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Abstract

We consider a space-time domain decomposition method based on Schwarz

waveform relaxation (SWR) for the time-dependent Stokes-Darcy system. The

coupled system is formulated as a time-dependent interface problem based on

Robin-Robin transmission conditions, for which the decoupling SWR algorithm

is proposed and proved for the convergence. In this approach, the Stokes and

Darcy problems are solved independently and globally in time, thus allowing the

use of different time steps for the local problems. Numerical tests are presented

for both non-physical and physical problems with various mesh sizes and time

step sizes to illustrate the accuracy and efficiency of the proposed method.

Keywords: Stokes-Darcy system, Domain decomposition, Robin-Robin

conditions, Schwarz waveform relaxation, Robin parameters, Local

time-stepping

1. Introduction

In many engineering and biological applications, the Stokes-Darcy system

is used to model the interaction of fluid flow with porous media flow, where
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the Stokes equations represent an incompressible fluid and the Darcy equations

represent a flow through a porous medium. Such models are often considered5

for studying groundwater flows problems [17, 19], filtration [48], flows in a vuggy

porous medium [1, 2], and also for understanding impact of stream pollution

in water supply [42] and other issues involving water contamination. In health

sciences, the Stokes and Darcy equations are used to model filtrations involved

in the pharmaceutical and chemical fields [36], biofluid-organ interactions or the10

movement of blood within vessels [16].

A variety of solution algorithms have been proposed for the numerical ap-

proximation of the Stokes-Darcy system. The Stokes-Darcy system is studied

as a coupled monolithic system in [1, 2, 36, 51], and some decoupled algorithms

are investigated in [6, 9, 10, 26, 27, 39, 49, 53]. A monolithic approach is com-15

putationally complex as it requires solving a large linear system; therefore, one

often needs the development of efficient and appropriate preconditioners for the

discretized linear system. Fully coupled approaches include the use of new finite

element spaces [1, 2], Lagrange multiplier spaces [3, 24, 33, 42], or fully discon-

tinuous approximations [50] to approximate the coupled Stokes-Darcy system.20

Decoupling approaches allow operations on a smaller system of linear equations

for each subsystem. However, for such methods, difficulties arise in how to it-

erate between the two subsystems. Most decoupling strategies employ domain

decomposition (DD) techniques to allow the use of optimized algorithms for

the Stokes and Darcy subproblems. The mortar space methods are considered25

in [6, 26, 27, 32], where unmatched meshes on the interface and subdomains

are used. Optimization-based DD methods are introduced in [23, 49], the two

grid approaches are studied in [9, 45], and the boundary integral method are

considered in [8, 54]. In [10, 15] DD methods using Robin-Robin conditions are

discussed for the Stokes equations coupled with the Darcy equation in the primal30

form. There, iterative algorithms are analyzed for convergence and numerically

tested with various Robin parameters. More DD works using Robin-Robin con-

ditions for the stationary Stokes-Darcy system can be found in [18, 20, 31], where

the decoupling schemes are based on the optimized Schwarz method. The non-
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stationary Stokes-Darcy problem is studied using the Crank–Nicolson method35

in [14]. Non-iterative decoupled marching schemes obtained by lagging the in-

terface coupling terms are investigated in [46, 43]; extensions to the case with

different subdomain time steps are analyzed in [53, 52]. Parallel, non-iterative,

multi-physics DD methods with Robin conditions are proposed to solve the cou-

pled time-dependent Stokes-Darcy system in [11, 35]. In [47], a non-iterative40

Robin-Robin domain decomposition method is analyzed for the time-dependent

Navier-Stokes-Darcy model with Beavers-Joseph interface condition and defec-

tive boundary condition.

In classical DD approaches for time-dependent problems, model equations

are discretized in time first, and then DD methods are used at each time step.45

A uniform time step is usually considered in such approaches. Since the time

scales in the Stokes domain and Darcy domain could be largely different, it is in-

efficient to use a uniform time step throughout the entire time domain. Another

approach used in some recent works for time-dependent problems is based on

global-in-time or space-time DD methods in which iterative algorithms are di-50

rectly applied to the evolutionary problem. Consequently, each time-dependent

subdomain problem is solved independently, leading to an efficient way to sim-

ulate time-dependent phenomena as different time discretization schemes and

time step sizes can be used in the subsystems. In [39], we developed a global-in-

time DD method based on the physical transmission conditions for the nonlinear55

Stokes-Darcy coupling. A time-dependent Steklov-Poincaré type operator was

constructed, and non-matching time grids were implemented with the use of

L2 projection functions to exchange data on the space-time interface between

different time grids.

In this work, we study another global-in-time DD method, namely the60

Schwarz waveform relaxation (SWR) method with Robin transmission condi-

tions, for the mixed formulation of the non-stationary Stokes-Darcy system

using nonconforming time discretization. It should be noted that the conver-

gence of the classical Schwarz waveform relaxation algorithm can be improved

by optimizing the coefficients associated with the transmission conditions used65
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in exchanging space-time boundary data between subdomains, and such an ap-

proach is called optimized Schwarz waveform relaxation (OSWR). This method

was introduced for parabolic and hyperbolic problems in [29], and it was ex-

tended to various problems such as advection-reaction-diffusion problems [44],

the compressible Euler equations [22] and the full Maxwell system [21]. It has70

been implemented in various other works (see, e.g., [5, 7, 29, 30, 37, 44]). For

evolutionary multiphysics problems, the choice of Robin coefficients involved in

the SWR algorithm is still an open question, and we shall discuss how Robin

coefficients affect the accuracy of numerical solutions in our numerical experi-

ments.75

This paper is organized as follows. In Section 2, we introduce the model

problem, the linear Stokes–Darcy system. In Section 3, we derive a space-time

interface problem based on Robin transmission conditions and present the SWR

algorithm and its convergence analysis. The semi-discrete, nonconforming in

time, SWR algorithm and its convergence are discussed in Section 4. Numerical80

tests are performed for non-physical and physical problems, and the results are

presented in Section 5.

2. Model Equations

Suppose the domain under consideration is made up of two regions Ωf ,Ωp ⊂

RI d, d = 2, 3, separated by the common interface Γ = ∂Ωf∩∂Ωp. The first region85

Ωf is occupied by a free fluid flow and has the Lipschitz boundary ∂Ωf = ΓfD∪Γ

and the second region Ωp is occupied by a saturated porous structure with the

Lipschitz boundary ∂Ωp = ΓpN ∪ Γ (see Figure 1). For the fluid flow in Ωf we

consider the Stokes equations with no-slip boundary condition on ΓfD:

∂uf
∂t
− 2νf∇ ·D(uf ) +∇pf = ff in Ωf × (0, T ) , (2.1)

∇ · uf = 0 in Ωf × (0, T ) , (2.2)

uf = 0 on ΓfD × (0, T ), (2.3)

uf (·, 0) = uf0 in Ωf , (2.4)
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Figure 1: Stokes-Darcy domain

where uf denotes the velocity vector, pf the pressure, νf the fluid viscosity, ff90

the body force acting on the fluid and D(uf ) := 1
2

(
∇uf + (∇uf )T

)
the rate of

strain tensor. The porous medium flow is represented by the Darcy model with

no-flux boundary condition on ΓpN :

µeffK
−1up +∇pp = 0 in Ωp × (0, T ) , (2.5)

∂

∂t
(s0pp) +∇ · up = fp in Ωp × (0, T ) , (2.6)

up · np = 0 on ΓpN × (0, T ), (2.7)

pp(·, 0) = pp0 in Ωp, (2.8)

where pp is the pore pressure, up the Darcy velocity and fp the source/sink term.

The constrained specific storage coefficient is denoted by s0, µeff represents the95

effective fluid viscosity, and K the permeability tensor of the porous medium. In

general, K is a symmetric positive definite tensor. For simplicity, we assume that

µeffK
−1 is represented by νpI, i.e., µeffK

−1 := νpI for some scalar function

νp.

In order to complete the Stokes-Darcy model, we impose the following in-100

terface conditions on Γ× (0, T ):

uf · nf + up · np = 0 , (2.9)

nf · (pfI− 2νfD(uf )) · nf = pp , (2.10)

nf · (pfI− 2νfD(uf )) · tj = cBJSuf · tj , j = 1, ...., d− 1 , (2.11)
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where nf and np denote outward unit normal vectors to Ωf and Ωp, respectively,

tj , j = 1, ...., d − 1 denote the orthogonal set of unit tangent vectors on Γ, and

cBJS denotes the resistance parameter in the tangential direction. The interface

condition (2.9) enforces the mass conservation across the interface, by enforcing105

the continuity of the normal velocities, (2.10) enforces the continuity of the

normal component of normal stress tensor and (2.11) is the Beavers-Joseph-

Saffman condition [40]. These interface conditions suffice to precisely couple

the Stokes system (2.1)-(2.4) to the Darcy system (2.5)-(2.8).

