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The goal of this paper is to study the important diffusive expansion via an
alternative mathematical approach other than that in [21].
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1 Introduction

1.1 Hilbert Expansion with No Boundary Layer Approximations
The hydrodynamic limit of the Boltzmann equation has been the subject of many

studies since the pioneering work by Hilbert, who introduced his famous expansion

in the Knudsen number ε in [37, 38], realizing the first example of the program

he proposed in the sixth of his famous questions [39]. Mathematical results on

the closeness of the Hilbert expansion of the Bolzmann equation to the solutions

of the compressible Euler equations for small Knudsen number ε, were obtained by
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Caflisch [14], and Lachowicz [45], while Nishida [47], Asano and Ukai [4] proved this

by different methods.

On a longer time scale ε−1, where diffusion effects become significant, the prob-

lem can be faced only in the low Mach numbers regime (Mach number of order ε

or smaller) due to the lack of scaling invariance of the compressible Navier-Stokes

equations. Hence the Boltzmann solution has been proved to be close to the incom-

pressible Navier-Stokes-Fourier system. Mathematical results were given, among the

others, in [11, 18, 31, 33, 34] for smooth solutions. For weak solutions (renormalized

solutions), partial results were given, among the others, in [7–10], and the full result

for the convergence of the renormalized solutions has been obtained by Golse and

Saint-Raymond [27].

Much less is known about the steady solutions. It is worth to notice that, even

for fixed Knudsen numbers, the analog of DiPerna-Lions’ renormalized solutions

[19] is not available for the steady case, due to lack of L1 and entropy estimates.

In [29, 30], steady solutions were constructed in convex domains near Maxwellians,

and their positivity was left open. The only other results are for special, essentially

one dimensional geometry (see [3] for results at fixed Knudsen numbers and [1, 2,

22, 23] for results at small Knudsen numbers in certain special 2D geometry). In a

recent paper [20], via a new L2 − L∞ framework, we have constructed the steady

solution to the Boltzmann equation close to Maxwellians, in 3D general domains,

for a gas in contact with a boundary with a prescribed temperature profile modeled

by the diffuse reflection boundary condition. The question about positivity of these

steady solutions was resolved as a consequence of their dynamical stability. As

pointed in [25], despite the importance of steady Navier-Stokes-Fourier equations

in applications, it has been an outstanding open problem to derive them from the

steady Boltzmann theory.

The goal of our paper is to employ the L2−L∞ framework developed in [20] to

study the hydrodynamical limit of the solutions to the steady Boltzmann equation,

in the low Mach numbers regime, in a general domain with boundary where a tem-

perature profile is specified. We refer to [15,16,41–44] for the recent development of

L2 − L∞ framework in various directions.

Let Ω be a bounded open region of Rd for either d = 2 or d = 3. We consider the

Boltzmann equation for the distribution density F (t, x, v) with t ∈ R+ := [0,∞),

x ∈ Ω, v ∈ R3. In the diffusive regime, the time evolution of the gas, subject to the

action of a field G⃗, is described by the following rescaled Boltzmann equation:

∂tF + ε−1v · ∇xF + G⃗ · ∇vF = ε−2Q(F, F ), (1.1.1)

where the Boltzmann collision operator is defined as
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Q(F,H)(v) :=

∫
R3

∫
S2
B(v − u, ω)[F (v′)H(u′)− F (v)H(u)]dωdu

:= Q+(F,H)(v)−Q−(F,H)(v),

with v′ = v − [(v − u) · ω]ω, u′ = v + [(v − u) · ω]ω. Here, B is chosen as the hard

spheres cross section throughout this paper,

B(V, ω) = |V · ω|. (1.1.2)

The interaction of gas with the boundary ∂Ω is given by the diffuse reflection

boundary condition, defined as follows: Let

Mρ,u,T :=
ρ

(2πT )
3
2

exp
[
− |v − u|2

2T

]
be the local Maxwellian with density ρ, mean velocity u, and temperature T . For a

prescribed function Tw on ∂Ω, we define

Mw =

√
2π

Tw
M1,0,Tw . (1.1.3)

We impose the diffuse reflection boundary condition as

F = Pw
γ (F ), on γ−, (1.1.4)

where

Pw
γ F (x, v) := Mw(x, v)

∫
n(x)·u>0

F (x, u){n(x) · u}du. (1.1.5)

Here, we denote by n(x) the outward normal to ∂Ω at x ∈ ∂Ω and decompose the

phase boundary γ := ∂Ω× R3 as

γ± := {(x, v) ∈ ∂Ω× R3: n(x) · v ≷ 0},
γ0 := {(x, v) ∈ ∂Ω× R3: n(x) · v = 0}.

(1.1.6)

We remind that the boundary condition (1.1.4), (1.1.5) ensures the zero net mass

flow at the boundary:∫
R3

F (x, v){n(x) · v}dv = 0, for any x ∈ ∂Ω.

The rescaled Boltzmann equation (1.1.1) is studied under the assumption of low

Mach numbers, meaning that the average velocity is small compared to the sound

speed. This can be achieved by looking for solutions

F − µ = M
√
µf, (1.1.7)

with the global Maxwellian

µ(v) =M1,0,1 =
1

(2π)3/2
exp

[
− |v|2

2

]
. (1.1.8)
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Here, the number M is proportional to the Mach number. The case of M = ε

corresponds to the incompressible Navier-Stokes-Fourier limit (INSF) that will be

discussed in this paper. The case of M ≪ ε corresponds to the incompressible

Stokes-Fourier limit and the results of this paper also cover this case which will not

be discussed explicitly.

The condition (1.1.7), once assumed initially, needs to be checked at later times.

By multiplying (1.1.1) by v and integrating on velocities, we see that the change

of mean velocity is proportional to G⃗. Thus, we need to assume G⃗ = MΦ with a

bounded Φ. Moreover, to make (1.1.7) compatible with the boundary conditions,

we need to assume that Tw = 1 +Mϑw. In particular, for the INSF case, we have

G⃗ = εΦ, Tw = 1 + εϑw. (1.1.9)

The presence of the boundary represents a major issue in pursuing such a pro-

gram. The usual approach is based on the representation of the solution by means of

an Hilbert-like expansion in the bulk, suitably corrected at the boundary to satisfy

the boundary conditions [1, 2, 22,23]:

F = µ+ ε
√
µ[f1+ εf2+ · · ·+ εkfk+1+ εf

B
1 + ε2fB2 + · · ·+ εk+1fBk+1+ ε

kR]. (1.1.10)

Here, the functions fk are corrections in the bulk, while fBk are boundary layer cor-

rections which solve Milne-like problems, and R = Rε denotes the remainder. It is

important to choose sufficiently large k ≥ 1 so that the nonlinear collision term can

be controlled. The corrections at the boundary are computed by means of a bound-

ary layer expansion which, in a general domain, presents some issues hard to deal

with. The usual strategy is to solve the k-th term of the boundary layer expansion

by looking at it in terms of the rescaled distance from the boundary (see e.g. [48]).

Using of such a variable, the problem looks like a half-space linear problem (Milne

problem) [5] with a correction due to the geometry which can be interpreted as an

external field of the order of the Knudsen number. The field, due to the k-th term

of the boundary layer expansion, is usually included as source term in the equation

for the (k + 1)-th term [48], but the lack of regularity makes this hard to control.

This strategy has been used in [12] in the much simpler case of the neutron

transport equations, but recently in [51] it has been proved that the result in [12]

breaks down exactly because of the lack of regularity (see the recent work in the

Boltzmann case [50]). Therefore, the geometric field, even if of small size, has to be

included in the equation for the k-term of the expansion, as in [2,24] for the case of

the gravity and [51] for the geometrical field in the neutron transport equation in a

disk:

F = µ+ ε
√
µ[f1 + εf2 + · · ·+ εkfk+1 + εfB1,ε + ε2fB2,ε + · · ·+ εk+1fBk+1,ε + εkR],
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where fBk,ε depends on ε. Unfortunately, this strategy fails even for a general 2D do-

main because the analysis of the derivatives’ singularities presents severe difficulties

(see [35,36] for the analysis at ε ≈ 1).

In this paper, we avoid the boundary layer expansion to cope with a general

geometry. This is possible because, in the incompressible regime, the first term of

the bulk expansion in (1.1.10) which violates the boundary condition is of order ε2,

while the main hydrodynamic contribution, is of order ε. We will discuss more about

this in Section 1.3.

1.2 Expansion with Remainder
The Hilbert expansion suggests that the solution can be written as

F = µ+ ε
√
µ
[
f1 + εf2 + εαR

]
, (1.2.1)

where µ is the standard Maxwellian in (1.1.8).

To determine f1, f2 and Rs, we define the linearized collision operator as

Lf = − 1
√
µ
[Q(µ,

√
µf) +Q(

√
µ, fµ)], (1.2.2)

and the nonlinear collision operator as

Γ(f, g) =
1

2
√
µ
[Q(

√
µf,

√
µg) +Q(

√
µg,

√
µf)]. (1.2.3)

The null space of L, NullL is a five-dimensional subspace of L2(R3) spanned by{√
µ, v

√
µ,

|v|2 − 3

2

√
µ
}
.

We denote the orthogonal projection of f onto NullL as

Pf = a
√
µ+ v · b√µ+ c

|v|2 − 3

2

√
µ, (1.2.4)

and (I − P) the projection on the orthogonal complement of NullL. The inverse

operator L−1 is defined as follows: L−1g is the unique solution of L(L−1g) = g, and

P(L−1g) = 0.

The first correction f1 is given by

f1 :=
[
ρ+ u · v + |v|2 − 3

2
ϑ
]√

µ, (1.2.5)

where (ρ, u, ϑ) represents the density, velocity, and temperature fluctuations. The

density and the temperature fluctuations satisfy the Boussinesq relation

∇x(ρ+ ϑ) = 0, (1.2.6)

and the velocity and the temperature fluctuations satisfies the INSF system
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∂tu+ u · ∇xu+∇xp = v∆u+Φ, ∇x · u = 0 in Ω,

∂tϑ+ u · ∇xϑ = κ∆ϑ in Ω,

u(x, 0) = u0(x), ϑ(x, 0) = ϑ0(x) in Ω,

u(x) = 0, ϑ(x) = ϑw(x) on ∂Ω,

(1.2.7)

where v is the viscosity and κ is the heat conductivity.

The second correction f2 is given by

f2 :=
1

2

3∑
i,j=1

Aij [∂xiuj + ∂xjui] +

3∑
i=1

Bi∂xiϑ

−L−1[Γ(f1, f1)] +
[
ρ2 + u2 · v +

|v|2 − 3

2
ϑ2

]√
µ, (1.2.8)

where Aij and Bi are given by

Aij = L−1

(
√
µ
(
vivj −

|v|2

3
δi,j

))
, Bi = L−1

(√
µvi(|v|2 − 5)

)
.

Note that the only restriction on ρ2, u2 and ϑ2 turns out to be that ∇x[ρϑ +

ρ2 + ϑ2] = ∇xp. For simplicity we choose

ρ ≡ −ϑ+

∫
− ϑ, and u2 ≡ 0 ≡ ρ2, ϑ2 ≡ p−

∫
− p− ρϑ, (1.2.9)

where ∫
− ϑ :=

1

|Ω|

∫
Ω
ϑ(x)dx and

∫
− p :=

1

|Ω|

∫
Ω
p(x)dx.

These choices imply∫∫
Ω×R3

f1
√
µdvdx = 0 =

∫
R3

f2
√
µdv. (1.2.10)

By choosing the reference Maxwellian, we can assume∫∫
Ω×R3

R
√
µdvdx = 0. (1.2.11)

The equation for R is obtained by plugging (1.2.1) into (1.1.1):

∂tR+ ε−1v · ∇xR+ ε
1
√
µ
Φ · ∇v

[√
µR

]
+ ε−2LR = ε−1L1R+ ε−

1
2Γ(R,R) + ε−

1
2A,

(1.2.12)

with

L1R := 2Γ(f1 + εf2, R), (1.2.13)

and

A =− [∂tf1 + v · ∇xf2 − Φ · v√µ]− 2Γ(f1, f2)

− ε
{
∂tf2 +Φ ·

[ 1
√
µ
∇v

√
µ(f1 + εf2)

]
− Γ(f2, f2)

}
.



No.2 R. Esposito, etc., Diffusive Limits of the Boltzmann Equation 117

It is important to observe the fact that P[∂tf1+v ·∇xf2−Φ ·v√µ] = 0 since (u, ϑ, p)

solves (1.2.7). As a consequence, A is given by

A = −(I−P)[v ·∇xf2]−2Γ(f1, f2)−ε
{
∂tf2+Φ · 1

√
µ
∇v

[√
µ(f1+εf2)

]
−Γ(f2, f2)

}
,

(1.2.14)

which implies the crucial fact that PA = O(ε). This is the only but essential point

of our expansion where the specific hydrodynamic equations play a role. We also

remark that, by (1.2.10), ∫
R3

A
√
µdv = 0. (1.2.15)

It is well-known that (see [17])

Lf = νf −Kf,

where the collision frequency is defined as

ν(v) =
1
√
µ
Q−(

√
µf, µ) =

∫
R3

∫
S2
|(v − u) · ω|√µ(u)dωdu.

For the hard sphere cross section (1.1.2), there are positive numbers C0 and C1 such

that, for ⟨v⟩ :=
√

1 + |v|2,

C0⟨v⟩ ≤ ν(v) ≤ C1⟨v⟩. (1.2.16)

Moreover the compact operator K is defined as

Kf =
1
√
µ
[Q+(µ,

√
µf)+Q+(

√
µf, µ)−Q−(µ,

√
µf)] =

∫
R3

[k1(v, u)−k2(v, u)]f(u)du.

The operator L is symmetric on L2(R3): (f, Lg)2 = (g, Lf)2 where (· , ·)2 is the L2

inner product.

The following spectral inequality holds for L:

(f, Lf)2 & ∥
√
ν(I−P)f∥2L2(R3). (1.2.17)

1.3 Boundary Conditions
We assume that (ρ, u, ϑ) satisfies the boundary conditions of (1.2.7) with (1.2.9).

As a consequence, for x ∈ ∂Ω,

M1+ερ,εu,1+εϑ

∣∣
γ−

= Pw
γ (M1+ερ,εu,1+εϑ).

Moreover, by expanding M1+ερ,εu,1+εϑ in ε, we get

M1+ερ,εu,1+εϑ = µ+ εf1
√
µ+ ε2φε, (1.3.1)

where |φε| ≤ O(∥ρ∥L∞(∂Ω)∥θw∥L∞(∂Ω))⟨v⟩4µ(v).
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Therefore, on γ−

µ+ εf1
√
µ+ ε2φε

√
µ = Pw

γ (µ+ εf1
√
µ+ ε2φε

√
µ). (1.3.2)

On the other hand, from (1.1.4) and (1.2.1), on γ−,

µ+ εf1
√
µ+ ε2f2

√
µ+ ε

3
2R

√
µ = Pw

γ (µ+ εf1
√
µ+ ε2f2

√
µ+ ε

3
2R

√
µ).

Subtracting above two equations, we obtain the boundary condition for R:

R|γ− =
√
µ−1Pw

γ (
√
µR) + ε1−αr,

with

r =
1
√
µ
Pw
γ

(√
µ[f2 − φε]

)
− [f2 − φε]. (1.3.3)

We expand Mw in (1.1.3) with Tw = 1 + εϑw in ε to obtain

Mw(x, v) =
√
2πµ(v) + εϑw

√
2π

( |v|2
2

− 2
)
µ(v) + ε2O(|ϑw|2)⟨v⟩4µ(v). (1.3.4)

Therefore we can write
√
µ−1Pw

γ (
√
µR) = PγR+ εQR,

with

PγR(x, v) :=
√
2π

√
µ(v)

∫
n(x)·u>0

R(u)
√
µ(u){n(x) · u}du, (1.3.5)

QR := ε−1
[ 1
√
µ
Pw
γ (

√
µR)− PγR

]
. (1.3.6)

Note that the boundary operator Q is bounded uniformly in ε because of (1.3.4).

Hence the boundary condition for R becomes

R = PγR+ εQR+ ε
1
2 r, on γ− (1.3.7)

with Q in (1.3.6) and r in (1.3.3).

From ∫
n·v<0

µ{n · v}dv = −1 =

∫
n·v<0

Mw{n · v}dv

and (1.3.3) and (1.3.6), it follows that∫
n(x)·v<0

QR√µ{n(x) · v}dv = 0 =

∫
n(x)·v<0

r
√
µ{n(x) · v}dv, for any x ∈ ∂Ω.

(1.3.8)

Notations We use ∥ · ∥p and ∥ · ∥Lp for both of the Lp(Ω̄× R3) norm and the

Lp(Ω̄) norm, and ( · , · ) for the L2(Ω̄× R3) inner product, where Ω̄ := Ω ∪ ∂Ω. We

subscript this to denote the variables, thus ∥ · ∥Lp
y
means Lp({y ∈ Y }). We denote

∥ · ∥ν≡∥ν1/2 · ∥2 and ∥f∥Hk=∥f∥2+
k∑

i=1
∥∇i

xf∥2. We also denote ∥ · ∥LpLq :=∥ · ∥Lp(Lq)
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:=
∥∥∥·∥Lq

∥∥
Lp . For the phase boundary integration, we define dγ = |n(x) ·v|dS(x)dv

where dS(x) is the surface measure and define |f |pp =
∫
γ |f(x, v)|

pdγ and the cor-

responding space as Lp(∂Ω × R3; dγ) = Lp(∂Ω × R3). Further |f |p,± = |f1γ± |p.
We also use |f |pp =

∫
∂Ω |f(x)|pdS(x). Denote f± = fγ± . X . Y is equivalent to

X ≤ CY , where C is a constant not depending on X and Y . We subscript this to

denote dependence on parameters, thus X .α Y means X ≤ CαY .

1.4 Main Results
We first focus on the steady case. The following (ps, us, ϑs) is a solution to the

steady INSF with Dirichlet boundary conditions and subject to the external field Φ:

us · ∇xus +∇xps = v∆us +Φ, ∇x · us = 0 in Ω,

us · ∇xϑs = κ∆ϑs in Ω,

us(x) = 0, ϑs(x) = ϑw(x) on ∂Ω.

(1.4.1)

Note that, if Φ is a potential field, us ≡ 0 is a solution to the above system. There-

fore, in order to have a stationary solution with non vanishing velocity field, we may

assume that Φ is not a potential field, such that ∇x · Φ = 0. (See [25])

The steady solution to the Boltzmann equation is obtained with the same pro-

cedure discussed before for the unsteady case:

Fs = µ+ ε
√
µ[fs,1 + εfs,2 + ε1/2Rs], (1.4.2)

where fs,1 and fs,2 are given by (1.2.5) and (1.2.8) with ρ, u, ϑ, and p replaced by

ρs, ϑs, us and ps. The remainder has to satisfy the following equation

v ·∇xRs+ ε2
1
√
µ
Φ ·∇v

[√
µRs

]
+ ε−1LRs = L1Rs+ ε1/2Γ(Rs, Rs)+ ε1/2As, (1.4.3)

with the boundary condition (1.3.7). Here As is given by (1.2.14) with f1, f2 replaced

by fs,1, fs,2, and satisfies the mean zero condition (1.2.15).

Theorem 1.1 Assume Ω is an open bounded subset of R3 with C3 boundary

∂Ω. We also assume the hard sphere cross section (1.1.2).

If Φ = Φ(x) ∈ H2(Ω) ∩ C1(Ω), ϑw ∈ H7/2(Ω) and

∥ϑw∥H1+(∂Ω) + ∥Φ∥
L

3
2+(Ω)

≪ 1, (1.4.4)

then, for 0 < ε ≪ 1, there is a unique positive solution Fs ≥ 0, given by (1.4.2)

with Rs satisfying (1.4.3) and the boundary condition (1.3.7). Here, f1,s and f2,s are

given by (1.2.5) and (1.2.8) where (us, ϑs, ps) solves (1.4.1).

Moreover,
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∥Rs∥2 + ε−1∥(I−P)Rs∥ν ≪ 1, ε∥wRs∥∞ ≪ 1,

∥Rs∥L3
x
. 1,

∥fs,1∥L6
xL

2
v∩L∞

x,v
+ ∥fs,2∥L6

xL
2
v∩L∞

x,v
. 1,

(1.4.5)

where w(v) = eβ|v|
2
with 0 < β ≪ 1.

We remark that in the expansion (1.4.2), the remainder
√
εRs is of higher order

in Lp for 2 ≤ p < 6. On the other hand,
√
εRs is of order ε−1/2 in L∞, so the

expansion Fs = µ+ε
√
µ[f1,s+ε

1
2Rs] is not proved to be valid in L∞. It is important

to note that the key difficulty in this paper is to control the ‘strong’ nonlinear terms√
εΓ(Rs, Rs), in the absence of boundary layer approximations. The hard spheres

cross section is needed to control the term εv · Φf coming from the external field.

We use the quantitative L2 −L∞ approach developed in [20], in the presence of

ε. We start with the energy estimates to get

1

ε
∥(I−P)Rs∥ν .

√
ε∥Γ(Rs, Rs)∥2 + 1.

The missing PRs can be estimated by the coercivity estimates in [20], with carefully

chosen proper test functions in the weak formulation, such that (Proposition 2.2):

∥PRs∥2 .
1

ε
∥(I−P)Rs∥ν +

√
ε∥Γ(Rs, Rs)∥2 + 1.

By using a double iteration of the Duhamel formula along the characteristics [20],

we may bootstrap such L2 estimates to L∞ estimate as

∥Rs∥∞ . 1

εd/2
∥PRs∥2 +

1

εd/2
∥(I−P)Rs∥2 + 1 . 1

εd/2
,

where the dimension is d = 3.

We split

|Γ(Rs, Rs)|.|Γ(PRs, Rs)|+ |Γ((I−P)Rs, Rs)|.

Since we expect ε−1∥(I − P)Rs∥ν . 1, the second part of the nonlinear term is

estimated as

√
ε∥Γ((I−P)Rs, Rs)∥2 .

√
ε∥(I−P)Rs∥2∥Rs∥∞ . 1.

Unfortunately, in 3D, ∥Rs∥∞ . 1
ε3/2

leads to

√
ε∥Γ(PRs,PRs)∥2 . ∥PRs∥2∥PRs∥∞ .

√
ε

1

ε3/2
=

1

ε
,

which is way out of control to close the estimates.

The key observation is that in our L∞ estimate, higher integrability of PRs helps

to reduce ε singularity in the estimate of ∥Rs∥∞. Indeed, if we have
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∥PRs∥L3 . 1,

then, in d = 3, we are able to improve the L∞ estimate as (Proposition 3.3):

∥Rs∥∞ . 1

ε
∥PRs∥3 +

1

ε3/2
∥(I−P)Rs∥2 + 1 . 1

ε
.

Now with such an improvement, we have ∥PRs∥6 . ∥PRs∥1/23 ∥PRs∥1/2∞ . ε−1/2,

and the nonlinearity is exactly controllable:

√
ε∥Γ(PRs,PRs)∥2 .

√
ε∥PRs∥3∥PRs∥6 .

√
ε× 1√

ε
= 1.

In the absence of the external field and the boundary, Φ ≡ 0 and Ω = R3, such

gain of integrability, ∥PRs∥L3 . 1, is well-known from the Averaging Lemma [26]

and the sharp Sobolev embedding H1/2 ⊂ L3 (See also the case for a convex bounded

domain with Φ ≡ 0 in [26]). We need to extend this estimate properly to case of the

bounded domain Ω with the presence of the external field Φ ̸= 0. We first consider

an extension of Rs to the whole space, denoted by R̄s, such that R̄s ∈ L2 and

v · ∇xR̄s + ε2Φ · ∇vR̄s ∈ L2.

This would require that R̄s is continuous along all exterior trajectories, matching

with given incoming and outgoing data of Rs on the boundary. For a general domain

Ω with ε2Φ ̸= 0, the exterior trajectories can be complicated and they can connect

the outgoing set γ+ and incoming set γ−, arbitrarily near the grazing set γ0. It is not

clear that an extension R̄s would satisfy both R̄s ∈ L2 and v · ∇xR̄s + ε2Φ · ∇vR̄s ∈
L2, due to a possible discontinuity of Rs [41].

We circumvent this difficulty via an extension lemma, Lemma 2.4, which asserts

that, for the function cutoff from the grazing set γ0,

Rs,δ ∼ 1{|v|< 1
δ
}1{|n(x)·v|>δ or dist(x,∂Ω)>δ}Rs, for δ ≪ 1, (1.4.6)

such an extension R̄s,δ is indeed possible. Here, dist(x, ∂Ω) := inf
y∈∂Ω

|x− y|. Luckily,

PRs,δ ∼ PRs thanks to the estimate ε−1∥(I − P)Rs∥2 ∼ 1. In the presence of the

external field Φ ̸= 0, a direct application of averaging lemma leads to PR̄s,δ ∈ H
1
4 ̸⊂

L3. To show PR̄s,δ ∈ L3 in the whole space (Proposition 2.1), instead, we utilize

the Duhamel formula along the trajectories, and employ the approach in [40], and

take advantage of small field ε2Φ. This is different from the classical proof based on

Fourier transform in [26].

We also remark that in the presence of an external field, even the construction of

the solution to the linear problem is delicate. In fact, an extension similar to (1.4.6)

must be used again to gain compactness from the averaging lemma. Moreover, as

in [20], our construction cannot yield the positivity of Fs directly, which is left for
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the unsteady case.

Next we investigate the stability properties of the stationary solution. To discuss

this, we study the unsteady problem. The solution to (1.1.1) is written as

F (t) = Fs + ε
√
µ[f̃1 + εf̃2 + ε1/2R̃(t)]. (1.4.7)

Here, f̃1 is given by

f̃1 =
[
ρ̃+ ũ · v + |v|2 − 3

2
ϑ̃
]√

µ

where (us + ũ, ϑs + ϑ̃, ps + p̃) solves (1.2.7), and f2,s + f̃2 satisfies (1.2.8). Therefore

(ũ, ϑ̃, p̃) satisfies

∂tũ+ ũ · ∇xũ+ ũ · ∇xus + us · ∇xũ+∇xp̃ = v∆ũ, ∇x · ũ = 0 in Ω,

∂tϑ̃+ ũ · ∇xϑ̃+ ũ · ∇xϑs + us · ∇xϑ̃ = κ∆ϑ̃ in Ω,

ũ = 0, ϑ̃ = 0 on ∂Ω.

(1.4.8)

From the choice of (1.2.9), we have ρ̃(t, x) = −ϑ̃(t, x) +
∫
− ϑ̃(t) and ϑ̃2 = p̃−

∫
− p̃+

2ϑsϑ̃+ (ϑ̃)2 − ϑ̃
∫
− ϑs − ϑs

∫
− ϑ̃− ϑ̃

∫
− ϑ̃.

Then the equation of R̃ is given by

∂tR̃+ ε−1v · ∇xR̃+ εΦ · ∇vR̃+ ε−2LR̃

= ε−1L1R̃+ ε−1Lε1/2Rs
R̃+ ε−1LRs(f̃1 + εf̃2)

+ε−1/2Γ(R̃, R̃) + ε
Φ · v
2

R̃+ ε−1/2Ã, (1.4.9)

where Ã = A − As. Here we have used the notation Lϕψ := −[Γ(ϕ, ψ) + Γ(ψ, ϕ)].

Note that, due to symmetry, for all ψ1, ψ2 ∈ L2,

(Lϕψ1, ψ2) = (Lϕψ1, (I−P)ψ2). (1.4.10)

The boundary condition of R̃ is given by

R̃|γ− = PγR̃+ εQR̃+ ε1/2r̃, (1.4.11)

where

r̃ := ε−1[µ−
1
2Pw

γ (f̃1
√
µ)− f̃1] + [µ−

1
2Pw

γ (f̃2
√
µ)− f̃2].

Note that, since Mw only depends on ϑw, by taking the difference of (1.3.2), written

for the unsteady and steady solutions respectively, we obtain

µ−
1
2Pw

γ (f̃1
√
µ)− f̃1 = ε{µ−

1
2Pw

γ (φ̃ε
√
µ)− φ̃ε},

with φ̃ε = φε−φε,s. Thus, apparently ε
−1[µ−

1
2Pw

γ (f̃1
√
µ)− f̃1] term in r̃ is actually

O(1).
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We define the energy and the dissipation as

Eλ(t) := sup
0≤s≤t

∥eλsR̃(s)∥22 + sup
0≤s≤t

∥eλs∂tR̃(s)∥22,

Dλ(t) :=
1

ε2

∫ t

0
∥eλs(I−P)R̃∥2ν +

1

ε2

∫ t

0
∥eλs(I−P)∂tR̃∥2ν

+

∫ t

0
∥eλsPR̃∥22 +

∫ t

0
∥eλsP∂tR̃∥22 +

∫ t

0
|eλsR̃|22,γ +

∫ t

0
|eλs∂tR̃|22,γ .

