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ABSTRACT

Astrometric precision and knowledge of the point spread function are key ingredients for a wide range of astrophysical studies

including time-delay cosmography in which strongly lensed quasar systems are used to determine the Hubble constant and

other cosmological parameters. Astrometric uncertainty on the positions of the multiply-imaged point sources contributes to

the overall uncertainty in inferred distances and therefore the Hubble constant. Similarly, knowledge of the wings of the points

spread function (PSF) is necessary to disentangle light from the background sources and the foreground deflector. We analyze

adaptive optics (AO) images of the strong lens system J 0659+1629 obtained with the W. M. Keck Observatory using the laser

guide star AO system. We show that by using a reconstructed point spread function we can i) obtain astrometric precision of

< 1 mas, which is more than sufficient for time-delay cosmography; and ii) subtract all point-like images resulting in residuals

consistent with the noise level. The method we have developed is not limited to strong lensing, and is generally applicable to a

wide range of scientific cases that have multiple point sources nearby.

Key words: keyword1 – keyword2 – keyword3

1 INTRODUCTION

Strong gravitational lensing time delays provide a one-step mea-

surement of cosmological distances in the Universe (Refsdal 1964).

Hence they can be used to determine the Hubble constant indepen-

dent of the traditional distance ladder method (Riess et al. 2019). In

a time-delay lens, the lensed background is composed of a time vari-

able point-like source, usually an active galactic nucleus (AGN) or a

supernova, and its host galaxy. The time delays between the images

of the lensed source, induced by the foreground lens, are given by

Δ�푡 = 1
�푐�퐷Δ�푡Δ�휏. Here, the time-delay distance, �퐷Δ�푡 , depends on cos-

mological parameters, in particular the Hubble constant, �퐻0 (e.g.,

Suyu et al. 2010), whereas Δ�휏 represents the gravitational potential

difference between image positions, which depends on the geome-

try of the lens system. The gravitational potential of the foreground

lens galaxy, �휏, can be constrained by the spatial extent of the lensed

background galaxy (usually known as “arcs”) (e.g., Kochanek et al.

2001; Suyu et al. 2009), combined with stellar kinematics of the lens

(e.g., Treu & Koopmans 2002; Koopmans et al. 2003; Suyu et al.

2010, 2014; Yıldırım et al. 2020) and studies of the lens environment

that are performed through numerical ray-tracing simulations (e.g.,

Hilbert et al. 2007, 2009; Suyu et al. 2010; Fassnacht et al. 2011;

★ E-mail: gcfchen@astro.ucla.edu

Greene et al. 2013; Collett et al. 2013; Rusu et al. 2017, 2020) or

weak lensing (Tihhonova et al. 2018, 2020).

Therefore, by measuring the time delays between the multiple im-

ages and modeling the lens system as well as the relevant line-of-sight

mass distribution, we can infer �퐷Δ�푡 . Furthermore, the time delays –

in combination with stellar velocity dispersion measurements of the

lens galaxy – allow us to infer the angular diameter distance (�퐷d)

to the lens galaxy (Paraficz & Hjorth 2009; Jee et al. 2015), thereby

providing additional cosmological information.

From a technical point of view, a key ingredient to successful

time-delay cosmography is knowledge of the point spread function

(PSF) in the high-resolution imaging that is used to constrain the

mass model. The PSF is needed to derive precise astrometry of the

multiply-imaged variable point source (Birrer & Treu 2019) and to

disentangle in the image the light from the quasar’s host galaxy light

and the contribution from the foreground deflector.

Most of the work on time delay cosmography in the past two

decades has been done using Hubble Space Telescope data, exploit-

ing its sharp and stable point spread function. However, adaptive

optics (AO) technology, a technique to improve the performance

of optical/near infrared systems by reducing the effect of incom-

ing wavefront distortions (e.g., Rousset et al. 1990; Beckers 1993;

Watson 1997; Wizinowich et al. 2006), has improved substantially

over recent years, making it possible to obtain high-resolution im-
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ages from ground based telescopes that can be used for time-delay

cosmography (Chen et al. 2016, 2020).

The key problem is that the AO PSF varies temporally and spa-

tially, therefore the PSF needs to be reconstructed, either from the

data itself or from telemetry data acquired during the observations.

