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Abstract

The goal of this paper is to study the important diffusive expansion via an
alternative mathematical approach other than that in [21].
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1 Introduction

1.1 Hilbert Expansion with No Boundary Layer Approximations
The hydrodynamic limit of the Boltzmann equation has been the subject of many
studies since the pioneering work by Hilbert, who introduced his famous expansion
in the Knudsen number ¢ in [37,38], realizing the first example of the program
he proposed in the sixth of his famous questions [39]. Mathematical results on
the closeness of the Hilbert expansion of the Bolzmann equation to the solutions
of the compressible Euler equations for small Knudsen number ¢, were obtained by
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Caflisch [14], and Lachowicz [45], while Nishida [47], Asano and Ukai [4] proved this
by different methods.

On a longer time scale ¢!, where diffusion effects become significant, the prob-
lem can be faced only in the low Mach numbers regime (Mach number of order ¢
or smaller) due to the lack of scaling invariance of the compressible Navier-Stokes
equations. Hence the Boltzmann solution has been proved to be close to the incom-
pressible Navier-Stokes-Fourier system. Mathematical results were given, among the
others, in [11, 18,31, 33, 34] for smooth solutions. For weak solutions (renormalized
solutions), partial results were given, among the others, in [7-10], and the full result
for the convergence of the renormalized solutions has been obtained by Golse and
Saint-Raymond [27].

Much less is known about the steady solutions. It is worth to notice that, even
for fixed Knudsen numbers, the analog of DiPerna-Lions’ renormalized solutions
[19] is not available for the steady case, due to lack of L' and entropy estimates.
In [29,30], steady solutions were constructed in convex domains near Maxwellians,
and their positivity was left open. The only other results are for special, essentially
one dimensional geometry (see [3] for results at fixed Knudsen numbers and [1, 2,
22,23] for results at small Knudsen numbers in certain special 2D geometry). In a
recent paper [20], via a new L? — L* framework, we have constructed the steady
solution to the Boltzmann equation close to Maxwellians, in 3D general domains,
for a gas in contact with a boundary with a prescribed temperature profile modeled
by the diffuse reflection boundary condition. The question about positivity of these
steady solutions was resolved as a consequence of their dynamical stability. As
pointed in [25], despite the importance of steady Navier-Stokes-Fourier equations
in applications, it has been an outstanding open problem to derive them from the
steady Boltzmann theory.

The goal of our paper is to employ the L? — L° framework developed in [20] to
study the hydrodynamical limit of the solutions to the steady Boltzmann equation,
in the low Mach numbers regime, in a general domain with boundary where a tem-
perature profile is specified. We refer to [15,16,41-44] for the recent development of
L? — L™ framework in various directions.

Let © be a bounded open region of R? for either d = 2 or d = 3. We consider the
Boltzmann equation for the distribution density F'(t,z,v) with ¢ € Ry := [0, 00),
z € Q, v € R3. In the diffusive regime, the time evolution of the gas, subject to the
action of a field C_j, is described by the following rescaled Boltzmann equation:

OF +e -V, F+G-V,F=e2Q(FF), (1.1.1)

where the Boltzmann collision operator is defined as
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/Rg /S (v —u,w)[F(v")H(u') — F(v)H (u)]dwdu
= Q1 (F,H)(v) — Q_(F, H)(v),

with v/ = v —[(v — u) - ww, v = v+ [(v —u) - w]w. Here, B is chosen as the hard
spheres cross section throughout this paper,

B(V,w) =V -ul. (1.1.2)

The interaction of gas with the boundary 02 is given by the diffuse reflection
boundary condition, defined as follows: Let

p v —uf?
M = — exX [— }
P orT)R P 2T

be the local Maxwellian with density p, mean velocity u, and temperature 7. For a

prescribed function T* on 9f), we define

/27
- ﬁMlaO:Tw' (113)

We impose the diffuse reflection boundary condition as
F=PJ(F), on v, (1.1.4)
where

PYF(z,v) == M (z,v) / g e ) (1.1.5)

Here, we denote by n(x) the outward normal to 92 at x € 92 and decompose the
phase boundary 7 := 0 x R3 as

v = {(z,v) € 9N x R3: n(z) - v =0},
Y0 := {(z,v) € 90 x R3: n(x) - v =0}.

We remind that the boundary condition (1.1.4), (1.1.5) ensures the zero net mass

(1.1.6)

flow at the boundary:
/ F(z,v){n(x)-v}dv =0, forany x € 09.
R3

The rescaled Boltzmann equation (1.1.1) is studied under the assumption of low
Mach numbers, meaning that the average velocity is small compared to the sound
speed. This can be achieved by looking for solutions

F— i = My/iif, (1.1.7)
with the global Maxwellian
_ _ 1 [v]?
M(U) = MLOJ == Wexp |:- 7:| . (118)
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Here, the number 20 is proportional to the Mach number. The case of MM = ¢
corresponds to the incompressible Navier-Stokes-Fourier limit (INSF) that will be
discussed in this paper. The case of 9 <« & corresponds to the incompressible
Stokes-Fourier limit and the results of this paper also cover this case which will not
be discussed explicitly.

The condition (1.1.7), once assumed initially, needs to be checked at later times.
By multiplying (1.1.1) by v and integrating on velocities, we see that the change
of mean velocity is proportional to G. Thus, we need to assume G = M® with a
bounded ®. Moreover, to make (1.1.7) compatible with the boundary conditions,
we need to assume that 7% = 1 + MJI™. In particular, for the INSF case, we have

G=c®, T"=1+¢e9". (1.1.9)

The presence of the boundary represents a major issue in pursuing such a pro-

gram. The usual approach is based on the representation of the solution by means of

an Hilbert-like expansion in the bulk, suitably corrected at the boundary to satisfy
the boundary conditions [1,2,22,23]:

F=p+eyplfitefot -+ fon+eff+2 5+ -+ f2 +<"R]. (1.1.10)

Here, the functions fj are corrections in the bulk, while ka are boundary layer cor-
rections which solve Milne-like problems, and R = R® denotes the remainder. It is
important to choose sufficiently large k£ > 1 so that the nonlinear collision term can
be controlled. The corrections at the boundary are computed by means of a bound-
ary layer expansion which, in a general domain, presents some issues hard to deal
with. The usual strategy is to solve the k-th term of the boundary layer expansion
by looking at it in terms of the rescaled distance from the boundary (see e.g. [48]).
Using of such a variable, the problem looks like a half-space linear problem (Milne
problem) [5] with a correction due to the geometry which can be interpreted as an
external field of the order of the Knudsen number. The field, due to the k-th term
of the boundary layer expansion, is usually included as source term in the equation
for the (k + 1)-th term [48], but the lack of regularity makes this hard to control.

This strategy has been used in [12] in the much simpler case of the neutron
transport equations, but recently in [51] it has been proved that the result in [12]
breaks down exactly because of the lack of regularity (see the recent work in the
Boltzmann case [50]). Therefore, the geometric field, even if of small size, has to be
included in the equation for the k-term of the expansion, as in [2,24] for the case of
the gravity and [51] for the geometrical field in the neutron transport equation in a
disk:

F=p+ey/ulfi+efot+ -+ frm+efle+fa+ +" [l +"R),
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where kafE depends on e. Unfortunately, this strategy fails even for a general 2D do-
main because the analysis of the derivatives’ singularities presents severe difficulties
(see [35,36] for the analysis at € ~ 1).

In this paper, we avoid the boundary layer expansion to cope with a general
geometry. This is possible because, in the incompressible regime, the first term of
the bulk expansion in (1.1.10) which violates the boundary condition is of order &2,
while the main hydrodynamic contribution, is of order €. We will discuss more about
this in Section 1.3.

1.2 Expansion with Remainder
The Hilbert expansion suggests that the solution can be written as

F = p+eyp[fi+efo+e“R], (1.2.1)

where (1 is the standard Maxwellian in (1.1.8).
To determine f1, fo and R, we define the linearized collision operator as

1
Lf= _ﬁ[Q(”’ Vif) +QWu, fr)], (1.2.2)

and the nonlinear collision operator as

I(f.g) = 2\1/E[Q<Jﬁf, Viig) + Q(y/fig, /il (1.2.3)

The null space of L, NullL is a five-dimensional subspace of L?(R?) spanned by

{\/ﬁ, RV of” -~ 3\//7}

We denote the orthogonal projection of f onto NullL as

> -

Pf=aypu+v-by/u+c 5 NI (1.2.4)

and (I — P) the projection on the orthogonal complement of NullL. The inverse

lv

operator L~! is defined as follows: L~!g is the unique solution of L(L™!g) = ¢, and
P(Ltg)=0.
The first correction fi is given by

o[>~ 3

fo= [p—i—u-v—i— 19] N (1.2.5)

where (p,u,?) represents the density, velocity, and temperature fluctuations. The
density and the temperature fluctuations satisfy the Boussinesq relation

Valp+1) =0, (1.2.6)

and the velocity and the temperature fluctuations satisfies the INSF system
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Ou+tu-Veyu+Vep=0Au+®, V,-u=0 in €,

00 +u -Vl = kA9 in €, (12.7)
u(z,0) = up(z), I(x,0)="o(x) in Q,
u(z) =0, I(z)=9"(z) on 012,
where v is the viscosity and « is the heat conductivity.
The second correction f is given by
13 3
fai=5 ; A [0, + O] + ; By,
_ o[> =3
—L7HC(fr, fr)] + [pz +uzvd 192} N (1.2.8)

where A;; and B; are given by

o[

Ay =L""1 <\/ﬁ<vivj - 35i,j)>, B; = L™ (\/pvi(|v]* = 5)).

Note that the only restriction on pa, ug and ¥ turns out to be that V,[pd +
p2 + V2] = V,p. For simplicity we choose

pz—ﬁ—i—][l?, and ug =0 = po, ﬁgzp—][p—pﬂ, (1.2.9)

][19:: |§12‘/Qz9(a:)dm and ][p::gz/ﬂp(x)dx.

These choices imply

where

// fiv/pdvde =0 = / fo/pdv. (1.2.10)
QxR3 R3
By choosing the reference Maxwellian, we can assume
// R\/pdvdz = 0. (1.2.11)
OxR3

The equation for R is obtained by plugging (1.2.1) into (1.1.1):

1
OR+e v VoR + Al [VAR) + ¢ 2LR=¢"'LiR+ ¢ T (R,R) + ¢ 3 A,
(1.2.12)

with
LiR:=2T(f1 + ef2, R), (1.2.13)

and

A=—[0fi +v-Vaufo—®-vy/ul —2I(f1, f2)
~e{ouh @ [V )] T R}
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It is important to observe the fact that P[0; fi +v-V, fo —®-v,/u] = 0 since (u, 9, p)
solves (1.2.7). As a consequence, A is given by

A= —(I-P)v-Vifo] —2I(f1, f2) —5{8tf2 +o- \;ﬁvv [VR(fi+ef2)] —F(f(z, fz)};
1.2.14

which implies the crucial fact that PA = O(e). This is the only but essential point
of our expansion where the specific hydrodynamic equations play a role. We also
remark that, by (1.2.10),

Ay/idv = 0. (1.2.15)
R3
It is well-known that (see [17])
Lf =vf-Kf,

where the collision frequency is defined as

1
) = -0 (Vif ) = L, =) -l vitu)dudu

For the hard sphere cross section (1.1.2), there are positive numbers Cy and C such
that, for (v) := /1 + |v]?,
Co(v) <v(v) < Ci(v). (1.2.16)

Moreover the compact operator K is defined as

Qi VAP + QRS 1) =@ VD) = | [a(o,0) kv, w] ()
VH R3

The operator L is symmetric on L3(R3): (f, Lg)2 = (g, Lf)2 where (-, -)o is the L2
inner product.

Kf=

The following spectral inequality holds for L:
(f, Lf)2 2 IV = P)f[72ga)- (1.2.17)

1.3 Boundary Conditions
We assume that (p, u, ) satisfies the boundary conditions of (1.2.7) with (1.2.9).
As a consequence, for x € 01,

Ml—&—sp,au,l—&-sﬂ‘,y_ = P;U(Ml-i—ap,eu,l-i—eﬁ)-
Moreover, by expanding M14cp ey 14e0 i €, We get
Ml—i—ap,au,l—i—m‘} =p+ 6f1\/ﬁ + 529067 (131)

where |gc| < O(llpll oo (a0) 16" || o< (a0)) (v} p1(v).
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Therefore, on ~v_

p+ e fiv/i+ e 0e/l = P (p + e fin/l + €20 /1) (1.3.2)
On the other hand, from (1.1.4) and (1.2.1), on 7_,

ot efiv/i+ € o/l + €2 Ryl = PY(u+ efiy/li + €2 far/li + €2 R/D).

Subtracting above two equations, we obtain the boundary condition for R:

R, = \/ﬁ_lpé‘)(\/ﬁR) + el o,

with 1
r= 2Py (Vilf = ¢el) = [f2 - el (1.3.3)
We expand M"™ in (1.1.3) with 7% =1 4 9" in € to obtain
2
M®(z,v) = vV2rpu(v) + sﬁw\/ﬂ(“’?’ - 2)u(v) +20(0°P)w) ). (1.3.4)

Therefore we can write

Vi 'PY(VRR) = PR+ cQR,

with
P,R(x,v) := V2m/p(v) / o R(u)/pw){n(z) -u}du,  (1.3.5)
ar 1o,
OR :=¢ 1[\/@737 (\/ER)—PWR] (1.3.6)

Note that the boundary operator Q is bounded uniformly in € because of (1.3.4).
Hence the boundary condition for R becomes

R=P,R+eQR+e2r, on 7. (1.3.7)

with Q in (1.3.6) and r in (1.3.3).
From

/ p{n-vidv =—-1= / MY{n - v}dv
n-v<0 n-v<0
and (1.3.3) and (1.3.6), it follows that

/n(z).v<0 OR/p{n(z) - vidv =0 = /

n(z)v<

r/p{n(z) - vidv, for any z € 09Q.
0

(1.3.8)

Notations We use || - ||, and || - ||r» for both of the LP(Q x R3) norm and the
LP(2) norm, and (-, -) for the L?(Q x R?) inner product, where Q := Q U 9Q. We
subscript this to denote the variables, thus || - ||z means LF({y € Y'}). We denote

koo
I llo=[""/ - ||z and HfHH’f:||fH2+§ IV fll2. We also denote [| - [[rra:=]| - [[ o (La)
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= H Il |l za HLP. For the phase boundary integration, we define dy = |n(x)-v|dS(z)dv
where dS(x) is the surface measure and define |f[h = f7 |f(z,v)[Pdy and the cor-
responding space as LP(9Q x R3;dy) = LP(0Q x R3). Further |f|p+ = |f1,]p-
We also use |f|p = [5o|f(x)[PdS(z). Denote fi = f,,. X <Y is equivalent to
X < CY, where C' is a constant not depending on X and Y. We subscript this to
denote dependence on parameters, thus X <, Y means X < C,Y.

1.4 Main Results
We first focus on the steady case. The following (ps, us,Js) is a solution to the

steady INSF with Dirichlet boundary conditions and subject to the external field ®:

Ug - Vaus + Vaps = 0Aus + P, Vi -us=0 in Q,
Ug - Vs = kAU, in Q, (1.4.1)
us(z) =0, Ys(z)=9"(x) on Of.

Note that, if ® is a potential field, us = 0 is a solution to the above system. There-
fore, in order to have a stationary solution with non vanishing velocity field, we may
assume that @ is not a potential field, such that V, - ® = 0. (See [25])

The steady solution to the Boltzmann equation is obtained with the same pro-
cedure discussed before for the unsteady case:

Fy=pi+ey/alfsq +efs2+€Y2R], (1.4.2)

where fs1 and fso are given by (1.2.5) and (1.2.8) with p, u, 9, and p replaced by
Ps, Vs, us and ps. The remainder has to satisfy the following equation

1
v+ ViR, +52ﬁ<1> -V [VERs] + e 'LRy = L1 Ry + YT (R, Ry) +£'/% A, (1.4.3)

with the boundary condition (1.3.7). Here Ay is given by (1.2.14) with f1, f2 replaced
by fs1, fsz2, and satisfies the mean zero condition (1.2.15).
Theorem 1.1 Assume Q is an open bounded subset of R? with C® boundary

0. We also assume the hard sphere cross section (1.1.2).
If® =(z) € HX(Q)NCY(Q), 9* € H/2(Q) and

19Nl 11+ o) + (1] <1, (1.4.4)

L3+ Q)
then, for 0 < e < 1, there is a unique positive solution Fs >0, given by (1.4.2)
with Ry satisfying (1.4.3) and the boundary condition (1.3.7). Here, f1 s and fa s are
given by (1.2.5) and (1.2.8) where (us, s, ps) solves (1.4.1).

Moreover,
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[Rsll2 + e |T=P)RyJl, <1, ellwRylloo <1,
[Rsllzs S 1, (1.4.5)

[ fspllzsrznree, + Ifs2llerznre, S 1,
where w(v) = " with 0 < B < 1.
We remark that in the expansion (1.4.2), the remainder /2R is of higher order
in LP for 2 < p < 6. On the other hand, \/eRs is of order 712 in L, so the
expansion Fy = pi+e./i[f1,s -i-E%RS] is not proved to be valid in L*°. It is important
to note that the key difficulty in this paper is to control the ‘strong’ nonlinear terms
Vel'(Rs, Rs), in the absence of boundary layer approximations. The hard spheres
cross section is needed to control the term ev - & f coming from the external field.
We use the quantitative L? — L> approach developed in [20], in the presence of
€. We start with the energy estimates to get

1
NI P)RyJly S VEIT(Re, Ry + 1.

The missing PR, can be estimated by the coercivity estimates in [20], with carefully
chosen proper test functions in the weak formulation, such that (Proposition 2.2):

1
IPRs[l2 S —[(T=P) Rl + VEIT (R, Rs)ll2 + 1.
3

By using a double iteration of the Duhamel formula along the characteristics [20],
we may bootstrap such L? estimates to L™ estimate as

(I-P)Rsll2+1 S

1
[Rslloo S EWIIPRSHﬁEWII S

where the dimension is d = 3.
We split
|F(Rs’ Rs)‘g‘P(PR& Rs)’ + |F((I - P)R87 Rs)"

< 1, the second part of the nonlinear term is

~

Since we expect ¢ ||(I — P)Rs||,
estimated as

VEID((X = P)Rs, Ro)ll2 S Vell(T = P)Rsll2]| Rslloe < 1.

Unfortunately, in 3D, || Rs||co < 63% leads to

1
\/EHF(PRSaPRs)’b 5 HPRS||2HPRS”OO 5 \/gsgﬁ - ga
which is way out of control to close the estimates.
The key observation is that in our L* estimate, higher integrability of P R helps

to reduce ¢ singularity in the estimate of ||Rs||s. Indeed, if we have
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IPRs|[rs S 1,
then, in d = 3, we are able to improve the L estimate as (Proposition 3.3):

1 1 1
[ Rslloo < EHPRSH?) + 6?)WH(I— P)Rl2+1 < .