Theorem 1.2 We assume the same hypotheses of Theorem 1.1. Suppose F0 =

Fs + ε
√
µ[f̃1(0) + εf̃2(0) + ε1/2R̃(0)] ≥ 0, and ũ(0), ϑ̃(0) ∈ H8(Ω) and

∥ũ(0)∥H2(Ω) + ∥ϑ̃(0)∥H2(Ω) ≪ 1, (1.4.12)

and

E(0) + ε3/2∥w∂tR̃0∥∞ +

∥∥∥∥ ∫
R3

|R̃0(x, v)|⟨v⟩2
√
µdv

∥∥∥∥
L3(Ω)

≪ 1, ε∥wR̃0∥∞ . 1,

(1.4.13)

where w(v) = eβ|v|
2
with 0 < β ≪ 1.

Then there exists a unique global solution F ≥ 0 given by (1.4.7) with R̃ solving

(1.4.9) and the boundary condition (1.4.11). Here, f̃1 and f̃2 are given by (1.2.5)

and (1.2.8) where (ũ, ϑ̃, p̃) solves (1.4.8).

Moreover, for some 0 < λ≪ 1,

Eλ(∞) +Dλ(∞) + sup
0≤t≤∞

ε3/2∥w∂tR̃(t)∥∞ ≪ 1, sup
0≤t≤∞

ε∥wR̃(t)∥∞ . 1,

∥weλtf̃1∥L6
xL

∞
t,v∩L∞

t,x,v
+ ∥weλtf̃2∥L6

xL
∞
t,v∩L∞

t,x,v
. 1. (1.4.14)

Here, we recall that the notation ∥ · ∥LpLq means ∥ · ∥Lp(Lq) :=
∥∥∥ · ∥Lq

∥∥
Lp .

We remark that such an asymptotical stability implies positivity of steady solu-

tion Fs (Section 3.7). Moreover, since R = Rs + R̃, we conclude that the expansion

(1.4.7) is valid in L∞
t L

2
x and L3

xL
2
t . We use similar ideas as in the steady case, but

the analysis is more intricate.

We start with the energy estimates, as the steady case, to get

1

ε2

∫ t

0
∥(I−P)R̃∥2ν . ε

∫ t

0
∥Γ(R̃, R̃)∥22 + 1.

The missing PR̃ can be estimated by the coercivity estimates in [20], with care-

fully chosen proper test functions in the weak formulation together with the local

conservation laws (Proposition 3.2):∫ t

0
∥PR̃∥22 .

1

ε2

∫ t

0
∥(I−P)R̃∥2ν + ε

∫ t

0
∥Γ(R̃, R̃)∥22 + 1.
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Furthermore, as in the steady case, via a similar extension argument, Lemma

3.3 and Proposition 3.1, we establish a gain of integrability as

∥PR̃∥L3
x,vL

2
t
. 1 +

√
ε∥Γ(R̃, R̃)∥L2

t,x,v
+
√
ε∥Γ(Rs, R̃)∥L2

t,x,v
. (1.4.15)

Hence, the nonlinearity can be bounded by interpolations:

√
ε∥Γ(PR̃,PR̃)∥L2

t,x,v
.

√
ε∥PR̃∥L6

x,vL
∞
t
· ∥PR̃∥L3

x,vL
2
t

.
√
ε∥PR̃∥1/2

L3
x,vL

∞
t
∥PR̃∥1/2L∞

x,vL
∞
t
· ∥PR̃∥L3

x,vL
2
t
.

On the other hand,
√
ε∥Γ(Rs, R̃)∥L2

t,x,v
in (1.4.15) needs an extra care since we

cannot take L2
t−norm to the steady solution Rs. It turns out, by a closer look, that

we only need to consider

√
ε∥Γ((I−P)Rs,PR̃)∥L2

t,x,v
.

√
ε∥(I−P)Rs∥L6

x,v
∥PR̃∥L3

xL
2
t
.

Thanks to the good bound of ε−1∥(I−P)Rs∥2 . 1 and further by the interpolation

L6 ⊂ L2 ∩ L∞, we bound the above by

√
ε× ε−1/3

[
ε−1∥(I−P)Rs∥2

]1/3[
ε∥Rs∥∞

]2/3
.

Similarly to the steady case, by using a double iteration of the Duhamel formula

along the characteristics [20], we may bootstrap such L2 estimates to an improved

L∞ estimate as

∥R̃∥L∞ . 1

ε
∥PR̃∥L∞

t L3
x,v

+
1

ε3/2
∥(I−P)R̃∥L∞

t L2
x,v

+ 1,

where the dimension is d = 3. Clearly, a new difficulty is to estimate ∥PR̃∥1/2
L3
x,vL

∞
t

which is not controllable from (1.4.15).

The key new idea is to repeat energy estimates ∥R̃t∥L∞
t L2

x,v
and ∥PR̃t∥L3

x,vL
2
t

estimates for the time derivative R̃t:

1

ε2

∫ t

0
∥(I−P)R̃t∥2ν +

∫ t

0
∥PR̃t∥22 . ε

∫ t

0
∥Γ(R̃, R̃t)∥22 + 1,

∥PR̃t∥L3
x,vL

2
t
. ε

∫ t

0
∥Γ(R̃, R̃t)∥22 +

∫ t

0
∥Γ(R̃t, R̃)∥22 + 1.

We then estimate L∞
t via H1

t (Lemma 3.6) as

∥PR̃∥L3
x,vL

∞
t
+ ∥PR̃∥L∞

t L3
x,v

. ∥PR̃∥L3
x,vL

2
t
+ ∥PR̃t∥L3

x,vL
2
t
+ 1.

Fortunately, in order to close the estimates, we don’t need to improve ∥R̃t∥L∞ , but

only need to control the new nonlinear term
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√
ε∥Γ(PR̃,PR̃t)∥L2

t,x,v
.

√
ε∥PR̃∥L6

x,vL
∞
t
· ∥PR̃t∥L3

x,vL
2
t

. ∥PR̃∥1/2
L3
x,vL

∞
t
{
√
ε∥PR̃∥1/2L∞

x,vL
∞
t
}∥PR̃t∥L3

x,vL
2
t
,

which can be exactly closed.

We remark that our method works also for a general 2D domain. Now the gain

of integrability is expected as H1/2 ⊂ L
4

2−1 = L4, and it is not critical and analysis

is much less delicate than the 3D case.

2 Steady Problems

2.1 Domain, Trace, and Green Identity
Assume ∂Ω is C3. Then for any x0 ∈ ∂Ω, there exist 0 < r0, r1 ≪ 1 and C3

function η : {x∥ = (x∥,1, x∥,2) ∈ R2 : |x∥| < r1} → ∂Ω ∩ B(x0, r0) such that if

x ∈ ∂Ω ∩ B(x0, r0) then there exists a unique x∥ ∈ R2 with |x∥| < r1 satisfying

x = η(x∥). Here, we have used the notation B(x0, r0) := {x ∈ R3 : |x − x0| < r0}.
Without loss of generality we assume that |∂x∥,iη(x∥)| ̸= 0 for i = 1, 2.

Assume dist(x, ∂Ω) ≪ 1 and x0 ∈ ∂Ω such that dist(x, x0) = dist(x, ∂Ω). Then

there exists an η which is a parametrization of ∂Ω around x0. Clearly

∇x∥ |η(x∥)− x|2 = (∂x∥,1 |η(x∥)− x|2, ∂x∥,2 |η(x∥)− x|2) = 0, for some x∥. (2.1.1)

On the other hand, if |η(x∥)− x| ≪ 1,

∂2x∥,i
|η(x∥)− x|2 = ∂x∥,i

[
2∂iη(x∥) · (η(x∥)− x)

]
= O(|η(x∥)− x|) + 2|∂iη(x∥)|2 ̸= 0.

Then, by the implicit function theorem, there exists a unique x∥(x) ∈ C2 satisfying

(2.1.1). Moreover,(
∂xix∥,1
∂xix∥,2

)
=

(
|∂1η|2 + ∂21η · (η − x) ∂1η · ∂2η + ∂1∂2η · (η − x)

∂1η · ∂2η + ∂1∂2η · (η − x) |∂2η|+ ∂22η · (η − x)

)−1(−∂1ηi
−∂2ηi

)
,

where η = η(x∥). Then we define x⊥ ∈ C2 for dist(x, ∂Ω) ≪ 1,

x⊥(x) := [x− η(x∥(x))] · n(x∥(x)). (2.1.2)

Note that dist(x, ∂Ω) = |x⊥(x)| if dist(x, ∂Ω) ≪ 1.

By the compactness of ∂Ω, we conclude that if dist(x, ∂Ω) < 4r for some

0 < r ≪Ω 1 then there exists (x∥(x), x⊥(x)) ∈ C2 such that x = η(x∥(x)) +

x⊥(x)n(x∥(x)).

Finally we define the C2 function ξ : R3 → R as

ξ(x) := x⊥(x)χ
( |dist(x,Ω)|2

4r2

)
+ r

[
1− χ

( |dist(x,Ω)|2
r2

)]
, (2.1.3)
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where

χ ∈ C∞
c (R) such that 0 ≤ χ ≤ 1, χ′(x) ≥ −4×1 1

2
≤|x|≤1 and χ(x) =

{
1 if |x| ≤ 1

2 ,

0 if |x| ≥ 1.

(2.1.4)

Then Ω = {x ∈ R3 : ξ(x) < 0}. If |ξ(x)| ≪ 1 then ξ(x) = x⊥(x).

Moreover n(x) ≡ ∇ξ(x)
|∇ξ(x)| at the boundary x ∈ ∂Ω. From now we define

n(x) :=
∇ξ(x)
|∇ξ(x)|

for x ∈ R3. (2.1.5)

We use this new coordinate (2.1.2) to extend Φ on the whole space, and denote

this extension by Φ̄, with ∥Φ̄∥∞ ≤ ∥Φ∥∞: For 0 < δ ≪ 1,

Φ̄(x) := Φ(x)1x∈Ω̄ +Φ(η(x∥(x)))χ
( |ξ(x)|

δ

)
1x∈R3\Ω̄.

Therefore without loss of generality we assume that Φ is defined on the whole space

R3.

Definition 2.1 Assume Φ = Φ(x) ∈ C1. Consider the steady linear transport

equation

v · ∇xf + ε2Φ · ∇xf = g. (2.1.6)

The equations of the characteristics for (2.1.6) are

Ẋ = V, V̇ = ε2Φ(X), X(t; t;x, v) = x, V (t; t;x, v) = v. (2.1.7)

If X(τ ; t, x, v) ∈ Ω for all τ in between s and t then

X(s; t;x, v) = x+ v(s− t) + ε2
∫ s

t

∫ τ

t
Φ(X(τ ′; t;x, v))dτ ′dτ,

V (s; t;x, v) = v + ε2
∫ s

t
Φ(τ ; s;x, v))dτ. (2.1.8)

Note that the ODE (2.1.7) is autonomous since Φ is time-independent.

Define

tb(x, v) := inf{t ≥ 0 : X(−t; 0;x, v) /∈ Ω},
xb(x, v) := X(−tb(x, v); 0;x, v, 0), vb(x, v) := V (−tb(x, v); 0;x, v), (2.1.9)

and

tf (x, v) := inf{t ≥ 0 : X(t; 0;x, v) /∈ Ω},
xf (x, v) := X(tf (x, v); 0;x, v, 0), vf (x, v) := V (tf (x, v); 0;x, v). (2.1.10)

Clearly (xb(x, v), vb(x, v)) ∈ γ− and (xf (x, v), vf (x, v)) ∈ γ+.
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Lemma 2.1 For any open subset Ω ⊂ R3, B ⊂ ∂Ω, and f ∈ L1(Ω× R3),∫∫
Ω×R3

|f(x, v)|1xb(x,v)∈B1tb(x,v)≤ 1
m

ln 1
ε
dxdv

=

∫
B

∫
n(y)·u<0

∫ min{tf (y,u), 1
m

ln 1
ε
}

0
|f(X(s; 0, y, u), V (s; 0, y, u))|

×{|n(y) · u|+O(ε)(1 + |u|)s}dsdudSy, (2.1.11)

and ∫∫
Ω×R3

|f(x, v)|1xf (x,v)∈B1tf (x,v)≤ 1
m

ln 1
ε
dxdv

=

∫
B

∫
n(y)·u>0

∫ 0

−min{tb(y,u), 1
m

ln 1
ε
}
|f(X(s; 0, y, u), V (s; 0, y, u))|

×{|n(y) · u|+O(ε)(1 + |u|)|s|}dsdudSy. (2.1.12)

For the proof we refer to Lemma 2.2 in [21]. From (2.1.7), for ∇ ∈ {∇x,∇v},

d

ds

(
∇X
∇V

)
= A

(
∇X
∇V

)
, A =

(
03,3 I3,3

ε2∇xΦ 03,3

)
. (2.1.13)

Note
(∇X
∇V

)
|s=t = Id. Since the matrix A is bounded, there exists a CΦ > 0 such

that

|∂xjXi(s; t, x, v)| ≤ CΦe
CΦ|t−s|, |∂vjXi(s; t, x, v)| ≤ CΦ|t− s|eCΦ|t−s|,

|∂xjVi(s; t, x, v)| ≤ CΦε
2|t− s|eCΦ|t−s|, |∂vjVi(s; t, x, v)| ≤ CΦe

CΦ|t−s|.
(2.1.14)

Next lemma extends the Ukai’s Lemma ( [17]) to the case with external fields.

Lemma 2.2 Assume Ω is an open bounded subset of R3 with ∂Ω is C3. We

define

γδ± :=
{
(x, v) ∈ γ± : |n(x) · v| > δ, δ ≤ |v| ≤ 1

δ

}
. (2.1.15)

Then

|f1γδ
±
|1 .δ,Ω ∥f∥1 + ∥v · ∇xf + ε2Φ · ∇vf∥1.

For the proof we refer to Lemma 2.3 in [21].

Lemma 2.3 Let Φ ∈ C1. Assume that f(x, v), g(x, v) ∈ L2(Ω×R3), {v · ∇x +

ε2Φ · ∇v}f, {v · ∇x + ε2Φ · ∇v}g ∈ L2(Ω× R3) and fγ , gγ ∈ L2(∂Ω× R3). Then∫∫
Ω×R3

{v · ∇xf+ε
2Φ · ∇vf}g+{v · ∇xg+ε

2Φ · ∇vg}f=
∫
γ+

fg−
∫
γ−

fg. (2.1.16)

Proof It is easy to check that the proof in Chapter 9 of [17], equation (2.18),

still holds in the presence of C1 field.



128 ANN. OF APPL. MATH. Vol.36

2.2 Gain of Integrability: L3
x Estimate

In this section, we prove the crucial result on the gain of integrability for velocity

averages of the solution to the transport equation.

First, we define fδ which represents either the interior, or the non-grazing parts

of f near the boundary.

Definition 2.2 We define, for (x, v) ∈ Ω̄× R3 and 0 < δ ≪ 1,

fδ(x, v) :=
[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)f(x, v), (2.2.1)

where n(x) is defined in (2.1.5).

At the boundary (x, v) ∈ γ = ∂Ω× R3,

fδ(x, v)|γ ≡ 0, for |n(x) · v| ≤ δ or |v| ≥ 1

δ
. (2.2.2)

The main goal of this section is the following:

Proposition 2.1 Assume Φ = Φ(x) ∈ C1. Let f(x, v) solve (2.1.6) in the sense

of distribution and f(x, v)|γ = fγ(x, v) ∈ L2(γ). Then

|a(x)|+ |b(x)|+ |c(x)| ≤ S1f(x) + S2f(x),

S1f(x) := 4

∫
R3

|fδ(x, v)|⟨v⟩2
√
µ(v)dv,

S2f(x) := 4

∫
R3

|(I−P)f(x, v)|⟨v⟩2
√
µ(v)dv, (2.2.3)

where fδ is defined in (2.2.1) and (a, b, c) in (1.2.4).

Moreover,

∥S1f∥L3(Ω) . ∥w−1f∥L2(Ω×R3) + ∥w−1g∥L2(Ω×R3) + ∥f∥L2(γ),

∥S2f∥L3(Ω) . ∥(I−P)f∥L2(Ω×R3), (2.2.4)

for w(v) = eβ|v|
2
with 0 < β ≪ 1.

Let C̃ := 1
10(1+∥ξ∥C2 )

and

ΩC̃δ4 :=
{
x ∈ R3 : ξ(x) < C̃δ4

}
. (2.2.5)

We define, for (x, v) ∈ ΩC̃δ4\Ω̄, with Ω̄ = Ω ∪ ∂Ω,

t∗b(x, v) := inf{s > 0 : 0 < ξ(X(s; 0, x, v)) < C̃δ4 for all 0 < τ < s},
t∗f (x, v) := t∗b(x,−v),
(x∗b(x, v), v

∗
b(x, v)) := (X(−t∗b(x, v); 0, x, v), V (−t∗b(x, v); 0, x, v)),

(x∗f (x, v), v
∗
f (x, v)) := (X(t∗f (x, v); 0, x, v), V (t∗f (x, v); 0, x, v)). (2.2.6)
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Lemma 2.4 Let f ∈ L2(Ω × R3) solve (2.1.6) in the sense of distribution and

g ∈ L2(Ω × R3), and f(x, v)|γ = fγ(x, v) ∈ L2(γ). Then there exists an f̄(x, v) ∈
L2(R3 × R3), such that f̄ |Ω̄×R3 ≡ fδ. Moreover, in the sense of distributions,

{v · ∇x + ε2Φ · ∇v}f̄ = h ≡ h1 + h2 + h3 + h4, (2.2.7)

where

h1(x, v) = 1(x,v)∈Ω×R3g
[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|),

h2(x, v) = 1(x,v)∈Ω×R3f{v · ∇x + ε2Φ · ∇v}
{[

1− χ
(n(x) · v

δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

}
,

h3(x, v) = 1(x,v)∈[ΩC̃δ4\Ω̄]×R3

1

C̃δ4
v · ∇xξ(x)χ

′
(ξ(x)
C̃δ4

)
×
[
fδ(x

∗
b(x, v), v

∗
b(x, v))1x∗

b(x,v)∈∂Ω + fδ(x
∗
f (x, v), v

∗
f (x, v))1x∗

f (x,v)∈∂Ω
]
,

h4(x, v) = 1(x,v)∈[ΩC̃δ4\Ω̄]×R3

[
fδ(x

∗
b(x, v), v

∗
b(x, v))χ

(ξ(x)
C̃δ4

)
χ′(t∗b(x, v))1x∗

b(x,v)∈∂Ω

+fδ(x
∗
f (x, v), v

∗
f (x, v))χ

(ξ(x)
C̃δ4

)
χ′(t∗f (x, v))1x∗

f (x,v)∈∂Ω

]
,

and

∥h1∥L2(R3×R3) .δ ∥g∥L2(Ω×R3),

∥h2∥L2(R3×R3) .δ ∥f∥L2(Ω×R3),

∥h3∥L2(R3×R3) + ∥h4∥L2(R3×R3) .δ ∥fδ∥L2(γ). (2.2.8)

Proof Step 1 Consider fδ in (2.2.1). In the sense of distributions on Ω × R3,

v · ∇xfδ + ε2Φ · ∇vfδ =
[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)g + f{v · ∇x + ε2Φ · ∇v}

×
{[

1− χ
(n(x) · v

δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

}
. (2.2.9)

Note that,∣∣∣{v · ∇x + ε2Φ · ∇v}
[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

∣∣∣
=

∣∣∣− 1

δ
{v · ∇xn(x) · v + ε2Φ · n(x)}χ′

(n(x) · v
δ

)
χ
(ξ(x)

δ

)
χ(δ|v|)

− 1

δ
v · ∇xξ(x)χ

′
(ξ(x)

δ

)
χ
(n(x) · v

δ

)
χ(δ|v|)

+ε2δΦ · v
|v|
χ′(δ|v|)

[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]∣∣∣
≤ 4

δ
(|v|2∥ξ∥C2 + ε2∥Φ∥∞)χ(δ|v|) + CΩ

δ
|v|χ(δ|v|) + ε2δ∥Φ∥∞1|v|≤2δ−1

. δ−31|v|≤2δ−1 . (2.2.10)
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This proves the second line of (2.2.8). Since[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|) ≤ 1,

we prove the first line of (2.2.8) directly. The third line of (2.2.8) will be proved in

Step 5.

Step 2 We claim that for 0 ≤ ξ(x) ≤ C̃1δ
4 and |v| ≤ 1

δ , if n(x) · v > δ then

ξ(x∗f (x, v)) = C̃1δ
4; and if n(x) · v < −δ then ξ(x∗b(x, v)) = C̃1δ

4.

If v · n(x) ≥ δ, we take s > 0, while if v · n(x) ≤ −δ then we take s < 0. From

(2.1.8),

ξ(X(s; 0, x, v)) = ξ(x) +

∫ s

0
V (τ ; 0, x, v) · ∇xξ(X(τ ; 0, x, v))dτ

= ξ(x) +

∫ s

0
{v +O(1)ε2∥Φ∥∞τ} · {∇xξ(x) +O(1)∥ξ∥C2(|v|+ ε2∥Φ∥∞τ)τ}

= ξ(x) + v · ∇xξ(x)s+O(1)∥ξ∥C2

{
|v|2s2 + ε2∥Φ∥∞s2 + ε2∥Φ∥∞|v|s3 + ε4∥Φ∥2∞s4

}
.

From ξ(x) ≥ 0,

ξ(X(s; 0, x, v))

≥ δ|s|
{
1− ∥ξ∥C2

δ

[
|v|2|s|+ ε2∥Φ∥∞|s|+ ε2∥Φ∥∞|v∥s|2 + ε4∥Φ∥2∞|s|3

]}
≥ δ|s|

{
1− ∥ξ∥C2

δ

[ 1

δ2
|s|+ ε2∥Φ∥∞|s|+ ε2∥Φ∥∞

1

δ
|s|2 + ε4∥Φ∥2∞|s|3

]}
≥ δ|s|

{
1−

[1
4
+
ε2δ2∥Φ∥∞

4
+
ε2δ4∥Φ∥∞

16
+
ε4δ8∥Φ∥2∞

64

]}
≥ δ|s|

2
, (2.2.11)

for 0 ≤ |s| ≤ δ3

4(1+∥ξ∥C2 )
and 0 < ε ≪ 1. Then we choose s∗ = + δ3

4(1+∥ξ∥C2 )
for

n(x) · v > δ and s∗ = − δ3

4(1+∥ξ∥C2 )
for n(x) · v < −δ, to have

ξ(X(s∗; 0, y, v)) ≥
δ4

8(1 + ∥ξ∥C2)
> C̃1δ

4.

By the intermediate value theorem, we prove our claim.

Step 3 We define fE(x, v) for (x, v) ∈ [R3\Ω̄]× R3:

fE(x, v) :=


fδ(x

∗
b(x, v), v

∗
b(x, v))χ

(ξ(x)
C̃δ4

)
χ(t∗b(x, v)), if x∗b(x, v) ∈ ∂Ω,

fδ(x
∗
f (x, v), v

∗
f (x, v))χ

(ξ(x)
C̃δ4

)
χ(t∗f (x, v)), if x∗f (x, v) ∈ ∂Ω,

0, if x∗b(x, v) /∈ ∂Ω and x∗f (x, v) /∈ ∂Ω.

(2.2.12)

We check that fE is well-defined. It suffices to prove the following:
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If x∗b(x, v) ∈ ∂Ω and x∗f (x, v) ∈ ∂Ω, then fδ(x
∗
b(x, v), v

∗
b(x, v))χ

( ξ(x)
C̃δ4

)
χ(t∗b(x, v)) =

0 = fδ(x
∗
f (x, v), v

∗
f (x, v))χ

( ξ(x)
C̃δ4

)
χ(t∗f (x, v)). If |n(x∗b(x, v))·v∗b(x, v)| ≤ δ or |v∗b(x, v)| ≥

1
δ , then fδ(x

∗
b(x, v), v

∗
b(x, v)) = 0 due to (2.2.2). If n(x∗b(x, v)) · v∗b(x, v) > δ and

|v∗b(x, v)| ≤
1
δ , then, by Step 2, ξ(x∗f (x, v)) = ξ(x∗f (x

∗
b(x, v), v

∗
b(x, v))) = C̃δ4 so that

x∗f (x, v) /∈ ∂Ω.

On the other hand, if |n(x∗f (x, v))·v∗f (x, v)| ≤ δ or |v∗f (x, v)| ≥
1
δ , then fδ(x

∗
f (x, v),

v∗f (x, v)) = 0 due to (2.2.2). If n(x∗f (x, v)) · v∗f (x, v) < −δ and |v∗f (x, v)| ≤
1
δ , then by

Step 2, ξ(x∗b(x, v)) = ξ(x∗b(x
∗
f (x, v), v

∗
f (x, v))) = C̃δ4 so that x∗b(x, v) /∈ ∂Ω.

Note that

fE(x, v) = fδ(x, v) for all x ∈ ∂Ω. (2.2.13)

If x ∈ ∂Ω and n(x) · v > δ, then (x∗b(x, v), v
∗
b(x, v)) = (x, v). From the definition

(2.2.12), for those (x, v), we have fE(x, v) = fδ(x, v). If x ∈ ∂Ω and n(x) · v < −δ,
then (x∗f (x, v), v

∗
f (x.v)) = (x, v). From the definition (2.2.12), we conclude (2.2.13)

again. Otherwise, if −δ < n(x) · v < δ, then fE |∂Ω ≡ 0 ≡ fδ|∂Ω.
Step 4 We claim that fE(x, v) ∈ L2([R3\Ω̄]× R3).

From the definition (2.2.12), we have fE(x, v) ≡ 0 if x∗b(x, v) /∈ ∂Ω and x∗f (x, v) /∈
∂Ω. Therefore we can decompose the following integration as∫∫

[R3\Ω]×R3

|fE(x, v)|2dxdv

=

∫∫
[R3\Ω]×R3

1x∗
b(x,v)∈∂Ω|fE(x, v)|

2dxdv +

∫∫
[R3\Ω]×R3

1x∗
f (x,v)∈∂Ω|fE(x, v)|

2dxdv

=

∫∫
[R3\Ω]×R3

1x∗
b(x,v)∈∂Ω|fδ(x

∗
b(x, v), v

∗
b(x, v))|2

∣∣∣χ(ξ(x)
C̃δ4

)∣∣∣2|χ(t∗b(x, v))|2dxdv (2.2.14)

+

∫∫
[R3\Ω]×R3

1x∗
f (x,v)∈∂Ω|fδ(x

∗
f (x, v), v

∗
f (x, v))|2

∣∣∣χ(ξ(x)
C̃δ4

)∣∣∣2|χ(t∗f (x, v))|2dxdv,(2.2.15)
where we have used (2.2.12).

From (2.1.11),

(2.2.14)

≤
∫
∂Ω

∫
n(y)·u>0

∫ min{t∗f (y,u),1}

0

∣∣fδ(x∗b(X(s; 0, y, u), V (s; 0, y, u)),

v∗b(X(s; 0, y, u), V (s; 0, y, u)))
∣∣2{|n(y) · u|+O(ε)(1 + |u|)s}dsdudSy

≤
∫
∂Ω

∫
n(y)·u>0

∫ 1

0

∣∣fδ(xb, u)∣∣2{|n(y) · u|+O(ε)(1 + |u|)s}dsdudSy

.
∫
∂Ω

∫
n(y)·u>0

∣∣fδ(y, u)∣∣2|n(y) · u|dudSy . ∥fδ∥2L2(∂Ω×R3) ≤ ∥f∥2L2(∂Ω×R3),
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where we have used the fact, from (2.2.1),

O(ε)(1 + |u|)|s| ≤ O(ε)
(
1 +

1

δ

)
. δ . |n(y) · u| for (y, u) ∈ supp(fδ),

and the fact

(x∗b(X(s;0,y,u),V (s;0,y,u)),v∗b(X(s;0,y,u),V (s;0,y,u)))=(x∗b(y,u),v
∗
b(y,u))=(y, u),

for n(y) · u > 0, y ∈ ∂Ω, and 0 ≤ s ≤ t∗f (y, u).

Similarly we can show that (2.2.15) . ∥fδ∥2L2(∂Ω×R3) . ∥f∥2L2(∂Ω×R3).