Chen et al. (2016) solved this problem by reconstructing the PSF

from using only the data. They exploited the information provided

by the multiple lensed quasar images, showing that one can reach

mass-model precision comparable, or superior, to the HST PSF es-

pecially for intrinsically red sources where the AO system performs

best. (Chen et al. 2019).

In this paper, we continue our investigation of the precision and

accuracy of time delay cosmography with adaptive optics, by ex-

amining the astrometric error budget of multiply-imaged quasars.

In addition to the PSF reconstructed from the data, as proposed by

Chen et al. (2016), hereafter PSF-CS, we also consider a PSF recon-

structed from telemetry data, PSF-R. We show that the two methods

are highly complementary, with PSF-CS providing the best perfor-

mance near the core of the PSF, while PSF-R provides the most

information in the wings. By combining these two approaches we

show that sub-mas astrometric precision can be achieved and that

PSF-CS+R can be subtracted from the data, leaving residuals con-

sistent with the level of noise.

The paper is organized as follows: In Section 2 we briefly review

the time delay formalism to set the notation. In Section 3 we extend

the formalism introduced by Birrer & Treu (2019) to compute the

contribution of the astrometric error budget to the main deflector’s

distance, �퐷d. In Section 4 we present the AO data, while in Section 5

we compare the performance of the different PSF reconstruction

methods. In Section 6 we compare the performance of AO and HST

astrometry with the the requirements to derive �퐻0, followed by a

brief summary that concludes the paper in Section 7.

2 TIME-DELAY COSMOGRAPHY FORMALISM

When a light ray passes near a massive object, its trajectory is de-

flected by the gravitational potential of the so-called deflector, result-

ing in a time delay compared to the travel time absent the deflector.

The excess time delay is given by

�푡 (�휃, �훽) = (1 − �휅ext)�휆int
�퐷Δ�푡

�푐

[

1

2
(�휃 − �훽)2 − �휓(�휃)

]

, (1)

where �휃, �훽 are the image position and the source position, re-

spectively, while �휓(�휃) represents the gravitational potential of

the lens at point �휃. The two parameters, �휅ext and �휆int, are re-

lated to the mass-sheet transformation (MST) (Falco et al. 1985;

Gorenstein et al. 1988; Fassnacht et al. 2002; Suyu et al. 2013;

Greene et al. 2013; Collett et al. 2013; Kochanek 2020, 2021;

Birrer et al. 2020; Chen et al. 2020). Specifically, �휅ext represents the

external MST, which is associated with mass along the line of sight

and �휆int represents the internal MST, associated with transformation

of the deflector’s mass profile (Chen et al. 2020). The angular term

in brackets in Equation (1) is called the Fermat potential, �휙(�휃, �훽).

The relative time delay measured between image A and image B

can be expressed as

Δ�푡AB =
�퐷Δt

�푐
Δ�휙AB. (2)

The time-delay distance is defined as

�퐷Δt ≡ (1 + zd)
�퐷d�퐷s

�퐷ds
∝ �퐻−1

0 , (3)

�퐷d, �퐷s and �퐷ds are the angular diameter distances to the lens,

to the source, and between the lens and the source, respectively,

and �푧d represents the main deflector’s redshift. Following Fermat’s

principle, the gradient of the excess time delay given by equation

(1) vanishes at the position of the lensed images, which yields the

so-called lens equation

�훽 = �휃 − ∇�휓(�휃), (4)

that governs the deflection of light rays in the thin lens approximation.

Under the MST, the dependence of projected stellar velocity dis-

persion on the mass model, �휎
p
�푣 , can be written as (Chen et al. 2020)

(�휎
p
�푣)

2
= (1 − �휅ext)�휆int

(

�퐷s

�퐷ds

)

�푐2�퐽 (�휂lens, �휂light, �훽ani), (5)

where �퐽 contains the angular-dependent information in the lens mod-

eling and the stellar orbital anisotropy distribution, �훽ani (see details

in Jee et al. 2015). We can replace the MST-related terms (�휆int and

�휅ext) with Equation (5) and the predicted time delays will directly

relate to the velocity dispersion via

Δ�푡AB = (1 + �푧d)
�퐷d

�푐

Δ�휙AB (�휃, �훽)

�퐽 (�휂lens, �휂light, �훽ani)

(�휎
p
�푣)

2

�푐2
. (6)

Once the time delay and velocity dispersion are measured, the value

of �퐷d can be determined. When further including information about

the environment (which provides an estimate for �휅ext) and �퐷s/�퐷ds

information which comes from additional data such as spatially re-

solved kinematics, external datasets, or the assumption of a cosmo-

logical model, one can determine �휆int (Chen et al. 2020; Birrer et al.

