(xk+1, vk+l) c B(pk+2, 52)}

k+2 k+2 k+1)

(2.42)
= (ka+2’1s ka+z’27 Iy



1114 HonNGxu CHEN & CHANWOO KiM

with
k+2 k+2 k+1
d o(x k+2’1’ka+2 2 Iy )
et Jok+T
(2.43)
1 |lk+1 |3

= k+2 n(xkt2y . pkt1)°
\/gpk"'z,ll(ka+2)gpk+2,22(x k+2) I ) |

Proof. Combining (2.31) and (2.35) we conclude

k+2 k+2 k+1
a(x k+2’1’x k+2 2’tb )

det Jukt+1
1 031 ,k+2
kaiz RV Er PR
k1
1 [ 3 k+2 Vil 937 k2
= |t : eyl WP By vyl AR
= |y " [ det \/gp’f+2,n("f,ﬁz) VR Lz VT Rk Lk
ket
1 [ 021 k2 B v k+l 2 BNk
g k+2 k+2 ST /8 k+2 k+2
‘/gp"“.zz(xl;,ﬁz) Ve | Vokt2 3 A/ OpiTe3s lx
— kP 1 1 031 ph+2
k+1 k42

P23 \/gpk+2 (! k+z)gpk+2 22(X 5 VE8p2

k+1
Vpk+1 1 03 O3mphi2
xk+2]

([ 3177pk+2
k1
\/gkarZ,ll xk+2 Z_+2 3 A/ gpl‘+2 33

k+1
8 [ 021 pr+2 - Vpk+1 5 8377pk+2 ])
k1l
VEr Iy ,12 3 V82 33 k2

k+1
1 [k

= (2.43),

k+1
\/gpk+2 ll(x k+2)gpk+2 22(X k+2) pk+2 3

where we have used (2.20).

Now we prove the map (2.42) is one to one. Assume that there exists v and
¥ satisfy xp(Ft1, v) = xp(cFt, 9) and 5, (K v) = B (x* !, ). We choose
p € 02 near xp (x"+1 , v) and use the same parametrization. Then, by an expansion,
for some v € {av + (1 —a)v :a € [0, 1]},

x,,,l(x’;ﬂ, ) x,,,l(x’ji, v) va,,,l(x’;ﬂ, v)
0= xp 2" 0) | = | xp2* T 0) | = | Vixp 2" 0) | (3 —v).
ty (XKL, 5) ty (X v) Votp (x*+1, )

This equality can be true only if the determinant of the Jacobian matrix equals zero.
Then (2.43) implies that 7, (x**!, ¥) = 0. But this implies x**! = x, (x**!, 7) and
hence n(x**1) - § = 0 which is out of our domain. O
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The next lemma describe the properties of a convex domain.

Lemma 2.4. Given a C? convex domain defined in (1.7),

s () - T = an GEER) I~ T e EERP =12,
k+1 k+1 k+1 2'44)
v pht 3|/|V il ~lx - npk+2(xpk+2)|-
Forj'=1,2,
a[n k+j (X k+,) (xk+1 - npk+2(X k+2))]
k+2
ox ;«iz J

S Il = 21 j=1.2. (2.45)

Proof. First we prove (2.44). By Taylor’s expansion, for x, y € 92 and some
0sr<1,

E()—-Ex)=0-0=VEW) - (y —x) + %(y — 0TV + 1y — ) — x).
Thus, from (1.12),
n(x) - (x = I~ (0 =0T VEE + 10y — )y —x).
From the convexity (1.7), we have

k+1 k+1
|n k+J(X k+,) (x - Upk+2(x k+2))|> Cqlx +

= Npk+2 (X k+2)|
Since & is C? at least,
[ =y} n DS g 2 X =y

Also notice that

k+1 k+1 k+l k+2 k+1
|n k+1 (X k+1) - (x - "pk+2(x A+2))|_| phe1 3|(t R ),
and thus
k+1
A\
A 3| 1 Ca ‘ k1 _xk+2‘2
|Vk:_+11 | k-‘rl | |tk+1 _ tk+2|
k+1 k+2 k+1 k+2
:me 2= o lxkt _npk+2(xpk+2)|.

By the same computation we can easily conclude

WL
pH13 k+1 k+2
| k+j | = C$|x _npk+2(xpk+2)|'

1\+j
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Then we prove (2.45). For j = 1, j/ = 1, 2 we have

+2

k+1 k+2
‘ Ol et (X ) - (T — i (0 5))] ’
k
8ka+2,

2/

j
k+1 k42
S Jn it (X ) - 0k (X5

k+1 k+1
= | L) - e (K5
k+1 k+2 k+1
+ I’lpk+l(ka+]) . [Bj/npk+2 (ka+2) — aj/npk+l(ka+|)]‘
k+2
S 0+ Il =m0 F5)], (2.46)

where we applied (2.20) and (2.27).
For j = 2, we have

3ln 2 (x’;jfz) LR (x’;ﬁz))]
k+2
axpk-f—Z)j/
k+2 k+1 k+2
S Iy (655) - B |l c2 |6 — 12 (6 5))
= Il = mp (2L,
where we applied (2.20) and (2.27). m|

2.3. Properties of tangential derivative

Aiming the regularity estimate of (1.19) without the « —weight, we establish
several properties of the tangential derivative. We summarize them in Lemma 2.5—
2.7.

Lemma 2.5. For x = n,(x,) € 0%, we have the following equivalence:

GOV f vl | 3 B, F01pp), )] (2.47)

j=1.2
Proof. By (2.23) we have

dinp(xp) = \/WT;F@.

Denote §(x) = V, f(x, v)Tx’p, we have

Z 3xp,,«f(77p(xp), v)

j=1,2

=/8&p.11(Xp) Vi f(x, U)T{pel +/8&p.22(Xp) Vi f(x, U)Txtpez
=/8p.11(Xp)Ter +/gp,22(Xp)Fer.
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We also have
GOV f(x,v) = Vo f (T, Ty, = T esed Ty, )

=3(1, - esesTy, ) =3(1 —es @ e3) Ty,
91np(Xp) 01 p(Xp)

= 0)Ix, = —t N e

Since 917m,(xp) L 921 (Xp),
GOV f (vl | fep 11 Gp)er +Jgp nxp)Fen| ~ | 3 ax,; FOp 90,0,
j=12

Lemma 2.6. For any s € [0, ty], we have

IG(x) — G(x — sv)|< &(|):|U)‘ (2.48)

Thus
lwg o [0V FII + lTwgae Vi flloo

|IG(x)Vy f(x —sv)|S (2.49)
|v|w§/2(v)
Proof. By the definition (1.14), we have
IG(x) — G(x —sv)| < [n(x —5v) ® (n(x — sv) — n(x))|
—|—|(n(x —sv) —n(x) ® n(x)|.
Then by (1.12) we have
ro ro V,§(x)
Van ()] S Ve p@ist . 09 || + X6/2(dlst(x,8Q))Vx|vsﬁ

<" x Vidist(x, 0Q)]

2E(x)VEX)
VEQOIVZE () — VE(x) @ LEIVED) |
VP

+

Xepa(dist(x, 92))

. |V2E ()
S 1+ %l (dist(x, Q) ———.
o2 IVE)]
From (1.9) and (1.12) we have |V&(x)|Z 1 when dist(x, Q) < 1. When
dist(x,92) 2 1 we take ¢ to be small enough such that x/(dist(x, 9Q)) = 0.
Hence

[Ven()|S €l c2- (2.50)
Then we use (2.39) to have

a(x,v)

|v]

In(x —sv) —n(x)|S wplvlElle2 S

Thus we conclude (2.48).
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Last we prove (2.49). We rewrite

|G(x)Vy f(x —sv, v)|
=|G(x —sv)Vy f(x —sv,v) + [G(x) — G(x —sv)]Vy f(x — sV, V)]
< MwgplvlVifllo @, v)
|v|w§/2(v) [v]
< ||U)§/2|U|V||f||oo ”wé/zalvxf”oo
|U|wé/2(v) |U|w§/2(v)
w1V flloo + 1w Vi £l

~ |U|wé/2(v)

Vif(x —sv,v)

)

where we applied (1.10), and we used (1.8) to have wé/z(v)&(x, v) < wz(Wa(x, v).
Then we conclude the lemma. O

Lemma 2.7. For xp(x, v) = 11 (Xll,l) andi = 1,2, we have

‘G(x)Vxxll)li <1, 2.51)
1
GOVainr 0| £ 2.52)
v
Proof. By (2.48) in Lemma 2.6 we have
G)Vex', | < |6 vx! ax ) g ot 253
OV, | £ [GOom Vg [+ 50219 1 @5
—
2.53); 2.53),

By (2.33), the definition of v;, 3 n(xp) in (2.26) and (1.15), we have

n(xp)

(2.53); <14+ |v|Glap) ————| =
In(xp) - vl

Again by (2.33) and using definition of & in (1.8), we have

a(x,v) a(x,v) [v]

(2.53)2 N
[v] [v[  [n(xp) - vl

We conclude (2.51).
For (2.52) by (2.30) we have

o 1 < 1

253) <0+ —— < —.
[v] [n(xp) - v] 7 |v|

We conclude (2.52). ]
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2.4. Properties of Holder’s estimate

1119

To prove the C 1.8 estimate (1.21)—(1.23) we need several C!-# estimate for xy,
and f,. We summarize them in Lemma 2.8 and Lemma 2.10. Lemma 2.9 serves as

a key ingredient to prove Lemma 2.8.

Lemma 2.8. We have the following estimates:

|Xb(x, v) — xp(y, v)| - 1
|X—J’|ﬁ min | 2.0 oG B’
vl vl
}tb(x,v)—tb(y, v)| - 1
|)C —ylﬁ |v|min{a(x,v) a(y,v) }‘37
vl vl
|67Cvth(x,v) _ 67Cvtb(y,v)|ﬂ evatb(x,v) _ 67Cvtb(y,v) |
lx —yl# ~ lx — y|#
- 1
~Y /31
o Jaky) a(yv)
|“|mm[ ol Tl }
n(xp(x, v)) —nlp(y, v
} (xn( ) /(Sb(y ))| 5 ||§||C2 5
[x — ¥ min § ¢&:0) Ot(y,v)}
vl > vl
}VXXb(x,v)—VXXb(y, v)| < 1
o= yl? - min {_Of(x)v) a(y»v)}erﬂ’
vl > vl
}thb(x,v)—thb(y, v)| - 1
b=l ol min [t a(y,w}”ﬁ’
2 vl
| Vyxp(x, v) — Vyxp(y, v) | 1
b=l ol min f et a(y,v>}1+ﬂ’
vl > vl
’Vvtb(x,v)—Vutb(y,v) < 1
b= ™ o min 2, st |7
vl > vl
Vixp(x,v) — Vixp(y, v 1
’G(y) xXb( |x) y|; b(y )‘5 P g
- . a(x,v) a(y,v
mm{ ol > ol }
Vith(x,v) — Vitp(y, v 1
’G(y) xIp( |x) ylg b(y, V) i .
- . alx,v) aly,v
|v| min {_Ivl C Tl }

1—
lwfillss? lwza Ve fill5

’fs(xy v) — fs(y, v)| <
lx — y|f ~

wg(v) min {a(x, v), (v, )}’

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)
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1
)
in Section 7), i € {1, 2}, we have

Forxp(x,v) = np1(x)(x

1 ol
Yo = X! 1
Ix — y|# ey e )?
mm{ ol > ol }
[ Tg —Ta
Xpl(X) Xpl(,v)l < 1
Ix —y|# e e )P
mm{ ol ol }
1 _ 1
VeXpi = V¥l !
|X—Y|ﬂ ) akx,w) a(y,v) B’
mm{_m STl }
1 _ 1
IVoXpi) = VXl 1
il |v|min{9t(x,v) ayw) | TP
vl > vl
VoTg  =ViTa | |
p(x) p () < )
|X—Y|ﬁ ~ |v|min[a(xﬂ)) a(y,v) I+8
7 vl
When x,y € 0%,
(e, 0) =y I

~

lx — vl

foré < 1,
| My (x, v) — My (y, V)| _
Vie)|x —ylf ~

For x = 1p00)(Xp(x))s ¥ = Npy) Xp(y)) € 082, and

— 1 _ 1
Xb(.x, U) - npl(x)(xpl(x))v xb()’s U) - r/pl(y)(xpl(y

w> )T = Tollcr-

1 1
|8Xp(x>,jxp1(x),i - aXp(y),jxpl(y),i| < 1
a(x.v) a(y,v)}3

vl vl

lx — ylf

min {
We need the next lemma to prove this
Lemma 2.9. Define

x(t)y =0 —-Dx+71y, [X(@)|=Ix—y|

IfIx — y|< emin( @& E0Dy o phep

[v] [v]

@(x(t), v) = min{&(x, v), a(y, v)}.

_ 1 ..
), xp(y, v) = np1(y)(xp1(y))(see the definition (7.4)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

Q271

)). Fori, j € {1,2} we have

2.72)

(2.73)

(2.74)
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Proof. By the definition (1.8) we have
@ (x (1), v) = |[VEx(T)) - v]* =2 (x (1)) (v - VEE(x (D)) - v). (2.75)

We expand |VE&(x(7))-v |2 and —2&(x(7))(v- sz;‘(x(t)) -v) separately: we expand
in T as

IVE(x (7)) - v|* = |VE®(0)) - v]?

+ /t dt'2(VE(x(r)) - v)x(7) - Vzé(x(t/)) -, (2.76)
0
2.76),
—2£(x (1) (v - VZE(x (1)) - v) = —2E(x (D) {v - VEE(x(0)) - v
+0(x — yDIIE N3 lvl?), (2.77)

where we have used (2.73).
For (2.76), we further expand in t’ and obtain

(2.75) =|VE() - v +2(VE®) - v) O(lx — yDIv| €l c2
+ fof dr’ /Or, dt”x(7") - VZE(x(t")) - vi (") - VZE(x(T")) - v
(2.78)
+ /0 "4t /O i de"2(VE(x(t")) - )k ()i () V3E@ () - v
—26(x ()0 (vP). (2.79)

From the convexity (1.7) we have

2
(2.78) + (2.79) = O ()| 21 |es 10> = O(%) min {“(x’ v 20, ”)} v,

LI
(2.80)
From (2.80) we have

(2.75) 4+ 26(x (1) O(|v]?) = |VE(X) - v*+O0(e)ar(x, v) min {a(x, v), a(y, v)}

+ 0(e?) min {a(x, v), a(y, v)}>.
(2.81)
Now we claim

—£(x(1)) 2 min {—£(x), —E(Y)} . (2.82)
From %(—E(x(r))) = —x(7) - Vi&(x(7)) and convexity (1.7),
d? )
T (CEE@) =D - VZE(x (1) - x (1) S —lx (D)L 0.

Thus —&(x(z)) is a concave function of 7. From 0 < t < 1, we prove our
claim (2.82) as
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—E(x(0) =61 —1)-0+7-1) 2 =1 —1)§x(0)) — t6(x (1))
=—(1=1éx) —7&(y) 2 min{—=§(x), —E(M}.

Now combining (2.81) and (2.82) we conclude that

(2.75) 2 |VE(x) - v]*4 min {—&(x), —£(y)} |v]?

4+ O(e)a(x, v) min {a(x, v), a(y, v)} + O (&%) min {&(x, v), a(y, v},

(2.83)

Similarly we can set x(t) = (1 — )y + tx. From x(0) = y, following the same
argument we derive

(2.75) 2 |VE(y) - v]*+ min {—&(x), —E()}v]?
4+ O(e)a(y, v) min {a(x, v), a(y, v)} + 0(82) min {&(x, v), &(y, v)}2 .

(2.84)
From the definition of (1.8) using (2.83) and (2.84) we have
2
(2.75) Z min {&(x, v), a(y, v)}2 — O(e) min{a(x, v), a(y, v)] .
Hence from ¢ < 1 we conclude (2.74). O

Now we start the proof of Lemma 2.8.
Proof of Lemma 2.8. For all estimates we assume |x — y|< ¢ min{%, 6%}
otherwise the lemma follows immediately by (2.32). Thus we can apply (2.74)
during the whole proof. We will use the x () defined in (2.73).

Proof of (2.54) We have
|xb(-x9 U) _-xb(y9 U)| 1 /1 d
= dt—V
Fg—: 7 ), T v Xp(x(T), V)
1 L
= |x_y|/3/0 X (D[ Vaxp (x (), v)|dT

1 B
< 1 f ] [v] < [v| ’
Ix —ylB=1 Jo a(x(r), v) ~ min{a(x, v), a(y, v)}?

where we have used Lemma 2.9, (1.11), (2.32) and 8 < 1 in the last line. ]
Proof of (2.55) We have

(. v) —m(y, )| 1 /1
x — yIf =1 Jo

d
dt—V,tp(x(7), v)
dr

1 1
- lx — y|P /() |% (D) Vit (x (1), v)|dT

p [ 1 |vl?
=|x—yl = S - ,
0 @(x(v),v) ~ vl min {a(x, v), a(y, v)}’
where we have used Lemma 2.9, (1.11), (2.32) and 8 < 1 in the last line.
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Proof of (2.56) The first inequality is clear since |[e~C V) — e =CVi(LV)|<
To prove the second inequality we have

|e—Cvtb(x,v) _ e—Cutb(y,v) |

lx — ylf
1
— 1 / drie—Cvtb(x(r),v)
lx—ylfJo dr
1

5—
Ix —yl#

1
[n(xp (x(7), ) - V|

1
/ At iy (£ (1), v))eCBEOD ¢ _ |
0
1 < 1

min{&(-x7v)7&(ya v)} ~ ax,v) a(y,v) }'B,
ol > vl

Slx—y'
|v|min{

where we have used (2.32) in the second line, Lemma 2.9 and (1.11) in the last
line. O
Proof of (2.57) Since

In(xp(x, v)) —nxp(y, V)| _ [nGxpx, v) —nlxp(y, V)] [xp(x, v) —xp(y, V)|

lx — y|# G v) —xp ()] lx — y|
lxp(x, v) — xp(y, V)|
S Elle2
¢ x — yIP
By (2.54) we derive (2.57). |
Proof of (2.58) We have
v Jv)—V , 1 L q
[Vaap(x, v) = Vixp(y, )| _ dr- 4y (), )
lx — ylf lx —y|8 Jo dr
1 L
= W/O | (| Vx Vexp(x(T), v)|dT
< | |‘ﬁfl P (2.85)
X — —_. .
SRR FTRTEI NN E

Here we have used (2.32) to have

[V (Vaxp (x(7), v))]

Inllc2lvlln (o (x (), v) - v] vl G (x (7). 1) @ v

<

N[ oG @, o) o e e G@), ) P ]

X |Vxp (x (1), v)] (2.86)
ol P’ < vl

S (), v) - v2 | (D). v) v~ (D). v) P

(2.87)

where we have used |n(xp (x(7), v))-v|< |v] in the last inequality. Then by Lemma
2.9 and (1.11) we obtain (2.58). O
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Proof of (2.59) We have
Vitp(x, v) — Vitp(y, 1 I d
[Vith(x, v) xtp(y, V)| — / A7 —V, 1 (x (1), V)
lx — y|# lx—yl# Jo dr
1 L
— 5 | KOV, v
- 0

. 1 |v|2
Shx =y’ Iy
0 le(x(r),v)]

where we have used (2.32) to conclude

Il c2(n(xp (x(T), v)) - V)
n(xp (x (), v)) 2
n(xp(x (7)), v)lInllc2|vl
| (xn (x (7), v)) 2

IV (Vatp(x (1), 1)) S

Vaxp(x(7), v)

Vexp(x(7), v)

v (2.88)
~ n(xp(x (1), v) - v '
Thus, by Lemma 2.9 and (1.11), we obtain (2.59). O
Proof of (2.60) We have
[Vyxp(x, v) — Vyxp(y, v)| _ 1 /1 dfivvtb(x(f), )
lx — ylP x—yl#Jo dr

1 1
- m\/() |)‘C(T)||VxVUXb(x(‘C)’ v)ldl—

<|x_y|1—ﬂ/1L
~ 0 @@, P

where we have used (2.32) and (2.39) to conclude that
[v]
[n(xp (x(7), v)) - V|
[Vxn (x (@), WIlmlle2 vl + 0]
[n(xp (x(7), ) - v|?
< [v] [n(xp(x (), v) - V)| vf?
~ n(xp (x(2), v)) - v]? lv|? [n(xp(x(1), v)) - v
[v]
~ n(p (x(2)), v) - ]2

[ViVyxy (x(7), 0)| S [Vath (x(2), v)| + [Vetp (x (1), V)]

+ |t (x(7), V)|

Thus, by Lemma 2.9 and (1.11), we conclude (2.60). |
Proof of (2.61) We have
Voip(x, v) — Vytp(y, 1 I q
[Vytp(x, v) vin (¥, V)| _ / AT —V, 1 (x (). v)
lx — vl lx—ylf Jo  dt

1 1
- W/O | ()| Vi Votp (x(7), v)|dT

1
1
< Iy — y|I-B -
SRl /o|d<x(r>,v>|2’
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where we have used (2.32) and (2.39) to conclude that

ViVt (x (), v)]

<
S [ Vatp(x (1), )] [n(xp(x(1), V) - V]

|Vaxp (x (), v)|[Inllc2[v] 4 [v]]
n(xn(x(7), v)) - v|?

+ [t (x(7), V)]

1 In(xp(x(7), v) - V)| v|?

<
~ Julln(xp(x(7), v)) - v v|? In(xp(x(7), v) - v[3
1
~ n(xp(x(7)), v) - v[?
Thus by Lemma 2.9 and (1.11) we conclude (2.61). |

Proof of (2.62) From (2.85) and (2.86), we bound

|G (¥) Vi (Vixp (x(7), v))]

< [ Inllc2 vl [l c2[v[|G(Y)n(mn(x(7), v) ® v']lV (7. V)|
~ Ln(p(x(7), v)) - v In(an (x (1), ) - v]? B
vl?

~ n(xp(x(1), ) - v|*’
where we have used

|G (N (x(T), V)| S IGIn(+In(xp(x (T, v)) — n(y)l
S lp(x (1), v) = YIS [xp(x (1), v) — x (D) |[+|x () — ¥l

< min {“(x’ v) ¢(,v) } (2.89)
[v] v
Thus
VX (x, ) — Vexp(y, v) g ! v]?
G(y) Shx— |ﬁ/ _—,
GO = PP | 0 1@ (D), v
and we conclude (2.62) from (1.11). O
Proof of (2.63) From (2.88) we have
|G ([ Vitn(x,v) — Vitp(y, V)]
lx — ylf
1 ! 171l c2
< — xf dr Vexp(x(7), v)
x—yl# = Jo ~ HnGp&(),v) v
G(y)n(xp(x(1), v))
v
ol Ve (@), v)
1 1 1
i L et -
x—=yI#Jo  InGp(x (1), v) - vl |v|min{o{(x,v) a(y,v)} +h
EIERNE]

where we have used (2.89) to G(y)n(xp(x(7), v)) and (1.11). O
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Proof of (2.64) By (2.74) in Lemma 2.9 we have

o0 0) = SO0 gt 1= 1) = foy 0P
—yp o = yIP

1
Ix — y|#

1
_ B
< whl@luwf 1? [} 4w veon)

1
< BT =P =By ﬂ/ L [
S u @ifs i e k] | arz |

e lwfsllhs? lwga Ve £515,
~ 7 min {a(x, v), a(y, v)}#

where we have used § < o to have
wé‘ﬁ(v)w/’*‘ (v) = el!PLB=De=BIl < ,=0lvP* 0
Proof of (2.65) From (2.33), (2.26) and (2.32),

Y X] v - 3i;7p1(x)n(xb(x, v))
Xpl(x).i In(xp(x, v)) - vl

Then we apply the same computation as the proof of (2.54) to conclude (2.65). O
Proof of (2.66) For this estimate we can assume |xp(x, v) — xp(y, v)| K 1, other-
wise, for |xp(x, v) — xp(y, v)| 2 8 we use (2.54) and (2.23) to have

T, —T, T. —T,
| x;l(x) x;)l(y)| — | x117l(x) lel(y)| |xb(-x7 U) - xb(y’ v)"3
lx — yIf lxb (x, v) — xp(y, v)IP lx — yIf
- et
min | 260 @00 }ﬁ
vl > vl

With |xp(x, v) — xp(y, v)| < 1, we can assume that xp(x, v) and xp(y, v) cor-
respond to the same p in (2.19). Then we drop the dependency on p and write
pl(x) = p'(y) = p. The variable depend on x are X1l)1(x) and X;I(y). Thus

| T 1 —Ta | [T —Ta | x! —xl B
Yo Ne o Ne Nle %o = Xp1y! < Inllc2
_ v|B ol _ Xl B —y|B . B’
lx — vl |Xp1(x) Xpl(y)l [x — ¥l min {Ol(l);,lv) ’ ot(l};),lv) }
where we have used intermediate value theorem to 7 in (2.23) and (2.65). O

Proof of (2.67) Following the proof of (2.65), it is straightforward to verify that

vf?
V. [V,x! ] — .
A0 S Gt vy P
Then we follow the proof of (2.58) to conclude (2.67). |
Proof of (2.68) Following the proof of (2.65), it is straightforward to verify that

1 [v]

PI(X)J] S

VolVex ~ G () v
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Then we follow the proof of (2.60) to conclude (2.68). |
Proof of (2.69) The v-derivative reads as

81 n9in
17711( (x) ! ljn«/gp ii jgp”
VU— = > VX1 4. .
&p, ll(xp (x)) j=1.2 8p.ii

Similar to the proof of (2.66), we can assume xp(x, v) and xp(y, v) correspond to
the same p. Then we apply (2.40), (2.65) and (2.68) to have

v, anp) Ay, 1m) 1
\/g"'”(le)lm) \/g” i (%) SreY Z Vo Xp (x).Jj V”Xpl(y),./|
lx — yIP N] o x =yl
i %o = Xpi ) 1
ol =P X X1

Fjnpxty Hompxty )
jnpxL, ) Jepi(xt ) — . p o
p'(x) p'(x) \/gl’vii(xpl(x))

- (x!
gp,ll (Xp (X))

zjnp(x 1 )0, znp( )
3ij77p(X11 ) gp,ii(xll ) — s 2l
MY P \/gp,”(xpl(y))

_ 1 ]
gp,ii (Xpl (}))

< 7l s
Ivlmin{M M}Hﬂ
ol ol

In the last line we used intermediate value theorem for 9;;1. By definition of 7" in
(2.23) we conclude (2.69). |
Proof of (2.70) Since |x — y|< 1, we can assume that x, y € B(p; d2), where
B(p; 82) is defined in (2.19). Then both x, y correspond to the same p. Only for
proof of this estimate we denote

x =1npXpx), ¥y =npXp(y)),
Np(Xp(0)) i=10p(Xp () + (1 — D)1p(Xp(¥)).
By mean value theorem, there exists ¢ € [0, 1] such that
X =y =1pXp(0) = 1pXp(») = Vnp(exp(x) + (1 = )xp() (Xp(¥) = Xp()).
Thus

lxb (7 p (Xp (X)), V) — xp(Mp (Xp(¥)), V)]
lx =yl

1
[ dr Ly rp xp ). )|
0 dr

1
[x — ¥l
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= _y||f dzVexp (1p (Xp (1)), v) = np(xp(r))}

= |x_y|/0 dtVexp (p (Xp (D), V)V (cxp(x) + (1 — 0)Xp (1) (Xp (x) — Xp(1))

xp () — x| !
S ﬁ‘/o drVinp (exp(x) + (1 = )xp(y))

G (rp (5p (1)), v) ® v
[n(xp (p(Xp (7)), v)) - V]
n(np(exp(x) + (1= )xp () Vnp(exp(x) + (1= )xp(y)|v]
In(xn(npXp (7)), v)) - V|
Ivl[n(np(CXp(x)(l — O)Xp(y))) — n(xp(np(xp(1)), v))]
[n(xn(np(xXp (7)), ) - vl
< €1l o2 lxp (np (Xp (7)), V) — 1p(Xp (7))
~ [n(xn (np (Xp (7)), V) - V]
|77p(xp(f)) - T)p(CXp(x) + (1= C)Xp(y))|
In(xn(np(Xp (7)), v)) - V|
a(n(ap(np(Xp(2)), v) + [vllx =y
[n(xn(np(Xp (7)), v) - V] ~

Vap(exp(x) + (1 — C)Xp(y))’

Slnlier +

<1

~

In the fourth line we have used (2.32). In the last three lines we have used (2.48)
and |x — y|< O(e) mm{“(‘x |”), a(‘{) a0.v)y i
Proofof (2.71) Since || Ty, — Tollco < 1 from Existence Theorem, by the definition
of My, in (1.4) we apply the mean value theorem to have

| My (x, v) = My (y, )| [My(x, v) = My(y, v)] H ViMy (x, v)
Vulx—ylf T Vel =yl T V@) ey
2Mw(x) 1
S [VerahP 2SS wit @I = Toller

Proof of (2.72) From (1.6) it is equivalent to compute

191 p(x) Xp(x)) Vi x! — 0j1p(y) (Xp(y)) Vx x! |

plx).i
lx — y|f

|a] Npee) Xp) = 010 p(y) Xpy) [ ViX

lx — v

1 1
n |8j77p(x)(Xp(x))[vxxp|(x),i — Vx| ]}

pro.i

P L(x),i

N

P ().