~

Now with such an improvement, we have [|[PRl|l¢ < ||PRL<,,||:1]’/2||PRSH<1></>2 < e71/2,
and the nonlinearity is ezactly controllable:

1
VEIT(PRs, PRy)|2 S VEIPRs|3|PRalls < v x N L

In the absence of the external field and the boundary, ® = 0 and Q = R?, such
gain of integrability, |PRs|| ;s < 1, is well-known from the Averaging Lemma [26]
and the sharp Sobolev embedding H'/? C L? (See also the case for a convex bounded
domain with ® = 0 in [26]). We need to extend this estimate properly to case of the
bounded domain €2 with the presence of the external field & # 0. We first consider
an extension of R, to the whole space, denoted by Ry, such that R, € L? and

v-VyRs +e2® -V, R, € L.

This would require that R, is continuous along all exterior trajectories, matching
with given incoming and outgoing data of Rs on the boundary. For a general domain
Q with £2® # 0, the exterior trajectories can be complicated and they can connect
the outgoing set v4 and incoming set v_, arbitrarily near the grazing set vg. It is not
clear that an extension R, would satisfy both R, € L? and v- VR, +&?® - V,R, €
L2, due to a possible discontinuity of R [41].

We circumvent this difficulty via an extension lemma, Lemma 2.4, which asserts
that, for the function cutoff from the grazing set 7,

Rs5 ~ Loy <1y L in@)v>6 or dist(e,00)>0) Rs,  for & <1, (1.4.6)
such an extension Ry s is indeed possible. Here, dist(z, Q) := i%fg |x — y|. Luckily,
ye

PR, ;s ~ PR, thanks to the estimate e7![|(I — P)R;||2 ~ 1. In the presence of the
external field ® # 0, a direct application of averaging lemma leads to PRy s € H I 4
L3. To show PRys € L? in the whole space (Proposition 2.1), instead, we utilize
the Duhamel formula along the trajectories, and employ the approach in [40], and
take advantage of small field €2®. This is different from the classical proof based on
Fourier transform in [26].

We also remark that in the presence of an external field, even the construction of
the solution to the linear problem is delicate. In fact, an extension similar to (1.4.6)
must be used again to gain compactness from the averaging lemma. Moreover, as
in [20], our construction cannot yield the positivity of Fy directly, which is left for
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the unsteady case.
Next we investigate the stability properties of the stationary solution. To discuss
this, we study the unsteady problem. The solution to (1.1.1) is written as

F(t) = Fo+ey/ulfi +efo + €' R(1)). (1.4.7)
Here, fl is given by
o2 —3 <

N

where (us + @, 95 + 0, ps + p) solves (1.2.7), and fa , + fo satisfies (1.2.8). Therefore
(1, 15,13) satisfies

A= [ﬁ+a-v+

QU+ a4 -Veu+4-Veus+us - Voi+ Vep =0A%, Viy-a=0 in Q,
0 + 11 - V) + 10 - Vol + us - Vo) = KAD inQ,  (1.4.8)
0, =0 on 9.

U

From the choice of (1.2.9), we have j(t,x) = —0(t,z) + F O(t) and Jo = §—f p +
2050 + (0)% — O f 95 — Vs £ 0 — £ 0.
Then the equation of R is given by
OdR+e v - VyR+e® -V,R+c LR
= €_1L1R + 8_1L81/2RSR + 8_1LR5(f~1 + E.]EQ)

.. d.v -~ .
+¢ '’I(R, R) +g?”3+5—1/2A, (1.4.9)
where A = A — A,. Here we have used the notation Lgtp := —[[(¢, %) + (%, ¢)].
Note that, due to symmetry, for all ¢, € L?,
(L1, v2) = (Lpthr, (I —P)apa). (1.4.10)

The boundary condition of R is given by
R|,_ = PR+ eQR + /%7, (1.4.11)
where
~ _ _1 Pt ~ 1 ~ ~
Fi=e u 2P (fiv/p) — fil + (W2 P (fav/m) — fol.
Note that, since M* only depends on 9%, by taking the difference of (1.3.2), written
for the unsteady and steady solutions respectively, we obtain

pTEPY(fiv/i) — fi = e{u 2 PY(@e/i) — B,

with ¢ = ¢z — ¢e,s. Thus, apparently 5_1[u7%P;”(f1 Vi) — fl] term in 7 is actually
O(1).
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We define the energy and the dissipation as

Ex(t) ZZOiUEtHeASR(S)Hg—F sup. IIGAS(%R(S)H%’

Di( /yeASI PR + /||eASI— P)O,R2

t
+/ ||eASPR]§+/ He’\SP8tR|!§+/ |eA3R|§N+/ MR35 .

Theorem 1.2 We assume the same hypotheses of Theorem 1.1. Suppose Fy =
Fy + ey/alf1(0) + e f2(0) + £/2R(0)] > 0, and @(0),9(0) € H¥() and

1(0) || r2(e) + 19(0) | 20y < 1, (1.4.12)
and

£(0) + 2| wdRo|| oo + H/ |Ro(, v)|(v)?/mdv <1, e|wRplleo <1,
R3

L3(Q)

(1.4.13)
where w(v) = eV with 0 < B < 1.

Then there exists a unique global solution F' > 0 given by (1.4.7) with R solving
(1.4.9) and the boundary condition (1.4.11). Here, fi and fo are given by (1.2.5)
and (1.2.8) where (i,9,p) solves (1.4.8).

Moreover, for some 0 < A <K 1,

Ex(00) + Da(o0) + sup e2[wdR(t)||lso <1, sup e|wR(t)||s <1,
0<t<oo

0<t<o0
[we f1||L6L°° > nLgs, , T [we f2||L6L°° e, S 1 (1.4.14)
Here, we recall that the notation | - || zrre means || - ||1p(ze) == ||| - HLqHLp.

We remark that such an asymptotical stability implies positivity of steady solu-
tion Fs (Section 3.7). Moreover, since R = R + R, we conclude that the expansion
(1.4.7) is valid in L°L2 and L3L?. We use similar ideas as in the steady case, but
the analysis is more intricate.

We start with the energy estimates, as the steady case, to get

/HI— R||2<e/ DR, R)I3 + 1.

The missing PR can be estimated by the coercivity estimates in [20], with care-
fully chosen proper test functions in the weak formulation together with the local
conservation laws (Proposition 3.2):

t
/OIPRII%S2/ a-Pp R||2+s/ IR, R)J3 + 1.
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Furthermore, as in the steady case, via a similar extension argument, Lemma
3.3 and Proposition 3.1, we establish a gain of integrability as

HPR”Lgng S1+VED(R, R 2

t,x,v

+Ve|D(Rs, R)|| 12 . (1.4.15)

t,x,v

Hence, the nonlinearity can be bounded by interpolations:
VE|T (PR, PR)HL%W S \/EHPRHL%UL;X’ : HPRHngLf

~nl/2 ~nl/2 =
SVEIPRIY [ IPRILE 1o - IPRI Ly 1z

On the other hand, /2||T'(Rs, R)HL% in (1.4.15) needs an extra care since we

cannot take L?—norm to the steady solution R;. It turns out, by a closer look, that
we only need to consider

VEAID((T -~ P)R.PR) 1z < VeI~ P)R.| g, [PRIlpg s

Thanks to the good bound of e 1{|(I — P)Rs||2 < 1 and further by the interpolation
LS ¢ L? N L™, we bound the above by

Ve x e BT = P)Ry|l] ? [¢]| Rslloo] />

Similarly to the steady case, by using a double iteration of the Duhamel formula
along the characteristics [20], we may bootstrap such L? estimates to an improved
L° estimate as

~

- 1 - 1 ~
[RllLe S EHPRHL;’C’L%U + @H(I = P)R||per2  +1,

1/2

where the dimension is d = 3. Clearly, a new difficulty is to estimate |PR)|| 13 oo
x, vt

which is not controllable from (1.4.15).
The key new idea is to repeat energy estimates ||R|| reerz and PRy || 3,12

estimates for the time derivative Rt:

1 [t ~ t ~ t o
5 [ Ia=PRIE+ [ [PRIE < [N RO +1

t t
PR 2 S [ ICE R+ [ DG BB +1.
We then estimate L via H} (Lemma 3.6) as
HPRHL;ULgo + HPRHL?L;U S ”PRHngLf + HPRtHngLg +1.

Fortunately, in order to close the estimates, we don’t need to improve ||Ry||e, but
only need to control the new nonlinear term
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\/EHNPRPE)HLgm SVEIPR| s 1o~ - ”PRt”Lgng
~il/2 ~n1/2 =
SIPRIFY o AVEIPRIZE o  IP Ry 12

which can be exactly closed.

We remark that our method works also for a general 2D domain. Now the gain
of integrability is expected as HY/2 C L% = L%, and it is not critical and analysis
is much less delicate than the 3D case.

2 Steady Problems

2.1 Domain, Trace, and Green Identity

Assume 99 is C3. Then for any xy € 052, there exist 0 < rg,71 < 1 and C3
function 7 : {z) = (z1,22) € R? : |z)| < r1} = 99N B(xg,ro) such that if
x € 90N B(xo, 7o) then there exists a unique z; € R? with |z)| < ri satisfying
x = n(z)). Here, we have used the notation B(zo,79) := {z € R?: |z — z0| < ro}.
Without loss of generality we assume that |0y n(z))| # 0 for i = 1,2.

Assume dist(z,09) < 1 and z¢ € 092 such that dist(z, z¢) = dist(x,02). Then
there exists an 1 which is a parametrization of 02 around xg. Clearly

Vg, In(x)) — x| = (813“71]77(33”) — x|2,8x“’2|77(:z“) —z[?) =0, for some T (2.1.1)
On the other hand, if [n(z)) — 2| < 1,
07, In(x)) —af* = 8z, [20m(x)) - (n(z)) — 2)] = O(|n(w)) — x]) + 2|0 (z))|* # 0.

Then, by the implicit function theorem, there exists a unique z|(z) € C? satisfying
(2.1.1). Moreover,

(%x,l) _ ( O+ 0 - (n—=x)  din-an+ Drdan- (n—:c))l (—01?%)
O, || 2 011 - Oan + 01021 - (n — ) |Oon| + 03n - (n — ) —0om; )’

where 1 = n(z)|). Then we define z; € C? for dist(z, Q) < 1,

21(2) = [¢ = n(ay(@)] - nlz)(@)). (2.1.2)

Note that dist(z,0€) = |z ()| if dist(x,0Q) < 1.

By the compactness of 92, we conclude that if dist(z,0Q) < 4r for some
0 < r <q 1 then there exists (z)(z),zL(x)) € C? such that x = n(z(z)) +
z1 (z)n(z)(z)).

Finally we define the C? function ¢ : R> — R as

{(z) == $¢($)X(W> + r[l - X(Wﬂ, (2.1.3)

472 72



126 ANN. OF APPL. MATH. Vol. 36

where
1 if o <4
X € C2°(R) such that 0 < x <1, x/(z) > —4x 11«1 and x(z) = 1 o] < 3,
2== 0 if |z| > 1.
(2.1.4)
Then Q = {z € R3: £(x) < 0}. If |£(x)| < 1 then &(x) = 2 (2).
Moreover n(z) = % at the boundary x € Q2. From now we define
Vé(x) 3
n(x) := for z € R”. (2.1.5)
[VE(2)|

We use this new coordinate (2.1.2) to extend ® on the whole space, and denote
this extension by @, with ||®|oc < ||®[|eo: For 0 < 6 < 1,

B(2) 1= 2(@)Loen + 2y @)X (), cqner

Therefore without loss of generality we assume that ® is defined on the whole space
R3.

Definition 2.1 Assume ® = ®(x) € C!. Consider the steady linear transport
equation

v-Vauf +20 -V, f =g. (2.1.6)
The equations of the characteristics for (2.1.6) are
X=V, V=£2X), X(t;t;z,v)=z, V(t;t;z,0)=n0. (2.1.7)

If X(7;t,2,v) € Q for all 7 in between s and ¢ then
X(s;t;2,0) = o +v(s —t) + &2 // O(X(7';t;2,v))dr'dr,
tJt
V(sitz,v) =v+ 62/ O(1;5;2,0))dT. (2.1.8)
¢

Note that the ODE (2.1.7) is autonomous since ¢ is time-independent.
Define

th(z,v) :=1inf{t > 0: X(—t;0;z,v) ¢ Q},
rp(z,v) = X(—tp(z,v);0;2,v,0), vp(z,v):=V(=tp(z,v);0;z,v), (2.1.9)

and

te(z,v) :==inf{t > 0: X(¢;0;x,v) ¢ Q},
ze(z,v) == X(te(z,v);0;2,0v,0), ve(x,v) = V(te(z,v);0;2,v). (2.1.10)

Clearly (2p(2,v), vp(2,v)) € v and (z¢(z,v), ve(x,v)) € 74
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Lemma 2.1 For any open subset @ C R3, B C 9, and f € L*(Q x R?),
//Q><R3 ’f(xav)llxb(a:,v)EBltb(x ,U)S%ln%d.%'d'l)

min{t¢(y,u), ln 1}
-] (X (550,9.u). V (5:0,5))
n(y )-u<0
x{|n(y) - u| + O(e)(1 + |u|)s}dsdudsS,, (2.1.11)

and

// ‘f(l‘, 1)) ‘ 1$f(331”)631tf(:)3 v)<i In ;dl‘d’U
QxR3 m €

/ / / £ (X(s;0,9,u),V(s;0,y,u))|
)-u>0 min{ty, (y,u), = In 1}

m

x{|n(y) - u| + O(e)(1 + |ul)|s| }dsdudS,. (2.1.12)

For the proof we refer to Lemma 2.2 in [21]. From (2.1.7), for V € {V,, V,},

d (VX VX 033 | Iss
= =A A= v 3 ) 2.1.1
ds (vv) <vv>’ < 2V, 0 | 033 ) (2.1.13)

Note (g)‘iﬂs:t = Id. Since the matrix A is bounded, there exists a Cg > 0 such
that
[0, Xi(s; 1, ,0)| < Caelt=2], [0, Xi(s3t,2,0)] < Coplt — sle“@li=sl,

|02, Vi(s3t, 2, 0)| < Cae®lt — s|e®l=ol, |0, Vi(s;t, 2, 0)| < CaeCelt=sl.
(2.1.14)
Next lemma extends the Ukai’s Lemma ( [17]) to the case with external fields.
Lemma 2.2 Assume € is an open bounded subset of R3 with 0 is C®. We
define

1
AL = {(:E,’U) €yt n(x) vl >0, <]y < 5} (2.1.15)
Then
1fLslt Sso Ifli+ v Vaf +°@- Vo f|r.

For the proof we refer to Lemma 2.3 in [21].
Lemma 2.3 Let ® € C'. Assume that f(x,v), g(z,v) € L2 (QxR3), {v-V, +
20 -V, f,{v -V, +e2®-V,}g € L*>(Q2x R3) and f,,g, € L*(0Q x R?). Then

// {v-Vof+°® - Vo fg+{v - Vog+’® - Vgt f= | fg— / fg. (2.1.16)
OxR3 Y+ y—

Proof It is easy to check that the proof in Chapter 9 of [17], equation (2.18),
still holds in the presence of C! field.
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2.2 Gain of Integrability: L? Estimate

In this section, we prove the crucial result on the gain of integrability for velocity
averages of the solution to the transport equation.

First, we define f5 which represents either the interior, or the non-grazing parts
of f near the boundary.

Definition 2.2 We define, for (z,v) € @ x R* and 0 < § < 1,

it = 1 ("N (D s, @20

where n(x) is defined in (2.1.5).
At the boundary (z,v) € v = 9 x R3,

fs(x,v)|y =0, for |n(x)-v|<d or |v]> (2.2.2)

| =

The main goal of this section is the following:
Proposition 2.1 Assume ® = ®(x) € C. Let f(x,v) solve (2.1.6) in the sense
of distribution and f(z,v)|y = fy(x,v) € L2(v). Then

a@)| + [b(@)] + |e(@)] < S1f(x) +S2f (),
S1/(0):=4 [ 1. 0)|0)* Ve,
Sy f (z _4/ (I-P 0)2\/(0)dv, (2.2.3)

where f5 is defined in (2.2.1) and (a,b,c) in (1.2.4).
Moreover,

Hslf||L3(Q) S ||w_1fHL2(Q><R3) + ||w_1g||L2(QxJR3) + ||f||L2(~,)a

1S2fIs() < (X =P)fllz2xrs), (2.2.4)
for w(v) = Pl with 0 < B < 1.
Let C := m and
Qpga i ={w € R3: £(z) < 654}. (2.2.5)

We define, for (z,v) € Qp4.\Q, with Q@ = QU 9Q,

tf (z,v) ;== inf{s > 0: 0 < (X (s;0,z,v)) < C&* for all 0 < 7 < s},
ti(2,0) = By, —0),
(w0, 0), v (2, 0)) = (X(—t (2, 0);0, 2, 0), V(£ (2, 0);0, 3, v),

(xf(z,v),vf(z,0)) = (X (t§(z,v);0,z,0), V(t; (z,0v);0,2,v)). (2.2.6)
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Lemma 2.4 Let f € L*(Q x R3) solve (2.1.6) in the sense of distribution and
g € L*(Q x R3), and f(z,v)|y = fy(z,v) € L2(v). Then there exists an f(z,v) €
L3(R3 x R3), such that flgygs = f5. Moreover, in the sense of distributions,

{v-Vy+*®-V,}f =h=hi+hy+ hz + ha, (2.2.7)
where
hi(z,v) = L(zv)eaxrsg [1 - X(n(wé) : U>X<£(5x)>}X(5|U|)7
h?(xa U) = 1(:8,1))6(2><R3f{v Vg + 52@ ’ vv} 1- X(n(x(s) : U) (g(;))]X(é‘UD}a

it Vot @ (
+

X [ft;(xg(x? U)v ’Uik)(x? U))lxﬁ(w,v)eaﬂ

h3(~7;7 U) = 1(:r,v)€[QC"54\Q}><R3
(
£(z)
4
1

—{—fg(fl):‘(l‘, U)v U%k (ZE, U))X(é,(sz)xl(tﬁ (LL‘, U) :v;f(ac,v)EBQ] )

*

Pa(2,0) = (g apefrgy e | fo(@h (@, 0), v (@, 0)x
)

and

P11l 23 xrsy So 9l 22xr3),

A2l L2 msxrsy Ss 1l L2xr3),

sl L2 s xr3) + [1PallL2r3xrs) So 1fsll2(y)- (2.2.8)
Proof Step 1 Consider f5 in (2.2.1). In the sense of distributions on € x R?,

0 Vafs+20Vofs = [1- x(”(mé) | ”)x(gif))}x(élvl)ﬁ f{v-V,+ 20 V,)

X{[l_x(n(xg.U)X(g(;))}x(ﬂv!)}- (2.2.9)

Note that,

0
- ) B %{’U - Ven(z) v+ @ - n(z) by

Vet 0 [t x (M0 (S ]y o)
(

_ %v . vxg(x)x’<g(;)>x<n($g : U)X(5\U|)
+e%6% - |—Z‘x’(6!v!> [1 - X(n(x(;) 'U)X<€(;)>H

4 Ca
< 5(!’012!!5\\02 + &% ®]l00)x (]0]) + — lvix(lvl) + £26)|®|l oo L jy|<25-1
S8 <51 (2.2.10)
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This proves the second line of (2.2.8). Since

[ () (S ool <1,

we prove the first line of (2.2.8) directly. The third line of (2.2.8) will be proved in
Step 5.

