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Identifying lensed quasars and measuring their time-delays from unresolved light curves
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ABSTRACT

Identifying multiply imaged quasars is challenging due to their low density in the sky and the limited
angular resolution of wide field surveys. We show that multiply imaged quasars can be identified using
unresolved light curves, without assuming a light curve template or any prior information. After
describing our method, we show using simulations that it can attain high precision and recall when we
consider high-quality data with negligible noise well below the variability of the light curves. As the
noise level increases to that of the Zwicky Transient Facility (ZTF) telescope, we find that precision
can remain close to 100% while recall drops to ~ 60%. We also consider some examples from the Time
Delay Challenge 1 (TDC1) and demonstrate that the time delays can be accurately recovered from
the joint light curve data in realistic observational scenarios. We further demonstrate our method by
applying it to publicly available COSMOGRAIL data of the observed lensed quasar SDSS J1226-0006.
We identify the system as a lensed quasar based on the unresolved light curve and estimate a time
delay in good agreement with the one measured by COSMOGRAIL using the individual image light
curves. The technique shows great potential to identify lensed quasars in wide field imaging surveys,

especially the soon to be commissioned Vera Rubin Observatory.

1. INTRODUCTION

In the field of astronomy and astrophysics, strong
gravitational lenses have emerged as a powerful tool
for determining several key factors, for example the
initial mass function (IMF), the dark matter distribu-
tion and its time evolution in the lensing galaxies etc
(Mao & Schneider 1998; Metcalf & Madau 2001; Dalal
& Kochanek 2002; Pooley et al. 2009; Oguri et al. 2014;
Jiménez-Vicente & Mediavilla 2019). For more applica-
tions of strong lensing, we refer to the review by Treu
(2010). Remarkably, strongly lensed variable sources
can also be a source of precision cosmology (Treu &
Marshall 2016). Precise time delay measurements can
provide cosmological information, such as the value of
Hubble constant (Hp) (Refsdal & Bondi 1964; Refsdal
1964; Saha et al. 2006; Oguri 2007; Bonvin et al. 2017;
Wong et al. 2020; Birrer et al. 2020; Birrer & Treu 2021).
The time delay measurement of Hy is independent of
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all other methods and can thus shed light on the ongo-
ing tension (Verde et al. 2019) between local measure-
ments (Riess et al. 2019) and the Hj inferred from early
universe probes like the cosmic microwave background
(CMB) (Planck Collaboration et al. 2020).

So far, time delay cosmography has mainly relied
on lensed quasars (QSOs). Hundreds of lensed QSOs
have been detected !, and monitored ? and analyzed 3,
making them the primary sources for current time de-
lay cosmography efforts. However, other lensed tran-
sients (Oguri 2019) such as supernovae (Suyu et al.
2020), repeating fast radio bursts (Li et al. 2018) and
even gravitational waves (Liao et al. 2017) will become
significant contributors in the near future. The first ex-
amples of multiply imaged supernovae have already been
discovered (Kelly et al. 2015; Goobar et al. 2017; Rodney
et al. 2021).

L https:/ /research.ast.cam.ac.uk/lensedquasars/,
https://strides.astro.ucla.edu/

2 http://cosmograil.org
3 http://tdcosmo.org/
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Traditionally, lensed QSOs are detected using either
imaging or spectroscopy based methods (e.g., Huchra
et al. 1985; Browne et al. 2003; Treu et al. 2018; Lemon
et al. 2020). Usually, measuring the time delay requires
observations of light curves of the resolved images using
high resolution telescopes for several years (e.g., Tewes
et al. 2013). Substantial effort has gone into developing
methods for extracting the time delays from the resolved
image light curves (Press et al. 1992; Pelt et al. 1996;
Hirv et al. 2007; Kelly et al. 2009; Hirv et al. 2011; Hoj-
jati et al. 2013; Aghamousa & Shafieloo 2015). However,
detecting lensed quasars and measuring the time delays
are very challenging tasks. For example, it is often dif-
ficult to distinguish binary QSOs from lensed doubly-
imaged quasars only using imaging or spectroscopy data
(Peng et al. 1999; Mortlock et al. 1999). Comparing the
similarity of the light curves of close images via mea-
suring the time delay was proposed as a way to distin-
guish any lensed QSOs from star or QSO pairs (Pindor
2005) as well. However, this approach requires resolved
images, and monitoring the image light curves at high
angular resolution can be very expensive in terms of tele-
scope time.

An alternative approach consists of using the ob-
served unresolved (joint) light curve for detecting the
lensed QSO systems and measuring the time delay sub-
sequently. In this approach, one does not require the
systems to be resolved a priori. Therefore, this approach
can take advantage of the data from ongoing time do-
main surveys such as ZTF (Bellm et al. 2019), Pan-
STARRSI1 (Chambers et al. 2016). The unresolved light
curve approach will have broad application when the
Vera Rubin Observatory (LSST Science Collaboration
et al. 2009, 2017) starts the Legacy Survey of Space and
Time (LSST). In principle, of course, images with suffi-
ciently large separations can be resolved with advances
in image processing techniques, e.g. the image deconvo-
lution method developed by Magain et al. (1998), that
allows for optical monitoring of systems in which the im-
age separation was small compared to the seeing (Mil-
lon et al. 2020). For example, for LSST, Opsr = 0.75
arcs, Oguri & Marshall (2010) adopted 2/30pgr as the
minimum separation that the surveys can resolve. How-
ever, a method based on unresolved images can be ex-
tremely powerful and complementary. First, the unre-
solved method would allow the detection of images with
separations too small to be identified in ground based
imaging. Second, systems that are partially resolved
could be difficult to identify in survey data, because de-
blending algorithms could partition them in a variable
number of astronomical objects depending on seeing. A
robust algorithm based on unresolved light curves could

for example be applied on data that have been convolved
to the lowest angular resolution of the time series in or-
der to mitigate deblending issues and increase signal to
noise ratio.

In the past couple of decades, several methods have
been proposed to detect lensed quasars and to measure
their time delays using the joint unresolved light curves
(Geiger & Schneider 1996; Shu et al. 2021; Springer &
Ofek 2021a,b; Biggio et al. 2021). However, since quasar
light curves are highly stochastic and display broad va-
riety, approaches based on forward modelling the light
curves under specific assumptions may be powerful but
restricted in their application only to the light curves
well described by the assumptions, and may thus be
incomplete and biased*. Therefore, these attempts are
likely to be less successful than estimated if the underly-
ing assumptions are not a good description of real light
curves, and result in lower precision and purity.

With the goal of attaining a more general method,
and hopefully reaching higher completeness, we develop
a new technique to identify lensed quasars and measure
their time delays from unresolved light curves, without
assuming any template or model for the quasar light
curves, and without relying on additional information.
Our method builds on that originally proposed by Geiger
& Schneider (1996), adding a statistical procedure to
identify the true lenses and time delays by minimizing
fluctuations in the reconstructed light curve®

The paper is organized as follows. In section 2 we
describe the methodology that consists of reconstruct-
ing the underlying images from the observed joint light
curve. We illustrate a mathematical degeneracy of the
problem and then demonstrate a method to break the
degeneracy partially and identify the lens systems and
measure the time delay. Next, in section 3 we validate
our method on simulated data with virtually noiseless
data (i.e. in perfect conditions). In section 4 we show
that our method works on data with ZTF-like obser-
vational noise. In Section 5 we apply our technique
to realistic simulations from the Time Delay Challenge
(Dobler et al. 2015; Liao et al. 2015, hereafter TDC) 1
(Rung 0 and 1). In section 6, we apply our method to
the light curve of the lens systems SDSS J1226-0006 ob-

4 The challenges in model agnostic approaches to extract time de-
lays from the unresolved lensed supernova (SN) light curves are
quite different since one knows the broad shape of the SN light
curves (that follow a mere rise and fall in the flux); see Bag et al.
(2021); Denissenya et al. (2022).

5 This minimization is conceptually similar to that applied by the
Pelt et al. (1996) method to resolved light curves, although dif-
ferent in implementation.



tained from the COSMOGRAIL database. In section 7
we summarize and conclude the work.