We use standard notation for Sobolev spaces, their associated norms and

seminorms to define a weak formulation of the problem. For example, for an

open domain Θ ⊂ RI d, Wm,p(Θ) is the usual Sobolev space with the norm

‖ · ‖m,p,Θ. In case of p = 2, the Sobolev space Wm,2(Θ) is denoted by Hm(Θ)

with the norm ‖ · ‖m,Θ. When m = 0, Hm(Θ) coincides with L2(Θ). In this

case, the inner product and the norm will be denoted by (·, ·)Θ and ‖ · ‖Θ,

respectively. Moreover, if Θ = Ωf or Ωp, and the context is clear, Θ will

be omitted, i.e., (·, ·) = (·, ·)Ωf
or (·, ·)Ωp

for functions defined in Ωf and Ωp.

Finally, the associated space of vector valued functions will be denoted by a

boldface font. Define the following function spaces for (uf , pf ) and (up, pp):

Xf := {v ∈ H1(Ωf ) : v = 0 on ΓfD},

Qf := L2(Ωf ),

Vf := {vf ∈ Xf : (qf ,∇ · vf ) = 0, ∀qf ∈ Qf} ,

X̂p := {v ∈ Hdiv(Ωp) : v · np = 0 on ΓpN},

Xp := {v ∈ X̂p : v · n |∂Ωp
∈ L2(∂Ωp)},

Qp := L2(Ωp) ,

where Xp is equipped with the norm

‖v‖2Xp
:= ‖v‖2Hdiv(Ωp) + ‖v · n‖2∂Ωp

.

Note that Xp is a subspace of X̂p with the additional regularity condition.

The L2-regularity of the normal trace of v ∈ Xp is needed for the convergence
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proof presented in the next section. The spaces Xf and Qf satisfy the inf-sup

condition,

inf
qf∈Qf

sup
vf∈Xf

(qf ,∇ · vf )

‖qf‖‖∇vf‖
≥ β > 0. (2.12)

The dual spaces X∗f and V∗f are endowed with the following dual norms

‖w‖X∗
f

:= sup
vf∈Xf

(w,vf )

‖∇vf‖
, ‖w‖V∗

f
:= sup

vf∈Vf

(w,vf )

‖∇vf‖
.

These norms are equivalent for functions in Vf as stated in the following lemma.110

Lemma 2.1. Let w ∈ Vf . Then, there exists C∗ > 0 such that

C∗‖w‖X∗
f
≤ ‖w‖V∗

f
≤ ‖w‖X∗

f
.

Proof. See Lemma 1 in [34].

For the variational formulation of the coupled Stokes-Darcy system, we in-

troduce the Lagrange multiplier λ ∈ L2(0, T ; Λ), Λ := H
1/2
00 (Γ) [42], on the

interface representing:

λ := nf · (pfI− 2νfD(uf )) · nf = pp on Γ× (0, T ) . (2.13)

Let Λ∗ be the dual space of Λ. For γ ⊂ Γ, we use 〈·, ·〉Γ to denote the duality

pairing between Λ and Λ∗. The variational formulation for the Stokes-Darcy

system (2.1)-(2.8) satisfying the interface conditions (2.9)-(2.11) reads as: given

the initial conditions, find (uf , pf ,up, pp, λ) ∈ (Xf , Qf , X̂p, Qp,Λ), for a.e. t ∈115

(0, T ), such that

(∂tuf ,vf ) + 2νf (D(uf ), D(vf ))− (pf ,∇ · vf ) +
d−1∑
j=1

cBJS(uf · tj ,vf · tj)Γ

= (ff ,vf ) + 〈λ,vf · nf 〉Γ ∀vf ∈ Xf , (2.14)

(qf ,∇ · uf ) = 0 ∀qf ∈ Qf , (2.15)

νp(up,vp)− (pp,∇ · vp) = 〈λ,vp · np〉Γ ∀vp ∈ X̂p , (2.16)

(qp, s0 ∂tpp) + (qp,∇ · up) = (fp, qp) ∀qp ∈ Qp , (2.17)

〈uf · nf + up · np, µ〉Γ = 0 ∀µ ∈ Λ . (2.18)
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The well-posedness of the stationary Stokes-Darcy model in mixed form can be

found in [42] and is assumed to hold similarly for the non-stationary case, i.e.

(2.14)-(2.18). For the smooth solutions, the equivalence of the stationary Stokes-

Darcy system and the variational formulation is discussed in [24]. The existence120

and uniqueness of the weak solution to the non-stationary Navier-Stokes-Darcy

system with the Beavers-Joseph-Saffman interface condition is studied in [13,

12]; the analysis for the case of Beavers-Joseph interface conditionis done in [11].

In these works, the primal formulation is considered for the Darcy problem, i.e.

the velocity and pressure are the unknowns in the fluid flow domain and the125

pressure is the only unknown in the porous media domain.

3. A global-in-time decoupling scheme

In this section we present a decoupling scheme for the Stokes-Darcy system

based on global-in-time domain decomposition. We first rewrite the physical

transmission conditions as equivalent Robin conditions and derive the associated130

space-time interface problem with two interface variables in Subsection 3.1. Such

an interface problem is solved iteratively, using Jacobi iterations or GMRES.

The former choice is equivalent to the SWR algorithm, which is presented and

analyzed in Subsection 3.2.

3.1. Robin transmission conditions and the space-time interface problem135

For the Robin transmission conditions on Γ, let αf and αp be positive pa-

rameters. Combining (2.9) and (2.10) linearly with coefficients (−αf , 1) and

(αp, 1), we obtain the following two-sided Robin interface conditions on Γ [18]:

nf · (pfI− 2νfD(uf )) · nf − αfuf · nf = pp + αfup · np on Γ× (0, T ) , (3.1)

pp − αpup · np = nf · (pfI− 2νfD(uf )) · nf + αpuf · nf on Γ× (0, T ). (3.2)

If we let gf ∈ L2(Γ) be a Robin condition for the Stokes equations with the

parameter αf > 0 as in the left hand side of (3.1), the corresponding weak140
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formulation is given as follows: find (uf , pf ) ∈ (Xf , Qf ), for a.e. t ∈ (0, T ),

such that

(∂tuf ,vf ) + 2νf (D(uf ), D(vf ))− (pf ,∇ · vf ) +
d−1∑
j=1

cBJS(uf · tj ,vf · tj)Γ

+αf (uf · nf ,vf · nf )Γ = (ff ,vf )− (gf ,vf · nf )Γ ∀vf ∈ Xf , (3.3)

(qf ,∇ · uf ) = 0 ∀qf ∈ Qf , (3.4)

(uf (·, 0),vf ) = (uf0,vf ) ∀vf ∈ Xf . (3.5)

Similarly, considering gp ∈ L2(Γ) as a Robin condition for the Darcy system

with the parameter αp > 0 as in the left hand side of (3.2), we have the weak

formulation given by: find (up, pp) ∈ (Xp, Qp), for a.e. t ∈ (0, T ) satisfying145

νp(up,vp)− (pp,∇ · vp) + αp(up · np,vp · np)Γ

= −(gp,vp · np)Γ ∀vp ∈ Xp , (3.6)

(qp, s0 ∂tpp) + (qp,∇ · up) = (fp, qp) ∀qp ∈ Qp , (3.7)

(pp(·, 0), qp) = (pp0, qp) ∀qp ∈ Qp . (3.8)

Remark 3.1. From the Robin condition (3.2) with gp ∈ L2(Γ) and by the

definition of Xp, the trace pp is in L2(Γ). In fact if the test functions vp in

(3.6) are chosen to have compact support, then pp is in H1(Ωp) as shown in [38].