Step 2 We claim that for 0 < &(z) < C16* and |v] < 5, if n(z) -v > & then
E(xh(x,v)) = C10%; and if n(z) - v < —4 then &(zf (x,v)) = C10%.

If v-n(x) > 0, we take s > 0, while if v - n(z) < —¢ then we take s < 0. From
(2.1.8),

E(X(5:0,2,0)) = £(x) + /0 V70, 2,0) - VoE(X (50,2, 0))dr

=&(2) + /0 {v+0W)e?|®]lot} - {Vat (@) + O)[[Ellc2(lv] + %[ @]|oc) 7}
= £(x) +v- Vab(2)s + Ol ez {[v]*s® + €| @[|oos® + €| @|oo v]s” + ¥ @55}

From &(x) > 0,

1€]] 2
> 5|3|{1 - [[0]s] + €21 ®|ocls| + €[ @]lo|v]ls|* + €4||(I)||go|5|3]}

J
[€llc2 71 2 > L2 il 13
> _ — Z
> dlsl{1 = =2 [ 51l + 2 @llocls| + 2@ lloo 5[5 + |22 )5 }
1 PPl 2Pl 0% 22 dls|
> S 0 > — 2.
Z dlslq 1 Lﬁ S T T wm H— 5 (221
for 0 < |s| < WZZH@) and 0 < ¢ < 1. Then we choose s, = +W§I|cz) for
§3
n(z)-v>4d and s, = ~ I for n(z) - v < —4d, to have
(X (s4;0,y,v)) > o > (16
*7 ) Y = 5/1 1 el N 1 N
8(1+ [i€llc2)
By the intermediate value theorem, we prove our claim.
Step 3 We define fg(x,v) for (z,v) € [R3\Q] x R3:
: ] E(X)\ /o -
fs(zp (z,0), v (x,0))x 55l X(ty(z,v)), if zf(z,v) € 09,
s = * * f x * ek
Tol@ )= (i, o), 08 @ o)x( ééj)wf(m,v)), if (2, v) € 09,
0, if oy (x,v) ¢ 00 and a3 (x,v) ¢ 0.
(2.2.12)

We check that fg is well-defined. It suffices to prove the following:



No.2  R. Esposito, etc., Diffusive Limits of the Boltzmann Equation 131

If 2y (x,v) € 02 and xf( v) € 09, then f5(xy (x,v), vy (, v))X(%)X(t;(x,v)) =
0 = f5s(zf(z,v), vi(z,v) ( ) (ti(z,v)). If [n(zf (x,v)) vy (z,v)| < dor|vf(x,v)] >
%, then f5(zf (z,v), v} (z, v)) 0 due to (2.2.2). If n(xf(z,v)) - vi(x,v) > ¢ and
vj (2, v)| < %, then, by Step 2, &(zf(z,v)) = E(2f (2} (z,0), vf(2,v))) = C6* so that
xg(z,v) ¢ 0N

On the other hand, if |n(z}(z, v)) v (z,v)| < & or |vf(z,v)| > §, then f(;(xf(a; v),
vf(z,v)) = 0 due to (2.2.2). If n(z§(z,v)) vf(z,v) < —6 and |vf(z,v)| < 3, then by
Step 2, &(xf,(x,v)) = &(xf (xF(z,v), vE(2,v))) = C8* so that =} (z,v) ¢ IQ.

Note that

fe(x,v) = fs(x,v) for all x € 9. (2.2.13)

If x € 0Q and n(x) - v > 6, then (zy(x,v), v} (x,v)) = (x,v). From the definition
(2.2.12), for those (z,v), we have fg(z,v) = fs(x,v). If z € 0Q and n(z) - v < —0,
then (2f(z,v),vf(z.v)) = (z,v). From the definition (2.2.12), we conclude (2.2.13)
again. Otherwise, if =6 < n(x)-v < 4, then fglsgq =0 = fs5]oq-

Step 4 We claim that fg(z,v) € L2([R*\Q] x R3).

From the definition (2.2.12), we have fg(x,v) = 0if 2} (x,v) ¢ 0Q and zf(z,v) ¢
0f). Therefore we can decompose the following integration as

// | fE (2, v)[2dzdv
[R3\Q]xR3

//[Rs\m Rsl wieonlfip(@ ) dedv + / /[R3\Q] RS Loz (2 wyconl [ (2, 0)Pdedo
% X

://[Rs\m R}xb(:cv 689’f5<$b($ U) v (ac U ’ )X(Cyl)‘ ‘X tb T v))lzdxdv (22 14)
X

+//[R3\Q] Rslx;(x” yeoal fs (g (2, v), vg (z, 0))] ‘X( )’ Ix(t5(x U))dedv (2.2.15)
X

where we have used (2.2.12).
From (2.1.11),

(2.2.14)
min{t} (y,u),1}
/ / / ‘fﬁ xb 3 0 y Y, U ),V(S;O,y,U)),
o Jn(y)u>0
v (X (s;0,y,u),V(s;0,y,u | {In(y) - u| + O(e)(1 + |u])s}dsdudsS,

< /BQ /n(y)_u>0/0 ‘fé(xb,u)} {In(y) - u| + O(e)(1 + |u|)s}dsdudsS,

2
< / / ()P Iny) - wldudSy S sl onems) < 1P 125 omems):
o Jn(y)-u>0
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where we have used the fact, from (2.2.1),

1

O()(1 + [ul)ls| < O(e) (14 5) S 6 S Inlw) -ul for (y,u) € supp(fs),

and the fact

(2 (X (5;0,,u),V (5;0,,u)), 05 (X (5;0,5,u), V(s;0,y,u))) = (2 (y,u), vy (y,u)) = (y, u),

for n(y) -u >0, y € 909, and 0 < s < ti(y,u).
Similarly we can show that (2.2.15) < ||f5||%2(8ng3) < ||f||%2@Qng).
Step 5 We show that, in the sense of distributions on [Q44:\Q] x R?,

v-Vofp+*®- Vo fp
= 0 V@ (L) st ), v o) ) Lo
+f6(95?(907 'U), UF (.f, U))X(t}k-(.%', U))]-:E;(x,v)eaﬂ]
§(x)
Cot
. : £@)
—fg(.%'f(ib‘, U)a Vs (x? U))X( 054
For ¢ € C2°([Qpz5\2] x R?), we choose small ¢ > 0 such that X (s;0,z,v) € Qz5.\Q
for all |s| < ¢ and all (z,v) € supp(¢). Then, from (2.2.12), for (X (s),V(s)) =
(X(5;0,z,v),V(s;0,2,v)),

A CRDREN CRO) N G PUCERY)E s

)X/(tﬁ(xvv))lx;(az,v)eaﬁ- (2216)

= [fs(@h (X (5), V(5)), v (X (), V()X (5 (X (5), V(8))) Lag (x(5),V ()09

§(X (s)))
Co4

H (2 (X (), V(s)), i (X (5), V()X (85 (X (), V() Lag, (x (s),V (s)) 00

(e (X ()Y ()b (X 6V DX XV 6D oxvneamkc((E D).

~
ox R
=
—~
-
L
8
<
SN—
<
—
=
=
R
<
S~—
SN—
I
~
o *
—
8
<
SN—
—+
o
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%fE(X(s), V(s))=[fs(@p (@, v), vp (2, 0)X (t5(X (5), V(5) Lag (2.0)co0
~F5(wi 00,0 e O (G X6,V Lgempeon]x ((E D)
+[f5(xﬁ(xav)avb($aU))X(tik)(X(S)aV(S)))lmﬁ(w,v)eaQ
+f5(xF (:C, U)? U%k (.73, U))X(t?(X(S)v V(S)))lx;(a:,v)eaﬂ]
1 (§(X(s))
X 5V (9) Vat(X(s)x ( o ) (2.2.17)
By the change of variables (z,v) — (X(s;0,2,v),V (s;0,z,v)), for sufficiently

small s,

_//[VQ \Q] R fE(xav){UVm_'_gz(I)Vv}qs(x’v)dxdv
Csd X

—— [ XL VENVE) Tx+ 0 Tu)olX (), V(s))dado
2450\ Q] XR3

= —// _ fE(X(s),V(s))di¢(X(s),V(s))dxdv. (2.2.18)
[Qp 54\ Q] xR3 5

Since the change of variables (z,v) — (X (s;0,2,v),V (s;0,z,v)) has unit Jaco-
bian, it follows that, for s sufficiently small,

J[ mEevEwsxe Ve = [ s,
[Qe5a \ Q) XR3 [Qp54\QIxR3

and hence

d
Sl X Ve (). V() =0
S [96’64\Q]XR3
Therefore we can move the s-derivative on fg: By (2.2.17),

(2.2.18)

— [ SR L V)X (). V (s))dede
[Qpga\ QxRS A8

— [ st vl O X)L V() Ly ayeon
2450\ Q] XR3

£(X(3))
S )X (). V()

+//[QC~64\Q]xR3 [fd(x’{)(:z,v)avﬁ(x,v))x(t{,(X(s),V(s)))lx;(x’v)eaﬂ
i (2, 0), 0 (2, )X (X (5), V() Lo ayon]

1 /
X V() Ve ()

—Fs(a (,0), Vi (@, )WY (1 (X (), V() L ayean]




134 ANN. OF APPL. MATH. Vol. 36

From the change of variable (X (s;0,z,v),V(s;0,2,v)) — (x,v),
@218)= [ [fsleno ) vl 0N e 0) Ly yean
Q54 \ O xR

§(x)
@) ¢($7 v)

+ // [0, (o o)X (b (2 0) L (e
[Qé(ﬂ\ﬂ} XR3

— fo(wf (2, 0), 0§ (2, )X (6 (2, 0)) Ly e yeon] x

s, 0), 07 (00X @ D Ly rconl s Vot (52 o, )

Hence (2.2.16) is proved.

On the other hand, following the bounds of (2.2.14) and (2.2.15) in Step 4 we
prove the third line of (2.2.8).

Step 6 We define f(z,v) for (z,v) € R? x R3:

[, 0) = f5(2,0)1 (g p)eaxrs + FB(T,0)1 (4 0)era\q)xrs- (2.2.19)
For ¢ € C°(R3 x R3), from the Green’s identity (Lemma 2.3),

—// flv-V,+e20-V,}¢

R3xR3

—— [ pteereevie- [[ e v.+2e v
QxR3 [R3\Q]xR3

= [0+ [spo [[ -9 e v

+// o {v V. +£2 -V, } fro.
[Q2554 \Q) xRS

From (2.2.13), the boundary contributions are cancelled:

/ fa(a, v) (e, v)dy — / F(@ )6 (@, v)dy = 0.
v Y

Further using (2.2.9) and (2.2.16), we prove that f solves (2.2.7) in the sense of
distributions on R? x R3. The proof is completed.

For (x,v) € supp(f), we can choose a fixed T' > 0 such that

X(T;0,z,v) ¢ supp(f) and X(T;0,z,v) ¢ supp(h), (2.2.20)

so that

JX(T;0,2,v), V(T;0,2,v)) = 0.
Directly,
X(T30,2,v) — 2| = [oT + O()||®]T?| = 0T — O(2) [ @] T2
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We choose T' = % for large but fixed C' > 1 such that |X(7T;0,z,v) —z| > C —
O(g—i) > £ > 1. This proves our claim (2.2.20).
With such 7' > 0 in (2.2.20),

T
f(z,v) = —/0 h(X(s;0,2,v),V(s;0,2,v))ds.

Note that, from (2.2.12),

fe(z,v) =0, for &x)>206* or |v|>2671 or |v] <§/2. (2.2.21)
Therefore,
~ T
F(z,0)] g/o 1o [R(X(5:0,,0), V(55 0,2, 0) [ ds. (2.2.29)

Definition 2.3 For fixed 7' in (2.2.20) and § > 0 and a smooth function
¢ € LY(R3), we define the average operator S as

Sh(x) = //<| s (s;0,2,v),V(s;0,2,v))p(v)dvds. (2.2.23)

5

Lemma 2.5 Assume that ¢ € C1(R3) is such that |¢p(v)| < é(|v|) with ¢ €
CH(R) where ¢’ decays exponentially. Then

IShl L3 Se llw™" Rl z20xrs)- (2.2.24)

Proof We only prove (2.2.24) in the case of 5 = 0 since for sufficiently small 0 <
B < 1, we can always absorb w growth by ¢, by using |V (s;0, z,v)| < |v|+&2T||®|| .-
We define the dual operator:

T
S*(g)(z,v) := 15<|V( s0,m0)|<29 9(X(=5;0,2,0))p(V(—s;0,2,v))ds. (2.2.25)
0

6

By a change of variable (X (s;0;z,v),V(s;0;2,v)) — (z,v),

(Sh,g) / /RS/<|U , (s;0;2,v),V(s;0;2,v))p(v)g(x)dvdzds

6

/ /R/ 5 <V (—s5:052,0)| < _, M@ v)g(V(=5;0:2,v))g(X(=s; 052, v))dvdads

8

= (h,S%g)

Note that, for % + 5 =1,

1

p/

[Shllp = sup (Sh,g)rz = sup (h,S"g)L 2, <||hHL2 sup HS*gHL%’v.
loll <1 loll <1 ol <
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Therefore, in order to show ||Shl;» < ||h||Lg2M, it suffices to prove ||S*g||L%7

Y

lgll,- But
1S*9l72 , = (S79.5"9)12, = (5579, 9)r2 < 1SS gll 2 lgll
Hence we only need to show
15579l o) S N9l 1o (- (2.2.26)
Here, the explicit form of SS* can be written from (2.2.23) and (2.2.25):

SS%( ///R316<|v (—s0z0)<2 1

X(=s+71;0;2,0)p(V(—s + 7;0; z,v))p(v)dvdrds. (2.2.27)

M\Ow

<v|<%

First we consider the following change of variables:
vy = X(—=s+7;0;x,0). (2.2.28)
By (2.1.14),
Oy, Xi(=s5 +1;0;2,v) = (=5 + 7)ds + 0(e%)]s — 7T = (=5 4 7)(8;j + O(£?)),
and the Jacobian is
det V, X (=s+7;2,0) = (1+0E?)(=s+7)3 = (—=s 4+ 7).
Therefore we have

1
dv < ——dy.

~ls =13
We apply this change of variables to bound

1957 (9)(=)] </ / /RB Licv (s oty >>|<§1g<|v<y><§‘s_17|3
WIHEV (=s + 7052, 0(y)))] |o(v(y))|dydsdr.
For [v| > 4
V(=s+732,0)] = [o] + OE*) T2l = 0] + O(e%) = O(1)]u].
Let y := X(—s+ 7;8,2). Then
ly — o = [X(=s +732,0) —a| = [vlls — 7| + O(%)[s — 7%,
ly —a| =|V(=s +7i2,0)|s = 7|+ O(%)[s — 7%,

and

9= o) 4 0()]s — | = O,

s — 7]
ly —
s — 7]

=|V(=s+72,0)|+ O(%)]s — 7| = O()|V (=5 + 752, 0)].
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From the monotonicity of ¢, there exists a C' > 0 Such that

6V (=s-+ 30,2, D) < fo(cL =)
-7

We define )

/ / r _7‘3’¢ —ﬂ)‘ dsdr. (2.2.29)
Then
stgxxnstéswax—wanAMy (2230
Now we claim that

M e L3?R?), ie. M(y—=z)< |y_1$|2 (2.2.31)

We use the change of variables (s, 7) +— (s,t) with ¢ = |s — 7| to have

M(z —y) g/OT ;&(cy;m’)dt.

Then letting w = ‘y_wl so that dw = 252 dt and dt = = dw,
t w

1 \y x| w 1 [ 1
M(z—y ,S/ ~¢*(C dt</ & (Cw dwﬁ/ we? (Cw)dwS——-.
( ) o 3 ( t ) o ly—z|? (Cw) ly—2|2/o (Cw) ly—a|?

This proves (2.2.31). Then, by the weak Young’s equality (see for example [46]
page 106) and (2.2.31), we conclude that SS* : L — LY, with 1+ % = % + %, and
hence ¢’ = 3. This proves our claim (2.2.26). The proof is completed.

Now we are ready to prove the main result of this section:
Proof of Proposition 2.1 First we note

1- [1_X<n(m5) U>X<§(5x))}x(§|v‘) < Lo i diseon)<d o) al<s (2232)
For simplicity, we denote [ag, a1, a2, a3, as] = [a, b1, ba, b3, c]. Then a; := a;(f) :=
2 v]2 -3

[6o0): G1(0), Ga(v), Ga(0), Ga(w)] += | VA o1 Vi v, s/ 5
Then from (2.2.1),

/f&xv@

\/ﬁ] (2.2.33)
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where we have used the fact that, for i # 7,

/ Gi(v)Gj (V)1 <o5dv —>/ Gi(v)¢i(v)dv =10, as 0]0. (2.2.34)
R3 R3

Therefore

1 4
D olai@) <)
i=0 i=0

/ f3(,0)Gi(w)dv
RB

4
+0(5)) aj()|
j=0

4
+0u(1) [ 10110 G0l
Hence,

ala) [+ o)+ @) <4 [ o) (02 o4 [ JT=P) . 0)| 0 o).

These prove (2.2.3). The second estimate of (2.2.4) is clear from the definition.
Now we focus on the first estimate of (2.2.4). From Lemma 2.4,

[ st o)l Vit < [ 1.0l Vi),

From (2.2.22) and (2.2.23) with ¢(v)=(v)?\/p(v), we have [ps | f(t, 2, v)|(v)*\/p(v)dv
S [S(h)(E, @)

Finally, from Lemma 2.5 and (2.2.24), and (2.2.8), we conclude (2.2.4). The
proof is completed.

2.3 Steady L?—Coercivity
The main purpose of this section is to prove the following;:

Proposition 2.2 Suppose ® € L, g € L*>(Q x R?), and r € L?*(y_) such that

//QXRSQ(:E,U)\/ﬁdmdU =0 :/ r(z,v)/udy. (2.3.1)

Then, for sufficiently small € > 0, there exists a unique solution to

U'vxf+€2\;ﬁ¢"vv [\/ﬁf] +€71Lf:ga f”‘/— :P7f+r’ (232)

such that

// f(z,v)/p dedv =0, (2.3.3)
QxR3
and
_ _1 _ _
IPfI5+ e [X=P)fIZ+If15 S lv 2(X = Pglls + e 2| Pgll3 + e rf3 . (2.3.4)

For the proof we refer to the proof in [21] for the details. As the first step of the
proof of Proposition 2.3, we consider the following penalized problem:
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1
Lf = <)\+5_ll/f552<I>-v)f+v-vxf+s2<l>-vvf:g in Q x R,
f=P,f+r on~y_. (2.3.5)
Lemma 2.6 Assume that g € L*(Q x R3) and r € L%*(y_) satisfy (2.3.1).

Moreover, let ® € L*(Q) and X > 0. Then, if ¢ > 0 is sufficiently small, the
solution to (2.3.5) exists and is unique. Moreover it satisfies the bounds

_ g
e A +1(1=P)fI3 1 < €HWH§ +1rf3 (2.3.6)

We remark that Lemma 2.6 implies that, for ¢ sufficiently small, the operator
L1 is well-defined and bounded as a map from L? to L?. For the proof we refer to
Lemma 2.10 in [21].