Step 5 We show that, in the sense of distributions on [ΩC̃δ4\Ω̄]× R3,

v · ∇xfE + ε2Φ · ∇vfE

=
1

C̃δ4
v · ∇xξ(x)χ

′
(ξ(x)
C̃δ4

)[
fδ(x

∗
b(x, v), v

∗
b(x, v))χ(t

∗
b(x, v))1x∗

b(x,v)∈∂Ω

+fδ(x
∗
f (x, v), v

∗
f (x, v))χ(t

∗
f (x, v))1x∗

f (x,v)∈∂Ω
]

+fδ(x
∗
b(x, v), v

∗
b(x, v))χ

(ξ(x)
C̃δ4

)
χ′(t∗b(x, v))1x∗

b(x,v)∈∂Ω

−fδ(x∗f (x, v), v∗f (x, v))χ
(ξ(x)
C̃δ4

)
χ′(t∗f (x, v))1x∗

f (x,v)∈∂Ω. (2.2.16)

For ϕ ∈ C∞
c ([ΩC̃δ4\Ω̄]×R3), we choose small t > 0 such that X(s; 0, x, v) ∈ ΩC̃δ4\Ω̄

for all |s| ≤ t and all (x, v) ∈ supp(ϕ). Then, from (2.2.12), for (X(s), V (s)) =

(X(s; 0, x, v), V (s; 0, x, v)),

d

ds
fE(X(s), V (s))

=
d

ds

[
fδ(x

∗
b(X(s), V (s)), v∗b(X(s), V (s)))χ(t∗b(X(s), V (s)))1x∗

b(X(s),V (s))∈∂Ω

+fδ(x
∗
f (X(s),V (s)),v∗f (X(s),V (s)))χ(t∗f (X(s),V (s)))1x∗

f (X(s),V (s))∈∂Ω
]
χ
(ξ(X(s))

C̃δ4

)
+
[
fδ(x

∗
b(X(s), V (s)), v∗b(X(s), V (s)))χ(t∗b(X(s), V (s)))1x∗

b(X(s),V (s))∈∂Ω

+fδ(x
∗
f (X(s),V (s)),v∗f (X(s),V (s)))χ(t∗f (X(s),V (s)))1x∗

f (X(s),V (s))∈∂Ω
]d
ds
χ
(ξ(X(s))

C̃δ4

)
.

From

(x∗b(X(s; 0, x, v), V (s; 0, x, v)), v∗b(X(s; 0, x, v), V (s; 0, x, v))) = (x∗b(x, v), v
∗
b(x, v)),

(x∗f (X(s; 0, x, v), V (s; 0, x, v)), v∗f (X(s; 0, x, v), V (s; 0, x, v))) = (x∗f (x, v), v
∗
f (x, v)),

t∗f (X(s; 0, x, v), V (s; 0, x, v)) = t∗f (x, v)− s and

t∗b(X(s; 0, x, v), V (s; 0, x, v)) = t∗b(x, v) + s,
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d

ds
fE(X(s), V (s))=

[
fδ(x

∗
b(x, v), v

∗
b(x, v))χ

′(t∗b(X(s), V (s)))1x∗
b(x,v)∈∂Ω

−fδ(x∗f (x, v), v∗f (x, v))χ′(t∗f (X(s), V (s)))1x∗
f (x,v)∈∂Ω

]
χ
(ξ(X(s))

C̃δ4

)
+
[
fδ(x

∗
b(x, v), v

∗
b(x, v))χ(t

∗
b(X(s), V (s)))1x∗

b(x,v)∈∂Ω

+fδ(x
∗
f (x, v), v

∗
f (x, v))χ(t

∗
f (X(s), V (s)))1x∗

f (x,v)∈∂Ω
]

× 1

C̃δ4
V (s) · ∇xξ(X(s))χ′

(ξ(X(s))

C̃δ4

)
. (2.2.17)

By the change of variables (x, v) 7→ (X(s; 0, x, v), V (s; 0, x, v)), for sufficiently

small s,

−
∫∫

[ΩC̃δ4\Ω̄]×R3

fE(x, v){v · ∇x + ε2Φ · ∇v}ϕ(x, v)dxdv

= −
∫∫

[ΩC̃δ4\Ω̄]×R3

fE(X(s), V (s)){V (s) · ∇X + ε2Φ · ∇V }ϕ(X(s), V (s))dxdv

= −
∫∫

[ΩC̃δ4\Ω̄]×R3

fE(X(s), V (s))
d

ds
ϕ(X(s), V (s))dxdv. (2.2.18)

Since the change of variables (x, v) 7→ (X(s; 0, x, v), V (s; 0, x, v)) has unit Jaco-

bian, it follows that, for s sufficiently small,∫∫
[ΩC̃δ4\Ω̄]×R3

fE((X(s), V (s))ϕ(X(s), V (s))) =

∫∫
[ΩC̃δ4\Ω̄]×R3

fE(x, v)ϕ(x, v),

and hence
d

ds

∫∫
[ΩC̃δ4\Ω̄]×R3

fE((X(s), V (s))ϕ(X(s), V (s)) = 0.

Therefore we can move the s-derivative on fE : By (2.2.17),

(2.2.18)

=

∫∫
[ΩC̃δ4\Ω̄]×R3

d

ds
fE(X(s), V (s))ϕ(X(s), V (s))dxdv

=

∫∫
[ΩC̃δ4\Ω̄]×R3

[
fδ(x

∗
b(x, v), v

∗
b(x, v))χ

′(t∗b(X(s), V (s)))1x∗
b(x,v)∈∂Ω

−fδ(x∗f (x, v), v∗f (x, v))χ′(t∗f (X(s), V (s)))1x∗
f (x,v)∈∂Ω

]
χ
(ξ(X(s))

C̃δ4

)
ϕ(X(s), V (s))

+

∫∫
[ΩC̃δ4\Ω̄]×R3

[
fδ(x

∗
b(x, v), v

∗
b(x, v))χ(t

∗
b(X(s), V (s)))1x∗

b(x,v)∈∂Ω

+fδ(x
∗
f (x, v), v

∗
f (x, v))χ(t

∗
f (X(s), V (s)))1x∗

f (x,v)∈∂Ω
]

× 1

C̃δ4
V (s) · ∇xξ(X(s))χ′

(ξ(X(s))

C̃δ4

)
ϕ(X(s), V (s)).
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From the change of variable (X(s; 0, x, v), V (s; 0, x, v)) 7→ (x, v),

(2.2.18)=

∫∫
[ΩC̃δ4\Ω̄]×R3

[
fδ(x

∗
b(x, v), v

∗
b(x, v))χ

′(t∗b(x, v))1x∗
b(x,v)∈∂Ω

−fδ(x∗f (x, v), v∗f (x, v))χ′(t∗f (x, v))1x∗
f (x,v)∈∂Ω

]
χ
(ξ(x)
C̃δ4

)
ϕ(x, v)

+

∫∫
[ΩC̃δ4\Ω̄]×R3

[
fδ(x

∗
b(x, v), v

∗
b(x, v))χ(t

∗
b(x, v))1x∗

b(x,v)∈∂Ω

+fδ(x
∗
f (x, v), v

∗
f (x, v))χ(t

∗
f (x, v))1x∗

f (x,v)∈∂Ω
] 1

C̃δ4
v · ∇xξ(x)χ

′
(ξ(x)
C̃δ4

)
ϕ(x, v).

Hence (2.2.16) is proved.

On the other hand, following the bounds of (2.2.14) and (2.2.15) in Step 4 we

prove the third line of (2.2.8).

Step 6 We define f̄(x, v) for (x, v) ∈ R3 × R3:

f̄(x, v) := fδ(x, v)1(x,v)∈Ω̄×R3 + fE(x, v)1(x,v)∈[R3\Ω̄]×R3 . (2.2.19)

For ϕ ∈ C∞
c (R3 × R3), from the Green’s identity (Lemma 2.3),

−
∫∫

R3×R3

f̄{v · ∇x + ε2Φ · ∇v}ϕ

= −
∫∫

Ω×R3

fδ{v · ∇x + ε2Φ · ∇v}ϕ−
∫∫

[R3\Ω̄]×R3

fE{v · ∇x + ε2Φ · ∇v}ϕ

=

∫
γ
fδϕ+

∫
γ
fEϕ+

∫∫
Ω×R3

{v · ∇x + ε2Φ · ∇v}fδϕ

+

∫∫
[ΩC̃δ4\Ω̄]×R3

{v · ∇x + ε2Φ · ∇v}fEϕ.

From (2.2.13), the boundary contributions are cancelled:∫
γ
fδ(x, v)ϕ(x, v)dγ −

∫
γ
fE(x, v)ϕ(x, v)dγ = 0.

Further using (2.2.9) and (2.2.16), we prove that f̄ solves (2.2.7) in the sense of

distributions on R3 × R3. The proof is completed.

For (x, v) ∈ supp(f̄), we can choose a fixed T > 0 such that

X(T ; 0, x, v) /∈ supp(f̄) and X(T ; 0, x, v) /∈ supp(h), (2.2.20)

so that

f̄(X(T ; 0, x, v), V (T ; 0, x, v)) = 0.

Directly,

|X(T ; 0, x, v)− x| = |vT +O(ε2)∥Φ∥∞T 2| ≥ δT −O(ε2)∥Φ∥∞T 2.
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We choose T = C
δ for large but fixed C ≫ 1 such that |X(T ; 0, x, v) − x| ≥ C −

O( ε
2

δ2
) ≥ C

2 ≫ 1. This proves our claim (2.2.20).

With such T > 0 in (2.2.20),

f̄(x, v) = −
∫ T

0
h(X(s; 0, x, v), V (s; 0, x, v))ds.

Note that, from (2.2.12),

fE(x, v) ≡ 0, for ξ(x) > 2C̃δ4 or |v| > 2δ−1 or |v| < δ/2. (2.2.21)

Therefore,

|f̄(x, v)| ≤
∫ T

0
1 δ

2
≤|v|≤ 2

δ
|h(X(s; 0, x, v), V (s; 0, x, v))|ds. (2.2.22)

Definition 2.3 For fixed T in (2.2.20) and δ > 0 and a smooth function

ϕ ∈ L1(R3), we define the average operator S as

Sh(x) :=S(h)(x) :=

∫ T

0

∫
δ
2
≤|v|≤ 2

δ

h(X(s; 0, x, v), V (s; 0, x, v))ϕ(v)dvds. (2.2.23)

Lemma 2.5 Assume that ϕ ∈ C1(R3) is such that |ϕ(v)| ≤ ϕ̄(|v|) with ϕ̄ ∈
C1(R) where ϕ̄′ decays exponentially. Then

∥Sh∥L3(Ω) .ϕ ∥w−1h∥L2(Ω×R3). (2.2.24)

Proof We only prove (2.2.24) in the case of β = 0 since for sufficiently small 0 <

β ≪ 1, we can always absorb w growth by ϕ, by using |V (s; 0, x, v)| ≤ |v|+ε2T∥Φ∥∞.

We define the dual operator:

S∗(g)(x, v) :=

∫ T

0
1 δ

2
≤|V (−s;0,x,v)|≤ 2

δ
g(X(−s; 0, x, v))ϕ(V (−s; 0, x, v))ds. (2.2.25)

By a change of variable (X(s; 0;x, v), V (s; 0;x, v)) 7→ (x, v),

(Sh, g) =

∫ T

0

∫
R3

∫
δ
2
≤|v|≤ 2

δ

h(X(s; 0;x, v), V (s; 0;x, v))ϕ(v)g(x)dvdxds

=

∫ T

0

∫
R3

∫
δ
2
≤|V (−s;0;x,v)|≤ 2

δ

h(x, v)ϕ(V (−s; 0;x, v))g(X(−s; 0;x, v))dvdxds

= (h, S∗g).

Note that, for 1
p + 1

p′ = 1,

∥Sh∥Lp
x
≡ sup

∥g∥
L
p′
x
≤1
(Sh, g)L2

x
= sup

∥g∥
L
p′
x
≤1
(h, S∗g)L2

x,v
≤ ∥h∥L2

x,v
sup

∥g∥
L
p′
x
≤1

∥S∗g∥L2
x,v
.
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Therefore, in order to show ∥Sh∥Lp
x
. ∥h∥L2

x,v
, it suffices to prove ∥S∗g∥L2

x,v
.

∥g∥
Lp′
x
. But

∥S∗g∥2L2
x,v

= (S∗g, S∗g)L2
x,v

= (SS∗g, g)L2
x
≤ ∥SS∗g∥Lp

x
∥g∥

Lp′
x
.

Hence we only need to show

∥SS∗g∥Lp(Ω) . ∥g∥Lp′ (Ω). (2.2.26)

Here, the explicit form of SS∗ can be written from (2.2.23) and (2.2.25):

SS∗(g)(x) =

∫ T

0

∫ T

0

∫
R3

1 δ
2
≤|V (−s;0;x,v)|≤ 2

δ
1 δ

2
≤|v|≤ 2

δ

×g(X(−s+ τ ; 0;x, v))ϕ(V (−s+ τ ; 0;x, v))ϕ(v)dvdτds. (2.2.27)

First we consider the following change of variables:

v 7→ y := X(−s+ τ ; 0;x, v). (2.2.28)

By (2.1.14),

∂vjXi(−s+ τ ; 0;x, v) = (−s+ τ)δij +O(ε2)|s− τ |eCT = (−s+ τ)(δij +O(ε2)),

and the Jacobian is

det∇vX(−s+ τ ;x, v) = (1 +O(ε2))(−s+ τ)3 & (−s+ τ)3.

Therefore we have

dv . 1

|s− τ |3
dy.

We apply this change of variables to bound

|SS∗(g)(x)| .
∫ T

0

∫ T

0

∫
R3

1 δ
2
≤|V (−s;0;x,v(y))|≤ 2

δ
1 δ

2
≤|v(y)|≤ 2

δ

1

|s− τ |3
×|g(y)| |ϕ(V (−s+ τ ; 0;x, v(y)))| |ϕ(v(y))|dydsdτ.

For |v| ≥ δ
2 ,

|V (−s+ τ ;x, v)| = |v|+O(ε2)T 2∥Φ∥∞ = |v|+O(ε2) = O(1)|v|.

Let y := X(−s+ τ ; s, x). Then

|y − x| = |X(−s+ τ ;x, v)− x| = |v||s− τ |+O(ε2)|s− τ |2,
|y − x| = |V (−s+ τ ;x, v)∥s− τ |+O(ε2)|s− τ |2,

and

|y − x|
|s− τ |

= |v|+O(ε2)|s− τ | = O(1)|v|,

|y − x|
|s− τ |

= |V (−s+ τ ;x, v)|+O(ε2)|s− τ | = O(1)|V (−s+ τ ;x, v)|.
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From the monotonicity of ϕ, there exists a C > 0 such that

|ϕ(V (−s+ τ ; 0, x, v(y)))ϕ(v(y))| ≤
∣∣∣ϕ(C |y − x|

|s− τ |

)∣∣∣2.
We define

M(x) :=

∫ T

0

∫ T

0

1

|s− τ |3
∣∣∣ϕ(C |x|

|s− τ |

)∣∣∣2dsdτ . (2.2.29)

Then
|SS∗(g)(x)| .

∫
R3

M(x− y)|g(y)|dy. (2.2.30)

Now we claim that

M ∈ L3/2
w (R3), i.e. M(y − x) . 1

|y − x|2
. (2.2.31)

We use the change of variables (s, τ) 7→ (s, t) with t = |s− τ | to have

M(x− y) .
∫ T

0

1

t3
ϕ2

(
C
|y − x|
t

)
dt.

Then letting w = |y−x|
t so that dw = |y−x|

t2
dt and dt = |y−x|

w2 dw,

M(x−y).
∫ T

0

1

t3
ϕ2

(
C
|y−x|
t

)
dt.

∫ ∞

0

w

|y−x|2
ϕ2(Cw)dw. 1

|y−x|2

∫ ∞

0
wϕ2(Cw)dw. 1

|y−x|2
.

This proves (2.2.31). Then, by the weak Young’s equality (see for example [46]

page 106) and (2.2.31), we conclude that SS∗ : Lq → Lq′ , with 1 + 1
q′ =

1
q +

2
3 , and

hence q′ = 3. This proves our claim (2.2.26). The proof is completed.

Now we are ready to prove the main result of this section:

Proof of Proposition 2.1 First we note

1−
[
1−χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|) ≤ 1|v|≥ 1

δ
+1|v|≤ 1

δ
,dist(x,∂Ω)< δ

2
,|n(x)·v|<δ. (2.2.32)

For simplicity, we denote [a0, a1, a2, a3, a4] = [a, b1, b2, b3, c]. Then ai := ai(f) :=

(f, ζi)2 with

[ζ0(v), ζ1(v), ζ2(v), ζ3(v), ζ4(v)] :=
[√

µ, v1
√
µ, v2

√
µ, v3

√
µ,

2

3

|v|2 − 3

2

√
µ
]
. (2.2.33)

Then from (2.2.1),∫
R3

fδ(x, v)ζi(v)dv

=

∫
R3

[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)f(x, v)ζi(v)dv

=

∫
R3

[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

{ 4∑
j=0

aj(x)ζj(v) + (I−P)f(x, v)

}
ζi(v)dv

= ai(x) +O(δ)

4∑
j=0

|aj(x)|+Oδ(1)

∫
R3

|(I−P)f(x, v)|ζi(v)dv,
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where we have used the fact that, for i ̸= j,∫
R3

ζi(v)ζj(v)1|v|≤2δdv →
∫
R3

ζi(v)ζj(v)dv = 0, as δ ↓ 0. (2.2.34)

Therefore
4∑

i=0

|ai(x)| ≤
4∑

i=0

∣∣∣∣ ∫
R3

fδ(x, v)ζi(v)dv

∣∣∣∣+O(δ)
4∑

j=0

|aj(x)|

+Oδ(1)

∫
R3

|(I−P)f(x, v)|
4∑

i=0

|ζi(v)|dv.

Hence,

|a(x)|+ |b(x)|+ |c(x)|≤ 4

∫
R3

|fδ(x, v)|⟨v⟩2
√
µ(v)dv+4

∫
R3

|(I−P)f(x, v)|⟨v⟩2
√
µ(v)dv.

These prove (2.2.3). The second estimate of (2.2.4) is clear from the definition.

Now we focus on the first estimate of (2.2.4). From Lemma 2.4,∫
R3

|fδ(x, v)|⟨v⟩2
√
µ(v)dv ≤

∫
R3

|f̄(x, v)|⟨v⟩2
√
µ(v)dv.

From (2.2.22) and (2.2.23) with ϕ(v)=⟨v⟩2
√
µ(v), we have

∫
R3 |f̄(t, x, v)|⟨v⟩2

√
µ(v)dv

. |S(h)(t, x)|.
Finally, from Lemma 2.5 and (2.2.24), and (2.2.8), we conclude (2.2.4). The

proof is completed.

2.3 Steady L2−Coercivity
The main purpose of this section is to prove the following:

Proposition 2.2 Suppose Φ ∈ L∞, g ∈ L2(Ω× R3), and r ∈ L2(γ−) such that∫∫
Ω×R3

g(x, v)
√
µdxdv = 0 =

∫
γ−

r(x, v)
√
µdγ. (2.3.1)

Then, for sufficiently small ε > 0, there exists a unique solution to

v · ∇xf + ε2
1
√
µ
Φ · ∇v [

√
µf ] + ε−1Lf = g, f |γ− = Pγf + r, (2.3.2)

such that ∫∫
Ω×R3

f(x, v)
√
µ dxdv = 0, (2.3.3)

and

∥Pf∥22 + ε−2∥(I−P)f∥2ν+|f |22 . ∥ν−
1
2 (I−P)g∥22 + ε−2∥Pg∥22 + ε−1|r|22,−. (2.3.4)

For the proof we refer to the proof in [21] for the details. As the first step of the

proof of Proposition 2.3, we consider the following penalized problem:
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Lf :=
(
λ+ ε−1ν − 1

2
ε2Φ · v

)
f + v · ∇xf + ε2Φ · ∇vf = g in Ω× R3,

f = Pγf + r on γ−. (2.3.5)

Lemma 2.6 Assume that g ∈ L2(Ω × R3) and r ∈ L2(γ−) satisfy (2.3.1).

Moreover, let Φ ∈ L∞(Ω) and λ > 0. Then, if ε > 0 is sufficiently small, the

solution to (2.3.5) exists and is unique. Moreover it satisfies the bounds

ε−1∥f∥2ν + |(1− Pγ)f |22,+ . ε∥ g√
ν
∥22 + |r|22,−. (2.3.6)

We remark that Lemma 2.6 implies that, for ε sufficiently small, the operator

L−1 is well-defined and bounded as a map from L2 to L2. For the proof we refer to

Lemma 2.10 in [21].

Lemma 2.7 For any λ, ε > 0, the operator KL−1 is compact in L2. Explicitly, if

gn ∈ L2 and supn ∥gn∥2 <∞ then there exist subsequence nk such that Kfnk → Kf

in L2, where fn solve

λfn + v · ∇xf
n +

1

ε
νfn + ε2Φ · ∇vf

n − 1

2
ε2Φ · vfn = gn, fn|γ− = Pγf

n + r.

For the proof we refer to Lemma 2.11 in [21].

Next we prove the essential bound for Pf , where f solves[
λ+ (1− θ)ε−1ν − 1

2
ε2Φ · v)

]
f + v · ∇xf + ε2Φ · ∇vf + ε−1θLf = g, in Ω× R3

f− = Pγf + r, on γ−. (2.3.7)

We denote

f̊ := f − ⟨f⟩√µ, ⟨f⟩ :=
(∫∫

Ω×R3

f
√
µdxdv

)/(∫∫
Ω×R3

µdxdv

)
. (2.3.8)

Lemma 2.8 Assume (2.3.1). Let f be a solution to (2.3.7) in the sense of

distribution. Then, for all λ ≥ 0 and all θ ∈ [0, 1],

∥Pf̊∥22. ε−2∥(I−P)f∥2ν+ |(1−Pγ)f |22,++ |r|22+
∥∥∥ g√

ν

∥∥∥2
2
+ε2∥Φ∥∞|⟨f⟩|2, (2.3.9)

and

λ|⟨f⟩| . (1− θ)ε−1∥f∥2. (2.3.10)

For the proof we refer to Lemma 2.12 in [21].

2.4 L∞ Estimate
The main goal of this section is to prove the following lemma.
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Proposition 2.3 Let f satisfy[
v · ∇x + ε2Φ · ∇v + ε−1C0⟨v⟩

]
|f | ≤ ε−1Kβ |f |+ |g|,

∣∣f |γ−∣∣ ≤ Pγ |f |+ |r|, (2.4.1)

where, for 0 < β < 1
4 , Kβ |f | =

∫
R3 kβ(v, u)|f(u)|du and

kβ(v, u) :=
{
|v − u|+ |v − u|−1

}
exp

[
−β|v − u|2 − β

[|v|2 − |u|2]2

|v − u|2
]
. (2.4.2)

Then, for w(v) = eβ
′|v|2 with 0 < β′ ≪ β,

∥εwf∥∞ . o(1)∥εwf∥∞ + ∥εwr(s)∥∞ + ε2∥⟨v⟩−1wg∥∞

+∥S1f∥L3(Ω) +
1

ε1/2
∥S2f∥L2(Ω) +

1

ε1/2
∥(I−P)f∥L2(Ω×R3). (2.4.3)

For the proof we refer to the proof in [21] page 27.

We define the stochastic cycles for the steady case.

Definition 2.3 Define, for free variables vk ∈ R3, from (2.1.9)

t1 = t− tb(x, v), x1 = X(t1; t, x, v) = xb(x, v),

t2 = t1 − tb(x1, v1), x2 = X(t2; t1, x1, v1) = xb(x1, v1),

...

tk+1 = tk − tb(xk, vk), xk+1 = X(tk+1; tk, xk, vk) = xb(xk, vk).

Set

Xcl(s; t, x, v) :=
∑
k

1[tk+1,tk)(s)X(s; tk, xk, vk), Vcl(s; t, x, v) :=
∑
k

1[tk+1,tk)(s)vk.

For x ∈ ∂Ω, we define

V(x) := {v ∈ R3 : n(x) · v > 0}, dσ(x, v) :=
√
2πµ(v){n(x) · v}dv. (2.4.4)

For j ∈ N, we denote

Vj := {vj ∈ R3 : n(xj) · vj > 0}, dσj :=
√
2πµ(vj){n(xj) · vj}dvj . (2.4.5)

The following lemma is a generalized version of Lemma 23 of [32].

Lemma 2.9[32] Assume Φ = Φ(x) ∈ C1. For sufficiently large T0 > 0, there

exist constants C1, C2 > 0, independent of T0, such that for k = C1T
5/4
0 ,

sup
(t,x,v)∈[0,T0]×Ω̄×R3

∫
k−1∏
ℓ=1

Vℓ

1tk(t,x,v1,v2,··· ,vk−1)>0

k−1∏
ℓ=1

dσℓ <
{1

2

}C2T
5/4
0
. (2.4.6)

Proof For 0 < δ ≪ 1, we define

Vδ
ℓ :=

{
vℓ ∈ Vℓ : |vℓ · n(xℓ)| > δ and δ < |vℓ| <

1

δ

}
.
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Clearly,
∫
Vℓ\Vδ

ℓ
dσℓ ≤ Cδ, where C is independent of ℓ. We claim that

|tℓ − tℓ+1| ≥
δ3

CΩ
, for vℓ ∈ Vδ

ℓ . (2.4.7)

It suffices to prove, for (x, v) ∈ γδ− and 0 < ε≪ 1,

tb(x, v) & |v|−2|n(x) · v|.

Note that |n(x)·v|
|v|2 ≤ δ2. Therefore we only need to consider the case of tb(x, v) < δ2.

From |v| > δ and xb = x+ tbv +O(ε2)(tb)
2,

tb = |xb − x||v|−1 +O(ε2)(tb)
2|v|−1 = |xb − x||v|−1 + tbO(ε2)δ.

For fixed δ > 0 and ε < ε0 ≪δ 1,

tb(x, v) & |xb(x, v)− x||v|−1.

From the fact |xb − x| & |n(x) · x−xb
|x−xb| | for xb, x ∈ ∂Ω from [32], we have

tb(x, v) &
∣∣n(x) · [x− xb(x, v)]

∣∣1/2|v|−1.

On the other hand, for (x, v) ∈ γδ− and ε≪ 1

|n(x) · (xb−x)| =
∣∣n(x) · [tbv+O(ε2)(tb)

2]
∣∣ = tb|n(x) · v|+O(ε2)(tb)

2 & tb|n(x) · v|.

Therefore we prove our claim. The rest of proof of (2.4.6) is identical to the proof

of Lemma 23 on [32].

Now we are ready to prove the main result of this section:

Proof of Proposition 2.3 Define, for w(v) = eβ
′|v|2 ,

h(t, x, v) := w(v)f(t, x, v). (2.4.8)

From Lemma 3 of [32], there exists a β̃ = β̃(β, β′) > 0 such that kβ(v, u)
w(v)
w(u) .

kβ̃(v, u).

Then, from (2.4.1),[
v · ∇x + ε2Φ · ∇v + ε−1C0⟨v⟩+

ε4Φ · ∇vw

w

]
|εh| ≤ ε−1

∫
R3

kβ̃(v, u)|εh(u)|du+ ε|wg|.

(2.4.9)

Clearly ε−1C0⟨v⟩+ ε4Φ·∇vw
w ∼ ε−1C0⟨v⟩.

From (2.4.1), on (x, v) ∈ γ−,

ε|h(x, v)| ≤
√
2πw(v)

√
µ(v)

∫
n(x)·u>0

ε|h(x, u)|
√
µ(u)

w(u)
{n(x) · u}du+ εw(v)|r(x, v)|

≤ 1

w̃(v)

∫
n(x)·u>0

ε|h(x, u)|w̃(u)dσ + εw(v)|r(x, v)|, (2.4.10)
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where we define

w̃(v) :=
1

w(v)
√
µ(v)

.

We claim, for t = T0 where T0 in Lemma 2.9 (does not depends on ε),

|εh(x, v)|

≤
[
CT

5/4
0

{1

2

}C2T
5/4
0

+ o(1)CT
5/2
0

]
∥εh∥∞ + ε∥wr∥∞ + CT

5/2
0 ε2∥⟨v⟩−1wg∥∞

+CT
5/2
0

[
∥S1f∥L3(Ω) +

1

ε1/2
∥S2f∥L2(Ω) +

1

ε1/2
∥(I−P)f∥L2(Ω×R3)

]
. (2.4.11)

Once (2.4.11) holds, Proposition 2.3 is a direct consequence.

We first prove (2.4.11). From (2.4.9), for t1(t, x, v) < s ≤ t,

d

ds

[
exp

(
−
∫ t

s

C0

ε
⟨V (τ ; t, x, v)⟩dτ

)
εh(Xcl(s; t, x, v), Vcl(s; t, x, v))

]
≤ exp

(
−
∫ t

s

C0

ε
⟨V (τ ; t, x, v)⟩dτ

)
1

ε

∫
R3

kβ̃(Vcl(s; t, x, v), v
′)|εh(Xcl(s; t, x, v), v

′)|dv′

+exp

(
−
∫ t

s

C0

ε
⟨V (τ ; t, x, v)⟩dτ

)
|εwg(Xcl(s; t, x, v), Vcl(s; t, x, v))|.