Denote by (uf , pf ) =
(
uf (gf , ff ,uf0), pf (gf , ff ,uf0)

)
the solution to the

Stokes problem (3.3)-(3.5), and (up, pp) =
(
up(gp, fp, pp0), pp(gp, fp, pp0)

)
the

solution to the Darcy problem (3.6)-(3.8). To derive the interface problem

associated with the Robin conditions (3.1)-(3.2), we first define the interface

operator:

R :
(
L2(0, T ; L2(Γ))

)2

→
(
L2(0, T ; L2(Γ))

)2

,

such that

R

 gf

gp

 =

 gp + (αp + αf )
(
up(gp, fp, pp0) · np

)
|Γ

gf + (αf + αp)
(
uf (gf , ff ,uf0) · nf

)
|Γ

 . (3.9)
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Then the Robin transmission conditions (3.1)-(3.2) are equivalent to the follow-

ing space-time interface problem for two interface variables:

SR

 gf

gp

 = χR on Γ× (0, T ), (3.10)

where

SR

 gf

gp

 =

 gf

gp

−
 gp + (αp + αf )

(
up(gp, 0, 0) · np

)
|Γ

gf + (αf + αp)
(
uf (gf ,000,000) · nf

)
|Γ

 ,
and

χR =

 (αp + αf )
(
up(0, fp, pp0) · np

)
|Γ

(αf + αp)
(
uf (0, ff ,uf0) · nf

)
|Γ

 .
The weak form of (3.10) is given by: find (gf , gp) ∈

(
L2(Γ)

)2
, for a.e. t ∈ (0, T ),

such that ∀
(
ξf , ξp

)
∈
(
L2(Γ)

)2
∫

Γ

SR
 gf

gp

 ·
 ξf

ξp


 dγ =

∫
Γ

χR ·
 ξf

ξp


 dγ. (3.11)

To carry out the convergence analysis of the proposed decoupling scheme, we

solve the space-time interface problem (3.10) by Jacobi iterations, which is150

equivalent to the SWR algorithm and will be presented next. However, for

the numerical experiments (cf. Section 5), we will use GMRES to solve the

interface problem iteratively for faster convergence.

3.2. Schwarz waveform relaxation (SWR) algorithm

Consider the following SWR algorithm based on Robin transmission condi-155

tions: at the kth iteration step we solve

∂tu
k
f −∇ · (2νfD(ukf )− pkfI) = ff in Ωf × (0, T ) , (3.12)

∇ · ukf = 0 in Ωf × (0, T ) , (3.13)

nkf · (pkfI− 2νfD(ukf )) · nf − αfukf · nf = pk−1
p + αfu

k−1
p · np

on Γ× (0, T ) , (3.14)
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for (ukf , p
k
f ) satisfying the initial and boundary conditions (2.3), (2.4) and the

Beavers-Joseph-Saffman condition (2.11), and

νpu
k
p +∇pkp = 0 in Ωp × (0, T ) , (3.15)

s0∂tp
k
p +∇ · ukp = fp in Ωp × (0, T ) , (3.16)

pkp − αpukp · np = nf · (pk−1
f I− 2νfD(uk−1

f ))nf + αpu
k−1
f · nf

on Γ× (0, T ) , (3.17)

for (ukp, p
k
p) satisfying (2.7) and (2.8). The weak formulation of this decoupled

system is written as follows: at the kth iteration, find (ukf , p
k
f ) ∈ (Xf , Qf ) and160

(ukp, p
k
p) ∈ (Xp, Qp), for a.e. t ∈ (0, T ), such that

(∂tu
k
f ,vf ) + 2νf (D(ukf ), D(vf ))− (pkf ,∇ · vf ) +

d−1∑
j=1

cBJS(ukf · tj ,vf · tj)Γ

+αf (ukf · nf ,vf · nf )Γ = (ff ,vf )− (pk−1
p + αfu

k−1
p · np,vf · nf )Γ

∀vf ∈ Xf , (3.18)

(qf ,∇ · ukf ) = 0 ∀qf ∈ Qf , (3.19)

and

νp(u
k
p,vp)− (pkp,∇ · vkp) + αp(u

k
p · np,vp · np)Γ

= −(nf · (pk−1
f I− 2νfD(uk−1

f ))nf + αpu
k−1
f · nf ,vp · np)Γ

∀vp ∈ Xp , (3.20)

(qp, s0 ∂tp
k
p) + (qp,∇ · ukp) = (fp, qp) ∀qp ∈ Qp . (3.21)

In the next theorem we prove the convergence of the proposed algorithm.

The following identities will be used in the proof:

(nkf · (pkfI − 2νfD(ukf )) · nf − αfukf · nf )2

−(nkf · (pkfI− 2νfD(ukf )) · nf + αpu
k
f · nf )2 (3.22)

= −2(αf + αp)(u
k
f · nf )(nkf · (pkfI − 2νfD(ukf )) · nf ) + (α2

f − α2
p)(u

k
f · nf )2,

(pkp − αpukp · np)2 − (pkp + αfu
k
p · np)2

= −2(αf + αp)p
k
p(ukp · np) + (α2

p − α2
f )(ukp · np)2 . (3.23)

11



Theorem 3.1. Let ff ∈ X∗f , fp ∈ Qp and let αf , αp ∈ IR be such that αp ≥

αf > 0. If initial values (u0
f , p

0
f ,u

0
p, p

0
p) are chosen such that the Robin-Robin

conditions (3.14), (3.17) are well-defined in L2(Γ) then the weak formulation

(3.18)-(3.21) defines a unique sequence of iterates

(ukf , p
k
f ,u

k
p, p

k
p) ∈ L∞(0, T ;Xf )× L2(0, T ;Qf )× L2(0, T ;Xp)× L∞(0, T ;Qp)

that converges to the weak solution (uf , pf ,up, pp) of problem (2.14)-(2.18).165

Proof. As the equations are linear, for the proof of convergence we take ff =

uf0 = 0 and fp = pp0 = 0, and show that the sequence (ukf , p
k
f ,u

k
p, p

k
p) of

iterates converges to zero in suitable norms. The uniqueness of the sequence of

iterates follows from the well-posedness of non-stationary Stokes-Darcy system.

Choosing vf = ukf and qf = pkf in (3.18)-(3.19) and adding two resulting170

equations yield

(∂tu
k
f ,u

k
f ) + 2νf‖D(ukf )‖2Ωf

+
d−1∑
j=1

cBJS‖ukf · tj‖2Γ + αf‖ukf · nf‖2Γ

= −(pk−1
p + αfu

k−1
p · np,ukf · nf )Γ.

By using the Robin condition (3.14) and (3.22), we obtain

(∂tu
k
f ,u

k
f ) + 2νf‖D(ukf )‖2Ωf

+
d−1∑
j=1

cBJS‖ukf · tj‖2Γ

+
1

2(αf + αp)
‖nf · (pkfI− 2νfD(ukf )) · nf + αpu

k
f · nf‖2Γ

=
1

2(αf + αp)
‖pk−1
p + αfu

k−1
p · np‖2Γ +

αp − αf
2

‖ukf · nf‖2Γ. (3.24)

In the following, we shall consider the case where αp is strictly greater than αf ;

if αp = αf , a similar and simpler proof can be obtained (cf. Remark 3.2). We

integrate (3.24) over (0, t) for a.e. t ∈ (0, T ], and use the trace theorem, Korn’s175
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inequality and Young’s inequality to obtain

1

2
‖ukf (t)‖2Ωf

+ 2νf

∫ t

0

‖D(ukf )‖2Ωf
ds+

d−1∑
j=1

cBJS

∫ t

0

‖ukf · tj‖2Γ ds

+
1

2(αf + αp)

∫ t

0

‖nf · (pkfI− 2νfD(ukf )) · nf + αpu
k
f · nf‖2Γ ds

≤ 1

2(αf + αp)

∫ t

0

‖pk−1
p + αfu

k−1
p · np‖2Γ ds

+C

∫ t

0

‖ukf (s)‖Ωf
‖D(ukf (s))‖Ωf

ds

≤ 1

2(αf + αp)

∫ t

0

‖pk−1
p + αfu

k−1
p · np‖2Γ ds

+C

∫ t

0

(
1

4ε
‖ukf (s)‖2Ωf

+ ε‖D(ukf (s))‖2Ωf

)
ds,

for some constant C > 0 and ε > 0. Setting ε = νf/C, we have

1

2
‖ukf (t)‖2Ωf

+ νf

∫ t

0

‖D(ukf )‖2Ωf
ds+

d−1∑
j=1

cBJS

∫ t

0

‖ukf · tj‖2Γ ds

+
1

2(αf + αp)

∫ t

0

‖nf · (pkfI− 2νfD(ukf )) · nf + αpu
k
f · nf‖2Γ ds

≤ 1

2(αf + αp)

∫ t

0

‖pk−1
p + αfu

k−1
p · np‖2Γ ds+ C

∫ t

0

‖ukf (s)‖2Ωf
ds , (3.25)

where C = C
2

4νf
. Similarly, setting vp = ukp, qp = pkp in (3.20)-(3.21), adding the

resulting equations and using (3.23), we get

νp‖ukp‖2Ωp
+ (s0 ∂tp

k
p, p

k
p) +

1

2(αf + αp)
‖pkp + αfu

k
p · np‖2Γ

≤ 1

2(αf + αp)
‖pkp − αpukp · np‖2Γ −

1

2
(αp − αf )‖ukp · np‖2Γ .