Lemma 2.7 For any A\, e > 0, the operator KL~ is compact in L?. Explicitly, if
g" € L? and sup,, ||g"||2 < oo then there exist subsequence ny such that K f™ — K f
in L?, where ™ solve

1 1
MU+ v- Vo f" + gl/f” 42D -V, f" — 552<I> coft=g" "y =Py f" 4
For the proof we refer to Lemma 2.11 in [21].
Next we prove the essential bound for P f, where f solves
1
[)\+(1 ey — 58@-v)}fﬂ-vxf+e2<1>-vvf+e*19Lf — g, inQxR?
f-=Pyf+r, on-~_. (2.3.7)

We denote

Fomt=tovi = ([[ i) ([ uasr). @as)

Lemma 2.8 Assume (2.3.1). Let f be a solution to (2.3.7) in the sense of
distribution. Then, for all A >0 and all 6 € [0, 1],

o _ g 2
P A5 S NPT+ =PSB+ 1B+ | ]|+l @locliR)P, (239)
and

AHTS A= 0| £l2. (2.3.10)

For the proof we refer to Lemma 2.12 in [21].

2.4 L* Estimate
The main goal of this section is to prove the following lemma.
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Proposition 2.3 Let f satisfy
[0 Vo €20V, + e Colo)] 1 < e Kplf |+ lgl,  |Fh_| < PoIfI+1rl, 241)
where, for 0 < 8 < %, Kg|f| = [gs ks(v, u)|f(u)|du and

— _ -1 . o2 HU|2 - |U|2]
kg(v,u) = {Jv—u|+|v—ul""} exp { Blv — ul| ﬁih) P } (2.4.2)

Then, for w(v) = B with 0 < B < 8,
lew flloo S o(D)lew oo + llewr(s)[loo + €[ {v)  wgll o
1 1
HIS1fllzs) + 82 ) + G IA = P)fllrz@xrs).  (24.3)

For the proof we refer to the proof in [21] page 27.
We define the stochastic cycles for the steady case.
Definition 2.3 Define, for free variables v € R3, from (2.1.9)

t1 =t —tp(z,v), x1=X(t1;t,z,v) =2xp(z,V),

to =t1 —tp(x1,v1), 2= X(t2;t1,21,01) = xp(z1,0v1),

tor1 =tk — to(Tk, V),  Thy1 = X (tet1;th, Tk, Vi) = Tb(Tk, Vk)-
Set,

Xal(s;t,z,v) Zl[tk+17tk (s;tk,xp,vk), Val(s;t,z,v) zl[tk+17tk

For = € 092, we define
V(z):={veR: n(x) -v>0}, do(z,v):=V2ru){n(z)- vido. (2.4.4)
For j € N, we denote
Vi = {v; €R3:n(z;)-v; >0}, doj = V2ru(v){n(z;) - v;}dv;. (2.4.5)

The following lemma is a generalized version of Lemma 23 of [32].
Lemma 2.9 Assume ® = ®(z) € C'. For sufficiently large Ty > 0, there
exist constants C1,Co > 0, independent of Ty, such that for k = ClT5/4,

k—1 5/4
1 CQT
sup _ /C‘l 1tk(t,x,v1,vg,~-- ,vk,1)>0 H dO'[ < { 2 } . (246)
(t,z,0)€[0,To] x Q2xR3 éH Ve =1
=1
Proof For 0 < § < 1, we define

1
V= {vg €V |vg-n(xg)| >0 and 6 < |vg] < 5}
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Clearly, fVe\Vf doy < C6, where C' is independent of . We claim that

53
’tf — t@+]_’ Z 0797 for Uy € Vg (247)

It suffices to prove, for (z,v) € 4% and 0 < £ < 1,
to(z,0) Z o] ?|n(x) - vl.

Note that % < 2. Therefore we only need to consider the case of ty,(z,v) < 2.
From |v] > 6 and xp = = + tpv + O(e?) (tp)?,

th = |zp — zl|v] 71+ O(EH) () *[v] 7 = |zb — 2|[v| T + t,O(e2)6.
For fixed 6 > 0 and ¢ < g¢g <5 1,

tb(ZL‘,’U) Z ‘SL‘b(ZL‘,'U) - .’L‘HU|_1.

From the fact |zp — 2| 2 [n(z) - 7=2| for zp,z € I from [32], we have

lx—xp|
t(2.0) 2 |n(2) - [z = au(z.0)][ o]
On the other hand, for (z,v) € 4% and ¢ < 1
n(z) - (b —2)| = [n(z) - [tbv + O(?)(tn)?]| = tu|n(z) -v|+O(*) (t)* 2 toln(z) - v].

Therefore we prove our claim. The rest of proof of (2.4.6) is identical to the proof
of Lemma 23 on [32].

Now we are ready to prove the main result of this section:

Proof of Proposition 2.3 Define, for w(v) = ' I*°,

h(t,z,v) = w()f(t,z,v). (2.4.8)
(

From Lemma 3 of [32], there exists a § = 3(3,4') > 0 such that ks(v,u)= Z) <
ks (v, u).
Then, from (2.4.1),

1 .
V-V +e® -V, +e 1Chlv) + W} leh| < 5_1/ ks (v, u)leh(u)|du + elwg].
R3

(2.4.9)
Clearly e 1Cp(v) + £2Vat =10 (v).
From (2.4.1), on (z,v) € 7_,
elh(z,v)| < V2rw(v)\/p - >05!h(a:,u)\wlég;){n(x)~u}du+sw(v)]r(m,v)\
< wgv) /n g B+ w0 (2.4.10)
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where we define

I
w(v)y/u(v)

We claim, for ¢t = Ty where Tj in Lemma 2.9 (does not depends on ¢),

w(v) =

eh(z, )|
14C1y*
< CT5/4 e + o(1 CT5/2 ehl|leo + el|wr OO—I—CT5/252 v _lwg 0
0 9 0 0
1 1
+CT (181 flls(@) + <75 182l 2y + 75| X = P)S 1z |- (2410)

Once (2.4.11) holds, Proposition 2.3 is a direct consequence.
We first prove (2.4.11). From (2.4.9), for ¢, (¢, z,v) < s <t,

t
di {exp (—/ C;O<V(T;t,:c,v)>d7'>5h(Xcl(s;t,x,v),Vcl(s;t,:p,v))}
S S
t CO 1 / / /
<exp|— ?<V(T;t7l‘,’0)>d7’ g kB(VCl(S;t7l‘,U),U)|5h(XC1(S;t,[L‘,U),U)|dU
s R3
t
+ exp <—/ C;O<V(T;t,l’,7j)>d7'> lewg(Xel(s;t, x,v), Val(s;t,z,v))|.

Along the stochastic cycles, for k = C1T, g / 4, we deduce the following estimate:

leh(z,v)
tCoVal(r;t, x,v
<10 mmeoy v (- [ AT 4 en (e 0:.,0), Va0, 2:412)
t Co(Vai(T;t,z,v))
o L e (- [ Ollalztangr)
max{0,t1 (¢t,z,v)} €
X /R3 dv’ kB(Vcl(s;t,x,v),v')\ehe(Xcl(s;t,x,U),v/)| (2.4.13)
t _ tCo<Vcl(T;t,r,U)>d
+/ ds exp (=g 2 ) |e2wg(Xea(s;t, z,v), Va(s;t, z,v))]
max {0,t1(¢,z,v)} €
(2.4.14)
t ColVal(r;t,z,v
oz e (- PO (o 0,0, 0,0 2:15)
t1(t,x,v
t Co{Vear(Tit,xv
1 exp (_ ftl (t,z,v) wdj—) H
+ {t1(t,z,v)>0} ’lZ}(’U) kl:[lv- ’
J
j=1

where H is given by
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k-1
Lty <0<ty [ER(Xea (03 1, 21, 01), Ve (0 1, 2, 01)) [ d%4(0) (2.4.16)
=1
k=1
+ 1y>0- / ks (Var(rs ti, 1, 00), u)|eh(Xa (75t 1, 00), w) | dud Sy (r)dr
— Jmax{0,t11} R3
(2.4.17)
k=1
+Z/ 1i50— ‘5 wg(Xd(T;tl,xl,vl),%I(T;tl,xl,vl)HdEl(T)dT (2.4.18)
— Jmax{o,t 1}
k-1
+ 3 Lysolew(v)r(iyr, v) | (t) (2.4.19)
=1
+1¢,>o0leh(@r, ve—1)[dEk—1(tk), (2.4.20)

and dXg_1(tg) is evaluated at s = ¢; of

d%(s { H da]}{exp (—/:l CO<VC1(T;;1’$Z’Ul)>d7'>w(vl)dal}

j=l+1
-1 s Ly .

X H{exp (—/] C°<V°‘(T’tﬂ’xﬂ’%))dT)daj}. (2.4.21)
j=1 ti+1 €

Directly, from our choice k = C’1T05 / 4,

C
(2.4.12) + (2.4.16) S O\ T Y™ 2 |eh]|oo,  (24.15) + (2.4.19) < C1 T *|lewr| oo
and

(2.4.14) + (2.4.18)
Sl g < { [P o ([ ORATRE g g,
(Ve

€
t; -t t; .
+ClT5/4Sup/ (T3t x,vp)) exp (_/ Co(%l(r,tl,xz,vz»dT)dT}
! 0 € s €
t t
5/4 2 —1 d CO<‘/;1(T;t7x7U)>
S CIT, " [e ) wgl| X/o 15 &P (—/S . dr |ds

<oy ) wg|

where we have used the fact that do; is a probability measure of V;.
Now we focus on (2.4.13) and (2.4.17). For N > 1, we can choose m = m(N) > 1
such that

1

ki (v,u) == 1), 5 1 Ly j<m L) <mkp(v,u),  sup ki (v, u) = kz(v, u)|du < —.
-_m v R3 N

(2.4.22)
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We split kz(v,u) = [kz(v,u) — km (v, u)] + ki (v, u), and the first difference would
lead to a small contribution in (2.4.13) and (2.4.17) as, for N >, 1,

01T5 /4

~llehlloo = =0 lehloc

We further split the time integrations in (2.4.13) and (2.4.17) as [t; — ke, t;] and
[max{0,t;41},t — ke

t t—kKe t;—kKe
(2.4.13):/ / . (24.17) 1{t1>0}% ) Z{ / / }
t—,‘{&‘ ax{0,t1} ,7 t—kKe max{0,t;41}

Vi=1

The small-in-time contributions of both (2.4.13) and (2.4.17), underbraced terms,
are bounded by
1
kezsup [ den(0,0)d0 o S ot
[v/|<N

E v

1
cng/%eEsup/ K (v, )0 [lhl]oe S KOLTE M| oc.
[v/|<N

v

For (2.4.20), by Lemma 2.9,
k-1

(2420) 5 sup _ %1 1tk(t,x,v,v1,vg,--- ,vk,1)>0 H da]||€h‘|00
(t7$,U)E[O,T()]XQXR3 H V] ]:1
=1
1 CQT
{307 E
Overall, for (t,z,v) € [0,Tp] x Q x R3,
t—ke 6_7@ s)
leh(z,v)] §/ / leh(Xa(s;t,z,v),v")|dv'ds
max {0,t1(z, ’U)} € [v'|<m ~~

(t—t1) k=1 t,—ke 1

o te>0
+1 4>0 ~/_ E / e~y
201" (0) i Vi =y Jmax{0tera} €
j=1

X/ ‘Eh(Xcl(T te, xp,vp), ‘dv”ng( )d
v |<m

~~

5/4y _ % -
Ty e 2 ehlloo + llewr(s) oo + 1€ () wglloo}
14Co1*
+o(1)OTY|eh| s + {5} 0 leh] oo (2.4.23)
Note that the same estimate holds for the underbraced terms in (2.4.23). We

plug these estimates into the underbraced terms of (2.4.23) to have a bound as

|5hé+1(t,x,v)| <I+1I,+1s.
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Here, using w(u) Sy, 1 for |u| < m,

C, _
t—ke o =0 (t—s) ,[5RE e e
L <m ds & do P
max {0,t1} € [v/|<m max{0,t} } €

></ duleh(Xa(s'; s, Xa(s;t, 2, v),0"), u)|
lu|<m

/t/{s 1 ef%(tfs) / 1 o Co (s—t)
+ § ——— V'l sy ————
max {0,t1} € [v/|<m =0} (U)

k-1 t —KE
X% 1 Z/ ].t/ >0 ‘c‘:h T, Xcl(T tgl CL'@/ U@/ |dud2g/ )d
H Vi p—q Y/ max{0,¢

Lo

where té/ = t@’(S>Xc](S;tax>’U)7UI)7 x,gl = J:‘g/(XC](S;t,.CE,U),’U/), Uz/ = UZ’(XCI(S;ta
x,v),v"). Moreover

o €0 (t—ty) k=1 ty—ke 1
IQ S 1 S0V =~ /_ E / ng( )dT 1t 0— / d’U”
TG 0) 'y & Sastoen e Jrizm
j=1

T—KE e—%(T—S )
></ ds” / du‘sh( als”;m, Xa(mite, o, v0),v /),u)‘
max {0,t]} € |u|<m

o= 2 (t—t1) k=1 t,—ke 1
+lyso0——=7— %_1 2/ dXy(7)dT 1450~ / dv”
- ’LU(’U) AH1VJ- r—1 Y max{0,tp41} [v"|<m

j=

Co _
) L ST 1
Xlt”>0/ / ]_ ” —
2 (0l E : >O
! w(v ) H Vi pr—p Y max{0,t o

f”+1}
X/ ‘Eh(’T XCI(T tgu,ﬂjg//,’l}gu )‘dUdZE//(T”)dT”,
lu|<m
where ty, = tp (1, Xa(7;te, we,v0),v"), 2 1= xen(Xa(T;te, 2, 00),0"), vp =
v (X1 (5 te, X, vg),v"). Furthermore

2 _% _
I; S OTy % {e e°tuahuoo+struwua% ) L]0 }

5/2 sjaf 110"
+o(1)CTy llehlloo + Ty {5} lehlle.

This bound of I3 is already included in the RHS of (2.4.11).
Now we focus on I; and Is. Consider the change of variables

vy = X(8 s, Xa(sit, x,v),0). (2.4.24)

By a direct computation and (2.1.14), for max{0,#|} < s’ < s — ke < Ty,
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8X( ) 9 0Xm , oy
(%j =—(s—5)d; / dT/ dr’e 20 D, ( i8))—— 6“} ("5 8)

—(s =)0+ O(e )||‘1>||01T<)260“>T°]-
By the lower bound of |s — §| > ke,
det Vy X (s';s) = |s — §'|3 det (65 + 0(52)H<I>||01T02ec‘1’T°) > g3e3,

Now integrating over time first

C
t—kKe e—%(t—s) . S—Ke e e
ds —— dv ds' ——
max {0,t1} € [v/|<m max{0,t} } €

></ duleh(Xa(s'; s, Xa(s;t, 2, v),0"), u)|
[u|<m

S sw [ duleh(Xa(s Xa(si ). o))
0<s'<s—re<s<t—re J |v'|<m |u|<m

< sup / / If(Xea(s'ss, Xa(s;t, z,v),0"), u)|dudv’
0<s'<s—ke<s<t—kre J|v/|<mJ|u|<m

< sup / / Z!S f(Xa(s';s, Xa(s;t,z,0) Y2/ p(w)dudo’
0<s’'<s—re<s<t—kre J |v'|<mJ |u|<m . i=1,2
+ sup / / (I -P)f(Xa(s';s, Xea(s;t,z,v),v"))|dudv’.

0<s'<s—re<s<t—kre J|v'|<mJ |u|<m
where we have used |h(u)| = w(w)|f(u)| Sm |f(u)] for |u] < m and the decomposi-

tion (2.2.3). For S; f—contribution,

// }Slf (s, Xal(s;t, z,v) ) 2/ |dudv

1/3
1
Nms[/ ‘Slf Cl(s s, Xa(s;t,z,v),v |dv] Nma[/‘slf 3dy
K3e

Sm [1S1£1 L3 @)
For Sof and (I — P)f contributions,

: [ [ 1827 (Xa (s s, Kalsit.,0). ) @) Vi)
+ (I =P)f(Xa(sss, Xa(s;t, z,v),0"),u)|]dudv’

1/2
ma[/ }ng Xa(s';s, Xa(s;t,z,v),v )‘ dv]
1/2
+5[//’I Xa(s'ss, Xa(s;t,z,v),v )}dv'du}

1/3
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1/2 1/2
§m€[/9‘81f( )’ dy] +€[//Q><R3 I— fly,u } dydu

1
Sm 81WHSUC”L2(Q) + Elﬁ”(l — P) fllL2(axr3)-

We have the similar change of variables for vy, — Xai(7;t), ), vp), vp —
1. 41! " ! " . . "
Xa(=7"stp, g, vpn), and 0" — Xa(s"; 7, Xea (75 te, x4, v0),0").
Following the same proof, we conclude

5/2 1
821120 + 15" 551X = P)f e

(2.4.25)

I+ 1o S T2 |S1fll sy + Ty 1/2‘

All together we prove our claims (2.4.11). The proof is completed.
2.5 Validity of the Steady Problem

The main purpose of this section is to prove Theorem 1.1. We need several
estimates before the proof of the main theorem.
Lemma 2.10 Assume

(NI + 6N +1e(f)] < S1f(x)+82f(x), [alg)[+[b(g)|+]c(9)] < S1g(x) +S29(x),

where [a, b, c| is defined in (1.2.4) and Si and Sa are defined in (2.2.3). Then, for
w = em”|2, 0<pxl,

lv=2e 2T (1, Dz, + ”V_%gl/zri(g’f)”f??:,v
< [P wgllzz, {eH v @ =P)fllzz ] + [ 18211221}
2wl Iy (L= Phglize T+ 7[S9 2]}
IS el f Nz, )28 101 2 (25.1)
and
lv=20s(f.9)llz, + v 2T (g. £l 22,
< HfHLQL%HSlQHLi + gwa”Lg?v [5’1”1/’%(1 — P)QHL;M] + [571”SQQHL§]}' (2.5.2)
Proof By the decomposition
lv=2ePi(f, 92, + lv= 32T (g, Dllrz,

< w2 2ru (@ = P £ gD 2, + ™2 20a(lgl [T = P)F)]l2
w22 (11T = P)gD) 2, + v~ 22 Ta (1T~ P)gl, | F])ll12
22T (Saf (0) i gDz, + ™ 2e /T e (If], Sag(v) Vi) 12,
22T (g, Sof (0)2V/A) Iz, + v 26T s (Sag(v)? /i, | £l 22,
22T (S1f ()2 /i, S19(0)2 VRl 2
( VIS0V 2 - (2.5.3)

(v)?
—i—HV_%sl/QFi S1g(v)?
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The first two lines of the RHS of (2.5.3) are bounded by
2wyl pee, { v *Te (e A-P) fl,w )z v T (w ™ e A-P)f) 2, }
+¥ 2w f e { v T (e A-P)gl,w)lls, +HV_1/2Fi(w_175_1|(I_P)g|)”L2 -

From \U\2+\u|2 [0'12+ /)% and v 12| (v — ) - w]y/p(u) S vV o)+ |ul] () <
1_
[+ Jo] + [ul]2 p(u)2,