Along the stochastic cycles, for k = C1T
5/4
0 , we deduce the following estimate:

|εh(x, v)|

≤1{t1(t,x,v)<0} exp

(
−
∫ t

0

C0⟨Vcl(τ ; t, x, v)⟩
ε

dτ

)
|εh(Xcl(0; t, x, v), Vcl(0; t, x, v))| (2.4.12)

+

∫ t

max{0,t1(t,x,v)}
ds

exp
(
−
∫ t
s

C0⟨Vcl(τ ;t,x,v)⟩
ε dτ

)
ε

×
∫
R3

dv′ kβ̃(Vcl(s; t, x, v), v
′)|εhℓ(Xcl(s; t, x, v), v

′)| (2.4.13)

+

∫ t

max {0,t1(t,x,v)}
ds

exp
(
−
∫ t
s

C0⟨Vcl(τ ;t,x,v)⟩
ε dτ

)
ε

|ε2wg(Xcl(s; t, x, v), Vcl(s; t, x, v))|

(2.4.14)

+1{t1(t,x,v)≥0} exp

(
−
∫ t

t1(t,x,v)

C0⟨Vcl(τ ; t, x, v)⟩
ε

dτ

)
|εwr(x1(x, v), v1(x, v))| (2.4.15)

+1{t1(t,x,v)≥0}
exp

(
−
∫ t
t1(t,x,v)

C0⟨Vcl(τ ;t,x,v)⟩
ε dτ

)
w̃(v)

∫
k−1∏
j=1

Vj

H,

where H is given by
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k−1∑
l=1

1tl+1≤0<tl

∣∣εh(Xcl(0; tl, xl, vl), Vcl(0; tl, xl, vl))
∣∣dΣl(0) (2.4.16)

+
k−1∑
l=1

∫ tl

max{0,tl+1}
1tl>0

1

ε

∫
R3

kβ̃(Vcl(τ ; tl, xl, vl), u)
∣∣εh(Xcl(τ ; tl, xl, vl), u)

∣∣dudΣl(τ)dτ

(2.4.17)

+

k−1∑
l=1

∫ tl

max{0,tl+1}
1tl>0

1

ε

∣∣ε2wg(Xcl(τ ; tl, xl, vl), Vcl(τ ; tl, xl, vl))
∣∣dΣl(τ)dτ (2.4.18)

+

k−1∑
l=1

1tl>0|εw(vl)r(xl+1, vl)|dΣl(tl+1) (2.4.19)

+1tk>0|εh(xk, vk−1)|dΣk−1(tk), (2.4.20)

and dΣk−1(tk) is evaluated at s = tk of

dΣl(s) :=

{ k−1∏
j=l+1

dσj

}{
exp

(
−
∫ tl

s

C0⟨Vcl(τ ; tl, xl, vl)⟩
ε

dτ

)
w(vl)dσl

}

×
l−1∏
j=1

{
exp

(
−
∫ tj

tj+1

C0⟨Vcl(τ ; tj , xj , vj)⟩
ε

dτ

)
dσj

}
. (2.4.21)

Directly, from our choice k = C1T
5/4
0 ,

(2.4.12) + (2.4.16) . C1T
5/4
0 e−

C0
ε
t∥εh∥∞, (2.4.15) + (2.4.19) . C1T

5/4
0 ∥εwr∥∞

and

(2.4.14) + (2.4.18)

.
∥∥ε2⟨v⟩−1wg

∥∥
∞ ×

{∫ t

0

⟨Vcl(s; t, x, v)⟩
ε

exp

(
−
∫ t

s

C0⟨Vcl(τ ; t, x, v)⟩
ε

dτ

)
ds

+C1T
5/4
0 sup

l

∫ tl

0

⟨Vcl(τ ; tl, xl, vl)⟩
ε

exp

(
−
∫ tl

s

C0⟨Vcl(τ ; tl, xl, vl)⟩
ε

dτ

)
dτ

}
. C1T

5/4
0

∥∥ε2⟨v⟩−1wg
∥∥
∞ ×

∫ t

0

d

ds
exp

(
−
∫ t

s

C0⟨Vcl(τ ; t, x, v)⟩
ε

dτ

)
ds

. C1T
5/4
0

∥∥ε2⟨v⟩−1wg
∥∥
∞,

where we have used the fact that dσj is a probability measure of Vj .

Now we focus on (2.4.13) and (2.4.17). For N > 1, we can choosem = m(N) ≫ 1

such that

km(v, u) := 1|v−u|≥ 1
m
1|u|≤m1|v|≤mkβ̃(v, u), sup

v

∫
R3

|km(v, u)− kβ̃(v, u)|du ≤ 1

N
.

(2.4.22)
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We split kβ̃(v, u) = [kβ̃(v, u) − km(v, u)] + km(v, u), and the first difference would

lead to a small contribution in (2.4.13) and (2.4.17) as, for N ≫T0 1,

k

N
∥εh∥∞ =

C1T
5/4
0

N
∥εh∥∞.

We further split the time integrations in (2.4.13) and (2.4.17) as [tl − κε, tl] and

[max{0, tl+1}, tl − κε]:

(2.4.13)=

∫ t

t−κε︸ ︷︷ ︸+
∫ t−κε

max{0,t1}
, (2.4.17)=1{t1≥0}

∫
k−1∏
j=1

Vj

k−1∑
l=1

{ ∫ tl

tl−κε︸ ︷︷ ︸+
∫ tl−κε

max{0,tl+1}

}
.

The small-in-time contributions of both (2.4.13) and (2.4.17), underbraced terms,

are bounded by

κε
1

ε
sup
v

∫
|v′|≤N

km(v, v′)dv′∥εh∥∞ . κ∥εh∥∞,

C1T
5/4
0 κε

1

ε
sup
v

∫
|v′|≤N

km(v, v′)dv′∥εh∥∞ . κC1T
5/4
0 ∥εh∥∞.

For (2.4.20), by Lemma 2.9,

(2.4.20) . sup
(t,x,v)∈[0,T0]×Ω̄×R3

∫
k−1∏
j=1

Vj

1tk(t,x,v,v1,v2,··· ,vk−1)>0

k−1∏
j=1

dσj∥εh∥∞

.
{1

2

}C2T
5/4
0 ∥εh∥∞.

Overall, for (t, x, v) ∈ [0, T0]× Ω̄× R3,

|εh(x, v)| .
∫ t−κε

max {0,t1(x,v)}

e−
C0
ε
(t−s)

ε

∫
|v′|≤m

∣∣εh(Xcl(s; t, x, v), v
′)
∣∣︸ ︷︷ ︸ dv′ds

+1{t1≥0}
e−

C0
ε
(t−t1)

w̃(v)

∫
k−1∏
j=1

Vj

k−1∑
ℓ=1

∫ tℓ−κε

max{0,tℓ+1}

1tℓ>0

ε

×
∫
|v′′|≤m

∣∣εh(Xcl(τ ; tℓ, xℓ, vℓ), v
′′)
∣∣︸ ︷︷ ︸ dv′′dΣℓ(τ)dτ

+CT
5/4
0

{
e−

C0
ε
t∥εh∥∞ + ∥εwr(s)∥∞ + ∥ε2⟨v⟩−1wg∥∞

}
+o(1)CT

5/4
0 ∥εh∥∞ +

{1

2

}C2T
5/4
0 ∥εh∥∞. (2.4.23)

Note that the same estimate holds for the underbraced terms in (2.4.23). We

plug these estimates into the underbraced terms of (2.4.23) to have a bound as

|εhℓ+1(t, x, v)| ≤ I1 + I2 + I3.



No.2 R. Esposito, etc., Diffusive Limits of the Boltzmann Equation 145

Here, using w(u) .m 1 for |u| ≤ m,

I1 .m

∫ t−κε

max {0,t1}
ds

e−
C0
ε
(t−s)

ε

∫
|v′|≤m

dv′
∫ s−κε

max{0,t′1}
ds′

e−
C0(s−s′)

ε

ε

×
∫
|u|≤m

du
∣∣εh(Xcl(s

′; s,Xcl(s; t, x, v), v
′), u)

∣∣
+

∫ t−κε

max {0,t1}
ds

e−
C0
ε
(t−s)

ε

∫
|v′|≤m

dv′1{t′1≥0}
e−

C0
ε
(s−t′1)

w̃(v)

×
∫

k−1∏
j=1

V ′
j

k−1∑
ℓ′=1

∫ t′
ℓ′−κε

max{0,t′
ℓ′+1

}
1t′

ℓ′>0
1

ε

∣∣εh(τ,Xcl(τ ; t
′
ℓ′ , x

′
ℓ′ , v

′
ℓ′), u)

∣∣dudΣℓ′(τ)dτ,

where t′ℓ′ := t̃ℓ′(s,Xcl(s; t, x, v), v
′), x′ℓ′ := xℓ′(Xcl(s; t, x, v), v

′), v′ℓ′ := vℓ′(Xcl(s; t,

x, v), v′). Moreover

I2 .m 1{t1≥0}
e−

C0
ε
(t−t1)

w̃(v)

∫
k−1∏
j=1

Vj

k−1∑
ℓ=1

∫ tℓ−κε

max{0,tℓ+1}
dΣℓ(τ)dτ 1tℓ>0

1

ε

∫
|v′′|≤m

dv′′

×
∫ τ−κε

max {0,t′′1}
ds′′

e−
C0
ε2

(τ−s′′)

ε

∫
|u|≤m

du
∣∣εh(Xcl(s

′′; τ,Xcl(τ ; tℓ, xℓ, vℓ), v
′′), u

)∣∣
+1{t1≥0}

e−
C0
ε
(t−t1)

w̃(v)

∫
k−1∏
j=1

Vj

k−1∑
ℓ=1

∫ tℓ−κε

max{0,tℓ+1}
dΣℓ(τ)dτ 1tℓ>0

1

ε

∫
|v′′|≤m

dv′′

×1t′′1≥0
e−

C0
ε
(τ−t′′1 )

w̃(v′′)

∫
k−1∏
j=1

V ′′
j

k−1∑
ℓ′′=1

∫ t′′
ℓ′′−κε

max{0,t′′
ℓ′′+1

}
1t′′

ℓ′′>0
1

ε

×
∫
|u|≤m

∣∣εh(τ ′′, Xcl(τ
′′; t′′ℓ′′ , x

′′
ℓ′′ , v

′′
ℓ′′), u

)∣∣dudΣ′′
ℓ′′(τ

′′)dτ ′′,

where t′′ℓ′′ := tℓ′′(τ,Xcl(τ ; tℓ, xℓ, vℓ), v
′′), x′′ℓ′′ := xℓ′′(Xcl(τ ; tℓ, xℓ, vℓ), v

′′), v′′ℓ′′ :=

vℓ′′(Xcl(τ ; tℓ, xℓ, vℓ), v
′′). Furthermore

I3 . CT
5/2
0

{
e−

C0
ε
t∥εh∥∞ + ∥εwr∥∞ + ∥ε2⟨v⟩−1wg∥∞

}
+o(1)CT

5/2
0 ∥εh∥∞ + T

5/4
0

{1

2

}C2T
5/4
0 ∥εh∥∞.

This bound of I3 is already included in the RHS of (2.4.11).

Now we focus on I1 and I2. Consider the change of variables

v′ 7→ y := X(s′; s,Xcl(s; t, x, v), v
′). (2.4.24)

By a direct computation and (2.1.14), for max{0, t′1} ≤ s′ ≤ s− κε ≤ T0,
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∂Xi(s
′; s)

∂v′j
= −(s− s′)δij +

∫ s′

s
dτ ′

∫ τ ′

s
dτ ′′ε2

∑
m

∂mΦi(X(τ ′′; s))
∂Xm

∂v′j
(τ ′′; s)

= −(s− s′)
[
δij +O(ε2)∥Φ∥C1T 2

0 e
CΦT0

]
.

By the lower bound of |s− s′| ≥ κε,

det∇v′X(s′; s) = |s− s′|3 det
(
δij +O(ε2)∥Φ∥C1T 2

0 e
CΦT0

)
& κ3ε3.

Now integrating over time first∫ t−κε

max {0,t1}
ds

e−
C0
ε
(t−s)

ε

∫
|v′|≤m

dv′
∫ s−κε

max{0,t′1}
ds′

e−
C0(s−s′)

ε

ε

×
∫
|u|≤m

du
∣∣εh(Xcl(s

′; s,Xcl(s; t, x, v), v
′), u)

∣∣
. sup

0≤s′≤s−κε≤s≤t−κε

∫
|v′|≤m

dv′
∫
|u|≤m

du |εh(Xcl(s
′; s,Xcl(s; t, x, v), v

′), u)|

. sup
0≤s′≤s−κε≤s≤t−κε

ε

∫
|v′|≤m

∫
|u|≤m

|f(Xcl(s
′; s,Xcl(s; t, x, v), v

′), u)|dudv′

. sup
0≤s′≤s−κε≤s≤t−κε

ε

∫
|v′|≤m

∫
|u|≤m

∑
i=1,2

|Sif(Xcl(s
′;s,Xcl(s;t,x,v),v

′))|⟨u⟩2
√
µ(u)dudv′

+ sup
0≤s′≤s−κε≤s≤t−κε

ε

∫
|v′|≤m

∫
|u|≤m

|(I−P)f(Xcl(s
′; s,Xcl(s; t, x, v), v

′))|dudv′.

where we have used |h(u)| = w(u)|f(u)| .m |f(u)| for |u| ≤ m and the decomposi-

tion (2.2.3). For S1f−contribution,

ε

∫
v′

∫
u

∣∣S1f
(
Xcl(s

′; s,Xcl(s; t, x, v), v
′)
)
⟨u⟩2

√
µ(u)

∣∣dudv′
.m ε

[ ∫
v′

∣∣S1f
(
Xcl(s

′; s,Xcl(s; t, x, v), v
′)
)∣∣3dv′]1/3 .m ε

[ ∫
Ω

∣∣S1f
(
y
)∣∣3 1

κ3ε3
dy

]1/3
.m ∥S1f∥L3(Ω).

For S2f and (I−P)f contributions,

ε

∫
v′

∫
u

[
S2f

(
Xcl(s

′; s,Xcl(s; t, x, v), v
′)
)
⟨u⟩2

√
µ(u)

+|(I−P)f
(
Xcl(s

′; s,Xcl(s; t, x, v), v
′), u

)
|
]
dudv′

.m ε

[ ∫
v′

∣∣S2f
(
Xcl(s

′; s,Xcl(s; t, x, v), v
′)
)∣∣2dv′]1/2

+ε

[ ∫∫ ∣∣(I−P)f
(
Xcl(s

′; s,Xcl(s; t, x, v), v
′), u

)∣∣2dv′du]1/2
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.m ε

[ ∫
Ω

∣∣S1f
(
y
)∣∣2 1

κ3ε3
dy

]1/2
+ ε

[ ∫∫
Ω×R3

∣∣(I−P)f(y, u)
∣∣2 1

κ3ε3
dydu

]1/2
.m

1

ε1/2
∥S1f∥L2(Ω) +

1

ε1/2
∥(I−P)f∥L2(Ω×R3).

We have the similar change of variables for v′ℓ′ 7→ Xcl(τ ; t
′
ℓ′ , x

′
ℓ′ , v

′
ℓ′), v

′′
ℓ′′ 7→

Xcl(−τ ′′; t′′ℓ′′ , x′′ℓ′′ , v′′ℓ′′), and v′′ 7→ Xcl(s
′′; τ,Xcl(τ ; tℓ, xℓ, vℓ), v

′′).

Following the same proof, we conclude

I1 + I2 . T
5/2
0 ∥S1f∥L3(Ω) + T

5/2
0

1

ε1/2
∥S2f∥L2(Ω) + T

5/2
0

1

ε1/2
∥(I−P)f∥L2(Ω×R3).

(2.4.25)

All together we prove our claims (2.4.11). The proof is completed.

2.5 Validity of the Steady Problem
The main purpose of this section is to prove Theorem 1.1. We need several

estimates before the proof of the main theorem.

Lemma 2.10 Assume

|a(f)|+ |b(f)|+ |c(f)| ≤ S1f(x)+S2f(x), |a(g)|+ |b(g)|+ |c(g)| ≤ S1g(x)+S2g(x),

where [a, b, c] is defined in (1.2.4) and S1 and S2 are defined in (2.2.3). Then, for

w = eβ|v|
2
, 0 < β ≪ 1,

∥ν−
1
2 ε1/2Γ±(f, g)∥L2

x,v
+ ∥ν−

1
2 ε1/2Γ±(g, f)∥L2

x,v

. [ε3/2∥wg∥L∞
x,v

]
{
[ε−1∥ν−

1
2 (I−P)f∥L2

x,v
] + [ε−1∥S2f∥L2

x
]
}

+[ε3/2∥wf∥L∞
x,v

]
{
[ε−1∥ν−

1
2 (I−P)g∥L2

x,v
] + [ε−1∥S2g∥L2

x
]
}

+∥S1f∥1/2L3
x
[ε∥wf∥L∞

x,v
]1/2∥S1g∥L3

x
, (2.5.1)

and

∥ν−
1
2Γ±(f, g)∥L2

x,v
+ ∥ν−

1
2Γ±(g, f)∥L2

x,v

. ∥f∥L6
xL

2
v
∥S1g∥L3

x
+ ε∥wf∥L∞

x,v

{
[ε−1∥ν−

1
2 (I−P)g∥L2

x,v
] + [ε−1∥S2g∥L2

x
]
}
. (2.5.2)

Proof By the decomposition

∥ν−
1
2 ε1/2Γ±(f, g)∥L2

x,v
+ ∥ν−

1
2 ε1/2Γ±(g, f)∥L2

x,v

. ∥ν−
1
2 ε1/2Γ±(|(I−P)f |, |g|)∥L2

x,v
+ ∥ν−

1
2 ε1/2Γ±(|g|, |(I−P)f |)∥L2

x,v

+∥ν−
1
2 ε1/2Γ±(|f |, |(I−P)g|)∥L2

x,v
+ ∥ν−

1
2 ε1/2Γ±(|(I−P)g|, |f |)∥L2

x,v

+∥ν−
1
2 ε1/2Γ±(S2f⟨v⟩2

√
µ, |g|)∥L2

x,v
+ ∥ν−

1
2 ε1/2Γ±(|f |,S2g⟨v⟩2

√
µ)∥L2

x,v

+∥ν−
1
2 ε1/2Γ±(|g|,S2f⟨v⟩2

√
µ)∥L2

x,v
+ ∥ν−

1
2 ε1/2Γ±(S2g⟨v⟩2

√
µ, |f |)∥L2

x,v

+∥ν−
1
2 ε1/2Γ±(S1f⟨v⟩2

√
µ,S1g⟨v⟩2

√
µ)∥L2

x,v

+∥ν−
1
2 ε1/2Γ±(S1g⟨v⟩2

√
µ,S1f⟨v⟩2

√
µ)∥L2

x,v
. (2.5.3)
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The first two lines of the RHS of (2.5.3) are bounded by

ε3/2∥wg∥L∞
x,v

{
∥ν−1/2Γ±(ε

−1|(I−P)f |, w−1)∥L2
x,v
+∥ν−1/2Γ±(w

−1, ε−1|(I−P)f |)∥L2
x,v

}
+ε3/2∥wf∥L∞

x,v

{
∥ν−1/2Γ±(ε

−1|(I−P)g|,w−1)∥L2
x,v
+∥ν−1/2Γ±(w

−1,ε−1|(I−P)g|)∥L2
x,v

}
.

From |v|2+ |u|2 = |v′|2+ |u′|2 and ν−1/2|(v−u) ·ω|
√
µ(u) . ν−1/2[|v|+ |u|]

√
µ(u) .

[1 + |v|+ |u|]
1
2µ(u)

1
2
−,∫

R3

ν−1
∣∣Γ±(ε

−1|(I−P)f |, w−1)(v)
∣∣2dv + ∫

R3

ν−1
∣∣Γ±(w

−1, ε−1|(I−P)f |)(v)
∣∣2dv

.
∫
R3

∫
R3

∫
S2
[1 + |v′|+ |u′|]|ε−1(I−P)f(v′)|2w(u′)−2dωdudv

+

∫
R3

∫
R3

∫
S2
[1 + |v′|+ |u′|]|ε−1(I−P)f(u′)|2w(v′)−2dωdudv

+

∫
R3

∫
R3

∫
S2
[1 + |v|+ |u|]|ε−1(I−P)f(v)|2w(u)−2dωdudv

+

∫
R3

∫
R3

∫
S2
[1 + |v|+ |u|]|ε−1(I−P)f(u)|2w(v)−2dωdudv. (2.5.4)

Now by the change of variables (v, u) ↔ (v′, u′) for the first term, (v, u) ↔ (u′, v′)

for the second term and (v, u) ↔ (u, v) for the last term, we bound all the above

terms as∫
R3

ν−1
∣∣Γ±(ε

−1|(I−P)f |, w−1)
∣∣2 + ∫

R3

ν−1
∣∣Γ±(w

−1, ε−1|(I−P)f |)
∣∣2

.
∫
R3

[ ∫∫
R3×S2

[1 + |v|+ |u|]w(u)−1dωdu
]
|ε−1(I−P)f(v)|2dv

.
∫
R3

ν−1|ε−1(I−P)f(v)|2dv. (2.5.5)

Similarly,∫
R3

ν−1
∣∣Γ±(ε

−1|(I−P)g|, w−1)(v)
∣∣2dv + ∫

R3

ν−1
∣∣Γ±(w

−1, ε−1|(I−P)g|)(v)
∣∣2dv

.
∫
R3

ν−1|ε−1(I−P)g(v)|2dv. (2.5.6)

Therefore, the first two lines of the RHS of (2.5.3) are bounded by

ε3/2∥wg∥∞∥ε−1(I−P)f∥ν + ε3/2∥wf∥∞∥ε−1(I−P)g∥ν .

The third and fourth lines of the RHS of (2.5.3) are bounded by

ε3/2∥wg∥L∞
x,v

∥ε−1S2f∥L2
x
∥ν−1/2Γ±(ν

2√µ,w−1)∥L2
v

+ε3/2∥wf∥L∞
x,v

∥ε−1S2g∥L2
x
∥ν−1/2Γ±(w

−1, ν2
√
µ)∥L2

v

. ε3/2∥wg∥L∞
x,v

∥ε−1S2f∥L2
x
+ ε3/2∥wf∥L∞

x,v
∥ε−1S2g∥L2

x
,
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where we have used

∥ν−1/2Γ±(ν
2√µ,w−1)∥L2

v
+ ∥ν−1/2Γ±(w

−1, ν2
√
µ)∥L2

v

.
∥∥∥ν−1/2

∫
R3

∫
S2
|(v − u) · ω|w(v)−1w(u)−1dωdu

∥∥∥
L2
v

. 1. (2.5.7)

The last line of (2.5.3) is bounded as, by ∥ν−1/2Γ(ν2
√
µ, ν2

√
µ)∥L2

v
<∞,∥∥ε1/2S1f(x)S1g(x)

∥∥
L2
x
. [ε1/2∥S1f∥L6

x
]∥S1g∥L3

x
. [ε∥f∥∞]1/2∥S1f∥1/2L3

x
∥S1g∥L3

x
.

All together we prove (2.5.1).

Now we prove (2.5.2). Using the decomposition of g, we conclude

∥ν−1/2Γ(f, g)∥L2
x,v

+ ∥ν−1/2Γ(g, f)∥L2
x,v

≤ ∥ν−1/2Γ(f,S1g⟨v⟩2
√
µ)∥L2

x,v
+ ∥ν−1/2Γ(f,S2g⟨v⟩2

√
µ)∥L2

x,v

+∥ν−1/2Γ(f, |(I−P)g|)∥L2
x,v

+ ∥ν−1/2Γ(S1g⟨v⟩2
√
µ, f)∥L2

x,v

+∥ν−1/2Γ(S2g⟨v⟩2
√
µ, f)∥L2

x,v
+ ∥ν−1/2Γ(|(I−P)g|, f)∥L2

x,v

.
∥∥∥f∥L2

v
|S1g|

∥∥
L2
x
+ ∥wf∥L∞

x,v

{
∥S2g∥L2

x
+ ∥(I−P)g∥ν

}
.

∥∥∥f∥L2
v
|S1g|

∥∥
L2
x
+ ε∥wf∥L∞

x,v

{
ε−1∥S2g∥L2

x
+ ε−1∥(I−P)g∥ν

}
. ∥f∥L6

xL
2
v
∥S1g∥L3

x
+ ε∥wf∥L∞

x,v

{
ε−1∥S2g∥L2

x
+ ε−1∥(I−P)g∥ν

}
.

The proof is completed.

Lemma 2.11 For some polynomial P (s) = O(s) for |s| ≪ 1,

∥rs∥L2(γ−) ≤ P
(
∥us∥

W 2, 32+(Ω)
+ ∥ϑs∥

H
3
2+(Ω)

+
∥∥ps − ∫

− ps
∥∥
H

1
2+(Ω)

)
.

Moreover,

∥f1 + εf2∥L6
xL

2
v
. P0 + εP1, ∥w[f1 + εf2]∥∞ . P1 + εP2,

∥(I−P)As∥L2(Ω×R3) . P1, ∥wPAs∥L2(Ω×R3) . ε[1 + ∥Φ∥∞]P2,

∥wAs∥L∞(Ω×R3) . P3 + ε[1 + ∥Φ∥∞]P2, ∥wrs∥L∞(γ−) . P2,

∥QR∥L2(γ−) . ∥ϑw∥L∞(∂Ω)

[
1 + ε∥ϑw∥L∞(∂Ω)

]
∥√µR∥L2(γ+),

∥wQR∥L∞(γ−) . ∥ϑw∥L∞(∂Ω)

[
1 + ε∥ϑw∥L∞(∂Ω)

]
∥√µR∥L∞(Ω̄×R3),

where we have used notations, for some polynomial P (s) = O(s) for |s| ≪ 1,

Pi :=
[
P
(
∥us∥Hi+1

x
+ ∥ϑs∥Hi+1

x
+

∥∥∥ps − ∫
− ps

∥∥∥
Hi

x

)]2
. (2.5.8)

Proof Note that from [13],

|Aij |+ |Bi| . ⟨v⟩10√µ.
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Moreover, by L−1{Γ(Pg1,Pg2) + Γ(Pg2,Pg1)} = (I−P)
[
(Pg1 ·Pg2)µ−1/2

]
, from

[7],

|L−1[Γ(f1, f1)]| .
[
|ρ|+ |u|+ |ϑ|

]
⟨v⟩4µ−1/2.

From (1.3.3), (1.2.8), (1.2.9), and (1.3.1),

|rs(x, v)|.
∣∣∇xus|∂Ω

∣∣+ ∣∣∇xϑs|∂Ω
∣∣+ ∣∣∣∣[ps − ∫

− ps

]∣∣∣
∂Ω

∣∣∣∣
+O

(∥∥∥∥ϑw− 1

|Ω|

∫
Ω
ϑ

∥∥∥∥
L∞(∂Ω)

∥ϑw∥L∞(∂Ω)

)[
1+O(ε∥ϑw∥L∞(∂Ω))

]
⟨v⟩4

√
µ(v).

By the trace theorem H
1
2
+(Ω) ↪→ L2(∂Ω) and the Sobolev embedding W 2, 3

2
+(Ω) ↪→

H
3
2
+(Ω), we conclude the first estimate.

From (1.2.5) and (1.2.8),

|f1|.
[
|ϑ|+|u|+

∣∣∣∣ ∫− ϑ

∣∣∣∣]⟨v⟩2√µ(v), |f2|.P
(
|∇xu|+|∇xϑ|+|ϑ|+

∣∣∣∣ ∫− ϑ

∣∣∣∣)µ(v) 1
2
−.

Due to our choices (1.2.9), (1.2.8),

|PAs| . ε∥Φ∥∞
[
|ρs|+ |us|+ |ϑs|

]
+ε2∥Φ∥∞

[
|∇xus|+ |∇xϑs|+

(
|ρs|+ |us|+ |ϑs|

)2
+

∣∣∣∣ps − ∫
− ps

∣∣∣∣+ |ρs||ϑs|
]

. εP

(
|us|+ |∇xus|+ |ϑs|+ |∇xϑs|+

∫
Ω
|ϑs|+

∣∣∣∣ps − ∫
− ps

∣∣∣∣)µ(v) 1
2+ ,

|(I−P)As| . P

( 2∑
i=0

[
|∇i

xus|+ |∇i
xϑs|

]
+ |∇xps|+

∣∣∣∣ps − ∫
− ps

∣∣∣∣+ ∫
Ω
|ϑs|

)
+P

(
|us|+ |∇xus|+ |ϑs|+ |∇xϑs|+

∫
Ω
|ϑs|+

∣∣∣∣ps − ∫
− ps

∣∣∣∣)µ(v) 1
2+

+εP

( 1∑
i=0

|∇i
xus|+ |∇i

xϑs|+
∫
Ω
|θs|+

∣∣∣∣ps − ∫
− ps

∣∣∣∣).
From (1.2.9), (1.2.8), and (1.3.4) we have

QR(x, v) =
√
2π

( |v|2
2

− 2
)√

µ(v)ϑw(x)

∫
n(x)·u>0

R(x, u)
√
µ(u){n(x) · u}du

+εO(|ϑw|2)⟨v⟩4
√
µ(v)

∫
n(x)·u>0

R(x, u)
√
µ(u){n(x) · u}du.