2. METHODOLOGY: RECONSTRUCTING THE
UNDERLYING LIGHT CURVES

For simplicity, let us consider a strong-lensed quasar
system that is composed of two images only. Therefore,
the observed flux of the lensed system would be sum of
the light curves of individual images,

F(t) = f1(t) + fa(t) - (1)

Intrinsic light curves of all images can be described by a
common function, say f(t), with different magnifications
(7)) and time delays (¢;),

f[it) =mflt—1t1), (2)
f2(t) = paf(t —ta) = (p2/p) fr(t — [ta — t1]) ,

where p = po/p1 and At = t9 — t1 so that Eq. (1) can
be recast as

F(t) = f1(t) + pfi(t — At) . (4)

Here p and the At are the magnification and time delay
of the image 2 with respect to image 1. Or, in other
words, they are the magnification ratio and the time
delay between the two images.

From Eq. (4) we try to reconstruct the flux of image
1

)

[i(t) = F(t) — pfi(t — At) (5)
=F(t) — p[F(t—At) — pfi(t —24t)],

where we substitute the expression for f;(t — At) from
the functional form of f;(¢) in the first line while arriving
to the second step. We can continue this substitution to
obtain an infinite series expression for fi(¢) in terms of
the combined flux,

f1(t) =F(t) — uF(t — At) + p>F(t — 2At)
— W3F(t — 3At) + ' F(t — 4A1) — ...,

=S (W) F(t —n-At). (6)

Up to this point, we do not impose any restriction other
than assuming that the lensed system has two images.
If 4 < 1, the infinite sum converges and, in principle, we
can determine the light curve of image 1.

Without any loss of generality, let us refer to the image
with larger magnification (u;) as image 1 and the other
as image 2 (this can be easily generalised to more than
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2-image systems by sorting the p;’s). This ensures p =
to/p1 < 1 which in turn guarantees that the sum in
Eq. (6) converges. Now a positive (negative) At means
image 2 (the image with smaller magnification) arrives
later (earlier) in time with respect to image 1.

Therefore, given any choices of u, At, we can recon-
struct the light curve of image 1 (which has the larger
magnification) using Eq. (6) and then we can calculate
fa(t) using Eq. (2). Let us call these reconstructed un-
derlying light curves fi rec(), f2,rec(t). In this approach
it is ensured that Fiec(t) = firec(t) + farec(t) = F(t)
(the observed light curve of the lensed system). The key
point is that for any choice of (u, At) one can obtain a
unique solution for fi(t) that satisfies Eq. (4) exactly®.

We use cubic interpolation to obtain the flux in be-
tween two observed points as required in the sum in
Eq. (6). However, the higher order terms in the sum-
mation also require the flux outside the observed range.
Since we cannot predict the quasar light curve beyond
the observation range (owing to the fact that we know
little about the time variability of quasar light curves
in general), we assume that F(t) remains flat outside
the observation range for simplicity. Below we briefly
discuss that this assumption has a negligible effect on
the reconstruction at one boundary (as demonstrated
by Geiger & Schneider 1996).

2.1. Mathematical degeneracies

In this section we demonstrate that the reconstruc-
tion technique described above yields mathematically
degenerate lensed solutions from any joint light curve.
First let us consider high quality data with negligible
observational noise, well below the variability of the
light curves, so that we have Fiue(t) = f1true(t) +
pf1true(t — At). Then we reconstruct the light curve
of the first image from Fie(t) for different choices of
the trial {pyy, Aty } using Eq. (6).

In order to illustrate the mathematical degeneracy we
consider a simulated lensed system composed of two im-
ages with the true time delay Atyne = 24.14 days and
the magnification ratio pigrue = 0.752. This system is
labeled as system 6 in the simulated set that we use
for training and validation purpose in the next section.
The details of the simulation are given in Section 3. We
compare the reconstructed light curves of the underly-
ing images and the combined one (f1 rec, f2,rec and Frec)
with the corresponding true light curves (fi true, f2,true
and Fie) in Figure 1 for 4 choices of {fttry, Atiry b In all

6 Although we test doubly imaged lensed systems in this article
for simplicity but this approach can be generalised to more than

2-image systems.
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Figure 1. Light curves of a typical doubly imaged quasar
(in arbitrary flux units) with negligible observational noise
(system 6: pitrue = 0.752, Aterue = 24.14 days, no. of data
points=524). We compare the reconstructed light curves (of
the 2 individual images and the joint one) for 4 choices of
{Wtry, Atery } shown in the 4 panels. Only for the choice
Hiry = Htrue, Attry = Aterue (top panel), the reconstructed
light curves match the true ones, i.e. firec = fi,true and

f2,rec ~ f2,true~

the 4 panels, the reconstructed joint light curve matches
accurately with the truth, i.e. Fiec = Firue (notice that
the red and the black dashed curves coincide in all the
panels). In the top panel, we choose the values of trial
magnification ratio and time delay same as the true val-
ues, ftry = ftrue; Ottry = Algrye, finding that the re-
constructed image light curves match the corresponding
true curves, Le. fl,rec ~ fl,true and f2,rec ~ f2,true-
In the other panels, firec and f2rec are different from
f1.true and f2 rec respectively, although Frec(t) = Firue(?)
is maintained in all 4 panels. Note that flux is shown
in arbitrary units in figures throughout the article since
only the relative time variability of the light curve mat-
ters.

We estimate the precision of the reconstruction of the
combined flux by calculating

1 &
EF:N—DZ

%

Ftrue (ti) - Frec (tz)

Ftrue (tz) ’ (7)

where Np is the number of data points in a light curve
(number of observation epochs). For any choice of
{ ey, Atiry } we find that Ep ~ O(1071%) which is basi-
cally a manifestation by the numerical round-off error.
This clearly tells us that for any choice of {ftry, Atery}
we always get back the combined flux (Fiec(t) =
Fiue(t)) exactly. Using the truths, {uiey, Atyy} —
{tttrue, Attrue }, We can reconstruct the underlying im-
ages, fl,rec — fl,truea f2,rec — f2,true~ If the trial
{ltery, Atiry } are different from the true values, the joint
light curve is still reconstructed exactly but the light
curves of individual images are wrong.

We do not discuss the cases in the presence of signif-
icant amount of noise/uncertainty in the data yet be-
cause even with negligible noise in the data (in perfect
conditions) we get degenerate solutions. Later in the
article, we include ZTF-like noise in the data while we
try to estimate the time delay using a version of this
approach, modified to break the degeneracy.

As we assume the observed joint light curve to be flat
outside the observed time range, some error is intro-
duced in the reconstruction of first image (fi yec) near
one of the boundaries even for true choices: iy = fhirue
and Atyy = Atgue. E.g. a positive Aty introduces
maximum error in fi,.c near the left edge, i.e. for
t < to + Atyy where ¢y is starting time, and the re-
construction gradually becomes more accurate for larger
t as more terms from the observed range start to con-
tribute. The same thing happens but from the opposite
boundary when At is negative. This conclusion is
demonstrated in Figures 3 and 4 of Geiger & Schneider
(1996).



Geiger & Schneider (1996) correctly emphasised that
one gets infinite solutions due to a mathematical degen-
eracy and concluded that it is impossible to determine
the correct time delay without assuming any additional
information such as the intrinsic variability of the quasar
light curves. However, as we detail in the next subsec-
tion, there is a way to break the degeneracy ( partially),
identify the lensed systems, and measure the time delay
without requiring any additional information.

2.2. Identifying the true solution

In this section we show that the true time delay can
be identified by breaking the degeneracy with Aty via
minimization of fluctuations in the reconstructed light
curve.

To illustrate this approach, we first consider the cases
with negligible noise. Having demonstrated that the ap-
proach works on perfect data we then apply it to cases
with substantial observational noise.

For this illustration, we focus on the same example as
in previous section (lensed quasar system 6) taken from
the training set. We will not use the values of p¢e and
Atgrie anywhere in the analysis anymore; however, the
true values will help us train our algorithm. Since the
reconstructed light curve of the second image, i.e. f rec,
is just a scaled (by fury) and shifted (by Aty ) version
of the light curve of the first image (f1 rec), from now
onward we only focus on fi ;.. Remember that we refer
to the brighter (fainter) image as first (second) image.