/ Ly (eI - P)fw \dv+/ v U T (w e (I = P) ) (o) do
R3

/Ra /R /S [L+ [0+ [/ |)[e 7@ = P) f(v")Pw(u’) Pdwdudy
+/ / / [+ [0/ + [/ [)[e 7T = P) f () Pw(v') “2dwdudy

_ UQUJU?ZOJUU
+/Rs//”‘“HIUH (I = P) f(v)Peo(u)2dwdud

I u) 2w (v) 2dwdudv. 5.
+/]R3/R3/§2[1+‘v’+’um5 (I-P)f(u)|*w(v) *dwdud (2.5.4)

Now by the change of variables (v,u) <+ (v/,u’) for the first term, (v,u) < (v/,v)
for the second term and (v,u) <> (u,v) for the last term, we bound all the above

terms as

/ Py (YT~ P) ] w )\2+/ v s (w ™t e (T - P) /)|
R3

S L ol ) dede] [T - P )P
R3 R3xS?
1% 15 — V. ..
S [ et A= PP (255
Similarly,

/ y—l\ri(g—ly(l_P)g\,w—l)(v)FdH/ vl (w ™t e (I - P)g|)(v)[dv
R3 R3

S /R3 v e HI - P)g(v)|*dw. (2.5.6)
Therefore, the first two lines of the RHS of (2.5.3) are bounded by
2 Jwglloslle™ X = P)flly + 2w fllosle™ (T = P)g]l,.
The third and fourth lines of the RHS of (2.5.3) are bounded by
2 |lwgllres, lle ™" Safll 2 v 2Te (v i w2
+& 2w f | g, I S2gll v 2T (w ™ V2 Vi) | 2
S P wgllrg, e S flliz + ¥ llwf | res, lle ™" Sagll 12,
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where we have used
2T (P w™ ) e + [ 2T (w ™ A ||
< Hyl/z/ (v —u) - w\w(v)*lw(u)*ldwduH S (2.5.7)
R3 JS2 L3

The last line of (2.5.3) is bounded as, by [[v~1/2T'(v?,/L, V2 /)2 < oo,

1/2
|=1/281F(@)S19()]| 12 S (72181 1 2s]lSuglle S [l flloc] /281 £ 15 18191113

All together we prove (2.5.1).
Now we prove (2.5.2). Using the decomposition of g, we conclude

= 2T )2z, + Il 2T (g, P2,
< v 20(f,819(0)2 Vi) 2, + Iy 2T (F, 82 (v)* Vi) Iz,
+Hv PO =Pg 2, + Iy T (S1g(0)* Vi, Iz,
HIv 2T (S29(0)* Vit Flzz, + [l *T(A = P)gl, £z,
S S 1zz 8191l 1 + o fllzge, {18290z + 1T = P)g]l. }
Sz 1S9l 2 + ellewf g, {7 1S9z + X = P)gllu }
Sfllzer2 1S9l +ellwfllee, {e 1S20l 22 + & I(T=P)gll, }.

The proof is completed.
Lemma 2.11 For some polynomial P(s) = O(s) for |s| < 1,

lrellzzooy < P (sl gy + 19001+ 1o = £ 2l 1)

Moreover,
[fi+efellrsre S Po+eb,  [wlfi +efollle S 1+ el
(I =P)Asll2axmrsy S P, [[wPAs| z2axrs) S €[l + [[®]|oo] P2,
[wAs|[Loo(axrey S Ps + e[l + [ @] P2, [lwrszoc(y) S P2y
1QRII 2y S 19| Loe o0 [T+ el 9| Lo o) IVER 124
[wQR|| oo (r_y S 19| oo a0y [1 + €l|9 | Lo (002) ]H\fRHLoo (QxR3)

where we have used notations, for some polynomial P(s) = O(s ) for |s|] < 1,

= [r - fo,

Proof Note that from [13],
Al +[Bi] < ().

(2.5.8)
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Moreover, by L~HT'(Pg1,Pgz) + I'(Pg2, Pg1)} = (I1-P) [(Pgl ) PQZ)M_l/z], fro
LT Al S UP| + |ul + |19H <v>4/fl/2.

From (1.3.3), (1.2.8), (1.2.9), and (1.3.1),

|T5(xvv)‘§ ’qus|39’ + ’vx'ﬂst’ + '[ s ][ps]

+o

By the trace theorem H%JF(Q) < L?(09Q) and the Sobolev embedding Wz’%JF(Q) —
H %J“(Q), we conclude the first estimate.
From (1.2.5) and (1.2.8),

s i+ fol| @i, 1715P(1Vaul+ 9014101+ £9] )t

Due to our choices (1.2.9), (1.2.8),

[2/9]

(e Y 19| oo a2y ) [1+ O (19" || Lo 062 ] (v) A/ 1a(0).

Lo (9)

19l e

=

PA| S ell@lloo[lps] + [us] + 9]

-
Ps — ][ps )M(U)';*,

ps—][ps +/ﬂ!195>

2
. [\vxus\ V9] + (sl + sl + 1604])% + n rpsuﬂsr]

Q

2
(I-P)A| < P(Z (Vi + [V, ] + [Vaps| +
1=0

Q

1
+5P<Z |Vius| + | VEYs] +/ 10s] +

1
Ps — ][ps >,U(U) B
i=0 Q

Ps — ][ps >
From (1.2.9), (1.2.8), and (1.3.4) we have

QR(z,v) = \/ﬁ(@ - )x/,u,(v)ﬁw(m)/ R(z,u)\/p(u){n(x) - u}du

n(z)-u>0

20107 2) () /o) / oy RV ()

x)-u>0

By the standard Sobolev embedding we prove the estimates. The proof is completed.
Now we are ready to prove the main theorem for the steady case:
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Proof of Theorem 1.1 We prove Theorem 1.1 by considering a sequence R,
for £ > 0,

1 2
v VR 4220 VR - LRI = V2D (R, Rf)+%<1> R LR +eV2 A,
R, = PR 4 QR  + V%, RY=0o, (2.5.9)

where L; is defined at (1.2.13), A5 at (1.2.14), Q at (1.3.6), and 5 at (1.3.3) with
p,u, ¥ replaced by ps, us, Js. Note that Proposition 2.2, with (1.2.15), (1.3.8), guar-
antees the solvability of such linear problem (2.5.9).

Step 1 From (1.4.4), (.1), and Lemma 2.11,

sl 2oy + L1 +efelle e S 9% | a1+ o0) + (12l + Py,

L3+
where P is defined at (2.5.8).

For 0 < n9 < 1, we assume that (induction hypothesis), ||19“’||%Il+(am+|]<1>\|i§+(m
2
< cono for 0 < ¢g < 1 and Py, Py < o0,

Oiuge{HPlengr [T A -P)R|]" + [R5 + S1R|[75 + [ellwR||o] 7} < 1n0.
YRS
(2.5.10)

Now we claim the same bound for j =/ + 1.
By Proposition 2.2, (1.4.10), (2.2.4), and (2.5.1), for ¢ < 1,

IPRYS 4+ e ?(T—P)R™Z + [R5
<|lv2 (@ = P)[e"/20 (R, RY) + LR + V2 A ||2
+e72||P[V20(R RY) + LiR' + ' A,) |3 + €| QRS _ + |3
el (R, RY) 3+ v 2 LR |3+l (T-P) A, |3+ [P A3 +e[ B3 +cono
6[6IIwR€||oo}2[6‘1HV‘%(I—P)RZII2]2+[€HwR€Hoo]IISlRZIIi;Jerﬁefz||%ngHSJ#H%g
+&2|wlfi + e fol |2 [e 7M™ (X — PYR|2]2 + ePE + ePE + emo + como

o

<[+ 0(51/2)]773 + cono +eP? 4+ eP} < 10

S
<

From Proposition 2.1, for ¢ <« 1,

ISR sy S RIS+ [RE + 72 (L— P)RY2 + v 2T (R, B3
_1
+e | RIZIRAMS + v ™2 LiRY|5 + ]| Asll3
1 1
Se?|X=P)R™YZ +ellv 2D(R, RY|3 + v 2 L RY|3
1o

+€HA5H§ + €|Re|%7+ + ‘ng’, < ﬁ

From Proposition 2.3 and Lemma 2.11, for ¢ < 1,
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~

i _1
ellwR™ oo < €2 sup [[wQR oo + &2 Jwrylloe + &2 v 2wl (R, RY) oo
0<j<

+e4|® oo | R |oo + €20 2wLi R |oo + €22 |[r 2w A o

i 2
S & sup [[wRllloo + 2Py + 12 [ellwR o] + IR oo
0<j<

+&2||w ™ [ f1 + efo] oo |wR || oo + €¥/2P5 + €72 P
Selm)? +emo+°(m0)? + ()2 (P +£P2) + O(?) Py + O(72) Py
o
0
Altogether we prove the uniform bound, (2.5.10) for all .

Step 2 We repeat Step 1 for Rt — R’ to show that R’ is Cauchy sequence in
L N L? for fixed e. Now it is standard to conclude that the limiting R — R solves
the equation. The uniqueness is standard. (See [20] for the details)

The positivity Fs > 0 is left for the unsteady case in Section 3.7. The proof is
completed.

<

3 Unsteady Problems

3.1 Trace and Green’s Identity
Definition 3.1 Assume ® = ®(z) € C!. Consider a unsteady linear transport

equation
O f +v-Vof +20-V,f =g. (3.1.1)

The equations of the characteristics for (3.1.1) are
Y=c'Ww, W= e®(Y), Y(t;t,x,v) =z, W(tt,x,v)=". (3.1.2)
By the uniqueness of ODE
t—s t—s
Y(s;t,x,v), W(s;t,z,v)] = [X(t — ?,t,x,v),VG — ?,t,x,v)}
= [X(e7'5;0,2,0), V(e 's;0,2,0)], (3.1.3)

where (X, V) is defined in (2.1.7).
Define
tp(z,v) ;== sup{t > 0: Y (—s;0,2,v) € Q for all 0 < s < t}
t t
= ESup{* > O:X(— f;O,ac,v) € Q for all 0 < s < f} = etp(x,v),

€ € € €

te(z,v) :=sup{t > 0:Y(s;0,z,v) € Qforall 0 < s < t}
t t
= ssup{g >0: X(g;(),a:,v> e Qforall 0 < S < E} = ete(z,v). (3.1.4)

Moreover
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Tp(z,v)=Y (~tp(z,v);0,z,v) X( oz ;0 :L',U)ZX(—tb(l',’U);O,l’,v):l‘b(l‘,v),
:X(—tf([L',U);O,l',’l)):.ff(.%',v),

- t
Ze(z,v)=Y (—tg(x,v);0,z,v :X< bel,0) v)
t
b(z’v);0,x,v>:V(—tb(m,v);0,:1;,v):vb(az,v),

Op(x,v) =W (~tp(z,v);0, z, v):V<—

Op(z,v) =W (~t¢(z,v); 0, , v)zV(— tf(i’ v) ;0, 2, v) =V (—ts(z,v);0,z,v)=ve(z,v).

(3.1.5)
Lemma 3.1 For f € L'([0,7] x Q x R3),
T
// |f(t,z,v)|dydt
0 q/i
T
Ss// |f(07337'0)|d0d$+5/// |f(t, z,v)|dvdedt
OxR3 0J JOxXR3
(3.1.6)

T
. 25 .
+/0//Q><IR3 Héatfﬂ-v Vof+e™® va](t,x,v)|dvd$dt'

We refer to the proof of Lemma 3.2 in [21].
Lemma 3.2 Assume ® € Ct. Assume that f(t,z,v), g(t,z,v) € L*(Ry x Q x

), {0 +e -V, +e® -V} f, {0+ v V,+e® -V, g € L2(Ry x QxR3) and
fyr 9y € L*(Ry x ). Then
t
/// {e0y+v-Vof+ 2P - Voftg+{ed +v-Vug + %0 - Vg}f dvdadr
QxR3

= 6//Q><]R3 f(s,z,v)g(s, z,v)dvdz — 5//QXR3 f(t,z,v)g(t, z,v)dvdz

+/: [ RECE A fgdv} ar.

Proof The proof is from Chapter 9 of [17] with the same modification as Lemma

2.3.
3.2 Gain of Integrability: L3L? Estimate
Definition 3.2 We define, for (t,2,v) € R x Q x R3 and for 0 < § < 1,
n(x)-v E(x
gt ) = [1 - (M) (S |y oo
X{ltE[O,oo)f(tvxvv) + 1,56(,0070])(@)](‘0(%,’0)}.

(3.2.1)

Here n(z) is defined in (2.1.5).
We extend fs to the negative time so that we are able to take the time-derivative

Clearly,
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HftsHLQ(RxQx]I@) 5 Hf‘|L2(R+xQ><R3) + HfO”L2(Q><]R3)7
| fsllL2mxy) S Iyl 2@my sy + 1 follL2¢y)
Note that, at the boundary (x,v) € v := 9 x R3,

fs(t,z,v)|y =0, for|n(xz) -v] <6 or |v] > (3.2.2)

7| =

The main goal of this section is the following:

Proposition 3.1 Assume g € L*(R; x Q@ x R3), fo € L2(Q x R3), and f, €
L?(Ry x ). Let f € L®(Ry; L?(Q x R?)) solves (3.1.1) in the sense of distribution
and satisfies f(t,z,v) = fy(t,z,v) on Ry x v and f(0,z,v) = fo(x,v) on Q x R3.
Then

’a(tvx)‘ + ’b(t,l‘)’ + |C(t,$)| < Slf(tﬂ x) + ng(t,l'),

S1(t.a)i=4 [ stz o)) Vi)
Ssf(t,x):=4 - |(I=P) f(t,z,v)|(v)*/p(v)dv+2x(t / | fo(z,v)|(v)2/pu(v)do,

(3.2.3)
where f5 is defined in (3.2.1).

Moreover
1 lrsnz < e fllzz, + o gllzz, , + 1l o,
1Sof 2. S NT=P)fllz2 +folliz, (3.2.4)
forw = Bl with 0 < g < 1.
We need several lemmas to prove Proposition 3.1.
Lemma 3.3 Assume the same hypothesis of Proposition 3.1. Then there exist
an f(t,z,v) € L>(R x R? x R?) and an estension of fs in (3.2.1), such that
floxrs = f5 and [l = f5ly and fli=o = fsli=0.

Moreover, in the sense of distributions on R x R3 x R3,

{0y +v Vi 4+ @ -V} f =h=hy + ha + ha + hy, (3.2.5)
where
hl(tvxvv) = 1(x,v)€Q><R3 [1 - X(n(x )X(é(; )}X 6’”

<[Lieto gt 2.0 e ({2 b0 Vot 9, (o),

ha(t, 2,v) = 1(3 ) eaxrs [Licp,00)f (t 2, 0) + Lie—oo,0x () fo(,v)]
(Y BNGE e
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(&
@ Vab(@)x (054)
[ fo(t — ety (x, ), 2 (2, 0), v5 (2, 0)) Lz (2.0)c00
+f5(t + 5tf($v U), L (l‘, U)v Vs (l’, U))lzf(a:,v)eaQ] ’

ha(t, z,v) = 1(x,v)e[Qc~64\Q]><R3f5(t — ety (z,v), 2 (2, v), vp (2, v))

ha(t,2,0) = 1(4 )50\ xRS

§(x .
XX( ( ))X/(tb(%v))lx;(x,v)eaa T 1o 0)e[0p,0\ D xR

Cot
* * s §(x *
Xf5(t + 6tf($a U), .’Ef(l‘, U)? Vs (l’, U))X(C(,(si)xl(tf(x7 U))lm;‘(m,v)eaﬂa

where Qgsa,ty, 3, V5, t5, 25, vF are defined in (2.2.5), (2.2.6).
Moreover,
[h1ll 2 mxraxrs) S 9l L2, xaxrs) + €l foll L2(xrs)
v Vo + @ - Vo foll n2(xrs)»
[h2llp2mxraxrs) So 1l L2@s xaxrs) + [ foll L2(@xrs)s
[hsll 2 mxraxrs) + 1hall2@xrs xr3) So 1 f4llz2@y xy) + 1 follz2ey)- (3.2.6)
Proof Step 1 In the sense of distributions on [0, 00) x Q x R3,
edifs +v-Vafs+°® -V, fs
- 1A (2 e
X {1156[0,00)9 + 1t€(foo,0]X(t){EX/(t)

x(t)
+ [1t€[0,oo)f + Lie(—o00,0X () fo(, U)] {v -V, +e*@-V,}

(N (S o). 02

From Step 1 of the proof of Lemma 2.4 and (2.2.10), we prove the first and the
second line of (3.2.6).

Step 2 We claim that if 0 < &(z) < €%, |n(z) -v| > ¢ and |v| < % then either
£(z¢(z,v)) = C6* or E(Fp(x,v)) = CO*.

From Step 2 of the proof of Lemma 2.4,

6 (s0,2.0)) = (X (%30.0,0) ) 2 a3,

+v-Vy+e20- vv}f()(mav)}

for all 0 < |s| < ﬁ;lcz) with 0 < ¢ < 1. Especially with s, = +$§”02) for

n(x)-v>4d and es, = for n(z) - v < 4,

€63
AQHEN c2)
E(Y (54;0,2,0)) > Co%.

Therefore, by the intermediate value theorem, we prove our claim.
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Step 3 We define fg(t,z,v) for (z,v) € [R3\Q] x R3:

fésgz)x(t;g(m)), if 2}, (2, v) €09,
fe(t,x,v)= fd(tJrgt;(x,U),:C?(x,U)Jffk(%U))X(gg))((t?(%v))v if x5 (x,v)€0f,
0, if zf (x,v) ¢ 0 and x§(z,v) ¢ OS2

(3.2.8)

Fs(t—eth(z,v), zi (2, v), vt (z, v))x(

We check that fg is well-defined. It suffices to prove the following;:
If zj (x,v) € 00 and z§(x,v) € 0N, then
folt = et (o, 0), 7 (o), e ) (2

()
Cot
If [n (x5 (z,v)) v} (z,0)| < §or v} (z,v)] > 3 then fs(t—et} (z,v), 2}, (2, v), v} (z,v)) =
0 due to (3.2.2). If n(z} (2, v)) - vj,(z,v) > 6 and |v},(z,v)| < § then, due to Step 2,
E(xh(z,v)) = E(xf(af (2, v),vf(z,0))) = C* so that x}(x,v) ¢ ON.

On the other hand, if [n(z}(z,v)) - v (z,v)| < § or [vf(z,v)| > } then f5(t +
ety (x,v), xf(z,v),v§(z,v)) = 0 due to (3.2.2). If n(zf(x,v)) - vi(z,v) < —d and
lvi(z,v)| < 5 then, due to Step 2, (=} (z,v)) = &(zf (zf (2, v), vf(z,v))) = C6* so
that a7} (z,v) ¢ 0.

Note that

=0 = fo(t +eti(w,v), ¥, ), vf (2, 0)x

fe(t,z,v) = fs(t,z,v) for all z € ON. (3.2.9)

If x € 002 and n(x)-v > § then (z}(x,v),v}(z,v)) = (z,v). From the definition
(3.2.8), for those (z,v), we have fg(t,z,v) = fs(t,z,v). If z € 0N and n(z) -v < =4
then (z§(z,v),vf(x.v)) = (x,v). From the definition (3.2.8), we conclude (3.2.9)
again. Otherwise, if —§ < n(z) v < § then frlagg =0 = f5|sn-

Step 4 We claim that fp(z,v) € L2([R*\Q] x R3).

