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Abstract

We consider a space-time domain decomposition method based on Schwarz
waveform relaxation (SWR) for the time-dependent Stokes-Darcy system. The
coupled system is formulated as a time-dependent interface problem based on
Robin-Robin transmission conditions, for which the decoupling SWR algorithm
is proposed and proved for the convergence. In this approach, the Stokes and
Darcy problems are solved independently and globally in time, thus allowing the
use of different time steps for the local problems. Numerical tests are presented
for both non-physical and physical problems with various mesh sizes and time
step sizes to illustrate the accuracy and efficiency of the proposed method.
Keywords: Stokes-Darcy system, Domain decomposition, Robin-Robin
conditions, Schwarz waveform relaxation, Robin parameters, Local

time-stepping

1. Introduction

In many engineering and biological applications, the Stokes-Darcy system

is used to model the interaction of fluid flow with porous media flow, where
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the Stokes equations represent an incompressible fluid and the Darcy equations
represent a flow through a porous medium. Such models are often considered
for studying groundwater flows problems [17, 19], filtration [48], flows in a vuggy
porous medium [1, 2], and also for understanding impact of stream pollution
in water supply [42] and other issues involving water contamination. In health
sciences, the Stokes and Darcy equations are used to model filtrations involved
in the pharmaceutical and chemical fields [36], biofluid-organ interactions or the
movement of blood within vessels [16].

A variety of solution algorithms have been proposed for the numerical ap-
proximation of the Stokes-Darcy system. The Stokes-Darcy system is studied
as a coupled monolithic system in [1, 2, 36, 51], and some decoupled algorithms
are investigated in [6, 9, 10, 26, 27, 39, 49, 53]. A monolithic approach is com-
putationally complex as it requires solving a large linear system; therefore, one
often needs the development of efficient and appropriate preconditioners for the
discretized linear system. Fully coupled approaches include the use of new finite
element spaces [1, 2], Lagrange multiplier spaces [3, 24, 33, 42], or fully discon-
tinuous approximations [50] to approximate the coupled Stokes-Darcy system.
Decoupling approaches allow operations on a smaller system of linear equations
for each subsystem. However, for such methods, difficulties arise in how to it-
erate between the two subsystems. Most decoupling strategies employ domain
decomposition (DD) techniques to allow the use of optimized algorithms for
the Stokes and Darcy subproblems. The mortar space methods are considered
in [6, 26, 27, 32], where unmatched meshes on the interface and subdomains
are used. Optimization-based DD methods are introduced in [23, 49], the two
grid approaches are studied in [9, 45], and the boundary integral method are
considered in [8, 54]. In [10, 15] DD methods using Robin-Robin conditions are
discussed for the Stokes equations coupled with the Darcy equation in the primal
form. There, iterative algorithms are analyzed for convergence and numerically
tested with various Robin parameters. More DD works using Robin-Robin con-
ditions for the stationary Stokes-Darcy system can be found in [18, 20, 31], where

the decoupling schemes are based on the optimized Schwarz method. The non-
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stationary Stokes-Darcy problem is studied using the Crank—Nicolson method
in [14]. Non-iterative decoupled marching schemes obtained by lagging the in-
terface coupling terms are investigated in [46, 43]; extensions to the case with
different subdomain time steps are analyzed in [53, 52]. Parallel, non-iterative,
multi-physics DD methods with Robin conditions are proposed to solve the cou-
pled time-dependent Stokes-Darcy system in [11, 35]. In [47], a non-iterative
Robin-Robin domain decomposition method is analyzed for the time-dependent
Navier-Stokes-Darcy model with Beavers-Joseph interface condition and defec-
tive boundary condition.

In classical DD approaches for time-dependent problems, model equations
are discretized in time first, and then DD methods are used at each time step.
A uniform time step is usually considered in such approaches. Since the time
scales in the Stokes domain and Darcy domain could be largely different, it is in-
efficient to use a uniform time step throughout the entire time domain. Another
approach used in some recent works for time-dependent problems is based on
global-in-time or space-time DD methods in which iterative algorithms are di-
rectly applied to the evolutionary problem. Consequently, each time-dependent
subdomain problem is solved independently, leading to an efficient way to sim-
ulate time-dependent phenomena as different time discretization schemes and
time step sizes can be used in the subsystems. In [39], we developed a global-in-
time DD method based on the physical transmission conditions for the nonlinear
Stokes-Darcy coupling. A time-dependent Steklov-Poincaré type operator was
constructed, and non-matching time grids were implemented with the use of
L? projection functions to exchange data on the space-time interface between
different time grids.

In this work, we study another global-in-time DD method, namely the
Schwarz waveform relaxation (SWR) method with Robin transmission condi-
tions, for the mixed formulation of the non-stationary Stokes-Darcy system
using nonconforming time discretization. It should be noted that the conver-
gence of the classical Schwarz waveform relaxation algorithm can be improved

by optimizing the coefficients associated with the transmission conditions used
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in exchanging space-time boundary data between subdomains, and such an ap-
proach is called optimized Schwarz waveform relaxation (OSWR). This method
was introduced for parabolic and hyperbolic problems in [29], and it was ex-
tended to various problems such as advection-reaction-diffusion problems [44],
the compressible Euler equations [22] and the full Maxwell system [21]. It has
been implemented in various other works (see, e.g., [5, 7, 29, 30, 37, 44]). For
evolutionary multiphysics problems, the choice of Robin coefficients involved in
the SWR algorithm is still an open question, and we shall discuss how Robin
coefficients affect the accuracy of numerical solutions in our numerical experi-
ments.

This paper is organized as follows. In Section 2, we introduce the model
problem, the linear Stokes—Darcy system. In Section 3, we derive a space-time
interface problem based on Robin transmission conditions and present the SWR,
algorithm and its convergence analysis. The semi-discrete, nonconforming in
time, SWR algorithm and its convergence are discussed in Section 4. Numerical
tests are performed for non-physical and physical problems, and the results are

presented in Section 5.

2. Model Equations

Suppose the domain under consideration is made up of two regions Q,Q, C

s R? d=2,3, separated by the common interface I' = 9Q2N0S2,. The first region

Qy is occupied by a free fluid flow and has the Lipschitz boundary 02y = Fé ur
and the second region (2, is occupied by a saturated porous structure with the
Lipschitz boundary 0, = I'f, UT" (see Figure 1). For the fluid flow in Qf we

consider the Stokes equations with no-slip boundary condition on FfD:

811f

ﬁ—2VfV~D(Uf)+fo = f; inQyx(0,7), (2.1)
Veu;, = 0 inQpx(0,7), (2.2)

u; = 0 onT% x(0,7), (2.3)

us(-,0) = wuyp in Qy, (2.4)



90

95

100

s, Qy s,
ny
n f
7, Q, " e
Yy

Figure 1: Stokes-Darcy domain

where uy denotes the velocity vector, py the pressure, vy the fluid viscosity, fy
the body force acting on the fluid and D(uy) := 1 (Vuy + (Vuy)T) the rate of
strain tensor. The porous medium flow is represented by the Darcy model with

no-flux boundary condition on I'}:

ey K 'uy, +Vp, = 0 inQ,x(0,7), (2.5)
0 :

&(sopp) +V-u, = f, inQ,x(0,T), (2.6)

u,-n, = 0 onI% x(0,7), (2.7)

pp(,0) = ppo in Qp, (2.8)

where p,, is the pore pressure, u, the Darcy velocity and f, the source/sink term.
The constrained specific storage coefficient is denoted by sq, fte s represents the
effective fluid viscosity, and K the permeability tensor of the porous medium. In
general, K is a symmetric positive definite tensor. For simplicity, we assume that
ycfde is represented by 1,1, i.e., ueffol := v, for some scalar function
Vp.