2020, Yildirim et al. in prep.).

3 ASTROMETRIC ERROR PROPAGATION OF �퐻0

The astrometric uncertainty on the lensed quasar positions can affect

the estimation of the relative Fermat potential, Δ�휙AB, no matter

how precisely the lensing potential is determined from the imaging

(Birrer & Treu 2019). Therefore, the astrometric precision can affect

the determination of �퐷d and �퐷Δt and hence �퐻0. Birrer & Treu (2019)

have described the error propagation to �퐻0 given a �퐷Δt measurement.

They show that, if the �퐻0 information comes from �퐷Δt, the Hubble

constant scales as

�훿�퐻0 ∼
�훿�훽

�휃AB
, (7)

where �휃AB is the image separations between imaging A and B. We

extend here the formalism introduced by Birrer & Treu (2019) to

compute the contribution of the astrometric error budget to the �퐷d

distance. Given Equation (6), we can express the error propagation

of velocity dispersion, �휎�푣 , relative Fermat potential, Δ�휙AB, and time

delays, Δ�푡AB, to �퐻0 as

�훿�퐻0

�퐻0
∼ −

�훿�퐷d

�퐷d
∼

√

√

√

4
�훿�휎2

�푣

�휎2
�푣

+
�훿Δ�푡2

AB

Δ�푡2
AB

+
�훿Δ�휙2

AB

Δ�휙2
AB

, (8)

where

�훿Δ�휙AB

Δ�휙AB
= (1 + �푧d)

�퐷d

�푐

�휎2
�푣

�푐2

�휃AB

�퐽Δ�푡AB
�훿�훽, (9)

In order for the astrometric uncertainty to be subdominant with

respect to the uncertainty in the time delay measurement, Δ�푡AB, the

following requirement applies

(1 + �푧d)
�퐷d

�푐

�휎2
�푣

�푐2

�휃AB

�퐽Δ�푡AB
�훿�훽 <

�훿Δ�푡AB

Δ�푡AB
. (10)

MNRAS 000, 1–7 (2015)
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Since �휎2
�푣 ∝ �휃AB, Δ�푡AB ∝ �휃2

AB
, and �퐽 ∝ �휃AB, the Hubble constant

uncertainty due to astrometric error scales as

�훿�퐻0 ∼
�훿�훽

�휃AB
, (11)

which is the same as Equation (7).

In conclusion, the requirements for �퐷d are the same as for �퐷Δt.

The most important effect is that the required astrometric precision,

at fixed �퐻0 precision, scales inversely with the image separation.

4 KECK ADAPTIVE OPTICS IMAGING

The AO imaging of J 0659+1629 was obtained at K′-band with the

Near-infrared Camera 2 (NIRC2) during an engineering night on

December 02, 2020. The target was observed with the narrow camera

setup, which provides a roughly 10×10′′ field of view and a pixel

scale of 9.942 milliarcsec (mas). The total exposure time was 1440

seconds. We follow our previous work (Chen et al. 2016, 2019) and

use the SHARP python-based pipeline, which performs a flat-field

correction, sky subtraction, correction of the optical distortion in

the images, and a coaddition of the exposures. For the distortion

correction step, the images are resampled to produce final pixel scales

of 10 mas pix−1 for the narrow camera. The narrow camera pixels

well sample the AO PSF, which has typical FWHM values of 60–

90 mas. To improve the modeling efficiency for the narrow camera

data, we perform a 2×2 binning of the images produced by the

pipeline to obtain images that have a 20 mas pix−1 scale. We note

that at this scale the PSF is adequately sampled, with 3-4 pixels per

FWHM.