From the definition of (3.2.8), we have fgp(x,v) = 0 if zj(z,v) ¢ 02 and
xg(z,v) ¢ OS2 Therefore, from (3.2.8),

/ //[RS\Q R3 (o U)fzda:dvdt
><
—oco/ J[R3\Q]xR3 —00 [R3\ Q] xR3
h @\ o2
/_()O//[IR{S\Q}XR3 op (zw)eonl fo (T — ety T, vp)| ‘X(Cé‘l)‘ Ix(t},)|“dedvdt ( )

h N
+/oo//[R3\Q]xR3 xf(m,fu)easﬂfa( +ety, xF, vg )| ‘X(054>‘ |x(t7)|*dzdudt, ( )
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where (&, x},, vy,) and (&, 2F, vf) are evaluated at (x,v).
By (2.1.11),

() min{¢} (z,v),1}
(3.2.10) g/ dt/ / / T S, dvds{n(@) - o] + O(e)(1 + [v])s}
—00 o Jn(x)v>0J0

X ‘f(; (t —es, (X (5;0,2,0), V(s;0,2,0)), v (X (5;0, 2,0), V(s;0,2,0))) ‘

o] 1
2
g/oo dt/aQ /n(x).wo/o |5t 2,0)[{n(z) - 0] + O(e) (1 + |o])s}dsdvdS,

o 2
S[oaf [ |htao) o) oldedSs S 15slseonsss
—0o0 o Jn(x)v>0

where we have used the fact, from (3.2.1), O(e)(1 + |v|)|s| < O(e)(1 + 1) <6 <
|n(x) - v| for (z,v) € supp(fs), and, for n(z) -v >0, x € 9Q, and 0 < s <

2

(xi‘)(X(s;O,x,v),V(s;O,x,v)),vf,(X(s;O,x,v),V(s;O,x,v))):(xf)(a:,v),vﬁ(m,v)):(az,v),

and t} (X (s;0,2,v),V(s;0,2,v)) = s and the change of variables t—es +— t. Similarly
we can show (3.2.11) < Hf(;H%Q(RXaﬂng).
Step 5 We claim that, in the sense of distributions on R x [Qz5\€] x R3,

0 fp +v-Vofp +e*® -V, fE
1 ()

= mt Vet @ (5 ) [stt — et (o
+f5(t + ety (x,v), x5 (x,v), v (z,v))x(t;

2 (2, 0), vy (2, V)X (t5 (7, 0)) Lo (2,0)c00

A\/

€L, U)) xg(x v)eaﬂ]

f5(t = et .0, 750,00 s X (SN 0D Ly
—fs5(t + ety (z,v), zg (x,v), vp (2, v) X(fé(éi)xl (te (2, v)) ez (2 0)c00- (3.2.12)

Note that

[€0; + v - Vg + 28 - V, | f(t — et (x,v), 25 (2, v), v, (z,v))
=[ed+v-Vy+ 20 Vol(t — ety (x,v)) X0 f (t — ety (z,v), zy (z,0), v (2, ))

+[U Vg + 52(1) ’ vv]f(sa :Elt)(l'v U)? U;(:U, ’U))|s:t—at;‘](x,v)y
[8875 +v-Vy+ 52@ ’ vv]f(t + gtF(l‘a U),.%‘F(JJ,U),UF(SU, U))
= [e0; + v - Vg + 20 -V, ](t + etf(x,v)) xOpf(t + etf(z,v), x}(x,v), v (2, v))

+[U Vi + e - vU]f(sa l’;(:ﬂ, ’U), U;(:U> U))|s:t+£t;§(:c,v)'

If the underbraced term vanishes then we can apply the Step 5 of the proof of Lemma
2.4 to conclude (3.2.12).
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This is true because

[V +e2® - V,](t — et (z.0) = e _O(t — ety (X (s;0,2,v),V(s;0,z,v)))
d
=1 S:O(t —es) = —¢,
and
d
[v- Vg 4@ -V, ](t +eti(zw)) = T _O(t + ety (X (s;0,2,v),V(s;0,2,0)))
d "
=% szo(t —es +ety(x,v)) = —e.

On the other hand, following the bounds of (3.2.10) and (3.2.11) in Step 4 we
prove the third line of (3.2.6).
Step 6 We define f(t,z,v) for (t,z,v) € R x R x R3:

f(t,z,v) = f5(t, x, v)l(x,v)eQXR3 + fe(t, =, v)l(:c,v)e[]R3\Q]><]R3 : (3.2.13)

For ¢ € O(R x R3 x R3), by Lemma 3.2,
—/ dt // ft,z,0){edy +v -V +2® -V, }o(t, z,v)dedv
—00 R3xR3
= —/ dt // f5(t,z,v){eds +v - Vy 4 2® - V, }o(t, 2, v)dzdv
—00 QOxR3
—/ dt // fr(t,z,v){ed; +v -V, +*® -V, }o(t, z,v)drdv
—00 [R3\Q] xR3
= / dt/ fs(t,z,v)p(t, z,v){n(x) - v}dS,dv
ooy
—|—/ dt/ fe(t,z,v)o(t, z,v){—n(x) - v}dSydv
ooy
+/ dt // {€0; + v - Vo + 2D -V, } f5(t, x,0)(t, z,v)dzdv
—00 QxR3
—i—/ dt // {0y +v -V, + 20 -V, } fr(z,v)d(x, v)dzdy,
—oo 0454\ xR

where the contributions of {t = co} and {t = —oo} vanish since ¢(t) € C(R).
From (3.2.9), the boundary contributions are cancelled:

/oo /fg(t,x,v)¢(t,x,v)d’ydt—/oo /fE(t,x,v)¢(t,x,v)dfydt:O.
—oo Jy —oo vy

Further from (3.2.7) and (3.2.12), we prove that f solves (3.2.5) in the sense of
distributions on R x R? x R3. The proof is completed.
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Recall ' > 0 in (2.2.20). With such choice T' > 0,

el

= 1

f(t,x,v):—/ gh(t"‘S,Y(t-i-S;t,.T,U), (t+8;t7x,7)))d8
0

T S S
:—/ h<t+s,X<t+;t,x,v),V<t+;t,x,v))ds.
0o € € €

Note that, from (3.2.8),

- ~ )
f(z,v) =0, for &(z)>206* or |v| >2571 or |v| < 3 (3.2.14)
Therefore
F(t PR A ht+s X(t+ 24 vttt d
|f( ,l’,?})‘ = g 0 g§|v|§% + s, ( +g7 7x7v>7 ( +g7 ,x,v) S.
(3.2.15)

Definition 3.3 For fixed T in (2.2.20), § > 0 and a smooth function ¢ € L(R3),
we define the average operator S as

1 eT
S(h)(t,x) = — h t+s,X<t—|—f;t,x,v),V(t—i-f;t,:r,v) ¢(v)duds
€Jo Ji<pI<3 € €
1 t+€T _ t _t
= / / h(s,X(S;O,x,v),V(s;0,$,v>>¢(v)dvds.
& Jt S<lvi<3 € €
(3.2.16)

Lemma 3.4 Assume that ¢ € C1(R3) is such that |p(v)| < é(|v]) with ¢ €
CH(R) such that ¢’ decays exponentially. Then

||ShHLgL§ §¢,w HwithLQ(RxQx]}@)v (3-2-17)

where w(v) = e®V* with 0 < B < 1.
Proof We only prove (3.2.17) in the case of § = 0. For sufficiently small 0 <
B < 1, we can always absorb w growth by ¢ using |V (52%;0,2,v)| < |v| + T ®|| -
We define the dual operator:

. 1/t —t+s
St =1 [ gucsgnzao (s X (T N0.00) )

€ Jt—eT € €
—t
xgb(V( ;S;O,x,v)>ds. (3.2.18)

Consider the time-space inner product (-, )¢z,
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(Sh, 9)tz = /00 S(h)(t,x)g(t, x)dzdt

R3
e
><h< (8 . t ;0,2 v) V(% 0,z v))é(v)g(t,x).

From the change of variables (X (22£;0,z,v),V(22%;0,2,v)) — (z,v) for all fixed
t,s € R and then t — s and s — ¢,

(Sh, g)1, /dt/ ds/dx/ dv
R3 <|v s+ Oxv)| %
—s+t
))g(t7X( 5 707:'E’U>>

X1i<s<iter h(s,2,0) <

1
== /// dvdzdt h(t,z,v)
€ RxR3xR3

t —t+s —t+s
x/t_sTlg <V(= *‘*S;o,z,u)§§9<S’X(€ ;(),:1:,v>>gb<\/(6 ;0,:L‘,U)>d5

= (h7 S*g)tawﬂj'
As the steady case, note that

IShllpzrz=  sup (Sh,g)te=  sup (B, S7g)ea<|hllrz =~ sup [S7glr2
© gl st lgll 1 5 <1 P gl <1
Ly 2= Ly L2 Ly L2~
Therefore in order to show [[Sh|[zpr2 <|[[hl[z2 , we only need to show
, T,V

15791l

t,x,v

<l
But [|S*gl7, = (59,5%9) = (55%9.9) < 195" gll1z(3)l9ll 12y Therefore it
suffices to show that, SS*h is bounded from ¥ 2L% to L3L?:
1559l 322 S gl a2z (3.2.19)
From the definition of S and S*, for any g € L3/ 2L2
SS*(g)(t,x

t+eT
52/ ds/ dT/<U| , W Loy smi0 X(t 000, V(S 0.0.0)I<3

é

Xg<T’X<S€;O,X(é_t;O,:r,v>,V(S;t;07xaU))>
oV (*TR0x () v (o))
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t+eT
z / ds / dr /
Ik <

X g<|V( T'HOIU % <

Lo, U))gb(v)qS(V(_T;_ L O,a:,v)),

(3.2.20)

/—\ m\m

where we have used the fact that since the characteristics equation is autonomous,
X<$ 0X< Oxv) V(H;O,x,v)>:X(_T_‘_t;O,a:?v),
€ € € €
—1 — t
V(S OX( 0wv> V(S;O,x,v>>zv< Tt ;O,x,v).
€ € €

Recall the change of variables from (2.2.28)

3

;0711371)), dvﬁmdy

-7+t

vaEX(

On the other hand, |v| = O(l)s‘y*x| [V(s;t,z,v)| = O(l)dy*ﬂ. As the steady

[t—r] [t—7]
case we can reduce to ¢(v)p(V(=ZH;0,2,v)) ~ ¢*(Ce ||f:f||) for some C' > 0.
We define

1 & |y — =]
M(t — —y) == 2(C . 3.2.21
(t=ro—y) = om(Co ) (3:2.21)
Then,
1 t+eT ly — x| e
*a(t — [ 4 d d 2
sl s [ [ [ i (06— o

3

1 t+eT T+eT |y—a:| e
— d d ?(o
s a0 astatalet (0 =)

From (3.2.21),

+eT

T 1 3 glx —y
M(T,x—y)dTﬁ/ ’3(;5 ( | |)d7’

er €T 7]

oo 1
< -
N/o T e S o

where we have used the change of variables w = E'T |y‘ with d7 = Elf’u Y qoy.

—eT

By weak Young’s inequality
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t+aT
l155°glzz .y < | / g(ryIM(t— 7,2 — y)drdy
’ R3 Jt LE®R) |13
+5T
= / / gt —7,9)|M (1,2 — y)drdy
R? L} (R) L3
< d
< / ot vl .,
5 ‘x‘g 3/2 (R3) HHg”L HL3/2(R3 NHgH 3/2L2

The proof is completed.

Now we are ready to prove the main result of this section:

Proof of Proposition 3.1 Recall (1.2.4), (2.2.33) and the temporary notation
above (2.2.33). From (3.2.1) and (2.2.34),

/fétél?sz
4

yae
) () a1 ) 0+ TP 0 )
)

)X 5(;)”X(5|v|){1tzof(t,x,v) + 1tS0X(t)f0($,U)}C¢(v)dv

<

:1t>°/RS[1_X( (a:g. >
oo [ 1= (" '”)x(f(j))}xwm)x(t)fo(a:,v)@(v)dv

—1t20{ai(t,$)+0()i\%t$|+05 / (T=P)f(t, z,v)|G(v)d }

J=

Fcox(®) / [Fo(,v) (G (v)dv
R3
Therefore

Z 1t>0]a1 t .CE

/f(gt:cvg( )dv

Lot /|fom|Z@ )|
+1tzo{ow%waj(t,m)uog(l) /R P xw)\;!@(v)\dv}-

Hence for all 1 =0, 1,2, 3,4,

oitt. o) <4 [ 1fs(t 0l Vo)
R3
—1-4/ (I —P)f(t,z,v)|[(v)2/p(v)dv + 4x(t /|fg:1:v ()2 pu(v)do.
R3
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Clearly, we can conclude the second estimate of (3.2.4).
Now we focus on the first estimate of (3.2.4). From Lemma 3.3,

[ st )l Vi < [ (a0l Vo).

From (3.2.15) and (3.2.16) with ¢(v) = (V)*\/p(v), [ps [f(t, z,v)[(v)*/p(v)dv <
S(h)(t,x). Finally, from Lemma 3.4 and (3.2.17), (3.2.6), we conclude the first
estimate in (3.2.4). The proof is completed.

3.3 Unsteady L?>—Coercivity Estimate

The main purpose of this section is to prove the following:

Proposition 3.2 Suppose ® = ®(z) € C!, g € L2 Ry x Q x R3), and r €
L?(Ry x _) such that, for all t >0,

// g(t,xz,v)y/pdvde =0 = / r(t, z,v)/pdy. (3.3.1)
OxR3 y—
Then, for any sufficiently small €, there exists a unique solution to the problem
L -1
eOf +v-Vuf + ﬁ€ Q- Vu(yuf)+e Lf= g, (3.3.2)

with fli—o = fo and f— = Pyf +r on Ry X v_ such that

//Q - f(t,z,v)\/pdedv =0, for allt > 0. (3.3.3)
X

Moreover, there is 0 < A < 1 such that for 0 < s <'t,
t t t
[N F () 34e 2 / | (1~ P)f(r)|2dr+ / 1P ()| Bdrt [ 173
S S S

3 t t 1 a t
< [l 7 (s) [3e ! / T3+ / I 3eM (I - P)g|3te? / [ Pgl3. (3.3.4)
S S

S

We refer to Proposition 3.8 in [21].

3.4 L Estimate

The main goal of this section is to prove the following:
Proposition 3.3 Let f satisfy

[0 +v- Vo + @V, +e ' Co(o)]1f] < e Kl f| + g1,
[l < Py I [ fleo] < 1fol. (3.4.1)

Then, for w(v) = eI with 0 < B/ < B,
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||6Wf(t)||oo§||6wfo||oo+0<8up lewr(s)]loo + €% sup [[(v) " rwg(s)lloo

<s<oo 0<s<00

1
+ sup [[S1f(s)llLs) + 7 sup [1S2f(s)llL2()
0<s<t €44 0<s<t
1
=75 sup [(T=P)f(s)llz2(xrs), (3.4.2)
€ 0<s<t

and

lewf(®)lloe S llewfollos + sup flewr(s)floc +€* sup [[{v) " wg(s)llo

0<s<00 0<s<00
1
o7z S, () 2. (3.4.3)

We define the stochastic cycles for the unsteady case. Note that from (3.1.5),
jb(xa U) = iL'b(fL’, U)'
Definition 3.4 Define, for free variables v € R3, from (3.1.5)

t1 =t —tp(x,0) =t — etp(z,v),
T =Y (t1;t,2,0) = Tp(x,v) = p(z,v) = 271,
to =t —tp(x,v) — tp(w1,v1) =t — etp(w,v) — etp(x1,v1),

Fo = Y (t2;t1,71,v1) = Tp(21,v1) = Tp(71,01) = 22,

thr1 =t — to(@k, vg) = tp — etp(Tg, Vi),

Trr1 =Y (bpg1; th, Tho Vi) = o (T, ) = Do (Th, V) = Tho1-

and
t—t; = etp(z,v) = et — t1),
t —ty = etp(z,v) + etp(z1,v1) = (t — t2),
t—tp =e(t —tg).
Set
Ya(s;t,z,v) := Z1[{k+1,{k)(5)y(8;fk,$k7Uk), We(s;t, x,v) Z 1)
k k
Clearly

t— t—
[YCI(S; l,x, U)v WCI(S; l,x, U)] = [Xcl (t - ?87 l,x, ’U) ) Vel <t - ?87 t,x, v)} .
(3.4.4)
The following lemma is a generalized version of Lemma 23 of [32].
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Lemma 3.552 Assume ® = ®(2) € C'. For sufficiently large Ty > 0, there
exist constants C1,Co > 0, independent of Ty, such that for k = ClTO5/4,

k—1 T5/4

1y C2Ty
Sup %‘1 1519(1571:@17@2,"- Wk—1)>0 H doy < {2} : (3.4.5)
I1 Ve (=1

(t,z,0)€[0,eTH] x IXR3
=

We refer to Lemma 3.12 in [21] for the proof.
Now we are ready to prove the main result of this section. We refer to the proof
of Proposition 3.10 in [21] in page 80.