Let γ :=
αp−αf

2 > 0. We integrate the above inequality over (0, t) for a.e.180

t ∈ (0, T ] and apply the Robin boundary condition (3.17) to obtain:

νp

∫ t

0

‖ukp(t)‖2Ωp
ds+

s0

2
‖pkp(t)‖2Ωp

+
1

2(αf + αp)

∫ t

0

‖pkp + αfu
k
p · np‖2Γ ds

+γ

∫ t

0

‖ukp · np‖2Γ ds

≤ 1

2(αf + αp)

∫ t

0

‖nf · (pk−1
f I− 2νfD(uk−1

f ))nf + αpu
k−1
f .nf‖2Γ ds .(3.26)
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We add (3.25) and (3.26), and define

Ek(t) :=
1

2
‖ukf (t)‖2Ωf

+ νf

∫ t

0

‖D(ukf )‖2Ωf
ds+

d−1∑
j=1

cBJS

∫ t

0

‖ukf · tj‖2Γ ds

+νp

∫ t

0

‖ukp(t)‖2Ωp
ds+

s0

2
‖pkp(t)‖2Ωp

+ γ

∫ t

0

‖ukp · np‖2Γ ds ,

Bk(t) :=
1

2(αf + αp)

∫ t

0

‖nf · (pkfI− 2νfD(ukf ))nf + αpu
k
f .nf‖2Γ ds

+
1

2(αf + αp)

∫ t

0

‖pkp + αfu
k
p · np‖2Γ ds .

Then, for all k > 0

Ek(t) +Bk(t) ≤ Bk−1(t) + C

∫ t

0

‖ukf (s)‖2Ωf
ds ,

and summing over the iterates for any given K > 0 yields,

K∑
k=1

Ek(t) ≤ B0(t) + C
K∑
k=1

∫ t

0

‖ukf (s)‖2Ωf
ds, (3.27)

where

B0(t) =
1

2(αf + αp)

∫ t

0

∫
Γ

g0 ds,

for g0 = (nf · (p0
fI − 2νfD(u0

f ))nf +αpu
0
f .nf )2 + (p0

p +αfu
0
p ·np)2 obtained by

the initial guess. Now, from the definition of Ek(t) and (3.27),

1

2

K∑
k=1

‖ukf (t)‖2Ωf
≤ B0(t) + C

K∑
k=1

∫ t

0

‖ukf (s)‖2Ωf
ds.

Applying Gronwall’s lemma, we obtain

K∑
k=1

‖ukf (t)‖2Ωf
≤ 2e2CTB0(T ), (3.28)

for any K > 0 and a.e. t ∈ (0, T ). The inequality (3.28) implies that ukf tends

to 0 in L∞(0, T ;L2(Ωf )) as k →∞, and the inequalities (3.27) and (3.28) yield

K∑
k=1

νf ∫ t

0

‖D(ukf )‖2Ωf
ds+

d−1∑
j=1

cBJS

∫ t

0

‖ukf · tj‖2Γ ds+ νp

∫ t

0

‖ukp(t)‖2Ωp
ds

+
s0

2
‖pkp(t)‖2Ωp

+ γ

∫ t

0

‖ukp · np‖2Γ ds

)
≤ (1 + 2CTe2CT )B0(T ), (3.29)
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for any positive integer K. The inequality (3.29) implies that D(ukf ), ukf ·tj , ukp,185

pkp and ukp · np tend to 0 in L2(0, T ;L2(Ωf )), L2(0, T ;L2(Γ)), L2(0, T ;L2(Ωp)),

L∞(0, T ;L2(Ωp)) and L2(0, T ;L2(Γ)), respectively, as k →∞.

For the convergence of pkf , we follow the technique used in [25]. We isolate

the time derivative term in (3.18). Then for all vf ∈ Vf :

(∂tu
k
f ,vf ) = −2νf (D(ukf ), D(vf ))− αf (ukf · nf ,vf · nf )Γ

−
d−1∑
j=1

cBJS(ukf · tj ,vf · tj)Γ − (pk−1
p + αfu

k−1
p · np,vf · nf )Γ .(3.30)

For the bounds of right-hand side terms in (3.30) we use Cauchy-Schwarz in-190

equality, the trace theorem, Korn’s inequality and Poincaré-Friedrichs inequal-

ity, divide both sides by
∥∥∇vf∥∥Ωf

and take supremum over vf ∈ Vf . Then, for

some constants C1, C2, C3, C4 > 0,

‖∂tukf‖V∗
f
≤ 2νfC1‖D(ukf )‖Ωf

+ C2‖D(ukf )‖1/2Ωf
‖ukf‖

1/2
Ωf

+
d−1∑
j=1

cBJSC3‖ukf · tj‖Γ + C4‖pk−1
p + αfu

k−1
p · np‖Γ

≤ C2

2
‖ukf‖Ωf

+

(
2νfC1 +

C2

2

)
‖D(ukf )‖Ωf

+

d−1∑
j=1

cBJSC3‖ukf · tj‖Γ

+C4‖pk−1
p ‖Γ + αfC4‖uk−1

p · np‖Γ .

Setting Ĉ = max{C2

2 , (2νfC1 + C2

2 ), cBJSC3, C4, αfC4}, we have

‖∂tukf‖V∗
f
≤ Ĉ( ‖ukf‖Ωf

+‖D(ukf )‖Ωf
+
d−1∑
j=1

‖ukf ·tj‖Γ +‖pk−1
p ‖Γ +‖uk−1

p ·np‖Γ ) .

Lemma 2.1 then implies

‖∂tukf‖X∗
f
≤ C−1

∗ Ĉ(‖ukf‖Ωf
+‖D(ukf )‖Ωf

+
d−1∑
j=1

‖ukf ·tj‖Γ+‖pk−1
p ‖Γ+‖uk−1

p ·np‖Γ) .

(3.31)

Now consider (3.18) with vf ∈ Xf . We isolate pressure term, divide by ‖∇vf‖,

take supremum over vf ∈ Xf and use the inf-sup condition (2.12) and the195
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estimate (3.31). Then, for some β > 0,

β‖pkf‖Ωf
≤ (1 + C−1

∗ Ĉ)( ‖ukf‖Ωf
+ ‖D(ukf )‖Ωf

+
d−1∑
j=1

‖ukf · tj‖Γ

+‖pk−1
p ‖Γ + ‖uk−1

p · np‖Γ ) .

Square both sides and integrate over the interval (0, t) for a.e. t ∈ (0, T ] to

obtain

β2

Cd

∫ t

0

‖pkf‖2Ωf
ds ≤

∫ t

0

( ‖ukf‖2Ωf
+ ‖D(ukf )‖2Ωf

+
d−1∑
j=1

‖ukf · tj‖2Γ + ‖pk−1
p ‖2Γ + ‖uk−1

p · np‖2Γ ) ds , (3.32)

where Cd = (d + 3)(1 + C−1
∗ Ĉ)2 > 0. As pk−1

p ∈ H1(Ωp) (see Remark 3.1),

using the trace theorem we have ‖pk−1
p ‖Γ ≤ ‖pk−1

p ‖1/21,Ωp
‖pk−1
p ‖1/2Ωp

. Thus (3.32)200

becomes

β2

Cd

∫ t

0

‖pkf‖2Ωf
ds ≤

∫ t

0

( ‖ukf‖2Ωf
+ ‖D(ukf )‖2Ωf

+

d−1∑
j=1

‖ukf · tj‖2Γ

+‖pk−1
p ‖1,Ωp

‖pk−1
p ‖Ωp

+ ‖uk−1
p · np‖2Γ ) ds , (3.33)

where ‖pk−1
p ‖1,Ωp < ∞, since pk−1

p ∈ H1(Ωp). Because ukf , D(ukf ), ukf · tj , pkp
and ukp · np tend to 0 in L∞(0, T ;L2(Ωf )), L2(0, T ;L2(Ωf )), L2(0, T ;L2(Γ)),

L∞(0, T ;L2(Ωp)) and L2(0, T ;L2(Γ)), respectively, as k → ∞, (3.33) implies∫ t
0
‖pkf‖2ds converges to 0 as k → ∞. Hence pkf tends to 0 in L2(0, T ;L2(Ωf ))205

as k →∞.

Remark 3.2. When αp = αf , the proof can be carried out in a similar manner

except that the use of Gronwall lemma is no longer necessary.