In order to complete the Stokes-Darcy model, we impose the following in-

terface conditions on I x (0,7):

uf-ng+u,-n, = 0, (2.9)
ng - (psl—2vsD(uy)) -y = pp, (2.10)
Ilf~(pr—2VfD(llf))-tj = cpysuy-t;,j=1,....,d—-1, (2.11)
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where ny and n,, denote outward unit normal vectors to €y and 2, respectively,
t;,j =1,...,d — 1 denote the orthogonal set of unit tangent vectors on I', and
cpJjs denotes the resistance parameter in the tangential direction. The interface
condition (2.9) enforces the mass conservation across the interface, by enforcing
the continuity of the normal velocities, (2.10) enforces the continuity of the
normal component of normal stress tensor and (2.11) is the Beavers-Joseph-
Saffman condition [40]. These interface conditions suffice to precisely couple
the Stokes system (2.1)-(2.4) to the Darcy system (2.5)-(2.8).

We use standard notation for Sobolev spaces, their associated norms and
seminorms to define a weak formulation of the problem. For example, for an
open domain ® ¢ RY, wm» (©) is the usual Sobolev space with the norm
|l [lmpe- In case of p =2, the Sobolev space W™2(0) is denoted by H™(O)
with the norm | - ||;n,0. When m = 0, H™(0) coincides with L?(©). In this
case, the inner product and the norm will be denoted by (+,-)e and | - |le,
respectively. Moreover, if © = € or €2,, and the context is clear, © will
be omitted, i.e., (-,-) = (-,-)a, or (-,-)q, for functions defined in Q; and €.
Finally, the associated space of vector valued functions will be denoted by a

boldface font. Define the following function spaces for (uy,py) and (up, pp):
X;={veH(Qf): v=0 on Fg},
Qg = L*(Qy),
Vii={vy € X5 (g, V- vy) = 0,Ygs € Qs},
)A(p ={veH"™(Q,):v-n,=0 onT%]},
X, ={ve )/ip v n oo, € L*(09,)},

Qp = Lz(Qp) )

where X, is equipped with the norm

Ik, = [Vl3wva,, + 11V - nl3q,.

Note that X, is a subspace of )A(p with the additional regularity condition.

The L2-regularity of the normal trace of v € X, is needed for the convergence
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proof presented in the next section. The spaces Xy and Q¢ satisfy the inf-sup

condition,
:
inf s (qfa V "f)

> B> 0. (2.12)
47€Qs viex; llarlllIVvyl

The dual spaces X} and V7 are endowed with the following dual norms

W,V
w|v ( )

(vaf)
[wllxs == sup ———=, || = sup ~——I2
4 ! vyEVy ”va”

viex; [IVvyll”

These norms are equivalent for functions in V as stated in the following lemma.

Lemma 2.1. Let w € V. Then, there exists C, > 0 such that
Cillwllxy < llwllvy < [lwllx;-
Proof. See Lemma 1 in [34]. O

For the variational formulation of the coupled Stokes-Darcy system, we in-
troduce the Lagrange multiplier A\ € L?(0,T;A), A = Héf(l“) [42], on the

interface representing:
A= nf~(pr—2VfD(uf))~nf =DPp on I' x (O,T) (213)

Let A* be the dual space of A. For v C T, we use (-, -)r to denote the duality
pairing between A and A*. The variational formulation for the Stokes-Darcy
system (2.1)-(2.8) satisfying the interface conditions (2.9)-(2.11) reads as: given
the initial conditions, find (uy, ps, up, pp, A) € (Xf,Qf,)A(p,QWA), for a.e. t €
(0,T), such that

d—1
(Ovug, vy)+20p(D(ug), D(vy)) = (0, V- vy) + D eys(uy - t, vy - t))r
=1
= (f,vy) + (N, vi-ng)r Vv é Xy, (2.14)
(a5, V-up) =0 Vgr €Qy, (2.15)
Vp(Up, vp) = (05 V- Vp) = (A vy mp)r Vv, € Xy, (2.16)
(ap 50 Oepp) + (4p, V- 1p) = (fpap)  Vap € @y, (2.17)
(up np+uy -ny,pur=0 VueA. (2.18)
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The well-posedness of the stationary Stokes-Darcy model in mixed form can be
found in [42] and is assumed to hold similarly for the non-stationary case, i.e.
(2.14)-(2.18). For the smooth solutions, the equivalence of the stationary Stokes-
Darcy system and the variational formulation is discussed in [24]. The existence
and uniqueness of the weak solution to the non-stationary Navier-Stokes-Darcy
system with the Beavers-Joseph-Saffman interface condition is studied in [13,
12]; the analysis for the case of Beavers-Joseph interface conditionis done in [11].
In these works, the primal formulation is considered for the Darcy problem, i.e.
the velocity and pressure are the unknowns in the fluid flow domain and the

pressure is the only unknown in the porous media domain.

3. A global-in-time decoupling scheme

In this section we present a decoupling scheme for the Stokes-Darcy system
based on global-in-time domain decomposition. We first rewrite the physical
transmission conditions as equivalent Robin conditions and derive the associated
space-time interface problem with two interface variables in Subsection 3.1. Such
an interface problem is solved iteratively, using Jacobi iterations or GMRES.
The former choice is equivalent to the SWR algorithm, which is presented and

analyzed in Subsection 3.2.

8.1. Robin transmission conditions and the space-time interface problem

For the Robin transmission conditions on I', let oy and «, be positive pa-
rameters. Combining (2.9) and (2.10) linearly with coefficients (—ay, 1) and

(cvp, 1), we obtain the following two-sided Robin interface conditions on I' [18]:

ng - (pl—=2vD(uy)) - np —apup-ng =pp+aguy-n, onlx(0,7), (3.1)
Pp —opuy -ny, =1nyg - (prl—2vpD(uy)) -ny +apup-ny on I x (0,7). (3.2)

If we let gy € L*(I") be a Robin condition for the Stokes equations with the

parameter ay > 0 as in the left hand side of (3.1), the corresponding weak



formulation is given as follows: find (uy,py) € (X5, Qy), for a.e. t € (0,7),

such that
d—1
Oy, vy)+2vp(D(ug), D(vy)) = (pr, V- vy) + Y cprs(ug - t, vy ti)r
j=1
+ayp(up-ng,vy-ng)r = (fr,vy) — (g5, vy np)r Yvye Xy, (3.3)
(Qf,V‘Uf) =0 quEQf, (3.4)
(ur(+0),vy) = (upo,vy) VvyeXy. (3.5)

Similarly, considering g, € L*(T') as a Robin condition for the Darcy system
with the parameter a;, > 0 as in the left hand side of (3.2), we have the weak

us formulation given by: find (up,p,) € (X,, Qp), for ae. t € (0,T) satisfying

vp(Up, vp) = (pp, V- vp) + ap(uy, - 1y, vy -y )0

= —(gp,vp -mp)r Vv, €X,, (3.6)
(@p» 50 0tpp) + (4p, V- 1p) = (fpy ap)  Yap € Qp, (3.7)
(pp('70)7%) = (pp0>qp) Vap € Qp - (3-8)

Remark 3.1. From the Robin condition (3.2) with g, € L*(T') and by the
definition of X, the trace p, is in L*(T). In fact if the test functions v, in

(3.6) are chosen to have compact support, then p, is in H'(,) as shown in [38].