5 COMPARISON OF THE RECONSTRUCTED PSF FROM

DIFFERENT METHODS

Accurate knowledge of the PSF structure is the key ingredient for

time-delay cosmography. We use the AO imaging of J 0659+1629 to

examine the performance of the state-of-the-art PSF reconstructed

methods. In Section 5.1, we show the residuals given different PSF

models. In Section 5.2, we compare the reconstructed PSF struc-

tures including the core and wing. In Section 5.3 we compare the

lensed quasar positions inferred from different PSFs, and compare

the astrometric precision between AO and HST.

5.1 Residuals

Modeling the AO imaging of lensed quasar system down to the noise

level requires accurate description of the AO PSF structures which

can vary significantly given different observational conditions. To

solve this problem, one can reconstruct the PSF either from the data

themselves by exploiting the information provided by the multiple

lensed quasar images (hereafter PSF-CS; Chen et al. 2016) or from

telemetry data acquired during the observations (hereafter PSF-R;

Ragland 2018, Ragland et al. 2018) (hereafter PSF-R; Ragland 2018;

Ragland et al. 2018). The errors from the PSF-R are listed in the

Appendix (A).

In Figure 1, we show the imaging data, the model (lensing galaxy

light and lensed quasars), and the normalized residuals given PSF-

R, PSF-CS and PSF-R+PSF-CS, where PSF-R+PSR-CS means that

we use PSF-R as an initial PSF and then perform PSF corrections

on it. PSF-CS use concentric multiple gaussians as the intial PSF

and perform the PSF corrections. While there are some residuals in

the center of the lensed quasars images using PSF-R, we can build

accurate PSF structures and model the data down to the noise level,

except a very small region right in the center of the PSF core, once we

apply the PSF-CS method by exploiting the fact that the four lensed

quasar images share the same PSF structure.

5.2 PSF wing structures: cores and wings

A typical AO PSF consists of a roughly diffraction-limited core and

extended wing structure. Although the PSF-CS approach allows one

to model the AO imaging down to the noise level, Chen et al. (2019)

found that there is a degeneracy between the AO PSF wing and the

lens light if the lensing galaxy is very extended. This can potentially

bias the inference of the baryonic matter distribution if one uses the

lens light as the tracer for the baryonic matter. It is thus important to

characterize the PSF wing from external information.

In Figure 2, we show the comparison of the azimuthally average

intensity of the reconstructed PSFs from PSF-CS, PSF-R, and PSF-R

+PSF-CS. We can see that once the correction is applied on PSF-R,

the green dashed line (PSF-R +PSF-CS) agrees with the red line

(PSF-CS). The correction makes the residuals of PSF-R + PSF-CS

in Figure 1 disappear. This indicates that the core structures can be

well determined. However, although the red line (PSF-CS) and green

line (PSF-R +PSF-CS) have different PSF wings, the residuals are

indistinguishable. Therefore, the flexibility of the PSF wings could

potentially introduce surface brightness degeneracy with the lens

light.

With the wing information from PSF-R, we show that outside

the correction boundary, PSF-R+PSF-CS follows PSF-R and hence

PSF-R can be used to break the degeneracy.

5.3 Astrometric precision

Astrometric uncertainty can contribute to total error budget of the

distance measurements and hence �퐻0. We compare the lensed quasar

positions inferred by using PSF-R, PSF-CS, and PSF-R+PSF-CS.We

also compare the precision obtained with AO and HST. We show the

relative positions of lensed quasar images B, C, an D with respect to

the lensed quasar image A in Figure 3. One can see that the residuals

given PSF-R shown in Figure 1 can affect the determination of the

lensed quasar at the 1 to 2 mas level, but after applying the correction

to the PSF-R, the lensed quasar positions agree with the results

from PSF-CS. We conclude that the position of the lensed quasars

can be robustly determined with precision much better than a milli-

arcsecond.

To compare the precision with the HST, we overlay the results from

an analysis of the HST data on this system (Schmidt et al. in prep.) by

fitting simultaneously f814W, f475X and f160W bands in Figure 3.

The precision of the lensed quasar positions is better determined with

the AO imaging than the HST imaging, by a factor of 5-10. We stress

that this is a comparison of precision. A comparison of accuracy

of differential astrometry between the images would require inves-

tigating uncertainties in astrometric distortion corrections, which is

beyond the scope of this paper.