Ix—ylﬁ

1
_ lnllc2lv| V5%, 10,0 = V%10,
S CE Il ; :
a(x,v) lx — v

where we have used (2.34). Denote xp (x(7), v) = 1,1 (X(T))(x

e (T») Then
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d ! d 1
ar Vi) = g ¥ OV VXpi .

d 1
= —x(T)Vy)X \Y

d‘C pl(x(r)) Xll,l()((.[)) Vx

1
Xplao,it
Applying (2.33), we further bound

1 1
|VxXp1 - v)cxpl

(x).i (y),i|

lx — ylf

- 1d 4 (vx!
= |x_y|ﬂ) 0 7 (Ve i)

1 b .
= |X—y|'5/() (:l-':|x(‘[)||V)r(‘f)xpl(x(.[))V

Xll
Pl

1
VaX o1 eoy.il

1
VX1 o]

Inllca] 1
8ptx.ii Kyt (o))

= 1
8pl(x(1)),ii (Xp1 (x(T)))
|v)?
I G (), 1) - VP81 (30,33 (1 1)
jol? !

~n SJ .
Ol3(x(l'), V) alx,v) o(y,v) 3
w2 vl

min {
In the third line we have applied the derivative to (2.33). In the fourth line we have
used (1.11) and |Vxx;l 1< m from (2.33). O

Lemma 2.10. For any s € [0, min(#y(x, v), th(y, v))], we have

‘G(x)fos(x —5v,0) = G(Y) Vi fs(y — sv,v) ‘

lx — yI#
< ‘V”fv(x —5v,v) = V) f5(y — sv, v)‘
~ lx — yI#
a(x,v) | Vi fi(x —sv,v) — Vi fi(y — sv, v)’+ ”wéavxfs”oo
v lx —y|# wg(W)a(y —sv,v)

(2.90)
Proof. First we rewrite
G(x)Vy fs(x —sv,v) = G(y)Vy fs(y — sv,v)
=G(x —sv)Vyfi(x —sv,v) — G(y —sv)Vy fs(y — sv, v) 2.91)
+ (G(x) —Gx — sv))fos(x — 5V, V) (2.92)
+(G(y —sv) = G() Vi fs(y — sv, v). (2.93)

Note that from (1.13) the contribution of (2.91) appears in (2.90) .
For (2.92) and (2.93) we apply (2.48) and rearrange terms to derive that
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I[G(x) — G(x —sv)]Vy fs(x —sv,0) = [G(Y) — G(y — sv)]Vy fs(y — sv,v)|
= |[G(x) — G(x — sv)][Vi fs(x —5v,v) — Vi fs(y — sv, V)]
+[G(x) = G(y) + G(y —sv) — G(x — sv)]Vy fi(y — sv, V)]
< a(x,v)

~

[V fs(x —sv,v) — Vi fi(y — sv, v)]

le Vi filloo
aly —sv,u)’

|v]

+ |n(x) —n(y) +n(y —sv) —n(x — sv)| (2.94)

Applying mean value theorem to n(x) — n(y), n(x — sv) — n(x — sv) with (2.50),
we conclude the lemma. O

2.5. Properties of boundary condition and collision operators

In this subsection we list some properties of the boundary condition and collision
operators. We summarize the property of diffuse boundary condition in Lemma
2.11. The property of the collision operator is summarized in Lemma 2.12 and
Lemma 2.13.

Lemma 2.11. For the diffuse boundary condition of f in (2.4), let xp(x,v) =
npl(x)(xi)l (x)) € 982 (see (7.4) ), we have
Irlloe < 00, 1851 r(n,1 (%0, IS ITw = Tollr, (2.95)
Pt

[0V lr (ep(x, v), WIS 1 Tw = Tollcr,
1 1
Oy r(npl(x)(xpl(x))a U) - ax;l(y%ir(npl(y)(Xpl(y))a U)

X
Pl

ws (W) [v]? \ (2.96)
’ v xp (x, v) — xp(y, V)|

S Tw — Toll ez,

’ ()| |28X;’1<x) ,-MW(npl(x)(Xll’l(x))’ V- axlplw) iMW(np](}v)(X[l’l(y))’ ’ ‘
w;(v)|v : .

0 Vi) lxp(x, v) — xp(y, v)|P
S ITw — Toll ez, (2.97)

1
Ixp(x, v) — xp(y, v)|P

x / Fp(x, v), vV @) (x, v) - v')do!
n(xp(x,v))-v!>0
—/( g T O VDOV @D Inan(y, ) - v
n(xp(y,v))v'>
S Nlwgae Ve flloo- (2.98)

Proof. From (2.6), it is straightforward to derive the estimate for ||r||». We take
derivative to r to obtain

B 71, (x,0), V)]
P
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- .
_ azﬂp (Xpl)Vx( 1 e*wa»)‘
V2ru) \2m [Ty (xp(x, v))]?
8inpl(X;1)VxTW(-xb(-x’ U)) —1 |U|2
pEam (JT[TW(Xb(x, )13 * 4 [Tw (xp (x, v))]4)

2
X e 2Ty (xp (x,v))

Sty ITw = Tollcr (2.99)

where we have used ||Tw — Tpllco < 1 from Existence Theorem. Here we note
that the V,. above represents the partial derivative.
Then we take v derivative to have

[Vyr (xp(x, v), V)]

2
MW 67 2Ty (xp(x,v))
= 1V VIS |V |
VTR * ) [T (xp (x, v) ]2

1 P
S Tw — Tolle m X ‘Vve 2w ) /g (v)
v

+ Vol (o) Ty G (x, v)Je™ WEbTED

1 S

2

S I Tw — Tollclm x e HwED) /() v]7[Vyxp (x, v)]
b

e 2Ty (xp (x,v)) |U|

v (v)

where we have used (2.40) in the last line. Since the coefficient for [v|? in exponent
is negative, we conclude (2.95).
For (2.96) from (2.99) we apply the mean value theorem to bound

S Tw — Tollet (2.100)

Iai npl(x)(le(x)) - ainpl(y) (Xllyl(y))|

|xp(x, v) — xp(y, v)|P
[ViTw (xp(x, v)) — Vi Tw (xp(y, v))]
|xp(x, v) — xp(y, v)|P

P P
2\6 My p &) — o 2Ty (p(h0)

S lnllez,

2

w(v)|v] SV Tw oo,
0 b (x, v) — xp(y, V)| e
-1 + 1 4 Jv|? _ v]?

7 [Ty (xp (x,0))]? 7 [Tw (xp(y,0)13 47t [ Tw (xp (x,v))]* 47 [Tw (xp (x,v))]*

b (x, v) = xp(y, V)|

wy[uP?|

P
x ¢ 2TwhpE)

P
SITwllerlvl*e” TWOED < V2T || oo,
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and thus (2.96) follows from § < 7.
Since 9, L r(npl (x D, v) = Taxl _Mw(np1 (x 1), ), (2.97) also follows.
Last we prove 2. 98) We rewrite the LHS of (2. 98) as

1

X [/ do!
[xp (x, v) — xp(y, U)|ﬁ n(xp (x,0))- v >0,n(xp(y,v))-v!>0

F G0, 0Dy @D G ) - = F (00, 0 @D G 0, 0) -]
(2.101)

oyl O, v), oDV @D (e (x, v) - vl

I (xp (x,0)) =1 (xp (v, v>)|>%>o

xp (x, v) — xp (v, V) [P
fGp(r, v), vy @hn(p(y, v) - vl

I e (3, 0))—n Cep (3. 0))| 2 2B

[v°|

[xp (x, v) — xp (v, V)P

(2.102)
Clearly from (2.64) and (2.57), we have

[(2.101)] 5f do!
n(xp (x,0))- v >0,n(xp(y, v)) vl>0

B v, 1
[ s 157 lwgerVe £ 15/ @D 7+ Il hwf oo/ |

min {a(xp(x, v), V1), 2 (xp(y, v), v1)}
S lwgaV flloo + lwf oo,

where we have used Young’s inequality with 1 — 8 + 8 = 1 and definition of « in
(1.8) with B < 1.
For (2.102), from (2.57) we bound

/

I (e (x,0) =1 (e (3, WW >0

|)Cb(.x, U) - -xb(ys U)|ﬁ

< Inbw (&, v)) = nOb(, v)) /f(xb(x,w,vlwu(vl)wg 1w -
% (x, v) — xp (v, V)P

f (e, v), v/ p@hn(x) vl

Then we conclude the lemma. O

Aside from the boundary condition, we also need to estimate the collision
operator. The next two lemmas describe the properties of the collision operator K
and I'.

Lemma 2.12. The linear Boltzmann operator K (f) in (2.5) is given by
Kf(x,v)=/ K(v, u) f(x, u)du.
R3

The kernel k(v, u) satisfies:
kv, w)|S ko (v, u), [V, kv, u)]
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< (W) ko(v, 1) /[v — ul, Ko(v,u) 1= e @~ Jjy —u].  (2.103)
And for3 > ¢ 2 0,
/k( )1d<] (2.104)
g 0 e e '
Moreover, for the operator v and I in (2.5), we have
IK(f)+ T, HI=0Mlwfllcc, (2.105)
v=0|vP+D 2 1, VIS, (2.106)
2 2
w w v|*V
VoL (f IS l llj)]!oo + l f||oo||||v||2 vf”oo’ (2.107)

VT (f. (W)= 0<||wf||oo>{|vxf<v>|+fR} ko(v, )|V f()ldu}, (2.108)

GOV (£ ), v)l= O(wf l){IG @)V f (x. v)]

+ [ ke wlG@ Y, e (2.109)
R3

Proof of (2.103) We define

Qgain (VI f1, /1L f2) Qross (VI 15 /11 f2)
Pain(fi fo) = ZE0WRINIP) gy QeI VD),
NG
(2.110)
where Qgain, Qloss are defined in (1.2).
By the Grad estimate in [12],
Loain(V/I, f) + Dgain(f, «/ﬁ)=/Rz ko (v, u) f(u)du, (2.111)
V(VEf) = /R 0 £,
where
_ P +ul?
ki(v, u) = Ck,|lu —vle z -, (2.112)
1 g2 L QuPl2)?
k> (v, u) = Cx, L T (2.113)
lu —v|
We compute the derivative:
2+ Dl e e—Olv—ul
IViki(v, w)|S e 2 +ullu—vlem 7 Sem TS —s.
lv—ul?

And

i 1 Ly 21 Bp?
e # — e 4 o-up?
lv—ul? v —ul

lv—ul?

IViko(v, u)| S
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el =02 [0 = P == o) —

X ||lv—ul|+ ]
[ lv—ul*

—olv—ul®
_e ()

lv—ul?

where we have used

julP=loP|jo — ul?

1 QP22 |ue] |ut|
e ¥ ul? ,
v —ul* v —ul
1 (ui2=p?)? 2 12N 20,
RO (PP ) 1
v —ul* ™ v —ul

Proof of (2.104) We consider two cases. When |u|> L} , we have

2
1 e—elv—ul” 1
k / _— du
/u|>; |u|c ~ |u|>% |U_u| |u|C

2
1 e—Clv—ul 1
< - <
S R
oF Jo To—al S R

When |u|< lzﬂ we bound |v — u|> |§|, and thus

1 e—elv?/2 1
/ k(v, u) ——du < —/ -du
<1 || [v] <1 Ju|€

el /2/
< vl Jogrglyl B(()r) |V|C

- 2 - 21,12
e—olvl?/ e e—olvl?/ [v] - 1
v e Y e

N

~

In the second line we used the polar coordinate with |u|= r. In the third line we

used ¢ < 3 to compute the r integral.
Then we conclude (2.104). |
Proof of (2.105) For K (f) we bound

K(f) < ||f||oo/R3|k(v,M)ldu S fllee S wfllee.

where we have used [k(v, u)|<S ko (v, u) € L,ll.
For I, clearly

ICgain(f: 1 < Tgain(e ™ 1 FD 1w oo (2.114)

By (2.111) we bound |Fgain(e’9‘”|2, | £1)| using different exponent of Ky (v, u), we
conclude that

Toain (£, 1) S lwf 112 S lwfllso-
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For the other term we bound

_ 2
(/) fl < Iwalloofwlv —ule "/ u@)| f W)
< ||wf||3,o/ v —ule " < wflle. @115
R3
where we have used
eIl gmelul’ < (=CUP+uP) < (=G lv—ul? O

The proof for (2.106) is standard (see Chapter 3 in [12]).
Proof of (2.107) The velocity derivative for the nonlinear Boltzmann operator reads

VW I(f, /) =V, (Fgain(ﬁ ) — Tioss(fs f))
= l—‘gain(vvfa )+ Fgain(f’ Vo ) = Tioss(Vo f, ) = Toss (fs Vo f) (2.116)
+Fv,gain(fv f)_rv,loss(fs f) (2-117)

Here we have defined
rv,gain(fa f) - Fv,loss(fa f)
= /}R3 /§2|u colfw+ul) f+u)) Ve (v + u)dodu

—/gleu-a)|f(v+u)f(v)Vv,/u(v—|—u)da)du. (2.118)
R>J§

From (2.114) we have
e—elv—ul?
|Fgain(f» A f) + 1—‘gain(ava HIS ”wf”oo/ — |0y fldu. (2.119)

R v —ul

For [v(/mdy ) f (v)| we have

(VD ) F )] S Ilwf llece @ v (8, £)()
5 ||wf||oo/R3|v — ule™ /)0, £ (o)

e—olv—ul?
Sllwflloof 3y f (u)|du, (2.120)
R |v—ul

o2
o—alv—ul

where we have used e‘g‘“zlv —ul/ ) < o
Then we combine (2.119) and (2.120), and use (2.104) with ¢ = 2 to conclude

—olv—ul?
(2.116) < ||wf||oo/ — |V fl

R3 |v—ul
—olv—ul*

< ||wf||oo|||v|zvvf||oo/

RS v —ul |ul?
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2
101V £l
S oo 5

Then we further compute

2.117) < ||wf||00/ |u|[e—@lv+uL P gl p—elvtul® j—olvPy,— lou?
Sllwflig / Jule €1 el gy
R3
2
l[Ze™"" _ Jwf |3
Slwflle———m— < —5=.
[v] [v]
where we have used
e—elvtuLl? j—olvtuy? _ ,=(elvlP+2v-(uitup+elu) ,~elvl?
— p—olv+ul® ol
and
e—elvtul® g=elvl® _ ,—0lv*/2 ,~0BIvI?/2+2v-u+ul*)
o0V /2,=0(32v+2/3u)? ,—i? /3
Proof of (2.108) Replacing the V,, by V, in (2.119) and (2.120), we have
e—elv—ul?
IPgain(fs 9x f) + Tgain(0x f OIS |wa||<>0/]R3 Wlaxfldu,
—olv—ul?
VDA O S sl [ Sl ol
R3 v —ul
Proof of (2.109) Since
GVL(f, Hx,v) = GOT (Vi f, ) + GX)U(f, Vi f)
=T (G@)V.f, /H+T(f,GX)Vy f), (2.121)
from (2.108), we conclude (2.109).
Lemma 2.13. If0 < 7 9 <oandif0 < <Q——,
e@|v|2
i e Skp(v,u), (2.122)
where K is defined in (2.103). Also,
olvl* k5 (v, u
9k, ) S < W)

Ol ™~ v —u|

As a consequence, when 0 < o, we have

(2.123)

wgWIK () + T, HNIS Twg flloo < Iwf lloo- (2.124)
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Proof of (2.122) Note that the k in (2.103) equals to k; (v, u) + ko (v, u) in (2.112),
(2.113), then
6|v|?
<
Olul> ™ v — u|

2 o] — [ul??

lv—ul?

k(v, u) exp{—gh)—u +5|v|2—§|u|2}.

Let v —u = n and u = v — 1. Then the exponent equals

5 Im?=2v-n?

—olnl*- e — 6{lv — n*—[v|*}

lv-nl*
In|?

= (=20 — 0)InI*+(4o +O)v-n — 4o

0{In*~2v - n}

{v-n)?
Inl> -

If0 <6 < 40 then the discriminant of the above quadratic form of || and ﬁ is

= —20[n*+40v -1 — 4o

(40 4 0)* — 4(—20 — 0)(—40) = 46% — 1606 < 0.
Hence, the quadratic form is negative definite. We thus have, for 0 < ¢ < o — g,
the following perturbed quadratic form is still negative definite: — (0 —0)| 17|2 —(o—

» 2 512 ~
) 5 — G{inP~2v - ) £ 0. :
Proof of (2.123) Taking the derivative to (2.112) and (2.113) we have

Voki (v, 1) = ———k; (v, u) — vk (v, 1),
v —ul
V—Uu

Voko (v, 1) = ko (v, 10)
v —ul?

— ko (v, u)[” ; L v(ul?> — )l —ul? = (ul — [v)?v — u|]_

2lv —ul*
Thus
e§|v|2 e§|v\2
Vok(v, )= < [ + v —ul + (v)]lki (v, ) + ko (v, )] =
ok, Ol ~ Ly —u ’ T GOl
vk (v, u
< +|v—u|+(v)]k@(v,u)§M
v — ul v — ul
for ¢ < 0. In the last line we have applied (2.122). O
Proof of (2.124) By Lemma 2.12, we have
w;(v)
lwg (VK 5/ Ko (v, ) w5 ()] f (u)|du
R3 we(lfi)
S g fllos [ K (w 10 S gl @125)

where we have used k3 (v, u) € L,i.
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For I", we follow (2.114) and have

w5 ()| Tgain(f H)] < 1wf ooz ) Tgain(e™ ", HIS w5 £ lloos

here we bound |Fgam(e_9‘”|2, f)| using different exponent of ko (v, ©) in (2.111),

and we apply the same computation as (2.125) to have

w5 ()| Cin(e ™", IS w5(0) /R ko (v, 1)| f @IS w5 flloo-

For the other term we follow (2.115) to have

wg P (N f IS Ilwflloo/RSIU — ule™ @ D1F /3G F @IS w5 S lloo-

O

3. Differentiation Along the Stochastic Cycles: Mixing via Diffuse Reflection
and Transport

The main purpose of this section is to provide crucial differentiation form of
the transport equation with the diffuse reflection boundary condition, which will
be stated in Proposition 1. Several geometric integration by parts will be employed
as being described in Section 1.3.

Consider a sequence of linear transport equation for £ = 1 with the inflow
boundary condition

vV fE v £E = hbx, ), (xv) € Q xR, (3.1)
Fhx,v) = gx,v), (x,v) €y (3.2)

Here we set 0 = 0.
Later we will substitute the ¢ by the sequence of collision operator defined as

o0y o= KD+ 0, (3.3)
and g by the sequence of boundary condition:

¢ _ Mwy(x,v) —1 N\ /] RIS
f (-xv v)l)/— - m n(x).vl>()f ('x’ v ) M(U ){n(-x) v }dv +r()za3:.))v

where r(x, v) is defined in (2.6).
Note that from the collision operator (3.3) and boundary condition (3.4) and
f0=0,

W', v) =0, g'(x,v) =r(x,v).

We have the following expansion:



Regularity of Stationary Boltzmann Equation in Convex Domains 1139

Proposition 1. Suppose f solves inhomogeneous steady transport equation (3.1)
with the diffuse BC (3.4). Then

w (V)3 f(x, v)

ni(x")
= O0(DHwz(v) ——— TR
v(v) My (x!,
00 + V| ——— 00 (¢ 3.5
X{wg( )Ilwef Loy + v m || wi T o0 (3.5)
+ [V HI+ ||w0ff—1||mag)>}
oM e "W (wady, O (x — tv, v) (3.6)
a(x,v)
t
+/ e "Wy 2 () dy, h(x — (1 — 5)v, v) ds (3.7)
max {0, —1p}
3.7,
ooy, M (D v wy () My (!, v) T T e
+0e a(x, v) V() n(xl)-v'>0dv vVl
(3.8)
x {e““’ W @V e =t ol (3.9)
ot(x vl)

+/ l —V(ul)(tl_sl)le h@—l(xl _ (tl _ sl)vl, vl)dsl}. (3.10)
max{0,t' —, }
’ (3.10),

Here 6 > 0, met()cl + -) stands the tangential derivative Vxll la(n, (x})l) + 9]
in a local coordinate of (1.6) as in (2.29). !

To estimate the trace of £ in (3.5), we need the following lemma:

Lemma 3.1. (Theorem (9.2.1) in [5]) For f* satisfying (3.1), we have the following
property for the trace of f*:

17 @) S I lloo + 12 Nl (3.11)
The following lemma is a direct consequence of Lemma 3.1

Lemma 3.2. Let h'(x,v) := K(f*1) + T (7, f1°1), then the trace of f* is
well-defined. Moreover, for some 6 > 6, we have

I o) < llwg Fillzepa) S lwffllo + lwf ™ oo (3.12)

Proof. wy f ¢ satisfies

v Ve(ws f9) + v @) (wy f9) = wh(x, v).
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Applying Lemma 3.1 to the above equation, we have
lwg £ llze@s) S lwg f lloo + lwgh® oo
S Mwflloo + lwf oo,
where we have applied (2.124) to h°. O

Proof of Proposition 1. Consider f¢ solves (3.1) and (3.4). Choose ¢ >> 1. Recall
(2.29). Same as (2.10)—(2.13), for k > 1, n(X];k) vk >0,andi =1,2,0rk =0
withi =1, 2, 3,

g, Lf My (6. v)]

_ksk
= Luzge™" Bug@dg . 1f e (0. v, 00)] (3.13)
—1tk2,§vka K z{;e—” ’bwe(vk)f (x,,(npk(x ), U6, v6) (3.14)
+1,k<,§e—”"' wé(u g LF ey — ok, vy (3.15)
2
tk
+f e w0 () — (@F — 55k, v)1dsh
max{0,tk —1{} ki P
(3.16)
+ g ke Bz WA oy (0 ), v, v, (3.17)
prli

where we denoted v¥ = v (vF).

Estimate of (3.13). From (3.4) and (2.25) with replacing f by f tfork > 1
withi =1,2,ork =0withi =1, 2,3, if.Xb(T]pk(X’;k), vk) IS Opk+l then

w0 LF Cam e (). v, 0]

ey
o
= Z apk w5 (1) W _[fe(npkH(X';ﬂl),v")] (3.18)

wy (W) My (e (), 0)

_ Z k+1 /I:
j—l 2 BX k i V /L(vk)
/ . /;L(v"jjl)vk;ﬂl 3dv"ﬂ1 (3.19)
v >

pk+13

X 0 k+1 [f l(npk'H (! k+1) Ttkzrl Vkﬂl)]
P

3.19).

O Y widgn rnpen (xED. v+ 1 o) |- (3:20)
j=12 ’
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Note that the above equalities for k = 0 gives an identity of oy, [ f Exp(x, v), V)]
It is relatively simple to derive that, from (2.34),
(3.20) = O(D|wgr * L+ wz £ Lo pa))- (3.21)

Now we consider (3.19). We compute (3.19)x = (2.29) ¢ ; a)— (k+1,j, f¢-1) +
(3.22). Here (3.22) is given by

k+1 -1 k+1 t k+1
(8 k+1 TA+1 v k+1) Vo f (npk+1(ka+1), Txk+l Vpk+1

kel X ke P s
k+1
9 amnpkﬂ’l(x 1)
_ E Vk+l
- ax~ ] k1 prHLm

Lm OXpht 8pk+1, mm(X ]

k+1
X auzf (Upk+'(x A+l) Tkzrl Vpk-H

=Y 3.2)mVhtl it L e (5ELD, T@ viEDL (3.22)
m,n

where

k+1 k+1
0 amnpk*—l I(X k1) 3n77,,k+1 (X k+1)
B2 =Y, —3 . (323)
70X Pkl \/gpk+1 mm(x Hl) \/gpk+1 nn(x k+l)

Here we have used (2.23) and (2.24).
First we consider the contribution of (3.22) in (3.19). We substitute (3.22)—
(3.23) for (3.19)4 and then apply the integration by parts with respect to d x+1  to
s

derive that

P e LD, Tl VAL
vkﬁl 40 Xhr1 P
k+1 k+1 k+1 k+1
X D B2)mndyen  [ViEL VIEL S nvED]AvVE
m,n p n
= 0 nllc2llwg £ e oe)- (3.24)

Here we have used
£—1 k+1 t k+1 k41 k+1 k41
f (npk+1(xpk+1)v Txk+l v k+l) 2(3 23)un v Pkt mvpk+1 3 u(v pht
],k+

— k+1
= 0 when Vi3 = 0

for || £¢~ 1| Lo (9) < o0 by Lemma 3.2.