By the standard Sobolev embedding we prove the estimates. The proof is completed.

Now we are ready to prove the main theorem for the steady case:
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Proof of Theorem 1.1 We prove Theorem 1.1 by considering a sequence Rℓ,

for ℓ ≥ 0,

v · ∇xR
ℓ+1+ε2Φ · ∇vR

ℓ+1+
1

ε
LRℓ+1=ε1/2Γ(Rℓ, Rℓ)+

ε2

2
Φ · vRℓ+1+L1R

ℓ+ε1/2As,

Rℓ+1|γ− = PγR
ℓ+1 + εQRℓ + ε1/2rs, R0 ≡ 0, (2.5.9)

where L1 is defined at (1.2.13), As at (1.2.14), Q at (1.3.6), and rs at (1.3.3) with

ρ, u, ϑ replaced by ρs, us, ϑs. Note that Proposition 2.2, with (1.2.15), (1.3.8), guar-

antees the solvability of such linear problem (2.5.9).

Step 1 From (1.4.4), (.1), and Lemma 2.11,

∥rs∥L2(γ−) + ∥f1 + εf2∥L6
xL

2
v
. ∥ϑw∥H1+(∂Ω) + ∥Φ∥

L
3
2+(Ω)

+ εP1,

where P1 is defined at (2.5.8).

For 0 < η0 ≪ 1, we assume that (induction hypothesis), ∥ϑw∥2H1+(∂Ω)+∥Φ∥2
L

3
2+(Ω)

< c0η0 for 0 < c0 ≪ 1 and P2, P3 <∞,

sup
0≤j≤ℓ

{
∥PRj∥22 +

[
ε−1∥(I−P)Rj∥ν

]2
+ |Rj |22 + ∥S1R

j∥2L3
x
+
[
ε∥wRj∥∞

]2} < η0.

(2.5.10)

Now we claim the same bound for j = ℓ+ 1.

By Proposition 2.2, (1.4.10), (2.2.4), and (2.5.1), for ε≪ 1,

∥PRℓ+1∥22 + ε−2∥(I−P)Rℓ+1∥2ν + |Rℓ+1|22
.
∥∥ν− 1

2 (I−P)
[
ε1/2Γ(Rℓ, Rℓ) + L1R

ℓ + ε1/2As

]∥∥2
2

+ε−2
∥∥P[

ε1/2Γ(Rℓ, Rℓ) + L1R
ℓ + ε1/2As

]∥∥2
2
+ ε|QRℓ|22,− + |rs|22,−

.ε∥ν− 1
2Γ(Rℓ, Rℓ)∥22+∥ν−

1
2L1R

ℓ∥22+ε∥(I−P)As∥22+ε−1∥PAs∥22+ε|Rℓ|22,++c0η0
.ε[ε∥wRℓ∥∞]2[ε−1∥ν−

1
2 (I−P)Rℓ∥2]2+[ε∥wRℓ∥∞]∥S1R

ℓ∥3L3
x
+∥f1+εf2∥2L6

xL
2
v
∥S1R̃

ℓ∥2L3
x

+ε2∥w[f1 + εf2]∥2∞[ε−1∥ν−
1
2 (I−P)R̃ℓ∥2]2 + εP 2

1 + εP 2
2 + εη0 + c0η0

.[1 +O(ε1/2)]η20 + c0η0 + εP 2
1 + εP 2

2 <
η0
10
.

From Proposition 2.1, for ε≪ 1,

∥S1R
ℓ+1∥L3(Ω) . ∥Rℓ+1∥22 + |Rℓ+1|22 + ε−2∥(I−P)Rℓ+1∥2ν + ε∥ν−

1
2Γ(Rℓ, Rℓ)∥22

+ε4∥Φ∥2∞∥Rℓ+1∥22 + ∥ν−
1
2L1R

ℓ∥22 + ε∥As∥22
. ε−2∥(I−P)Rℓ+1∥2ν + ε∥ν−

1
2Γ(Rℓ, Rℓ)∥22 + ∥ν−

1
2L1R

ℓ∥22
+ε∥As∥22 + ε|Rℓ|22,+ + |rs|22,− <

η0
10
.

From Proposition 2.3 and Lemma 2.11, for ε≪ 1,
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ε∥wRℓ+1∥∞ . ε2 sup
0≤j≤ℓ

∥wQRj∥∞ + ε3/2∥wrs∥∞ + ε5/2∥ν−
1
2wΓ(Rℓ, Rℓ)∥∞

+ε4∥Φ∥∞∥Rℓ+1∥∞ + ε2∥ν−
1
2wL1R

ℓ∥∞ + ε5/2∥ν−
1
2wAs∥∞

. ε2 sup
0≤j≤ℓ

∥wRj∥∞ + ε3/2P2 + ε1/2
[
ε∥wRℓ∥∞

]2
+ ε4∥Rℓ+1∥∞

+ε2∥w−1[f1 + εf2]∥∞∥wRℓ∥∞ + ε5/2P3 + ε7/2P2

. ε(η0)
1
2 + ε

1
2 η0 + ε3(η0)

1
2 + ε(η0)

1
2 (P1 + εP2) +O(ε3/2)P2 +O(ε5/2)P3

<

√
η0
10
.

Altogether we prove the uniform bound, (2.5.10) for all ℓ.

Step 2 We repeat Step 1 for Rℓ+1 − Rℓ to show that Rℓ is Cauchy sequence in

L∞ ∩L2 for fixed ε. Now it is standard to conclude that the limiting Rℓ → R solves

the equation. The uniqueness is standard. (See [20] for the details)

The positivity Fs ≥ 0 is left for the unsteady case in Section 3.7. The proof is

completed.

3 Unsteady Problems

3.1 Trace and Green’s Identity
Definition 3.1 Assume Φ = Φ(x) ∈ C1. Consider a unsteady linear transport

equation

ε∂tf + v · ∇xf + ε2Φ · ∇vf = g. (3.1.1)

The equations of the characteristics for (3.1.1) are

Ẏ = ε−1W, Ẇ = εΦ(Y ), Y (t; t, x, v) = x, W (t; t, x, v) = v. (3.1.2)

By the uniqueness of ODE

[Y (s; t, x, v),W (s; t, x, v)] =
[
X
(
t− t− s

ε
; t, x, v

)
, V

(
t− t− s

ε
; t, x, v

)]
= [X(ε−1s; 0, x, v), V (ε−1s; 0, x, v)], (3.1.3)

where (X,V ) is defined in (2.1.7).

Define

t̃b(x, v) := sup{t > 0 : Y (−s; 0, x, v) ∈ Ω for all 0 < s < t}

= ε sup
{ t
ε
> 0 : X

(
− s

ε
; 0, x, v

)
∈ Ω for all 0 <

s

ε
<
t

ε

}
= εtb(x, v),

t̃f (x, v) := sup{t > 0 : Y (s; 0, x, v) ∈ Ω for all 0 < s < t}

= ε sup
{ t
ε
> 0 : X

(s
ε
; 0, x, v

)
∈ Ω for all 0 <

s

ε
<
t

ε

}
= εtf (x, v). (3.1.4)

Moreover
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x̃b(x, v)=Y (−t̃b(x, v); 0, x, v)=X
(
− t̃b(x, v)

ε
; 0, x, v

)
=X(−tb(x, v); 0, x, v)=xb(x, v),

x̃f (x, v)=Y (−t̃f (x, v); 0, x, v)=X
(
− t̃f (x, v)

ε
; 0, x, v

)
=X(−tf (x, v); 0, x, v)=xf (x, v),

ṽb(x, v)=W (−t̃b(x, v); 0, x, v)=V
(
− t̃b(x, v)

ε
; 0, x, v

)
=V (−tb(x, v); 0, x, v)=vb(x, v),

ṽf (x, v)=W (−t̃f (x, v); 0, x, v)=V
(
− t̃f (x, v)

ε
; 0, x, v

)
=V (−tf (x, v); 0, x, v)=vf (x, v).

(3.1.5)

Lemma 3.1 For f ∈ L1([0, T ]× Ω× R3),∫ T

0

∫
γδ
+

|f(t, x, v)|dγdt

. ε

∫∫
Ω×R3

|f(0, x, v)|dvdx+ ε

∫ T

0

∫∫
Ω×R3

|f(t, x, v)|dvdxdt

+

∫ T

0

∫∫
Ω×R3

∣∣[ε∂tf + v · ∇xf + ε2Φ · ∇vf ](t, x, v)
∣∣dvdxdt. (3.1.6)

We refer to the proof of Lemma 3.2 in [21].

Lemma 3.2 Assume Φ ∈ C1. Assume that f(t, x, v), g(t, x, v) ∈ L2(R+ ×Ω×
R3), {∂t+ ε−1v ·∇x+ εΦ ·∇v}f, {∂t+ ε−1v ·∇x+ εΦ ·∇v}g ∈ L2(R+×Ω×R3) and

fγ , gγ ∈ L2(R+ × γ). Then∫ t

s

∫∫
Ω×R3

{ε∂t + v · ∇xf + ε2Φ · ∇vf}g + {ε∂t + v · ∇xg + ε2Φ · ∇vg}f dvdxdτ

= ε

∫∫
Ω×R3

f(s, x, v)g(s, x, v)dvdx− ε

∫∫
Ω×R3

f(t, x, v)g(t, x, v)dvdx

+

∫ t

s

[ ∫
γ+

fgdγ −
∫
γ−

fgdγ

]
dτ.

Proof The proof is from Chapter 9 of [17] with the same modification as Lemma

2.3.

3.2 Gain of Integrability: L3
xL

2
t Estimate

Definition 3.2 We define, for (t, x, v) ∈ R× Ω̄× R3 and for 0 < δ ≪ 1,

fδ(t, x, v) :=
[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

×
{
1t∈[0,∞)f(t, x, v) + 1t∈(−∞,0]χ(t)f0(x, v)

}
. (3.2.1)

Here n(x) is defined in (2.1.5).

We extend fδ to the negative time so that we are able to take the time-derivative.

Clearly,
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∥fδ∥L2(R×Ω×R3) . ∥f∥L2(R+×Ω×R3) + ∥f0∥L2(Ω×R3),

∥fδ∥L2(R×γ) . ∥fγ∥L2(R+×γ) + ∥f0∥L2(γ).

Note that, at the boundary (x, v) ∈ γ := ∂Ω× R3,

fδ(t, x, v)|γ ≡ 0, for |n(x) · v| ≤ δ or |v| ≥ 1

δ
. (3.2.2)

The main goal of this section is the following:

Proposition 3.1 Assume g ∈ L2(R+ × Ω × R3), f0 ∈ L2(Ω × R3), and fγ ∈
L2(R+ × γ). Let f ∈ L∞(R+;L

2(Ω×R3)) solves (3.1.1) in the sense of distribution

and satisfies f(t, x, v) = fγ(t, x, v) on R+ × γ and f(0, x, v) = f0(x, v) on Ω × R3.

Then

|a(t, x)|+ |b(t, x)|+ |c(t, x)| ≤ S1f(t, x) + S2f(t, x),

S1f(t, x) := 4

∫
R3

|fδ(t, x, v)|⟨v⟩2
√
µ(v)dv,

Ssf(t, x) := 4

∫
R3

|(I−P)f(t, x, v)|⟨v⟩2
√
µ(v)dv+2χ(t)

∫
R3

|f0(x, v)|⟨v⟩2
√
µ(v)dv,

(3.2.3)

where fδ is defined in (3.2.1).

Moreover

∥S1f∥L3
xL

2
t
. ∥w−1f∥L2

t,x,v
+ ∥w−1g∥L2

t,x,v
+ ∥f∥L2(R+×γ),

∥S2f∥L2
t,x

. ∥(I−P)f∥L2
t,x,v

+ ∥f0∥L2
x,v
, (3.2.4)

for w = eβ|v|
2
with 0 < β ≪ 1.

We need several lemmas to prove Proposition 3.1.

Lemma 3.3 Assume the same hypothesis of Proposition 3.1. Then there exist

an f̄(t, x, v) ∈ L2(R× R3 × R3) and an extension of fδ in (3.2.1), such that

f̄ |Ω×R3 ≡ fδ and f̄ |γ ≡ fδ|γ and f̄ |t=0 = fδ|t=0.

Moreover, in the sense of distributions on R× R3 × R3,

{ε∂t + v · ∇x + ε2Φ · ∇v}f̄ = h = h1 + h2 + h3 + h4, (3.2.5)

where

h1(t, x, v) = 1(x,v)∈Ω×R3

[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

×
[
1t∈[0,∞)g(t, x, v)+1t∈(−∞,0]χ(t)

{
ε
χ′(t)

χ(t)
+v · ∇x+ε

2Φ · ∇v

}
f0(x, v)

]
,

h2(t, x, v) = 1(x,v)∈Ω×R3

[
1t∈[0,∞)f(t, x, v) + 1t∈(−∞,0]χ(t)f0(x, v)

]
×{v · ∇x + ε2Φ · ∇v}

{[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

}
,
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h3(t, x, v) = 1(x,v)∈[ΩC̃δ4\Ω̄]×R3

1

C̃δ4
v · ∇xξ(x)χ

′
(ξ(x)
C̃δ4

)
×
[
fδ(t− εt∗b(x, v), x

∗
b(x, v), v

∗
b(x, v))1x∗

b(x,v)∈∂Ω

+fδ(t+ εt∗f (x, v), x
∗
f (x, v), v

∗
f (x, v))1x∗

f (x,v)∈∂Ω
]
,

h4(t, x, v) = 1(x,v)∈[ΩC̃δ4\Ω̄]×R3fδ(t− εt∗b(x, v), x
∗
b(x, v), v

∗
b(x, v))

×χ
(ξ(x)
C̃δ4

)
χ′(t∗b(x, v))1x∗

b(x,v)∈∂Ω + 1(x,v)∈[ΩC̃δ4\Ω̄]×R3

×fδ(t+ εt∗f (x, v), x
∗
f (x, v), v

∗
f (x, v))χ

(ξ(x)
C̃δ4

)
χ′(t∗f (x, v))1x∗

f (x,v)∈∂Ω,

where ΩC̃δ4 , t
∗
b, x

∗
b, v

∗
b, t

∗
f , x

∗
f , v

∗
f are defined in (2.2.5), (2.2.6).

Moreover,

∥h1∥L2(R×R3×R3) . ∥g∥L2(R+×Ω×R3) + ε∥f0∥L2(Ω×R3)

+∥[v · ∇x + ε2Φ · ∇v]f0∥L2(Ω×R3),

∥h2∥L2(R×R3×R3) .δ ∥f∥L2(R+×Ω×R3) + ∥f0∥L2(Ω×R3),

∥h3∥L2(R×R3×R3) + ∥h4∥L2(R×R3×R3) .δ ∥fγ∥L2(R+×γ) + ∥f0∥L2(γ). (3.2.6)

Proof Step 1 In the sense of distributions on [0,∞)× Ω× R3,

ε∂tfδ + v · ∇xfδ + ε2Φ · ∇vfδ

=
[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

×
[
1t∈[0,∞)g + 1t∈(−∞,0]χ(t)

{
ε
χ′(t)

χ(t)
+ v · ∇x + ε2Φ · ∇v

}
f0(x, v)

]
+
[
1t∈[0,∞)f + 1t∈(−∞,0]χ(t)f0(x, v)

]
{v · ∇x + ε2Φ · ∇v}

×
{[

1− χ
(n(x) · v

δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

}
. (3.2.7)

From Step 1 of the proof of Lemma 2.4 and (2.2.10), we prove the first and the

second line of (3.2.6).

Step 2 We claim that if 0 ≤ ξ(x) ≤ C̃δ4, |n(x) · v| > δ and |v| ≤ 1
δ then either

ξ(x̃f (x, v)) = C̃δ4 or ξ(x̃b(x, v)) = C̃δ4.

From Step 2 of the proof of Lemma 2.4,

ξ(Y (s; 0, x, v)) = ξ

(
X
(s
ε
; 0, x, v

))
≥ δ

|s|
2ε
,

for all 0 ≤ |s| ≤ εδ3

4(1+∥ξ∥C2 )
with 0 < ε ≪ 1. Especially with εs∗ = + εδ3

4(1+∥ξ∥C2 )
for

n(x) · v > δ and εs∗ = − εδ3

4(1+∥ξ∥C2 )
for n(x) · v < δ,

ξ(Y (s∗; 0, x, v)) > C̃δ4.

Therefore, by the intermediate value theorem, we prove our claim.
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Step 3 We define fE(t, x, v) for (x, v) ∈ [R3\Ω̄]× R3:

fE(t, x, v):=


fδ(t−εt∗b(x, v), x∗b(x, v), v∗b(x, v))χ

(ξ(x)
C̃δ4

)
χ
(
t∗b(x, v)

)
, if x∗b(x, v)∈∂Ω,

fδ(t+εt
∗
f (x, v), x

∗
f (x, v), v

∗
f (x, v))χ

(ξ(x)
C̃δ4

)
χ
(
t∗f (x, v)

)
, if x∗f (x, v)∈∂Ω,

0, if x∗b(x, v) /∈ ∂Ω and x∗f (x, v) /∈ ∂Ω.

(3.2.8)

We check that fE is well-defined. It suffices to prove the following:

If x∗b(x, v) ∈ ∂Ω and x∗f (x, v) ∈ ∂Ω, then

fδ(t− εt∗b(x, v), x
∗
b(x, v), v

∗
b(x, v))χ

(ξ(x)
C̃δ4

)
= 0 = fδ(t+ εt∗f (x, v), x

∗
f (x, v), v

∗
f (x, v))χ

(ξ(x)
C̃δ4

)
.

If |n(x∗b(x, v))·v∗b(x, v)| ≤ δ or |v∗b(x, v)| ≥
1
δ then fδ(t−εt

∗
b(x, v), x

∗
b(x, v), v

∗
b(x, v)) =

0 due to (3.2.2). If n(x∗b(x, v)) · v∗b(x, v) > δ and |v∗b(x, v)| ≤
1
δ then, due to Step 2,

ξ(x∗f (x, v)) = ξ(x∗f (x
∗
b(x, v), v

∗
b(x, v))) = C̃δ4 so that x∗f (x, v) /∈ ∂Ω.

On the other hand, if |n(x∗f (x, v)) · v∗f (x, v)| ≤ δ or |v∗f (x, v)| ≥
1
δ then fδ(t +

εt∗f (x, v), x
∗
f (x, v), v

∗
f (x, v)) = 0 due to (3.2.2). If n(x∗f (x, v)) · v∗f (x, v) < −δ and

|v∗f (x, v)| ≤
1
δ then, due to Step 2, ξ(x∗b(x, v)) = ξ(x∗b(x

∗
f (x, v), v

∗
f (x, v))) = C̃δ4 so

that x∗b(x, v) /∈ ∂Ω.

Note that
fE(t, x, v) = fδ(t, x, v) for all x ∈ ∂Ω. (3.2.9)

If x ∈ ∂Ω and n(x) · v > δ then (x∗b(x, v), v
∗
b(x, v)) = (x, v). From the definition

(3.2.8), for those (x, v), we have fE(t, x, v) = fδ(t, x, v). If x ∈ ∂Ω and n(x) · v < −δ
then (x∗f (x, v), v

∗
f (x.v)) = (x, v). From the definition (3.2.8), we conclude (3.2.9)

again. Otherwise, if −δ < n(x) · v < δ then fE |∂Ω ≡ 0 ≡ fδ|∂Ω.
Step 4 We claim that fE(x, v) ∈ L2([R3\Ω̄]× R3).

From the definition of (3.2.8), we have fE(x, v) ≡ 0 if x∗b(x, v) /∈ ∂Ω and

x∗f (x, v) /∈ ∂Ω. Therefore, from (3.2.8),∫ ∞

−∞

∫∫
[R3\Ω]×R3

|fE(t, x, v)|2dxdvdt

=

∫ ∞

−∞

∫∫
[R3\Ω]×R3

1x∗
b(x,v)∈∂Ω|fE |

2 +

∫ ∞

−∞

∫∫
[R3\Ω]×R3

1x∗
f ∈∂Ω|fE |

2

=

∫ ∞

−∞

∫∫
[R3\Ω]×R3

1x∗
b(x,v)∈∂Ω|fδ(t− εt∗b, x

∗
b, v

∗
b)|2

∣∣∣χ(ξ(x)
C̃δ4

)∣∣∣2|χ(t∗b)|2dxdvdt (3.2.10)
+

∫ ∞

−∞

∫∫
[R3\Ω]×R3

1x∗
f (x,v)∈∂Ω|fδ(t+εt

∗
f , x

∗
f , v

∗
f )|2

∣∣∣χ(ξ(x)
C̃δ4

)∣∣∣2|χ(t∗f )|2dxdvdt, (3.2.11)
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where (t∗b, x
∗
b, v

∗
b) and (t∗f , x

∗
f , v

∗
f ) are evaluated at (x, v).

By (2.1.11),

(3.2.10) ≤
∫ ∞

−∞
dt

∫
∂Ω

∫
n(x)·v>0

∫ min{t∗f (x,v),1}

0
dSxdvds{|n(x) · v|+O(ε)(1 + |v|)s}

×
∣∣fδ(t− εs, x∗b(X(s; 0, x, v), V (s; 0, x, v)), v∗b(X(s; 0, x, v), V (s; 0, x, v))

)∣∣2
≤

∫ ∞

−∞
dt

∫
∂Ω

∫
n(x)·v>0

∫ 1

0

∣∣fδ(t, x, v)∣∣2{|n(x) · v|+O(ε)(1 + |v|)s}dsdvdSx

.
∫ ∞

−∞
dt

∫
∂Ω

∫
n(x)·v>0

∣∣fδ(t, x, v)∣∣2|n(x) · v|dvdSx . ∥fδ∥2L2(R×∂Ω×R3),

where we have used the fact, from (3.2.1), O(ε)(1 + |v|)|s| ≤ O(ε)(1 + 1
δ ) . δ .

|n(x) · v| for (x, v) ∈ supp(fδ), and, for n(x) · v > 0, x ∈ ∂Ω, and 0 ≤ s ≤ t∗f (x, v),

(x∗b(X(s;0,x,v),V (s;0,x,v)),v∗b(X(s;0,x,v),V (s;0,x,v)))=(x∗b(x,v),v
∗
b(x,v))=(x,v),

and t∗b(X(s; 0, x, v), V (s; 0, x, v)) = s and the change of variables t−εs 7→ t. Similarly

we can show (3.2.11) . ∥fδ∥2L2(R×∂Ω×R3).

Step 5 We claim that, in the sense of distributions on R× [ΩC̃δ4\Ω̄]× R3,

ε∂tfE + v · ∇xfE + ε2Φ · ∇vfE

=
1

C̃δ4
v · ∇xξ(x)χ

′
(ξ(x)
C̃δ4

)[
fδ(t− εt∗b(x, v), x

∗
b(x, v), v

∗
b(x, v))χ(t

∗
b(x, v))1x∗

b(x,v)∈∂Ω

+fδ(t+ εt∗f (x, v), x
∗
f (x, v), v

∗
f (x, v))χ(t

∗
f (x, v))1x∗

f (x,v)∈∂Ω
]

+fδ(t− εt∗b(x, v), x
∗
b(x, v), v

∗
b(x, v))χ

(ξ(x)
C̃δ4

)
χ′(t∗b(x, v))1x∗

b(x,v)∈∂Ω

−fδ(t+ εt∗f (x, v), x
∗
b(x, v), v

∗
b(x, v))χ

(ξ(x)
C̃δ4

)
χ′(t∗f (x, v))1x∗

f (x,v)∈∂Ω. (3.2.12)

Note that

[ε∂t + v · ∇x + ε2Φ · ∇v]f(t− εt∗b(x, v), x
∗
b(x, v), v

∗
b(x, v))

= [ε∂t + v · ∇x + ε2Φ · ∇v](t− εt∗b(x, v))︸ ︷︷ ︸×∂tf(t− εt∗b(x, v), x
∗
b(x, v), v

∗
b(x, v))

+[v · ∇x + ε2Φ · ∇v]f(s, x
∗
b(x, v), v

∗
b(x, v))|s=t−εt∗b(x,v)

,

[ε∂t + v · ∇x + ε2Φ · ∇v]f(t+ εt∗f (x, v), x
∗
f (x, v), v

∗
f (x, v))

= [ε∂t + v · ∇x + ε2Φ · ∇v](t+ εt∗f (x, v))︸ ︷︷ ︸×∂tf(t+ εt∗f (x, v), x
∗
f (x, v), v

∗
f (x, v))

+[v · ∇x + ε2Φ · ∇v]f(s, x
∗
f (x, v), v

∗
f (x, v))|s=t+εt∗f (x,v)

.

If the underbraced term vanishes then we can apply the Step 5 of the proof of Lemma

2.4 to conclude (3.2.12).
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This is true because

[v · ∇x + ε2Φ · ∇v](t− εt∗b(x.v)) =
d

ds

∣∣∣
s=0

(t− εt∗b(X(s; 0, x, v), V (s; 0, x, v)))

=
d

ds

∣∣∣
s=0

(t− εs) = −ε,

and

[v · ∇x + ε2Φ · ∇v](t+ εt∗f (x.v)) =
d

ds

∣∣∣
s=0

(t+ εt∗f (X(s; 0, x, v), V (s; 0, x, v)))

=
d

ds

∣∣∣
s=0

(t− εs+ εt∗f (x, v)) = −ε.

On the other hand, following the bounds of (3.2.10) and (3.2.11) in Step 4 we

prove the third line of (3.2.6).

Step 6 We define f̄(t, x, v) for (t, x, v) ∈ R× R3 × R3:

f̄(t, x, v) := fδ(t, x, v)1(x,v)∈Ω̄×R3 + fE(t, x, v)1(x,v)∈[R3\Ω̄]×R3 . (3.2.13)

For ϕ ∈ C∞
c (R× R3 × R3), by Lemma 3.2,

−
∫ ∞

−∞
dt

∫∫
R3×R3

f̄(t, x, v){ε∂t + v · ∇x + ε2Φ · ∇v}ϕ(t, x, v)dxdv

= −
∫ ∞

−∞
dt

∫∫
Ω×R3

fδ(t, x, v){ε∂t + v · ∇x + ε2Φ · ∇v}ϕ(t, x, v)dxdv

−
∫ ∞

−∞
dt

∫∫
[R3\Ω̄]×R3

fE(t, x, v){ε∂t + v · ∇x + ε2Φ · ∇v}ϕ(t, x, v)dxdv

=

∫ ∞

−∞
dt

∫
γ
fδ(t, x, v)ϕ(t, x, v){n(x) · v}dSxdv

+

∫ ∞

−∞
dt

∫
γ
fE(t, x, v)ϕ(t, x, v){−n(x) · v}dSxdv

+

∫ ∞

−∞
dt

∫∫
Ω×R3

{ε∂t + v · ∇x + ε2Φ · ∇v}fδ(t, x, v)ϕ(t, x, v)dxdv

+

∫ ∞

−∞
dt

∫∫
[ΩC̃δ4\Ω̄]×R3

{ε∂t + v · ∇x + ε2Φ · ∇v}fE(x, v)ϕ(x, v)dxdv,

where the contributions of {t = ∞} and {t = −∞} vanish since ϕ(t) ∈ C∞
c (R).

From (3.2.9), the boundary contributions are cancelled:∫ ∞

−∞

∫
γ
fδ(t, x, v)ϕ(t, x, v)dγdt−

∫ ∞

−∞

∫
γ
fE(t, x, v)ϕ(t, x, v)dγdt = 0.

Further from (3.2.7) and (3.2.12), we prove that f̄ solves (3.2.5) in the sense of

distributions on R× R3 × R3. The proof is completed.
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Recall T > 0 in (2.2.20). With such choice T > 0,

f̄(t, x, v) = −
∫ εT

0

1

ε
h(t+ s, Y (t+ s; t, x, v),W (t+ s; t, x, v))ds

= −
∫ εT

0

1

ε
h

(
t+ s,X

(
t+

s

ε
; t, x, v

)
, V

(
t+

s

ε
; t, x, v

))
ds.

Note that, from (3.2.8),

f̄(x, v) ≡ 0, for ξ(x) > 2C̃δ4 or |v| > 2δ−1 or |v| < δ

2
. (3.2.14)

Therefore

|f̄(t, x, v)| ≤ 1

ε

∫ εT

0
1 δ

2
≤|v|≤ 2

δ

∣∣∣∣h(t+ s,X
(
t+

s

ε
; t, x, v

)
, V

(
t+

s

ε
; t, x, v

))∣∣∣∣ds.
(3.2.15)

Definition 3.3 For fixed T in (2.2.20), δ > 0 and a smooth function ϕ ∈ L1(R3),

we define the average operator S as

S(h)(t, x) =
1

ε

∫ εT

0

∫
δ
2
≤|v|≤ 2

δ

h

(
t+ s,X

(
t+

s

ε
; t, x, v

)
, V

(
t+

s

ε
; t, x, v

))
ϕ(v)dvds

=
1

ε

∫ t+εT

t

∫
δ
2
≤|v|≤ 2

δ

h

(
s,X

(s− t

ε
; 0, x, v

)
, V

(s− t

ε
; 0, x, v

))
ϕ(v)dvds.