In Figure 2 we compare the reconstructed light curves
of the first/brighter image (f1 rec) corresponding to dif-
ferent choices of Aty while keeping piry = terue fixed.
The left panel shows the light curves for the full pe-
riod of observation, whereas the right panel zooms into
the time interval between (100,300) days. The dashed
blue curve in both panels represents fi ;cc correspond-
ing to Aty = Atirue (ftry 18 already fixed to pigrye) that
matches very well the true light curve of the first image
fi,erue (Figure 1). Crucially, for values of Aty,, that are
different than Ati.e we get more overall fluctuations
in the respective fj rec curves around their mean values
(notice that the red and green curves in the right panel
of Figure 2 show more fluctuations than the dashed blue
curve).

Figure 3 shows the same set of curves as in Figure 2
but for another choice of jiy,y = 0.5 (which is different
from firye ). Naturally, all the reconstructed light curves
now lie above the true light curve since g, (which mea-
sures the contribution of the second image) is smaller
than pgwe. However, we observe the same feature that
fi,rec’s for Aty # Atgrue exhibit more fluctuations than
the fi rec corresponding to Atyy = Atgrue. Also, we ob-
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serve that the fj,c.’s are simply somewhat scaled ac-
cording to different choices of fitry.

For Atyy = Atirue, one gets minimal fluctuation in
the reconstruction of individual image light curves, e.g.
fi.rec. For other trial time delays, Aty # Attrues f1,rec’s
tend to exhibit more fluctuations. The only exception,
as we find later, is Aty = 0 for which the reconstructed
light curve is just a scaled version of the observed light
curve and thus produces a generic minimum in the fluc-
tuations which can be ignored. The effect of choosing
different fury’s appears to be negligible in this regard.
We find that all the systems show the above charac-
teristic. This is not unexpected: light curves that are
reconstructed using the wrong trial time delay will mix
fluxes at different intrinsic times, which are expected
to differ more than fluxes at the same intrinsic time.
Conceptually, this is the same principle adopted by Pelt
et al. (1996) to identify the time delays from spatially
resolved light curves.

In conclusion, we can distinguish the true underlying
light curve among all the reconstructions by measur-
ing the amount of fluctuations in the reconstructed light
curves, e.g. in firec’s, corresponding to different Aty
(while keeping g,y fixed). We also tested the effect of
trying different choices of fuy. For a fixed figy,, wWe es-
timate the amount of fluctuation in fi yec corresponding
to different Aty using the expression

Np

E(Attry) = Z (fl,rcc(ti) - fl,rcc(ti+1))2 ) (8)

(2

where Np is the number of data points (observation
epochs). Note that the quantity € has the dimension of
flux squared. For completeness, we experimented with
other metrics (alternative to (8)) for quantifying the
fluctuation, e.g. using the aggregated deviation in fi rec
with respect to its smoothed version. Although different
metrics produce consistent results, we do not find any
that performs better than the simple formalism given in
(8), especially in the presence of substantial amount of
noise in the data.

As an illustration we again consider the case of the
lensed system 6. We compute firec for all Aty €
(—130.0,130.0) days with a resolution of 0.1 days with
a fixed piry. For each Ati.,, we separately calculate
the corresponding value of € using Eq. (8). The three
panels of Figure 4 show ¢ as a function of Aty for sys-
tem 6 for three fixed values of trial magnification ratio,
Hiry = 0.3, 0.5, 0.7 from left to right. The gray dashed
vertical lines in each panel mark Aty = £Atue. The
red and two cyan lines represent the mean and the 1o,
20 values of entire € curve in each panel. We observe
the followings.
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Figure 3. Same as Figure 2 but with py = 0.5 which is different from the ptrue. Again we find that the light curves fi rec’s
corresponding to Aty # Atgrue have more fluctuations than the true one.

o At Atyy ~ FAtyue (marked by the vertical

o The €(Atyy) curve looks quite symmetric around
Aty = 0 and the minima appear at similar [ At |
values in the positive and the negative domains.

o At Aty = 0, which gives essentially 1-image so-
lution (let us call it ‘unlensed’), we get a global
minimum. This global minimum, implying least
fluctuations present in the unlensed solution, al-
ways appears at Aty,, = 0 for all the systems (even
in the presence of substantial amount of noise in
the joint light curve data).

dashed lines), we notice a pair of prominent sec-
ondary minima. One can determine if the system
is lensed by identifying this pair of prominent sec-
ondary minima in addition to the global minimum.

e The three observations above are valid for all rea-
sonable choices of fi,. Moreover, the positions of
the minima (including the pair of secondary min-

ima) do not change significantly with fi¢,y.
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Since the target secondary minimum in the e(Atg,y)
curve appears both at £Ati,., we cannot determine
if the time delay is positive or negative from this ap-
proach. This is expected since from unresolved data we
cannot establish whether the brighter or fainter image
is the leading one”. Furthermore, the positions of the
minima in the e(Aty,,) curve are quite insensitive to the
choice of pry, as evident from the three panels of Fig-
ure 4. Thus, our method can estimate the time delay
and confirm the lensing nature of an unresolved source,
but cannot be used to estimate the magnification ra-

7 In our convention, the brighter image is tagged as ‘first”.

tio. Since different choices of ut., do not affect the final
results, we fix fityy = 0.3 throughout the article®.

We conclude this section by introducing a dimension-
less version of the fluctuation statistics:

S(Atyry) = €(Atgry) — (€(Atiry)) 7

O¢

)

where we subtract the mean from e(Atyy,) and then
scale it with the standard deviation of the whole (At )
curve, o.. Therefore, ¥ essentially measures the fluctu-
ations in units of the standard deviation in the ¢(Aty,y)
curve. As an illustration, we re-plot the left panel of
Figure 4 in terms of ¥ as a function of the trial time
delay in Figure 5, for system 6 with fixed p¢yy = 0.3.

3. VALIDATING THE METHOD ON
SIMULATIONS

In this section and in the following one we train and
validate the method, proposed in the previous section,
on a number of simulated lensed systems. The sim-
ulations are taken from the Time Delay Challenge 1
(TDC1). However, for simplicity, we ignore the mi-
crolensing effect and only consider doubly-imaged sys-
tems. Simulating the observation of a doubly-imaged
but unresolved quasar therefore involves three concep-
tual steps (see Dobler et al. 2015; Liao et al. 2015, for
details): 1) The quasar’s intrinsic light curve in a given
band is generated at the accretion disk of the black hole
in an active galactic nucleus (AGN) and modelled by a
Damped Random Walk (DRW) process. 2) The fore-
ground lens galaxy causes multiple imaging, leading to

8 One can also combine the fluctuation curves corresponding to
different ptry to increase the signal in our analysis that helps
us identify the lensed systems, but for simplicity we use just
ptry = 0.3 in this article.
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two light curves that are offset from the intrinsic light
curve (and each other) in both amplitude (due to mag-
nification), and time. 3) Since we assume the images
are unresolved, we combine the individual image light
curves. In this section we consider high quality light
curves with negligible noise and one day cadence. The
next section deals with data with realistic noise, at the
level one can expect for, e.g., ZTF.

3.1. Testing the algorithm on a training set

First we analyse a ‘training’ set comprising of 10
lensed and 10 unlensed (with just 1-image, hence no-
lensing) systems with known time delays (and magni-
fication ratios) that have been used for optimizing the
algorithm. The set includes a diversity of intrinsic light
curves. The normalised fluctuation curves, X as function
of trial time delay (At¢yy) are shown in the left panel of
Figure 6 for all the lensed system for p¢, = 0.3. The
right panel shows the same X(At,,) curves for the 10
unlensed systems (again with g, = 0.3).

Lensed set: For each of the lensed systems we notice
that: (i) 3(Aty) is approximately symmetric around
Aty = 0, (ii) a global minimum is found at Aty =0,
(iii) a pair of secondary minima is found at Aty =~
+Atirue. For 9 out of 10 lensed systems, both the min-
ima at Aty & £Alirwe have ¥ < —2.0. The only ex-
ception is system 4 for which the minima near Aty,, =
+Atirye are somewhat shallower ¥ ~ —1.5. System 4
has by far the small magnification ratio, ptue = 0.14
— the other 9 pt,4e’s in the training set are distributed
between 0.263 (system 8) and 0.92 (system 5). Thus,
for system 4, the contribution from the second/fainter
image is only 12% of the joint light curve making it very
difficult to identify the system as lensed.