Denote by (uy,py) = (uf(gf,ff,ufg),pf(gf,ff,ufo)) the solution to the
Stokes problem (3.3)-(3.5), and (u,,pp) = (up(gp,fp,ppo),pp(gp,fp,ppo)) the
solution to the Darcy problem (3.6)-(3.8). To derive the interface problem
associated with the Robin conditions (3.1)-(3.2), we first define the interface

operator:
2 2
R (L2(0,7: L2(1)) — (L2(0.75 L))
such that
R gr | _ 9p + (ap + ay) (up(gpv o Pp0) - np) Ir (3.9)
9p g5 + (ay +ap) (ug(gy. fr,up0) -my) |r



150

155

Then the Robin transmission conditions (3.1)-(3.2) are equivalent to the follow-

ing space-time interface problem for two interface variables:

S| ¥ | =xr onT'x(0,1), (3.10)
L gp
where
e 95 | _ | 9 ] | o + (ap + ) (up(gp,0,0) - myp) | ’
9p 9p | g5 + (o +ayp) (ur(gr,0,0) - ny) [r
and

(ap +ay) (up(O, fpsPpo) - np) Ir
XR =
(o + ap) (us(0,£7,us0) - myp) [r
The weak form of (3.10) is given by: find (gr, gp) € (LQ(F))Q, for a.e. t € (0,7),
such that V (¢5,&,) € (LA(T))?

/ Sr 9. & d’y:/ XR - o dr. (3.11)
r 9p fp r fp

To carry out the convergence analysis of the proposed decoupling scheme, we
solve the space-time interface problem (3.10) by Jacobi iterations, which is
equivalent to the SWR algorithm and will be presented next. However, for
the numerical experiments (cf. Section 5), we will use GMRES to solve the

interface problem iteratively for faster convergence.

3.2. Schwarz waveform relaxation (SWR) algorithm

Consider the following SWR algorithm based on Robin transmission condi-

tions: at the kth iteration step we solve

dpuf =V - 2uyD(uf) —pfI) = £ inQpx(0,7), (3.12)
V- = 0 inQpx(0,7), (3.13)
n’;é~(p’fcIf21/fD(u’;))~nffozfu’;bnf = pgflJrozfu’;*l n,

on T x (0,T), (3.14)

10



for (u’;,p’;) satisfying the initial and boundary conditions (2.3), (2.4) and the

Beavers-Joseph-Saffman condition (2.11), and

vpup +Vpy = 0 in€Q,x(0,7), (3.15)
sodwh +V-ul = £, inQ,x(0,7T), (3.16)

pp—opuymy, = ng-(pf T 20D(uf )0y +apuft g
onT x (0,7), (3.17)

for (uk,pk) satisfying (2.7) and (2.8). The weak formulation of this decoupled
10 System is written as follows: at the kth iteration, find (u’},p’;) € (Xs,Qy) and
(uf,pk) € (X, Qp), for a.e. t € (0,T), such that

d—1

(@, vyp) +20p(D(uf), D(vy) = (0F, V- vp) + D epss(uf -t vy - t))r
j=1

+ag(af -ngveong)r = (fr,vy) — (P57 +apu) ™ o0y, vy ong)r
Vv e Xy, (3.18)

(g7, V-uf) =0 Vgr €Qy, (3.19)

and

Vp(“?"p) - (pﬁ, V- V];) + ap(u’; "Ny, Vp - Dp)r
= —(ns - (P} T = 20D} )y + puf o np, v, my)r
Vv, € X, (3.20)
(4ps 50 0i0p) + (4p, V- up) = (fp,0p) Vap € Qp. (3.21)

In the next theorem we prove the convergence of the proposed algorithm.

The following identities will be used in the proof:

(nf - (5T — 204 D(uk)) - ny — ayul -ny)?
—(nf - (PfI - 205 D(u})) - nf + yuf - ny)? (3.22)
= —2(ay +ap)(uf np)(nf - (pfI — 20, D(uf)) - nyp) + (o — ap)(uf ny)?,

(p]; - apu]; “n,)? — (p]; + O‘fu’; “n,)?

= —2(as + ap)p, (uy  mp) + (o) — aF)(uy - my)?. (3.23)

11



Theorem 3.1. Let fy € X}, f, € Qp and let ay,a, € R be such that oy, >
oy > 0. If initial values (u(},p(},ug,pg) are chosen such that the Robin-Robin
conditions (3.14), (3.17) are well-defined in L*(T) then the weak formulation
(3.18)-(3.21) defines a unique sequence of iterates

(uf, pf,ag,pk) € L=(0,T; Xf) x L*(0,T; Q) x L*(0,T; X,,) x L>=(0,T;Qp)
s that converges to the weak solution (uy,pr,up,pp) of problem (2.14)-(2.18).

Proof. As the equations are linear, for the proof of convergence we take fy =
ufo = 0 and f, = ppo = 0, and show that the sequence (u’},p’},u’;,p’;) of
iterates converges to zero in suitable norms. The uniqueness of the sequence of
iterates follows from the well-posedness of non-stationary Stokes-Darcy system.

170 Choosing vy = u? and g5 = p’} in (3.18)-(3.19) and adding two resulting
equations yield

d—1
ko k k k k
(Opuf, uf) + 2vf [ D)IB, + > eprslulf - t5]12 + agluf - ngf
=1

= —(pl;_1 + ozfu];_1 : np,u]} ‘ng)r.

By using the Robin condition (3.14) and (3.22), we obtain

d—1
E ok k k
(O, uf) + 205 [ DB, + > cprsluf -t
J=1
1 k k k 2
+m||nf ~(pjI = 2vp D(uf)) - ny + apuy - ngl|n
1 k— k— Qp — Af 1k
= WHP;} ! +ayu, b np||% + -2 5 ! [[uf - an%- (3.24)
P

In the following, we shall consider the case where o, is strictly greater than oy;
if ap = ay, a similar and simpler proof can be obtained (cf. Remark 3.2). We

s integrate (3.24) over (0,t) for a.e. t € (0,T], and use the trace theorem, Korn’s

12



inequality and Young’s inequality to obtain
1 t d—1 t
k2 ENp2 k 2
§Hu‘f(t)HQf + 2Vf/ [D(uf)llq, ds+ ZCBJS/ [} - t;I% ds
0 e 0
1 ' k k k 2
+m ; Iny - (pfI —2vyD(uf)) - ny + apuy -ngl|f ds
1 ke k—1 2
S o [ o7 +opuyT -nypds
2(ay + o) /0 P e P
t
+C/O [ (s)lle, ID(uf(s))lle, ds
1 N k-1 2
< — T4 aru, C-n ds
—= 2(Off+ap)/0 ||pp Y PHF