(3.2.16)

Lemma 3.4 Assume that ϕ ∈ C1(R3) is such that |ϕ(v)| ≤ ϕ̄(|v|) with ϕ̄ ∈
C1(R) such that ϕ̄′ decays exponentially. Then

∥Sh∥L3
xL

2
t
.ϕ,w ∥w−1h∥L2(R×Ω×R3), (3.2.17)

where w(v) = eβ|v|
2
with 0 ≤ β ≪ 1.

Proof We only prove (3.2.17) in the case of β = 0. For sufficiently small 0 <

β ≪ 1, we can always absorb w growth by ϕ using |V ( s−t
ε ; 0, x, v)| . |v|+ εT∥Φ∥∞.

We define the dual operator:

S∗(g)(t, x, v) :=
1

ε

∫ t

t−εT
1 δ

2
≤|V (−t+s

ε
;0,x,v)|≤ 2

δ
g

(
s,X

(−t+ s

ε
; 0, x, v

))
×ϕ

(
V
(−t+ s

ε
; 0, x, v

))
ds. (3.2.18)

Consider the time-space inner product (·, ·)t,x,
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(Sh, g)t,x :=

∫ ∞

−∞

∫
R3

S(h)(t, x)g(t, x)dxdt

=
1

ε

∫ ∞

−∞
dt

∫
R3

dx

∫ t+εT

t
ds

∫
δ
2
≤|v|≤ 2

δ

dv

×h
(
s,X

(s− t

ε
; 0, x, v

)
, V

(s− t

ε
; 0, x, v

))
ϕ(v)g(t, x).

From the change of variables (X( s−t
ε ; 0, x, v), V ( s−t

ε ; 0, x, v)) 7→ (x, v) for all fixed

t, s ∈ R and then t 7→ s and s 7→ t,

(Sh, g)t,x =
1

ε

∫ ∞

−∞
dt

∫ ∞

−∞
ds

∫
R3

dx

∫
δ
2
≤|V (−s+t

ε
;0,x,v)|≤ 2

δ

dv

×1t≤s≤t+εT h(s, x, v)ϕ

(
V
(−s+ t

ε
; 0, x, v

))
g

(
t,X

(−s+ t

ε
; 0, x, v

))
=

1

ε

∫∫∫
R×R3×R3

dvdxdt h(t, x, v)

×
∫ t

t−εT
1 δ

2
≤|V (−t+s

ε
;0,x,v)|≤ 2

δ
g

(
s,X

(−t+s
ε

; 0, x, v
))
ϕ

(
V
(−t+ s

ε
; 0, x, v

))
ds

= (h, S∗g)t,x,v.

As the steady case, note that

∥Sh∥Lp
xL

2
t
≡ sup

∥g∥
L
p′
x L2

t

≤1
(Sh, g)t,x= sup

∥g∥
L
p′
x L2

t

≤1
(h, S∗g)t,x≤∥h∥L2

t,x,v
sup

∥g∥
L
p′
x L2

t

≤1
∥S∗g∥L2

t,x,v
.

Therefore in order to show ∥Sh∥Lp
xL

2
t
≤ ∥h∥L2

t,x,v
, we only need to show

∥S∗g∥L2
t,x,v

≤ ∥g∥
Lp′
x L2

t

.

But ∥S∗g∥2
L2
t,x,v

= (S∗g, S∗g) = (SS∗g, g) ≤ ∥SS∗g∥Lp
x(L

2
t )
∥g∥

Lp′
x (L2

t )
. Therefore it

suffices to show that, SS∗h is bounded from L
3/2
x L2

t to L3
xL

2
t :

∥SS∗g∥L3
xL

2
t
. ∥g∥

L
3/2
x L2

t
. (3.2.19)

From the definition of S and S∗, for any g ∈ L
3/2
x L2

t ,

SS∗(g)(t, x)

=
1

ε2

∫ t+εT

t
ds

∫ s

s−εT
dτ

∫
δ
2
≤|v|≤ 2

δ

dv 1 δ
2
≤|V (− s−τ

ε
;0,X( s−t

ε
;0,x,v),V ( s−t

ε
;0,x,v))|≤ 2

δ

×g
(
τ,X

(s− τ

ε
; 0, X

(s− t

ε
; 0, x, v

)
, V

(s− t

ε
; 0, x, v

)))
×ϕ(v)ϕ

(
V
(s− τ

ε
; 0, X

(s− t

ε
; 0, x, v

)
, V

(s− t

ε
; 0, x, v

)))
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=
1

ε2

∫ t+εT

t
ds

∫ s

s−εT
dτ

∫
δ
2
≤|v|≤ 2

δ

dv

× 1 δ
2
≤|V (−τ+t

ε
;0,x,v)|≤ 2

δ
g

(
τ,X

(−τ + t

ε
; 0, x, v

))
ϕ(v)ϕ

(
V
(−τ + t

ε
; 0, x, v

))
,

(3.2.20)

where we have used the fact that since the characteristics equation is autonomous,

X

(
s− τ

ε
; 0, X

(s− t

ε
; 0, x, v

)
, V

(s− t

ε
; 0, x, v

))
= X

(−τ + t

ε
; 0, x, v

)
,

V

(
s− τ

ε
; 0, X

(s− t

ε
; 0, x, v

)
, V

(s− t

ε
; 0, x, v

))
= V

(−τ + t

ε
; 0, x, v

)
.

Recall the change of variables from (2.2.28)

v 7→ y ≡ X
(−τ + t

ε
; 0, x, v

)
, dv . ε3

|t− τ |3
dy.

On the other hand, |v| = O(1) ε|y−x|
|t−τ | , |V (s; t, x, v)| = O(1) ε|y−x|

|t−τ | . As the steady

case we can reduce to ϕ(v)ϕ(V (−τ+t
ε ; 0, x, v)) ∼ ϕ2(Cε |x−y|

|t−τ | ) for some C > 0.

We define

M(t− τ, x− y) :=
1

ε

ε3

|t− τ |3
ϕ2

(
Cε

|y − x|
|t− τ |

)
. (3.2.21)

Then,

|SS∗g(t, x)| . 1

ε2

∫
R3

dy

∫ t+εT

t
ds

∫ s

s−εT
dτ |g(τ, y)|ϕ2

(
O(ε)

|y − x|
|t− τ |

) ε3

|t− τ |3

. 1

ε2

∫
R3

dy

∫ t+εT

t−εT
dτ

∫ τ+εT

τ
ds|g(τ, y)|ϕ2

(
O(ε)

|y − x|
|t− τ |

) ε3

|t− τ |3

.
∫
R3

∫ t+εT

t−εT
|g(τ, y)|M(t− τ, x− y)dτdy.

From (3.2.21),∫ +εT

−εT
M(τ, x− y)dτ ≤

∫ εT

−εT

1

ε

ε3

|τ |3
ϕ2

(ε|x− y|
|τ |

)
dτ

.
∫ ∞

0

w

|x− y|2
ϕ2(w)dw . 1

|x− y|2
,

where we have used the change of variables w = ε|x−y|
|τ | with dτ = ε|x−y|

w2 dw.

By weak Young’s inequality
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∥∥∥SS∗g∥L2
t

∥∥
L3
x
.

∥∥∥∥∥
∥∥∥∥ ∫

R3

∫ t+εT

t−εT
|g(τ, y)|M(t− τ, x− y)dτdy

∥∥∥∥
L2
t (R)

∥∥∥∥∥
L3
x

=

∥∥∥∥∥
∥∥∥∥ ∫

R3

∫ +εT

−εT
|g(t− τ, y)|M(τ, x− y)dτdy

∥∥∥∥
L2
t (R)

∥∥∥∥∥
L3
x

.
∥∥∥∥ ∫

R3

1

|x− y|2
∥g(·, y)∥L2

t
dy

∥∥∥∥
L3
x

.
∥∥∥ 1

|x|2
∥∥∥
L
3/2
w (R3)

∥∥∥g∥L2
t (R)

∥∥
L
3/2
x (R3)

. ∥g∥
L
3/2
x L2

t
.

The proof is completed.

Now we are ready to prove the main result of this section:

Proof of Proposition 3.1 Recall (1.2.4), (2.2.33) and the temporary notation

above (2.2.33). From (3.2.1) and (2.2.34),∫
R3

fδ(t, x, v)ζi(v)dv

=

∫
R3

[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

{
1t≥0f(t, x, v) + 1t≤0χ(t)f0(x, v)

}
ζi(v)dv

=1t≥0

∫
R3

[
1−χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

{ 4∑
j=0

aj(t, x)ζj(v)+(I−P)f(t, x, v)

}
ζi(v)dv

+1t≤0

∫
R3

[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)χ(t)f0(x, v)ζi(v)dv

=1t≥0

{
ai(t, x) +O(δ)

4∑
j=0

|aj(t, x)|+Oδ(1)

∫
R3

|(I−P)f(t, x, v)|ζi(v)dv
}

+1t≤0χ(t)

∫
R3

|f0(x, v)|ζi(v)dv.

Therefore
4∑

i=0

1t≥0|ai(t, x)|≤
4∑

i=0

∣∣∣∣ ∫
R3

fδ(t, x, v)ζi(v)dv

∣∣∣∣+ 1t≤0χ(t)

∫
R3

|f0(x, v)|
4∑

i=0

|ζi(v)|dv

+1t≥0

{
O(δ)

4∑
j=0

|aj(t, x)|+Oδ(1)

∫
R3

|(I−P)f(t, x, v)|
4∑

i=0

|ζi(v)|dv
}
.

Hence for all i = 0, 1, 2, 3, 4,

|ai(t, x)| ≤ 4

∫
R3

|fδ(t, x, v)|⟨v⟩2
√
µ(v)dv

+4

∫
R3

|(I−P)f(t, x, v)|⟨v⟩2
√
µ(v)dv + 4χ(t)

∫
R3

|f0(x, v)|⟨v⟩2
√
µ(v)dv.
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Clearly, we can conclude the second estimate of (3.2.4).

Now we focus on the first estimate of (3.2.4). From Lemma 3.3,∫
R3

|fδ(t, x, v)|⟨v⟩2
√
µ(v)dv ≤

∫
R3

|f̄(t, x, v)|⟨v⟩2
√
µ(v)dv.

From (3.2.15) and (3.2.16) with ϕ(v) = ⟨v⟩2
√
µ(v),

∫
R3 |f̄(t, x, v)|⟨v⟩2

√
µ(v)dv .

S(h)(t, x). Finally, from Lemma 3.4 and (3.2.17), (3.2.6), we conclude the first

estimate in (3.2.4). The proof is completed.

3.3 Unsteady L2−Coercivity Estimate
The main purpose of this section is to prove the following:

Proposition 3.2 Suppose Φ = Φ(x) ∈ C1, g ∈ L2(R+ × Ω × R3), and r ∈
L2(R+ × γ−) such that, for all t > 0,∫∫

Ω×R3

g(t, x, v)
√
µdvdx = 0 =

∫
γ−

r(t, x, v)
√
µdγ. (3.3.1)

Then, for any sufficiently small ε, there exists a unique solution to the problem

ε∂tf + v · ∇xf +
1
√
µ
ε2Φ · ∇v(

√
µf) + ε−1Lf = g, (3.3.2)

with f |t=0 = f0 and f− = Pγf + r on R+ × γ− such that∫∫
Ω×R3

f(t, x, v)
√
µdxdv = 0, for all t ≥ 0. (3.3.3)

Moreover, there is 0 < λ≪ 1 such that for 0 ≤ s ≤ t,

∥eλtf(t)∥22+ε−2

∫ t

s
∥eλτ (I−P)f(τ)∥2νdτ+

∫ t

s
∥eλτPf(τ)∥22dτ+

∫ t

s
|eλτf |22

. ∥eλsf(s)∥22+ε−1

∫ t

s
|eλτr|22,−+

∫ t

s
∥ν−

1
2 eλτ (I−P)g∥22+ε−2

∫ t

s
∥eλτPg∥22. (3.3.4)

We refer to Proposition 3.8 in [21].

3.4 L∞ Estimate
The main goal of this section is to prove the following:

Proposition 3.3 Let f satisfy[
ε∂t + v · ∇x + ε2Φ · ∇v + ε−1C0⟨v⟩

]
|f | ≤ ε−1Kβ |f |+ |g|,∣∣f |γ−∣∣ ≤ Pγ |f |+ |r|,

∣∣f |t=0

∣∣ ≤ |f0|. (3.4.1)

Then, for w(v) = eβ
′|v|2 with 0 < β′ ≪ β,
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∥εwf(t)∥∞ . ∥εwf0∥∞ + sup
0≤s≤∞

∥εwr(s)∥∞ + ε2 sup
0≤s≤∞

∥⟨v⟩−1wg(s)∥∞

+ sup
0≤s≤t

∥S1f(s)∥L3(Ω) +
1

ε1/2
sup
0≤s≤t

∥S2f(s)∥L2(Ω)

+
1

ε1/2
sup
0≤s≤t

∥(I−P)f(s)∥L2(Ω×R3), (3.4.2)

and

∥εwf(t)∥∞ . ∥εwf0∥∞ + sup
0≤s≤∞

∥εwr(s)∥∞ + ε2 sup
0≤s≤∞

∥⟨v⟩−1wg(s)∥∞

+
1

ε1/2
sup
0≤s≤t

∥f(s)∥L2(Ω×R3). (3.4.3)

We define the stochastic cycles for the unsteady case. Note that from (3.1.5),

x̃b(x, v) = xb(x, v).

Definition 3.4 Define, for free variables vk ∈ R3, from (3.1.5)

t̃1 = t− t̃b(x, v) = t− εtb(x, v),

x̃1 = Y (t̃1; t, x, v) = x̃b(x, v) = xb(x, v) = x1,

t̃2 = t− t̃b(x, v)− t̃b(x1, v1) = t− εtb(x, v)− εtb(x1, v1),

x̃2 = Y (t̃2; t̃1, x1, v1) = x̃b(x1, v1) = xb(x1, v1) = x2,

...

t̃k+1 = t̃k − t̃b(xk, vk) = t̃k − εtb(xk, vk),

x̃k+1 = Y (t̃k+1; t̃k, xk, vk) = x̃b(xk, vk) = xb(xk, vk) = xk+1.

and

t− t̃1 = εtb(x, v) = ε(t− t1),

t− t̃2 = εtb(x, v) + εtb(x1, v1) = ε(t− t2),

...

t− t̃k = ε(t− tk).

Set

Ycl(s; t, x, v) :=
∑
k

1[t̃k+1,t̃k)
(s)Y (s; t̃k, xk, vk), Wcl(s; t, x, v) :=

∑
k

1[t̃k+1,t̃k)
(s)vk.

Clearly

[Ycl(s; t, x, v),Wcl(s; t, x, v)] =
[
Xcl

(
t− t− s

ε
; t, x, v

)
, Vcl

(
t− t− s

ε
; t, x, v

)]
.

(3.4.4)

The following lemma is a generalized version of Lemma 23 of [32].
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Lemma 3.5[32] Assume Φ = Φ(x) ∈ C1. For sufficiently large T0 > 0, there

exist constants C1, C2 > 0, independent of T0, such that for k = C1T
5/4
0 ,

sup
(t,x,v)∈[0,εT0]×Ω̄×R3

∫
k−1∏
ℓ=1

Vℓ

1t̃k(t,x,v1,v2,··· ,vk−1)>0

k−1∏
ℓ=1

dσℓ <
{1

2

}C2T
5/4
0
. (3.4.5)

We refer to Lemma 3.12 in [21] for the proof.

Now we are ready to prove the main result of this section. We refer to the proof

of Proposition 3.10 in [21] in page 80.

3.5 Lp
xL

∞
t and L∞

t Lp
x Bounds and Estimates of the Collision Operators

Lemma 3.6 For g(t, x), g(t, x)|t=0 = g0(x), for 0 < δ ≪ 1, and for all T ∈
[0,∞],

∥g∥Lp
xL

∞
t ([0,T ]) . δ∥gt∥Lp

xL
2
t ([0,T ]) + Cδ∥g∥Lp

xL
2
t ([0,T ]) + ∥g0∥Lp

x
,

∥g∥L∞
t ([0,T ])Lp

x
. δ∥gt∥Lp

xL
2
t ([0,T ]) + Cδ∥g∥Lp

xL
2
t ([0,T ]) + ∥g0∥Lp

x
. (3.5.1)

Note that this crucial estimate follows essentially by Sobolev imbedding in

L∞
t ⊂ C0

t ⊂ H1
t .

Proof Note that

|g(t, x)|2 ≤ |g(0, x)|2 +
∫ t

0

d

ds
|g(s, x)|2ds

≤ |g(0, x)|2 + 2

∫ t

0
|g(s, x)gt(s, x)|ds

≤ |g(0, x)|2 + 2
[ ∫ t

0
|g(s, x)|2ds

]1/2[ ∫ t

0
|∂tg(s, x)|2ds

]1/2
. |g(0, x)|2 +

[ ∫ T

0
|g(s, x)|2ds

]
+ o(1)

[ ∫ T

0
|∂tg(s, x)|2ds

]
. |g(0, x)|2 + ∥g(·, x)∥2L2([0,T ]) + o(1)∥∂tg(·, x)∥2L2([0,T ]). (3.5.2)

We prove the first estimate of (3.5.1): Taking L∞
t ([0, T ]) and taking {· · · }1/2,

∥g(·, x)∥L∞
t ([0,T ]) . |g0(x)|+ ∥g(·, x)∥L2

t ([0,T ]) + o(1)∥gt(·, x)∥L2
t ([0,T ]).

By taking Lp
x-norm, we conclude the first bound.

Now we prove the second estimate of (3.5.1): From (3.5.2), for all t ∈ [0, T ],

|g(t, x)|p . |g(0, x)|p + ∥g(·, x)∥p
L2
t ([0,T ])

+ o(1)∥∂tg(·, x)∥pL2
t ([0,T ])

.

Taking the integration over x and taking {· · · }1/p, for all t ∈ [0, T ],
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∥g(t, ·)∥Lp
x
. ∥g(0, ·)∥Lp

x
+

∥∥∥g∥L2
t ([0,T ])

∥∥
Lp
x
+ o(1)

∥∥∥gt∥L2
t ([0,T ])

∥∥
Lp
x

. ∥g0∥Lp
x
+ ∥g∥Lp

xL
2
t ([0,T ]) + o(1)∥gt∥Lp

xL
2
t ([0,T ]).

Finally taking L∞−norm in t ∈ [0, T ],

∥g∥L∞
t ([0,T ])L3

x
=

∥∥∥g(t, ·)∥Lp
x

∥∥
L∞
t ([0,T ])

. ∥g0∥Lp
x
+ ∥g∥Lp

xL
2
t ([0,T ]) + o(1)∥gt∥Lp

xL
2
t ([0,T ]).

The proof is completed.

Lemma 3.7 Assume

|ai(f)| ≤ S1f(t, x) + S2f(t, x), |ai(g)| ≤ S1g(t, x) + S2g(t, x),

where ai(f) and ai(g) are defined in (2.2.33). Then

∥ν−1/2ε1/2Γ±(f, g)∥L2
t,x,v

+ ∥ν−1/2ε1/2Γ±(g, f)∥L2
t,x,v

.[ε3/2∥wg∥L∞
t,x,v

]
{
[ε−1∥ν−1/2(I−P)f∥L2

t,x,v
] + [ε−1∥S2f∥L2

t,x
]
}

+[ε3/2∥wf∥L∞
t,x,v

]
{
[ε−1∥ν−1/2(I−P)g∥L2

t,x,v
] + [ε−1∥S2g∥L2

t,x
]
}

+
{
∥S1f∥1/2L3

xL
2
t
+ ∥S1∂tf∥1/2L3

xL
2
t
+ ∥S1f(0)∥1/2L3

x

}
[ε∥wf∥L∞

t,x,v
]1/2∥S1g∥L3

xL
2
t
, (3.5.3)

∥ν−1/2ε1/2Γ±(f, g)∥L2
t,x,v

+ ∥ν−1/2ε1/2Γ±(g, f)∥L2
t,x,v

≤∥S1f∥1/2L3
xL

∞
t
[ε∥wf∥L∞

t,x,v
]1/2∥S1g∥L3

xL
2
t

+[ε3/2∥wf∥L∞
t,x,v

]
{
ε−1∥(I−P)g∥L2

t,x,v
+ ε−1∥S2g∥L2

t,x

}
+ε1/6∥S1g∥L3

xL
2
t

{
[ε−1∥(I−P)f∥L2

x,vL
∞
t
]1/3 + [ε−1∥S2f∥L2

xL
∞
t
]1/3

}
[ε∥wf∥L∞

t,x,v
]2/3,

(3.5.4)

and

∥ν−1/2Γ±(f, g)∥L2
t,x,v

+ ∥ν−1/2Γ±(g, f)∥L2
t,x,v

.∥f∥L6
xL

∞
t L2

v
∥S1g∥L3

xL
2
t
+ ε∥wf∥L∞

t,x,v

{
ε−1∥ν1/2(I−P)g∥L2

t,x,v
+ ε−1∥S2g∥L2

t,x

}
,

∥ν−1/2Γ±(f, g)∥L2
t,x,v

+ ∥ν−1/2Γ±(g, f)∥L2
t,x,v

.∥f∥L6
xL

2
t,v
∥S1g∥L3

xL
∞
t
+ ε∥wf∥L∞

x,vL
2
t

{
ε−1∥ν1/2(I−P)g∥L2

x,vL
∞
t
+ ε−1∥S2g∥L2

xL
∞
t

}
.

(3.5.5)

Proof First we prove (3.5.3). We decompose

|f(t, x, v)| ≤ |Pf(t, x, v)|+ |(I−P)f(t, x, v)|
≤ S1f(t, x)⟨v⟩2

√
µ(v) + S2f(t, x)⟨v⟩2

√
µ(v) + |(I−P)f(t, x, v)|, (3.5.6)

and |g(t, x, v)| in the same way. We use the same decomposition of (2.5.3) replacing

the L2
x,v norm with the L2

t,x,v norm.
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The first two lines of the RHS of (2.5.3) are bounded by

ε3/2∥wg∥L∞
t,x,v

{
∥ν−1/2Γ±(ε

−1|(I−P)f |,w−1)∥L2
t,x,v

+∥ν−1/2Γ±(w
−1, ε−1|(I−P)f |)∥L2

t,x,v

}
+ε3/2∥wf∥L∞

t,x,v

{
∥ν−1/2Γ±(ε

−1|(I−P)g|,w−1)∥L2
t,x,v

+∥ν−1/2Γ±(w
−1, ε−1|(I−P)g|)∥L2

t,x,v

}
.

From (2.5.4), (2.5.5), (2.5.6), and (2.5.7), the third and fourth line of the RHS of

(2.5.3) are bounded by

ε3/2∥wg∥L∞
t,x,v

∥ε−1S2f∥L2
t,x
∥ν−1/2Γ±(ν

2√µ,w−1)∥L2
v

+ε3/2∥wf∥L∞
t,x,v

∥ε−1S2g∥L2
t,x
∥ν−1/2Γ±(w

−1, ν2
√
µ)∥L2

v

. ε3/2∥wg∥L∞
t,x,v

∥ε−1S2f∥L2
t,x

+ ε3/2∥wf∥L∞
t,x,v

∥ε−1S2g∥L2
t,x
.

The last line of (2.5.3) is bounded by, from ∥ν−1/2Γ(ν2
√
µ, ν2

√
µ)∥L2

v
<∞,∥∥∥ε1/2S1f(t, x)S1g(t, x)∥L2

t

∥∥
L2
x
.

∥∥∥ε1/2S1f∥L∞
t
∥S1g∥L2

t

∥∥
L2
x

. [ε1/2∥S1f∥L6
xL

∞
t
]∥S1g∥L3

xL
2
t
.

From (3.5.1),

∥S1f∥L6
xL

∞
t

=
∥∥∥S1f∥L∞

t

∥∥
L6
x

.
∥∥∥S1f∥L∞

t

∥∥1/2
L∞
x

∥∥∥S1f∥L∞
t

∥∥1/2
L3
x
. ∥S1f∥1/2L∞

t,x
∥S1f∥1/2L3

xL
∞
t

. ∥S1f∥1/2L∞
t,x

{
∥S1f∥L3

xL
2
t
+ ∥∂t[S1f ]∥L3

xL
2
t
+ ∥S1f(0)∥L3

x

}1/2

. ∥wf∥1/2L∞
t,x,v

{
∥S1f∥L3

xL
2
t
+ ∥∂t[S1f ]∥L3

xL
2
t
+ ∥S1f(0)∥L3

x

}1/2
.

We only need to show ∂t[S1f ] . S1∂tf for t ≥ 0. From the definition of S1f(t, x) in

(3.2.3),

∂t[S1f(t, x)] = 2

∫
R3

sgn(fδ(t, x, v))∂tfδ(t, x, v)ν
2
√
µ(v)dv.

Now from the definition of fδ in (3.2.1), for t ≥ 0

∂tfδ(t, x, v)|t≥0

=
[
1−χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

{
1t∈[0,∞)∂tf(t, x, v)+1t∈(−∞,0]χ

′(t)f0(x, v)
}∣∣

t≥0

=
[
1− χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)1t∈[0,∞)∂tf(t, x, v)

=
[
1−χ

(n(x) · v
δ

)
χ
(ξ(x)

δ

)]
χ(δ|v|)

{
1t∈[0,∞)∂tf(t, x, v)+1t∈(−∞,0]χ(t)∂tf0(x, v)

}∣∣
t≥0

=[∂tf ]δ(t, x, v)|t≥0.

Therefore, for t ≥ 0,
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∂t[S1f(t, x)] ≤ 2

∫
R3

|∂tfδ(t, x, v)|ν2
√
µ(v)dv

≤ 2

∫
R3

|[∂tf ]δ(t, x, v)|ν2
√
µ(v)dv = S1∂tf(t, x).

All together we prove (3.5.3).

Now we prove (3.5.4). Using (3.5.6), we again decompose

∥ν−1/2ε1/2Γ±(f, g)∥L2
t,x,v

+ ∥ν−1/2ε1/2Γ±(g, f)∥L2
t,x,v

. (2.5.3).

We use the same upper bound as in the proof of (3.5.3) except the first line of RHS

in (2.5.3) and the first term of the third and fourth lines of RHS in (2.5.3):

∥ν−1/2ε1/2Γ±(|f |, |(I−P)g|)∥L2
t,x,v

+ ∥ν−1/2ε1/2Γ±(|(I−P)g|, |f |)∥L2
t,x,v

+∥ν−1/2ε1/2Γ±(|f |,S2gν
2√µ)∥L2

t,x,v
+ ∥ν−1/2ε1/2Γ±(S1fν

2√µ,S1gν
2√µ)∥L2

t,x,v

+∥ν−1/2ε1/2Γ±(S1gν
2√µ,S1fν

2√µ)∥L2
t,x,v

. ε3/2∥wf∥L∞
t,x,v

∥ε−1S2g∥L2
t,x

+ ε1/2∥S1f∥L6
xL

∞
t
∥S1g∥L3

xL
2
t
.

By Hölder inequality,

∥S1f∥L6
xL

∞
t

. ∥S1f∥1/2L3
xL

∞
t
∥S1f∥1/2L∞

t,x
. ∥S1f∥1/2L3

xL
∞
t
∥wf∥1/2L∞

t,x,v
.

First we focus on the first line of the RHS of (2.5.3). Using the decomposition

of g in (3.5.6), these terms are bounded by∥∥S1g∥ν−1/2ε1/2Γ±(|(I−P)f |,ν2√µ)∥L2
v

∥∥
L2
t,x
+
∥∥S1g∥ν−1/2ε1/2Γ±(ν

2√µ,|(I−P)f |)∥L2
v

∥∥
L2
t,x

+
∥∥S2g∥ν−1/2ε1/2Γ±(|(I−P)f |,ν2√µ)∥L2

v

∥∥
L2
t,x
+
∥∥S2g∥ν−1/2ε1/2Γ±(ν

2√µ,|(I−P)f |)∥L2
v

∥∥
L2
t,x

+
∥∥ν−1/2ε1/2Γ±(|(I−P)f |, |(I−P)g|)

∥∥
L2
t,x,v

+
∥∥ν−1/2ε1/2Γ±(|(I−P)g|, |(I−P)f |)

∥∥
L2
t,x,v

.

(3.5.7)

Note, for 0 ≤ β < 1
4 ,

|eβ|v|2Pf(t, x, v)| . ∥eβ|v|2f(t, x, ·)∥L∞
v
eβ|v|

2
ν2
√
µ(v)

and

|eβ|v|2(I−P)f(t, x, v)| = eβ|v|
2 |f(t, x, v)−Pf(t, x, v)|

. ∥eβ|v|2f∥L∞
t,x,v

[1 + eβ|v|
2
ν2
√
µ(v)] . ∥eβ|v|2f∥L∞

t,x,v
.