Estimate of the contribution of (2.29) ; 4)—k+1,j, -1y in (3.19). Since the
velocity variables of

(2.29) ki, a)—> (k+1, j, o1y 1s written in Cartesian coordinate as v**1 (not ka++11

we rewrite the v* }{Z  -integration of (3.19) in v¥*!-integration. Then, along the tra-

jectory, (2.29)(](’1-7“)_)(](_‘_1’]-’]6[—l) canbe represented by (3.13)—(3.16) with (k, i, £) —
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(k+1, j, € — 1). Here we further replace (3.13)x.i,¢)— (k+1, j,¢—1) by 1tk+]>lk+1 X
v (B.18) ki, j.0)— (k+1. ], j',e—1)- We note that we do not use a further expan-

sion of (3.19)—(3.20). Throughout the process, we derive an identity

(3.19) with [(3.19)s = (2.29) i ) k1.7, 1]

k1 k1
— § : k+1 k+1
- /k+1 k1 oltkHé’lI;He " phr2 (b (x )
n v >

pk2ep
<2

P2y -1 k42 k1
x Z I o, LT e (2, 0]

k+1 i

M(Uk+l){nk+l . 'Uk+1 }dvk-‘rl (325)
k+1 k+1
+/I;k+l,vk+l>0 Z k+2(xb(x ))
pk+2e'P
x [(3.14) + (3.15) + (3.16) I k,i,0)— (k+1,j,6~1)

wkH ALk gkt (3.26)
Here we have denoted n*t! = n(x*¥*1). It is relatively easy to derive

(3.26) = O(Dllwg £ L= e

(3.27)
+ O(D)[(3.9) + (3.10)](tlyx1,Ul’f)_>(tk+1’xk+lyvk+1’fl—1),

where we have used [0 k1
P+
In order to take off k42 from f =1 in (3.25) we use the change of variables

pk+2,_j’
of (2.42). Note that

k+1 1
| Atb+ | é Ry kT from (2.32).
o

vk+1 — (xk+l

— e (50 /0t (3.28)

Now we apply the change of variablls:s1 of (2.42) and derive that

t +
_ k414 k+1
= Z // / e U(U )[b L k+2(77pk+2(x k+2))
X2 1<s; Jo

p2ep pk+2
axk+2
k+2 /
-1 k+1
X Z k+1 —bP 5 k;{rz2 [f (npk+2(x k+2) vF )
k+1
1
n,,k+z<x £ - 0 e (5EE))
X
k+1
U

npk+2(X k+2) (xk+1 - npk+2(X k+2))

|tk+1|4

/D d T /g g e, 22dx 2 ldx";ffz . (3.29)
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k+2
Here we read g 42 ;; atx k2

We apply the 1ntegrat10n by parts with respect to d x> for j* = 1,2. For
pk

+2,j’
pies2 () e (x’;jfz)) = 0 when |x’;k+32| = §; from (2.19), such contribution of
|xk;[+22| = &1 vanishes. Then we derive
tk+1
(B25)= ) / / / axkﬁz ;

k+2e73

k415 ,k+1
x [e—v(v O SR G o (6 M))] (3.30)
e+ ox trzz :
+ 2 /f/ 3xk;iz, Z ai—]\/gpk”,ngpk“,zz]“'
1\+I ;
sJ

k+2 cP
(3.31)
k+1 k+2
[, [ it
A+2 P b
pr+2 (sz‘fz) . (xk+l — N k2 (Xp;:rzz))
. (3.32)
+114
ISH
From (2.34) and (2.44), (2.45), we derive that
2
3 axk;:—Z ]/
| 2 Ve
8X k+2j/ / 128X k+1j
Noren
S lnlleo {1+ =L 1o oo (R - 0 pees (DI
| pk+2’3|
|sz_22
+
< Onllen |1+ —— ¥ = e (i)l
pk+2’3|
< 0l — O(lnll¢2) "
= me2)~—5> . = Niic2 .
Vil i (L) - T — e (512
(3.33)

Now using (3.28) for (3.30), (3.33) for (3.31), and (2.45) for (3.32), we derive
that

[(3.25)]
tk+l el
- —votkT
<Ml £ e /ff i
k+1 k+2 113 k+1 k22 e ely)P
|X - ’7 k+2(X k+2)| |x - Upk+2(x k+2)| W
e
k+1 K+ ]
[k Ity 14
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k+1
e—U()tb

S Ileabwgs i [ :
S Inlle2llwg L(5%) ] s
0y 2SSk — e )P/

-1
Slnlle2llwg £ = @),

where we have used Lemma 3.2 and

k+1 k+2 13 k+1 k42 12 'Xk+1*'7pk+2<xf,ﬁz>‘2
|x - Tlpk+2 (ka+2)| |)C - Upk+2 (ka+2)| *W
e b
k+1 k+1 ]
lty "1 lty 14
< 1 1
= k+1 k+2
|y /2 kel — npk+2(pr+z)|3/2
K+
k+1 k+249/2 k+1 k+2y7/2 N~
|t — ’7pk+2(xpk+2)|9/ |t — npk+2(xpk+2)| 2. -
X + ]e
|t]1;+1|9/2 |t,’;+1|7/2
1 1
~ k+1 k+2 '
i P2 ek — g (2 12

(3.34)

B k+2 2
k2 & o)l

Finally collecting terms (3.13)—(3.16), and (3.21), (3.34) and setting k = 0, we

prove the Proposition 1.

4. Mixing via the Binary Collision and Transport

O

In this section we mainly establish the integration by parts technique mentioned
in Section 1.3 using the mixing of the binary collision and the transport operator.
In particular, we will prove Proposition 2. As direct consequence of Proposition 1

and Proposition 2 we will give a proof of the (1.18) in Main Theorem.

We consider a solution of the Boltzmann equation (3.1) with R (x, v) given by
(3.3), and the diffuse BC (3.4). The main result is an estimate of (3.3)-contribution

in (3.7) and (3.10).

Proposition 2. We bound (3.7)(3'7)*:ng_|, (3.7)(3.7)*=l—v(fz—],f(—l), and (3.8) -

(3.10)3, 10), =K fE-24T(f£-2, fE-2) respectively as

t
/ e_”(”)(’_s)w(;(v)é)xi Kff'(x = (t — s)v, v)ds

max{0,t—1}

a(x,v) 0<i<e—1 0<i<e—1
-1 t—1—i
+e7l swp s ),
0Zi<e—1

—u(v)tbni(xl)lvlwé(v)MW(xl’v)/ Ly 1 1y / 1
¢ a(x,v) 1 (v) n(xl)-vl>0dv vy )

o(1) L L
< {(e+ swp Iwf ™) sup JaVis

“4.1)
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1

t
« / e—v(vl)(tl—sl)yxlKfti—l(xl _ (tl _ Sl)vl’ vl)dsl
max{0,1 -}
o() L B L
< xfe sup JwgaVif T e+ sup uwf o,
a(x, v) 0<i<e-1 0<i<e—1
4.2)
t
/ e VO D D (= (0 = s)v, v)ds
max{0,t—1,}
1 1
vy i) vl wg (W) My (x 7, v) 111
+e vt dv'{n' -v'}W @)
a(x, v) V/’L(v) n(xh-v!>0
tl
« f e—v(v])(t'—s])ler(fé—l’ fﬁ—l)(xl _ (tl _ Sl)vl’ vl)dsl
max{0,1 —l}

A

o(1) . .
(e sup Jwf™ ) sup fwgaVef T e 43)
alx, v) 0<i<e—1 0<i<e—1

Proof of (1.18) in Main Theorem By Lemma 3.2, we have

1
sup [|lwg £ [l L s92) §sup lwf o + sup [wf oo
i=0 i20 izl

Combining Proposition 1 and Proposition 2 we obtain thatfor¢ > lande < 1,

lwgeVy flloe < 0(1) sup [wzaV filloo + C(e)ITw — Tollct sup [lwf oo,
i<e—1 i20

where the || Tw — Tollc1 comes from szlr(x1)| in (3.5).
By a standard argument we pass the limit and conclude that the unique solution
in Existence Theorem satisfies the weighted C! estimate (1.18). O
In Section 4.2 we give a proof of the proposition. In Section 4.1 we give a key
lemma for the proof.

4.1. Nonlocal-to-local estimate and small time contributions

The key lemma to prove Proposition 2 is the following Nonlocal-to-Local esti-
mate:

Lemma 4.1. Denote x’ = x — (t —s)v, y =y — (t — s)v. Assume (¢, x,v) €

[0,00) x Q x R3andt —ty(x,v) <t —t) St —ty < t. Thenfor0 < B < 1 and
some C1 > 0,

V) (1=5) g—elv—ul®
/ f duds
R v —ula(x’, u)

S eVt — =R B[y "2 (14 [ In fv]| + | Ina(x, v)]) +

1
|v|l—ﬂ]
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|e—C1vt1 _ e—C1vt2|ﬁ

4.4
~ a(x,v) @.4)
Thus
Cv)(t=s) g—elv—ul’ 1
/ / duds < , 4.5)
-y JRE [V —ula(x’, u) a(x, v)
and for e K 1,
(v)(t—s) —le u\ O(e
/ / s>1—e duds < () . (4.6)
t—tp(xv) JRE Iv—ula(x u) a(x,v)
For1 < p < 3, we have
k(v,
int]_, e S)ds/ du (. u) 5
R3 |u|2min{°‘(x/’”) a(yau)}
lul > ul
min{l, O (1)} @)
~ R min 2@y e ]? :
[v] mm[ T ]
and
! k
./ efv(lfs)ds/' dulx;tfs (U/, u) / >
t—ty R3 |u|? min {Ol(x ) aly »u)}
ful > ul 48)
< € '
~ R min | ecw et 1P
[v] mm{ T ] }
Forp <1,

/z W) (i) 1
S . (49
1=ty (r.0) Ivlnr11I1 (£, E0NYP? |v|2m1n{°‘(x W ]

[ > vl

fk( );d <1 (4.10)
S e, P '

o—CUNt=5) j—alv—u| |
/ f 3 - duds
y(x,v) JR3 v —ul min {o(x’, u), a(y', u)}’

. 4.11
S min {o(x, v),a(y, V)P 1D

Remark 5. We note that (4.6) can be considered as a boarderline case of Lemma 10
in [14] in which the integral 1/« is considered for 8 = 1.

The proof of Proposition 2 only require (4.5) and (4.6). But in the Section 7, in
the proof of the weighted C!-# estimate (1.21), the nonlocal-to-local type estimate
will be involved with different power of «. We summarize all these estimates in
this single lemma.
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Proof. During the whole proof we assume « = &. For the other case, when o 2 1,
the lemma follows from k(v, u) € L. o

Proof of (4.4) (4.5) and (4.6) We only prove (4.4). (4.5) and (4.6) follow directly
from (4.4). B
Step 1. We claim that, for y € Q2 and o > 0,

—olv—ul
/ T —— du ST+ [In[EW|| + [1In|v]]. (4.12)
RS |v—ul a(y,u)
Recall (2.24) and set v = v(y) and u = u(y). For |u| = O(1)|v],
[us) 12 + ENP]? 2 s + 1€ 1v2] 7. (4.13)
Thus
/ /‘/ e—elvi—uy? /‘4|v| dus
u
< Jul 4Pl v —“nl 0 [l +EIvP]?
<fm' ™
o [l +EMIP]”
= 10 (yusl + g + )|
) ) 0
=ln(\/16|v|2+|§(y)||v|2+l6|v|2)—ln( 1EOIvI?)
<In|v|+In[EH)]. (4.14)
If lul = 4lv| then |u — v|*> = % + # and hence e—olv—ul’

< e~ §IP e §lul o= 5v=ul® This, together with (4.13), implies
/ < o §hP f/ i qu u /OO i 7 dus
40| vi—wl o [lusl? + g 1vl2]) Y

—§lus?
< e—%lvF/ 7dus
0 [lus2+1EWIv?]

1
S Pt Ll {10 / dus
0 [lus2+ [EW)IIv]

= 8 g 5P I (s P+ EQIE + sl )|
=84 (/1 + DR + 1D = I/ lEG) 0P}

< e §P{In |v] + In |E()]). (4.15)

2]1/2

For [u| < L, we have [v — u| 2 |[v] — Jul| = [v] — & > Ll We have

/ <e_4“|/ duzdu
TR ] B S R e [

172
¢ 03l + 1§ () 1y 2]
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< Joje P / / dadus ,
lis| <4 iy <3 172

(1312 + £l

where we have used |v|i = u. Using the polar coordinate iy = [a)|cos p, Uy =
[a) | sin p, we have

) 2n /172 CIRIE
f < |v|e—%lv|2[2dﬁ3/ nf ! [y |d gy |dp
<l ™ 0 o Jo - .

1/2
(16312 + 1112
L 1/2 ~ 2
2 d
S |v|€_%|'}|2/ dﬁ3/ il 12
o [mPR+ EoNE ]

1

e [P U [ OTTED
= |ulef /0 duam)'( B + =2 )

[vle” 51"
T EW)]
1] HENE ~ HE. 1 Iusl=1/2
x{5|u3|,/|u3|2+—+—1 (V18P + = +1a1) = Sl
[az|=0

:u{l LI ST O B LI ls_l)_z}

13 4 4 2 2 4 2 8
Clv|?
< e [lettoedieh + el tog (1 + Vel
S 1+ log(IEW)D. (4.16)

Collecting terms from (4.14), (4.15), and (4.16), we prove (4.12).
_ Step 2. We prove the following statement: for x € 92, we can choose 0 <
§ <gq 1 such that

812 Ve — t —s)v)| 2a IvIV—E& — (t — ),
for s e [t — tp(x, ), t — tp(x, V) +f] U [t — 1, t],
4.17)
5172 x a(x,v) Sa lV=E(x — (t — 5)v),

fors € [r (V) Tt —f], (4.18)

here 7 = min { by 3 “l("lzv) } We note that when 7 < S“l(f"zv), (4.18) vanishes.

Ifv =0o0rv-VEx) £ 0, since x € 09, then (4.17) and (4.18) hold
clearly with f(x, v) = f = 0. We may assume v # 0 and v - V&(x) > 0. Since
v - VE(x) > 0, from (1.10), we have |v - VE(xp(x, v))| > 0. Then we must have
v - VE(xp(x, v)) < 0, otherwise v - VE(xp) > 0 implies xp, is not the backward
exit position defined in (1.24). By the mean value theorem there exists at least one
t* € (t —tp(x, v), t) such that v - VE(x — t*v) = 0. Moreover due to the convexity
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in (1.7) we have %(v SVEMX — (t — s)v)) =v- V%KX —({—s5)V)-v> Cg|v|2,
and therefore t* € (¢t — 1, (x, v), t) is unique.

Lets € [t -1, t] for0 <8 < land7 < S%. Then from the fact that
v- Vi&(x — (t — 7)v) is non-decreasing function in 7 € [t — t*, ¢t] and x € 9L,

t
2 (= DEE — (1 — 5)v) =/ []?v - V£ (x — (f — T)v)dr

N

< Sax, v)|v - ViE@)- (4.19)

Since [v-V,E(x)| = a(x, v) = Coa(x—(t—s)v,v) = Coflv-VE(x —(t—s)v)|+
V2 || oo |v|v/—E(x — (£ — 5)v)}, we choose § < (Cq||V2£]|2 and absorb

Sa(x, v) x Collv - VE(x — (t — $)v)| + IVZE o vy —E(x — (1 — 5)v)}
< 8 x {Call VZE |l solvly/—E(x — (t — 5)v))?

by the left hand side of (4.19). This gives (4.17) for s € [t —f, t]. The proof for
s €[t — tp(x,v), 1 — tp(x, v) + 1] is same.

a(x,v)

For (4.18), we assume 7 = § Iv\’z , otherwise (4.18) vanishes. For £(x — (t —

$)v) is non-increasing in s € [t — t*, f], we have |v|2( DEx — (t — s)v) 2
|v|2(—1)"§(x - 50"()(‘2”) ) fors e [t — 1"t — Sal(x‘zv)] By an expansion, for

_ fax,v)
=0T

HRCIEE “T;;’)v)

(4.20)
= WP VE@))s Y | |2 / / lv|?v - V2E(x — (t — T')v) - vdr'dr.
The last term of (4. 20)1sboundedby||v25||0032(°‘(j|2”>) lo|* £ [|V2E ]| o8 (x, v)2.
Since v - Vi£(x) < a(x,v), for § < ||V§$||oo , the right hand side of (4.20)
is bounded below by %a(x, v)2. This completes the proof of (4.18) when s €
[t — = 8“|(x‘2”)] The proof for the case of s € [t — tp(x,v) + 5a|(x|2v) Lt —t ]

is same.
Step 3. From (4.12), for the proof of (4.4), it suffices to estimate

t
/ 1z—zzgs;r—n€_c<v>(1_5)| In|§(x — (1 = s)v)| |ds
t—tp(x,v) (421)

t
+ / 1,_,22@,_,1e—c<">“—”(1 + | In|v]|)ds
t—tp(x,v)

We simply bound the second term of (4.21) as

(1+|1n|v||)f v)(t—s) <(1+|1n|v||)< )~ l|e—C(v>t2_e—C(v)t1|.

(4.22)
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For the first term of (4.21), we first assume x € 9€2. For utilizing (4.17) and (4.18),
we split the first term of (4.21) as

t—tp(x,v)+1 t—1
/ / / . (4.23)
1p(x,v) 1=t (x,0)+1

4.23), 4.23),

Without loss of generality, we assume t —tp € [t—f,t],t—t; € [t—tp(x, v)+E, t—1].
For the first term (4.23); we use a change of variables s — —&(x — (f — s)v) in
s €[t —mp(x,v),t —t*]and s € [t — t*, t] separately with ds = |v - Vi &(x —
(r — s)v)|~1d|&|. From (4.19) we have |&(x — (t — s)v)| < §EEW I(Tzv) Then applying
Holder inequality with B + (1 — 8) = 1 and using (4.17), we get

(4.23), l{t—tze[t—f,t]},l—tlE[l—tb(x,v)+f,t—f]

t—tr t—tp (x,v)+1
< ([/ e CWe/Bys)P [/ efcw)(zfs)/ﬁds]ﬂ)
t t

—t —11

”‘a2(x,v)

. /(=) _ d|&] 1-p
x[/o g | —5—1/2|v|m]

1

< leCWIRIE = COmBE
~ ol =#"

(4.24)

. . 1/(1-8)
where we haveusedt —f >t —1t;, t—1t >t—tb(x,v)+tand% €

IOC(O 00) for B < 1 in the last line.
On the other hand, from (4.18),

-t )
@23, < [ e W=y, ( Ot(x v) ) o
-1

t—t -
gz/ e CVE=I0 8| + | Ina(x, v)| + | In |v||}ds
t

-1

< 2le= €W o= COM ) TV2( In 8| + [ Ina(x, v)| + [In]v]]}, (4.25)

where we have used a similar estimate of (4.22).
Now as assume x ¢ 9. We find x € 92 and ¢ so that

x=X—((—tvandt > t.

Then clearly, x — (r — s)v = X — (f — s)v. Since x € 9%, applying the same
computation as (4.24) and (4.25), the first term of (4.21) is bounded by

t _
f L_p>e>pe W EE — (7 — s)v)llds
T—1p(X,v) ==

< (4.24) + e € — o= CON ) T2 In | + [ Ine(E, v)| + | In [v]]}.
(4.26)
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Here we used e (x, v) ~ a(x, v) from Lemma 1.10 to obtain the same upper bound
as (4.24). Again using o (x, v) ~ a(x, v), we conclude

(4.26) < (4.24) 4 (4.25).

Then we conclude the first inequality in (4.4) using 8 < 1.
For the second inequality, from (1.8) and (1.9) we bound a term of the upper
bound of second line of (4.4) as

12(1 +11n a(x,v)
{(v) /(1 |1 |v||+|lna(x,v)|)+ |v|1 ,S}X G0
= min n alx 1 1
<{1+ (v)""Zmin (1, [v]} |In ]| + | In |er|| + x, v) <

W7 X e~ atv)

where we have used a(x, v) < min{l, [v|}and 1 — B8 < 1. |
Proof of (4.7) and (4.8) Again we only prove (4.7). Clearly, we have

/te“(tx)ds/ du k(v, )
0 R3 |u|2 min {a(x—(t—s)v,u) a(y—(t—=s)v,u) }[7

Jue] Jue]

t
< | e vt=945 | du k(v, u)
—Jo R (SO

Ju]

t
+/ e_”(’_s)ds/ du kv, u) )
0 R? |u|2(w)17

lu

By Lemma 1 in [14], we have

t -2
/ e—v(tfs)ds/ du kv, u) Jul? |U|P*2
0 RS aP(x — (t —s)v, u) [v|P~2

1 al/2=r12(x, v)
[v|2aP=2(x, v)’ |~

t
PN / e §0=g].
aP=1(x,v) Jo

< |v|p*2[min{1, t} x min{

‘We bound

A

1 o2(x,v) 1 o 1
v2aP=2(x,v) =  [v|* aP(x,v) T aP(x,v)’
al/2=r12(x, v) < aP~(x,v) 1
|v|p—1 = |v|p—1 ap/2—1/2+p—1(x, v)
< 1 - 1 ’
= a3P/273/2(x, v) 7 alP(x,v)

1 ' m 1
—f e T ds < min{l, O()} ———,
aP—l(x, v) Jo ey

where we have used @ < 1 and p < 3.
Then we conclude (4.7). O
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we only need to prove

: 1 1 1
Proof of (4.9) Since e ez = wneny T #RG)

t —C(v)(t—s)
/ e . < 1 .
t—tp(x,v) |U|$(x/)ﬂ/ |v|2 min { a(x,v) a(y,v) B
vl > vl
We split the integral as
t 1=ty (x,0) 48 5“(5"2”) -8 &I(j\;)
[y o
=842 iy (x.v) 1=ty (. 0) 350 o

v|2

Similarly to (4.24), the first two terms are bounded by

"otz(x,u)
/5 Tol 1 d)E| 1
2 < —
0 [v[1&18/2 §=1/2v | /IE] v|?’

Similarly to (4.25), the third term is bounded by

1

—C(v)(1—5) 1
/ o e S () P
0 BIPZETES Jul(u) min { e e )

vl

AN O

Proof of (4.10) Similarly to the proof of (4.6) we consider three cases: %l < |u

Afvl, ful = 4fvl, |u| < 4.
By a similar computation as to that for (4.14),(4.15) and (4.16), we obtain

elvy— HH\Z 4fv| d
f //e ”/ T S L
< pu < v — 0 [lus?+1EWIIvP]

o gl

2 e Svi—u? 00
/ < e §hl // u/ pdus 1.
lu|Z4Jv] Vi — 0 [z + [EIvI?]
/ |v|2/ / dfl||dﬁ3 <1
lu] <141 e aslf

Here we used # eL).
Proof of (4.11) By Hélder inequality with 3 + 57, = 1 and split v — u|* =
ul*3+e |y — u|?3-¢ we have

O

lv—

13
/ dsg—C(v)(t—s)
t—tp(x,v)
1

e—elv—ul?
Ry v —ul? min{a(x — (t — $)v,u), a(y — (t — s)v, u)}P
eelv—ul? )2/3

t
< e_c("m_s)ds(/ ————du
./tz.,(x,v) ®3 v — ul>te
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e—olv—ul? 1 . 1/3
x (/Ra lv—u|>~® min {a(x — (r — s)v, u), a(y — (t — s)v, u)}># u)

t
< (/ e Cl)=9)
t

—tp(x,v)

e—elv—ul? 1 1/3
X f 2—& 1 3B du)
R3 |V — ul*"® min {a(x — (t —$)v, u), a(y — (t — 5)v, u)}
t
X (/ e_C(v>(t_S))2/3. 4.27)
t

—tp(x,v)

Since 38 < 3 by (4.7) we have

1 1/3
4.27) <
42D 3 <min {a(x, v), a(y, U)}3ﬂ) ’

then we finish the proof. O

4.2. Proof of Proposition 2

Step 1. Convert V, for V, along the trajectory using binary collision

Expansionof (3.7)(3 7), =k -1 (x—(t—s)v,v)- First we consider (3.7) with (3.7), =
K =t —9)v,v) = [ps k(v, u) £ (x — (t —s)v, u)du. Temporarily denote
y = x — (t — s)v. Proposition 1 gives a formula of w(u)dy, 1y, u) by (3.5)-
(3.10) with 1t = (3.3) and (x, v, ) — (y,u, £ — 1). We split the contribution of
(3.7) with (3.7) = Kf*2(y — (s — s")u, u), which is (4.34), and the rest. The
rest is given as

t ~ (1Yo~
/ dS e—v(U)(l—S) / du k(U, M) we(v) {0(1)”1 (x )we(u)
max{0,7— ) R3 wg(u) a(y, u)
v(u) =1 ) Mw(xl,u) =2 )
X <w§(u) lwg f° e @) + |MI—M(M) lwg £ " llL>@eo) (4.28)
+ [ul|Var(xHIL+ ||w§f£_2||L°°(aQ))>
%e*“(“”(wéaaxi Y = su, u) (4.29)
+/max{oHb}e—“<"><’—3>w§(u)axir(fH, F) (v = (s — s)v, v)ds’ (4.30)
O()e ni (V) ul w(w) My (x', u) dol ! - o 1R

a(y,u) N (u) n(xH-v!>0
“4.31)

IR T| 1 _
X (e el m(alefe 2)()Cl —tlvl,vl) (432)
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fl
+/ . e—v(vl)(tl_sl)le h£—2(xl _ (tl —Sl)l)l, vl)dsl)}, (433)
max{0,t'—#}
b ht=2in (3.3)

where we intentionally have abused the notations as x! = x! (v, u), =5 —

tp(y, u) for the sake of simplicity (see (2.16) and (2.17)). We will estimate (4.28)—
(4.33) later together with the other expansions.
Now we focus on the contribution of (3.7) of (3.7), = Kfé_z(y —(s=5Nu, u).