—[t/1
+0 [ (I, + DIz, ) s

for some constant C' > 0 and € > 0. Setting € = v¢/C, we have

d—1

1 t i
SISOl o5 [ IDGHIR, ds+ D enss [ -7 ds
j=1

1 ¢ &
+— n;- I-2v:D(u®)) n;+ a,u® n;l|? ds
2(af+ap)/0 oy - (py rD(ug)) -0y +apui - ngllr
1 ! k—1 k—1 2 ! k 2
< - . d C d 3.25
< 2(af+ap)/0 lpp " +apuy ™" -ny|fds + /o [uf(s)lle, ds, (3.25)

where C' = g Similarly, setting v, = u¥, g, = p& in (3.20)-(3.21), adding the

resulting equations and using (3.23), we get

vplluglld, + (so Oy, py) +

1 k k 2 1 k 2
ST — Qpu, -1 -3 - u, ‘n .
= 2(af+ap)||pp apuy - mp [ 2(%9 ay)uy - mpl|p

k k 2
e — .n
2(O[f+0lp)||pp+afup PHF

w  Let vy := 2252 > 0. We integrate the above inequality over (0,t) for a.e.
t € (0,T] and apply the Robin boundary condition (3.17) to obtain:

t t
k 2 50 k 2 1 k k 2
Vp/o [up (), ds + Epr(t)HQp + 2(%"‘*‘%)/0 pp + apu, - nplf ds
t
7 [kl s

1 t k-1 k—1 k—1 2
Soao ny- (pf  I—2veD(E ))ng + apul gL ds (3.26
—2(af+a,,)/0 s - (v s D(ug)ny + apug g |r ds (3.26)

13



We add (3.25) and (3.26), and define

t d—1 t
B0 = g0l v [ 1D, ds+ Y enss [ Il ds
j=1
' ey (2 801, k)12 ! k 2
+p [ b0, ds-+ SO, + [ b nlf ds,
1 t

Bk(t) = Q(Ozf-i-oép)/o ||nf-(p’}I—QVfD(u?))nf—|—ozpu;?.nf||%ds

1

t
k k 2
atarran kel as
Then, for all £k > 0
t
EF(t) + BX(t) < BY\(t) + C / s (s)113, ds,

and summing over the iterates for any given K > 0 yields,

S B < B0+ [ e, ds (3.27)
k=1 k=170

where

1 t
0 _
B0 = e+ ap) /0 /rgo o5

for go = (ny - (p}I — 2v¢ D(u}))ns + ayufng)® + (p) + afuy - n,)* obtained by
the initial guess. Now, from the definition of E¥(t) and (3.27),

K K t
1
5 LIS, < BO+C Y [ ek, ds
k=1 k=170
Applying Gronwall’s lemma, we obtain

K
Y lafdl, < 262°TBYT), (3.28)
k=1
for any K > 0 and a.e. t € (0,7). The inequality (3.28) implies that u]]’% tends
to 0in L>°(0,T;L2(2)) as k — oo, and the inequalities (3.27) and (3.28) yield

K t d—1 t t
S (v / D@82, ds+ 3 enss / s - 512 ds + v, / (1), ds
=1

k=1

t
+%0||p§(t)|\?lp +'y/ [y - 0,1 ds) < (1420Te*TYB(T), (3.29)
0

14
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for any positive integer K. The inequality (3.29) implies that D(uf) uf -t; u
pf and u} - n, tend to 0 in L2(0,T; L*(Qy)), L?(0,T; L*(T")), L*(0,T; LQ(QP))7
L>(0,T; L?(%,)) and L?(0,T; L*(T)), respectively, as k — oo.

For the convergence of p]]%, we follow the technique used in [25]. We isolate

the time derivative term in (3.18). Then for all vy € V:

(Opuf,vy) = —2v5(D(uf), D(vy)) — ap(uf -ns, vy -ny)r
d—1
- ZCBJS(uI} “tj, vyt — (p’; s afu’;_1 -np, vy -ny)r(3.30)
j=1

For the bounds of right-hand side terms in (3.30) we use Cauchy-Schwarz in-
equality, the trace theorem, Korn’s inequality and Poincaré-Friedrichs inequal-
ity, divide both sides by HVV fHQf and take supremum over vy € V. Then, for

some constants Cy,Cy, C3,Cy > 0,

1/2 1/2
v, < 20pC1ID(E) o, + CallD(uh) g ufgf;
d—1
+3 epssCsllul -ty + Callph ™ + apub~tny |
j=1
d—1
C Cy
< Fluflle, + (20601 + 3 ) D@l + Y crasCsluf -t
2
j=1

+Callpy ™ e + o Callup ™ - my I

Setting C= max{%, (2vsCy + %), cBysCs,Cy,a5Cy}, we have

lorafllv; < C(lufla, +IID])lle, +Z||uf il + oy~ e+ luy ™ np e ).

Lemma 2.1 then implies

d—1
k—
l9safllx; < O Clllaflle, +ID@h)lla,+D Iuft;lo+lps lo+uwy~ npllr)

j=1
(3.31)

Now consider (3.18) with vy € X ;. We isolate pressure term, divide by |[Vvy]|,

take supremum over vy € Xy and use the inf-sup condition (2.12) and the
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210

estimate (3.31). Then, for some > 0,

d—1

Blofle, < (1+C'O)(Iuflla, + D)o, + > uf - 5]
j=1

Hlpp e + Jlug ™t myflr) -

Square both sides and integrate over the interval (0,t) for a.e. ¢ € (0,T] to

obtain

B2 /t k|2 /t k|2 k(2
— P ds < u + || D(u
Ca s | f||9f . (|l f||9f |1D( f)Hszf

d—1
D Il T IR+ g lR) ds, (3.32)
j=1

where Cy = (d + 3)(1 + C71C)2 > 0. As pi~! € H*(Q,) (see Remark 3.1),
using the trace theorem we have ||~ r < [[p5~ (|15 [Ip5 "l Thus (3.32)

becomes

d—1
52 t t
ca s 1318, ds < ; (IflI, + ID@pIE, + D uf - t5]E
j=1
iy e, oy e, + luy ™ - nyl7) ds,  (3.33)

where ||p’;_1||1,gp < o0, since p’;_l € H'(Q,). Because u’J& D(u’}), u’} -t5, p’;
and ul - n, tend to 0 in L>(0,7;L*(€y)), L*(0, T;L*(Qy)), L2(0,T; L*(I")),
L>(0,T; L*(S,)) and L?(0,T; L*(T)), respectively, as k — oo, (3.33) implies
fot ||p’jc||2ds converges to 0 as k — oo. Hence p’} tends to 0 in L2(0,T; L*(Qy))

as k — oo. O

Remark 3.2. When oy, = ay, the proof can be carried out in a similar manner

except that the use of Gronwall lemma is no longer necessary.

Remark 3.3. The choice of the Robin parameters, oy and oy, depends on
the physical parameters of the problem and its discretization (i.e., the mesh
size and time step size). For the case where a unique physics is considered
on the whole domain, Robin parameters can be optimized by minimizing the

convergence factor of the SWR algorithm in the Fourier transformed domain
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as proposed in [30]. Such an approach is called optimized Schwarz waveform
relazation (OSWR). For the stationary Stokes-Darcy system, optimization of the
Robin parameters was studied in the framework of optimized Schwarz methods in
[18, 31], again by means of Fourier analysis. However, for the time-dependent
Stokes-Darcy coupling, it is not clear how to choose the Robin parameters in
an optimal way; direct application of OSWR to the multiphysics system may
not give desired numerical results in terms of accuracy of numerical solutions.
We shall discuss various choices of the Robin parameters and their numerical

performance in Section 5.