Unlensed set: As expected, for the unlensed systems
we find global minima at At,, = 0. No significant ad-
ditional minima are found (i.e. deeper than ¥ = —2).
Therefore, we correctly identify all 10 systems as un-
lensed.

Selection criteria: In view of the results for the
training lensed and unlensed set of systems, we lay down
the following conservative selection criteria to detect the
lensed systems.

C.1 Apart from the global minimum, the fluctuation
estimator X should exhibit a pair of secondary
minima at similar absolute values of the time
delay with negative and positive signs, i.e. at
Aty = £ALegs.

C.2 Both these minima should have depth
Y(—Atest) < —2.0. No other minima (except
that at Aty = 0 of course) should have ¥ < —2.

System No. | True time delay | Estimated time delay
Atirue in days Atest in days

1 55.37 55.4 £ 0.1
2 39.1 39.0£0.1
3 46.7 46.7+0.1
4 97.19 ——

5 117.7 117.7+£0.1
6 24.14 24.1+0.1
7 15.9 15.9+0.1
8 13.27 13.2+0.1
9 5.13 5.0+0.1
10 7.42 7.5+0.1

Table 1. Training set with negligible noise. We success-
fully identify 9 out of 10 systems as lensed, and we estimate
the time delay with high accuracy (within the adopted un-
certainty corresponding to the sampling of the time delay
trial). For system 4 - the one with the lowest magnification
ratio - we found minima in the fluctuation parameter () at
the true time delay, but they were not deep enough to pass
our stringent selection criteria.

If both the above criteria are met, we identify the

system as lensed with the estimated time delay Ateg;
otherwise it is identified as an unlensed system.

Following the above conservative selection criteria we

identify 9 out of 10 lensed systems and none of the 10
unlensed systems as lensed. Thus we have 100% preci-
sion? and a recall of 90% for the training set considering
high quality data with negligible noise.

The estimated time delays for the 9 lensed systems

are presented in Table 1 and compared with the corre-
sponding true time delays. The time delay estimations
are accurate and consistent with the respective truths
within the sampling resolution of the trial time delay
(0.1 days). We empirically take the time delay sampling
resolution as the uncertainty in the estimate in this case.

We note that the uncertainty estimate is substantially

more complex for data with realistic noise, as we de-
scribe in the next section. A proper error estimation for
this type of statistics requires analysing a large number
of simulations which is beyond the scope of the present
paper and will be carried out in detail in the future.

3.2. Testing the algorithm on a blind set

In order to test the method and prevent experimenter

bias, we carried out the following blind test. One coau-

9 Precision is defined as the fraction of true positive cases among
all the positive outcomes (includes the false positive outcomes).
Recall is the fraction of positive cases in a sample recovered cor-
rectly.
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thor simulated a set of 20 lensed and unlensed systems
without revealing anything but the joint light curves to
the rest of the team. The true time delays (of the lensed
systems only) are disclosed only after the results have
been frozen.

By applying the conservative selection criteria intro-
duced above we find 10 lensed systems and 10 unlensed
systems. The X(Aty,,) curves for the systems we iden-
tify as lensed are shown in the left panel of Figure 7. The
right panel shows the same for the systems we identify
as unlensed. The estimated time delays of the 10 lensed
systems are given in Table 2. Building on our findings
for the training set we report the sampling resolution
(0.1 days) as the uncertainty in the time delay estima-
tion for the blind case too.

After unblinding, we discover that there are 10 lensed
and 10 unlensed systems in the blind set. We identify
all of the lensed cases correctly and accurately estimate
their time delays. Therefore, combining the training
and blind sets, we have correctly classified 39 out of
40 systems in total (19 out of 20 lensed cases and all
the 20 the unlesed cases), corresponding to 100% pre-
cision and 95% recall. This exercise establishes that in
perfect conditions (when observational noise is negligi-
ble and cadence is much higher than the time delay) one
can identify the lensed cases with extreme precision and
measure the time delays very accurately.

4. DEALING WITH NOISY DATA

In this section we introduce realistic noise in the joint
light curve data, Fyps(t). In the Time Delay Challenge 1
(TDC1) simulations, in order to add photometric noise
expected for LSST, an rms photometric uncertainty was
drawn first from a Gaussian of mean 0.053 and width
0.016 nanomaggie, and then a noise value was drawn
from a Gaussian of width equal to the above rms. In
order to validate our method on data quality of smaller
aperture telescopes, such as the ongoing ZTF survey, we
keep the noise level in our simulations three times larger
than that of LSST. In other words, we draw rms pho-
tometric uncertainty from a normal distribution with
mean 0.159 and width of 0.048 nanomaggie'?.

We notice that applying the procedure described in
the previous section directly to the noisy data leads
to significant spurious features and mis-identification.
However, we find that the performance of the algorithm
is dramatically improved by smoothing the observed
light curve prior to the application of our method.

11

System No. | True time delay | Estimated time delay
Atirue in days Atest in days
1 Unlensed ——
2 55.4£0.1 55.37
3 Unlensed ——
4 39.0£0.1 39.1
5 Unlensed ——
6 46.7£0.1 46.7
7 Unlensed ——
8 97.4+£0.1 97.19
9 Unlensed ——
10 1179+ 0.1 117.7
11 Unlensed ——
12 24.0+0.1 24.14
13 Unlensed ——
14 16.0 £ 0.1 15.9
15 Unlensed ——
16 13.2+0.1 13.27
17 Unlensed ——
18 514+0.1 5.13
19 Unlensed ——
20 7.3+0.1 7.42

Table 2. Blind set (negligible noise). For each system we
report the identification and for the identified lenses the esti-
mated time delay. After unblinding we find that all systems
are correctly identified and the time delays estimated within
the uncertainty.

In practice, we follow the iterative smoothing algo-
rithm (Shafieloo et al. 2006; Shafieloo 2007; Shafieloo &
Clarkson 2010; Aghamousa & Shafieloo 2015), summa-
rized in Appendix A. The choice of smoothing scale is
important. Instead of choosing just a single smooth-
ing scale, we choose three smoothing scales (§ =
3.0, 4.0, 5.0 days'!) and combine the fluctuation curves
corresponding to each 0 while keeping Nj; = 10 (the
results are relatively insensitive to the choice of N )2

After smoothing, we identify the lensed systems and
then estimate the corresponding time delays by track-

ing the minima of the final normalised fluctuation curve
E(Atgry).

10 Most of the combined images that we simulate in this work have
brightness ranging from 8.62 to 22.45 nanomaggies (20.16 —19.12
magnitudes).

11 The light curves are observed in an interval of one day. The
typical features in the intrinsic light curves are of the scale O(10)
days. So choosing § = 3.0, 4.0, 5.0 does not destroy the intrinsic
features (in the light curves) that the method uses as signal in
our analysis.

12 Tn this way we are adding signals coming from multiple smoothing
scales.
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presence of ZTF-like noise for the example system 7. The
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to the smoothing scale § = 4.0 days, following the iterative
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Figure 9. Fluctuation estimator X as a function of Aty for
the example system 7. We clearly find a pair of prominent
secondary minima at Atyy ~ £Atuwe = 15.9 days, shown
by the dashed vertical lines. We fix ¢,y = 0.3 as in previous
examples.

4.1. Data with ZTF-like noise: training set

We consider the same training lensed and unlensed
sets (each has 10 systems) discussed in the noiseless
case, adding ZTF-like noise. Let us take the example
of system 7 from the lensed set. The smoothed light
curve corresponding to the smoothing scales § = 4.0
days is shown in Figure 8 as a black curve. Smoothed
light curves corresponding to § = 3.0, 5.0 days are quite
similar to that for § = 4.0 days, while smoothed light
curve corresponding to lower § exhibits more fluctua-
tions. Using the smoothed light curves we measure the
fluctuation in the respective reconstructions ( f1 rec) s€p-
arately using Eq. (8). Then, we calculate the fluctuation

estimator X (At ), from the sum of the e(Aty,,) curves
using Eq. (9). Hence, we combine the information from
the three smoothing scales.