We split the time integration in s° as

t
/ dse—v(v)(t—S)f du k(. u)ws(v)
max{0,t—tp} R3
s
X/ dsoeiv(u)(57so){150<sfg+130>s—8}
max{0,s—ty (y,u)} h

X / du'k(u, w)dy, f2 0 — (0 — v — (s — sOu, ). (4.34)
R3

Note that 3y, 2 (x — (t —s)v — (s —sOu, ') = =150, [ 2 (x = (t —s)v —

S—SO
(s — s%u, u’)]. Applying an integration by parts with respect to dy,; , we derive an
identity of the contribution of {s9 < s —¢}in (4.34) as

t
/ dse_”(”)('_s)wé(v)/ du
max{0,7—1p} R3

s 1
y f 450 gV (s=5) &S‘OE
max{0,s—p (y,u)} §=5

x / du’ 8y, [k(v, Wk, W) f*72x — (t —s)v — (s — sOu, u)
R3

!
—/ ds ef"(”)afs)wé(v)/ du
max{0,—1} R3

N

0

X / ds® 9y, v(u)e " WE] o
max{0,s—tp(y,u)} -

x /3 du' K, Wk, u') fE72(x — (¢t — )v — (s — sVu, u')
R

'
+/ ds e_"(v)(l_s)wé(v)/ du
max{0,r—1p} R3

—v()ty (1) lfb(yyu)is Oty (y, u)
t(y,u)  Ou,

X / du' kv, k@, u) f2(x = (¢t — s)v — i (y, wu, u'). (4.35)
R3

X >y,

From (2.103) and Lemma 2.13, for the first term in (4.35) we have

w5 (V)3 [k (v, Wk, w20 — (¢ — s)v — (s — sV, )
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wé(v) wé(u) / / wé(u/) -2
S o ) (B kv, 1K, ) + K, w k(v ) ) e 1l
5 B ’ 1 (u) wé(u/)<u/> -2
< Ky (v, 1k (u, u )(|v —it _M,|)<u,> TR ANS
1
Skt ) (o o )1l (4.36)

ko (v,u) Ko(u,u')

lv—ul > fu—u’|

Since € Lblt, the first term of (4.35) is bounded by

O™ DIwf . (4.37)
For the second term in (4.35), similarly to (4.36) we have
wg (WK, n)k(u, W) 20—t —s)v — (s — sOu, u)
S kg (v, )k (i, ) [wf 2| oo
Thus the second term is bounded by
O™ DIwf . (4.38)

From (2.103) and (2.32), we conclude the third term in (4.35) is bounded by

t

1 Pl [ dsen 00

max{0,t—1,}

1 > O
X/ duk, (v, 1) (y.u)Ze b(y,u)/ du'ky (1, 1)
R3 (y,u)  Ou; R3

t

i)
< wg f* ||L°°(352)/

max{0,t—1,}

ds e~V =9 / duM- (4.39)
R3 a(y,u)

This term will be estimated later using Lemma 4.1.
On the other hand by Lemma 2.13 the contribution of {s9> s —¢e)in (4.34)is
controlled by

! wj (v
Juga¥s sl [ as e [ o, 2
max{0,—1} R3

wg(u)
s
X / / 1S0>S—8
max{0,s—t,(y,u)} JR3

X 67”0(”)(“50)k(u, u')

wg (1)

- 5 du'ds®
wgWe(y — (s —sV)u, u')

t
< ||wéavxf€‘2||oo/ ds e V=9 /R3 du ks (v, u)

max{0,t—tp}
s
X/ / 1s0>s—8
max{0,s—1p(y,u)} JR3
1
« e—vo(u)(s—so)ké (u,u') du'ds?. (4.40)

a(y — (s — sOu, u)
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This term will be estimate later using Lemma 4.1.
Expansion of (3.10)(3.10)*=Kf¢_z(x1701751)1)1‘1)1) and
(4.33)hl—2=Kfe—3(x1 =51yl We split

(3'10)(3.10)*=Kf‘5_2(x1f(t'fs])vl,vl)

11

/1
= / 151§t1*8'”+/ 1S1;t|,€-~-, 4.41)

max{0,t!1—g!} max{0,t!—#!}

“4.41), 4.41),

(4.33) 2k pe-3(x1_(11—g1),01)
/1

/1
:/ lslgtl_g--'-i-/ | ISP (4.42)

maX{O,tl—td} max{O,tl—zli}

4.42), 4.42),

We simply derive an intermediate estimate (see (2.29))

|(4.41)2] + |(4.42);]

tl
< —vo{v)(r!—sh)
=3 / e

max{r*,t1 —¢g}

i=0,1
v 0—2—ic,. 1 _ tl— 1 Ul, ,
X/ (v u)|V Tp! 1] [V f = 5°) u)ldu’dsl
R3 P a(x! — (11— sh!, u)
tl
< lnller Y Ve f ™l sup / om0t —s1)
i=0,1 1 x1 vl Jmax{r? 11 —¢}
x / ko', u') 1 du'ds" (4.43)
R3 @ ’ a(_xl — (t] _Sl)Ul,M/) . .

This term, together with (4.40), will be estimate later using Lemma 4.1.
Now we consider (4.41) and (4.42);. Recall (2.29). The key observation is the
following interchange of spatial derivatives and velocity derivatives: for ' # s

andi =0, 1,
o, [/M k@' ) 2 ) - —s‘)u‘,u’)du’]

3 am, e (x!)
LT pl s

=) —— /k(vl,u’)axefe 2 () = (e = sl uydu!
=1 ox 1 R3

= P

1 Gn I e(x))

| |
t K — axp i

X / k(v!, u’)8v1[f€_2_i(np1(X;]) — (' = sHol, u)1du’
R3

= _SIZ

=1 P 2

npl Z(X ])
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x avl[/ RO ) £ 727 0 (xh) = (@ = 5Pl | (4.44)
0 R3 p
1Ly (X))
1 _ ¢l 1
t Ky — aXp‘,j
X / k@' ) F T (xh ) — @ = st u)du (4.45)
R3 ¢ 14

Now we consider the contribution of (4.44) in (4.41); and (4.42.); inside v!-
integration in (3.8) and (4.31). From the integration by parts with respect to Bvé ,
fori =0,1,
/ [the contribution of (4.44) in (4.41); and (4.42)]
>0

x pu@Hin' - v}do!
0y e(X,1)

! Iyl 1 3
— laci e VW) —s)
/n1~v1>0 /r‘nax{O,tl—tg} s th—sl Z; BXP J
x avl[/ k', u) 2 ) — ! —sl)ul,u/)du/]ds
0 R3 14
x /pHin' - vhidv!

/ / s<,1_Y1 i: 377p1 e(X 1)
nl-v!>0 Jmax{0,r'—#}} th—s! p J

X 0 1[\/,u(v yn' - 7”” ) ﬂl)]

x /R} k(v ,u’)f@—Z—’(npl(x;l) — (' = sHo!, u)du'ds'dv!

/!

o R !
nl-v!=0 Jmax{0,' -1} R}

x vu@hH{n' - vlyd!

e—v(v])té

1
+/ II'Ethe—l 3X11 - Vit
nll>0 -0 tb P

x / k', o) £ 3, whHdu' et - vl do!
R3

= 0 DIl llwf ™ oo + 1£  Lepe)]

|n1 . v1| 1
x {1+ VS u@hde }
nll>0 |n2 : U1|

= 0 NIl llwf o + lws f5 L e)]- (4.46)

Here we have used (2.32) and (1.10). Also we have used ||wf£’2”' loo < 00 and
I £ || Lo a2y < oo from Lemma 3.2 to derived [, i_o-- = 0.
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From (2.103), (1.6) and t' — s' > &, we bound the contribution of (4.45) in
(4.41); and (4.42); by

/ [the contribution of (4.45) of (4.41) and (4.42)1]
n(xh-v!>0 (4.47)
x Vu@H{n' -v'dv' = 0 Hlinler sup lwf ™l
i=0,1

Now we consider contributions of I" in (3.7), (3.10), (4.30), and (4.33). From
(2.108)

|(3'7)(3.7)*=F(f“—',f‘—l)| + |(3.10)(3‘]0)*=r(fé—2’f(—2)|
+1(4.30)| + [(4.33)j—p(pe-3, pe-3)]
< sup O(Jwf* o)
1

t) o

BN I ;

X sup Z f e Sj)wé(v])
i j=0.1 max{O,tf—tg}

x |Vy fE 0l — @10 = sTyvl | vl duds?

J
n /l o000 =)

max{0,t/ —1] }

, wr(v . , L. .
X / k(v/, u)ﬁwxfe_l_’ x! — (! —s)H/, u)|dudsf}
R3 wg(u)

< sup O(wf ™" lloo) sup lwga Ve £ oo
L 1

o
o 1
—wlhei=sh 1§ (448
X { Z / ¢ a(xd — (17 — siyvi, vi) s (@48

j=0.1 max{O,zl?tl{}
t o
n Z/ o=@ =)
j=0.1 max{O,tj—tlﬁ}
. 1 .
x / K (0], )~ duds’ |, (4.49)
R3 a(x) —(t) —s))vl, u)

where we have used Lemma 2.13 in the last line.
From (1.10)

t . . .
(4.48) < %2 ) / 0N =D s el vy < —C2 g iy,
=170 vo(v/)

(4.50)

Step 2. Estimate of (4.49), (4.43), (4.40) and (4.39) using Lemma 4.1.
Clearly laVy floo < ||w§aVXfe||oo, applying Lemma 4.1 we bound

Ol f 2l Lewpe)
a(x,v)

1(4.39)] =

’
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|(4.40)| + (4.43)| <

O(e) L
sup  JwzaVe £ oo, 4.51)
X, V) g<i<p—1

(4.49)] < O (supg<i<o—i llwf 1 [loo)

—1—i
sup ”wéavxf oo-
a(x, v) 0<i<e—1

First we prove (4.1). From (4.6)

t
/ ds e v @=5) / duk(v, u)(4.28)
max {0, —1p} R3
~ 1416l

(1+ sup wg £ e,
a(x,v) i=0,1 o o

t
f ds e =) / duk(v, u){(4.29) + (4.31)(4.32)}
max{0,r—tp} R3

e—vot

A

w;aVy F oo
Ot(x’v)ll 6oV 7 oo

From (4.48)—(4.50) and (4.51)

t
/ ds e—v(v)(t—s)
max{0,t—1,}

x / duk(v, u){(4.30) + (4.31)(4.33)e-2p(ye-3_pe-3))
R3

O(Supogiggfl ”wfe_l_l ”OO) 0—1—i
sup  [lwgaVy f llco-
a(x, v) 0<i<e—1

From (4.42) < (4.42)) + (4.43) and (4.46), (4.47), (4.51)

'
/ ds eiu(u)(tﬂ)/ duk(v, u)(4.33)pe2_g pe-3 (1 _ (11 —51) o1
max{0,7—t) R3 ’
1 L
< x{o@ swp oV
a(x,v) 0<i<e—1

+0E DL swp Nwf T e+ sup g £ )
0<i<e-1 0<i<e-1

From |(4.34)| < [(4.35)] + |(4.40)| and (4.51),

1 .
14391 £ s {00 oo+ sup g £ o)

U 0<i<e—1

+0@) s JwgaVef T .
0<i<e—1

By Lemma 3.2, we have

sup [lwg £l Loy < sup llwf'llso + sup wf ™ - (4.52)
i20 i>0 i>1
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Collecting the terms and applying (4.52), we complete the proof of (4.1).
The proof of (4.2) comes from (4.41), (4.43), (4.46), (4.47) and (4.52). We
prove (4.3) from (4.48)—(4.50) and (4.2).

5. C! Estimate of Tangential Derivative and Continuity of C' Solution

5.1. C! estimate of tangential derivative

In this subsection we prove (1.19) in the Main Theorem. Section 3 and 4
already conclude the estimate (1.18), from now on we will drop the super index in
£ and only analyze the property of V, f.

Proof of (1.19) For x €  we use (2.10)—(2.14) to have

GV f(x.v) =15, e "G (x) Y vxx;l_iaxll NACRICO R B CAY
i

i=1,2
— 1,5, VW) Vitpe "G (x) f (xp(x, v), V) (5.2)
+ 1 e "V G )V, f(x — 1, v) (5.3)
~1,, G(xX)Vetpe " h(x — myv, v) (5.4)
1
+/ G(x)e "Wy h(x — (1 — s)v, v)ds, (5.5)
max{0,f—1,}

where h = K(f) +T'(f, f).

We focus on the estimate of (5.5). (5.1)-(5.4) will be estimated with (5.5) to-
gether.

Estimate of (5.5) with h = K(f). Let y = x — (t — s)v. Rewriting G(x) =
G(x) — G(y) + G(y) and applying (2.48) in Lemma 2.6 to G(x) — G(y) we have

t

1(5.5) L=k ()| S ‘ e W9 G (y) /ﬂv kv, u)Vy f(y, u)duds‘

max{0,t—1,}
(5.6)
~ t
‘M / kv, W)Vs £y, u)duds‘. (5.7)
vl Jmax{0,—n) JR3

Then applying (4.5) in Lemma 4.1 with y = x — (¢ — s)v and (2.122) we obtain
alx,v) [! /‘ k(v, u) wz(v)
[V|wg (V) Jmax{0,1—n,) JR3 @ (¥, u) wg(u)

alx,v) [! / ké(v’u)duds < lwgarVi flico
R3 (y,u) ~ wé/z(v)|v|

GO wg(u)ee(y, u) Ve f(y, u)duds

S llwga Vi £l

’ T w§/2(v)|v| max{0,7—tp}
We focus on (5.6). We further expand G (y)Vy f (v, u) along u:

(5.6)

t
< ‘ / e VW(I=9)
max{0,t—tp}
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1 1
x /R k(G i=21,2 VeXyi i 0100 K1) wduds|  (58)
t
[ 00 [ kG Va0 3 b )duds|
max{0,r—1p} R3
(5.9)
t
+ / e—”@)(’—%—““”/ kv, u)G(y)V, f(y — su, u)duds
max{0,—1p} R3
(5.10)
+ /t e—v(v)(t—s)
max{0,1—1}

x/ k(v,u)G(y)thb(y,u)e_”(“)"’(y’”)h(y—tb(y,u)u,u)duds‘ (5.11)
R3

t
n ‘ / oV O5) g
max{0,t—1}

X / k(v, u)duG(y) ' ds’/ K@, u )V, f(y — (s — sHu, u’)
R3 R3

max{0,s—t, (y,1)}

(5.12)
t
. ‘/ oV W(E=9) 4
max{0,r—1p}
s
X / k(v, u)duG(y) ds'ViT(f, /)y = (s = s, u')|.
R3 max{0,s—ty(y,u)}
In (5.8) we denoted xp(x — (t — s)v, u) = npl(u)(xél(u)). (5.13)

Then we estimate (5.1)—(5.4) together with (5.8)—(5.11).
First we estimate (5.1) and (5.8). We start from (5.1). From Section 3 we have

g1 FO11 (00, 0 = (3.19) + (3.20) S 321 + (3.24) + (3.27) + (3.34)

My (xp, v)
S —F——=ITw = Tollc [llwf lleo + llwg fll L@ ]-
NZO) T e e e
Thus by (2.51)
Tw — T 5 %
Gl < 7w = Tollcr Llw/ lloo + lwg fllL> o) (5.14)

wé/z(v)h}l
For (5.8) similarly by (2.51) we apply (2.122) and (2.104) with ¢ = 1 to have

I1Tw — Tollctllwflloo + lwg fll L= @e)]
wé/z(v)

! wg (V) 1
x/ ef"(”)(tﬂ)/‘ k(v, u) 02" " " duds
max{0,—1} R3 wé/z(u) |u

- Hwflloo + llwg fllzeae)]
~ wé/z(v)|v|

(5.8) S

(5.15)
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Then we estimate (5.2) and (5.9). We start from (5.2). By (2.52) we conclude

”wé/zf”Loo(dQ) < ||w0'f||Lc>0(BQ)

152)] 5 N
w§/2(0)|v| wé/g(”)|v|

(5.16)

For (5.9) similarly by (2.52) we apply (2.104) with ¢ = 1 to have

Wg 0o ! ws 4 (v .
<59)5Mf [ ke 520 1 g < el lz02)
ax{0,t—1p) JR3

wé/2(v) m wé/z(“) m ~ wé/z(v)lvl
5.17)
Then we estimate (5.3) and (5.10). For (5.3) we apply (2.49) to have
lwg IV f(x, V)l ~aV
15.3) < eit[ 0/2 I 00 lwga xf”oo] (5.18)
wg (V)] wg (W)Y
Similarly for (5.10) applying (2.49) and (2.104) with ¢ = 1 we have
lwg »[VIV) flloo + lwzee Vi fI
(5.10) < e~ 02 TN Too T TTGT ) oo
wé/z(”)
! wg () 1
x/ f k(v,u)L— uds
max{0,r—1,} JR3 wé/g(”) [ue]
5e_t[||w§/2|v|vllf(x,U)||oo ||w0~anf||oo]. s

0] w5, W)]v]
Then we estimate (5.4) and (5.11). For (5.4), by (2.52) and (3.3) we have
KH+TU D o Aflle=ee) +1)

[CEOIBS N / [k(v, u) f(x — tpv, u)|du
|U| |U| R3
- (I lze @) + Dllwg o flle o) / K (0 u)wé/z(v)du
~ wg,(V)]v] 3¢ wg 5 (u)
lwg fllze@g) + llwg f 117
g L ETOD T 0 e e (5.20)
wé/z(v)|v|
For (5.11) similarly by (2.52) and (2.104) with ¢ = 1 we have
- wg (V)
X /t e_”(”)(’_s)/ k(v, u) wé/z(v)L
max{0,r—1p} R3 wé/g(”) |ue]
lwg fllze@e) + lwg f 117
R AU o L Vil ) (5.21)

wé/g(”)|v|

Last we estimate (5.12), this estimate is the most delicate one. We apply the
decomposition (4.34) to ds’.
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When s’ > s — ¢, we apply (2.49) in Lemma 2.6 to have

(G )] PP
< VIV flloo + lwger Vi flloo
~ wé/z(v)

! (v) w (u)
x/ / kv, 1) Wg 2 d d/ ds/ K, u') 202 : Iull v
max{0,r—1} JR3 w@/z u) R3 w@/z(” ) || Jul
”wéavxf”oo + ||w9/2|v|vllf||oo

wé/z(v)|v|

(5.22)

< o(1)

~

, (5.23)

where we have applied (2.104) twice with ¢ = 1.
On the other hand when s” < s — ¢, we exchange V, for V,;:

Vif(x =t —s)v— (s —su,u') = —— (s — sHu, u)].
.

Then we perform an integration by parts with respect to du and obtain

G121y« .

t
= )/ ds ef"(”)(tfs)/ du
max {0, —1) R3

X /S ds’ e Vs~ s)19’<s e
max{0,s—1p(y,u)} s—s'

« / A/ G (y) YTk (v, )k, w1 (5 — (5 — 8"yt )
]R3

t
—/ ds e_”(v)([_s)/ du
max{0,r—1p} R3

N
X / ds’ Viw(u)e @601,

max{0,s—tp(y,u)}

X / du'GY) kv, Wk, u') f(y — (s — su, u’)
]R3

t
+/ ds e_”(”)(t_s)/ du
max{0,r—1p} R3

1
—v(u)ty(y, “)MV uth (Y, 1)
tp(y, u)

X /3 du/G(y) kv, k@, u') f(y — tp(y, w)u, u')|. (5.24)
R

X 1> (0@

We bound |G(y)| < 1. Then applying (2.103) and (2.106) the first and second
terms of (5.24) are bounded by

—1
0(8 )”wéf”()o ft dse_v(v)(t_s)/ /S ds/e_u(u)(s_s/)
wé/z(v) max{0,r—1p} R3 Jmax{0,s—1p(y,u)}
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X/ k(v, ) u)? Wi (V) Ju] k(u, ') wg(u)
B v —ul wiQ) ul fu—u'f wg ()

—1
< O DlIwflloo /[ dse—v(v)(l—s)/ /S sV GE=5)
wg"/z(v) max{0,r—1p} R3 Jmax{0,s—1,(y,u)}

/ kv, u) Wi (W) 1 Kz, u') _ O™ "lwflloo
B 0 — ul wg () Jul Ju—w'| ™ wg )]

where we have used (2.122), <u>2|u|w9?1(u) < wé_/lz(u) and (2.104) with ¢ = 1.
For the third term we apply (2.32) and (2.48) to have

Vuty(y, u) G(y)n(xp(y, u))
ez =
(Y, u n(xp(y,u)) - u
_ ‘[G(y) — Gy, u)In(xp(y, u))  Gxp(y, u))n(xp(y, u))
n(xp(y, u)) - u n(xp(y, u)) - u
% 1
< (. 1) < - (5.25)
[n(xen(y, w) - ullu] = [ul
Thus applying (2.104) with ¢ = 1 the third term is bounded by
) /t dse VW=
wg (V) max{0,—1p)
ws (V) 1 _ 0o (s
8 f duk(v, )22 _e_v,h(y,u)/ K, ') < lwg fllL (09
R3 wé/z(u) |ul R3 wé/z(v)“}l
Therefore, we conclude
5121y, < O lwflleo + ||wéf||L°°(BQ). (5.26)

wé/z(v)|v|

We estimate (5.13) together with (5.5)1;,=r. We apply (2.109), (2.49) and (4.11)
with ¢ = 1 to have

1(5-5)1p=r|

t
< / e O lw fllwg flloo

max{t—tp}
<G = =90 + [ Ko 0IGEVif 6 = = sy
_ I loolllw o 1V} £ llso + 05V o]

- wg (V)

1 t wg (V) 1
X [— +f e_”(”)(’_s)/ ko (v, u) b/2 —duds]
[v] max{0,r—1p} R3 wé/z(u) |ue]

wg 2 VIV flloo N lwflloollwger Vi flloo
vl vl

S lwflls
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- lwf lloolllwg /,[VIV) flleo + llwga Vi flloo]

. 5.27
~ wé/z(v)|v| ( )
Then, similarly, we have

(5.13)
t . :
SL/ e,wwa,”t/ oo, N 120191 e gl
max({t—tp)} R3 wé/g(“)hf‘l
- lwflleolllwg /o [VIV) flloo 4 llwge Vi flloo]
~ wé/z(v)
§ /z e_u(v)(t—s)/ Ky (v, 1) wg () s
max{t—tp} R3 wg’/z(’/‘) |ue]
lwflloolllwg ,1VIV) flleo + llwza Vi fllco]
< / (5.28)
~ wé/z(v)|v| . .

Now we estimate ||wg f || L (3. Similar to Lemma 3.2, we let h = K (f) +
'(f, f),following the same proof as to that of Lemma 3.2 and Existence Theorem,
we have

lwg fllzepe) S llwflle = o(1). (5.29)

With the above estimate, we combine (5.15), (5.17),(5.19),(5.21),(5.23), (5.26),
(5.27) and (5.28), then we conclude

lwf oo ||w§/2|vlvllf||00] ”wéavxf”oo' (5.30)

—t
(5.5 < [o(1) +e ][wé/zwm w5, ()] Wi WIY]

Combining (5.18),(5.14), (5.30),(5.16) and (5.29) we conclude

lwflloo ||w§Olef||oo]
w§/2|v| w§/2|v|
lwg 2101V flloo

w§/2|v|

Vifl S 0|

+[llwflloo +e7] (5.31)

Then from ¢ >> 1 and ||wf ||cc < 1 in the Existence Theorem we conclude (1.19).
O

5.2. Continuity of C' solution

In this section we prove the continuity of V, f. The continuity of G(x)Vy f
will follow directly from the continuity of V, f. We only need to prove V, f is
continuous at ¢t = t,(x, v). We consider (5.1) - (5.5) without G(x). When t =
t(x, v), (5.3) reads

e "V, f(x — thu, v).
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At the boundary x — tpv = xp(x, v) = np! (x;l ), we use the notation (2.28),(2.29)
and decompose the spatial derivative as

2 8 L f o f
Z +V11 T N .
i—1 \/gp 11(X D) P vV gp1,33(xp1)

Then from the equation (2.3), we derive

O, S i pit, YW | K HT )
\/gpl 33(X 1 i=1v 13\/gp ”(X 1) V113 V pl.3

‘/_4—,—/

(5.32)

(5.32); (5.32), (5.32)3
Plugging these terms back to the spatial derivative V, f, we derive that
Vof =V fTT'
0,1 (X))
J&p! 11(xll)
TR T 2)) |
\/gp1y11(xp1)’ \/gpl’zz(xp]), ' gp1,22(xpl) '
B, (x )
P
‘/gp1,33(X1171)
Then the contribution of (5.32)1 in (5.33) is
dm,1 (X))
Jei & D
0y L f I 9 ’ 'llep)
( Xl Pl 5 32)]) 21,1 (X))
Ve 11,0 e X, Ve )
an,1(x! )
P
NCRE
l t
22 [ 3x;1if din,, 1] 1) Yl ’axlll-f 8377P1(X1p1) 7
P - . el
i=l1 \/8p i X1 \/gpl ,,(X 1) \ 13\/gp1 i (X1 \/g 1 ;3(X11)-
22 r dllif 0in I(Xl) p ldxll f 3%1’[ l(Xl) T
P - - € )
=L e, S v 1?\/;;,71 0 /g,,1,33(xp1>-
22 [ 8;1 ,f din, 1! I) ”l'ax;ﬂ 4 3377p1(le>1) 1
< -e3
e N R N ) V:ﬂ,a\/ Pl 1) f8,155080 )

which is exactly the same as ) ;_ , Vxxpl’l, BX,',l,,- VAUM (le ), v) in (5.1) by apply-
ing (2.33).
The contribution of (5.32), and (5.32)3 in (5.33) are

0311 (X 1)

1/ gp1,33(xlpl)

((5.32)2 + (5.32)3) -
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1 t 1
v()f Bt &) K(NOAT(ff) B3 &1

seq 4
1 1 T :
Ypla m Vol \/gp1.33(x111)
1 1
_ ey B0 ] ks 20
- I T T . ,

« 1 . 1
v(v) f 6377p1(Xp1) K(f)+T(f.f) 6377P1(xp1)

3 €3
1 1 1 1
Vpl’3 ‘/g1,1’33(xp1) Vpl’3 \/gp1’33(xp1)

which is exactly the same as —v(v) V.t f in (5.3) and V.7 in (5.4) by apply-
ing (2.32).
Thus V, f is continuous at t = ty,.

6. C Estimate

In this section we prove the C 3 estimate, which is (1.20) in Main Theorem.
Proof of (1.20) We take the v derivative to (2.9) and have

Vo f(x,v) =1[;,,,e_”"’Vv[f(xb, v)] (6.1)
— 1,5, VVuip (x, V)" £ (xp, V) (6.2)
— 1,5, Vor(@)ipe "™ f (xp, v) (6.3)
+1cpe " VyLf (x — 1, )] (6.4)
— ltglbvvv(v)te_”’f(x — v, V) (6.5)
t

- / Vor(0)e "t — s)h(x — (t — s)v, v)ds  (6.6)
max{0,t—1,}
t

+ / e "IV h(x — (1 — s)v, v)]ds (6.7)
max{0,t—1,}

—1,>, Vit (x, Ve "Ph(x — 1y, v). (6.8)

Note that from Section 5.2, we have |[wf|lz=@no) < |wf oo, then in the fol-
lowing estimate we will not specify the norm on 9€2.

First we estimate (6.1) and (6.7), which are the most delicate.

For (6.1), we apply the boundary condition (2.25) to obtain

M b
(615 [ [ s Ty ko 0]

< TwflleolTw — Tolicr + 101> Vylr (b, )]lloo
- |vf?

[v|> M (xp, v)

+ _—
NIOE

(6.9)

/1 Vv[f(xb,T;lvl)]\/u(vl)@dvl’. (6.10)
v3>0 P

6.10),
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In the second line we used the same computation as (2.100) to have

S T
v My (xp, v) < e Twlpe)|y| - 1
Mwlwv)y e TP 1
RZO /) BB
Applying (2.95) we have
1
6.9) < % 61

Using chain rule we have

(6.10)5 = Vyxp Vs f(xp, Txf};vl) + vaxf})vlvvf(xb, TX’Lvl) .

6.10), 6.10),

Then we estimate the contribution of both terms above in (6.10). Applying (2.40),
the contribution of (6.10); is bounded by

1 vl
—/ A0 15 ey v A 0 do!
n(xp)-v!>0

v|2 ']
o 1V flloo 171y gyt < 10V lloe. (6.12)
[01% S v1>0 v vl

where we have used (1.8) to have |n(xp) - vl Vi@l < alxp, vl),ul/“(v]).
For the contribution of (6.10),, we exchange the v derivative into v! derivative:

Vy f (xb, TXI}HVI) = V[ f(xp, TXt})vl)]TX}).