Remark 3.4. A straightforward extension of the optimized Schwarz methods
in [18, 31] for the stationary Stokes-Darcy system to the time-dependent case
18 to first discretize the equations in time implicitly, then perform the iterative
algorithm at each time step. In this work, a different approach is considered
by deriving the space-time interface problem associated with the Robin trans-
mission conditions; solving such an interface problem iteratively involves the
solution of time-dependent subdomain problems over the whole time interval at
each iteration. Consequently, nonmatching time discretizations can be used in

the subdomains which will be discussed in the next section.

4. The semi-discrete, nonconforming in time,SWR algorithm

As the interface problem (3.11) is global-in-time, we can use different time
step sizes in the Stokes and Darcy regions. The advantage of using noncon-
forming time grids is that time discretization can be selectively refined for a
subproblem where the error in the solution is likely to be larger. In the fol-
lowing, we shall introduce L? projection functions to exchange data on the
space-time interface between different time grids and prove the convergence of
the time discretized SWR algorithm with nonconforming time grids.

Let 74 be a partition of time interval (0,7") into subintervals for the Stokes
domain. We denote the time interval (t}”_l,t?"‘] by Ji* and the step size by

At’}L =t - t;n_l for m =1,....., My. Denote the space of piecewise constant

17
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Figure 2: Nonconforming time grids.

functions in time on grid 7; with values in W by Py(7f, W), where W = L?*(T'):
Po(tp, W) ={¢:(0,T) — W, ¢is constant on J;* Vm =1,...., M;}.

We define 7, M, J; and At} similarly for the Darcy domain. In order to
exchange data on the space-time interface between different time grids, we define
the L? projection II,, s from Py(7¢, W) onto Py(7,, W) [30, 38]:
M
1 s

1y Oy = o 2 /J o (4.1)

The projection Iy, from Py(7,, W) onto Py(7f, W) is also defined similarly. We

use the algorithm described in [30] for effectively performing these projections.

Remark 4.1. Different subdomain time steps for the Stokes-Darcy system have
also been studied in [53, 52] in which the time step size in the Stokes region is
an integral multiple of the time step size in the Darcy region. These methods
are non-iterative by using an explicit method for the coupling terms, and the
key issue is how to achieve desired accuracy and stability properties. Here we
propose the iterative SWR algorithm which enables the use of arbitrarily different
time step sizes in the subdomains; the interface conditions on nonconforming
time grids are enforced using the mentioned L? projection. The method is fully
implicit in time, thus considerably large time step sizes are possible without

affecting stability.

18



Using the backward Euler method, the semi-discrete Stokes-Darcy system

with Robin transmission conditions on I' is given by: for m =1, ..., My

uy — u?“l + At7(=2vyV - D(u}') + VpP'I) = /Jm frdt in Qy(4.2)
f

V.uP =0 inQy, (4.3)

AtF (ng - (PP =20 D(u})) - ng — aguf - ny)

:/ Oy, (pp + fupy-my,) dton T,  (4.4)
JTrL
f

and forn =1,....., M,
vpu, +Vp, =0 in €, (4.5)

solpy —pp~ ') + ALV -uy = vt (4.6)

At;’ (p;} - apu; . np)

= / I, s (ns - (psI—2vyD(uy))nyg + apuy -ng)dt on T, (4.7)
Iy

=5 where (uyp,py) = (u?,p}”)%fl satisfies the boundary conditions (2.3), (2.11)

and the initial condition u(} = uyo; and (up,pp) = (ug,pg)ﬁipl satisfies the
boundary condition (2.7) and the initial condition pg = ppo. The semi-discrete

SWR algorithm is then written as follows: in the kth iteration step, we solve
k,m km—1 m .m k,m .
u; " —uy — At} '(2VfD(Ll];c )—py ) = /Jmffdtln Q4(4.8)
f

Vouf™ =0 inQy, (4.9)

At (nlfc . (pl;’ml - 2VfD(u];’m)) ‘ny — afu];’m -nf>
= / Iy, (p’;_l +oagpupt np) dt onT (4.10)
Jm
7

for (uf,p%) = (u’;’m,p’;’m)%il satisfying (2.3), (2.11), where u’;’o = uyo,

19



260 u’;’m = u’; J}n,p’;’m = p’]i gy form=1,...., My, and
vpup™ + Vph =0 in Q,, (4.11)
so(py™ — Py ) + AV - ubt = / f,dt inQ,, (4.12)
At? ( -« uk ".n )
P P P
= /J I, ¢ (nf . (p’;fll — 2ufD(u’;fl))nf + apu’}f-*1 ~nf> dt
P
onT (4.13)
M e
for (u’&pﬁ) = (u’;’”,p’;’”)n:”1 satisfying (2.7), where plz?o = Ppos u’;’” = u’;|,]g,p’;7” =
p’;\Jg forn =1,....., M. We show in the following theorem that as £ — oo, the

weak solution to (4.2)-(4.7) converges to the weak solution of (4.8)-(4.13).

Theorem 4.1. Assume that oy = a,, > 0. If initial guess values (u$,p}, up, pp)
are chosen such that the Robin-Robin conditions (4.10), (4.13) are well-defined

in L*(T), the weak formulation (4.8)-(4.13) defines a unique sequence of iterates
(uf, pfaf,pk) € Po(rp; Xp) x Po(ry5Qy) X Po(1p; Xp) X Po(7p: Q)
that converges to the weak solution of (4.2)-(4.7).

25 Proof. As the equations are linear, we let £ = uyo =0, f, = ppo = 0 and derive
the energy estimates as in the proof of Theorem 3.1. First, we multiply (4.8),
(4.9) by u k ™ and p];’m, respectively, integrate them over Q; and use (2.11).

Then add two resulting equations and use (3.22) to obtain

(ul}m u]; m)Qf (u]; et uf )Qf +2Atmyf||D( )”?Zf
d—1
+ZCBJsAt HU th?zf
j=1
Aty k k k
72(0410 Ta ) an ( f"mI — 21/fD(uf’m)) ‘ny -+ apuf’m . an%
Aty k k k
< W”nf ("L =20y D(up™)) np —apup™ ngf
P
At (ap —ap)
L " I

20



Using Cauchy-Schwarz inequality and %(a2 — b%) < a® — ab, we obtain

1 k kom—1
o (1, = M ) + | 2wgl DO, do
f

d—1
+3 s [, de
j=1 J7

1 k k k 2
B S — ne- I—-2v:D(u%)) ns+ a,uf -n dt

1 / k k k 2
< Ins - (pFI —2v,D(u%)) -ny — apuf -ng||f dt
2oy +ap) Jpp T e F A A A A

Ay —
+”Tf /Jm luf - ng |2 dt. (4.14)
f

2o Similarly, multiply (4.11), (4.12) by u’;’" and p’;’", respectively, integrate over
Q,, add the two results and use (3.23) to have

50 _
v [ 1l de+ g (k70,11 )
P

1
e )/J Iy + ayul - ny||f dt
LS
1 k k 2 ap*af/ k 2
A —apu, - n dt — u -n 4.15
< stayrag [ b e w220 [ o g