From the above estimate and (2.5.4), the last two lines of (3.5.7) are bounded by

ε3/2∥wf∥L∞
t,x,v

×
{
ε−1∥S2g∥L2

t,x
+ ε−1∥ν−1/2(I−P)g∥L2

t,x,v

}
.
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Focus on the first line of (3.5.7). For 0 < a≪ 1,

∥ν−1/2ε1/2Γ±(|(I−P)f |, ν2√µ)∥2L2
v
+ ∥ν−1/2ε1/2Γ±(ν

2√µ, |(I−P)f |)∥2L2
v

. ε

∫
v

∫
u

∫
ω
|v − u|2|wa(I−P)f(v′)|2w(v′)−2aw(u′)−2a

√
µ(u)

+ε

∫
v

∫
u

∫
ω
|v − u|2|wa(I−P)f(v)|2w(v)−2aw(u)−2a

√
µ(u)

+ε

∫
v

∫
u

∫
ω
|v − u|2|wa(I−P)f(u′)|2w(u′)−2aw(v′)−2a

√
µ(u)

+ε

∫
v

∫
u

∫
ω
|v − u|2|wa(I−P)f(u)|2w(u)−2aw(v)−2a

√
µ(u).

Now by the change of variables (v, u) ↔ (v′, u′) for the first term, (v, u) ↔ (u′, v′)

for the third term, the above terms are bounded by

ε

∫
v

∫
u

∫
ω
[1 + |v|2 + |u|2]|wa(I−P)f(v)|2w(v)−2aw(u)−2a

√
µ(u)

. ε

[ ∫
v
|wa(I−P)f(v)|6

]1/3
.

Then, by the Hölder inequality ( 16 + 1
3 = 1

2), the first line of (3.5.7) is bounded by

ε1/2
∥∥S1g∥wa(I−P)f∥L6

v

∥∥
L2
t,x

. ε1/2∥S1g∥L3
xL

2
t
∥wa(I−P)f∥L6

x,v
.

Here, for 0 < a≪ 1,

∥wa(I−P)f∥L6
x,v

. ∥(I−P)f∥1/3
L2
x,v

∥w
3a
2 f∥2/3L∞

x,v

. ε−1/3[ε−1∥(I−P)f∥L2
x,v

]1/3[ε∥wf∥L∞
x,v

]2/3.

Hence the first line of (3.5.7) is bounded by

ε1/6∥S1g∥L3
xL

2
t
[ε−1∥(I−P)f∥L2

x,v
]1/3[ε∥wf∥L∞

x,v
]2/3.

Therefore, altogether, the first line of RHS of (2.5.3) is bounded by

ε3/2∥wf∥L∞
t,x,v

×
{
ε−1∥S2g∥L2

t,x
+ ε−1∥ν−1/2(I−P)g∥L2

t,x,v

}
+ε1/6∥S1g∥L3

xL
2
t
[ε−1∥(I−P)f∥L2

x,vL
∞
t
]1/3[ε∥wf∥L∞

t,x,v
]2/3.

Similarly the first term of the third and fourth lines of RHS in (2.5.3) is bounded as

∥ν−1/2ε1/2Γ±(S2fν
2√µ, |g|)∥L2

t,x,v
.ε1/6[ε−1∥S2f∥L2

xL
∞
t
]1/3[ε∥wf∥L∞

t,x,v
]2/3∥S1g∥L3

xL
2
t
.

All together we prove (3.5.4).

Now we prove (3.5.5). Using the decomposition of g,
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∥ν−1/2Γ(f, g)∥L2
t,x,v

+ ∥ν−1/2Γ(g, f)∥L2
t,x,v

≤∥ν−1/2Γ(f,S1gν
2√µ)∥L2

t,x,v
+∥ν−1/2Γ(f,S2gν

2√µ)∥L2
t,x,v

+∥ν−1/2Γ(f, |(I−P)g|)∥L2
t,x,v

+∥ν−1/2Γ(S1gν
2√µ,f)∥L2

t,x,v
+∥ν−1/2Γ(S2gν

2√µ,f)∥L2
t,x,v

+∥ν−1/2Γ(|(I−P)g|,f)∥L2
t,x,v

.
∥∥∥f∥L2

v
|S1g|

∥∥
L2
t,x

+ ∥wf∥L∞
t,x,v

{
∥S2g∥L2

t,x
+ ∥ν1/2(I−P)g∥L2

t,x,v

}
.
∥∥∥f∥L∞

t L2
v
∥S1g∥L2

t

∥∥
L2
x
+ ε∥wf∥L∞

t,x,v

{
ε−1∥S2g∥L2

t,x
+ ε−1∥ν1/2(I−P)g∥L2

t,x,v

}
.∥f∥L6

xL
∞
t L2

v
∥S1g∥L3

xL
2
t
+ ε∥wf∥L∞

t,x,v

{
ε−1∥S2g∥L2

t,x
+ ε−1∥ν1/2(I−P)g∥L2

t,x,v

}
,

and similarly

∥ν−1/2Γ(f, g)∥L2
t,x,v

+ ∥ν−1/2Γ(g, f)∥L2
t,x,v

. ∥f∥L6
xL

2
t,v
∥S1g∥L3

xL
∞
t
+ ε∥wf∥L∞

x,vL
2
t

{
ε−1∥S2g∥L2

xL
∞
t
+ ε−1∥ν1/2(I−P)g∥L2

x,vL
∞
t

}
.

The proof is completed.

3.6 Global-in-Time Validity
The main purpose of this section is to prove Theorem 1.2. To that we need the

following:

Lemma 3.8 For 0 < λ < λ′ and w = eβ|v|
2
with 0 < β ≪ 1,

∥eλtw[f̃1 + εf̃2]∥L6
xL

∞
t L∞

v
+ ∥eλtw[∂tf̃1 + ε∂tf̃2]∥L6

xL
2
tL

∞
v

. P1,0 + εP1,

||eλtw[f̃1 + εf̃2]||L∞
x,vL

2
t∩L∞

t,x,v
+ ||eλtw[∂tf̃1 + ε∂tf̃2]||L∞

x,vL
2
t∩L∞

t,x,v
. P1 + εP2, (3.6.1)

and

∥eλtr̃∥L2
tL

2
γ−

.P0,1, ∥eλt∂tr̃∥L2
tL

2
γ−

.P1,1, ∥weλtÃ1∥L2
t,x,v

.P1×P0,1,

∥weλt∂tÃ1∥L2
t,x,v

.P2×P1,1, ∥weλtÃ2∥L2
t,x,v

.P1×P1,0, ∥weλt∂tÃ2∥L2
t,x,v

.P2×P2,0,

(3.6.2)

where

P1:=P
(
∥eλ′tũ∥L∞

t H4
x
+ ∥eλ′tϑ̃∥L∞

t H4
x
+ ∥eλ′tp̃∥L∞

t H3
x
+ ∥eλ′t∂tũ∥L∞

t H3
x

+∥eλ′t∂tϑ̃∥L∞
t H3

x
+ ∥eλ′t∂tp̃∥L∞

t H2
x
+ ∥ũs∥H3

x
+ ∥ϑ̃s∥H3

x

)
,

P2:=P
(
∥eλ′tũ∥C1

t H
4
x
+ ∥eλ′tϑ̃∥C1

t H
4
x
+ ∥eλ′tp̃∥C1

t H
3
x
+ ∥eλ′t∂tũ∥C1

t H
3
x

+∥eλ′t∂tϑ̃∥C1
t H

3
x
+ ∥eλ′t∂tp̃∥C1

t H
2
x
+ ∥ũs∥H3

x
+ ∥ϑ̃s∥H3

x

)
,

Pi,j :=P
(
∥eλ′tũ∥

Hi
tH

j+1
x

+∥eλ′tϑ̃∥
Hi

tH
j+1
x

+∥eλ′t
[
p̃−

∫
− p̃

]
∥
Hi

tH
j
x
+∥ϑw∥L2(∂Ω)

)
, (3.6.3)

for some polynomial P with P (s) = O(s).
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Moreover,

∥w⟨v⟩−1eλtÃ∥L∞
t,x,v

, ∥weλtr̃∥L∞
t,x,v

, ∥weλt[f̃1 + εf̃2]∥L∞
t,x,v

. P1,

∥w⟨v⟩−1eλt∂tÃ∥L∞
t,x,v

, ∥weλt∂tr̃∥L∞
t,x,v

, ∥weλt[∂tf̃1 + ε∂tf̃2]∥L∞
t,x,v

. P2. (3.6.4)

Proof From (1.3.3), (1.3.4), and our choice (1.2.9),

|r̃|.
∣∣µ− 1

2Pw
γ (f̃2

√
µ)− f̃2

∣∣+ ε⟨v⟩4µ(v)
1
2

∫
− |ϑ̃|

.P
(
1

2

∑
i,j

Aij

(
∂xi ũj |∂Ω + ∂xj ũi|∂Ω

)
+

∑
i

Bi∂xi ϑ̃|∂Ω −
√
µ

2

(∫
− ϑ̃(t)

)2

−√
µ
( |v|2−5

2
ϑw+

∫
−ϑs

)∫
−ϑ̃+ |v|2−3

2

√
µ
(
p̃|∂Ω−

∫
− p̃−θw

∫
−ϑ̃

)
+⟨v⟩10µ(v)

1
2

∫
−|ϑ̃|

)
.⟨v⟩10µ

1
2P

(
|∇xũ|+ |∇xϑ̃|+

∣∣∣p̃− ∫
− p̃

∣∣∣+ |ϑ̃|+
∫
− |ϑ̃|+ |ϑw|+ |ϑs|+

∫
− |ϑs|

)
.

By the definitions of f̃1 and f̃2 from (1.4.7) and our choice (1.2.9),

|f̃1|.⟨v⟩4µ
1
2
[
|ũ|+ |ϑ̃|+

∫
− |ϑ̃|

]
,

|f̃2|.⟨v⟩4µ
1
2

{
|∇xũ|+|∇xϑ̃|

∣∣∣p̃−∫
−p̃

∣∣∣+[
1+|ũ|+|ϑ̃|+

∫
−|ϑ̃|

][
|us|+|ϑs|+

∫
−|ϑs|

]}
. (3.6.5)

Then from (.1) we conclude (3.6.1).

From (1.2.14) and (1.2.9),

|(I−P)Ã|.|∇2
xũ|+|∇2

xϑ̃|+
[
|∇xũ|+|∇xϑ̃||∇xus|+|∇xϑs|

][
|ũ|+|ϑ̃|+|us|+|ϑs|+

∫
− |ϑ̃|

]
+εP

(
|∂t∇xũ|+|∂t∇xϑ̃|+

∣∣∣∂tp̃−∫
− ∂tp̃

∣∣∣+|ϑ̃|+
∫
− |ϑ̃|+|ϑs|+

∫
− |ϑs|+|∂tϑ̃|

+

∫
− |∂tϑ̃|+|∇xũ|+|∇xϑ̃|+

∣∣∣p̃−∫
− p̃

∣∣∣+|∇xũs|+|∇xϑ̃s|+
∣∣∣ps−∫

− ps

∣∣∣),
|PÃ|.εP

(
|∂t∇xũ|+|∂t∇xϑ̃|+

∣∣∣∂tp̃−∫
− ∂tp̃

∣∣∣+|ϑ̃|+
∫
− |ϑ̃|+|ϑs|+

∫
− |ϑs|+|∂tϑ̃|+

∫
− |∂tϑ̃|

+|∇xũ|+|∇xϑ̃|+
∣∣∣p̃−∫

− p̃
∣∣∣+|∇xũs|+|∇xϑ̃s|+

∣∣∣ps − ∫
− ps

∣∣∣).
By the standard Sobolev embedding and the trace theorem, we prove (3.6.4).

The proof is completed.

Proof of Theorem 1.2 For the construction of the solution and the energy

estimate, we consider R̃ℓ(t, x, v) solving, for ℓ ∈ N,
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∂t[e
λtR̃ℓ+1] + ε−1v · ∇x[e

λtR̃ℓ+1] + εΦ · ∇v[e
λtR̃ℓ+1] + ε−2L[eλtR̃ℓ+1]

= λ[eλtR̃ℓ+1] + ε−1L1[e
λtR̃ℓ] + ε−1Lε1/2Rs

[eλtR̃ℓ] + e−λtε−1/2Γ(eλtR̃ℓ, eλtR̃ℓ)

+ε−1LRs(e
λtf̃1 + εeλtf̃2) + ε

Φ · v
2

[eλtR̃ℓ+1] + ε−1/2eλtÃ,

eλtR̃ℓ+1|γ− = Pγe
λtR̃ℓ+1 + εeλtQR̃ℓ + ε1/2eλtr̃, eλtR̃ℓ+1|t=0 = R̃0. (3.6.6)

Here we set R̃0(t, x, v) := e−ctR̃0(x, v).

Clearly R̃ℓ
t := ∂tR̃

ℓ solves

∂t[e
λtR̃ℓ+1

t ] + ε−1v · ∇x[e
λtR̃ℓ+1

t ] + εΦ · ∇v[e
λtR̃ℓ+1

t ] + ε−2L[eλtR̃ℓ+1
t ]

=λ[eλtR̃ℓ+1
t ] + ε−1L1[e

λtR̃ℓ
t ] + ε−1Lε1/2Rs

[eλtR̃ℓ
t ] + ε−1L∂tf̃1+ε∂tf̃2

[eλtR̃ℓ]

+e−λtε−1/2[Γ(eλtR̃ℓ
t , e

λtR̃ℓ) + Γ(eλtR̃ℓ, eλtR̃ℓ
t)]

+ε−1LRs(e
λt∂tf̃1 + eλtε∂tf̃2) + ε

Φ · v
2

[eλtR̃ℓ+1
t ] + ε−1/2eλt∂tÃ,

eλtR̃ℓ+1
t (t, x, v)|γ−=Pγe

λtR̃ℓ+1
t +εeλtQR̃ℓ

t+ε
1/2eλt∂tr̃, eλtR̃ℓ+1

t |t=0=∂tR̃0. (3.6.7)

As steady case, from (1.4.10) and
∫
n·v≷0M

w|n · v|dv = 1 =
∫
n·v≷0

√
2πµ|n · v|dv,

P
(
ε−1L1R̃+ ε−1Lε1/2Rs

R̃+ ε−1/2Γ(R̃, R̃) + ε−1LRs(f̃1 + εf̃2)
)
= 0,∫

R3

Ã(t, x, v)
√
µdv = 0 =

∫
R3

f̃2
√
µdv,

∫
n·v<0

QR̃{n · v}dv = 0 =

∫
n·v<0

r̃dv.

Note that Proposition 3.2 guarantees the solvability of such linear problems (3.6.6)

and (3.6.7).

Note that from the assumption (1.4.12), (.1), and (3.6.1),

P1,0.
[
∥∂tũ(0)∥L2

x
+ ∥∂tϑ̃(0)∥L2

x

]
+

[
∥ũ(0)∥H1

x
+ ∥ϑ̃(0)∥H1

x

]
. ||ũ(0)||H2

x
+ ||ϑ̃(0)||H2

x
.

(3.6.8)

For 0 < η0 ≪ 1 and 0 < η1 <∞, we assume (induction hypothesis) that

∥ũ(0)∥2H2
x
+ ∥ϑ̃(0)∥2H2

x
<
c0
10
η0, for 0 < c0 ≪ 1,

∥S1Rs∥2L3
x
+[ε−1∥(I−P)Rs∥L2

x,v
]2+[ε−1∥S2Rs∥L2

x,v
]2+∥fs,1+εfs,2∥2L6

x
<η0, (3.6.9)

and

sup
0≤j≤ℓ

{
Ej(∞)+Dj(∞)+∥eλtS1R̃

j∥2L3
xL

2
t
+∥eλtS1R̃

j
t∥2L3

xL
2
t
+
[
ε3/2∥eλtw∂tR̃j∥L∞

t,x,v

]2}
<η0,

sup
0≤j≤ℓ

[
ε∥eλtwR̃j∥L∞

t,x,v

]2
< η1. (3.6.10)

From (??), (3.6.1), and (3.6.9), we obtain

∥weλt[f̃1 + εf̃2]∥2L6
xL

∞
t L∞

v
+ ∥weλt[∂tf̃1 + ε∂tf̃2]∥2L6

xL
∞
2 L∞

v
< c0η0.
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We also note that from (3.2.3), we have

∥S1R̃(0)∥L3
x
.

∥∥∥ ∫
R3

R̃(0, x, v)⟨v⟩2√µdv
∥∥∥2
L3
x

< η0.

The condition for Rs and fs,1 + εfs,2 can be achieved by choosing further smaller

∥ϑw∥H1+(∂Ω) + ∥Φ∥
H

3
2+(Ω) in Theorem 1.2.

Throughout Step 2 to Step 4 we prove that (3.6.10) holds for all ℓ. For this, it

suffices to show that (3.6.10) holds for j = ℓ+1. Before proving the uniform estimate,

we prove the crucial estimates involving operators Γ, LRs , Lf1+εf2 , L∂tf̃1+ε∂tf̃2
.

Step 1 We apply (3.6.10) repeatedly. Applying (3.5.3) with f = eλtR̃ℓ = g,

∥ν−
1
2 e−λtε1/2Γ(eλtR̃ℓ, eλtR̃ℓ)∥L2

t,x,v

. [ε3/2∥eλtwR̃ℓ∥L∞
t,x,v

]
{
[ε−1∥ν−

1
2 eλt(I−P)R̃ℓ∥L2

t,x,v
] + [ε−1∥eλtS2R̃

ℓ∥L2
t,x
]
}

+
{
∥eλtS1R̃

ℓ∥1/2
L3
xL

2
t
+∥eλtS1R̃

ℓ
t∥

1/2

L3
xL

2
t
+∥S1R̃

ℓ(0)∥1/2
L3
x

}
[ε∥eλtwR̃ℓ∥∞]1/2∥eλtS1R̃

ℓ∥L3
xL

2
t

. ε1/2(η1)
1/2(η0)

1/2 + (η1)
1/4(η0)

3/4. (3.6.11)

Again applying (3.5.3) with f = eλtR̃ℓ, g = eλtR̃ℓ
t ,

∥ν−
1
2 e−λtε1/2Γ(eλtR̃ℓ

t , e
λtR̃ℓ)∥L2

t,x,v
+ ∥ν−

1
2 e−λtε1/2Γ(eλtR̃ℓ, eλtR̃ℓ

t)∥L2
t,x,v

.[ε3/2∥weλtR̃ℓ
t∥L∞

t,x,v
]
{
[ε−1∥ν−

1
2 eλt(I−P)R̃ℓ∥L2

t,x,v
] + [ε−1∥eλtS2R̃

ℓ∥L2
t,x
]
}

+[ε3/2∥eλtwR̃ℓ∥L∞
t,x,v

]
{
[ε−1∥ν−

1
2 eλt(I−P)R̃ℓ

t∥L2
t,x,v

] + [ε−1∥eλtS2R̃
ℓ
t∥L2

t,x
]
}

+
{
∥eλtS1R̃

ℓ∥1/2
L3
xL

2
t
+∥eλtS1∂tR̃

ℓ∥1/2
L3
xL

2
t
+∥S1f(0)∥1/2L3

x

}
[ε∥weλtR̃ℓ∥L∞

t,x,v
]1/2∥eλtS1R̃

ℓ
t∥L3

xL
2
t

.η0 + ε1/2(η1)
1/2(η0)

1/2 + (η1)
1/4(η0)

3/4. (3.6.12)

Applying (3.5.4) with f = Rs and g = eλtR̃ℓ,

∥ν−
1
2Lε1/2Rs

eλtR̃ℓ∥L2
t,x,v

. ∥ν−
1
2 ε1/2Γ(Rs, e

λtR̃ℓ)∥L2
t,x,v

+ ∥ν−
1
2 ε1/2Γ(eλtR̃ℓ, Rs)∥L2

t,x,v

. ∥S1Rs∥1/2L3
x
[ε∥wRs∥L∞

x
]1/2∥eλtS1R̃

ℓ∥L3
xL

2
t

+[ε3/2∥wRs∥∞]
{
[ε−1∥eλt(I−P)R̃ℓ∥L2

t,x,v
] + ε−1∥eλtS2R̃

ℓ∥L2
t,x

}
+ε1/6∥eλtS1R̃

ℓ∥L3
xL

2
t

{
[ε−1∥(I−P)Rs∥L2

x,v
]1/3+[ε−1∥S2Rs∥L2

x,v
]1/3

}
[ε∥wRs∥∞]2/3

. (η1)
1/4(η0)

3/4 + ε1/2η0 + ε1/6η0. (3.6.13)

Again applying (3.5.4) with f = Rs and g = eλtR̃ℓ
t ,

∥ν−
1
2Lε1/2Rs

eλtR̃ℓ
t∥L2

t,x,v

. ∥ν−
1
2 ε1/2Γ(Rs, e

λtR̃ℓ
t)∥L2

t,x,v
+ ∥ν−

1
2 ε1/2Γ(eλtR̃ℓ

t , Rs)∥L2
t,x,v
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. ∥S1Rs∥1/2L3
x
[ε∥wRs∥L∞

x
]1/2∥eλtS1R̃

ℓ
t∥L3

xL
2
t

+[ε3/2∥wRs∥∞]
{
[ε−1∥eλt(I−P)R̃ℓ

t∥L2
t,x,v

] + ε−1∥eλtS2R̃
ℓ
t∥L2

t,x

}
+ε1/6∥eλtS1R̃

ℓ
t∥L3

xL
2
t

{
[ε−1∥(I−P)Rs∥L2

x,v
]1/3 + [ε−1∥S2Rs∥L2

x,v
]1/3

}
[ε∥wRs∥∞]2/3

. η0 + ε1/2η0 + ε1/6η0. (3.6.14)

Applying the first estimate of (3.5.5) with f = f1 + εf2 and g = eλtR̃ℓ

∥ν−
1
2Lf1+εf2e

λtR̃ℓ∥L2
t,x,v

. ∥ν−
1
2Γ±(f1 + εf2, e

λtR̃ℓ)∥L2
t,x,v

+ ∥ν−
1
2Γ±(e

λtR̃ℓ, f1 + εf2)∥L2
t,x,v

. {∥w[f̃1 + εf̃2]∥L6
xL

∞
t L∞

v
+ ∥w[fs,1 + εfs,2]∥L6

xL
∞
t L∞

v
}∥eλtS1R̃

ℓ∥L3
xL

2
t

+{ε∥w[f̃1 + εf̃2]∥L∞
t,x,v

+ ε∥w[fs,1 + εfs,2]∥L∞
t,x,v

}

×
{
ε−1∥ν

1
2 eλt(I−P)R̃ℓ∥L2

t,x,v
+ ε−1∥eλtS2R̃

ℓ∥L2
t,x

}
. c

1/2
0 η

1/2
0 + ε(P1 + εP2)η

1/2
0 . (3.6.15)

Again applying the first estimate of (3.5.5) with f = f1 + εf2 and g = eλtR̃ℓ
t ,

∥ν−
1
2Lf1+εf2e

λtR̃ℓ
t∥L2

t,x,v

. ∥f1 + εf2∥L6
xL

∞
t L∞

v
∥eλtS1R̃

ℓ
t∥L3

xL
2
t

+ε∥w[f1 + εf2]∥L∞
t,x,v

{
ε−1∥ν

1
2 eλt(I−P)R̃ℓ

t∥L2
t,x,v

+ ε−1∥eλtS2R̃
ℓ
t∥L2

t,x

}
. c

1/2
0 η

1/2
0 + ε(P1 + εP2)η

1/2
0 , (3.6.16)

or applying (3.5.5) and (3.5.1) with f = ∂tf1 + ε∂tf2 and g = eλtR̃ℓ,

∥ν−
1
2L∂tf1+ε∂tf2e

λtR̃ℓ∥L2
t,x,v

. ∥∂tf̃1 + ε∂tf̃2∥L6
xL

2
t,v
{∥eλtS1R̃

ℓ∥L3
xL

2
t
+ ∥eλtS1R̃

ℓ
t∥L3

xL
2
t
+ ∥eλtS1R̃

ℓ(0)∥L3
x
}

+ε∥w[∂tf̃1 + ε∂tf̃2]∥L∞
t,x,v

{
ε−1∥eλtν

1
2 (I−P)R̃ℓ∥L2

t,x,v
+ ε−1∥eλtS2R̃

ℓ∥L2
t,x

}
. c

1/2
0 (η0)

1/2 + ε(η0)
1/2. (3.6.17)

Again by the second estimate of (3.5.5) with g = Rs and f = eλtf̃1 + εeλtf̃2,

∥ν−
1
2LRs(e

λtf̃1 + εeλtf̃2)∥L2
t,x,v

. ∥ν−
1
2Γ±(Rs, e

λtf̃1 + εeλtf̃2)∥L2
t,x,v

+ ∥ν−
1
2Γ±(e

λtf̃1 + εeλtf̃2, Rs)∥L2
t,x,v

. ∥S1Rs∥L3
xL

∞
t
∥eλtf̃1 + εeλtf̃2∥L6

xL
2
t,v

+ε∥w[eλtf̃1 + εeλtf̃2]∥L∞
x,vL

2
t

{
ε−1∥ν

1
2 (I−P)Rs∥L2

x,vL
∞
t
+ ε−1∥S2Rs∥L2

xL
∞
t

}
. c

1/2
0 (η0)

1/2 + ε(η0)
1/2, (3.6.18)
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and similarly applying the second estimate of (3.5.5) with g = Rs and f = eλt∂tf̃1+

εeλt∂tf̃2

∥ν−
1
2LRs(e

λt∂tf̃1 + εeλt∂tf̃2)∥L2
t,x,v

. ∥S1Rs∥L3
xL

∞
t
∥eλt∂tf̃1 + εeλt∂tf̃2∥L6

xL
2
t,v

+ε∥w[eλt∂tf̃1 + εeλt∂tf̃2]∥L∞
x,vL

2
t

{
ε−1∥ν

1
2 (I−P)Rs∥L2

x,vL
∞
t
+ ε−1∥S2Rs∥L2

xL
∞
t

}
. c

1/2
0 (η0)

1/2 + ε(η0)
1/2. (3.6.19)

Step 2 From (3.3.4), (1.4.10) and (3.6.4),

∥eλtR̃ℓ+1(t)∥22 +
1

ε

∫ t

0
|eλsR̃ℓ+1|22 +

1

ε2

∫ t

0
∥eλs(I−P)R̃ℓ+1∥2ν +

∫ t

0
∥eλsPR̃ℓ+1∥22

.∥R̃ℓ+1(0)∥22 + ε−1

∫ t

0
|eλsεQR̃ℓ|22,− + ε−1

∫ t

0
|eλsε1/2r̃|22,−

+ε

∫ t

0
||ν−

1
2Γ(eλsR̃ℓ, eλsR̃ℓ)||22 +

∫ t

0
∥ν−

1
2L1e

λsR̃ℓ∥22 +
∫ t

0
∥ν−

1
2Lε1/2Rs

eλsR̃ℓ∥22

+

∫ t

0
∥ν−

1
2 eλsε1/2(I−P)Ã∥22+ε−2

∫ t

0
∥eλsε1/2PÃ∥22+

∫ t

0
∥ν−

1
2LRs(e

λsf̃1+eλsεf̃2)∥22

.
[
c
1/2
0 + ε+ ε2 + εη1 + (η1)

1/2(η0)
1/2 + (1 + ε1/3 + ε)η0

]
η0

+∥eλ′tϑ̃∥2L2
tL

2
x
+ ε2P0,1 + ε[P1P0,1]

2 + ε[P1P1,0]
2 <

η0
10
,

and

∥eλtR̃ℓ+1
t (t)∥2L2

x,v
+

1

ε

∫ t

0
|eλsR̃ℓ+1

t |22 +
1

ε2

∫ t

0
∥eλs(I−P)R̃ℓ+1

t ∥2ν +
∫ t

0
∥eλsPR̃ℓ+1

t ∥22

. ∥R̃ℓ+1
t (0)∥22 + ε−1

∫ t

0
|eλsεQR̃ℓ

t |22,− + ε−1

∫ t

0
|eλsε1/2r̃ℓt |22,−

+ε

∫ t

0

[
∥ν−

1
2Γ(eλsR̃ℓ

t , e
λsR̃ℓ)||22 + ||e−λsν−

1
2Γ(eλsR̃ℓ, eλsR̃ℓ

t)||22
]

+

∫ t

0
∥ν−

1
2L1e

λsR̃ℓ
t∥22 +

∫ t

0
∥ν−

1
2Lε1/2Rs

eλsR̃ℓ
t∥22 +

∫ t

0
∥L∂tf1+ε∂tf2e

λsR̃∥22

+

∫ t

0
∥ν−

1
2 eλsε1/2(I−P)∂tÃ∥22 + ε−2

∫ t

0
∥eλsε1/2P∂tÃ∥22

+

∫ t

0
∥ν−

1
2LRs(e

λs∂tf̃1 + eλsε∂tf̃2)∥22

.
[
c
1/2
0 + ε+ ε2 + εη1 + (η1)

1/2(η0)
1/2 + (1 + ε1/3 + ε)η0

]
η0

+∥eλ′t∂tϑ̃∥2L2
tL

2
x
+ ε2P1,1 + ε[P2P1,1]

2 + ε[P2P2,0]
2 <

η0
10
.