Then the contribution of (6.10); in (6.12) can be written as
o(1)
‘ vl Jviso
o)
B ‘ [v] vi>0

o) 1

- o 0]

VT VIV G, T VDT vV eV Dav|

VuT} £ (. T v) Ty Vi [vlv;\/u(vl)]dvl‘
L wfl

S Inllez lwf lloop ™ (vhav! S =25

, (6.13)

where we applied an integration by parts to dv! in the second line, and used (2.41)
in the third line.
Combining (6.12), (6.13) and (6.11) we conclude

lwflloo + Vi flloo

e (6.14)

1(6.D] <

Then we estimate (6.7). For h = K (f), we compute

t
/ efv(t*S)/ Vo [k, u) f(x — (t — s)v, u)]|ds
) R

max{0,t—ty



Regularity of Stationary Boltzmann Equation in Convex Domains 1169

t
— / efv(zfs)
max{0,t—tp}

X f3 |Vvk(v, wfx—0¢—=s)v,u) +k@, u)Vy[f(x — (t —s)v, u)]‘
R

t
< f e—v(t—s)
max{0,f—1p}

-1
X/ [l lloo 22K e ) — )V i — 0 — sy, )]
o v —ul

t —olv—ul?>/2 |

e
S / e f [ ——
max {0,/ —1p} R3 [v—ul* |v]

i wz(V)K(v, u) 1
Fiwllwge Ve floo e e =t = syo ) wé(v)]
< Iwfllo @G, v)  lwgaVaflloo  _ wflloo + lwgar Vi fllo
~ P w2 a(x — (t —s)v,v) ~ v]?

(6.15)
In the sixth line we have used
wlwye=e=ul (y) = gmelv=ul?/2 —elv=ul?/2 =elul? (1))

—Clv? 2 —olv—ul?/2
< p—olv—ul2/2¢ (v)|v] < ¢
lv|? ~ P

w2

In the last line we have applied % € L,i, (4.5) in Lemma 4.1 and (2.39).

For h =T'(f, f) we apply (2.107) to have

1 ! o(—
6. D p=r s )| S —2/ eI Nwf 113, + lwf ool [PV £ o]
(V1% Jmax{0,t—mp)
2 2
\Y
< ||wf||oo+||wﬁ|:;on|v| vflloo. 6.16)

Then we estimate all the other terms, which follow from more direct compu-
tation. For (6.2) we apply (2.40) and (2.106); for (6.3) we apply (2.106); for (6.4)
we apply 2.40) and t < 1, < 5%“7); for (6.5) we apply (2.106); for (6.6) we
apply (2.106) and (2.124); for (6.8) we apply (2.40) and (2.105), then we obtain

the following bound:
Wflloo o lTwflloo

6.2) < , 6.17
16.2)] < OB S TR (6.17)
2
©63)] < 101 £ llos < 1w lloe. 6.19)
|v|2 v]2
1(6.4)] Se 'tVif(x —tv,v) +e 'V, f(x —tv,v)
-t 1oV Fllos MYy Fllss 6.19)

—_— e —_—
- w2 w2
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P fllso o lTwfllso

6.5 <1 : 6.20
|( )| ~te |v|2 ~ |v|2 ( )
1(6.6)] < Mfl (t — s)e s < lwghlloo

- |U|2 max{0,t—1p} ~ |U|2
lwflloo
S 621
~ |v|2 ( )
16.8)] < ”wf”oo. 622)
v?

Combining (6.14)—(6.22) we conclude

(e + lwfllo) 10V flloo + Iwf oo + lla Vi £ lloo
|v]? '

Vo fI S I Tw — Toll e

Since e’ « 1 fromt > 1 and |[wf]e < 1 from Existence Theorem, we
conclude the proof. O

7. C!-# Solutions in Convex Domains

7.1. Proof of (1.21) and (1.22)

Given the continuity of the C! solution in Section 5.2, in this section we prove
the Holder regularity, which are (1.21) and (1.22) in the Main Theorem.
For simplicity we denote

Ve fCs v)]CS;gH;

24+ _
— sup ||w(;(v)\v|2min{a(x’v),a(y’v)} Vi f(x,v) V;f(y,v) l.. .1
ryee ol v lx =yl ;
[vx” f(s 'U)]quﬁ_l3
_ _ 2 fet) () |TPIVfGL ) = Vif( )l
= sup Jwsp@lvl mm{ ol ol } =yl liz- @D

Here V| = G(x)V, and G is defined in (1.14). We note that the weight in (7.1)
and (7.2) are different in terms of the power.

To prove the weighted C!-# we will estimate the characteristics starting from
two different positions x and y. In result we define the backward exit time and
position that correspond to x and y.

The first backward exit position and time are denoted using the same notation
as

xp(x,v), xp(y,v), p(x,v), My, v).
For simplicity we denote the second backward exit position and time as

Xp () = xp(p(x, v), v, XE () = 1 (y, v), v,

2 1 2 1 (7.3)
Iy (x) = ip(xp(x, v),v°), 15 (y) = tp(xp(y, v),v").
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Similarly to Definition 4, we choose p1 (%), pz(x), pl(y), pz(y) € P such that

i i i _ i &), i=1
Xpi ) "= iy, 10 Xpi ()20 O SuCh that iy (1 ) = {xﬁ(x), i=2 79

0) such that ﬂpi(y)(Xi )) = {xb(y, v i=1 (7.5)

i i .
i = i X 2 P’ T o). i=2.

Since [[wf lloo, 101V flloos 101>V £ lloo, llwge Vi f [l are all bounded from
previous sections, for simplicity, throughout this section we assume

max{[|lwf lloo, 1101V} £ lloos 1017V £ lloo}

5 ) (7.6)
S Vi flloo S Nl Vi fll5e S llwga Ve flI5-

Note that the above assumption implies |wza Vy f o = 1. Then the bound of (7.1)
and (7.2) are given by the following proposition.

Proposition 3. Suppose F' = i+ .,/ f solves the steady Boltzmann equation (1.1)
with boundary condition (1.3), then

[Vi f(, v)]cofzﬂﬂs < 0(1)[Vfo(~, v)]qufH} + CellTw — Tollczllwganfllgo,
7.7
and
[V G eog S 0MIVefC 0]y + CellTw = Tollcellwgar Vi 1,
(7.8)

B
32+

where Ce > 1.

These two estimates together conclude (1.21) and (1.22).
Below we present two lemmas regarding the collision operators. These two
lemmas will be used to estimate the difference of the collision operators.

Lemma 7.1. For h(x,v) = Kf(x,v) + T'(f, f)(x, v), we have

[h(x, v) —h(y, v)| _ lwgor Vi flloo

, 7.9

lx — y|# ™ w;(v) min {a(x, v), a(y, v)}’ e

V(e o)l < IIwganflloo/ k@(v,u)du ”wéavxf”oo. (7.10)
wg(v) R3 a(x,u) wg(v)a(x, v)

Proof. Since

IC(f, H)xv) =T (f, )y, v)]
=T )= fO), fFON@) +T (), f) = fFN)W)

S Illvflloo(fR3 kv, w)| f(x,u) = f(y, wldu + | f(x,v) = f(y,v)]), (7.11)
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we have

lh(x,v) — h(y,v)|
lx — y|#
_IKIf0) = FOu 0]+ DU NG ) = T NG o)
lx —yl#
S/ k(U,u)f(x’u)_f(y’u)dM
R3 lx — y|B
+ ”wf”oo/3 k(v. u)f(x, u) — f(y, u)d n [ f(x,v) — f(y,v)]
R

u
lx — y|# lx —yl#
lwflloollwga Vs flloo
<

~ wg (v)
y [/ wg(u)ky (v, u) N 1 ]
R3 wg(u) min {o(x, u), a(y, u)}P wg(v) min {a(x, v), a(y, V)8
_ |5 Vs flloc

™ w;(v) min {a(x, v), a(y, V)}F’

where we have applied (2.64) and (4.10) in Lemma 4.1.
Then we prove (7.10). Clearly from Lemma 2.13,

lwsa Vi flleo / k(v, u) wz(v)
wg(v) R3 o (x, u) ws(u)

VoK f(x,v)] = |/R} K(v, 1)V £ (r, )] <

< ”wéavxf“oo/ k@(v,u)
w;(v) Ry alx,u)

For I", we bound

Vil (f, )0 0] = [TV fo )+ T Ve )
S N o192 £ 0+ [ k09, 7]
R3

< lwgarVi flieo |Iw506fo||oo/ k(v, u) wg(v)
™~ wg(v)a(x, v) wg (v) R3 o (x, u) wy(u)

’

again by Lemma 2.13 we conclude the lemma. O

Lemma 7.2. Denote x' = x — (t — s)v, y) = y — (t — s)v. For the difference of

V. T, we have
/t V(=9 ViU (f, X, 0) = VT (f, /O, v)
0 lx — v

oIV f( 0oy + lwgaVx
’ }2+ﬂ ’

(7.12)

S
ar) @(.v)

_ 2 i
wg(v)|v] mm{ W ol
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and
GUXOHVLI(f, H v) = GOV (f, /G, v)

t
e—v(v)(t—s)
/0 lx — yI?

oIV f0]cop  + lwzaVy flI5
< x,1+p
} 1+

(7.13)
a@v) )

- 2 mi
wg () o2 min 20 el

Proof. We rewrite the difference of V,I" as

er(f? f)(-xr U) - er(f’ f)()% U)
=T(Vif ) = Vi f), fFO)W) +T(f(x) = f(¥), Vi f (X)) (V)
+TVef(), f&) = fFON@) +Tf ), Ve f(x) = Vi f (D)) (V).

Then by (2.114) we bound

IT(Vx f(x) = Ve f(0), DI S Iwalloo_/]RS ko (v, )|V f(x,u) — Vi f (v, u)|du,

IT(f ), Va f () = Ve FOD O S Nlwf lloo (Ve f (2, v) = Vi f (3, v))
+ lwflleo /]1%3 ko (v, )|V f (x, u) = Vi f(y, u)].
For T(f(x) — f(y), Vs f (x))(v), we bound Toss in (2.110) as
Plos () = £, Ve PN S 1V £, DIV @) = FOD)
SIS0 [ Rotwwl 0 = £l

Then we use Carleman’s representation (see [14]) to write the I'gaip in (2.110) as

T gain (f (x) — f(), Vi f(x))(0)]
lx — y|P
</ d Vi f(x, u)l [f(x, v+ — f(y, v+ o)
~Y u—
R3 |U - u| (u—v)-w=0 |x - Y|ﬁ
w>! (v + ) lwza Vi fllso

S k V)C ) 0 ¢
N/R3du (v, w)|Vy f(x u)l/S2 min (@G0 - ).+ o))

< lwga Ve FII3, / q w (WK, 1)
R3

w5 (@) " w0, w) min (¢ (), £
x/ dwe—élvﬁ/zwé_l(wr“’)
s v+ w|?
- ||wéavxf||§o/ . ks (v, u)
W) Jr b min (¢ @, €007
w32
S eyl B B g vl (7.14)
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Here we applied (2.64) in the third line. In the fourth line we have used that for

|l

§ 1’
wé_l(v +w) = wé_l(v + a))wé_l(v +w) < wé_l(v + a))efélvlzeé"'w

_ G2 i g2 _ —Glol2
§w9~1(v+a))e Ol =2 gt 1wl gwél(v+w)e OIvI7/2,

and a(x, v) = /—&(x)|v|. In the sixth line we use Lemma 2.13 and in the last line

we

use (4.12).
Thus by (2.64) with (7.6) we obtain

IViT(f, H 0) = VT (f, )G )

[

lx —yl#
Vif(x',v) =V f(y,
< [0t VL &0 = Ve 6/, 0)
lx — ¥l
Vx /9 - Vx /7
+ 001 [ k(w0 = 00 0] 715)
R3 lx — ¥l
n [fo(x/’ v)|/ k(v’u)lf(x Ju) — f(y,u)ldu
R x—yIP
PP R AL k(v,u)|fo(x’,u)|du] (7.16)
lx — ylf R3
lwgee Vs £11% |log |£(x")]] | log v]|
+ . (717
w2 (v) [min (EQN, £GP min (), s(y’)}ﬂ/z]
We bound w> 2yl < w3 (v). By (4.7) and (4.10) in Lemma 4.1 we have

t
/ e W9 (7 15)

0
lwfslloo[ Vi f5 (-, U)]Co-ﬂ
< X248

ate) o) | 2P

ol > vl

w(;(v)|v|2min{

lwfslloo[Va fs (o )]0 ot
x.24p / e—v(v)(l—s)
0

+
wg(v)
wz (VK (v, u)
x /R3 . a(x’,u) a(y’,u) 2+p
wg (u)|u|?> min {—Iu\’ , —|yu\ }
lwfslloo[Vy f5 (-, U)]Co-ﬁ
< S (7.18)

a(x,v) aly,v)
vl > vl

~ 2B
wg (v)|v|? min{ }

By (2.64),(4.7) and (4.10) in Lemma 4.1 we have

e W= (7 16)
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w5 @lvllwga Vi fIi5 /f T / wg (V)ko (v, )
~ [v]er(x, v) 0 3 wy(u) min {a(x, u), a(y', u)}’
-2 2
wé (v)|v|||w§av)€f”oo ft e—v(v)(t—s)/ wé(v)kQ(v7u)
[v] min {a(x, v), a(y, V)}? Jo R (e (x’, u)
lwger Vi 112,

- 2 in Jav) a(y,v)
wz(v)|v] mm[ IR

A

148

- lwgerVa f 113,

- 2 min ] 2.0 a0,v)
wg(v)|v] mln{ T Tl

. (7.19)
}2+/3

—-3/2 _
For (7.17), we bound | log £ (x")| < m and w; 2| < w3 Lw).
Then we have

t
/ e " WE=9(7.17)
0
‘ wé—3/2(v)efv<u><r—s)

o min {E(x'), £E(y)}P/2He
-3/2 @)
rows " (v)|vle
< - Vx 2 / 5
S llwga flloo[ 0 [v|min {£(x), £(y)}P/2+e
/t w9j3/2(v)|v|| log |v||e*V(U)(I<v)
0 |vlmin{E(). §0N2

, w2 @)e " 9 log v
< lwga Ve f11%[ /0

min {&(x"), £(y)}F/? ]

e wefl(v)e“’(")(’_” ! wgl(v)e—“(”)(’—s)
N ||w9~anf||oo[/ - / 1B/2+e / - / MB/2
0 [vImin{§(x"), ()} 0 [vImin{§(x"), ()}
3 2
,S ”w@avxf”oo - (7.20)
_ 2 mip | 2.0 20
wg(v)|v]= min W )

where we have applied Lemma 4.1 in the last line with small enough ¢ such that
B/2+e K 1.

Using ||lwf|lo < 1 from Existence Theorem we conclude (7.12).

Then we prove (7.13). From (7.15)—(7.17) we can rewrite

GV T(f, HHx',v) — GOHVLT(f, £, v)l
lx —y|#

G(Y) = G(x' v, IT(f, ' v) — V. T(f, ’

z‘ o ;X)er(f’ O+ GE) (fs Hx',v) E f, HO, )
[x — ¥l |x — yl

< 160N - GKII

~

oy S sl Vil

1
+ wé/z(v)

9 wr W)l w2 (0)ulk(v, ) ] 721
[l (y, v)l r3 Wg)|ula(y — (1 —s)v, u)
+1G(x") x [(7.15) + (7.16) + (7.1D)]|. (7.22)
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We bound wg] )| < wg/lz(v). Then we have

/ t VW=7 21)

0
lwga Vi f 1%

~ow- 2 min [ 20 ey
we/z(v)|v| mm{ W ol }

n ||w9~05fo||go /t e—U(U)(t—x)/ ké(v’ u)
w§/2(v) 0 R3 |u|2min[—°‘(xu/’”) 20w

lul 2 u

_ lwgerVs f11%

~

a(x,v) aly,v)

5 1+8°
wé/z(v)|v| mm{ W Tl }

where we have used (2.57) in the first line, (2.122) in the second line and (4.5) in
Lemma 4.1 with “&2) < 1 in the last line.

For (7.22), since |G| < 1, from (7.20) and (7.19) the contribution of (7.16)(7.17)
is already included in (7.13). Then we consider the contribution of (7.15), which

reads
|GV f (X, v) = Vo f(Y, 0]
lx — yIf
+ ||wf||oo/RS Ky (v, 0| GOV &) = Vo F ' )]

lwflloo

|x — y|.3
Since ijl(v)M N ng/lz(v), we rewrite
‘G(x/) Vi /(' v) = Vi f(Y, 0)
Ix — y|.3
_ ’VIIf(x/, v) — V”f(y/’ v) . [G(x/) _ G(y/)]vxf(y/’ 2 ’
ol lx = yIP
< [QL 0 Z VO ) w3 W)l lwsa Ve floc
~ |-x —Y|I3 |v|a(y/7 U)
[Vif (s v)] 08
< x, 148
- / ’ 148
i v ay.v)
wé/z(v)|U|2m1n {%’ %]
+ lwger Vi flloo
: / , 1+
wé/z(v)|v|2m1n {%’ %}

Thus applying (2.122) and (4.7) in Lemma 4.1 with p = 1 4+ 8 we obtain

t
/e*”<”)(’*S>|G(x’)(7.15)|
0



Regularity of Stationary Boltzmann Equation in Convex Domains 1177

(Vife, U)]C"ﬂﬁ + llwge Vi flloo
1+8

S llwfl
= a(x,v) oy,v)
[ > vl

W, ()2 min[
+ ”wf”OO te—v(v)(t—s)
w(.}/2(v) 0
[V fG, v)]CO’f}H; + llwgorVy flloo
}lJrﬂ

X ws - (V)K(v, u)
/]R3 612 alxu) oy u)
lul > ul

[VifColeog -+ llwga Vs fllg
4B

wé/z(u)|u|2min{

S llwfllso

- 2 i Jalv) a(y.v)
we/z(v)|v| mm[ T Tl

Finally by ||wf|lcc < 1 from the Existence Theorem we conclude the
lemma. m|

We need one more lemma before the proof. In the following lemma we express
the difference quotient in (7.1),(7.2) along the characteristics. This lemma will
significantly simplify the proof of Proposition 3.

Lemma 7.3. Suppose f solves inhomogenenous steady transport equation with the
diffuse BC. Then

axif(xvv) _axif(yvv)

Ix —y|#
OllwgaVy flloo + o(D[Vi f (-, v)] 06
— X2+ (723)
w;(v)|v|2 min { 20 a(y,v) o
0 vl
N o(1) | (x, v) — xp(y, V)|
. : _yIB
wg (v)|v]? min l—“(ﬁ)"”), —"‘(l)v’lv) } lx — ¥l
19y fl(x,v),0) =g flw(y,v), v)]
x wy () [v]? —2 PO (7.24)

lxp(x, v) = xp(y, v)|F
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t
<
max {0, —min{f, (x,v),1(y,v)}}
e—v(t—s)[axih(x —(t=85)v,v) = Ih(y — (t —s)v,v)]

7.25
lx — yI# 7:2%)
We denote [G (x)Vy f(x,v)]; as the i-th component of G(x)V, f, then
[Gx) Vi f(x,0)]i — [G(Y)Vyf(y, V)]
lx —yI?
_ 0, v) x (7.25) (7.26)

[v]
O(DllwgarVy flloo + oDV f (-, v)] 0 , +o(D[Vif(, v)]CO'f ,
+ x; 1+ X324+

118
wg o vl min {40, e}
(7.27)
t
)
max {0,z —min{f, (x,v),1(y,v)}}
[e*v(tfs)[G(x —(t —)V)Vih(x — (1 — s)v, V)] -
[x — y|l3
e MTIG(y — (1 = $)V)Vih(y = ( = $)v, U)]i]]
|lx — y|/3
0 L0).v) =9 ),
+ oy V) w6 ol Ot S0, 0) =3 f b0, V)l
|x — y|/5 [xp(x, v) — xp(y, v)|#

(7.29)

Proof. For f satisfying (2.7), differentto (2.10)—(2.14), we use min{, (x, v), tp (v, v)}
to split the cases. For simplicity, denote #,,, (v) = min{f,(x, v), tp(y, v)}. We express
V, f(x, v) along the trajectory as:

O ) =Lz, D €0 B, w0 (730)
i=1,2 ’
— 1,2, 0V Vatp(x, V)"0 £ (G (x, v), v) (7.31)
+ 1l<tm(v)eivtaxif('x - [U, U) (732)
t
+ Lo, ) / eV [h(x — (t — s)v, v)]ds (7.33)
0

'
+ 1> / e_”(t_s)axi [A(x — (t —s)v,v)lds  (7.34)
- 1=tp(x,v)

~1,>4, () Ot (V)" O h(x — 1, (W), V)ds. (7.35)

Here we note that when ¢ 2 1, (v), we evaluate dy, f (x, v) along the characteristics
at xp(x, v) regardless the relationship between #,(x, v) and tp(y, v).
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Taking the difference of dy; f (x, v) and 9y, f(y, v) using (7.30)—(7.35) we ob-
tain

ax,’f(x’ U) - 3x,~f(y, U)

|x — y|f
O (1)v]dy, 1y (x, v) — dy; 15 (y, V)| eVPEY) £ (xp(x, v), V)
=120 : : B (7.36)
= |x — ¥
+1 S ax,-tb(y» U)V|xb(x»v)_xb(y, U)|
l:lm(v) |x _ y|ﬁ
e_‘)tbf(xb(xv U), U) - e_VIbf(xb(yv U), U) (737)

[xp(x, v) — xp(y, V)|
Ay, b (y, VIV[e™™ £ (xp (v, v), v) — PO £ (y, v), V)]

T 1>,

lx —yI?
(7.38)
+1- Z ax‘ pl(x).i ax‘ pLy).i eV (x, v)a . F(xp(x, v), v)
0o 2o =P X100
(7.39)
—vtb(x,v) _ e—vtb(y,v)
+1,> 9y x! 01 (xp(y, v), v)
121y (v) 1212 Xi 2 pl(y),i |)C _ ylﬂ Xpl(y),if y
(7.40)
e—l)l[ax_f(x —tv, U) - 8Xf(y —1v, 'U)]
+1 . : 7.41
#<im (V) lx —tv — (y —tv)|P (741)
_ B
o)t (x,0) |xp (x, v) — xp(y, V)|
B EOD B (I AT x — y|P
i=1,2 Y
10y f(xb(x v), v)—3 1 Sy, ), v)l
X ! : (7.42)

|xp (x, v) — xb(y, v)|f
Lem =90, h(x — (1 — $)v, v) — O h(y — (t — 5)v, V)]
+ 1t<tm(v)/

lx — v
(7.43)
f eI o h(x — (1 — $)v, ) — By h(y — (1 — $)v, V)]
+ 1t;tm(v>/ B
t—tp (V) |X - )’|
(7.44)
1=t (V)
1z, 0) / .
min{r—1,(x,v),t—tp(y,v)}
e V(t=9g h(x — (t —s)v,v)
[ltb(x,v)>tb(y,v) x|x — ylﬁ (7-45)

e V=99 h(y — (t — 5)v, v)]

+ llb(y,v)>th(x,v) Ix — ylﬂ
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o)) P — 1 (x, V)V, V) — h(y — By (y, V)V, V)
lx — ylf

+ 1@,m(v)axi h(x,v)e
(7.46)

8x,-tb(x, v) — axitb(y, v) eiu(v)tb(x’v)h(y _
lx — vl
e VWp(x,v) _ o= () (y,v)

_ltgzm(u) tp(y, v)v, V) (7.47)

1,00 01y (y. VDAY — (v, V) v).  (1.48)

Ix — ylf

First we estimate (7.36)—(7.41). For (7.36) we apply (2.59); for (7.37) we apply
(2.32),(2.64),(2.54) and (7.6); for (7.38) we apply (2.32) and (2.56), then we obtain

O (DwgW)|v] f (xp(x, v), v) o |wflloo
(7.36) = 248 2+8°
wg|vf? min { L @) | w@[v2 min { 2E €0 |
(7.49)
(737) — 0(1)8xltb(.x, 'U) f(-xb(xs v)s 'U) - f(xb(y7 U)v U) |xb(xv U) - xl/;(ys U)|
lxp (x, v) — xp(y, V)] [x — v
_ o(1) llwg (W) Vx flloo 1
B min {(X(xs U), a(y’ U)} wé(v) min {a('xs 'U), a(y7 U)} min{a(‘x,lv) a(‘y,lv) }ﬁ
v ’ v
_ O ]laVy fllco (7.50)
= ——, .
wé(v)|v|2 min {“(ﬁ}w‘v)’ a(ﬁv’\v)] +B
0wz
(7.38) = (()Il)wifllo)o 1 —
wi(v)x(x, v . N /y
0 |v|m1n{7“(|f)"”), v ]
_ O |lwflloo (7.51)
= — )
wg(v)[v[? min ’a(ﬁ'\v)’ oe(ﬁ,‘v)] +A
O |lwflloo
= - . 7.52
2 et al) | 2P (7.52)
wé(v)|v| mm’ W Tl ]
From Section 4,
1 _
axl)l(x)’if(npl (X,1()) v) = (3.19)
My (0 (XL, ), 0)
+(3.20) = O(1) 2O ¥y flloos

(V)

thus with 8 < 1,

’

1
maX{| |v|aX;Jl(x),i f(np] (x) (XP] ()C))’ U)

lle Vi flloo
w;(v)

2 1
0Pa, Tt (K- V)

= 0()
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Then for (7.39) we apply (2.58); for (7.40) we apply (2.32) and (2.56), then we
obtain

Oy fap(x,v),v)

o)|aV
739 ir _ (DY f o |
2 o Jalny) a(y.v) 2+ 2 - fa@xw) aly,v) 2+p
|v]* min [ \vyl , \v7| wé(v)|v| min [ \vyl , I'vﬁ\
(7.53)
Oo(1)|v]|a V),
(Dlvl Xll,l_if(xb(x v), v) 0 laV, flle
(7.40) = =
2 - a(x,v) alx,v) 1+p 2 - a(x,v) alx,v) 1+p
|v]* min {_\vyl ’_Ivy\ wé(v)|v| min {_\U’I ’_Ivy\
(7.54)
o)]jaV
_ (DllaVy flloo — (7.55)
wg (v)[v]? min {“—(l’;’lv), —“(lj;’lv) }
e—vt
(7.41) = O(1) G [V f(, v)]co,2,3+ﬂ. (7.56)
U)é(v)|v|2 min [_O((‘);,lv) ) Ol(lyv,‘v) '
Therefore, from (7.6) and ¢t > 1, we conclude
(7.36) + - - - + (7.41) = (7.23).
For (7.42), from (2.33), such contribution is included in (7.24).
The contribution of (7.43) and (7.44) are already included in (7.25).
Then we estimate (7.45)—(7.48). We apply (7.10) to (7.45) to have
_aV max{t—tp (x,v),t—tp(y,v)} V(=) Kk~ ,
(7'45)20(1)”71)901 x flloo /‘ e 5, u)
wi()  Jmin(t—y(,0), -ty (y,0)) SRS @(x = (8 = )v, u)|x — y|B
O(D)[lwzaVy flloo [e=C1Vm00) _ p=Civip(y,v) B
- wz(Wa(x, v) Ix — y|P
ol ~aV
_ (M llwgaVx flloo - (7.57)
wg(v)lv|2 min {a(ﬁ"v), a(|},;’|v) }
O(1 ~aV
_ (W llwgaVy flloo (7.58)

axv) alyw) }2“”

- 2 mi
wa(v)|v| mln{ TIREEE]

where we have applied (4.4) of Lemma 4.1 in second line, (2.56) in the third line.
Then for (7.46) we apply (2.32),(2.54) and (7.9); for (7.47) we apply (2.59) and
(2.105); for (7.48) we apply (2.56) and (2.105), then we obtain

1 h(p(x, v), v) — h(xp(y, v), V) [xp(x, V) — xp(y, V)P
(x.v)  |apx,v) — xp(y, v)|P lx — ylf
O llwzaVi flloo 1

wg (v) min {o(x, v), e (y, V)}? min{a(x,v) 20 }ﬂ
vl v

(7.46) = O(1)~
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O llwga Ve floo

— , 7.59
wg () |v[? min {a(x, v), aly, v)}*HF 759
(747) = O(1) lwglvlhlloo Vity(x, v) — Vitp (v, v)
wg ()|v] lx — ylP
O(Dlwfllec
= , 7.60
wg (0)[v]? min {a(x, v), a(y, v)}* P 7.60)
OMllwghlloo e™VHEV) — p=vib(y.V) O |lwfllso
(7.48) = = — =
wg(a(y, v) v — yIP wg (V)v]? min {(x, v), a(y, v} TP
(7.61)
O(Dlwflloc
= . 7.62
wg (0)[v]? min {a(x, v), a(y, v)}* P 7:62)
Therefore, by (7.6), collecting (7.58),(7.59), (7.60),(7.62) we conclude
(7.45) + - - + (7.48) = (7.23).
Then we prove the estimate (7.26)-(7.29).
We rewrite
Vx ) - Vx ) -
G)Vif(x,v) = G)Vif(y,v) _ G(y) G(X)fo(x,v) (7.63)
lx — y|f lx — ylf
Vyf(x,v) —V, , U
4Gy J( |x)_ y|ﬂf(y ) (7.64)
By (2.57) we conclude that
soVy
(7.63); = 0(1) W% VxS lloe (7.65)

wg(V)a(x, v)

Then we consider (7.64). Note that (7.36-(7.48)) represent the i-th component
of Vi f(x,v) — Vi f(y,v), for convenience we define a notation that represents
the vector consists of the element (7.36):

[(7.36)] = [(7.36)i=1, (7.36)i=2, (7.36);=3].