We cannot use Gronwall’s lemma as in the continuous case because of the global-
in-time projections Il , and 1I,, y. Hence, we make the assumption that oy = «,
to cancel the last terms of (4.14) and (4.15). Summing (4.14) and (4.15) over

s the subintervals in (O,t}”] and (0, ], respectively, yields
Lok
s, + |

1
—_
2(ar +ap) Jo

1 t7
< 2(C¥f+a)/o [y - (p’]iI - QVfD(u];)) ‘nyp — O‘fu]} 'nf”% dt, (4.16)
P

+m d—1 tm

f f
2wwmmam+2@mA s - t5]13, dt

j=1

tm

! k k k 2
Ing - (pfI —2vyD(uf)) -y + apuj -ngllp dt

and

tr tm
k2 S0 kn2 T k 2
VP/O ||up||Qp dt + ?pr n”Qp + 2(af I Oép) /O pr + afup : nP”F dt

1 tZ k k 2
_ — . dt. 4.17
S 2(Oéf ap) /0 ||pp apuy, np”F ( )
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Adding (4.16) and (4.17), and using the Robin conditions (4.10) and (4.13), we

obtain

tm

1 k,m B
g, + [ 2w D, o

a1 7 A
#3 s [t dev, [,
= 0 0

t'IL
S0 kmn|2 1 Pk k 2
20 1pk T, |2 dt
SRR, + ey [ Ik + e my
+; /t}n ng - (pET — 20, D(uk)) - ng + apu’ - ng |2 dt
2(ay +ap) Jo ! ! v
1 & k-1 k-1 2
= 2a; + ) Jo Ifp(pp +apu,™ -ny)|F dt
P
1 g _ _ _
atarrany Moty 05T 20 D) g 4 o om )1
») Jo
1 N _
< 2(041”‘*‘041))/0 ||pl;; 1+O‘fu’; l'np”% dt
1 t _ _ _
+2(af+a)/0 g - (0T =20, D(uf ™) -y + apuy " - ng |7 dt . (4.18)
P
We set m = My and n = M, then t}wf = 1,7 = T. Now (4.18) becomes
L kMp o ’ ky(2 -« g k 2
Sy g, + ; 2v7 | D(f)IG, dt+ > cpys ; [[ug - tlle, dt
j=1

T T
k2 50 . k,M, |2 1 k k 2

dt + —||p>™» e - dt
+VP/O ||upHQP + 92 pr HQP + 2(af Oép) A ||pp + afup nPHF

1 g k k k 2

+2(0‘f+04p)/0 Ing - (pFI = 2vyD(u})) -0y + apuy - nylp dt
1

T 2(ap +ap)

1 T k—1 k—1 k—1 2
B S — ne- I—-2v¢D(u ‘ns + oyu ‘n dt.
sy b I 0T 20 D) g g

T
/0 I+ gty 2 dt

20 Then, for all £ > 0

d—1

1. wm T T
s 1, + [ 2 DI, de+ S cnss [ 418,
j=1

T

S

by [ kIR, de+ Pk, + B < B
0
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290

where

1 T

k k k k k k

B = Moyt )/O Ing-(pfI—2v, D(uf)) nptopufngl|7+|py+apulng, | dt .
P

We sum over the iterates k to obtain that ||u];’Mf ||522f, fOT ||D(u’})||52)f dt,
STy Iyl e [y R, di and [y 713, converge to 0 as k — oc.
This implies fg? ||D(u’})\|?2fdt, Z'j;ll fg}n ||u’} -tj||?2fdt converge to 0 as k — oo
form =1,...., My and fOtZ [u|[3, dt converges to 0 as k — oo for n =1,...., M,
From Poincaré-Friedrichs inequality and Korn’s inequality, we have ||u];’m ||§2f <
épFHD(u’;’m)Haf for some constant Cpr > 0. This implies fot}n ||u’;||?2fdt
converges to 0 as k — oo for m =1, ...., My.

To show the convergence of p’;’", we multiply (4.11) by Vp’;’m, integrate over

Q, and use Cauchy-Schwarz inequality to obtain

k k k k k
VD™ 18, = —vp(up™, Vip™) < vplluy ™o, Ve, " e,

Since pk™ € H'(£2,) (see remark 3.1), using Poincaré-Friedrichs inequality,

Crrllpy™la, < IVPy"lle, < vplluy™(la,, (4.19)

for some constant Cpr > 0. Squaring all sides and integrating them over (0, 7],
we have that fotz ||p’1§||?2pdt converges to 0 as k — oo for n = 1, ...., M,,. Similarly,

we multiply (4.12) by V - u’;’" and integrate over €, to obtain

AGIV bR, = (ol — b,V b,

sollpy™ =2y e, IV - up e,

IN

which yields
ALV - uE o, < sollph™ — b5 lla, < so (25" lle, + 25" la, ) -

Now, squaring all sides, integrating them over (0,%;] and the convergence of

f(f; Ippl|3, dt yield that fgs IV - uy||§, dt converges to 0 as k — oo for n =

1,...., M. Also, this result together with the convergence of fot; [k ||?2p dt implies
ek |12 . . -
that |, ||up||Hdiv(Qp)dt converges to 0 as k — oo for n = 1,....., M.
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For the convergence of p];-’m we multiply (4.8) by vy € Vy, integrate over
Q and proceed similarly to the continuous case to have
1

k, k,m—1 - k, k,
ol = e < OO o, + D™ o,
f

d—1
k, _ _
+ 3 ™ e+ T (0™ + apul Ty R L (4.20)
j=1

Next, we multiply (4.8) by vy € Xy and integrate over ;. And then isolate
the pressure term, divide by ||Vvy||, take supremum over v; € X ;. Then, using

the inf-sup condition (2.12) and estimate (4.20),

k,m — k,m k,m
Blpy™le, < @ +CO)(up™la, + D(uy™)lg,

d—1
E - _
) ™yl + ™ e T g )
j=1

for some B > 0. Square both sides and integrate over (O,t?@]. Then, for some
t;j > t}"’, we have

tm

,
11, + [1D(f)IIE,

e
52/ Ip}lI%, dt < (d+3)(1+C;'C)? </
0 0

d—1 tn
+ D g7 de +/0 Iy~ 17 + apllug ™" - my I dt | . (4.21)
=1

As p’;*I € H'(€,), using the trace theorem, we have

_11/2 1/2
1

0,175 lg, - Also, using [[uy™! - mp[lr < Clluy™" [ gan(q,),

=l < llpjy
(4.21) becomes

m

ty ' d—1
8 / Ik de < C / [ahl13, + [ D)3, + 3 ub - ]2 dt
j=1

ty
k— k— k—
+ / 125 .o, I ey + ™ e dt) R

Aspk=t e HY(Q,), [Py~ |1, < oo. Therefore, the convergence of fot? 19 1|7dt

to 0 is obtained, since each term in the right hand side of (4.22) converges to 0

ask —ooform=1,.., M.
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Remark 4.2. The assumption that ay = «, is only necessary for the con-
vergence analysis of the semi-discrete Stokes-Darcy system with nonconforming
time grids due to a technical difficulty. However, for the numerical experiments
as shown in the next section, this assumption is not required and one can choose

different values for the Robin parameters, 0 < ay < ayp, as in Theorem 3.1.

5. Numerical results

In this section, we consider two numerical tests to investigate the convergence
and efficiency of the proposed global-in-time DD algorithm. The first numerical
example is a manufactured problem where the exact solution is known. The
second is a physical example where a flow is driven by a pressure drop. As
mentioned in Subsection 3.1, GMRES is used in the numerical experiments to
solve the space-time interface problem (3.11) iteratively. We shall verify the
accuracy and convergence of the numerical solutions with decreasing grid sizes

and time step sizes.