Step 3 We apply Proposition 3.1 to (3.6.6): Set
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f = eλtR̃ℓ+1,

g = −ε−1L[eλtR̃ℓ+1] + ελ[eλtR̃ℓ+1] + L1[e
λtR̃ℓ] + e−λtε1/2Γ(eλtR̃ℓ, eλtR̃ℓ)

+LRs(e
λtf̃1 + εeλtf̃2) + ε2

Φ · v
2

[eλtR̃ℓ+1] + ε1/2eλtÃ.

Then

∥S1e
λtR̃ℓ+1∥L3

xL
2
t

.∥eλtR̃ℓ+1∥L2
t,x,v

+∥eλtR̃ℓ+1∥L2
tL

2
γ
+
∥∥∥w−1

[
− ε−1L[eλtR̃ℓ+1]+ελ[eλtR̃ℓ+1]+L1[e

λtR̃ℓ]

+e−λtε1/2Γ(eλtR̃ℓ, eλtR̃ℓ)+LRs(e
λtf̃1+εe

λtf̃2)+ε
2Φ · v

2
[eλtR̃ℓ+1]+ε1/2eλtÃ

]∥∥∥
L2
t,x,v

.(1 + ελ+ ε2∥Φ∥∞)∥eλtR̃ℓ+1∥L2
t,x,v

+ ∥eλtR̃ℓ+1∥L2
tL

2
γ
+ ε−1∥eλt(I−P)R̃ℓ+1∥L2

t,x,v

+∥ν−1/2L1e
λtR̃ℓ∥L2

t,x,v
+ ε1/2∥ν−1/2e−λtΓ(eλtR̃ℓ, eλtR̃ℓ)∥L2

t,x,v

+∥ν−1/2LRs(e
λtf̃1 + eλtεf̃2)∥L2

t,x,v
+ ε1/2∥eλtÃ∥L2

t,x,v
.

Now we use Step 1 to bound

∥S1e
λtR̃ℓ+1∥2L3

xL
2
t
. η0/10.

Similarly, we apply Proposition 3.1 to (3.6.7): Set

f = eλtR̃ℓ+1
t ,

g = −ε−2L[eλtR̃ℓ+1
t ] + λ[eλtR̃ℓ+1

t ] + ε−1L1[e
λtR̃ℓ

t ] + ε−1L∂tf̃1+ε∂tf̃2
[eλtR̃ℓ]

+e−λtε−1/2[Γ(eλtR̃ℓ
t , e

λtR̃ℓ) + Γ(eλtR̃ℓ, eλtR̃ℓ
t)]

+ε−1LRs(e
λt∂tf̃1 + eλtε∂tf̃2) + ε

Φ · v
2

[eλtR̃ℓ+1
t ] + ε−1/2eλt∂tÃ.

Then

∥S1e
λtR̃ℓ+1

t ∥L3
xL

2
t

. ∥eλtR̃ℓ+1
t ∥L2

t,x,v
+ ∥eλtR̃ℓ+1∥L2

tL
2
γ
+ ε−1∥eλt(I−P)R̃ℓ+1

t ∥L2
t,x,v

+∥ν−1/2L1e
λtR̃ℓ

t∥L2
t,x,v

+ ∥ν−1/2L∂tf̃1+ε∂tf̃2
eλtR̃ℓ∥L2

t,x,v

+ε1/2∥ν−1/2Γ(eλtR̃ℓ
t , e

λtR̃ℓ)∥L2
t,x,v

+ ε1/2∥ν−1/2Γ(eλtR̃ℓ, eλtR̃ℓ
t)∥L2

t,x,v

+∥ν−1/2LRs(e
λt∂tf̃1 + εeλt∂tf̃2)∥L2

t,x,v
+ ε1/2∥eλt∂tÃ∥L2

t,x,v
.

Again by Step 1,
∥S1e

λtR̃ℓ+1
t ∥2L3

xL
2
t
< η0/10.

Step 4 We apply Proposition 3.2 to (3.6.6): Set f = eλtR̃ℓ+1. Note

ε−1LeλtR̃ℓ+1 = ε−1ν(v)eλtR̃ℓ+1 − ε−1

∫
R3

k(v, u)eλtR̃ℓ+1(u)du

with ν(v) ∼ ⟨v⟩ and |k(v, u)| . kβ(v, u). Moreover,
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ε−1ν(v)− ελ− ε
Φ · v
2

& ε−1C⟨v⟩ − ελ− ε∥Φ∥∞|v| & ε−1C0⟨v⟩.

Therefore (3.4.1), the condition of Proposition 3.4, is satisfied with the following

setting

g = L1[e
λtR̃ℓ] + e−λtε1/2Γ(eλtR̃ℓ, eλtR̃ℓ) + LRs(e

λtf̃1 + ε2eλtf̃2) + ε1/2eλtÃ,

r = εQR̃ℓ + eλtε1/2r̃, f0 = R̃0.

By Proposition 3.2, from (3.4.2),

ε∥eλtwR̃ℓ+1∥L∞
t,x,v

.ε∥wR̃ℓ+1(0)∥∞ + ε max
0≤j≤ℓ

sup
0≤t≤∞

ε∥eλtwR̃j∥∞ + ε sup
0≤t≤∞

ε1/2∥eλtwr̃∥∞

+ε2 sup
0≤t≤∞

∥∥∥wν−1
[
L1[e

λtR̃ℓ] + ε1/2Γ(eλtR̃ℓ, eλtR̃ℓ) + LRs(e
λtf̃1 + εeλtf̃2)

+ε
Φ · v
2

[eλtR̃ℓ+1] + ε1/2eλtÃ
]∥∥∥

∞

+∥eλsS1R̃
ℓ+1(s)∥L∞

t L3
x
+

1

ε1/2
∥eλsS2R̃

ℓ+1(s)∥L∞
t L2

x
+

1

ε1/2
∥eλs(I−P)R̃ℓ+1(s)∥L∞

t L2
x,v
.

Using |wΓ±(w
−1, w−1)| . ⟨v⟩ . ν,

ε2 sup
0≤t≤∞

∥∥wν−1e−λtε1/2Γ(eλtR̃ℓ, eλtR̃ℓ)
∥∥
∞

. ε1/2[ sup
0≤t≤∞

∥εweλtR̃ℓ∥∞]2|ν−1wΓ(w−1, w−1)| . ε1/2[ sup
0≤t≤∞

∥εweλtR̃ℓ∥∞]2,

|ε2wν−1L1e
λtR̃ℓ| . ε1/2|wν−1Γ±(ε

1/2f1 + ε3/2f2 + εRs, e
λtεR̃ℓ)|

. ε1/2∥w[ε1/2f1+ε3/2f2+εRs]∥∞∥weλtεR̃ℓ∥∞|ν−1wΓ±(w
−1, w−1)|

. ε∥w[f1 + εf2]∥∞∥weλtεR̃ℓ∥∞ + ε1/2∥wεRs∥∞∥weλtεR̃ℓ∥∞

. εP1∥weλtεR̃ℓ∥∞ + ε1/2∥wεRs∥∞∥weλtεR̃ℓ∥∞,

|ε2wν−1LRs(e
λtf̃1 + εeλtf̃2)| . ε|wν−1Γ±(εRs, e

λtf̃1 + εeλtf̃2)|
. ε∥wεRs∥∞∥weλt[f̃1 + εf̃2]∥∞|ν−1wΓ±(w

−1, w−1)|
. εP1∥wεRs∥∞.

Altogether,[
ε∥eλtwR̃ℓ+1∥L∞

t,x,v

]2 . [
c
1/2
0 + ε+ εη0 + ε2(P1)

2
]
η0 + ε(P1)

2 <
η0
10
.

Now we consider ∂tR̃
ℓ+1. Apply Proposition 3.2 to (3.6.7): Set f = eλtR̃ℓ+1

t .

Note

ε−1LeλtR̃ℓ+1
t = ε−1ν(v)eλtR̃ℓ+1

t − ε−1

∫
R3

k(v, u)eλtR̃ℓ+1
t (u)du

with ν(v) ∼ ⟨v⟩ and |k(v, u)| . kβ(v, u). For Proposition 3.2 we set
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g = L1[e
λtR̃ℓ

t ]+L∂tf̃1+ε∂tf̃2
[eλtR̃ℓ]+e−λtε1/2Γ(eλtR̃ℓ

t , e
λtR̃ℓ)+e−λtε1/2Γ(eλtR̃ℓ, eλtR̃ℓ

t)

+LRs(e
λt∂tf̃1 + εeλt∂tf̃2) + ε1/2eλt∂tÃ,

r = εeλt∂tQR̃ℓ
t + ε1/2eλtr̃, f0 = ∂tR̃0.

From (3.4.3),

ε∥eλtwR̃ℓ+1
t ∥L∞

t,x,v

.ε∥wR̃ℓ+1
t (0)∥∞+ε max

0≤j≤ℓ
∥εeλtwR̃ℓ

t∥L∞
t,x,v

+ε∥ε1/2weλtr̃t∥L∞
t,x,v

+
1

ε1/2
∥eλsR̃ℓ+1

t (s)∥L∞
t L2

x,v

+ε2 sup
0≤t≤∞

∥∥wν−1
[
L1[e

λtR̃ℓ
t ] + e−λtε1/2Γ(eλtR̃ℓ

t , e
λtR̃ℓ) + e−λtε1/2Γ(eλtR̃ℓ, eλtR̃ℓ

t)

+L∂tf̃1+ε∂tf̃2
eλtR̃ℓ + LRs(e

λt∂tf̃1 + εeλt∂tf̃2) + ε1/2eλt∂tÃ
]∥∥

∞.

From |wΓ±(w
−1, w−1)| . ⟨v⟩ . ν,

ε2 sup
0≤t≤∞

∥∥wν−1e−λtε1/2Γ(eλtR̃ℓ
t , e

λtR̃ℓ)
∥∥
∞+ε

2 sup
0≤t≤∞

∥∥wν−1e−λtε1/2Γ(eλtR̃ℓ, eλtR̃ℓ
t)
∥∥
∞

.ε1/2[ sup
0≤t≤∞

∥εweλtR̃ℓ∥∞][ sup
0≤t≤∞

∥εweλtR̃ℓ
t∥∞]|ν−1wΓ(w−1, w−1)|

.ε1/2[ sup
0≤t≤∞

∥εweλtR̃ℓ∥∞][ sup
0≤t≤∞

∥εweλtR̃ℓ
t∥∞],

|ε2wν−1L∂tf̃1+ε∂tf̃2
eλtR̃ℓ| . ε∥w[∂tf̃1 + ε∂tf̃2]∥∞∥εweλtR̃ℓ∥∞|ν−1wΓ±(w

−1, w−1)|

. εP2∥εweλtR̃ℓ∥∞,
|ε2wν−1L1e

λtR̃ℓ
t | . ε∥w[f1 + εf2]∥∞∥weλtεR̃ℓ

t∥∞ + ε1/2∥wεRs∥∞∥weλtεR̃ℓ
t∥∞

. εP1∥weλtεR̃ℓ
t∥∞ + ε1/2∥wεRs∥∞∥weλtεR̃ℓ

t∥∞,
|ε2wν−1LRs(e

λt∂tf̃1+εe
λt∂tf̃2)|.ε∥wεRs∥∞∥weλt[∂tf̃1+ε∂tf̃2]∥∞|ν−1wΓ±(w

−1, w−1)|
.εP2∥wεRs∥∞.

Altogether

ε∥eλtwR̃ℓ+1
t ∥L∞

t,x,v

.ε∥wR̃ℓ+1
t (0)∥∞+ε1/2

{
ε1/2+ε1/2P1+∥εwRs∥L∞

x,v
+ε∥eλtwR̃ℓ∥∞

}
× ε∥eλtwR̃ℓ

t∥L∞
t,x,v

+ε{ε∥wRs∥L∞
x,v

+ ε∥weλtR̃ℓ∥∞ + ε1/2} × P2 +
1

ε1/2
sup

0≤t≤∞
∥eλsR̃ℓ+1

t ∥L2
x,v
,

and therefore [
ε∥eλtwR̃ℓ+1

t ∥L∞
t,x,v

]2
<
η0
10
.

Step 5 We repeat Step 1∼Step 4 for R̃ℓ+1 − R̃ℓ to show that R̃ℓ is a Cauchy

sequence in L∞∩L2 for fixed ε. Now we pass a limit ℓ→ ∞ in L∞∩L2 to conclude

the existence. The proof of uniqueness is standard (See [20] for details). The proof

is completed.
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3.7 Positivity of Solutions
In this section, we prove the non-negativity of Fs in the main theorem. The proof

is based on the asymptotical stability of Fs (Proposition 3.1) and the non-negativity

of unsteady solution.

Proof of the non-negativity of F (t, x, v) in Theorem 1.2 and Fs(x, v)

in Theorem 1.1 We use the positivity-preserving sequence as in [20, 32]. Set

F 0(t, x, v) = F0(x, v) ≥ 0 and for ℓ ≥ 0

∂tF
ℓ+1 +

1

ε
v · ∇xF

ℓ+1 + εΦ · ∇vF
ℓ+1 +

1

ε2
ν(F ℓ)F ℓ+1 =

1

ε2
Q+(F

ℓ, F ℓ),

F ℓ+1(x, v)|γ− =Mw

∫
n(x)·u>0

F ℓ(x, u){n(x) · u}du, F ℓ+1(t, x, v)|t=0 = F0(x, v).

Step 1 Assume F ℓ(t, x, v)≥0 for all t≥0. We claim F ℓ+1(t, x, v)≥0 for all t≥0.

Along the trajectory, for t̃1(t, x, v) ≤ s ≤ t

d

ds

{
F ℓ+1(s, Ycl(s; t, x, v),Wcl(s; t, x, v))

× exp
(
−
∫ t

s

1

ε2
ν(F ℓ)(τ, Ycl(τ ; t, x, v),Wcl(τ ; t, x, v))dτ

)}
=

1

ε2
Q+(F

ℓ, F ℓ)(s, Ycl(s; t, x, v),Wcl(s; t, x, v))

× exp
(
−
∫ t

s

1

ε2
ν(F ℓ)(τ, Ycl(τ ; t, x, v),Wcl(τ ; t, x, v))dτ

)
.

Then

F ℓ+1(t, x, v) = 1t̃1<0 exp
(
−
∫ t

0

1

ε2
ν(F ℓ)(τ, Ycl(τ ; t, x, v),Wcl(τ ; t, x, v))dτ

)
×F0(Ycl(0; t, x, v),Wcl(0; t, x, v))

+1t̃1<0

∫ t

0
exp

(
−
∫ t

s

1

ε2
ν(F ℓ)(τ, Ycl(τ ; t, x, v),Wcl(τ ; t, x, v))dτ

)
× 1

ε2
Q+(F

ℓ, F ℓ)(s, Ycl(s; t, x, v),Wcl(s; t, x, v))ds

+1t̃1>0

∫ t

t̃1

exp
(
−
∫ t

s

1

ε2
ν(F ℓ)(τ, Ycl(τ ; t, x, v),Wcl(τ ; t, x, v))dτ

)
× 1

ε2
Q+(F

ℓ, F ℓ)(s, Ycl(s; t, x, v),Wcl(s; t, x, v))ds

+1t̃1>0 exp
(
−
∫ t

t̃1

1

ε2
ν(F ℓ)(τ, Ycl(τ ; t, x, v),Wcl(τ ; t, x, v))dτ

)
×Mw(x̃1, ṽ1)

∫
n(x̃1)·u>0

F ℓ(t̃1, x̃1, u){n(x̃1) · u}du.

From Q+(F
ℓ, F ℓ)(s, Ycl(s; t, x, v),Wcl(s; t, x, v)) ≥ 0 and ν(F ℓ)(τ, Ycl(τ ; t, x, v),
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W(τ ; t, x, v)) ≥ 0, we prove our claim.

Step 2 We set F ℓ = µ+ ε{f1 + εf2 + ε1/2Rℓ}√µ where f1 and f2 are given by

(1.2.5), (1.2.8) and let F 0(t, x, v) := F0(x, v). We claim that, there exist 0 < T =

T (∥εwRℓ(t0)∥∞) ≪ 1 and C1 = C1(T ) ≫ 1 for any t0 ≥ 0 such that

sup
t0≤t≤t0+ε2T

∥εwRℓ(t)∥∞ ≤ C1

{
max

l
∥εwRl(t0)∥∞ +O(ε5/2)

}
. (3.7.1)

It suffices to show (3.7.1) for t0 = 0. Clearly (3.7.1) holds for ℓ = 0. Now we assume

(3.7.1) for 0 ≤ l ≤ ℓ.

Clearly, Rℓ solves

∂tR
ℓ+1 + ε−1v · ∇xR

ℓ+1 + εΦ · ∇vR
ℓ+1 + ε

Φ · v
2

Rℓ+1 + ε−2νRℓ+1 − ε−2KRℓ

= ε−1ν([f1 + εf2]
√
µ)Rℓ+1 + ε−1ν(Rℓ√µ)[f1 + εf2]

√
µ

−ε−1[Γ+(f1 + εf2, R
ℓ) + Γ+(R

ℓ, f1 + εf2)]

+ε−1/2Γ+(R
ℓ, Rℓ)− ε−1/2ν(Rℓ√µ)Rℓ+1 + ε−1/2A(f1, f2),

Rℓ+1|t=0 = R0. (3.7.2)

The boundary condition is given by

Rℓ+1|γ− = PγR
ℓ + εQRℓ + ε1/2r. (3.7.3)

Define hℓ(t, x, v) := w(v)−1Rℓ(t, x, v). Note that

ν̌(v) :=ν(v)− ε3
∥Φ∥∞|v|

2
−ε∥f1+εf2∥L∞

t,x,v
−ε1/2ν(√µ)∥εwRℓ∥L∞

t,x,v
≥ν(v)

2
& ⟨v⟩.

We define ǩ such that where∫
R3

ǩ(v, u)
w(v)

w(u)
Rℓ(u)du

= KRℓ + εν(Rℓ√µ)[f1 + εf2]
√
µ− ε[Γ+(f1 + εf2, R

ℓ) + Γ+(R
ℓ, f1 + εf2)].

Then ǩ(v, u) . kβ(v, u).

Then, for t̃1 ≤ s ≤ t

d

ds

[
|εhℓ+1(s, Ycl(s; t, x, v),Wcl(s; t, x, v))| exp

(
−
∫ t

s
ε−2ν̌(Wcl(τ ; t, x, v))dτ

)]
.
{
ε−2

∫
R3

kβ(Wcl(s; t, x, v), u)|εhℓ(s, Ycl(s; t, x, v), u)|du

+ε−3/2⟨Wcl(s; t, x, v)⟩∥εhℓ(s)∥2∞ + ε1/2|A|
}
exp

(
−
∫ t

s
ε−2ν̌(Wcl(τ ; t, x, v))dτ

)
.
{
1+ε1/2⟨Wcl(s; t, x, v)⟩∥εhℓ(s)∥∞

}
∥εhℓ(s)∥∞ε−2 exp

(
−
∫ t

s
ε−2ν̌(Wcl(τ ; t, x, v))dτ

)
+∥A∥∞ε5/2ε−2 exp

(
−
∫ t

s
ε−2ν̌(Wcl(τ ; t, x, v))dτ

)
,
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where we used the fact
∫
R3 kβ(Wcl(s; t, x, v), u)du.1 and wΓ( εh

ℓ

w , εh
ℓ

w )(v).⟨v⟩∥εhℓ∥2∞.

Then, for t ∈ [0, ε2T ],

|εhℓ+1(t, x, v)|

. 1{t̃1<0}e
−CT ||εhℓ+1(0)∥∞+

∫ t

max {0,t̃1(x,v)}
ds

1

ε2
exp

(
−
∫ t

s

ν̌(Vcl(t− t−τ
ε ; t, x, v))

ε2
dτ

)
×
{(

1 + ε1/2
⟨
Vcl

(
t− t− s

ε
; t, x, v

)⟩)
∥εhℓ(s)∥∞)∥εhℓ(s)∥∞ + ε5/2∥A∥∞

}
+1{t̃1≥0} exp

(
−
∫ t

t̃1

ν̃(Vcl(t− t−τ
ε ; t, x, v))

ε2
dτ

)
O(ε1/2)µ(ṽ1)

1
2
−

+1{t̃1≥0}
1

w̃(v)
exp

(
−
∫ t

t̃1

ν̃(t− t−τ
ε ; t, x, v)

ε2
dτ

)∫
k−1∏
j=1

Vj

H,

where H is given by
k−1∑
l=1

1t̃l+1≤0<t̃l
∥εhℓ−l(0)∥∞dΣl(0)+

k−1∑
l=1

∫ t̃l

max{0,t̃l+1}
1t̃l>0

{(
1+ε1/2

⟨
Vcl

(
t− t−τ

ε
; t, x, v

)⟩)
×∥εhℓ−l(τ)∥∞∥εhℓ−l(τ)∥∞ + ε5/2∥A∥∞

}
dΣl(τ)dτ

+
k−1∑
l=1

1t̃l>0O(ε1/2)µ(vl)
1
2
−dΣl(t̃l+1) + 1t̃k>0∥εh

ℓ+1−k(t̃k)∥∞dΣk−1(t̃k),

and dΣk−1(t̃k) is evaluated at s = t̃k of

dΣl(s) :=

{ k−1∏
j=l+1

dσj

}{
exp

(
−
∫ t̃l

s

ν̌(Vcl(t̃l − t̃l−τ
ε ; t̃l, xl, vl))

ε2
dτ

)
w̃(vl)dσl

}
l−1∏
j=1

{
exp

(
−
∫ t̃j

t̃j+1

ν̃(Vcl(t̃j −
t̃j−τ
ε ; t̃j , xj , vj))

ε2
dτ

)
dσj

}
.

With the choice of k = C1T
5/4
0 (clearly 0 ≤ t ≤ ε2T ≪ εT0), for t ∈ [0, ε2T ],

|εhℓ+1(t, x, v)|

. C1T
5/4
0

{
e−CT max

0≤l≤ℓ+1
∥εhl(0)∥∞+T max

0≤l≤ℓ+1
sup
0≤s≤t

∥εhl(s)∥∞+ε5/2∥A∥∞+O(ε5/2)

+

∫ t

0

ν̌(Vcl(t− t−s
ε ; t, x, v))

ε2
e−

∫ t
s

ν̌(Vcl(t−
t−τ
ε ;t,x,v))

ε2
dτds︸ ︷︷ ︸

.1

×ε1/2 max
0≤l≤ℓ

sup
0≤s≤t

∥εhl(s)∥2∞
}

+T
5/4
0

{1

2

}C2T
5/4
0

max
0≤l≤ℓ

sup
0≤s≤t

∥εhl(s)∥∞.

For T0 ≫ 1, 0 < T ≪ 1, and 0 < ε≪ 1, using (3.7.1) for all 0 ≤ l ≤ ℓ
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sup
0≤t≤ε2T

∥εhℓ+1(t)∥∞

≤CT0

{
max

l
∥εhl(0)∥∞ + ε5/2∥A∥∞ +O(ε5/2)

}
+[T+O(ε1/2)+o(1)]CT0C1

{
max

l
∥εhl(0)∥∞+ε5/2∥A∥∞+O(ε5/2)

}
≤C1

{
max

l
∥εhl(0)∥∞ + ε5/2∥A∥∞ +O(ε5/2)

}
,

for C1 ≥ 10CT0 .

Step 3 From Step 2, wRℓ → wR weak-∗ in L∞([0, ε2T ] × Ω × R3) up to

subsequence. Clearly R satisfies the bound (3.7.1). On the other hand, follow-

ing Step 2, wRℓ is a Cauchy sequence in L∞([0, ε2T ] × Ω × R3). It is standard

to show that R solves (3.7.2) and (3.7.3) with Rℓ+1 = R = Rℓ. Therefore F =

µ + ε{f1 + εf2 + ε1/2R}√µ solves the Boltzmann equation with diffuse BC. Since

the unique solution R has a uniform-in-time bound from Theorem 1.2, we can

continue the Step 2 for [ε2T, 2ε2T ], [2ε2T, 3ε2T ], · · · , to conclude wRℓ → wR in

L∞(R+ × Ω× R3). Therefore F ℓ → F ≥ 0 a.e.

Step 4 Let, for sufficiently large m,

F0(x, v) = µ+
√
µ[ε(f1,s + f̃1(0)) + ε2(f2,s + f̃2(0)] +

√
µε3/2Rs + µ3/41|v|>m| log ε|.

Clearly, by the L∞ estimate of Rs we have F (0) ≥ 0. Moreover, F0 satisfies the

assumptions of Theorem 1.2. By Theorem 1.2, we have ∥F (t)−Fs∥L2 . e−λt. Then,

as t→ ∞, for any non negative test function ψ(x, v),∫∫
Ω×R3

Fs(x, v)ψ(x, v)dxdv

=

∫∫
Ω×R3

F (t, x, v)ψ(x, v)dxdv +O(1)

∫∫
Ω×R3

|Fs(x, v)− F (t, x, v)|ψ(x, v)dxdv

≥ 0−O(1)∥F (t)− Fs∥L2(Ω×R3) ≥ 0.

This proves Fs(x, v) ≥ 0 a.e. The proof is completed.

Appendix A Basic Estimates of the Fluid Equations

In this Appendix, to simplify the formulas, we set v = 1 and κ = 1, since they

do not play any role in the estimates.

Lemma A.1 Let (us, ϑs) be the H2−solution to the steady INSF (1.4.1). As-

sume (1.4.4). Then

∥us∥
W

2, 32+
x

+ ∥ϑs∥
H

3
2+
x

+ ∥us∥L6
x
+ ∥ϑs∥L6

x
+ |∇xus|L2(∂Ω) + |∇xϑs|L2(∂Ω)

. ∥Φ∥
L

3
2+
x

+ |ϑw|H1+(∂Ω).

If we further assume Φ ∈ Hr
x and θw ∈ Hr+ 3

2 (∂Ω) then us, ϑs ∈ Hr+2
x .
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Lemma A.2 Let (u, ϑ, p) be Hk solution to (1.2.7). Set u = ũ+us, ϑ = ϑ̃+ϑs,

p = p̃+ ps, where (ũ, ϑ̃, p̃) solves (1.4.8). Assume

∥us∥H1
x
+ ∥ũt(0)∥L2

x
≪ 1, ∥ϑs∥H1

x
<∞.

Then, for any k ≥ 0 and for 0 < λ≪ 1,∑
0≤i≤k

[
∥eλt∂itũ(t)∥2L2

x
+ ∥eλt∂itϑ̃(t)∥2L2

x
+

∫ t

0
∥eλt∂it ũ∥2H1

x
+

∫ t

0
∥eλt∂itϑ̃∥2H1

x

]

. P

( [ k
2
]∑

j=0

[
∥∂jt ũ(0)∥H1

x
+ ∥∂jt ϑ̃(0)∥H1

x

]
+

k∑
j=[ k

2
]+1

[
∥∂jt ũ(0)∥L2

x
+ ∥∂jt ϑ̃(0)∥L2

x

])
, (A.1)

whenever the RHS is finite for some polynomial P .

Moreover, for some 0 < λ≪ 1 and polynomial P0 with P0(s) = O(s),

∥∂k−(1+r)
t ũ(t)∥H2r+2

x
+ ∥∇x∂

k−(1+r)
t p̃(t)∥H2r

x
. P0

( k∑
j=0

∥∂jt ũ(t)∥L2
x

)
. e−λt,

∥∂k−(1+r)
t ϑ̃(t)∥H2r+2

x
. P0

( k∑
j=0

∥∂jt ũ(t)∥L2
x
+

k∑
j=0

∥∂jt ϑ̃(t)∥L2
x

)
. e−λt,

whenever the RHS of (A.1) is finite and ϑs, us ∈ H2r+1
x .

Furthermore,

∥eλtũ∥L6
xL

∞
t
+ ∥eλtϑ̃∥L6

xL
∞
t

. P (∥ũ(0)∥H1
x
+ ∥ϑ̃(0)∥H1

x
+ ∥ũt(0)∥L2

x
+ ∥ϑ̃t(0)∥L2

x
),

∥eλtũt∥L6
xL

∞
t
+ ∥eλtϑ̃t∥L6

xL
∞
t

. P
(
∥∂ttũ(0)∥L2

x
+ ∥∂tũ(0)∥H1

x
+ ∥ũ(0)∥H1

x

+∥∂ttϑ̃(0)∥L2
x
+ ∥ϑ̃t(0)∥H1

x
+ ∥ϑ̃(0)∥H1

x

)
.
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