Similarly we can define the same notation for (7.37)—(7.48). We can use this rep-
resentation to express G(y) W.

Then for G (y)[(7.36)] we apply (2.63); for G(y)[(7.37)] we apply
(2.52),(2.54),(2.64) and (7.6); for G (y)[(7.38)] we apply |G| = O(1);for G(y)[(7.39)]
we apply (2.62) and (2.47); for G (y)[(7.40)] we apply |G| = O(1);for G(y)[(7.42)]

we apply (2.51), then we obtain

lwglvlflloo

[GOI(7.36)]]; = O(1)
aes, a(ﬁf\v)

wé(v)|v|2min! ]Hﬁ

O lwflloo

a(x,v) aly,v)
vl > vl

(7.66)

(e
wg(v)|v[?> min { }
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”wéav)cf”oo
[GOWI(T.3D]i = 0(1) —5 (7.67)
wy(@)[vf2 min 260, el
_ _ lwflloo
[GWDI(7.38)]]; = O(1)(7.51) = O(1) 5 (7:68)
wy[uf? min {20, et |
lwg VP flloo
Pl
[GDI(T.39]]; = O(1) e a0 1P
|”|2mm{ TR }
v v (7.69)
—o(1) lwflloo .
wg(v)|v|?> min [—“(ﬁ)’l"), —O‘(I{)’lv)
_ _ lwflloo
[GWI(T40)]]; = O(1)(7.54) = O(1) vl
wg (v)|v]? min {—“(l);]") , —al(j{zv) }
[GOWI(T42)]]; = (7.28). (7.70)
For [G(¥)[(7.41)]];, we rewrite
GO Vi f(x —tv,v) — Vy f(y —tv,v)
lx — y|#
_ G(x)Vy f(x —tv,v) — G(y)Vx f(y —tv, v) n [G(y) = G(xX)]Va f(x —tv,v)
lx — ylP lx — ylP .
(7.71) (71.71),
(7.71)
We apply (2.57) to have
IlvPwg 0 Vs fllso O lwsa Vs f o

[(7.71)2]; = O(1)

wé/z(v)IUIZ alx,v) ay,v)

N 2 i
wg (V) [V] mm{ iz > Tl

}I'HS :

For (7.71)1 we apply (2.90) and conclude

[Vx”f('s U)]CO’/S
1(7.71)1] = O(1) il

- 2 min o) aly.v)
wg/z(v)|v| mm{ W ol

am SAFACRIRY

}1+/3

+
atrw) () | 2P

IR

wé(v)|v|2min{
WO (D)[lwzoar Vx flloo

alx,v) ay,v)
vl vl

[V £, ”)]c(’:f+ﬂ + [V f(, v)]CO?'gw + llwga Vi flloo

wé(v)|v|2min{ }1+ﬂ

=0()

a(x,v)  aly,v)

. 1+p ’
w5, (@) o2 min {25 20w |
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(), [vjw; ') < ! (v). Thus

where we have used oc(v)w (v) < oz(v)wé/2
with e ™ « 1 whent > 1,

lwgee Vi flloo + [V £, v)]Cfiﬂﬂ + Vo fC, v)]CSIZ,g

(9/2

[GW(74D]]i = o(1) — 75 —,
wg/z(v)|v|2 min {—a(lf)’lv), —a(‘};’lv) }
(7.72)
which is already included in (7.27).
Then we estimate [G(y)[(7.43)]];. We rewrite
G(Y)[Vih(x — (1 = s)v) — Vih(y — (1 — 5)v)]
lx — y|f
_ G(x)Vih(x — (1 = s)v) — G(y)Vih(y — (t — s)v)
B x — I
vah(x —(t —5)V). (1.73)
lx — ylf
(7.73),

We bound wg](v)|v| < wgf/;(v). From (2.57) and (7.10) the contribution
of (7.73)2 in [G(y)[(7.43)]]; is

V o —v(t—s)k_
01 & ¢z 18V Nl f/R .

wg(v) salx — (t—s)v,u)
lwga Vs flleolvlwy ! (v)

lvla(x, v)
”wéavxf”oo

=O0M)§llc2

=0Ml&le
a(x,v) aly,v)

. 1+8°
wé/z(v)|v|2m1nl S ]

which is included in (7.27).
For (7.73)1 we apply (2.90) in Lemma 2.10. Then such contribution in

[G(y)[(7.43)]]; equals to

[Vih(x — (¢ = s)v, w)]; — [V)jh(y — ( —s)v, w)];
lx — y|P
a(x,v) dgh(x — (t —s)v,v) — I h(y — (t — s)v, v)
_l’_
v lx — ylf
”wg'avxf”oo

+
_ i Jatoy) aly,v)
we/z(v)|v| min { W il

}1+ﬂ’

which are included in (7.26),(7.27) and (7.29) respectively.
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Last we estimate (7.45)—(7.48). For (7.45) we apply |G (y)| = O(1); for (7.46)
we apply (2.54),(7.9) and (2.63); for (7.47) we apply (2.105),(2.32) and (2.63) ;
for (7.48) we apply |G| = O(1), then we obtain

O(I)Hwéavxf“oo

[GWI(7.45)]l; = O(1)(7.57) = . (7174
2 [e) et ]MP
wé/z(v)|v| min {T’ o]
O(1) h(xp(x, v), v) — h(xp(y, v), V) |xp(x, V) — xp(y, v)|P
(GO 46)]]; = k e b
[v] lxp (x, v) — xp(y, V)| lx — vl
lwgar Vi flloo 1
~ wé(v)|v| min {a(x, v), a(y, v)} min {a(x,v) a(y,v) }ﬁ
> vl
1
< (7.75)
~ . 1+
wé/z(v)h)lz min {a_(l);’lv) s a(l);’lv) }
Ovl|lA|l
[GITAD); = 0
wg(v)|v|?> min {%, “(ﬁv’lv)}
O [wfl
Slles e (7.76)
w5, (Ivf? min {2 abw]
lwfll
[GOI(T7.48)]l; = 0(1)(7.61) = O(1) llee 5"
2 [t e TP
w§/2(v)|v| min {T’ T]
(71.77)
These four estimates are all included in (7.27).
We conclude the lemma. O

Now are ready to prove Proposition 3.

Proof of Proposition 3. We will use 3 steps to prove this proposition. Since we al-
ready expand the difference quotientin Lemma 7.3, we mainly estimate (7.24),(7.25)
and (7.26),(7.28),(7.29). The estimate of (7.24) is put in Step 1 and the estimate of
(7.25) is put in Step 2. Thus Step 1 and Step 2 together conclude (7.7). In Step 3
we estimate (7.26),(7.28),(7.29) and conclude (7.8).

Before going into these steps we first list some estimates for the o-weight. We
will heavily rely on these estimates to make the computation more precise. For
0 < s < t(xp(x, v), v!), we have

o (xp(x, v), v]) ~ a(xp(x,v) — sv], vl) ~ a(xp(xp(x, v), vl), vl), (7.78)

and

1,2
In(xp(x, v)) - vle CI]

1),—Cp'?
= Wy eoonot 121 Ly enpyot <1 110G (2, 0)) - 0t e
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[n(xp(x, v)) - U1| —C!'?
o (xp(x, v), v1)
—CP'122

< e (x, v), v')
< a(xp(x, v), vhe

where we have used (1.8) and (1.10) in the derivation.

+ a(xp(x, v), v)e

—C|UI|2

(7.79)

Suppose a(xp(x, v)) < a(xp(y, v)). We let ¢ < 1 such that B + ¢ < 1 and
f—ﬂ < 2. Then we apply the Holder’s inequality with (B +¢&)+ (1 —8—¢) =1

1 —&
toﬁave
_ 12
/ eIV In(xp (x, v)) - v !
ey (x,0))-01 >0 |v1|zmin{a<xb(x,lv),vl> a(xb(x,lv),vh}”ﬂ
P [vT]

1

/ e*C\U1|2 d
v
n(xp(x,v))-v!>0 |vl |1_ﬁ(xﬂ(xb(x7 V), vl)

< (/ e CIV'P )1*/3*8(/ e=Cl'P )ﬁ“ <

1= B
[vl|T=F=¢ o P (xp(x, v), v1)

[a—

3

where we have used

12
efClv |
B 1
a ¥ (xp(x, v), v!)
1,2
e—CIV'| |
dv

S / Loty (00,0 2175
n(xp(x,v))-v!>0 o B (xp (x, v), vl)

g2
o= CI'|

1
+/ la(xb(x,v),vl)gl 5 dv' <.
n e vi=0 In G (x, ) - 0! | FFE

Then we start the proof.

Step 1: estimate of (7.24).
We focus on

91 flmx,v),v) =g flp(y, v), V)

p(x),i (i

_ 2
wg (V)] |xp (x, v) — xp(y, v)|#

Applying the diffuse boundary condition (2.4) we get

0, FGan(x,v),v)

plx).i
_ My (p(x, ), v)
M(U) vll)l(x) 3>0
{[ (axl Ttl 1 ) : va(flpl(x)(xl l(x))’ Ttl Vl 1(x))
Pl X1Vl b Xploo P

(7.82),

(7.80)

(7.81)
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1 t 1
* ale:'oc),jf(npl(x)(x”l(x))’ Txlplmvpl(x))] ne, (x))vp 1(x), 3dvp 1(x)

(7.82),
0y1 My (xp(x, v), v)
+ p L.
V()
x / £ G x, v), vV r@H{n G (x, v)) - vl}}dv1
n(xp(x,v))-v!>0
+ 0,1 r(xp(x, v), v). (7.82)
/7 Ly,

From Lemma 2.11 the contribution of the last two terms of (7.82) in (7.81) is
bounded by

ITw — Tollc2[llwgee Vi flloo + 11

Velocity derivative: first we consider the contribution of (7.82); in (7.24).
From (3.22), we rewrite (7.82) as

/1 2(3-23)mn,k+1—>1(x)vlpl m
vp1.3>0 m.n

X Lo Kp): Ty V0L /v, sdv
p.n

pl)

= / 2(3-23)mn,k+1—>1(x)
vl 0

pl3” " mn
X f 0 (100, T V00 [0V sV, Jdve. (7:83)
) pon

Here we dropped the x dependence in V; o) since it becomes a dummy variable.

From Section 5.2, |wf|lz=@a) = llwflle, for the rest estimate we will not
specify the norm on 9. We apply (3.24) to have

(7.833) = O Inllc2 lwf lloo- (7.84)
Then the contribution of (7.82) in (7.24) can be written as
wg (v)|v[? [Mw(xb(x, v), v) — My (xp (v, v), v)
7.83 7.85
o (X, ©) — 3 (7, 0)IP NTO) X789 (7:85)
" My (xp(y, v), v)
()
<o )T Vh = Fony b ). )

P13 Pl

x 2(3 23) k15 1(X)3, ll_n[‘/u(v Wi 3Vhi, Jav, (7.86)

MW(Xb(y,v) v) 11 1
+ M(U >02311)Yn M(Vpl)vp]ﬁvpl’m]
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X F 11 (3 (1) T;]plmv},l)[(3.23>mn,k+H1(x) - —<3.23>mn,k+1ﬁl(y>]dv1].
(7.87)

For (7.85), since 6 < 1, from (7.84) we derive that

wi (W)W My (xp(x, v), v) = My (xp(y, v), V)]
7.85) < o2
T e @b (x, ) — w0y, )P

Sl llwflleo I Twllcr - (7.88)

For (7.86), from (2.64) with (7.6) and (2.54) we compute

1
Js @t (x)(xp w T m ﬁ(npl(y)(xp @ T X (v)Vpl)
IXb(x v) —xb(y, v
Fs iy (X! b)) T, — [ 1 () (X i) TX1 v;,)
< Pl > @
Iy (x>(xp (X)) Tp! (y)(xp (y))|ﬂ
Fs 1) 1) Tt V) = St ) () Tir - 1)
+ 1’ ») Pl
|Ttl Vll _ Ttl V11|
Xl P Xl P
T, =T v
Pl p Xl P
"y 0 ®pir) = M1 K1 )|
< loeVy fslloo

B
: 1 t t
min {a(npl(x)(xpl(x))’ TXl l) a(npl(y)(xp (y)) TX I( , l)}

ol P
1PV fllsolinll 2 [V
v] lleollN C2|Vp1|

1
|Vp1 |2

) (7.89)

where we have used the definition of Ty, in (2.23) and the mean value theorem
regarding V, f in the last line.

Since Zm,n(3.23),,,,1,k+1_>1(x)8V11 [ /,u(v )v m] < 1, we have
p.n

wz )2 Mw (xp (3, v), v)

V()

Vawl)
X/ P ﬂdV;]
a0 ). T 1>}
J())

t
P37 min {ot(np (x)(X,, (r)) Tpl(x D, a(npl(y)(xp o)

(7.86) < lleVie flloo

2 wl/4

; M ,v), o)

Il 102V, f oo 2N U, 9), ) o,
u(v) v;’l 3>0 |Vp1 | P

V()

< (Ve fllos + 11012 V4 fllo)
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WA R 1
[/ T i LA
B, v) T vE nGe(y o) T v e

pl) Pl
WAL
* s vl Vl’l]
RS Pl

S Vs flloo + 1P Vy flloos (7.90)

)

where we have used 8 < 1 in the last line.
Last we estimate (7.87). From (3.23) and (2.32) we compute

(3-23)mn (¥) = =(B.23)mn(y)
1

1
11510 Kt ) = Mt ) (1)1
an77p](X),l(X[lil(x)) 8""P'<.V>J(lez'<,v>)
] _
5 8mnp1(x),l(xpl(x)) \/gpl(x),nn(x;l(x)) \/gpl()'),lln(xlpl(y))
Xy n.i \ /8t o mm (%1 1510 1) = 11 (X1 D))

P 1 - 1
9 0mﬂp1(x>’l(xp|(x)) 9 dmnpl(_v),l(xp](y))
o [ T ! [
oo, \/gpl(X).mm(Xpl(x)) Xpl.j \/gpl(y),mm (Xpl(y))

1 1
|np] (x) (Xpl(x)) - npl(y)(xpl(y))vg

1
Ontlp! (.0 X y)
X

/ 1
Epl(y).nn (Xpl(y))

where we have used n € C> and mean value theorem in the last line. Thus we
conclude

| 5 miles,

(787 < Inllesllwsf oo (7.91)

Combining (7.88),(7.90) and (7.91), we conclude that the contribution of the
velocity derivative (7.82)1 in (7.81) has an upper bound

(7.8 7.82), | < Inlles I Twll e eV f oo, (7.92)

where we used (7.6).
Spatial derivative: we consider the contribution of the spatial derivative (7.82);
in (7.24). We rewrite the v ; ,-integration using v! integration and get

—vty e,y Mw (b (x, v), V)

v (v)
x /( (x,v)v1>0 Oy1 [f(npl(x)(xiﬂ(x))’ Ul)]mln(xb(x, v)) - U1|dv1,
n(xp(x,v))-v'>

(7.82); = e

X
pr(x),i

(7.93),
(7.93)



1190 HonNGxu CHEN & CHANWOO KiM

Then the contribution of (7.82), in (7.24) can be written as

- 2 —
|:w9(v)|v| [My (oo (¥, v), v) = Mw (b (y, v), I (7.93) (7.94)

Ixp (x, v) — xp(y, V)PV (V)
[v]2 Mw (xp (3. v), v)
Vi @)|xp(x, v) — xb(y, v)|#

X (/ S <x>(Xp )V V@Y, v) - v'do!
n(xp(x,v))-v!>0 8X l(x) ;

- /n(xb(y v)-v!>0 8X f(npl(xp ())) v )Wm(xb(% v))-v Idv )]

Pl
(7.95)
From (2.47) in Lemma 2.5,
T In (o (x, ) - ol
(7.93) S IV flloo | V(v )Tdv S V) fllso.
Thus applying (2.54) and (2.71) we derive that
(7.94) < Inllc2 oIV flloo- (7.96)
For (7.95), we express
Z[:],Z axl f(np (x)(xp (X)) Ul) and Zi:],z aXl f(np (y)(xp (y)) vl)
P ( P (}
using (7.30)— (7 35) with the notation (7.3):
1012 minf 2 (6).2 () € 1 () Z 3, ¥ [f Gen (11 (x)(x fay) U Hoh] 797
i=1,2 0
2
~ L zmin(eo.2m)Y D ! T p (e f(xp (x), v') (7.98)
i=1,2 i
ol
+ 1 <minf 2020} € > a 3 _[f(npu(x)(le(x)) — ' uh] (7.99)
i=12 "
+ 1t1<min{z§(x) 2}
l
xf e~V =sh Z O, h(npl(x)(x[l)l(x))—(tl—sl)vl,vl)]dsl
0 i=12 7O
(7.100)
11> minf2(0.200)
tl
x/ eV =sh Z . h(np w0 &) = @' =shul uh]ds!
1112 (x)
(7.101)

)
+ 11 2 minf200.20) Z Bxll()lt 2@ IR (x), v"). (7.102)
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We first estimate the boundary term (7.97). We split (7.97) into two cases using
min{a (xp(x, v), v1), @(xp(y, v), v')}. We put the discussion for
min{a (xp(x, v), v1), 2(xp (v, v), v")} < €, or |v] = ¢ together with the estimate
of (7.98)—(7.102). Here we discuss the case that
minf{e (xp(x, v), v1), 2(xp (v, v), v1)} = eand |v] < e~}

For this case the difference quotient of (7.97) reads as

l{min{n(xb(x,v))-vl,n(xb(y,v))'vl}25,|U|§571}
|xb (x, v) — xp(y, v)|P

x (f (7.97) () () | (xp (x, v)) - v'|dv!
n(xp(x,v))-v!>0

- / (79D (MY r@H Gy, v)) - v1|dv1). (7.103)
n(xp(y,v))-v!>0
We perform the change of variable (2.42) and use (3.29) to rewrite thing’s as

f f(ﬂpz(X ), VDIV r@H[n G (x, v)) - v |do!
n(xp(x,v))-v! >0 3X ;

t—tp(x,v)
= // / e (0, ()
2|<51

p2eP

x Z 1y v, fmp ), vl

j'= 12 p L(x).j

n,,l(x>(xp1(x)) SO (6, ) = 0,2 (32,)) 1,2 (X55) - (ap(x, V) = 17,2(X,))
1‘2 |t2|4
b b

RS )l
4112 2 2 2
X e b dtb /gpz’llgp2’22dxp2’1dxp2’2. (7104)

Here we dropped the x dependence on p?(x) since xiz becomes dummy variable
after the change of variable.

In (7.104) the variables that depend on x are f,(x, v), xp(x, v), X:ﬂ e Thus we
have

(7.104)(x) — (7.104)(y)
lxp (x, v) — xp (v, v)|P

1 t—min{ty (x,v), 1 (y, U)}
_ [ / / / . (1.105)
lxp (x, v) — xp (v, v)|P |x? S2 <81 Jr—max{ty (x.v).t(y.v)}

t—max{ty (x,v),t5(y,v)} Ix? PN ox 2 .,
p ’.]
.- (7.106)
//‘\X 2|<61 / [8 8 ]

XIJ (x),j Xp ),J

(7.103) =

N [n l(x)(xp](x)) (Xb(x, U) - UPZ(XPZ))

7]
N
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Pt i) (3. v) = 71,2 (xf,z))] B

. (7.107)
1,
b
N [npz (x75) - (ap(x, v) = 1,2(x7) e (x75) - (xp(y, v) — n,,z(xf,z»] N
214 214
(7.108)
\xb(x.v)—npz (Xiz)l \Xb()’vl’)—ﬂpz (xiz)‘
+[e W, g ]] - (7.109)

Since min{a (xp (x, v), v1), @ (xp(y, v), 1)} = &, from (1.11), clearly we have
[n(xp(x, v)) - v1| 2 &. Moreover, due to |v1| < &7, we have a lower bound for tﬁ
from (2.39):

_1 min {In(ep(x, v) - v, [n(ep (v, v) - v} > g3
o] oT] Vo

2
2

From (2.47) in Lemma 2.5 and Lemma 2.8 we obtain the following estimate:

2 1 axf)2 j
< .
8"?:2.1'/ [f(npz(xpz), v )]‘ < NMIV) flloo < 00, ‘ o

L

<1,

~

‘nlﬂm(x;‘(x)) G x,v) — "”Z(Xf’z))( S 07,
U
‘n[,z(xiz) - (xp(x, v) — 77,;2("?,2))

2
|t

| S0 0671,

Now we estimate (7.105)—(7.109). By (2.56) we compute

1(7.105)]
[xp(x, v) — xp(y, v)|P

- 0(8_15) // /t min{, (x,v),t(y,v)} e—vt&
™ |xp(x, v) — xp(y, v)[P f—max{f (x,v), 1 (y,0))

—vtp(x,0) _ ,—vip(y,v)
e )

<0 —15
SO ) G Y a0, 0P

e~ V() _ o=y () —_v|B
= 0(6715)| | Sl
Ix — y|P b (x, v) — xp(y, V)|
B 01 lx — y|
™ min {o(xp(x, v), V), @(xp(y, v), v} b (x, v) = xp(y, V)|
—_v|B
< 019 X =yl (7.110)

Ixp(x, v) — xp(y, v)|#

i
The extra term —— 2= will be cancelled by w in (7.24).
|xp (x,v)—xp (y,0) | |x—yl#
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Then we estimate (7.106). By (2.72) we have
‘axiz,f" LY
Cooxt
ple).j L. 1
b (X, 0) — xp(y U)|ﬁ min{a (xp (x,v), v, (xp (y,0),01)} Ze
o'? 6
< 3 < 0@E™).
min {o(xp(x, v), V1), a(xp(y, v), v!)}
Thus
dxpz,.i/ _ Bszv./’
|(7 106)' ( —15)/ —l)()tb Pl(X)] ox 14 ())] < 0( —21)
|xp (x, v) — xp(y, v)l’3 lxp (x, v) — xp(y, V)[F ~
(7.111)

Then we estimate (7.107). By (2.57) we compute

1110 (K01 () - (b 0) = 1,2 (%05)) = 1,13 (K04 )= (3, v) = 1,2 (%5))]

z§|xb<x v) — xp(y, V)|

_ 0(83)[|npu<x)<xp L)~ Mt (X1 b (. v) = 17,2 ()
~ lxp (x, v) — xp(y, V)P
|)Cb(.x, U) - xb(y7 U)| < -3
(0 .
oo (r, ) — 3, v)|ﬁ] ~ 06D

Thus

1(7.107)] < 015,

Ixp(x, v) — xp(y, V) ~ (7.112)

For (7.108) we compute the difference as
112 (675) - (6, v) = 0,2 (X02)) = 1,2 (%05 - (i (y, v) = 02 (X70)]

|21 xp (x, v) — xp(y, V)|P

< oy PV =Bl o

~ lxp(x, v) — xp(y, v)|# &

Thus

1(7.108)] < 0@
Ixp(x, v) — xp(y, V)P ~ '

(7.113)
Last we estimate (7.109). By mean value theorem,

e (xizn b0 <xi2)|
e 42l e 42

lxb(x, v) — xp(y, V)|
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_ 2 o) 2
|xp (x,v) npz<x172>\ |xp (v,v) npz(xPz)\

e e —e 42 {
< 5 s e < 0.
IXb(x,v)—npz(sz)—xb(y, v)+n,,2(xpz)| ALyl

Thus
7.109
I )| < 075738, (7.114)
lxp (x, v) — xp(y, v)[
Therefore, from (7.6), we collect (7.110),(7.111),(7.112),(7.113) and (7.114)
to conclude

1(7.103)]

lx — y|?
lxp(x, v) — xp(y, V)|

Then we estimate the rest terms in (7.97)—(7.102). First we rewrite the contri-
bution of these terms in (7.95) into

Juta =0 (T9DL(x) + -+ + (7.102) (x)
[xp(x, v) — xp(y, V)|
Jutan o 1=0(T9DL(y) + -+ + (7.102) ()
- [xp(x, v) — xp(y, v)|P

S[oeEh+ 06" JlwsaV, fl1%. (7.115)

e
I ()= (y,0) | 2“2 -

lxp(x, v) — xp(y, v)|P

@n(xb(y,v)vl) -0 T

B
|xp (x, v) — xp(y, v)|B (7.116)

1 (xp (x,v))—n(xp (y,v))

+/ n(xp(x,v)) - v — |n(xb(y,ﬁv))'vl|m
n(xp(x,0))-v1>0,n(xp(y,v))-v! >0 |xp (x, v) — xp(y, V)|
x [(7.97)1..(x) + - -+ + (7.102)(x) ] (7.117)

+/ Inap(y, v) - o' [V
n(xp(x,v))-v! >0,1(xp(y,0))v! >0

L TIDL.0) 4+ (1109 () = (TIDL.(y) = - = (7.102)(3)
|xp(x, v) — xp(y, V)| '

(7.118)
By (2.47) in Lemma 2.5,

[(7.97) + -+ (7.102)| S (5.1) + - - (5.5)
IV) flloo 4 Vi flloo

<63 S
o]

For (7.116), from (2.57) and (7.6) we have
oo,
X (x, ©) = X6 (3, VIB Sy (6, 0)) (g (0 = 200

[l

[(7.97) + - -+ 4 (7.102)]
0
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< Inllc2lloe Vi flloo
~ |xp(x, v) — xp(y, v)|A

|n(xb<x,v)>-v1|ﬁ
X — Vv u@")
/m(xh(x,v))—n(xb(y,v>>|z"("b“"“’“'>0 Jvl!