5.1. Test 1

We consider a test case with a known exact solution. The subdomains chosen
are Q, = (0,1) x (0,1) for the porous medium and Qy = (0,1) x (1,2) for the
fluid domain, with the interface I' = {(z,y) : 0 < & < 1,y = 1}. The exact

solution is given by

up = [(y — 1)%2°(1+ %), —cos(y)e(1 + )],
py = (cos (z)e? +y* — 2y + 1)(1 +£%),
u, = [—z(sin(y)e + 2(y — 1)) (1 +1%) , (—cos(y)e + (y — 1)*)(1 + 7)),
pp = (—sin(y)e + cos(z)e? +y* — 2y + 1)(1 + %),
for which the Beavers-Joseph-Saffman condition is satisfied with o« = 1. The
model parameters are chosen as vy = 1,1, = 1,59 = 1. The initial and boundary

conditions are imposed using the exact solution. Two different finite element

spaces were used for numerical simulations. First, we used Taylor-Hood elements
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for both (uy,pys) and (up, pp. As u, € H1V(9Q,), Taylor-Hood elements are not
conforming for (u,,p,). Hence, the stabilization term v(V-u,, V-v,) was added
to the Darcy equation (3.20) with v = 10. Secondly, we used MINTI elements for
the Stokes and Raviart-Thomas of order one and P1 elements (RT1-P1) for the
Darcy problem. The Robin parameters are chosen as ay = 0.1 and «; = 50.
Test results using different values of Robin parameters will be discussed later.
The tolerance for GMRES is set to be € = 1076,

First, we investigate the convergence of numerical solutions through spatial
mesh refinement with nonconforming time grids. Table 1 and Table 2 show
errors at 7' = 0.01 with Aty = 0.002 and At, = 0.001 by Taylor-Hood elements
for both the Stokes and Darcy problems and by MINI elements for the Stokes
and RT1-P1 elements for Darcy problem, respectively. Note that for this non-
physical example, the errors in the porous medium are larger, so we have chosen
a small time step there while using a larger time step in the fluid domain. We
observe from Tables 1 and 2 that the orders of accuracy in space are preserved

with nonconforming time grids.

h 1/4 1/8 1/16 1/32
L2 error 834004 9.39¢-05 [3.15] 1.15¢-05 [3.03] 1.62¢-06 [2.83]
YW H'emror  2.68¢-02  5.81e-03 [2.21] 1.32e-03 [2.13] 3.38e-04 [1.97]
p;  L?error  2.80e:02 5.53¢-03 [2.34] 1.200-03 [2.09] 3.91e-04 [1.73]
[2 error  1.11e-03 2.53c-04 [2.14] 3.84¢-05 [2.72]  4.19¢-06 [3.20]
P HAY error 2.11e-03  4.43e-04 [2.25]  9.55e-05 [2.21]  1.91e-05 [2.32]
py  L?error  2.31e02 5.03e-03 [2.20] 1.26e-03 [1.99] 3.13¢-04 [2.01]

Table 1: Errors at 7" = 0.01 by Taylor-Hood elements for the Stokes and Darcy problems
using (Aty, Aty) = (0.002,0.001) and (ay, ap) = (0.1, 50).

We also performed convergence tests with respect to different time steps

while keeping the mesh size fixed, h = 1/32. We denote the coarse time step size
by Atcoarse- For Taylor-Hood elements, we use Atcoarse € {0.2,0.1,0.05,0.0025}.
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h 1/4 1/8 1/16 1/32
L? error  9.60e-03  2.43e-03 [1.98]  5.49e-04 [2.15] 1.44e-04 [1.93]
W H'error  2.71e-01  1.29e-01 [1.07]  6.10e-02 [1.08]  3.15¢-02 [0.95]
pr  L%*error  4.54e-01 1.06e-01 [2.10] 2.22¢-02 [2.26] 5.63e-03 [1.98]
L? error 1.99e-02  4.16e-03 [2.26] 1.01e-03 [2.04] 2.47e-04 [2.03]
U gAY error  2.260-02  4.37¢-03 [2.37]  1.06e-03 [2.03]  2.56e-04 [2.05]
py  LPerror 226002 4.91e-03 [2.20] 1.23¢-03 [1.99] 3.06e-04 [2.01]

Table 2: Errors at T'= 0.01 by MINI elements for the Stokes and RT'1-P1 elements for Darcy
problem using (Aty, Atp) = (0.002,0.001) and (ay, ap) = (0.1, 50).

In the case of MINT elements for the Stokes and RT1-P1 elements for the Darcy,
we use Afeoarse € {0.8,0.4,0.2,0.1}. The fine time step size is given by Atgpe =
Ateoarse/2. Consider three types of time grids as follows:

1. Coarse conforming time grids: Aty = At, = Atcoarses
2. Fine conforming time grids: Aty = At, = Atgne,

3. Nonconforming time grids: Aty = Atcoarse and At, = Atgpe.

In Figure 3 we show the errors at T = 0.2 by Taylor-Hood elements using
ay = 0.1 and o, = 50. Similarly Figure 4 presents errors by MINI elements
and RT1-P1 elements at 7" = 0.8 using oy = 0.1 and ay, = 50 on the fixed mesh
h = 1/64. We observe that the first order convergence is preserved with the
conforming and nonconforming time grids. The errors with nonconforming time
grids in the porous medium are close to those with fine conforming time grids,
which is expected, as a smaller time step is used in the porous medium. We
also note that the HUY errors of Darcy velocity are very sensitive to the Robin
parameters. In Figure 5 we compare H4V errors of Darcy velocity at 7' = 0.2
by Taylor-Hood elements using o, = 50 for different values of ay. Similarly, in
Figure 6, we compare H4Y errors of Darcy velocity at 7' = 0.2 by Taylor-Hood
elements using oy = 0.1 for different values of a,. After performing experiments

using various pairs of (ay, o;,), we noticed that the first order convergence with
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respect to time is achieved if oy, =~ 500y and oy < 1, which is the motiva-

tion for the choice of parameters (ay, o) = (0.1,50) in most of our numerical

tests. For very smaller values of oy, we notice that the H div errors of Darcy

velocity for nonconforming case shift from conforming coarse to conforming fine

on increasing «, (see Figure 7). In Table 3 we compare the computer running

time (in seconds) of conforming and nonconforming time grids for Taylor-Hood

elements on the fixed mesh h = 1/32. Similarly, in Table 4, we compare the

computer running time (in seconds) for MINI elements and RT1-P1 elements

on the fixed mesh h = 1/64. We observe that using nonconforming time grids

could significantly reduce the computational time while still maintaining the

desired accuracy.

L2 errors of Stokes velocity

©— Conforming coarse grid
—#— Conforming fine grid

#— Nonconforming grid
Slope 1

10°
102

107" 10°
Time grid sizes

Hdiv errors of Darcy velocity

Errors

P ’ ©— Conforming coarse grid
// —+— Conforming fine grid
pid —&— Nonconforming grid
’ Slope 1

10*
102

107" 10°
Time grid sizes

L2 errors of Stokes pressure

Conforming coarse grid
—#— Conforming fine grid
#— Nonconforming grid
Slope 1

10
102

107 10°
Time grid sizes

L2 errors of Darcy pressure

Conforming coarse grid
—+— Conforming fine grid
—+#— Nonconforming grid

Slope 1

10
102

107 10°
Time grid sizes

Figure 3: Errors for the Stokes and Darcy problems at T = 0.2 by Taylor-Hood elements using
(of,ap) = (0.1,50).
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At Conforming | Nonconforming
0.2 72
7
0.1 144
153
0.05 285
314
0.025 576
622
0.0125 1114

Table 3: Comparison of the computer running times (in seconds) of conforming and non-
conforming time grids with Taylor-Hood elements on fixed mesh h = 1/32 using (o, ap) =

(0.1,50).