Remark 3.3. The choice of the Robin parameters, αf and αp, depends on

the physical parameters of the problem and its discretization (i.e., the mesh210

size and time step size). For the case where a unique physics is considered

on the whole domain, Robin parameters can be optimized by minimizing the

convergence factor of the SWR algorithm in the Fourier transformed domain
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as proposed in [30]. Such an approach is called optimized Schwarz waveform

relaxation (OSWR). For the stationary Stokes-Darcy system, optimization of the215

Robin parameters was studied in the framework of optimized Schwarz methods in

[18, 31], again by means of Fourier analysis. However, for the time-dependent

Stokes-Darcy coupling, it is not clear how to choose the Robin parameters in

an optimal way; direct application of OSWR to the multiphysics system may

not give desired numerical results in terms of accuracy of numerical solutions.220

We shall discuss various choices of the Robin parameters and their numerical

performance in Section 5.

Remark 3.4. A straightforward extension of the optimized Schwarz methods

in [18, 31] for the stationary Stokes-Darcy system to the time-dependent case

is to first discretize the equations in time implicitly, then perform the iterative225

algorithm at each time step. In this work, a different approach is considered

by deriving the space-time interface problem associated with the Robin trans-

mission conditions; solving such an interface problem iteratively involves the

solution of time-dependent subdomain problems over the whole time interval at

each iteration. Consequently, nonmatching time discretizations can be used in230

the subdomains which will be discussed in the next section.

4. The semi-discrete, nonconforming in time,SWR algorithm

As the interface problem (3.11) is global-in-time, we can use different time

step sizes in the Stokes and Darcy regions. The advantage of using noncon-

forming time grids is that time discretization can be selectively refined for a235

subproblem where the error in the solution is likely to be larger. In the fol-

lowing, we shall introduce L2 projection functions to exchange data on the

space-time interface between different time grids and prove the convergence of

the time discretized SWR algorithm with nonconforming time grids.

Let τf be a partition of time interval (0, T ) into subintervals for the Stokes

domain. We denote the time interval (tm−1
f , tmf ] by Jmf and the step size by

∆tmf := tmf − t
m−1
f for m = 1, .....,Mf . Denote the space of piecewise constant

17
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Figure 2: Nonconforming time grids.

functions in time on grid τf with values in W by P0(τf ,W ), where W = L2(Γ):

P0(τf ,W ) = {φ : (0, T )→W,φ is constant on Jmf ∀m = 1, ....,Mf}.

We define τp,Mp, J
n
p and ∆tnp similarly for the Darcy domain. In order to

exchange data on the space-time interface between different time grids, we define

the L2 projection Πp,f from P0(τf ,W ) onto P0(τp,W ) [30, 38]:

Πp,f (φ)|Jn
p

=
1

|Jnp |

Mf∑
l=1

∫
Jn
p ∩Jl

f

φ. (4.1)

The projection Πf,p from P0(τp,W ) onto P0(τf ,W ) is also defined similarly. We240

use the algorithm described in [30] for effectively performing these projections.

Remark 4.1. Different subdomain time steps for the Stokes-Darcy system have

also been studied in [53, 52] in which the time step size in the Stokes region is

an integral multiple of the time step size in the Darcy region. These methods

are non-iterative by using an explicit method for the coupling terms, and the245

key issue is how to achieve desired accuracy and stability properties. Here we

propose the iterative SWR algorithm which enables the use of arbitrarily different

time step sizes in the subdomains; the interface conditions on nonconforming

time grids are enforced using the mentioned L2 projection. The method is fully

implicit in time, thus considerably large time step sizes are possible without250

affecting stability.
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Using the backward Euler method, the semi-discrete Stokes-Darcy system

with Robin transmission conditions on Γ is given by: for m = 1, .....,Mf

umf − um−1
f + ∆tmf (−2νf∇ ·D(umf ) +∇pmf I) =

∫
Jm
f

ff dt in Ωf ,(4.2)

∇ · umf = 0 in Ωf , (4.3)

∆tmf

(
nf · (pmf I− 2νfD(umf )) · nf − αfumf · nf

)
=

∫
Jm
f

Πf,p

(
pp + αfup · np

)
dt on Γ, (4.4)

and for n = 1, .....,Mp

νpu
n
p +∇pnp = 0 in Ωp , (4.5)

s0(pnp − pn−1
p ) + ∆tnp∇ · unp =

∫
Jn
p

fpdt in Ωp , (4.6)

∆tnp

(
pnp − αpunp · np

)
=

∫
Jn
p

Πp,f

(
nf · (pfI− 2νfD(uf ))nf + αpuf · nf

)
dt on Γ , (4.7)

where (uf , pf ) = (umf , p
m
f )

Mf

m=1 satisfies the boundary conditions (2.3), (2.11)255

and the initial condition u0
f = uf0; and (up, pp) = (unp , p

n
p )
Mp

n=1 satisfies the

boundary condition (2.7) and the initial condition p0
p = pp0. The semi-discrete

SWR algorithm is then written as follows: in the kth iteration step, we solve

uk,mf − uk,m−1
f −∆tmf ∇ · (2νfD(uk.mf )− pk,mf I) =

∫
Jm
f

ff dt in Ωf ,(4.8)

∇ · uk,mf = 0 in Ωf , (4.9)

∆tmf

(
nkf · (p

k,m
f I− 2νfD(uk,mf )) · nf − αfuk,mf · nf

)
=

∫
Jm
f

Πf,p

(
pk−1
p + αfu

k−1
p · np

)
dt on Γ (4.10)

for (ukf , p
k
f ) = (uk,mf , pk,mf )

Mf

m=1 satisfying (2.3), (2.11), where uk,0f = uf0,
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uk,mf := ukf |Jm
f
, pk,mf := pkf |Jm

f
for m = 1, .....,Mf , and260

νpu
k,n
p +∇pk,np = 0 in Ωp , (4.11)

s0(pk,np − pk,n−1
p ) + ∆tnp∇ · uk,np =

∫
Jn
p

fpdt in Ωp , (4.12)

∆tnp

(
pk,np − αpuk,np · np

)
=

∫
Jn
p

Πp,f

(
nf · (pk−1

f I− 2νfD(uk−1
f ))nf + αpu

k−1
f · nf

)
dt

on Γ (4.13)

for (ukp, p
k
p) = (uk,np , pk,np )

Mp

n=1 satisfying (2.7), where pk,0p = pp0, uk,np := ukp|Jn
p
, pk,np :=

pkp|Jn
p

for n = 1, .....,Mp. We show in the following theorem that as k →∞, the

weak solution to (4.2)-(4.7) converges to the weak solution of (4.8)-(4.13).

Theorem 4.1. Assume that αf = αp > 0. If initial guess values (u0
f , p

0
f ,u

0
p, p

0
p)

are chosen such that the Robin-Robin conditions (4.10), (4.13) are well-defined

in L2(Γ), the weak formulation (4.8)-(4.13) defines a unique sequence of iterates

(ukf , p
k
f ,u

k
p, p

k
p) ∈ P0(τf ;Xf )× P0(τf ;Qf )× P0(τp;Xp)× P0(τp;Qp)

that converges to the weak solution of (4.2)-(4.7).

Proof. As the equations are linear, we let ff = uf0 = 0, fp = pp0 = 0 and derive265

the energy estimates as in the proof of Theorem 3.1. First, we multiply (4.8),

(4.9) by uk,mf and pk,mf , respectively, integrate them over Ωf and use (2.11).

Then add two resulting equations and use (3.22) to obtain

(uk,mf ,uk,mf )Ωf
− (uk,m−1

f ,uk,mf )Ωf
+ 2∆tmf νf‖D(uk,mf )‖2Ωf

+
d−1∑
j=1

cBJS∆tmf ‖u
k,m
f · tj‖2Ωf

+
∆tmf

2(αf + αp)
‖nf · (pk,mf I− 2νfD(uk,mf )) · nf + αpu

k,m
f · nf‖2Γ

≤
∆tmf

2(αf + αp)
‖nf · (pk,mf I− 2νfD(uk,mf )) · nf − αfuk,mf · nf‖2Γ

+
∆tmf (αp − αf )

2
‖uk,mf · nf‖2Γ.