3.5 LPL¥ and Ly°LP Bounds and Estimates of the Collision Operators
Lemma 3.6 For g(t,z), g(t,z)|t=0 = go(x), for 0 < 6 < 1, and for all T €
[0, o0,

9/l ze Lo o,y < ONlgell Lo r2o,m + Csllgll Lz 2o,y + llgoll e,
191l Lo o,z < SNl 9ell 2 20,07y + Csllgll Lz 2o,y + 9ol (3.5.1)

Note that this crucial estimate follows essentially by Sobolev imbedding in
L C CY C HE.
Proof Note that

t
d
gtt,0) < lg(0.0) + [ S lg(s.a)Pds
0 S
t
<lo0.0) +2 [ lo(s.2)a(s.2)lds
2 2 /2
<|g(0x+2/|gsm ds /|8tgsx|ds]

<1000 + [ [ ot o] +o[ [ oats.nal
< 19(0,2)* + g 2)ll72(j0,79) + o(WNIOeg (- )7 20,77)- (3.5.2)
We prove the first estimate of (3.5.1): Taking L$°([0, 7)) and taking {---}/2,
g, @)ooy S lgo(@) + g @)l 2o,y + oWl ge (5 @)l 220,17 -

By taking L5-norm, we conclude the first bound.
Now we prove the second estimate of (3.5.1): From (3.5.2), for all ¢ € [0, T,

9D S 190, 2)P + 96,2 0.29) + 0DIO )2 .77

Taking the integration over z and taking {--- }!/?, for all ¢ € [0, T],
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gt Mz < 1900, ze + [[llgllzz ol 2 + o W[gell L2 o, 12
S llgollze + gl ze 2o,y + o(Wlgell Lz L2 0,y

Finally taking L>°—norm in ¢ € [0, 77,

91l Lo (jo.17) 28 = lg(t, ‘)HL{;HL?o([O,T]) S gollze + gl e 2 qo,ry) + oW gell L2 22 0,7)-

The proof is completed.
Lemma 3.7 Assume

lai(f)] < S1f(t,2) +8S2f(t,2), lai(9)] < S1g(t, ) + S2g(t, 2),
where a;(f) and a;(g) are defined in (2.2.33). Then
Il 2 2r L (fog)l gz, + Il 22T (g, )l g2

t,z,v

<l 3/2||wg||Lt“]{[e—luu—l/?a— P)fllzz, )+ ISzl 1}
e wfllegs {2 A= Phgllzz . 1+ [ I1S20l22 1}

t,z,v

IS + 18106115 + 11S1£(0 >||”2}[ loflleg, ) 21819l ez (353)

t,z,v

|22 (f.g) e+ Y2 2T (g, Pz,
1/2
<IS1 £ el luge, 218100 s 2

t,x,v

—|—[53/2waHL§OM {e M@ - )g’\L$zv+5_lHS29HL2 i

+<‘51/6”519HL3L§{[5_1”(1— )f||Lg 1,L°°]1/3 + e _1”SQfHL2L°° 1/3} ||’wf”Lt“]2/3a
(3.5.4)

and
Il 2re (9l + v 20 a(g, Pz,
SNl rsorz H519||L3L2 +ellwfleg, {7 A= Phgllzz |+ IS2qllzz )
[0 Y20 (fog) 2+ 2D, gz
SIAllzsrz IS19llLs e + €wa||Lg<ng§{571HVl/2(I —Plglzz 1o + 671”SQQHL§L§° }-
(3.5.5)
Proof First we prove (3.5.3). We decompose
F(t20)| < [PA(ta v)! ¥ |<I— P)f(t2,0)

< Sif(t )W)/ uv) + Saf (t, z) (v)* /() + |(T = P)f(t, z,v)|, (3.5.6)

and |g(t,z,v)| in the same way. We use the same decomposition of (2.5.3) replacing
the L%v norm with the Lgmﬂ, norm.
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The first two lines of the RHS of (2.5.3) are bounded by
2 wgllnge, {Iv T (APl g+ e (wh A-P) gz, )
+&¥ 2w fllnge, 2T (e |T-P)glw Iz v /2T (w _1|(I—P)9!)HL§M}-

From (2.5.4), (2.5.5), (2.5.6), and (2.5.7), the third and fourth line of the RHS of
(2.5.3) are bounded by

e lwgllnge, lle™ 2 Nl Il T (v i w2
+2wflleg, e Sagllpz I Pl (w ™ A Vi) 2

t,z,v

< e wgllzzs, e S sz, + 2wl lizs,, lle Sagl 2

The last line of (2.5.3) is bounded by, from ||v=/2T'(v?, /1, V2 /)2 < oo,
le281f (8, 2)S19(t @) 22l 2 S /281 f = [Sa9ll 2 2
S V21181l LersellSagll e
From (3.5.1),
181 £l zs 250 = [[1S1£1lz5= [ 1

S St lle [ 1181 f el S IS LA 181711, e

SISiflze {||slf|rLst + 1104811l a2 + 181 (O) 12}

SIwfIFE (IS fllsss + 194081/ + 1S1£(0) 22}

We only need to show ;[S;f] < S10,f for t > 0. From the definition of S; f(¢, ) in
(3.2.3),

oSSt =2 | sen(fs(t.e,0)Bfs(t.0, 00 o)

Now from the definition of f5 in (3.2.1), for ¢ > 0

Aefs(t,, )0
= [ () () ) Loy 0.2 0) 4 L o () ol )}
- :1 (Y (SN 0l ey 0. 0)
— (n 32 ) (5(; ) (5’U‘){1te[0,oo)8tf(t’x7U)+1te(—oo,o]X(t)8tf0($;U)tho
[atf]5(t>x7v)’t2
Therefore, for ¢t > 0,
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S f(t0)) <2 [ |oufs(t 0} oo
< Q/RS [0:f]5(t, z,v)|[V*/ u(v)dv = S10, £ (t, x).

All together we prove (3.5.3).
Now we prove (3.5.4). Using (3.5.6), we again decompose

[T (f gl + %M Ta (g, Dl S (253).
We use the same upper bound as in the proof of (3.5.3) except the first line of RHS
in (2.5.3) and the first term of the third and fourth lines of RHS in (2.5.3):
v /2 20 (11, (D= Pz, + ™ 26200 (1= P)gl, [ £D) 2,
o2 (1 Sagr? iz + 2N AT (S £ i Sigr Vi gz
Hy T2 T (S19v7 i, SV Vi) 2

t,x,v

S wf Lo H571329HL%@ + &' 21181 £l g e 1819l 2

t,x,v
By Holder inequality,
1/2 1/2 1/2 1/2
IS llisre SUSLAI e ISUIEE S IS e llwf 2

First we focus on the first line of the RHS of (2.5.3). Using the decomposition
of g in (3.5.6), these terms are bounded by

S1gllv e 2T (1X-P) f1. i)l el 2 +Buglly e P WA/ T-P) D el 2
HS2gll 2 P (| (P £ 04/ 12l 2 +[S2gllv %P (A (P D)L el 2

H|p 12612, (| (1-P) £, y(I—P)g])HL%’Z’UJrHV_l/ZémFi(\(I—P)% (A=P)Dllgz
(3.5.7)

Note, for 0 < 8 < %,
PP f (1, 0)| S 12 £k, e 12 /(o)
and
(X =P)f(t, 2, 0)] = T £ (1, 0) = PS(E,,0)|
S fllrzs, [+ P2 (o)) < 17 fllngs, .,
From the above estimate and (2.5.4), the last two lines of (3.5.7) are bounded by

&P wflligs, * {e 820l iz, +< X~ Phgllz. ).

t,z,v
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Focus on the first line of (3.5.7). For 0 < a < 1,
(s (TS B ST RZAV/DI PR e S AN/TA [ S DRI
e [ [ [ 10— uPlo@- Py Pute) w2 Vi

+// o= Pl M= P) () Pu o)

S
+// [ o =Pt (0= P) )P 20/
-

+5/v/u/w]v—u\2|wa(1— P) f(u)]*w(u)

Now by the change of variables (v,u) < (v, u’) for the first term, (v,u) < (u/,v")
for the third term, the above terms are bounded by

[ o €= P ) o) )2 )

< frem-mr] "

Then, by the Holder inequality (é + % = 1), the first line of (3.5.7) is bounded by
e2S1glw @ —P)fllusl 2 S IS19ll L2 lw X —P)fllze .
Here, for 0 < a < 1,

3a
lo"(@=P)flleg, S IT=P)FILS Jw? FIZE,
S P =P) Sl )P ellw ez, 2

Hence the first line of (3.5.7) is bounded by

eV0(IS1gll a2 e T = P) fllzz ) P ellwf | oo, 1.
Therefore, altogether, the first line of RHS of (2.5.3) is bounded by

32w f]| e

t,x,v

< {7 Sagllpz +e M 2 Pgllyz )
V8810 2 le I = PV Lz el VP elo e, T2

t,z,v

Similarly the first term of the third and fourth lines of RHS in (2.5.3) is bounded as

22T (S0 12V gDl sz <Ol 182 o) Vol f lLzzs, 22 1S 10 12

t,z,v

All together we prove (3.5.4).
Now we prove (3.5.5). Using the decomposition of g,
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Il 20z, + v 2009, Pz,
<V T S1gv? Vi) iz, Al VPT(F Sagv? Vil z HllvPD(F I A-P)gD 2
v 208193 /1 2 Al T (SagvA i Iz, +v2DA-Pgl £z,
S lzz ISl 2+ llwfllces, , {I1S2gll2, + Ilv2(X = P)gll2  }
Sz 1S9l izl + ellwfllegs,  {= ISegll 2+ 2@ =Pl }
S lzszzerzl1S190 sz + ellws e, {e IS2gllrz, + e I 2X = Pall 2},

and similarly

20z, + 2D Pz
< HfHLngv HSM]HLthOO + 5||waLg<;vL${5_1||S29”L3L§° + 5_1||V1/2(I - P)QHLg’thOO}-
The proof is completed.
3.6 Global-in-Time Validity

The main purpose of this section is to prove Theorem 1.2. To that we need the
following:

Lemma 3.8 For0< A< )\ and w = Bl

with 0 < B < 1,

leXw[f1 + 5f2]”LgL§°L$,° + l[eMw([dfr + 5atf2]HLgL§Lgo S Pio +eby,

lleXMw[fi + 5f2]||Lg<ij§ngj?w +leMw[0fL + 5atf2]HLgf’ULfﬂLt°fz’v SP+eh, (3.61)
and

X7l 22 SPoxs €0l 202 SPut, lweAullz  SPixPo,

lweMd; Al SPoxPii, weMAs|pa  SPixPro, weMo Aol SPaxPag,

(3.6.2)
where
Pr=P (e @l oy + 1€ Dl ooy + 16X Pl oz + 1€ 00t oy
e Bl ez + X Ol oz + sl g + 191 m3).
Po=P (1@l prs + 1€ Dy + e Bllegmg + e Ol
X0l ey + 1 bl + sl + 19 lmy)

Pay=P (1" @l g+ 9l s+ [5 £ 8]+ 197 2000 ) (363

for some polynomial P with P(s) = O(s).
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Moreover,
lwto) M Az, o Nlwe g, we i +eflll,, < Py
lw(v) ' MO Al . we O, . lweM[Bif1 +eoifolllre , S Po- (3.6.4)

Proof From (1.3.3), (1.3.4), and our choice (1.2.9),
S |u PE (Vi) — Fol + <))t f 10
<p( ZA,J O, jlo + Or, i 002) +ZB@M9|89—— ][79
—\F \vP 5 w+][19 ][M!vlz 3 plm ][p ) ][19 é][lff‘\)
s<v>10mP(|vxar #1901+ [ = f 5] 190+ f 191+ 1071+ o]+ ][ 9.1).

By the definitions of f; and fy from (1.4.7) and our choice (1.2.9),

Al o)t [ + 19] + ][ ).
Pl st {9291 5 o]+ (1 411+ 191 [l 101+ {1011} 3:65)

Then from (.1) we conclude (3.6.1).
From (1.2.14) and (1.2.9),

|(A-P)A| S|Vl +|VEI |+ [| Vot + Vo || Varss| +|Vats] [lﬂl+h§l+lusl+lﬁs|+][ 9]
+5P(|8tv$ﬂ\+]8tvx1§|+’8tﬁ—
+ 1001 +V.l+1V.01+ |- f 5

P A|SeP(10,V 01| +10: V.00 +| 015

5 +\q§|+][ |1§]—|—|195|+][ 94| +0,0|
)
j ][|1§|+|295|+][ |195|+|3t1§|+][ 10,
j —][ps )

By the standard Sobolev embedding and the trace theorem, we prove (3.6.4).
The proof is completed.

+\Vxﬂ]+\vx1§+‘ﬁ—][ﬁ

Proof of Theorem 1.2 For the construction of the solution and the energy
estimate, we consider R(t,z,v) solving, for £ € N,
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8t[e/\tR£+1] + 6_1’0 . vx[e)\téé—&-l] +ed- vv[e)\tRK—‘rl] + E—QL[eAtRZ—I—l]
— )\[e)\tRE—H] + 6_1L1[6>\tée] + 6_1L 2R, [e)\tRZ] + e—At€—1/2F(e)\tR€’e)\tR€)
d.
lLRs( /\tfl +5e)‘tf2) 4e—— 5 [ )\tRf-‘rl] +€—1/2 /\tA
e)\tR£+1|»y_ — Pfye)\tRf-‘rl 4 Ee)\tQRf +€1/2€)\t7:, e)\tR£+1|t:0 — RD' (366)
Here we set RO(t,x,v) := e~ Ro(x,v).
Clearly RY := 8; R’ solves
O[MRI + e o Vo[ R 4+ 6@ - Vo [eM R 4+ e P L[M R
=\eMRAY) 4+ e 1L [eMRY + 571L81/2Rs MR + EilLatf1+€atf~2 (MR
+e*)‘t€*1/2[1“(e)‘t]é£ e/\tRZ) + P( )\tRZ )\tRZ)]
o
+5_1LR ( Atatf1+e 58tf2>+5 5 [ )\tRE-I—l]_i_E—l/Q )\taA
MRt x,v) |y :P,Ye’\tRquLeeM QR!4e'2eMp7, MR _g=0,Ry. (3.6.7)
As steady case, from (1.4.10) and fn-ugo M*n-v|ldv=1= fn-vgo V2mpuln - v|dv,
P(€_1L1R + 5_1L€1/2RSR + 6_1/2F(R, R) + 5_1LRS (fl + 6f~2)) =0,

A(t,z,v)y/udv = 0 = / fo/idv, / QR{n-v}dv=0= / Fdv.
R3 R3 nv<0 <0
Note that Proposition 3.2 guarantees the solvability of such linear problems (3.6.6)
and (3.6.7).

Note that from the assumption (1.4.12), (.1), and (3.6.

1),
Pro 5 [10¢a(0) | 2 + 10:9(0) 1 2] + [I12(0) |z + 19(0) 1] S N@(O)llzz + [[9(0)]] 2.

(3.6.8)
For 0 < ny < 1 and 0 < m; < oo, we assume (induction hypothesis) that
[@(0) 172 + 9Oz < Tomo for 0< o < 1,
IS1Rs 175 +[e ™ I (A-P) Rl 12 |*+[e [ISoRsll 2, [P+ foat+efoalFe <nmos (3.6.9)

and
Supz{f;] 00)+D’ (00 )+||e’\t81RjH%3L3+||e’\t81}~?{||%3L%+[53/2||e’\tw6tRJHLgozv] <o,
0<5< T x
. )
sup [5||e’\twRJHL;oz’v] <. (3.6.10)

0<;j<t

From (?7), (3.6.1), and (3.6.9), we obtain

lwe [ fi + e fal | F poe poe + lwe (001 + €8u o] T pge e < comlo-
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We also note that from (3.2.3), we have

~ ~ 2
IS5z 5 | [ RO.2,00002 o], < m.

The condition for Ry and fs1 + €fs2 can be achieved by choosing further smaller
|9 1+ (90) + ||‘I>||H%+(Q) in Theorem 1.2.

Throughout Step 2 to Step 4 we prove that (3.6.10) holds for all ¢. For this, it
suffices to show that (3.6.10) holds for j = ¢+1. Before proving the uniform estimate,
we prove the crucial estimates involving operators I', Lr_, L 4cf,, Ly, Fiteoifs:

Step 1 We apply (3.6.10) repeatedly. Applying (3.5.3) with f = eMRf = g,

Hyf%ef)\tgl/ZF(e)\tifgfj e,\tRe)HLQ

t,z,v

S 2N wR o, I v 2T - P)R gz, ] + [ leS2 R 1}

H{1leM Sy R+ e LR, +HISLR O) 5 el eMwR o] V2[NS LR 1512
S 2 )2 (00) 2 + ()Y (m0) /1. (3.6.11)
Again applying (3.5.3) with f = eMR! g = eMRY,
‘|V—%e—)\t€1/21—\(e)\t}~%f, e)\tRé) HL?,I,U + HV—%e—)\tgl/Zl—\(e)\tRé’ e)\tRf) HL?,z,ﬂ
SE weM Rl e v 2 (X = PYR 1z ]+ 7 XS Rz ]}
+E MR g, {1 v 2 M T = P)RE o ]+ [ |eMSa Rz 1)
+H{1MS LR e 10 R 5 4 IS LF O e llwe R e, V21eMSLRE 1312
Sno + 2 ()Y (o) % + ()M ()2 (3.6.12)
Applying (3.5.4) with f = Ry and g = eMRE
V2 Loy R 2
S 220 (Ry, MR+ |y 2e 2T (MR Rz
S ISR ElwRs g/ 1eMS R a2
+E 2w By ool { [T M (T = PYRY|| 3 ]+ 7 |eMSa R}
+/ M1 R a2 { [T (AP Roll 2, ]2+ IS2Rall 2, V5 } e[ wRs oo
< (m) Y (m0)** 4 €'Png + €V/Onp, (3.6.13)
Again applying (3.5.4) with f = R, and g = eMRY,
™2 Lo, B,

< w2 P0(Re, MRS |2+ 722D (M RE Rl 2
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SIS R ellw Ry =] 1M1 R | 2
+[e2 |l wRs o) { [ |(T - P)RfHLgm] + 871!\6”32%”%}
+eV/0eM8 Ry || a2 {le M I(T = P)R[lzz )V + [e7 IS Rl 12, )2 HelwRs [l o)
Sno + €m0+ e/0np. (3.6.14)
Applying the first estimate of (3.5.5) with f = fi +ef; and g = eMR?