The fluctuation estimator X for system 7 is shown as
a function of At with fixed pyy = 0.3 in Figure 9.
Due to our smoothing procedure, the X(Aty,,) curve
has fewer minima than in the negligible noise case (com-
pare the plot for system 7 in the left panel of Figure 6
with Figure 9). Again, we notice the global minima at
Aty = 0 which corresponds to unlensed solution and
hence can be ignored. In addition, we find a pair of sec-
ondary minima at Atg., = —16.1 and 16.0 with depths
¥ = —2.13 and —2.15 respectively. Since the minima
satisfy the conservative selection criteria C.2, the sys-
tem is identified as lensed with estimated time delay
Atesy = 16.05 days which matches very well the true
time delay, Atirue = 15.9 days.

We then analyse all the lensed and unlensed light
curves from the training set with ZTF-like noise. We
identify 2 out of 10 lensed systems correctly (system
3 and 7) which have secondary minima deeper than
> = —2.0, thus satisfying the conservative selection cri-
teria C.2. Five other systems also have prominent pairs
of secondary minima in their (At ) curves but the
minima are not deep enough to satisfy the conserva-
tive selection criteria. The left panels of Figure 10 show
Y (Atyyy) for these seven systems exhibiting a prominent
pair of secondary minima near the true time delay.

Furthermore, we identify all the unlensed systems cor-
rectly using the conservative criteria C.2. The right pan-
els of Figure 10 show 3(Aty) for some unlensed sys-
tems. No significant pairs of secondary minima is found.

4.1.1. Relazed selection criteria

From the left panel of Figure 10 it is evident that for
five lensed systems (1, 2, 4, 5, 6) the secondary min-
ima near the true time delay are much deeper than the
other minima (false minima) but not deeper than the
conservative selection threshold ¥ = —2.0. Also, from
the training set analyses we observe that for unlensed
cases there are many false shallow minima with compa-
rable depths in the final X(At,,) curves. Based on these
findings we formulate a set of relaxed selection criteria
aimed at increasing the recall, possibly in return for a
decrease in precision. These criteria are illustrative. In
practice, the optimal strategy will depend on the data
quality and whether recall or precision is the main goal
of a search. We leave the tailoring of the criteria to
specific needs for future work. Our illustrative relaxed
criteria are:

1. We identify the pair of secondary minima in
Y(Atyry) curve if the deepest minimum (ignoring



)3

System 1

System 2

N -

-

System 3

-

<
<
<

System 6

oo

System 7

R

I e ————

-100

Aty

(a) Lensed systems

50 100

13

AR I\/\/\

!\‘\/\/\I\ /\/\

A AR A

VAR A AW

System 1

MM
VAAATAR AN

VAAAAMMA
ATNATRRTIA"ARSY

System 2

- System 3 |

-6 . . . L

ol /\ N\ l\/\'\ /J\v/\ /\I\ N -

\IV WV N w V\/v

AN v

—4r System 4 '

,F ) ) ) )

ol /\ /\I\M'\f\A [\.AMA A\
" NN VYN VY N VAN

2

_4} System5 |

W 21
_4.
System 6 f
-6k \ . . L
| il
04 /\ A /\ AR A /\ [\ -
0 N VV VT V.oV Y \/
_2.
4 System 7 |
oo 50 o 0 100
Aty

(b) Unlensed systems

Figure 10. Fluctuation results for some of the systems from the training set considering ZTF-like noise in the data: lensed
Apart from the global minima at Atyy = 0, we find a pair of prominent minima (more
than 20 deep) at Aty & £Atrue for two lensed systems (system 3 and 7). However, with the relaxed criteria we identify four
other systems (1, 2, 5, 6) as highly probably lensed and one system (4) as probably lensed. Furthermore, using the conservative
criteria C.2 all unlensed systems are correctly identified as unlensed, while the relaxed criteria gives one false probable case
(system 4). The trial magnification ratio is kept fixed at pry = 0.3.

(left panel), unlensed (right panel).



14

the global minimum at At, = 0) in the positive
and negative domains of Aty occur at similar ab-
solute values, i.e. at Atyy ~ £Ate. If such a
pair cannot be found, we identify the system as
confirmed unlensed.

2. If both the secondary minima are deeper than 20,
i.e. both have ¥ < —2.0, we detect the system as
confirmed lensed. This is the conservative selection
criterion introduced previously.

3. One the other hand, if either of the secondary min-
ima is shallower than 1o, i.e. either has ¥ > —1.0,
we identify the system as confirmed unlensed.

4. If both the minima are deeper than 1o, we measure
the difference in depths between the secondary
minimum and the next deepest minimum (‘third
minimum’) in both positive and negative Aty,, do-
mains separately. If the secondary minima are at
least 50% deeper than the third minimum in their
respective domains, we consider the system as a
probable lensed case. However, depending on the
depth of the third (false) minima we classify the
following cases:

e If there is no minimum other than the pair of

secondary minima deeper than ¥ = —1.0, we
identify the system as highly probable lensed
case.

e If the third minimum on either of positive or
negative Aty domains is also deeper than
3 = —1.0, we identify the system as probable
lensed case.

5. If either of the secondary minima is not sufficiently
deeper than the third minima, we identify the sys-
tem as probable unlensed case.

Using these relaxed criteria we identify the two sys-
tems — 3 and 7 — from the lensed training set as con-
firmed lensed cases. Four other systems (1, 2, 5, 6)
are identified as ‘highly probable lensed’ whereas sys-
tem 4 is identified as probably lensed. The remaining
three systems are identified as unlensed. Thus we iden-
tify all the seven systems from the left panel of Fig-
ure 10 as lensed with varying degrees of certainty (con-
firmed, highly probable and probable cases). The esti-
mated time delays for these systems are given in Table 3.
We can see that the estimated time delays are accurate
even in the presence of significant uncertainty in the
data. Note that the relaxed criteria incorrectly identify
only one system among the ten unlensed systems in the
training set. Thus, these relaxed criteria produce 87.5%

precision with a recall of 70% when we consider ZTF-like
noise in the data for the training sets.

4.1.2. Error estimation

The uncertainty in our time delay estimations depends
on several factors, such as the intrinsic time variability
of the light curves, the noise in data, cadence, number
of observation epochs etc. Thus, a proper statistical de-
termination of the uncertainty requires a large number
of simulations spanning a range of conditions. Clearly,
that is beyond the scope of the present paper, aimed at
introducing the method as a proof of concept. However,
we found that the estimated time delays are consistent
with the truth within 5% for all the cases we study in
this article considering reasonable amount of noise in the
data (apart from these simulations, that also include the
simulations from TDC1, one observed system from the
COSMOGRALIL database as described below). There-
fore, heuristically 5% seems to be a reasonable initial
assessment of the uncertainty of the estimated time de-
lay for the time being. In the future, when applying
the method to search for new lenses and measure their
time delay, we plan to do a proper error analysis based
on large number of simulations, mimicking the actual
observing conditions.

4.1.3. False negatives

Next we look deeper into the three lensed systems in
the training set (system 8, 9 and 10) that we missed, i.e.
the false negative cases. Figure 11 shows the X(Aty)
curves for these systems. Two systems show a pair of
secondary minima at Atyy ~ £Afyue (system 8 and
10). However, these pair of minima are either not dom-
inant, or not deep enough. For system 9, the actual
time delays are blurred within the central minimum.
These three systems (system 8, 9 and 10) have rela-
tively smaller time delays, Atyrue = 13.27,5.13 and 7.42
days respectively, and are likely lost due to the effect of
smoothing.

To gain further insight, in Figure 12 we compare the
observed light curves of three lensed systems. The sys-
tem (3) on the left is identified as lensed, but the middle
and right ones are false negatives. Comparing the light
curves, the false negative cases are likely due to a com-
bination of (i) noise suppressing the intrinsic fluctuation
in the light curves; (ii) short time delays that are con-
fused with the global minimum at At., = 0 due to the
noisy data and smoothing process.

4.2. Data with ZTF-like noise: blind set

Next we analyse a blind set consisting of 20 light
curves with ZTF-like noise level as in the training set.
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Figure 11. Fluctuation statistics of the false positives from
the training set. Note that for system 8 and 10 we still have
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all cases have small Atyne compared to the width of the
central minimum.