At Conforming | Nonconforming
0.8 1445
1446
0.4 2833
2871
0.2 5939
6457
0.1 10923
11244
0.05 22198

Table 4: Comparison of the computer running times (in seconds) of conforming and noncon-
forming time grids with MINI elements for the Stokes and RT1-P1 element for the Darcy
problems on fixed mesh h = 1/64 using (o, ap) = (0.1,50).
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107
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L2 errors of Stokes pressure
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-
/’/ -
e -
g 107"
w
L
107 10?2
10" 10° 107" 10°

Time grid sizes Time grid sizes

Figure 4: Errors by MINI elements for the Stokes and RT'1-P1 elements for the Darcy problems
at T = 0.8 using (ay, ap) = (0.1, 50).

Hdiv errors of Darcy velocity Hdiv errors of Darcy velocity Hdiv errors of Darcy velocity

or
Slope 1

102 10" 10° 102 10" 10° 102 107 10°
Time grid sizes Time grid sizes Time grid sizes

(a) a5 = 0.001 (b) oy =0.1 (c) ay =1

Figure 5: HIV errors of Darcy velocity at T = 0.2 by Taylor-Hood elements using ap = 50

for different values of ay.

5.2. Test 2

In this example, we consider a flow driven by a pressure drop in the same
domain as in Testl. Let p;, = 1 on the top boundary of 2y and poyt = 0 on the

bottom boundary of €,,. We impose the no-slip boundary condition on the left
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Figure 6: HV errors of Darcy velocity at T = 0.2 by Taylor-Hood elements using ay =0.1

for different values of ay.
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Figure 7: H3V errors of Darcy velocity at T = 0.2 by Taylor-Hood elements using ay = 0.001

for different values of oy.

and right boundaries of the Stokes’s domain, and the initial Stokes velocity and
the initial Darcy pressure are set to zero. The model parameters are selected
as: vg =1, v, = 50, 5o = 1, @« = 1. The Robin parameters are chosen as
oy = 0.1 and oy, = 50, and the final time is set as 7' = 1. For this test, the
Stokes and Darcy equations are approximated using MINI elements and RT1-
P1 elements, respectively. To verify the convergence with respect to time with
nonconforming time grids, we first compute the reference solution on the mesh
size h = 1/64 and At,ef = 0.01 and calculate errors using the reference solution.
The nonconforming time grids are chosen as Aty = At,, /2. Table 5 shows errors
and convergence rates at T = 1 with the fixed mesh size h = 1/64, where first
order convergence by nonconforming time grids is observed. In Table 6 and
Table 7, we compare the accuracy in time of the conforming and nonconforming

time grids. In particular, the errors (by nonconforming time grids) in the fluid
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domain are close to those by fine conforming time grids, while errors in the
porous medium are close to those by coarse conforming time grids.

The velocity magnitude at T' = 1 using Aty = 1/16 and At, = 1/8 is shown
in Figure 8. As defined in Section 2, v,I = vegK ™1, where K is the permeability
tensor of the porous medium. For some porous medium like clayey soil or clay
the value of coefficients of permeability is around 107> —10~* meter per day; and
about 1078 — 1072 meter per day for different kinds of sands [4, 41]. In Figure 9,
we show the velocity magnitude at the final time for the porous medium with

coefficients of permeability 1075 assuming v.s¢ to be unity.

Figure 8: [Test case 2] Velocity magnitude and velocity vector at T = 1 for v}, = 50.

6. Conclusion

We investigated a space-time DD method based on Robin transmission con-
ditions for the non-stationary Stokes-Darcy system, where the time-dependent
local problems are solved independently using local time-stepping schemes with
nonconforming time grids. This approach can easily handle problems with dis-
continuous media represented by model equations with discontinuous coeffi-

cients. Also, problems with a large difference in local time scales, e.g., low

32



Time steps uy Df u, Dp

Aty | At H*' error L? error HYY error L? error
1/4 | 1/2 2.61e-02 3.58e-02 6.31e-02 2.36e-02
1/8 | 1/4 | 1.49¢-02 [0.81] | 1.52e-02 [1.23] | 3.42¢-02 [0.88] | 1.22¢-02 [0.95]
1/16 | 1/8 | 7.59e-03 [0.97] | 6.48¢-03 [1.24] | 1.66e-02 [1.04] | 6.00e-03 [1.03]
1/32 | 1/16 | 3.38e-03 [1.16] | 2.67e-03 [1.27] | 7.46e-03 [1.15] | 2.71e-03 [1.14]

Table 5: : Errors at T' =1 using h = 1/64 and (ay,ap) = (0.1,0.5).

uy bf
Time grids Aty | Aty L? error | H' error | L? error
Conforming coarse | 1/8 | 1/8 | 3.63e-03 | 1.23e-02 | 7.98e-03
Nonconforming 1/16 | 1/8 | 2.23e-03 | 7.59¢-03 | 6.48e-03
Conforming fine | 1/16 | 1/16 | 1.89e-03 | 6.45e-03 | 3.18e-03

Table 6: : Errors for the Stokes problem at T' = 1 using h = 1/64 and (ay, ap) = (0.1,0.5).

up Pp
Time grids Aty | Aty L? error | HYY error | L? error
Conforming coarse | 1/8 | 1/8 | 1.07e-03 | 1.84e-02 | 6.73¢-03
Nonconforming 1/16 | 1/8 | 9.87e-04 | 1.66e-02 | 6.00e-03
Conforming fine | 1/16 | 1/16 | 5.24e-04 | 8.82e-03 | 3.09e-03
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Table 7: : Errors for the Darcy problem at T'= 1 using h = 1/64 and (o, ap) = (0.1,0.5).
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Figure 9: [Test case 2] Velocity magnitude and velocity vector near interface at T = 1 for

vp = 10°.

permeability in the Darcy region, can be efficiently solved by the method un-
der discussion. In our numerical tests, we compared errors by conforming and
nonconforming time grids, respectively, and observed that using nonconforming
time grids significantly improves the efficiency, still yielding the desired accu-
racy. The robustness of this global-in-time DD approach was also partially
verified while being tested on the test case of low permeability porous medium
(Figure 9). However, it was noticed that the Darcy velocity among all variables
is most sensitive to a choice of Robin parameters for its accuracy. As mentioned
earlier, a theoretical framework for the optimal choice of Robin parameters in
the SWR method has not been established for time-dependent multiphysics
problems; therefore, the parameters used for the presented numerical results
were chosen completely based on numerical experiments. For the method to be
practical and more robust, further studies are needed for Robin transmission
conditions pertaining to the convergence of iterative schemes and the accuracy
of numerical solutions. In future work, we plan to extend this approach to other
fluid-structure configurations, e.g., the coupled Stokes-Biot system for flows in-

teracting with a poroelastic structure.
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