6 ASTROMETRIC REQUIREMENT FOR �퐻0: AO V.S. HST

Birrer & Treu (2019) show the astrometric requirement for �퐻0 given

�퐷Δt in five different possible scenarios for the lens systems. In this

paper, we focus on the requirement given the measurement of �퐷d

since �퐷d provides the main information on constraining �퐻0 under

MNRAS 000, 1–7 (2015)
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Figure 1. Imaging data, model, and normalized residuals given PSF-CS, PSF-R, and PSF-R+PSF-CS. The model image shown above is created by PSF-CS.

For all three systems, once the PSF-CS is applied, we can model the lensed quasar down to the noise level. PSF-CS utilizes multiple concentric gaussians as the

initial PSF model and performs an iterative corrections on the PSF model given the residuals (see more details in Chen et al. 2016).

the mass-sheet transformation (Chen et al. 2020), noting however

that the requirement are the same as discussed above. The main

factor determining the precision of the cosmological inference then

becomes the stellar kinematics since the lens potential can be con-

strained sufficiently by the extended imaging and line-of-sight mass

distribution does not contribute to �퐻0 determined from �퐷d. In Ta-

ble 1, We use the same five examples of image separations, �휃AB,

and time delays, motivated by Birrer & Treu (2019), to examine the

astrometric requirements given the measurement of �퐷d. We assume

a ΛCDM cosmology with fixed Ωm = 0.3. In those five scenarios,

we consider the most stringent astrometric requirements, i.e. those

in the presence of spatially resolved kinematics are available from

JWST observations. In this case, the contribution from astrometric

uncertainty should be less than 3 percent on �퐻0 (Yildirim et al in

prep.), in order to be subdominant.

The requirements are expressed as uncertainties in the source po-

sition. The image plane astrometric uncertainty can be obtained by

�휎�훽/�휎�휃 ∼ 10−1 under fixed lensing potential, and by �휎�훽/�휎�휃 ∼ 1

when the positional information is used to determine the lens model

(i.e., no extended arc information) (Birrer & Treu 2019).

Scenario 1 is for a typical cluster-scale lens with image separation

of 20 arcsec and a time-delay of 1000 d, the relative astrometric

requirement is 18 mas in the source plane to not exceed a 3 per cent

uncertainty in �퐻0. This can be achieved by AO imaging.

Scenario 2 is similar to RXJ1131-1231 (Suyu et al. 2013, 2014;

Birrer et al. 2016; Chen et al. 2019) and B1608+656 (Suyu et al.

2010), or for the doubly lensed quasar SDSSJ1206+4332

(Birrer et al. 2019). The relative astrometric requirement is 12 mas

in the source plane to not exceed a 3 per cent uncertainty in �퐻0. This

can be also achieved by AO imaging.

Scenario 3 is smaller separation images of 2 arcsec with a relative

time-delay of 10 d. This is similar to HE 0435-1223 (Wong et al.

2017; Chen et al. 2019) and PG1115+080 (Chen et al. 2019). The

relative astrometric requirement is 1.8 mas in the source plane to not

exceed a 3 per cent uncertainty in �퐻0. This can be achieved by AO

imaging.

Scenario 4 is the lens system with short time-delays with a relative

delay of 4 day and image separation of 1 arcsec. The relative astro-

metric requirement is 1.5 mas in the source plane to not exceed a 3

per cent uncertainty in �퐻0. This can be achieved by AO imaging.

This last scenario with image separation of 1 arcsec and a rela-

tive delay of 1 d is motivated by the lensed supernova iPTF16geu

(Goobar et al. 2017). The relative astrometric requirement is 0.36

mas in the source plane to not exceed a 3 per cent uncertainty in �퐻0.

However, in reality this type of lens system is unlikely to be chosen as

the target for the purpose of time-delay cosmography given its short

delays. Nevertheless, the astrometric requirement can still be met by

AO imaging.

In sum, AO imaging can meet the astrometric requirements for all

kinds of possible scenarios, even in the most stringent circumstances.

MNRAS 000, 1–7 (2015)
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Figure 2. Comparison of the azimuthally-average radial profile of the reconstructed PSFs from PSF-CS (Chen et al. 2016), PSF-R, and PSF-R + PSF-CS. All

three PSF models are normalised by the central brightest pixel. One can can see that inside the correction boundary, PSF-R+PSF-CS follows PSF-CS, while

outside the correction boundary PSF-R+PSF-CS follows PSF-R. In other words, PSF-CS can provide an accurate description of the true PSF model in the center

of the lensed quasar, while PSF-R can provide the information relevant to the wings (Chen et al. 2016).