System No. | True time delay | Estimated time delay

Attrue in days Atest in days

3 46.7 46.70 £ 2.33

7 15.9 16.05 £ 0.80

1 (%) 55.37 57.35 £ 2.87

2 (%) 39.1 42.80 +2.14

5 (%) 117.7 118.45 £ 5.92

6 (* 24.14 22.60 +1.13

4 (**) 97.19 99.15 £+ 4.96

Table 3. Training set with ZTF-like noise. The estimated
time delays are compared with the truths for the seven sys-
tems correctly identified as lensed. We identify the top two
systems as confirmed lensed. The next four systems, marked
with a star, are identified as highly probable lenses. System
4 is identified as probably lensed, i.e. with lesser certainty
(marked with double stars). For all the seven systems, the
estimated time delays are accurate within a few percent.

The conservative selection criteria identify only one con-
firmed lensed case with a pair of secondary minima
deeper than ¥ = —2.0. However, the relaxed criteria de-
tect two additional highly probable lensed systems and

15

System No. | True time delay | Estimated time delay
Atirue in days Atest in days
11 24.45 +1.22 24.14
7 (%) 96.55 +4.83 97.19
9 (*) 122.10 £6.11 117.7
3 (%) 40.10 £ 2.01 39.1
13 (**) 15.80 £ 0.79 15.9

Table 4. Blind set (considering ZTF-like noise in the light
curve data): The estimated time delays for the five systems
those we identify as lensed in the blind set. We identify the
only system at the top as confirmed lensed. Two systems
(7,9), marked with a star, are identified as highly probable
lensed cases. Another two systems (3 and 13) are identified
as probably lensed, i.e. with lesser certainty (marked with
double stars).

two additional probable lensed cases. The estimated
time delays for these five systems are presented in Table
4. Furthermore, we identify all the 10 unlensed systems
correctly, so we do not have any false positive. In conclu-
sion, combining the training and blind sets, the method
results in a precision of 92.3% with 60% recall.

5. APPLYING THE METHOD TO TIME DELAY
CHALLENGE 1 (TDC1) SIMULATIONS

The simulated data used so far to establish the method
are very well sampled with 1 day cadence. In Ap-
pendix B we test the method on simulated data with
cadence of 3 days. We found that even with the poorer
cadence one can still identify the lensed systems, how-
ever the signal in the X(Aty,y) curves is reduced, as ex-
pected. Nevertheless, in realistic scenarios, quasar light
curves are observed seasonally in multiple years offering
multiple patches in the data. These patches can be used
separately in order to boost the signal in our analysis.

To test the performance on realistic multi-year data,
we analyse a number of light curves for double systems
taken from the Time Delay Challenge 1 (TDC1) sim-
ulations (Dobler et al. 2015; Liao et al. 2015). In this
section, we show results for a subset of systems selected
to have relatively low noise levels compared to their vari-
ability from Rung 0 and Rung 1 of TDC1 as examples.
Both rungs have good cadence (3 days on the average
with a dispersion of 1 day) and around 400 observation
epochs. The systems in Rung 0 are observed for 5 years,
while those in Rung 1 are observed for 10 years.

We stress that this paper is meant only to introduce
and illustrate the technique. Therefore, for computa-
tional reasons we restrict ourselves to a subset of light
curves taken from Rung 0 and 1 of TDC1. We leave for
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Figure 12. Comparison of the light curves of 3 lensed systems from the training set. The system in the left panel is identified as
lensed, while the ones in the middle and right panels are false negatives, likely due to a combination of noise and short intrinsic

time delay.

future work a systematic exploration of all the systems
in TDC1.

5.1. TDC1, Rung 0

In Rung 0 the light curves are sampled in roughly 400
observation epochs over a period of 5 campaign years.
Let us first consider the example of system 127. The
simulated light curves of the two images are shown by
blue and green curves in Figure 13. We add the two
fluxes to construct the equivalent unresolved light curve,
shown in red in the figure, and use it to test our method.

The joint light curve has five patches (corresponding
to the five observing seasons) which are shown sepa-
rately in the left panels of Figure 14. Each patch has
observation time range of roughly 240 days with approx-
imately 80 observation epochs. The green curves in the
left panels represent the smoothed light curves for each
patch with smoothing scale § = 4.0 and Ny = 10 (the
average cadence is 3 days approximately). The right
panels show the fluctuation estimator ¥ as a function
of Aty for each of the seasons using the corresponding
smoothed light curve. We note that for each season we
obtain a pair of secondary minima near the true time
delay, i.e. at Aty = £Atwe = 38.33 days, which is
shown by the vertical dashed lines. However, for all the
seasons we also get some ‘false minima’ at incorrect time
delays.

For some observing seasons, e.g. the 3rd and the 5th,
the pair of secondary minima near the true time delay
is more prominent (with respect to the false minima) as
compared to that for other patches. To take advantage
of all the available information, we sum the fluctuation
measurements, €(Aty,y) calculated using Eq. (8), com-
ing from all the seasons. Furthermore, we use multiple
smoothing scales, § = 3.0,4.0,5.0 days, instead of us-
ing a single smoothing scale and combine the €(Atyy)
curves for each smoothing scale too. Finally, we cal-
culate the X (At ) curve from this combined e(Atgy)

curve using Eq. (9). Figure 15 shows the combined fluc-
tuation estimator ¥ as a function of the trial time de-
lay. The dashed lines again mark the true time delay,
Atyry = £Alrge. We find the pair of secondary min-
ima, occurring at Atyy = —39.3,39.4, are now very
prominent both having the depth ¥ ~ —1.9. Impor-
tantly, the false minima have been suppressed by com-
bining information from different patches and various
smoothing scales. Thus, we can identify the object as
a highly probable lensed system. The estimated time
delay Ates; = 39.35 is within 3% of the true time delay.

To illustrate the behaviour with unlensed sources, we
also analyse the light curve of the first/brightest image
by itself (shown in blue in Figure 13). Again, we con-
sider the data patches separately and follow the same
procedure as described above for the joint light curve.
The combined X (At ) curve for this unlensed case is
shown in Figure 16. The foremost pair of minima in the
Y (Atyy) curve occurs at Aty = —102.2,102.1 and has
depths ¥ = —0.76, —0.96 which are sufficiently shallow
so that one can readily identify this as an unlensed case.

We studied five additional randomly chosen systems
(with relatively low noise) from TDC1 (Rung 0) us-
ing the same algorithm. The left panels in Figure 17
show the combined X (Ati,) curves for these five sys-
tems. The right panels show the corresponding results
using the brightest image only, used as true negatives
(unlensed). For each of the lensed cases the X(Aty,y)
curve exhibits a pair of prominent minima that stand
out from the other minima, near the true time delay,
shown by the dashed vertical lines. Hence, we correctly
identify these systems as lensed cases. For the systems
105 and 204, the pair of secondary minima have depths
more than ¥ = —2.0. None of the unlensed cases shows
a prominent pair of secondary minima in the X(Aty)
curves. Therefore, the method correctly identifies all the
unlensed light curves.
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Figure 13. Simulated light curve of a doubly imaged lensed quasar (system 127) taken from TDC1, Rung 0. The light curves
of the first and second images are shown by the blue and green lines respectively. The system has a time delay of 38.33 days.
We add these two fluxes to construct the equivalent unresolved light curve (red line), and use it for our analysis.

The estimated time delays for all the six lensed sys-
tems from the TDC1 (Rung 0) are compared to the cor-
responding true time delays in the top part of Table 5,
with excellent agreement. For systems 105 and 204 the
error is much smaller than a day since these light curves
have features that stand out particularly well against
the noise.

5.2. TDCI1, Rung 1

Next, we analyse a random subset of light curves from
Rung 1 which has cadence of 3 days on the average with
1 day dispersion and 400 observation epochs. The light
curves in Rung 1 are sampled over a period of 10 years.
Thus each of the 10 patches in the data is roughly ~ 120
days long. Thus Rung 1 is not suitable for assessing
systems with time delays longer than Aty = 100 days.
We use the trial time delay At., € {—80.0,80.0} days
with a spacing of 0.1 days for Rung 1.

Following the same strategy as for Rung 0, expanded
to 10 seasonal patches in each light curve, we compute
the fluctuation estimator ¥ as a function of trial time
delay for some systems from Rung 1 as examples. The
left panels in Figure 18 show 3(At,,) considering the
joint light curves (lensed cases) for seven systems. For
all the systems we find the pair of secondary minima in
the 3(Atsyy ) curves near the true time delay (marked by
the dashed vertical lines), i.e. Atyy &~ £Atrye. There-
fore, one can straightforwardly identify the systems as
lensed. However, we see that the secondary minima are
somewhat shallower than in Rung 0. This is likely to be
due to the shorter overlap between delayed light curves,
resulting in weaker signal.