20



Using Cauchy-Schwarz inequality and 1
2 (a2 − b2) ≤ a2 − ab, we obtain

1

2

(
‖uk,mf ‖2Ωf

− ‖uk,m−1
f ‖2Ωf

)
+

∫
Jm
f

2νf‖D(ukf )‖2Ωf
dt

+
d−1∑
j=1

cBJS

∫
Jm
f

‖ukf · tj‖2Ωf
dt

+
1

2(αf + αp)

∫
Jm
f

‖nf · (pkfI− 2νfD(ukf )) · nf + αpu
k
f · nf‖2Γ dt

≤ 1

2(αf + αp)

∫
Jm
f

‖nf · (pkfI− 2νfD(ukf )) · nf − αfukf · nf‖2Γ dt

+
αp − αf

2

∫
Jm
f

‖ukf · nf‖2Γ dt. (4.14)

Similarly, multiply (4.11), (4.12) by uk,np and pk,np , respectively, integrate over270

Ωp, add the two results and use (3.23) to have

νp

∫
Jn
p

‖ukp‖2Ωp
dt+

s0

2

(
‖pk,np ‖2Ωp

− ‖pk,n−1
p ‖2Ωp

)
+

1

2(αf + αp)

∫
Jn
p

‖pkp + αfu
k
p · np‖2Γ dt

≤ 1

2(αf + αp)

∫
Jn
p

‖pkp − αpukp · np‖2Γ dt−
αp − αf

2

∫
Jn
p

‖ukp · np‖2Γ dt .(4.15)

We cannot use Gronwall’s lemma as in the continuous case because of the global-

in-time projections Πf,p and Πp,f . Hence, we make the assumption that αf = αp

to cancel the last terms of (4.14) and (4.15). Summing (4.14) and (4.15) over

the subintervals in (0, tmf ] and (0, tnp ], respectively, yields275

1

2
‖uk,mf ‖2Ωf

+

∫ tmf

0

2νf‖D(ukf )‖2Ωf
dt+

d−1∑
j=1

cBJS

∫ tmf

0

‖ukf · tj‖2Ωf
dt

+
1

2(αf + αp)

∫ tmf

0

‖nf · (pkfI− 2νfD(ukf )) · nf + αpu
k
f · nf‖2Γ dt

≤ 1

2(αf + αp)

∫ tmf

0

‖nf · (pkfI− 2νfD(ukf )) · nf − αfukf · nf‖2Γ dt, (4.16)

and

νp

∫ tnp

0

‖ukp‖2Ωp
dt+

s0

2
‖pk,np ‖2Ωp

+
1

2(αf + αp)

∫ tnp

0

‖pkp + αfu
k
p · np‖2Γ dt

≤ 1

2(αf + αp)

∫ tnp

0

‖pkp − αpukp · np‖2Γ dt. (4.17)
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Adding (4.16) and (4.17), and using the Robin conditions (4.10) and (4.13), we

obtain

1

2
‖uk,mf ‖2Ωf

+

∫ tmf

0

2νf‖D(ukf )‖2Ωf
dt

+
d−1∑
j=1

cBJS

∫ tmf

0

‖ukf · tj‖2Ωf
dt+ νp

∫ tnp

0

‖ukp‖2Ωp
dt

+
s0

2
‖pk,np ‖2Ωp

+
1

2(αf + αp)

∫ tnp

0

‖pkp + αfu
k
p · np‖2Γ dt

+
1

2(αf + αp)

∫ tmf

0

‖nf · (pkfI− 2νfD(ukf )) · nf + αpu
k
f · nf‖2Γ dt

≤ 1

2(αf + αp)

∫ tmf

0

‖Πf,p(p
k−1
p + αfu

k−1
p · np)‖2Γ dt

+
1

2(αf + αp)

∫ tnp

0

‖Πp,f (nf · (pk−1
f I− 2νfD(uk−1

f )) · nf + αpu
k−1
f · nf )‖2Γ dt

≤ 1

2(αf + αp)

∫ tmf

0

‖pk−1
p + αfu

k−1
p · np‖2Γ dt

+
1

2(αf + αp)

∫ tnp

0

‖nf · (pk−1
f I− 2νfD(uk−1

f )) · nf + αpu
k−1
f · nf‖2Γ dt .(4.18)

We set m = Mf and n = Mp then t
Mf

f = t
Mp
p = T. Now (4.18) becomes

1

2
‖uk,Mf

f ‖2Ωf
+

∫ T

0

2νf‖D(ukf )‖2Ωf
dt+

d−1∑
j=1

cBJS

∫ T

0

‖ukf · tj‖2Ωf
dt

+νp

∫ T

0

‖ukp‖2Ωp
dt+

s0

2
‖pk,Mp
p ‖2Ωp

+
1

2(αf + αp)

∫ T

0

‖pkp + αfu
k
p · np‖2Γ dt

+
1

2(αf + αp)

∫ T

0

‖nf · (pkfI− 2νfD(ukf )) · nf + αpu
k
f · nf‖2Γ dt

≤ 1

2(αf + αp)

∫ T

0

‖pk−1
p + αfu

k−1
p · np‖2Γ dt

+
1

2(αf + αp)

∫ T

0

‖nf · (pk−1
f I− 2νfD(uk−1

f )) · nf + αpu
k−1
f · nf‖2Γ dt .

Then, for all k > 0280

1

2
‖uk,Mf

f ‖2Ωf
+

∫ T

0

2νf‖D(ukf )‖2Ωf
dt+

d−1∑
j=1

cBJS

∫ T

0

‖ukf · tj‖2Ωf
dt

+νp

∫ T

0

‖ukp‖2Ωp
dt+

s0

2
‖pk,Mp
p ‖2Ωp

+Bk ≤ Bk−1,
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where

Bk =
1

2(αf + αp)

∫ T

0

‖nf ·(pkfI−2νfD(ukf ))·nf+αpu
k
f ·nf‖2Γ+‖pkp+αfu

k
p·np‖2Γ dt .

We sum over the iterates k to obtain that ‖uk,Mf

f ‖2Ωf
,
∫ T

0
‖D(ukf )‖2Ωf

dt,∑d−1
j=1

∫ T
0
‖ukf · tj‖2Ωf

dt,
∫ T

0
‖ukp‖2Ωp

dt and ‖pk,Mp
p ‖2Ωp

converge to 0 as k → ∞.

This implies
∫ tmf

0
‖D(ukf )‖2Ωf

dt,
∑d−1
j=1

∫ tmf
0
‖ukf · tj‖2Ωf

dt converge to 0 as k →∞

for m = 1, ....,Mf and
∫ tnp

0
‖ukp‖2Ωp

dt converges to 0 as k →∞ for n = 1, ....,Mp.

From Poincaré-Friedrichs inequality and Korn’s inequality, we have ‖uk,mf ‖2Ωf
≤285

CPF ‖D(uk,mf )‖2Ωf
for some constant CPF > 0. This implies

∫ tmf
0
‖ukf‖2Ωf

dt

converges to 0 as k →∞ for m = 1, ....,Mf .

To show the convergence of pk,np , we multiply (4.11) by ∇pk,mp , integrate over

Ωp and use Cauchy-Schwarz inequality to obtain

‖∇pk,np ‖2Ωp
= −νp(uk,np ,∇pk,np ) ≤ νp‖uk,np ‖Ωp‖∇pk,np ‖Ωp .

Since pk,np ∈ H1(Ωp) (see remark 3.1), using Poincaré-Friedrichs inequality,

C−1
PF ‖p

k,n
p ‖Ωp

≤ ‖∇pk,np ‖Ωp
≤ νp‖uk,np ‖Ωp

, (4.19)

for some constant CPF > 0. Squaring all sides and integrating them over (0, tnp ],

we have that
∫ tnp

0
‖pkp‖2Ωp

dt converges to 0 as k →∞ for n = 1, ....,Mp. Similarly,

we multiply (4.12) by ∇ · uk,np and integrate over Ωp to obtain290

∆tnp‖∇ · uk,np ‖2Ωp
= −(s0(pk,np − pk,n−1

p ),∇ · uk,np )Ωp

≤ s0‖pk,np − pk,n−1
p ‖Ωp

‖∇ · uk,np ‖Ωp
,

which yields

∆tnp‖∇ · uk,np ‖Ωp
≤ s0‖pk,np − pk,n−1

p ‖Ωp
≤ s0

(
‖pk,np ‖Ωp

+ ‖pk,n−1
p ‖Ωp

)
.