Table 1. Astrometric requirements for five different scenarios of image separations, and time delays at lens redshift, �푧d = 0.5, source redshift, �푧s = 2 under

the mass-sheet transformation. The requirements are listed for uncertainty on �퐻0 from astrometric uncertainty to be less than the uncertainty on �퐻0 from the

time-delay uncertainty, �휎Δ�푡 , and for two scenarios of kinematic data quality. First, we list the requirement for 10 per cent error on H0 from astrometry, which

is the typical uncertainty of single-aperture velocity dispersion measurement. Second, we list the requirement for 3 per cent, which is expected from JWST

spatially-resolved kinematics (Yildirim et al. in prep). The requirements are expressed as uncertainties in the source position. The image plane astrometric

uncertainty can be obtained by �휎�훽/�휎�휃 ∼ 10−1 under fixed lensing potential, and by �휎�훽/�휎�휃 ∼ 1 when the positional information is used to determine the lens

model (i.e., no extended arc information) (Birrer & Treu 2019). Given the precision which can be achieved by the AO imaging data, AO imaging is sufficient for

time-delay cosmography in all scenarios listed here.

Scenarios �휃AB(arcsec) Δ�푡AB (d) �휎Δ�푡 (d) �휎�퐻0
(�휎�훽 ) ≤ �휎�휎Δ�푡

(mas) �휎�퐻0
(�휎�훽 ) ≤ 10 per cent (mas) �휎�퐻0

(�휎�훽 ) ≤ 3 per cent (mas)

1 20 1000 30 �휎�훽 =18 �휎�훽 =60 �휎�훽 =18

2 3 100 3 �휎�훽 =12 �휎�훽 =40 �휎�훽 =12

3 2 10 1 �휎�훽 =6 �휎�훽 =6 �휎�훽 =1.8

4 1 4 0.25 �휎�훽 =3 �휎�훽 =4.8 �휎�훽 =1.44

5 1 1 0.025 �휎�훽 =0.3 �휎�훽 =1.2 �휎�훽 =0.36

7 CONCLUSIONS

We analyze adaptive optics images of the strong lens J 0659+1629

obtained with the W.M.Keck Observatory using the laser guide star

adaptive optics system to examine the astrometric requirements for

time-delay cosmography under the mass-sheet transformation. We

show that by combining two techniques of PSF reconstruction (PSF-

R from telemetry and PSF-CS from the data themselves), we can (1)

reconstruct both the core and wings of the AO PSF, (2) subtract the

point-like multiple images with residuals consistent with noise, and

(3) obtain astrometric precision of∼ 0.3mas in the source plane which

is more then sufficient to meet the requirements even in the most

stringent cases, with JWST spatially-resolved kinematics data are

available. Therefore, we demonstrate that by applying our techniques

to AO data, the astrometric precision will always be the subdominant

term in the H0 error budget.
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Figure 3. Comparison of the lensed quasar positions inferred by using PSF-R, PSF-CS, and PSF-R+PSF-CS, and of the precision obtained with AO vs. HST.

The relative positions (in arcsecond) of lensed images B, C, and D are relative to the lensed image A. The residuals given PSF-R shown in Figure 1 can affect

the determination of the lensed quasar in 1 to 2 mas level (blue v.s. green and red), but after applying the correction to the PSF-R, the lensed quasar positions

agree with the results from PSF-CS. The results indicate that the position of the lensed quasars can be robustly determined well below mili-arcsecond level.
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APPENDIX A: THE ERROR BREAKDOWNS OF THE

PSF-R FOR J 0659+1629

We list the error breakdowns of the PSF-R for J 0659+1629 AO

imaging observation in the following:

• Fitting error: 165 nm

• Aliasing error: 69 nm

• TT residuals: 354 nm

• DM residuals: 264 nm

• Focal anisoplanatism: 187 nm

• Static Aberration: 230 nm

• The total wavefront error is 561 nm.

Note that the relatively large static aberration (230 nm) comes from

an issue with telescope phasing that was addressed the night after our

observations. This could be responsible for the poor reconstruction

of the core of the PSF-R.
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