The right panels of Figure 18 show X(Aty,y) for true
negatives built from the same systems, using only the
light curve of the brighter image. Since we do not find
a pair of prominent minima, we correctly identify them
as unlensed cases.

The estimated time delay for the seven lensed systems
from TDC1, Rung 1 are compared with the correspond-
ing truths in the bottom part of Table 5. We find that
our estimates match the truth to within 3%, better than
our fiducial 5% error.

6. APPLICATION TO THE COSMOGRAIL LIGHT
CURVE OF LENSED QUASAR SDSS J1226-0006

In order to test the performance of our method on
real data, we apply it to the publicly available light
curves of the doubly imaged lensed quasar SDSS J1226-
0006, obtained by the COSMOGRAIL collaboration us-
ing the 1.2m Euler Telescope (Millon et al. 2020). The
time delay estimated by the COSMOGRAIL team is
Atirue = 33.7 £ 2.7 for this system using the observed
image light curves (Millon et al. 2020). We chose SDSS
J1226-0006 since the data have low noise level compared
to the light curve variability, sufficiently long patches af-
ter discarding large gaps, time delay significantly longer
than our smoothing scales, and no evidence for strong
microlensing. This system is thus a good match to the
simulated light curves used in previous sections, pro-
viding a good comparison. Analysis of more COSMO-
GRALIL systems is left for future work.

The observed light curves of the two images are shown
in Figure 19 in blue and green. The sum of these light
curves, representing an unresolved joint light curve, is
shown in red. We consider this joint light curve as our
data and test if we can identify the system as lensed and
if we can estimate the time delay using our method.

This system has been observed for 14 years, resulting
in 14 seasonal patches. However, we cannot use all the
patches since many of them have large time separations
(gaps) between two consecutive observations within the
patches. Hence we select only patches with (i) a max-
imum gap of 16 days (separation between any two suc-
cessive observations), (ii) duration longer than 160 days.
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Figure 14. The left panels show the light curve of system 127 from TDC1 (Rung 0) in the five observing seasons separately.
The green curves represent the smoothed fluxes with a smoothing scale of 6 = 4 days and Nix = 10. The right panels show the
fluctuation estimator ¥ as a function of At for each of the seasons using the corresponding smoothed light curve. Note that
all the five patches yield a strong pair of minima in the fluctuations near the correct time delay, Aty, = £38.33 days, shown by
the dashed vertical lines. They also show some false minima at incorrect time delays.

We find four such patches which are shown in the left
panels of Figure 20. The patches have average cadence
of 3.94, 3.79, 3.34 and 4.97 days and include 57, 55, 49
and 42 data points respectively.

Although the average cadence in the patches is 3-4
days, there are occasionally significant gaps (~ 10 days)
between consecutive observations. Therefore we need
to use smoothing scales that are larger than the aver-
age cadence, but not so large as to wipe out all the
important features of the light curve. We choose two
smoothing scales § = 8.0 and 9.0 days. The result ob-
tained using a single smoothing scale 6 = 8.0 days is
already quite good, but the use of two smoothing scales

boosts the signal. The green curves in the left panels of
Figure 20 represent the smoothed fluxes, corresponding
to the smoothing scale § = 8 and the number of iter-
ation Ny = 10, in each data patch. The right panels
show the fluctuation estimator ¥ as a function of Aty
for these smoothed light curves in the four patches. We
can see that, except for the third patch from the top,
we get a strong pair of minima near the correct time
delay Aty ~ +33.7 day, shown by the dashed vertical
lines. However, there are a number of other pairs of
‘false’ minima. We expect the false minima to decrease
in depth when we combine the seasons.
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System No.

True time delay

Atirue in days

Estimated time delay

Atest in days

TDC1 (Rung 0): observed in ~ 400 epochs over a period of 5 years

27 —40.79
105 23.73
125 32.47
127 38.33
131 —45.03
204 29.1

43.15£2.16
23.80 £1.19
30.85 £ 1.54
39.35 £1.97
45.55 £2.28
28.75 £1.44

TDC1 (Rung 1): observed in ~ 400 epochs over a period of 10 years

5 32.47
102 —13.04
202 50.81
208 39.93
246 31.38
254 —44.97
358 47.26

33.00 £1.65
13.50 £ 0.68
49.35 £+ 2.47
39.80 +£1.99
32.25£1.61
44.10 £2.21
46.10 £2.31

Table 5. Time delays estimated from the joint unresolved light curves compared with the true time delays for doubly imaged
systems taken from the TDC1 simulations. The top and bottom parts of the table show the results from Rung 0 and Rung 1
respectively. All the time delays are estimated within 3%. Note that this approach yields the absolute value of the time delay,
not the sign. The quoted errors are 5% of the estimated time delays.
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Figure 15. Fluctuation statistics for system 127 from

TDC1, Rung 0, based on all the 5 seasons of data and mul-
tiple smoothing scales (6 = 3.0, 4.0, 5.0). Two prominent
minima are evident at Aty = —39.3, 39.4 days with depth
¥ ~ —1.9. This pair of prominent secondary minima not
only identifies the system as lensed but also estimates the
true time delay (vertical dashed lines) within 3%.
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Figure 16. Same as Figure 15 for the light curve of only the
brightest image (blue light curve in Figure 13), mimicking a
true negative case. No prominent pair of minima is found,
identifying the light curve correctly as unlensed.

The combined fluctuation estimator X(Aty,y) from the
four seasonal patches is shown in Figure 21. We find a
pair of minima at Atyy = —28.7, 30.5 days with depth
3 = —1.35, — 1.68 respectively. Therefore, we de-



20

| : M:
ob oA N\ FaSVAVAN :I\ I\: AL AN
TV o N YNV
v,
W -2

T

1

]

—4r 1
1

I

6 1
1

System 125

ar System 131

0 B
W 1
2] Vol
1
4 | System 204 |
- I
1
-150 -100 -50 0 50 100 150

Aty

(a) using the joint light curve (lensed)

ot I\V/\/‘AI\VM f\v/\«ﬂ {\I\/\/\ A A A\
A AVAY AV Y} LA AR A VAVAS 0!

2"

System 27

System 125

System 131
—6h L L ! L L L

1 System 204

-150 -100 -50 0 50 100 150
Aty

(b) using the brightest image light curve only (no lensing)

Figure 17. Fluctuation estimator as a function of time delay for some example systems taken from TDC1, Rung 0, based
on the combination of the individual fluctuations from the 5 seasonal patches. The panels on the left show the results for the
actual lenses, while the panels on the right show the results for true negatives constructed by analysing only the brighter image

for each system.

tect the system as ‘highly probable lensed’ case, accord-
ing to our relaxed criteria (described in section 4.1.1).
Our estimation of the time delay (Atest = 29.60 + 1.48
day) is consistent with the COSMOGRAIL estimation,
(Attrue = 33.7£2.7) within the reported 1o uncertainty.
Note that both of the secondary minima in Figure 21 are
wide enough to accommodate the time delay estimated
by COSMOGRAIL.

For completeness, we analyse the observed light curve
of the brightest image, which is of course an unlensed
case. We consider the same data patches and follow the
same procedure as described above for the lensed case.
The combined (At ) curve is shown in Figure 22.

The absence of a pair of prominent minima at similar
values of |At,,| correctly identifies this light curve as a
true negative.

In summary, we correctly identify the system SDSS
J1226-0006 as a lens only using the unresolved light and
we estimate the time delay within the COSMOGRAIL
uncertainties. Furthermore, our method correctly iden-
tifies the light curve of the brightest image only as a true
negative.