Now, squaring all sides, integrating them over (0, tnp ] and the convergence of∫ tnp
0
‖pkp‖2Ωp

dt yield that
∫ tnp

0
‖∇ · ukp‖2Ωp

dt converges to 0 as k → ∞ for n =

1, ....,Mp. Also, this result together with the convergence of
∫ tnp

0
‖ukp‖2Ωp

dt implies

that
∫ tnp

0
‖ukp‖2Hdiv(Ωp)

dt converges to 0 as k →∞ for n = 1, .....,Mp.
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For the convergence of pk,mf we multiply (4.8) by vf ∈ Vf , integrate over295

Ωf and proceed similarly to the continuous case to have

1

∆tmf
‖uk,mf − uk,m−1

f ‖Xh∗
f
≤ C−1

∗ C( ‖uk,mf ‖Ωf
+ ‖D(uk,mf )‖Ωf

+
d−1∑
j=1

‖uk,mf · tj‖Γ + ‖Πf,p(p
k−1,m
p + αpu

k−1,m
p · np)‖Γ ) . (4.20)

Next, we multiply (4.8) by vf ∈ Xf and integrate over Ωf . And then isolate

the pressure term, divide by ‖∇vf‖, take supremum over vf ∈ Xf . Then, using

the inf-sup condition (2.12) and estimate (4.20),

β‖pk,mf ‖Ωf
≤ (1 + C−1

∗ C)( ‖uk,mf ‖Ωf
+ ‖D(uk,mf )‖Ωf

+
d−1∑
j=1

‖uk,mf · tj‖Γ + ‖pk−1,m
p ‖Γ + αp‖uk−1,m

p · np‖Γ ) ,

for some β > 0. Square both sides and integrate over (0, tmf ]. Then, for some300

tnp ≥ tmf , we have

β2

∫ tmf

0

‖pkf‖2Ωf
dt ≤ (d+ 3)(1 + C−1

∗ C)2

(∫ tmf

0

‖ukf‖2Ωf
+ ‖D(ukf )‖2Ωf

+
d−1∑
j=1

‖ukf · tj‖2Γ dt+

∫ tnp

0

‖pk−1
p ‖2Γ + αp‖uk−1

p · np‖2Γ dt

 . (4.21)

As pk−1
p ∈ H1(Ωp), using the trace theorem, we have

‖pk−1
p ‖Γ ≤ ‖pk−1

p ‖1/21,Ωp
‖pk−1
p ‖1/2Ωp

. Also, using ‖uk−1
p · np‖Γ ≤ C‖uk−1

p ‖Hdiv(Ωp),

(4.21) becomes

β2

∫ tmf

0

‖pkf‖2 dt ≤ C

∫ tmf

0

‖ukf‖2Ωf
+ ‖D(ukf )‖2Ωf

+
d−1∑
j=1

‖ukf · tj‖2Γ dt

+

∫ tnp

0

‖pk−1
p ‖1,Ωp

‖pk−1
p ‖Ωp

+ ‖uk−1
p ‖2Hdiv(Ωp) dt

)
. (4.22)

As pk−1
p ∈ H1(Ωp), ‖pk−1

p ‖1,Ωp
<∞. Therefore, the convergence of

∫ tmf
0
‖pkf‖2dt305

to 0 is obtained, since each term in the right hand side of (4.22) converges to 0

as k →∞ for m = 1, ....,Mf .
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Remark 4.2. The assumption that αf = αp is only necessary for the con-

vergence analysis of the semi-discrete Stokes-Darcy system with nonconforming310

time grids due to a technical difficulty. However, for the numerical experiments

as shown in the next section, this assumption is not required and one can choose

different values for the Robin parameters, 0 < αf ≤ αp, as in Theorem 3.1.

5. Numerical results

In this section, we consider two numerical tests to investigate the convergence315

and efficiency of the proposed global-in-time DD algorithm. The first numerical

example is a manufactured problem where the exact solution is known. The

second is a physical example where a flow is driven by a pressure drop. As

mentioned in Subsection 3.1, GMRES is used in the numerical experiments to

solve the space-time interface problem (3.11) iteratively. We shall verify the320

accuracy and convergence of the numerical solutions with decreasing grid sizes

and time step sizes.

5.1. Test 1

We consider a test case with a known exact solution. The subdomains chosen

are Ωp = (0, 1) × (0, 1) for the porous medium and Ωf = (0, 1) × (1, 2) for the325

fluid domain, with the interface Γ = {(x, y) : 0 < x < 1, y = 1}. The exact

solution is given by

uf = [(y − 1)2x3(1 + t2) , − cos(y)e(1 + t2)],

pf = (cos (x)ey + y2 − 2y + 1)(1 + t2),

up = [−x(sin(y)e+ 2(y − 1))(1 + t2) , (− cos(y)e+ (y − 1)2)(1 + t2)],

pp = (− sin(y)e+ cos(x)ey + y2 − 2y + 1)(1 + t2),

for which the Beavers-Joseph-Saffman condition is satisfied with α = 1. The

model parameters are chosen as νf = 1, νp = 1, s0 = 1. The initial and boundary

conditions are imposed using the exact solution. Two different finite element330

spaces were used for numerical simulations. First, we used Taylor-Hood elements
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for both (uf , pf ) and (up, pp. As up ∈ Hdiv(Ωp), Taylor-Hood elements are not

conforming for (up, pp). Hence, the stabilization term γ(∇·up,∇·vp) was added

to the Darcy equation (3.20) with γ = 10. Secondly, we used MINI elements for

the Stokes and Raviart-Thomas of order one and P1 elements (RT1-P1) for the335

Darcy problem. The Robin parameters are chosen as αf = 0.1 and αp = 50.

Test results using different values of Robin parameters will be discussed later.

The tolerance for GMRES is set to be ε = 10−6.

First, we investigate the convergence of numerical solutions through spatial

mesh refinement with nonconforming time grids. Table 1 and Table 2 show340

errors at T = 0.01 with ∆tf = 0.002 and ∆tp = 0.001 by Taylor-Hood elements

for both the Stokes and Darcy problems and by MINI elements for the Stokes

and RT1-P1 elements for Darcy problem, respectively. Note that for this non-

physical example, the errors in the porous medium are larger, so we have chosen

a small time step there while using a larger time step in the fluid domain. We345

observe from Tables 1 and 2 that the orders of accuracy in space are preserved

with nonconforming time grids.

h 1/4 1/8 1/16 1/32

L2 error 8.34e-04 9.39e-05 [3.15] 1.15e-05 [3.03] 1.62e-06 [2.83]
uf H1 error 2.68e-02 5.81e-03 [2.21] 1.32e-03 [2.13] 3.38e-04 [1.97]

pf L2 error 2.80e-02 5.53e-03 [2.34] 1.29e-03 [2.09] 3.91e-04 [1.73]

L2 error 1.11e-03 2.53e-04 [2.14] 3.84e-05 [2.72] 4.19e-06 [3.20]
up Hdiv error 2.11e-03 4.43e-04 [2.25] 9.55e-05 [2.21] 1.91e-05 [2.32]

pp L2 error 2.31e-02 5.03e-03 [2.20] 1.26e-03 [1.99] 3.13e-04 [2.01]

Table 1: Errors at T = 0.01 by Taylor-Hood elements for the Stokes and Darcy problems

using (∆tf ,∆tp) = (0.002, 0.001) and (αf , αp) = (0.1, 50).

We also performed convergence tests with respect to different time steps

while keeping the mesh size fixed, h = 1/32. We denote the coarse time step size

by ∆tcoarse. For Taylor-Hood elements, we use ∆tcoarse ∈ {0.2, 0.1, 0.05, 0.0025}.350
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h 1/4 1/8 1/16 1/32

L2 error 9.60e-03 2.43e-03 [1.98] 5.49e-04 [2.15] 1.44e-04 [1.93]
uf H1 error 2.71e-01 1.29e-01 [1.07] 6.10e-02 [1.08] 3.15e-02 [0.95]

pf L2 error 4.54e-01 1.06e-01 [2.10] 2.22e-02 [2.26] 5.63e-03 [1.98]

L2 error 1.99e-02 4.16e-03 [2.26] 1.01e-03 [2.04] 2.47e-04 [2.03]
up Hdiv error 2.26e-02 4.37e-03 [2.37] 1.06e-03 [2.03] 2.56e-04 [2.05]

pp L2 error 2.26e-02 4.91e-03 [2.20] 1.23e-03 [1.99] 3.06e-04 [2.01]

Table 2: Errors at T = 0.01 by MINI elements for the Stokes and RT1-P1 elements for Darcy

problem using (∆tf ,∆tp) = (0.002, 0.001) and (αf , αp) = (0.1, 50).