[l
< Il c2llee Vi fllooIn(xp(x, v) — n(xp(y, v))|
~ |xp (x, v) — xp(y, V)|#

S il eV £ oo

Similarly
: / S nllezlle Vi flloo.
eb (e, v) = 2b (s I iy .00 (0|2 2402
Thus
[(7.116)] S Inllc2lleVa flloo- (7.119)

For (7.117), applying (2.57) we have

(117 < [ 1Pmer ) vl = InGnG ) vl s

|xp (x, v) — xp(y, V)P
Slnlle2llaVi flloo- (7.120)

Then we focus (7.118), this estimate is the most delicate one. First of all we
bound

In(xp(y, v) - vH| < [n(xp(x, v) — nlap(y, V)|V
7.121),

+ min {n(xb(x, ) - !, nGp(y, v)) - vl} .

(7.121)

(7.121),
By (2.57) the contribution of (7.121)1 in (7.118) is bounded by

[(7.118)(7.121), |
|xp(x, v) — xp(y, v)|P

<f
n(xp(x,0))-v!>0,n(xp (y,0)-v! >0

InCon (e, ) - 'l = InGn (. ) vl s
b (x, v) — xp (v, v) P

S ||ﬁ||cZ||anf||oof Vrh < iinlle2 laVe fllso-
n(xp(x,0))- v >0,n(xp(y,v))-v! >0
(7.122)

We focus on the contribution of (7.121), in (7.118). Then without loss gener-
ality, we can assume

In(y, ) - o' | = min {InCen (e, v) - 'L GG, 0) o' (7.123)
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In result we can replace |n(xp(y, v)) - p! | or [n(xp(y, v))- vl | by min{|n (xp(x, v)) -

o', In(n (v, v)) - v').
Note that from (2.47) in Lemma 2.5,

Zal

i=1,2

. _f(npl(x>(x;,.(x)), v') ~ Gl (x, v) Ve f (xp(x, v), v)),

and we have an expression of
G (xb(x, V) Vi f O (x, ), v1) = GO (v, v) Vi f (b (3, v), v1)

from Lemma 7.3. Thus the contribution of (7.97)—(7.102) in (7.118) can be ex-
pressed usmg (7.26)-(7.29), with replacmg x = xp(x,v),y = xb(y v), v — vl
Xlljl i sz ,Xb(.x U) - np (x)(x 2(x)) xb(y, U) - 77,; (})(X 2()/))

From (7.80) we derive that the contribution of (7.27) is bounded by

/n(xb(x,v))-vl >0,n(xp(y,v))-v!>0

In(xp(y, v) - vl /@

a(rp(x,v),0)  alp(y.v).vh)
[vl] ’ [vl]

X [lwga s flloe + oIV 0)]cos  +oDIVISC e ]
S lwga¥x fllos + oIV f (¢ 0gng o+ 0DIVIFC0)]np (7124

1+8
|v1|2min[ }

where we have used (7.80).

Then we estimate the contribution of (7.28), (7.29) and (7.26).

We begin with (7.29). Note that we only need to consider the case of
min{a (xp(x, v), v1), @(xp (v, v), v} L e, or [v!] = e~ We derive

1
/ Linin{orCon (.00, 01, (o (3,0, 0D} S, or ol 1261V 4D (3, v) - v

-3 [e‘”ﬁ(x) Ix2(x) — x2 ()P
= lxn (x, v) = xp(y, V)|

2 1y _ ol
e, F0 () 0D = B, F120) (5,0

2
|np2(x)(xp2(x)) np (y)(xp (y))|
5/ Vi@ (x, v) - '
e>n(xp(x,0))v!>0,e>n(xp(y,v))-v!>0, or |v! |§£*1

[quf('a v)]cojllﬁ_Hi

X

lu![2 min a(px.v).vh  abp(y.v),vh
[v!] ’ [v!]

S O@[Vy fC0)] 008 (7.125)
x; 148

}I-HS

where we have applied (2.70) and (2.47) in Lemma 2.5 to the fourth line, (7.123)
and (7.80) to the integral in the last line.



Regularity of Stationary Boltzmann Equation in Convex Domains 1197

Then we focus on the contribution of (7.25). First we consider 7 = K (f).
Denote

1 1

X =ap(x,v) — (' = shHol, Y = xp(y,v) = @' —sH!,

we need to compute

1!
f\/u(vmn(xb(y, ) - v‘|/0 ds'em 000D

x/ duk(o!, y SOV SO0 ) = GOOHV G w) - (7.126)
R’ lxp (x, v) — xp(y, v)|P
(7.126),

We use the decomposition (4.41) for the ds! integral. When th— st < we
apply (4.8) in Lemma 4.1 with p = 1 4 $ and (7.123) to conclude that

(7.126)1,1 _1 <,
SV f Gl / phnCep(y, v) - v'|dv!
x; 1+

n

X / dsle—v@h@!=sh duk(v', u)
tl—g R3

1
a(xS ) alyt.u) }‘*ﬂ

lul > Jul

1
/ o In(xp(y, v), vl }1+ﬂdvl

. 1 1
012 min {a(xw,;)),u ), @bn.0).0)
ol o]

|u|2min{

S 0(5)[Vx”f('a v)]c()ﬁ
X 14+

5 0(8)[Vx”f(', v)]co.ﬁ
x; 148

When 1! — s > ¢. We rewrite things as
(665 =GOM|Ver (P GON[Vaf 6w = Ve 6% 0]

|xb(X7U)_xb(y7 ‘U)|}3 |xb(xvv)_xb(y7 v)|ﬁ
(7.127), (7.127),

(7.126)4 =

(7.127)

By (2.57) we have (7.127); < ”f;(vy—fj)m Thus, the contribution in (7.126) is
bounded by

! 1 k!, u
||avxf||oo/ M(U)l|n(xb(y,v))'vl|dvlf ds‘e*““”(z‘—sl)/ LY
0 R a(yS, u)

/ In(xp(y, v)) - v!| 1
< \V/ 1 <
S lle xf”oo/ n(v') n {()[()Cb(/\77 V). vl), a(ap(v, V), Ul)}dv S eV flloo,

where we have used (4.5) in Lemma 4.1 and (7.121).
Then we focus on the contribution of (7.127),. We exchange V, for V :

Vi flpx,v) — ¢! —shol w)

s 1 1y,,1
Vi f(x7,u) = Ve f(ap(x,v) = (17 —s)v, u) T D
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Then we perform an integration by parts fordv'. The dv! integralin (7.126)1,1 _ >
becomes

| / Vot [InGen () o' [V /

max{z! ftﬁ(x),ll *tﬁ()’)}

SO u) — fOuw)

b (x, v) — xp(y, V)|

1
BTN RO B |
< ‘// Vo [lGon Gy, 0) - o' Wie@De =0 |
max{t! —12 (x),11 =12 ()}

11

e—v(vl)(tl—sl)

k(0 G ()]

(7.128)
ll
+ // Vvlkg(vl,u)---‘ (7.129)
max{t! =12 (x),t' =2 ()}
1
[ VGl v = (' —shh | (7130)
max{t! =2 (x),t' =2 ()}
5 ) 7v(ul)min{fg(x),l‘g(Y)}
+ v min{t X),t } ‘ 7.131
/ v! b0 5 () min {1 (x), 55 ()} ( :

For (7.128), since

PR IR VIR TR T
[V [n(en (v, v) - vV (@)e W=7 < /4 @l =s0/2)

by (2.64) with (7.6) and (4.10) we have

(7.128) < 0(8—1)||oevm|ooful“(vl)fe—”“”)(”—f””ds1

k, (v,
x/ e, u) ﬂdu
R3 min {oe(xs, vh), a(y¥, Ul)}

< 0(8—1)||avxf||oofu”4<vl> < 0E Vs flloo

For (7.129) from (2.103), we have V,iK(v!, u) < KU Then by (4.11)in
Lemma 4.1 we have

(7.129) < 0<s—1>||avxf||oo/ In(xp(y, v)) - v V@) " de!

1
X/efu(vl)(tlfsl)dslf ko(v', u) du
B [v! — u||min {a (x5, v!), a(y*, v}

In(xp(y, v) - vl 4 @h

min {a(xp(x, v), V1), @ (xp(y, v), vl)}/S

< O(e—1>||avxf||oo/

< 0@E HaVy flloo
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For (7.130), since |V,1G(xp(y,v) — (t' — sHovh)| < |&]lc2' — s'), and
(t! _sl)e—u(vl)(tl—sl) < e—v(vl)(tl—sl)/Z’ we have

(7.130) < 0<s—1)||ozvxf||oo/u”“(vl)dv1 S O0E M EN2llaVy fllio

For (7.131), since we consider t! —s! > e, min{r? (x), 2(y)} = &. From (2.32)
we have

—v(hHmin{Z(x). 2} ,
. < O0@E™).
min {2 (x), 2(»)}

V,1 min itg(x), tﬁ(y)] ¢
Denote
%P = xp(x, v) — min {tg(x), tﬁ(y)} v, yb = xp(y, v) — min {tg(x), tl%(y)} vl

Using (2.32) and from (4.10) in Lemma 4.1 we have

ol
(131 S 0NV, flln [ 00D V1 pre
Gy, 0) ]

Ko (v, u)
8 /Rs min {a(?, 1), a(y?, )"
S 0(ef‘>||avxf||oofms 0@ )V f oo
Thus the contribution of (7.127), in (7.126) is bounded by
O™ HaVy fllco- (7.132)
Then we obtain
1(7.126)] < O™l Vs flloo + O(&)[ Ve, £ (-, Wleop - (7133)

Then we consider 4 = ['(f, f). We use (7.13) in Lemma 7.2 and (7.123)
and (7.78) to obtain

£

/ In(xn(y, v)) - qu(v‘)/ dstem@H(r =sh

max{t~,t}
GO G )V @ 0 = GOy ) VL (). )]
b (x, v) — xp(y, V)P
S (leVa f I3 + s ool Vg £ (5 0o )

X /\/m |n(xb(y, v)) : v1| dUl

[v!1? min {a (xp (x, v), V1), @ (xp(y, v), vl)}H_/3
SNV £ 13 4+ oIV, £, Wleog . (7.134)
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The last term is (7.26). This estimate is similar to the contribution of (7.28).
Note that /(v a (xp (x, v), ) < u1/4(v1)a(xb(x, v), v!), we need to compute

tl
/u”“(vlnn(xb(y, v))-v1|/ ds'e D=
0

a(p(x,v), v Ve f (S u) — Vi (5, u)
X duy————k( , u)
R3 [v' lxp (x, v) — xp(y, V)P

(7.135)

Again we first consider ! —s! < &. We apply (4.8) in Lemma 4.1 with p = 2+
and (7.123) to obtain

(7.135)1,1 ;1 <,|

1
SIVef )l / WO ey, ), oh LR V)

vl
g 1,—v@hH!=sh) 1 1
X ds'e "V § duk(v', u) 77
e R3 |u|2min{“()“sl’“) a(lysl,m}
u ’ u

n (b (y, v), )]

. 1 ! 1
|U1|2m1n {a(xb(l)lc),ll‘)),v )’ a(xb(li,lz‘)),u )

S0@Vf oy [ )
X248

}1+/3
S O@IVaf ()]0
X248

Fort! —s! > &, we apply the same integration by parts technique as in (7.128)—
(7.131). The only difference is, here we do not have an extra term G (y*). But this
term does not apply a role in the estimates of (7.128),(7.129) and (7.131). Thus for
this case, we have the same upper bound as (7.132).

Combining (7.115),(7.119),(7.120),(7.122),(7.124), (7.133),(7.125), (7.134)
and (7.135), we conclude that

(195) £ 0|12/ € 0)lgog_ +1V) . 0)cog |
(7.136)

Ix —yl#
Jlwze Ve 1%

lxp(x, v) = xp(y, v)|F

+[oE?) + 061

This, together with (7.96) and (7.92), leads to the conclusion:

ITw — Tollc2

a(x,v) aly,v)
vl > vl

(7.24) <
wy (v)[v]2 min{ }Hﬂ

7.137
X [0(1)[[fo(-, U)]ngzﬁw + V) fC. v)]Cfillerﬁ] ( )
+ 0<ez‘)||w9~avxf||§o},

Jxp (x,v0) —xp (y,0) |

where we have applied (2.54) to [P
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Step 2: estimate of (7.25).

Now we estimate the contribution of the collision operator. First we consider
h =T(f, f). Applying (7.12) in Lemma 7.2 we have
oIV f (. 0)lcog  + lwgaVx [l

(72511 < }2 =

(7.138)
ax,v) aly,v)

. 2 mi
wg(v)|v] mln{ W ol

Now we focus on the estimate for 4 = K (f), which is
/-t dse—v(E—9) / duk(v, ) Oy f(x — (t —s)v,u) — 3y, f(y — (t — s)v, u) ‘
t—t (V) R3 lx — y|#
(7.139),

(7.139)

Since |x —y| = [x —(t —s)v—[y— (¢ —s)v]|, we express (7.139), by (7.23)-(7.25).
The contribution of (7.23) in (7.139) is bounded by

[o(D[Vy, £, v)]Cﬁgﬁﬁ + lwzer Ve flloo]

wg(v)
t w;(V)K(v, u
x/ dsef"(“s)/ du gk, 1) T3
_ 3 . (f—s —(t—s
t—ty, (V) R wg(u)|14|2 min {ol(x (llula)v,u) , a(x (‘tuls)v,u) ]
o(D[Vy fC0)]p0p + lwgaVi flleo
< Sl (7.140)

a(x,v)  aly.v)
l > vl

wé(v)|v|2min{ }2+ﬁ

where we have applied Lemma 4.1.
Then we consider the contribution of (7.24) in (7.139). By (7.137), (2.122)
and (4.7), such contribution is bounded by

oD[1Vx ¢ 0lpop +IVIFC 0] 0s |+ 0@ 2D avsfIk
Cx,2+/3 Cx,l+/3

Tw — Tq
I Tw — Tollc2 0y )

X /tdse_v(t_s)/ du wg (VK (v, u)
0 R

(- —(— 1+8
. 2 oo [ae—@=s)v,u) aly—(—s)v,u)
we(u)|u| min [ m s m ]

o[IVf Gl op +I9) 76 0lop |+ 06Dl f Ik

S ITw = Toll 2

a(xv) a(y.v) }”ﬂ

- 2 mi
wg(v)|v| mm{ ol o]

(7.141)
Then we focus the contribution of the collision operator, the (7.25) in (7.139).

We first estimate 7 = I'(f, f). By Lemma 7.2, such contribution in (7.139) is
bounded by

| gt oMVaf . Vop + lwger Vi £ 136

w(;(v) t—ty, (V)

dse_”(t_s)/ duw; (WKW, u
R3 s ) a(x,u) a(y,u)}z"’ﬁ

~ 2 mi
we(u)lul mm{ W ]
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oDVxfC 0] eos  + llwgaVe fl%
X248

< (7.142)

axv) a(.) }”ﬁ

- 2 mi
we(v)|v| mm{ o o]

where we have used Lemma 4.1 and Lemma 2.13.
Then we estimate 1 = K (f), whichis the most delicate one. We denote £;), (1) =
min{m(x — (¢t — s)v, u), m(y — s — s)v, u)}. We need to compute

t s ,
/ dsef"(tfs)/ duk(v, u) ds/efv(sfx)/ du’
t—t, (V) R3 s—13, () R3

WV fx =t =s)v— (s —shu,u') = Vi f(y — (1 =s)v— (s —s)u,u’)
x k(u,u") .
lx — yl#

(7.143)
We first decompose the s” integration as
N §—&
/ dssps —i—/ ds’. (7.144)
s—e 0

—_—_—— ————
(7.144), (7.144),

Applying (4.8) in Lemma 4.1 with p = 24 8 we conclude that the contribution
of (7.144) in (7.143) is bounded by

[Vif(,v)] 08 ¢ N ;
* Cx,2+ﬁ/ dse—v(v)(t—s)/ duk(v,u)wg(v) ’ ds’ eV (=5
t R3

wé(v) ' (8) wg(u) s—&
K(u, u)Yw;(u
§ / "y (e, ' ywg () -
R w; ') |u’')? min { Ot(X*(I*S)erl(S*S/)MyM/) , a(y*(l*é‘)rujl(b‘*é")u,u’) ]
Oy f (-, )]0
< x,2+p
~ 248"
wg()|of? min | 262 200 |
Then we consider contribution of (7.144),. For simplicity we denote
X'=x—@t—s)v—>6—=5Hu, yV=y—0t—-—5)v—_(—5)u,
X" =y =x—y. (7.145)

We exchange V, for V,,:
Viflx—@t=s)v—(6—sHu,u)=Vef(y — @t —s)v—(s—sHu,u)

—1
= Vulf(" u') — fG,u)]

s — s

Since s — s’ = ¢ the contribution of (7.144), in (7.143) is

t s—
/ dse_”(”)(’_s)/‘ duk(v, u) T e_”(”)(S_S/)ds’lv_v,>s
1=t (V) R3 s—13 (1) = (7.146)
\V/ "ouly — "o —1 :
o« [ ki S ") = O] 1
R3 lx — yI# s—s'
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Then we integrate by part for du to have

(7.146)

t
=/ dse_”(v)(t_s)/ dul, o>,
t=tm (V) R B

s—& —v(u)(s—s) 2N "o
« [Sulko, 0k, ) O / LG = F67 )
s—t3,(u) §=9 R3 |x - Y|ﬁ

(7.147)

s—e vy e—u(u)(s—s’) X" u) — "o
+k(v, I/[) u—/ds// du/k(u,u/) f( ) .f(y )
s—t3, (1) §—=S R3 lx — ylﬁ

(7.148)

) b N _ b ./
e du/k(u,u/)f(x ,M) f(y ,M)
L) Jr3 lx — yI#

+ kv, u)Vyt;, (1)

]. (7.149)

Here we denoted

=x— @ —sw—tSu, Y =y—@—sv—r@u (7.150)

First we estimate (7.147). We begin with V,k(u, u’). Since wgfl @)W yu'|> <
1, from (2.64) with (7.6) and (2.103) we have

[(7.147)]

S0(8_1)||w§onxf||oo /’ dse‘”(”)(’_s)/ LICROLYIO)
wé (U) t—tm (v) R3 wé (M)

X/S_s e—v(u)(s—s’)ds// du’lu’lzwfl(u')
s—13,(u) R3 o
V.k(u, u/)wé(u) 1
X
wg(u') |2 min {a(x", u'), a(y", u’)}P
= 0 DlwzaVs flis /f
t

wg(v)

dse— V@ @=s)

—tm (V)

/ dukz (v, u)

X

R |2 min {a(x — (1 — )v, u), a(y — (t — s)v, )}
_ 0 MllwgaVeflloo _ O (e DllwzaV flloo
~ wg (v)|v?

(7.151)

_ 2 in 1 eG)  ay.v)
wg(v)|v] mm{ BT ]

}Z-HS ’

where we have used (4.11), (2.122) and (2.123) in the fifth line, (4.10) in the last
line.

The term with V,Kk(v, u) can be similarly bounded by

O(e™HllwzaVx flloo

- 2 in J o) a(y,v)
wg(v)|v] mm{ W ]

}M. (7.152)
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Then we estimate (7.148). From (2.64) with (7.6) we have

(7.148)]
< wgaVe flloo /tdse—v(vxz—s)/ gy LR 1) [T sty g
~ w(v) 0 R3 wg(v) 0
x/ du’|u/|2w?1(u/) u)é(u)k(u,u/)
R O Twg)lu' P min fa(x”, u'), a (v, u))P
~ t
< ||w9anf||oo/ dse_v(v)(t_s)/ duLk~(v M)
~ N 20 ’
wg(v) 0 RS |ul
wzaV
< lwga Vi flloo — (7.153)
wg()|of? min | 262 200 |

where we have used Lemma 2.13 in the second line and (4.10) in Lemma 4.1 in the
fourth line.

Last we estimate (7.149). Since we are considering s — s’ = ¢, we have fp(x —
(t — s)v, u) = e. From (2.64) with (7.6) and (2.32), we have

[(7.149)]
~ t ~ - ( )151( )
P Ilwganflloo[ dse_”(”)(t_s)f wg Wk, u) | e
wg(v) t—tm (V) R3 wg (v) 1y, (1)
wz (k@ u’
xVuz,i(u)/ du’|u/|wgl(u’) 9( ) ( )
R3

|u/|wg (u) min {a (xb, u'), a(y?, u/)}ﬂ

_ '
S 0(871)—HwQOtV)(f”Oo / dse =9
wé(v) t—ty (V)

k;(v, u
X / 2 ) du
R3 |u|2 min a(x—(t—s)v,u) a(y—(t—s)v,u)
Ju] ’ Ju]
O DlwzaVefllo O™ llwzer Ve fllo
~ . , , ~ . 2+ﬁ 9
w; (v)|v]> min {% %} w; (v)[v]2 min {a(ﬁ;‘v)7 a(ﬁ),lv) }

(7.154)

where we have used Lemma 2.13 in the fourth line and (4.10) in Lemma 4.1 in the
last line.

Then combining (7.151), (7.152), (7.153) and (7.154) we conclude

oIV fC. 008 + O™ wgaVs fllo
(7.143)] < e

(7.155)

2+8
- 2 min 4 @G ay,v)
wg(v)|v] m1n{ W ol }
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Combining (7.155), (7.142), (7.141), (7.140) and (7.138) we conclude that

ITw — Tollc2

a(x,v) aly,v)
vl > vl

(7.25) <

wy (v)[v]2 min{ }M

X |:0(1)|:[fo(, U)]C)((),zliﬁ (7156)

FIVS G ] 0(821)||w5avxf||go}-

Finally from (7.23)—(7.25) and the estimate (7.156), (7.137), we conclude the
proof of (7.7).

Step 3: proof of (7.8).

Now we prove (7.8). From Lemma 7.3, (7.24) is already bounded from (7.137).

For (7.26), since w ' ()@ (x, v) < wg/]z(v)ot(x, v), by (7.156) we conclude

(7.26) < @ % (7.156)
v

oO[IVef G0l + IV 0lp |+ O lwgaVi I
- 1+8 ’

~ 2 min ey aly.v)
w0/2(v)|v| mln{ T )

(7.157)

Then we only need to estimate (7.28). First we consider 4 = I'(f, f). Such
contribution is directly bounded using (7.13) in Lemma 7.2, thus

oY) F 0y + gV I
1 }l"rﬁ ’

(7.28)h=r < (7.158)

a(x,v)  aly.v)

N 2 mi
s, )] mm{ x0) a0,

Then we consider 2 = K (f), which reads

t
/ dse_”(t_s)/ duk(v, u)
t—tm (V) R3

. Gx— (@ —s)v)Vyfx— @t —s)v,u) —G(y — (I —s)v)Vx f(y — (t — s)v, u)
lx — yl# ’

(7.159)

We express (7.159) by (7.26)-(7.29) along u.
Note that

(7.26) < (7.157), (7.29) < (7.137),

we conclude that the contribution of (7.26),(7.27) and (7.29) in (7.159) are bounded
by
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1 t
wé/Z(U) t—tm (V)

o[1Vef C0)log + IV fC)gog |+ 06 lwgavi 1,

dse V=9 ./11%3 duwé/z(v)k(v, u)

X
a(x—(t—s)v,u) a(y—(—s)v,u) 1+

] ’ fu

wé/z(u)|u|2min[

o[V f W]y + Vi )gog |+ O lugaVef I
}1+,3 ’

<
- - 2 min laxv) aly.v)
we/z(v)|v| mln{ T Tl

(7.160)

where we have used (4.7) in Lemma 4.1 with p = 1 + 8.
Then we focus on the contribution of the double collision operator (7.28). By
Lemma 7.2 the contribution of 4 = I" is bounded by

1 t
W 12 (V) Ji—t,v)
oIVIfCv)cos  + lwge Vi 1%

dse V=) /3 duwg ,(V)k(v, u)
R

X

—(t— 1+8
w5/2(u)|u|2min [a(x_(llu—‘s)v,u)’ aly (lluls)v,u)
OIS C 0oy + eV s I
< o " .
wg (V) |v]* min {% a(\ny)}

Last we focus on the contribution of # = K (f). Recall the notation x”, y”
in (7.145). We need to compute

t K
/ dse V=9 / duk(v, u) ds'e V6) / du'k(u, u')
t 3 R3

—tm (V) R s—t3, (1)
G " V //, /! _G 1 V //’ 4
% ")V f(x", u') OV f(y u) (7.162)
lx — yI?
(7.162),

We apply the decomposition (7.144) for ds’.
When s — s’ < ¢, by (4.8) in Lemma 4.1 with p = 1 + 8 we have

7.162)1,_ o<, ————
( ) s—8 éé‘ wé/z(v)

' ~
</‘ dse*”(“s)/ duwg/z(v)k(v,u) /s PR
~ t—t (V) R3 wé/z(u) s—&

VifCvlens

wg o () '] min {a (&, w'), a(y”, u)}' P

X /]1{3 du/wé/z(u)k(u, u')
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Vif e, U)]CSIIISJrﬁ

< 0(e) —. (7.163)
- W a. |
U)é/z(v)h)lz min {a(ﬁ;|v) s z ‘);lv }
When s — s’ = €, we rewrite
G " _G Vi V //’ /
(7.162), = LG |x(y_ )y]m"f(x “) (7.164)
G i V //’ N V //, /
n "L xf(x| u') - SO u )]‘ (7.165)
x—y

For (7.164), since |u’|w0?1(u’) < wé_/lz(u’), we apply (2.57) to conclude that
the contribution of (7.164) in (7.162) is bounded by

lwga Vi flloo /t dse_v(t_‘v)f duwéﬂ(v)k(v’u)
t R3

wg o (V) —tm (V) wg o (1)

s ' wg Wk (u, u')
% / ds/e—v(s—s ) / du/|u/| 0/2
s R3

— 15, () wé/z(“/)lu/la(x”, )
< lwger Vi flloo e
~Y . ]+ﬁ’ .
wé/z(v)|v|2mln {%’ %}

where we have applied Lemma 2.13 and (4.5) in Lemma 4.1.

For (7.165), we exchange V, f (x”, u’) = % and perform an integration
by parts to du. Since |G (y”)| < 1, the contribution of (7.165) in (7.162) is bounded
by (7.147),(7.148),(7.149) and with an extra term that corresponds to the derivative

of G(y"):

t
/ dse W= / duly_yo>,
t—tm (V) R3 -

s—¢

x k(v, u) VMG(y”)e—U(M)(s—s )ds/
s—t5,(u)

AN v

X / du/k(u,u/)f(x ) = SO )

R e —yI?