7. SUMMARY AND DISCUSSION

We present a novel technique to detect lensed quasar
systems and measure the time delays using only un-
resolved joint light curve data, without any need for
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Figure 19. Light curves of the lensed quasar SDSS J1226-0006 observed with the Euler telescope by the COSMOGRAIL
collaboration. The light curves of the first and second images are shown in blue and in green respectively. We add the two to
construct an unresolved light curve, shown in red.
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Figure 20. The left panels show the light curves of SDSS J1226-0006 for four seasonal patches that meet the quality criteria
for our analysis. The green curves represent the smoothed fluxes with a smoothing scale of § = 8 days and Nj; = 10. The right
panels show the fluctuation estimator 3 as a function of Aty for each of these four patches. Note that three patches, except
the third one from the top, exhibit a strong pair of minima near the correct time delay, Aty = £33.7 days, shown by the
dashed vertical lines.
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Figure 21. Combined fluctuations corresponding to the
four data patches and two smoothing scales § = 8.0, 9.0.
Y(Atery) clearly shows two prominent minima at Atyy =
—28.7,30.5 days with depths of ¥ = —1.35, — 1.68 respec-
tively. The vertical dashed lines and the shaded gray region
show the COSMOGRAIL estimated time delay and the 20
uncertainty around it.
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Figure 22. Same as Figure 21 for the light curve of the
brightest image only. There is no prominent pair of minima,
correctly identifying the system as unlensed.

assuming a model/template or additional information.
Our method is general and can be applied to survey
data with insufficient angular resolution to resolve the
lensed quasars, thus opening up the opportunity to iden-
tify and measure time delays in a cost effective manner.

Our method builds on that proposed by Geiger &
Schneider (1996), partially breaking the degeneracy in
the reconstructed solutions, by looking for minima in the
residual fluctuations in the reconstructed light curve as
a function of trial time delay. A global minimum is al-
ways found for Aty = 0, while doubly imaged quasars
are identified by a pair of symmetric minima located
at approximately + the true time delays. The location
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of the pair of minima provides an estimate of the time
delay.

We conduct several tests of our technique. First, we
use simulations based on Damped Random Walk for the
quasar light curves, with and without noise. We use
training sets to define selection criteria and blind sets
to test the performance of the method. Second, we use
simulated light curves from the Time Delay Challenge.
Third, we apply the method to the light curve of the
lensed quasar SDSS J1226-0006 observed by the COS-
MOGRAIL collaboration using the 1.2m FEuler Tele-
scope (Millon et al. 2020).

Our main results can be summarized as follows:

1. For light curves with negligible noise, we find 95%
recall and 100% precision, based on conservative
criteria. The true time delays are recovered within
the sampling resolution of the trial time delay 0.1
days.

2. For light curves with ZTF-like noise, we find
that smoothing the light curves using an iterative
smoothing algorithm prior to applying our method
greatly enhances its performance. After smooth-
ing, we find 15% recall and 100% precision, based
on conservative criteria. We then introduce a set
of relaxed criteria, that yields precision of 92.3%
with a higher recall of 60%. The true time delays
are recovered within 3%.

3. For realistic LSST multi-year light curves taken
from TDC1, we find that combining the fluctua-
tion statistics from multiple years greatly improves
the signal in our fluctuation analysis. We consider
a number of doubly imaged systems from Rung
0 and 1 as examples and demonstrate that the
method can find the systems as lensed and recover
the time delays within 3% of the respective truths.
A follow up work will analyse all the systems from
different rungs of TDC1 and study the precision
and recall for TDC1 compilation comprehensively.

4. For the COSMOGRAIL light curve of SDSS
J1226-0006 we find that our method correctly
identifies it as a lens from the joint unresolved
light curve and estimates the time delay within
the COSMOGRAIL uncertainty. We use the light
curve of just one of the images to simulate a false
negative, and show that it is correctly labeled by
our method.

The main strength of our method in comparison to
those proposed in the literature (Geiger & Schneider
1996; Shu et al. 2021; Springer & Ofek 2021a,b; Big-
gio et al. 2021) is that it does not require any additional
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information, neither any model/template for the quasar
light curves, nor any spectroscopic information'?. Our
method is thus well suited for detecting lensed quasar
systems only using the light curves from ongoing time
domain wide field surveys like Pan-STARRS1, ZTF etc
and the future surveys like LSST by Vera C. Rubin Ob-
servatory, as well as from existing databases of quasar
light curves. The generality of the method suggests
that it should be more complete and unbiased than al-
ternatives based on stronger assumptions. For exam-
ple, our method can identify the lenses and measure
the corresponding time delays independent of the power
spectrum of the intrinsic quasar light curves, as demon-
strated in Appendix C.

In future work, we plan to test this method on large
number of simulations in a variety of scenarios, with
the goal of obtaining a proper understanding of the un-
certainties, and determining the precision and recall as
a function of conditions. From this exercise one can
also understand which observation strategy is favoured
in this approach, e.g. better cadence vs longer observa-
tion time vs better noise control etc, or tailor the results

to existing and planned surveys. Furthermore, we plan
to extend the algorithm to quad systems. Finally, we
plan to apply our algorithm to existing datasets and
carry out a search for lensed quasars.
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APPENDIX

A. ITERATIVE SMOOTHING WITH EXPONENTIAL KERNEL

We smooth the observed light curve Fups(t) iteratively with a Gaussian kernel following Shafieloo et al. (2006);
Shafieloo (2007); Shafieloo & Clarkson (2010); Aghamousa & Shafieloo (2015). The smoothed flux in the nth step is

obtained from the previous step as

Np

Falt) = Fuca () + Z(FObS(tQ){ “)

N(t)

%

where the normalisation term N (¢) is given by.

N(t) = NZ (=

O6bs (tl)

Fo_1(t:)) X exp {_(t;(st;)z] (A1)

) <o |- (58] )

Here F,_1(t) is the smoothed flux obtained in the previous step, i.e. at the (n — 1) step. We start with an initial
guess which can be a constant number for simplicity, Fy(t) =constant, and continue iterating for Nj; times. After a
sufficient number of iterations, the smoothed flux becomes independent of the initial guess. The smoothing method
has two parameters: the smoothing scale ¢ and the number of iteration Nj.

B. LIGHT CURVES WITH DEGRADED SAMPLING CADENCE

The simulated data that we use for validation in Sections 3 and 4 are sampled with daily cadence. We tested the
effect of sampling the same light curves with 3-day cadence.

13 In a separate article we aim to provide the mathematical proof as
to how our data driven method detects lenses and measures the
time delays by minimizing the fluctuation in reconstructed image
light curves. This will further allow us to compare our approach
with that of the other proposed methods.
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Figure 23. The figure demonstrates that our method performs well even for intrinsic light curves being generated from white
noise (left panels) and blue power spectrum (right panels). For simplicity, we assume negligible observational noise and one day
of cadence for simplicity. The vertical dashed lines represent Aty = =Attrue.

In general, ¥ (At ) become smoother with decreasing cadence, since small timescale features are erased. For the
3-day cadence light curves with negligible noise we identify 6 out of 10 systems as lensed, compared with 9 for the
daily cadence sampling.

For the light curves with ZTF-like noise, we find that the target pair of secondary minima at Aty ~ £A;ye 1S
slightly shallower in the 3-day cadence case. However, we can still identify a few with the relaxed selection criteria.
Fortunately, in reality, quasars are typically observed over many years leading to multiple patches in the data. We can
independently use those patches since typically the patches are longer than the maximum of At.,. As in the case of
TDC1 data shown in the main text, it is likely that combining multiple years of observations will improve precision
and recall of the estimator. A systematic investigation of the dependency of precision and recall on sampling is left
for future work.

C. EXAMPLES OF FLAT AND BLUE POWER SPECTRA

The power spectrum of a time series is defined as

Pw) = (flW)f(w)), (C3)
where f(w) is the Fourier transform of the time series f(¢). In the sections 3 and 4, we show a number of examples
where the intrinsic quasar light curves are simulated using damped random walk and hence they can be described
somewhat by the red power spectra (P(w)  |w|~Y where v > 0). In Figure 23 we illustrate that the method performs
equally well for two other types of the power spectrum — flat (white noise) and blue (P(w)  |w|?, v > 0) in the left
and right panels respectively!*. We correctly recover the time delays by following the pair of prominent secondary

14 The time series generated from a flat or blue power spectrum (as
shown in the top panels of Figure 23) may not describe the light
curves of quasars. Also note that here we consider high quality
data with negligible observational noise and one day cadence for
simplicity.
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minima at Atyy, = £Atee (the vertical dashed lines) in the fluctuation curves, (At ), shown in the bottom panels.
This exercise demonstrates that the method can detect the lenses independent of the form of the power spectrum
(red/flat /blue) and we do not need to make any assumption in this regard.
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