HV 2Lf1+€fze R HL2

2w

S lv=20e(fi + efo, MR )2+ lv =2 (eM R fi + efollrz,

S {||w[f1 + €f2]HL6L°°L°° + [Jwfs1 +efs, 2]||L6L°°Lg°}||e/\tslééuLgL%
Hellwlfi + e folllzee, , +ellwlfsn +efsolllze )}
><{€_1HV26M( PRz +e H[eMSaRY 2}

1/2 1/2 1/2

+e(P1+eP2)n, (3.6.15)
Again applying the first estimate of (3.5.5) with f = fi +efy and g = eMRY,
v~ 2Lf1+ef26 Rt”fo .
S+ 5f2||L6L°°L°°He SlRfHL«’;Lf
+ellwlfy +efolllps, {7 lvzeM(T - P)Rill;z  +e tleMSaRyl|z }

S 1/2 1/2 +e(P+ EPQ)T]O/Q, (3.6.16)
or applying (3.5.5) and (3.5.1) with f = d;f1 + €d;f, and g = eMRY,

o2 Lo,y +e0, 1o R | 12 L2,

SN0+ edefoll gz {NeMS1R |32 + 1M S1Ry | 32 + [1€¥S1R(0)] 3}

t+elwldnfi + et follles,, (e M2 (M=P)RY| 2 +e Mo Rz}

T
S > (m)'/2 +<(m)' (3.6.17)
Again by the second estimate of (3.5.5) with ¢ = Rs and f = eMfi + eeM s,
lv=2Lp, (™ fi + ™ fo)llz
Sy Ta(Re, M fi e fo)ll 2+ v 2T fi + 2™ fo, Ro)llz
S ”SleHLngOHe/\tfl + 56’\tf2HLngv
+elwleMfi + 6e>‘tf2]||Lgva?{5_1HV%(I —P)Rgllrz 1o + e M ISaRs | L2 }
< e (m0)' 72 + o), (3.6.18)
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and similarly applying the second estimate of (3.5.5) with g = Rs and f = Mo, f1 +
N
ee™ O f

_1 s e
lv=2 LR, (X f1 + eeX0; fo)ll 2
SNIS1Rs |l rgolleX 0k fi + €0 fol o2,

= = _ 1 _
+el|wlef1 + e fol | oo 12 {7 V2 (L= P) Rl 12 1pe + ¢ '|IS2Rs L2 e }

< ¢ () /* + (o) /2. (3.6.19)
Step 2 From (3.3.4), (1.4.10) and (3.6.4),
”e)\tRPrl H2 / |e)\sR€+1 2 / ||e)\s Rf+1”2 / He)\sPRZJrlHQ

<R O)2 + et / NQRIZ e / o2
0 0
t -1 sl s N2 t -1 s 0112 ! -1 s 50112
+a/ 3T R o R>|2+/O I3 Lye Ru2+/0 [ Lo R 3
t t
/ lr b2 (1P Al e / 1M 2P AR+ [ b L (@ fite™efo) 2
0 0
S e + e+ +em + (m) ()2 + (1 + €3 + )nolmo
+||eA D22, +2Pos +e[PLRo]? + e[PiPLof? < 15,
and
At pl+1 2 1 t As Dl+112 1 t A 041112 t A 041112
RO, + 2 [ IR [ A PIREE + [ PR
t t
<JRAO)3 + ! / NQRIZ et / RIRETE
0 0
t
+e / [l 20 (MRY, M RY|3 + [le 03T (e RE, M RY)|I3]
0
tfl s 50112 tfl s 5012 ! As D12
T / lv b L R + / I Lo R + / |Lowfrreon s B3

t
/ I3 21— PO AR + 2 / X<V /2P, A3
0

T / It L (0LFs + 20, /o) 3

S [a et b em+ )" 20m)" + (14 + )mo]no
+le tatﬂHLm +&%PL1 +e[PaPra)? +e[PaPagl” < %

Step 3 We apply Proposition 3.1 to (3.6.6): Set
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F= MR,
g = —e TLMRA 4 eA[QMRY 4 Li[MRY + e MeV2D(MRE M RY
FLp (N4 e ) e ‘1)2 M RAY 4 /26N A,
Then
||SleMRZHHL§;L§

§|’eAtRe+1HL§Zv+HeAtRz+1HL%L%+Hw—1[_6—1L[eAtRe+1]+6)\[6Atée+1]+Ll[eAtRe]

9@ - ~
—\t 1/21“( MRE AtRK) L, (e M7 Ee/\tf2) 2 [AtR£+1] 1/2e>\tA” ]
t,x,v

2
SA+ed+2[@loo) [eMRT 2+ MR |2 2 + e NI - P)RTY 2
+||V_1/2Lle)\tREHL§“ + 81/2”7/_1/26_MF(6)¢RZ,e)\tRE)Hwav
2L (U + el M A

tz’u

Now we use Step 1 to bound
[S16M B2, 12 S mo/10.
Similarly, we apply Proposition 3.1 to (3.6.7): Set
234
f _ e)\th-i-l’
g=—e 2L[MRITY 4 MeMRAY 4+ e L [eMR + 7L
_i_ef)\t[_:fl/Q[F(e)\tRE7 e)\tRZ) + F(e)\t}:{@ )\tﬁé)]
P -
1LRé( )\tatfl +e>‘t€8tf2) 4e—— 5 [ )\tRf-‘rl] S+ 1/2 )\taA

Y514
3tf1+€3tf2[ R ]

Then
||S1e/\tRf+1HL§L§
< HeAtRfHHL%M 4 ||e>\tR£+1||L2L2 bl — P)RZHHLEM
+HV_1/2L16MRfHL% + v 2L 5 40,7, RéHL?m
+51/2|yf1/2r<ew%f,e”R%HLaw,U + el PO (MR MR e
+v V2 LR, (M0, fi + aeAtﬁ‘tﬁ)HLgm + 51/2”‘3M8t[1||L%,m,v'

Again by Step 1, ~
HSle)‘tRf“H%%L% < 770/10.

Step 4 We apply Proposition 3.2 to (3.6.6): Set f = eMRI*!. Note
g—lLe)\tRf-i-l _ E_IV(U)GMR£+1 _ 6_1 / k(v,u)e)‘tf%eﬂ(u)du
R3

with v(v) ~ (v) and |k(v,u)| < ks(v,u). Moreover,
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o] .
e ly(v) — el — ET“ > c10W) — el — ]| Bl oo|v] = e Co(v).

Therefore (3.4.1), the condition of Proposition 3.4, is satisfied with the following
setting

g = Li[eMRY 4+ e M 2T (MRL MRY) + L, (M i + e26M fo) + /2N A,
r=eQRl + Me2F fo = Ry.
By Proposition 3.2, from (3.4.2),

€He)\twRE+1”LOO

t,x,v
Se||wR™H0)||loo + € max sup efeMwR7 oo +e sup e2||eMwi|o
0<j<fp<t<oo 0<t<oo
+e% sup ku_l [Ll[e/\th] + 20 (eMRY MR + L, (M fi + e fo)

0<t<oo

+€‘p2' VMR 4 51/26%21}

HESSLR () ey + €S2 R () per

oo

1/QHGAS(I P)RY(s) ]l ez, -
Using [wl'+(w™" w™)] S (v) Sv,

2 sup Hwyflef)\tglﬂr(e)\t}?ﬂ’e)\tRZ)HOO

0<t<oo
S 2l sup [lewe Ry wl (w™t w ™) S eV sup [leweM R o),
0<t<oo 0<t<oo

|e2wr LM R < eV 2w Ty (62 fy + €32 fy + R, eMeRY)|
S P wle'? fr+e®? fateRy][|oo |l weMe R oo |v ™ uT s (w™ " w ™)
Sellwlfi + efolloollweMe R [|oo + &/ [|we Ry|oo |l weM e R oo

< ePy||lweMeR! || oo + £V/?||we Ry|| oo [weMe RY|so,

EQwV_lLRS (e/\tfl + 86)‘tf2)’ < s\wu_lf‘i(sRs, e’\tfl + se)‘tfg)\
< ellweRs || oo [we [ fi + e fo] ooy wl L (w ™t w ™Y
S eP||lweRs||oo-

Altogether,

[ HeAtwRZ-HH -

tzv

12 S (e + e+ emo+2(P)]mo +e(P)? < 2

Now we consider d; R, Apply Proposition 3.2 to (3.6.7): Set f = e)‘t}?fﬂ.

Note
e TLMRIT = ey (v)eM R — 8_1/ k(v, u)eRE (u)du
R3

with v(v) ~ (v) and |k(v,u)| < kg(v,u). For Proposition 3.2 we set
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g= Ll [eAtRf]—{_Latfl-',—satﬁ [eAtRé]+e—At€1/2F(eAtRf, eAtRK)—{—e_)\tEI/QF(eMRg, eAtRf)
+Lpg, (ektatﬁ + €e’\t(9tf2) + 61/2(3)\7581514,

r= 6e’\t8tQ}~€f + 61/26/\t7:, fo= O Ry.

From (3.4.3),

elle™w Ry ™| g

t,z,v

_ N 1 -
¢ ¢ ~ ¢
SellwRy 1 (0) ] oote Jnax, leeMwRE|| g, +elle’ Pwe 7 legs, i+ 7 X Ry () Lo 2,

+e? sup szfl [Ll[e’\tRf] + e*)‘tsl/QF(e)\tRfa e/\tﬁe) + ef)\t51/2r(e/\t]5“ev e)\téf)
0<t<oo
+Lg, i et,f,€ RO+ Lr, (M0, fi + e, f2) + 2N Al .
From |wl's(w™w™)] < (v) S,
2 aup e NV (MRL MY et sup e MV M D)
02t2nd 0<t<oco

<2 sup [leweM B o] sup [leweM B oc]ly T wl (w ™ w )

sup
0<t<oo 0<t<oo
e[ sup [leweM R [|o][ sup [lewe Ry |loo),
0<t<oo 0<t<oo
e2wv ™ Ly, 7, 4o, 1, B S ellwldr fi + 204 fol o llewe™ B |oo [ wl s (w™ " w ™))

< ePlleweM RY|o,
P Ly R S el + e falloo lweMe R oo + /2 = Ry oo v Me B o
S ePyflwee Ry ||oo + £'/?[|we Ry | oo we e RE | oo,
2w r, (eMO, free™ O, fo)|<el|we Rs|| oo ||we [0r fi+€0; fo] || [V w4 (wt, w )|

SeP||weRs||0o-
Altogether

elleXw Ry ™| g

t,x,v

gguwﬁaf“(mHOO+51/2{g1/2+51/2pl+ugszHLg?v+gHeAtwaHm} x e|leMwRY|| o

t,z,v

- 1 -
te{el|wRs| 1o, + ellweM R + €Y%} x Py + 7 Sup MRz
El 5 Ogtgoo x,v

and therefore

>l 2 o
[aHe)‘tthHHLgfw] < 10

Step 5 We repeat Step 1~Step 4 for R — RY to show that R’ is a Cauchy
sequence in L>® N L? for fixed e. Now we pass a limit £ — oo in L N L? to conclude
the existence. The proof of uniqueness is standard (See [20] for details). The proof
is completed.
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3.7 Positivity of Solutions
In this section, we prove the non-negativity of Fy in the main theorem. The proof

is based on the asymptotical stability of Fs (Proposition 3.1) and the non-negativity
of unsteady solution.

Proof of the non-negativity of F(¢,z,v) in Theorem 1.2 and Fy(z,v)
in Theorem 1.1 We use the positivity-preserving sequence as in [20, 32]. Set
FO(t,z,v) = Fy(x,v) > 0 and for £ >0

1 1 1
OF™ + vV, F™ 460V, P + Sy (FOFY = Q. (FY FY,
€ € €
F(z,0)], = M“’/ Ffx,u){n(z) - uldu, FHL(t, z,0))=0 = Fo(x,v).
n(z)-u>0

Step 1 Assume F*(t,z,v)>0 for all £>0. We claim F**1(¢,z,v)>0 for all £>0.
Along the trajectory, for #1(t,z,v) < s <t

d
e {FHl (s, Yal(s;t,z,v), Wei(s; t,x,v))

t
1
X exp (—/s E—QV(FZ)(T, Ya(r;t, z,v), Wcl(r;t,x,v))dT)}
1
- ?Q+(F£7 FZ)(Su }/Cl(s;tal.a’l)% WCI(S;tP:Ua’U))
t
X exp (—/ §V<FZ)(T, Yo (7; t,x,v),WCl(T;t,:):,v))dT).
Then

t
1
FY(t z,0) = 17 o exp (—/ ?V(FZ)(T, Ya(r;t, z,v), Wcl(T;t,a:,v))dT)
0
x Fo(Ye1(05 8, z,v), Wer (05 ¢, 2, v))

t1<0/ exp( / ( 7Y(:1(T;t>x’v)’WCI(T;th’v))dT)
X—Q+( FY(s, Yar(s;t, 2, 0), Wer(s; t, x,v))ds
t1>0/ eXp( / (Ta }/CI(T;tax7v)7WCl(T; t,IE,U))dT)

X?QJr(Féa Ff)(& YCI(S; t,x, U)a WCI(S; t,x, ’U))dS

b1
+17, 50 €xp (—/ 6—21/(Fe)(7', YCI(T;t,aj,U),Wcl(T;t,x,U))dT)
t1

M (G, 51) / P, v, u) [n(@1) - uddu.
n(&1)u>0

From Q+(F£,FZ)(S,Ycl(s;t,;U,U),Wc](S;t,:L',U)) > (0 and I/(FZ)(T, Ya(r;t, z,v),
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W(r;t,x,v)) > 0, we prove our claim.

Step 2 We set F* = pu+e{fi +efo + 61/2R€}\/ﬁ where fi; and fo are given by
(1.2.5), (1.2.8) and let FO(t,z,v) := Fy(x,v). We claim that, there exist 0 < T =
T(|lewR (tp)|lse) < 1 and C; = C1(T) > 1 for any ty > 0 such that

sup  [lewR ()]s < C1{ max |[ewR(tg)]|oo + 0(85/2)}. (3.7.1)
to<t<to+e2T !
It suffices to show (3.7.1) for tp = 0. Clearly (3.7.1) holds for £ = 0. Now we assume
(3.7.1) for 0 <1 < 4.
Clearly, R’ solves

Q) .
R 4 ey VLR 4 2d . VR 4 ET”RW T e 2R _ 2K R

= e W([fi + el VR) R + e (R L + efol v/l
—e 'y (fu +efo, RY) + T (R, fi + e fo)]
+ePT (R RY) — e VPu(RE/m) RTY + e 7P A(f, o),

R™Y,—o = Ro. (3.7.2)
The boundary condition is given by
R™Y, = PR+ QR + /7. (3.7.3)
Define hf(t,z,v) := w(v) "' R(t,z,v). Note that
5 D||oo|v v(v
v(v):=v(v) — EgHH2H—z—:|f1 +efollrgs, , —51/2u(\/ﬁ)||ewR€||L§ozyv22> 2 (v).

We define k such that where
/ k(v, u) w(v) R(u)du
RS

w(u)
= KR' +ev(R'/p)[fi + efoly/i — e[C (fi + efa, RY) + T (R, fr + e fo)].
Then k(v, u) < kg(v, u).
Then, for t; < s <t
d
ds

S{e [ RaWalsst, o)) |eh (s Ya(si ., 0). )l
R3

t
[[ah”l(s,Ycl(s;t,m,fu),Wc](s;t,x,v))\exp (—/ 5*21)(Wcl(7';t,x,v))d7'>}

t
4 Wt o) b (9 + 1Al exp (= [ e 2oWatrit,0)ar)

{42 (We(sit, 2, v))|2h ()] oo HIER (5) | oo 2 exp (- / 5_21)(WC1(7';t,:n,v))dT>

S

t
+”AH0065/2€_2 exp (—/ E_Qﬂ(Wcl(T;t,:L‘,U))dT),
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where we used the fact [ps kg(Wei(s; t, z,v), u)du<1 and wf(%, %)(v)ﬁ(v)“z—:heﬂgo
Then, for t € [0,£2T],
eh™(t, z,0))|

t 1 to(Va(t — =25t 2,0))
<1 e CT||ehttt 0) Oo+/ ds — exp / c e 1 odr
{t<0y H ( H max {0,f1(z,v)} g2 ( s g2 >

[ (142 (Va1 - t%s;t,x,v) D)1 (5) o) 1eh () oo + <] Ao }

to(Va(t — &2t x,v 1l
+17,50) exp (—/ Walt = ))d7'>0(51/2)ﬂ(111)%

i &2
1 ot — =Tt x,0)
+1 ~exp(/ £ r) / H,
(=0h) S T oy
L

where H is given by
k—1 k=1 i

T EEDIRESTOR Y S T (A )
=1

=1/ max{0,t;41}

><H€hH(T)||oo||5he*l(7)\|oo+55/2||A||oo}d21(7)d7
1 ~ ~ ~
+thl>0 (€2 u(vr) 2~ A% (E141) + L, o leh ™ (1) oo d k1 (B),

and d¥,_;(t;) is evaluated at s = tj, of

asy(s { H doj}{exp (— /:l V(Ver(t — ZgT;N 20) 47 )u?(vl)dal}

j=l+1
o b (Val(l; - E];T;fjwj,vj))
H exp <— ﬁ o) dT)de .
j=1 tir1 €

With the choice of k = C1T/* (clearly 0 < t < £2T < eTy), for ¢ € [0,2T),
eh T (t, 2, v))|

< T5/4{ —CoT 5/2 5/2
SO e " max b (0) oo+ T max S leh! () oo+ %[ Alloo+O (/)

to(Va(t — =55t 2,0)) _ 1 2Wat="2T5te0)
+/ ot E— D o Ji HOHEFERar g 112 sup ||leh!(s )”Zo}
0 € 0<I<Lo<s<t

<1

Lppaf e ek (s)]
2 BRI

For Ty > 1, 0<T < 1,and 0 < e < 1, using (3.7.1) for all 0 <1 < ¢
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sup [|lh ()]0
0<t<e?T

<Cp{ max 1eR!(0)]|oo + £%/2[| A| oo + O(7/2)}
+[T+O(51/2)+O(1)}CT001{mlaxthl(o)||OO+€5/2||AHOO+O(€5/2)}
<C1{ max K (0) o + 2 Al + OE2)},

for C1 > 10C7T,.

Step 3 From Step 2, wR’ — wR weak-* in L°([0,e2T] x Q x R3) up to
subsequence. Clearly R satisfies the bound (3.7.1). On the other hand, follow-
ing Step 2, wR’ is a Cauchy sequence in L>®([0,£2T] x Q x R3). Tt is standard
to show that R solves (3.7.2) and (3.7.3) with R"! = R = R’. Therefore F =
p+elfi +efo+ 61/2R}\/ﬁ solves the Boltzmann equation with diffuse BC. Since
the unique solution R has a uniform-in-time bound from Theorem 1.2, we can
continue the Step 2 for [e2T, 22T, [2¢2T, 3¢2T),- - -, to conclude wR’ — wR in
L®(Ry x Q x R3). Therefore F* — F >0 a.e.

Step 4 Let, for sufficiently large m,

Fo(z,v) = p+ Vale(frs + f1(0) + €2(fo,s + f2(0)] + VEE2 Ry + 163 15 10ge -

Clearly, by the L estimate of Rs we have F'(0) > 0. Moreover, Fj satisfies the
assumptions of Theorem 1.2. By Theorem 1.2, we have ||F () — Fy||2 < e . Then,
as t — oo, for any non negative test function ¢ (x,v),

//QXR?, Fy(w,v)y(z, v)dedv

// F(t,z,v)Y(x,v)dzdv + O(1 // (x,v) — F(t,z,v)|(x,v)dedv
QxR3 QxR3
>0-OM)F() = Fsllz2(axrsy > 0.

This proves Fg(x,v) > 0 a.e. The proof is completed.

Appendix A Basic Estimates of the Fluid Equations

In this Appendix, to simplify the formulas, we set v = 1 and k = 1, since they
do not play any role in the estimates.

Lemma A.1 Let (us,9s) be the H?—solution to the steady INSF (1.4.1). As-
sume (1.4.4). Then

||UsH 23+ +19s]l 3 it + lusllze + 19sllze + [Vaus|z2a0) + [Vals|p2a0)

S ||<1>HL§+ + 0% 1+ 00)-

If we further assume ® € H] and 6,, € H’”“'%(@Q) then us,9s € HI T2,
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p:

Lemma A.2 Let (u,?,p) be H* solution to (1.2.7). Set u = i+ us, ¥ = 0+,
D+ ps, where (ﬁ,@,ﬁ) solves (1.4.8). Assume

sy + 12 (0) |z <1, [|10s][ gy < oo

Then, for any k > 0 and for 0 < A < 1,

5 [Ieaiy + 1ol + [ 1ol + [ 1oir,]

0<i<k
(5] k

5P(Z[Haz’am)uH;+H6£19<o>uH;}+ 3 Uai’am)uLg+|raz@<o>uLg]), (A1)

7=0 j=[5]+1

whenever the RHS is finite for some polynomial P.

Moreover, for some 0 < A < 1 and polynomial Py with Py(s) = O(s),

(14r (14r —
lof~ ") (t)|| e + V28] U5 HHzrﬁPo(Zl Hp)ﬁem,

o=+ <>HH2T+2<P0(Z\ rrLz+eraw uLz)se-“,

whenever the RHS of (A.1) is finite and Vs, us € H%’"H.

Furthermore,

e} @l Lo rge + 1€¥Dl| Lo o0 S PUEO) 2 + 1900)][1z2 + 18 (0)[I 2 + 19:(0)]|2)

Xl g roe + 13 Dill o pee S P(10u(0)]| 12 + 106 (0)] 2 + [|17(0)]| 12
[0 ()] 2 + [|9:(0) | 22 + [[9(0) [ 112 ) -
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