In the case of MINI elements for the Stokes and RT1-P1 elements for the Darcy,

we use ∆tcoarse ∈ {0.8, 0.4, 0.2, 0.1}. The fine time step size is given by ∆tfine =

∆tcoarse/2. Consider three types of time grids as follows:

1. Coarse conforming time grids: ∆tf = ∆tp = ∆tcoarse,

2. Fine conforming time grids: ∆tf = ∆tp = ∆tfine,355

3. Nonconforming time grids: ∆tf = ∆tcoarse and ∆tp = ∆tfine.

In Figure 3 we show the errors at T = 0.2 by Taylor-Hood elements using

αf = 0.1 and αp = 50. Similarly Figure 4 presents errors by MINI elements

and RT1-P1 elements at T = 0.8 using αf = 0.1 and αp = 50 on the fixed mesh

h = 1/64. We observe that the first order convergence is preserved with the360

conforming and nonconforming time grids. The errors with nonconforming time

grids in the porous medium are close to those with fine conforming time grids,

which is expected, as a smaller time step is used in the porous medium. We

also note that the Hdiv errors of Darcy velocity are very sensitive to the Robin

parameters. In Figure 5 we compare Hdiv errors of Darcy velocity at T = 0.2365

by Taylor-Hood elements using αp = 50 for different values of αf . Similarly, in

Figure 6, we compare Hdiv errors of Darcy velocity at T = 0.2 by Taylor-Hood

elements using αf = 0.1 for different values of αp. After performing experiments

using various pairs of (αf , αp), we noticed that the first order convergence with
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respect to time is achieved if αp ≈ 500αf and αf ≤ 1, which is the motiva-370

tion for the choice of parameters (αf , αp) = (0.1, 50) in most of our numerical

tests. For very smaller values of αf , we notice that the Hdiv errors of Darcy

velocity for nonconforming case shift from conforming coarse to conforming fine

on increasing αp (see Figure 7). In Table 3 we compare the computer running

time (in seconds) of conforming and nonconforming time grids for Taylor-Hood375

elements on the fixed mesh h = 1/32. Similarly, in Table 4, we compare the

computer running time (in seconds) for MINI elements and RT1-P1 elements

on the fixed mesh h = 1/64. We observe that using nonconforming time grids

could significantly reduce the computational time while still maintaining the

desired accuracy.

Figure 3: Errors for the Stokes and Darcy problems at T = 0.2 by Taylor-Hood elements using

(αf , αp) = (0.1, 50).

380
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∆t Conforming Nonconforming

0.2 72

77

0.1 144

153

0.05 285

314

0.025 576

622

0.0125 1114

Table 3: Comparison of the computer running times (in seconds) of conforming and non-

conforming time grids with Taylor-Hood elements on fixed mesh h = 1/32 using (αf , αp) =

(0.1, 50).

∆t Conforming Nonconforming

0.8 1445

1446

0.4 2833

2871

0.2 5939

6457

0.1 10923

11244

0.05 22198

Table 4: Comparison of the computer running times (in seconds) of conforming and noncon-

forming time grids with MINI elements for the Stokes and RT1-P1 element for the Darcy

problems on fixed mesh h = 1/64 using (αf , αp) = (0.1, 50).
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Figure 4: Errors by MINI elements for the Stokes and RT1-P1 elements for the Darcy problems

at T = 0.8 using (αf , αp) = (0.1, 50).

(a) αf = 0.001 (b) αf = 0.1 (c) αf = 1

Figure 5: Hdiv errors of Darcy velocity at T = 0.2 by Taylor-Hood elements using αp = 50

for different values of αf .

5.2. Test 2

In this example, we consider a flow driven by a pressure drop in the same

domain as in Test1. Let pin = 1 on the top boundary of Ωf and pout = 0 on the

bottom boundary of Ωp. We impose the no-slip boundary condition on the left

30



(a) αp = 10 (b) αp = 50 (c) αp = 100

Figure 6: Hdiv errors of Darcy velocity at T = 0.2 by Taylor-Hood elements using αf = 0.1

for different values of αp.

(a) αp = 10 (b) αp = 25 (c) αp = 50

Figure 7: Hdiv errors of Darcy velocity at T = 0.2 by Taylor-Hood elements using αf = 0.001

for different values of αp.

and right boundaries of the Stokes’s domain, and the initial Stokes velocity and385

the initial Darcy pressure are set to zero. The model parameters are selected

as: νf = 1, νp = 50, s0 = 1, α = 1. The Robin parameters are chosen as

αf = 0.1 and αp = 50, and the final time is set as T = 1. For this test, the

Stokes and Darcy equations are approximated using MINI elements and RT1-

P1 elements, respectively. To verify the convergence with respect to time with390

nonconforming time grids, we first compute the reference solution on the mesh

size h = 1/64 and ∆tref = 0.01 and calculate errors using the reference solution.

The nonconforming time grids are chosen as ∆tf = ∆tp/2. Table 5 shows errors

and convergence rates at T = 1 with the fixed mesh size h = 1/64, where first

order convergence by nonconforming time grids is observed. In Table 6 and395

Table 7, we compare the accuracy in time of the conforming and nonconforming

time grids. In particular, the errors (by nonconforming time grids) in the fluid
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domain are close to those by fine conforming time grids, while errors in the

porous medium are close to those by coarse conforming time grids.

The velocity magnitude at T = 1 using ∆tf = 1/16 and ∆tp = 1/8 is shown400

in Figure 8. As defined in Section 2, νpI = νeffK
−1, where K is the permeability

tensor of the porous medium. For some porous medium like clayey soil or clay

the value of coefficients of permeability is around 10−5−10−4 meter per day; and

about 10−8−10−2 meter per day for different kinds of sands [4, 41]. In Figure 9,

we show the velocity magnitude at the final time for the porous medium with405

coefficients of permeability 10−5 assuming νeff to be unity.

Figure 8: [Test case 2] Velocity magnitude and velocity vector at T = 1 for νp = 50.

6. Conclusion

We investigated a space-time DD method based on Robin transmission con-

ditions for the non-stationary Stokes-Darcy system, where the time-dependent

local problems are solved independently using local time-stepping schemes with410

nonconforming time grids. This approach can easily handle problems with dis-

continuous media represented by model equations with discontinuous coeffi-

cients. Also, problems with a large difference in local time scales, e.g., low
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Time steps uf pf up pp

∆tf ∆tp H1 error L2 error Hdiv error L2 error

1/4 1/2 2.61e-02 3.58e-02 6.31e-02 2.36e-02

1/8 1/4 1.49e-02 [0.81] 1.52e-02 [1.23] 3.42e-02 [0.88] 1.22e-02 [0.95]

1/16 1/8 7.59e-03 [0.97] 6.48e-03 [1.24] 1.66e-02 [1.04] 6.00e-03 [1.03]

1/32 1/16 3.38e-03 [1.16] 2.67e-03 [1.27] 7.46e-03 [1.15] 2.71e-03 [1.14]

Table 5: : Errors at T = 1 using h = 1/64 and (αf , αp) = (0.1, 0.5).

uf pf

Time grids ∆tf ∆tp L2 error H1 error L2 error

Conforming coarse 1/8 1/8 3.63e-03 1.23e-02 7.98e-03

Nonconforming 1/16 1/8 2.23e-03 7.59e-03 6.48e-03

Conforming fine 1/16 1/16 1.89e-03 6.45e-03 3.18e-03

Table 6: : Errors for the Stokes problem at T = 1 using h = 1/64 and (αf , αp) = (0.1, 0.5).

up pp

Time grids ∆tf ∆tp L2 error Hdiv error L2 error

Conforming coarse 1/8 1/8 1.07e-03 1.84e-02 6.73e-03

Nonconforming 1/16 1/8 9.87e-04 1.66e-02 6.00e-03

Conforming fine 1/16 1/16 5.24e-04 8.82e-03 3.09e-03

Table 7: : Errors for the Darcy problem at T = 1 using h = 1/64 and (αf , αp) = (0.1, 0.5).
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Figure 9: [Test case 2] Velocity magnitude and velocity vector near interface at T = 1 for

νp = 105.

permeability in the Darcy region, can be efficiently solved by the method un-

der discussion. In our numerical tests, we compared errors by conforming and415

nonconforming time grids, respectively, and observed that using nonconforming

time grids significantly improves the efficiency, still yielding the desired accu-

racy. The robustness of this global-in-time DD approach was also partially

verified while being tested on the test case of low permeability porous medium

(Figure 9). However, it was noticed that the Darcy velocity among all variables420

is most sensitive to a choice of Robin parameters for its accuracy. As mentioned

earlier, a theoretical framework for the optimal choice of Robin parameters in

the SWR method has not been established for time-dependent multiphysics

problems; therefore, the parameters used for the presented numerical results

were chosen completely based on numerical experiments. For the method to be425

practical and more robust, further studies are needed for Robin transmission

conditions pertaining to the convergence of iterative schemes and the accuracy

of numerical solutions. In future work, we plan to extend this approach to other

fluid-structure configurations, e.g., the coupled Stokes-Biot system for flows in-

teracting with a poroelastic structure.430
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