< ”wéOlef”oo /t dse_u(v)(t_s)/ du w§/2(u)k(v, u)
wg o (V) 0 R3 wg o (V)

5§—&
X/ e VWO (g — §) 1] c2ds’
0
|u/|2

wg ) |w'[> min {a(x”, u'), a(y”, u")}?

x/ du’wé/z(u)k(u,u’)
R3
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_ t _ s—
< —||w00lvxf||oo/ dsefv(v)(tfs)/ dqu(v’u) o efv(u)(sfs’)/zds/
0 R3

wé/z(”) |u|? s—13, (1)
w;aV
< lwga Vi flloo . (7.167)
u19~/2(1))|v|2 min {—“(l)‘"”) “—(ly’lv) }
vl v

Here we have used (2.64) with (7.6) in the fourth line and Lemma 2.13 in the second
last line.
Thus the contribution of (7.165) in (7.162) is bounded by

(7.147) + (7.148) + (7.149) + (7.167)
< (7.151) + (7.153) + (7.154) + (7.167)

_ 0E DYl

~

(7.168)

. 2 i ey ey
w9/2(v)|v| mm{ T o]

}1+,3 :

This, together with (7.166) and (7.163), leads to the conclusion:

D|[VafC 008 +IVifC0] 058 |+ 062 wzaVyfl3
(7'162)50( [IVareolgon +VIFC g [+ 0EDluge Sl

i 2 e e | A
wg/z(v)lvl mm{T, fol }

(7.169)
Finally collecting (7.169),(7.161),(7.160),(7.158),(7.157) and Lemma 7.3 we
conclude the proof of (7.8). |

7.2. Proof of (1.23)

In this section we prove the Holde regularity (1.23). For simplicity, we denote

VU DRSS ,
[Vu fs( v)]Cf;fﬂg

a(x,v) aly, v)}”ﬁ [V f5 (x, v) — Vy f5 (3, V)]
ol ol Ix — yIP

= sup ‘ wé/z(v)|v|3 min {

x,ye2

Ly

(7.170)

We will use (7.6) for simplifying the proof.
Proof of (1.23) Similaly to (7.30) - (7.35) and (6.1) - (6.8), we use
tm(v) = min{ty (x, v), (¥, v)} to express V, f(x, v) as
Vo fs(x, 0) =1z, eIV £ (o (3, v), v)]
— 1,5, VVuip (x, V)Y £ (xp (x, v), v)
— 1,5, Vov(@)ip(x, v)e " £ (xp(x, v), v)
+1,<,, eVl fs(x = 1v,v)]

- ltgt,,,vv‘)(v)te_wfy(x —tv, V)
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t
—1,, / Vou()e " (1 — $)h(x — (t — s)v, v)ds
= t—tp(x,v)

t
+1,>, / e "IV [h(x — (t — s)v, v)]ds
- t

—tp(x,v)

1
-1,<, / Vor()e ")t — s)h(x — (t — s)v, v)ds
- 0

t
+1,<, / e VUV [h(x — (t — s)v, v)]ds
="Jo
—1,<; Votp(x, V) VPEV B (v — p(x, V)V, V).

Taking the difference of V, fi(x, v) and V, f;(y, v) using the above equation we
have

Vo fs(x,v) = Vy f5 (v, v)
lx — yI#
efvtb(x,v) _ efvtb(y,v)

=1>, PR—: Vol fs (xp (x, v), )] (7.171)
1 e—vtb(y,v) Vol fs (xp (v, v), V)] = Vy[ fs (xp(x, v), v)] (7.172)
1= ln lx — yIP
1 V[Vytp(x, v) — Vyip(y, )] + Vv () [ip(x, v) — th(y, v)]
2t = yIP
x eV [ (xp (x, v), ) (7.173)
—vtp(y,v) _ ,—vip(x,v)
=Ty, DVt 0) 4+ Vot (D) fs (a5, 0, )
(7.174)
—1,>, [vVyip(y,v) + Vyvip(y, v)Je VO Js (Y, “)’lv) - lefg(Xb(x’ v), v)
='m X — y
(7.175)
v - -V -
Fle, e v[fs(x —1v,v)] ;[jk(y tv, v)] (7.176)
= lx =yl
e, Vet BE D 2 f‘;(y —rvv) (7.177)
= lx — ¥l
t hx — (t —s)v,v) —h(y — (t — 5)v,
1, /‘ Vvve_”(t_s)(t _9) x—=(—=s)v,0v) (y—(@—s)v U)ds
=" =ty |x — y|B
(7.178)
1 t—ty
. /
20 1 Z31B Joninge—y eo0).t—y (r.))
X [ltb(x’v);tb(y’v)Vvve_”(t_s)h(x —(t = s)v,v)
+ Ly < Vore T O TIRG = (= ), ) Jds (7.179)
. /’ V(=) Volh(x — (t —s)v,v)] — Vy[h(y — (t — 5)v, U)]ds
=" =ty Ix — yl#

(7.180)
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1 —ty
+ ltztm —_vlB / .
[x — yl min{s—t (x,v),t—tp(y,v)}

X [ltb(x,v)Zzh(y,v)e_v(t_s)vv[h(x — (t — s)v, v)]

+ lth(x,v)gzb(y,v)e‘”(f—”Vv[h(y —(t —s)v, v)]]ds (7.181)
' - - — — —_
-1,<; / Vvve—v(t—s)(t . s)h(x (t —s)v,v) —h(y — (t —s)v,v) is
(7.182)
t - - - —_— —
+1,< / P Unt)) Vylh(x — ( —5)v, T)] Tg[h()’ t — ), U)]ds (7.183)
='m x — y

Votp (x, U)e—vtb(x,v) — Vi (, v)e—vtb(y,v)
lx —yIf
—vip(y,v) h(y — tb(y; U)a 1}) - h(X - [b(x, v), U) )
lx — yIP

-1

h(x — p(x,v)v,v) (7.184)

t<t

(7.185)

— ltgtm Vutp(y, v)e

The estimate of (7.172), (7.180) and (7.183) are the most delicate, we will
estimate them in Step 2 and Step 3. Now we estimate the rest terms in Step 1.
Step 1: Estimate of the rest of the terms.
We will use the estimate
vl

w) ~ wy, )P

, forc = —2. (7.186)

For (7.171) we apply (2.56), (2.40) and (7.186) to have

[(7.171)]
1
: a(x,v) a(y,v) 'BHVUxb(x’v)”vxfs(xb(X,U),Uﬂ
1 o(x,v a(y,v
|v|m1n{ T ol }
+ Vo fs (kb (x, v), V)]
1

- 1+/3[”w9~avxfx”oo

a(x.v) a<y,v>}

_ 3 mi
wg/z(v)|v| mm{ T Tl

+ llwg , VPV, filloo].

For (7.173) we apply (2.61) and (2.56) to have

1
1(7.173)] S lwfslloe 5
wy(w]e] min { 52, < |
For (7.174) we apply (2.39), (2.40) and (2.56) to have
1
1(7.179)] < lwfslleo 7

- 2 i Jalov) a(y.v)
wz(v)|v] mm{ T Tl
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For (7.175) we apply (2.39), (2.40), (2.54) and (2.64) to have
1
ax,v) a(y.v) }2’3 '

vl > vl

1
(7175 < m”wfs”oo

wg(v) min {

For (7.176) we use t < t,,, and (2.39) to have

[(7.176)|
< e,v,[t[fos(x —10,0) = Ve fs(y =10, 0)] + Vo fs(x —1v,0) = Vo fs(y — 10, v)]
- = yIP
[V fs G0l cop oDV f5 (. )] 06
< X;24-p + X148
- : 1+ , 18"
wy ()] min { £ EED LTy @) min o0, @0 )

For (7.177) we apply (2.64) and (7.6) to have

lwaVy fill2

wg (v) min {a(x, v), a(y, )}

(717D S

For (7.178) we apply (7.9) to have
lwfs lloo

wg (v) min {&(x, v), a(y, v)}’’

(7.178)] S

For (7.179) we apply (2.56) and (2.124) to have

lwfslloo |16 (x, v) — tm(y, V)| _ lwfslloo
wé(v) |x — }’|ﬂ alx,v) aly,v) }ﬂ

vl > vl

1(7.179)] < S
wg(v)|v|min{

For (7.181) we apply the same computation in (6.16) and (6.15), and use (7.6),
(2.56) to have

() — (. )| lwhillo lwger Vi £313

lx —y|# wg/z(v)|v|2 ~ a(x.v) a(y»v)}ﬁ'

[(7.181)] <
wé/z(v)|v|3min{ s S

For (7.182) we apply (7.9) to have
lwfs lloo

182)] < ’
1(7.182)] < w; (v) min {a(x, v), 2 (y, v)}

For (7.184), we apply (2.61), (2.56), (2.40) and (2.124) to have

[(7.184)]
< Mwfilloo [Mrb(x, v) = Vuty (v 0) | [Vot (v, v)lle” ">V —e—”’b@*”H]
= ows(v) lx — yIf lx — yI#
< lwfilloo % 1 5 + 1 ﬂ:l.
wé(v) |U|2 min {a(x,v) , a(y,v) } |U|3 min {a(x,v) , a(y,v) }
ol [0l ol [ol
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For (7.185) we apply (2.40), (7.9) and (7.6) to have

I wéavx fs ||c2>o
atv) () }f"

ol > vl

1(7.185)| <
wg (v)|v|?> min {
Combining all the estimates above we use (7.6), (7.186) and Proposition 3 to con-

clude
(7.171) — — (7.185) except (7.172), (7.180), (7.183)

- 2 .
- ”w@avxfs”oo + o[V f5(, v)]cffﬂs (7.187)

1+8
- 3 in o) a(y,v)
w9/2(v)|v| mm[ T Tl

Step 2: estimate of (7.172). We apply the boundary condition (2.25) with the
notation (7.4) to have

Vo fs (xp (x, ), v)

My, (xp(x, v), v)
=[P [ b o T Vv

+ r(xp(x, v), v)]
_v, [M w(Xp (X, V), v) / £ G (x, V). Tl v )mvédvl (7.188)

,U«O(U p (x)
+ Vylr(xp(x, v), v)] (7.189)
- (xllf(f(v”) 2 / Vil fs(p(x, v), T vHIV o (vhvidv'.
17 L(x)
(7.190)

First we consider the contribution of (7.188) in (7.172), which equals

v [Mwocb(x,u),v)] _v [Mw(xw,v),v)]
L Vi "L Vo)

Ix — y|f
S, T VOV o (vhvidy! (7.191)
p L)
w(-xb(-xa U), v):l
A o (V)
fsOmx,0), T vh = fibm(y,0), T vh

X
1
X / P (X) ) /MO(VI)V%dVI.
vé>0

+vv[

lx — yI?
(7.192)
For (7.191) we apply the definition in (1.4) to have

S T
[Mw(xb(x,v),v)] g e et Ty
. =

Vo) 27 [Ty (xp (x, v)) 2

\%
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Ty 1 S lv|? v
— w (Xp (x,0)) o 4T _V N —
V27 [T (ap(x, v) 2 (¢ VNG ) T )
+ o -5 (‘ul‘,z( » %V (—1 )
e wrpX.v) o .
V2 N7 (e (x, v)) ]2

Then we apply (2.60), (2.54) and (2.40) to bound

lv|?
Vo (2Tw<xb<x ) ~ VT mo)!
lx —y|#

[v] [v]
< Pop(x,v) —xp (y, v)|f y ['Twm(x,u)) ~ TG

lx —yl|# |xp(x, v) — xp(y, v)|P

|U| | Voxp(x,v) Vyxp (y,v) Vyxp (y,v) _ Vyxp (y,v) |
i [TwCp (o) [Twlp(,oD? 1 [Ty (y,v)]? [Tw(Xb(x,v))]2j|

[xp(x, v) — xp(y, v)|P

< 1Tl c1lv] [v|
min[a(x,v)’ a(y,v) B min[a(x,v)’ a(y,v) 1+
[v] [v] [v] [v]
Similarly, we have
1 1
Vo Grmen) ~ Vv Grmoan)|
lx — y|#
1 1
< | TmmEw ~ emow!
~ lx —y|#
| Vyxp(x,v)  Vyxp(y,v) Vxp(v,0)  Vaxp(y,v) |
+ [T o) [Twlp@.o))? ' [Tbp(.o)? [Tl (x.v)]?
lx —ylf
- 1Tl 1
~ B 1+8
o et ay.v) o Jatv) aly.v)
mm’T,T |v|m1n[ W ) }
1 Twllct
ik
. a(x,v) a(y,v)
|v|m1n{—|v| ST ]

‘We combine the estimate above to bound (7.191) as

(7.191) < lwfsllec - / VitowHvhdv!

- 3 min | 2«0 a(yv)
wz(v)|v] mm{ N ol

< lwfslloo (7.193)

a(x,v)  aly.v)
l vl

~ 1+8°
wz (W)|v]3 min[ }

where we have used that for ¢ € {1,0, —1} and |7, — Tplloo <K 1,

w2 )2 1
e ZTw(xb(x,v))e4T0 |U|C < .
~ 3

wg (v)[v]
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For (7.192) we apply the above estimate, the same computation as (2.100) and
(7.89), (7.90), then use (2.54) and (7.6) to obtain

~aV 2
||w9a Xf?”oo (7.194)

(7.192) <
alx,v) ay,v)
vl > vl

wg (v)|v? min{ }Hﬂ'

Then we consider the contribution of (7.189) in (7.172). By the definition of r
in (2.6), we apply the same bound in (7.193) to bound such contribution as

1

a(x,v) a(y,v)
vl > vl

(7.195)

wi )P min | |

Then we consider the contribution of (7.190) in (7.172), which equals

I My (xp(x, v)) — My (xp(y, )

Vi) lx —yI?
< [, VAT VO oDva (7.196)
v3>0 Pl
t Iy t 1
Mw (Xb(y’ ”U)) Vv[fs(Xb(.x, U), TX;I(X)V )] Vv[fs(-xb(yv U), Txll)l(y)v )]
Vi) Jviso lx — yIf

x v/ po(vhvidv!. (7.197)

Applying (2.71) and (2.54) we have

(7.196)
< Iwilloo + 10 Vs filloo M (i (x, ©) = My (i (v, ) i (x, v) — xp(y, v)I
Vi) b (e, v) = x (v, )17 v — ylP
< lwfilloo + lloe Vi fslloo (7.198)

a(x.v) a(y,v)}f"
vl > vl

wg(v) min l
Here for the v! integral we apply the bound (6.12), (6.13) for (6.10).
Then we focus on (7.197). We use the notation (7.4) and (7.5) the partial x
derivative, then we have

My (xp(y, v)) 1 ol
7.197) = wib e B dvly/
7197 o) Sy &Y VOO

1 1 ' 1
V“Xpl(x),ia";ux)ffS(np](")(Xpl(n)’ TXII( >V :
s p(x

X[Z(

i=1,2
1 1 ¢ 1
VX1 a0t S5Oy i) T V)
— P ol ) (7 199)
lx — yIf

lx —yl|#
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VT VIV fiCp (e, 0), T v = VT VIV (), T v
pl) rlw [0 Lo ]

+
lx — ylf

(7.200)

For (7.199) we have

My, (xp (v, U))w(;(v)|v|2 f 1 1
7.199) = d 1
. Vro@w; w2 Lo V'V o (vHv

Vox!, = Vxd
p'(x),i Pl(y).i ' t 1
) [ a1 fsmp& O, T v
i=ZLZ |)C—y|/3 Xpl(x),i sMpi (o) Pl(x) X;I(x)
xp (x, v) — xp(y, v)|P _
lx — y|f vEpl ()i

1 t 1\ _ 1 t 1
aleﬂoc),if‘v(nl’l(")(xlﬁl(n)’ T";lu)v ) 8X117'(,v),i fs(n”l(y)(xpl(y))’ TXLIQ)V )]

lxb(x, v) — xp(y, V)|

By changing the dv' integral back to dv! integral in (2.25) and applying (2.60) and
(2.40), we have

(7.199)
1

a(x.v)  aly.v)
l > vl

1
<[ [ oV fylloon/mo ) b 2D ¥ Ly 1 g 01
n(xp(y,v))v!>0 [n(xp(y, v)) - v

<

~

wg (v)|v? min{ }Hﬂ

1
+
Ixp(x, v) — xp(y, v)|P

x |/ Viro@hlnGn (. v) vy fulm e v), vhdy!
n(xp(x,v))-v!>0 L,

pr(x),i

_./ Vio@hln Gy, V) v ag fiGn(y, v),v])dv]|].
"(Xh(y,v))-v1>0 Ly :

pr(y).i
(7.202)
Clearly
v, f,
(7.201) < oV Jsllos o (7.203)
wg(v)|v|* min {—a(lf)’lv), —a(‘{)]v) }

The other term is the same as (7.95), which is bounded by (7.136). Thus by Propo-
sition 3,

(7.202) < lwga Ve £l a0
. ~Y . 1+ﬂ ) .
wg (v)|v]3 min {% a(‘%lv) }
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For (7.200) we have

~ 2
(7.200) < My, (xn (v, v))wg (v)[v] [/1 av' Vi)
v3>0

Viroywg (v)|v]?
‘V T, VT, ‘ ,
X0l oo | IVHINVIRVy filloo (7.205)
Ix —ylP [vl|2
+‘/ Vio(vhHviv, T, vl
vi>0 Pl
Vo fsOn(x, ), T v =V Gy, 0), T v
X 17 (X) P ()) ‘jI' (7206)
lx — y|#
Applying (2.69) we have
2
\%
(7.205) § Vbl (7.207)
wy vl min [l e« |

For the other term (7.206), we exchange the v-derivative to v!-derivative, then

(7.206)
1
- —3f dv'Vuo(WHviv, T !
lUé(U)|U| V%>0 p L(y)

Ta Vo fs(p(x, ), (A )—Txl Vyi sy, v), T, vh
'@ Xl ' )

x — ylﬂ
< —3f ViV v T, !
wg (V)| v] vi>0 *pl
T, — T
| %) X,l;1<y>| Tt ||||v|2Vufs||
—y|B x! 12
|)C yl pl(x) |V |
1
—3/ dv'yv o (vHviv, T’ v T1
wg () [v]” Jyloo X P
Vo [ fsGpe,v), T v = fiCp (v, v), T vh]
« p (x) P ())
lx — vl

1 Vo f
,S / d / o(v ) 1|||v| s 1loo
1+ 1 l
} v3>0 | |

. 3min o) aly,v)
wg(v)|v] m1n{ W ol

‘f av!' Vi [V o (vHviviy, T’ T,
w (U)|U| vi>0

olgy Pl
fsCGp(e, ), T v D = fGp(y, v), T, vh
p L) p L) ‘

Ix — ylf
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1 1 lxp(x, v) — xp(y, v)|?
S wé(v)|v|3 X [min{&]l}) % 1+8 |||U|2Vufs”oo + X — )P
v| v
" | fs G (x, ), T, Y D~ fsGw(y, v), T, ()Vl)l
- fv§>o vl ) le[)(x, v) —xp(y, v - ]
< V12 Vy filloo + et Vi filloo (7.208)

alx,v) ay,v)
[ > vl

1+8°
wg (v)|v? min{ }
In the sixth last line we have used (2.66), (2.54), (2.41) and applied an integration
by part for dv'. In the third last line, we have used (2.41). In the last line we have
used (2.54) and applied the same computation as (7.89), (7.90).
Combining (7.193), (7.194), (7.195), (7.198), (7.203), (7.204), (7.207) and
(7.208), we use (7.6) and (7.186) to conclude

w;aV 2
(7.172) < lwze Ve fi 112 _ .
wé/z(v)lvl3 min {% a(ly:f\v) ]

Step 3: estimate of (7.180) and (7.183). We focus on (7.180), the estimate of
(7.183) is the same. First we consider 7 = K ( f;), we compute

/’ _U(t_x)/ Vulk(u, )[f(x — (¢ —s)v,u) — f(y — @ —s)v, u)]]
e ds
t—ty R3 l[x — }’|ﬂ

_ /’ _V(H)/ Volk(u, ILf(x = (t = s)v,u) = f(y — (1 = s)v, w)]
= e ds
t—ty, R3 lx — )’|ﬂ

(7.210)
t —(f — —(t —
+/ e—v(tfs)/‘ kv, ) Vi [f(x — (@ —s)v,u) — f(y — (& —s)v, u)]ds
t—tm R3 Ix — yl#
(7.211)
For (7.210) we have
(7.210)
_ /t J— / L () lwgerVi £l .
ity RS v —ul ws () min{a(x — (¢ = s)v,u), a(y — (t = 5)v, u)}p
B /, vy 0 wgaVifsl
~ Ji—ty, we(v)rmn{a(x v), a(y, v)}ﬁ
< (v)llwgothfslloo (7.212)

wé(v) min {o(x, v), ¢(y, v)}fj '

In the second line we have used (2.64), Lemma 2.13, (7.6) and (2.103). In the third
line we have used (4.11).
For (7.211) we have

(7.211)
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t
:/ ef"(l*s)/ du
t—tm R3

t =9k, w)[Vyf(x — (@ —=s)v,u) = Vi f(y — (¢ —s)v, u)]
X ds
lx — y|f

'
=/ ef"(’fs)/ dut,k(v, u)
t—tm R3
wz (V)[Vy fi (-, U)]C2§§+ﬁ

ds
a(x—(t—s)v,u) ot(y—(t—s)v,u)}2+ﬂ
u] ’ [ue]

X

wg(v)wg (u)|u]? min {

< ”wéanfS”go min{a(X,v),a(y’ U)}
~ . | 248 v B
wg (v)|v]? min {% a(ﬁ},‘v)} v
wiaVy f||?
= ” [ xfs”oo - (7.213)

a(x.v) ay.v)

- 3 mi
wg(v)|v] mm[ T

In the second line we have used (f — s) < t,,. In the last two lines we have used
4.7), (2.39) and Lemma 2.13.
Next we consider & = I'(fs, fs). We use (2.117) and (2.116) to compute

/’ =gy Vol (fs, f5)(x = (1 = s)v,v) = T (fs, f)(x — (1 — 5)v, v)]
e ds
t—tm [x — ylﬁ

_ /’ v LS )& = @ = 5)v. ) =TV fo, )y = =)o v) (7.214)

lx —ylf

n /’ o= D, Vo fs)(x = (= $)v. v) = T(fs, Vo )y = (¢ = $)v. )
1=t

lx — yIf
(7.215)
+ /l eiv(ti‘y)(t —5) C(Vifs, f9)(x =t —s)v,v) = T(Vi fs, f)(y — (. —s)v,v) ds
t—tm [x — ylﬁ
(7.216)
+ /l eiv(ti‘y)(t —5) C(fs, Vafo)(x — (t —s)v,v) = T(fs, Vi )y — (t — $)v, v) ds
t—tm [x — ylﬁ
(7.217)
n /l ) Fv.gain(fs: f)x =t =s)v,v) — Fv,gain(fss S = =s)v,v) ds
t—tm |x — y\ﬁ
(7.218)
/l —v(t—s) FU,IOSS(f:V? f?)(x — ([ — S)l), U) - FU,IOSS(f:V? fy)(y — ([ — S)l), U)
- e ds.
t—tm [x — ylﬁ
(7.219)

Applying (2.39) for r — s < t,,,, we use Proposition 3 to have
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in{a(x,v), a(y, v)}

m
[(7.216) + (7.217)] < e x (7.12)
w;aV 2
< lwga Vi fill5 (7.220)

ax,v) a(y,v)
vl > vl

w3 )l min | |

For (7.214) and (7.215), we apply the same estimate as (7.15) and (7.16) with
replacing V, derivative by V, derivative. By the same computation as (7.14), (7.17)
change to

w ! (v + o) [wsa Vx fill

duk Vo fs (x,
[1‘@ uk(v, u)|Vy fs(x, u)| © min{a(x,v—i-w),“(y’v"i_w)}ﬁ

< ||wéavxfs||oo||w§/2|v|2vvfs”oo / d wg/g(v)
u
- wg o (V) B wy,(w)|ul? min (£(x), £}

-1
x/ -2 e O
s? v+ w|f
_ ||w9~avxfs||oo||w9~/2|v|2vvfs||oo/ ” ks (v, u)
~ wg (v) R |u|?min {&(x), £(y)}F/?
e ”wéavva||oo||w§/2lv|zvva||oow§_1(v)
~ [v[? min {£ (x), &(y)}F/2

Applying the same computation as (7.20), the contribution of the above term is
bounded by

”wéavxfs||oo||wé/2|v|zvvfs”oo
}1+ﬂ.

(7.221)
alx,v)  ay,v)

- 3 mi
wg(v)|v] mln{ W il

For the contribution of (7.15) with replacing V, by V,, we apply the same
computation as (7.18) to bound such contribution by

lwfslloo[ Vo fs (- U)]CO‘ﬁ
x,1+B

(7.222)

B 3min 1 eGv)  a(y.v)
wg/z(v)|v| mm{ ICAE

]l+ﬁ.

For the contribution of (7.16) with replacing V, by V,, we apply the same
computation as (7.19) to bound such contribution by

2
w5V fslloo w112 Va f lloo f’e_v(m_s) / w0k (v, u)
0 R3

LT wy o) min {a(x/, u), (v, )}

lwgerVi fslloo lwg o[>V fslloc wg ;o Wk, w)vf*

+ L v @)—s)
w2 @)]ol? min {a(x, v), a(y, v)}F Jo R wg (Wl
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lwgarVi fsllsollwg o[> Vi felloo

- fatw) e A
wé(v)|v|3m1n{°‘|’;‘v, o }

(7.223)

Combining (7.221), (7.222), (7.223) and using (7.6), (7.186), |wf;|lc < 1
from the Existence Theorem, we conclude that

lwga Ve fi 136 + 0DV £5 (-, v)] 0.6
1(7.214) + (7.215)| < Criltp (7.224)

1+8
_ 3 i JaGv)  aly,v)
w9/2(v)|v| mln{ W ) }

For (7.218) and (7.219), we use (2.118) to have

+
rv,gain(szfs)(ny)_Fv,gain(szfs)(y’ v) :/ / deulu'w||v ul\/,u(v+u)
RrR3 Js2 2Tw
x (LfsGev ) = f G0+ D foCr v+ )

s v+ = fOn v+ up S v+ u D))

Clearly 57+ ‘”J“”l Vi Fu) < p'/*(v4u), using such bound for ‘UJ“”' el Ju(v + u) the
above term 'has the same form as Lain (fs (X) = f5 (), fs (x))“"rgam(fs ), fs(x)—
fs(¥)) in (2.110). Thus we can use (7.9) to bound (7.218) as

v
(7218) < 1050 Vi fs lloo . (7.225)
wg (v) min {a(x, v), a(y, v)}7
Similarly for (7.219) we also have
oV
(7219) < lwge Vi fslloo (7.226)

wg(v) min {a (x, v), a(y, v)}F

Combining (7.212),(7.213),(7.220), (7.224),(7.225) and (7.226) we use (7.186)
and (7.6) to conclude

lwgaVx fillze + 0(DIVy fs ¢, v)] 06

s 11,3“’ : (7.227)
wé/z(v)|v|3 min {% a(l)l;,lu) }

Finally, we combine (7.187), (7.209) and (7.227), and conclude (1.23). |
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