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ABSTRACT Mechanotransduction describes activation of gene expression by changes in the cell’s physical microenviron-
ment. Recent experiments show that mechanotransduction can lead to long-term ‘‘mechanical memory,’’ in which cells cultured
on stiff substrates for sufficient time (priming phase) maintain altered phenotype after switching to soft substrates (dissipation
phase) as compared to unprimed controls. The timescale of memory acquisition and retention is orders of magnitude larger
than the timescale of mechanosensitive cellular signaling, and memory retention time changes continuously with priming
time. We develop a model that captures these features by accounting for positive reinforcement in mechanical signaling. The
sensitivity of reinforcement represents the dynamic transcriptional state of the cell composed of protein lifetimes and three-
dimensional chromatin organization. Our model provides a single framework connecting microenvironment mechanical history
to cellular outcomes ranging from no memory to terminal differentiation. Predicting cellular memory of environmental changes
can help engineer cellular dynamics through changes in culture environments.
SIGNIFICANCE Cellular mechanical memory has been observed across several different cell lines and culture
environments, yet there is limited mechanistic understanding to explain key features of this biological phenomenon. Here,
we develop a general mathematical framework that produces the unique features of cellular mechanical memory with a
limited number of free parameters. Using the same parameter set and experimental units, our model agrees with
experimentally observed distributions of memory outcomes across different cultures. Because data on cellular mechanical
memory are time consuming to acquire, an improved theoretical understanding will assist cellular engineering efforts that
take advantage of the mechanical environment.
INTRODUCTION

Cellular mechanical memory describes how cells acquire
and retain information about the mechanical properties
of their microenvironment. These extracellular matrix
(ECM) properties impact cellular structure, function, and
identity (1–3), and recent experiments suggest that this
linkage depends on not just this microenvironment but
also the accumulated mechanical history experienced by
the cell (4–10). The mechanism by which this memory is
Submitted July 21, 2021, and accepted for publication October 5, 2021.

*Correspondence: vshenoy@seas.upenn.edu or pathaka@wustl.edu

Christopher C. Price and Jairaj Mathur contributed equally to this work.

Editor: Guy Genin.

5074 Biophysical Journal 120, 5074–5089, November 16, 2021

https://doi.org/10.1016/j.bpj.2021.10.006

� 2021 Biophysical Society.
developed, maintained, and lost is not yet understood and
exhibits several unusual features. First, the timescale at
which the cell responds to mechanical changes through
signaling (minutes to hours) is an order of magnitude faster
than the timescale of memory development and dissipation
(days to weeks). This implies that microenvironmental in-
formation is rapidly acquired and used by the cell but
stored and released much more slowly. Second, the persis-
tence time of the developed mechanical memory ranges
continuously from no memory all the way to permanent
memory (cell differentiation), simply by varying the micro-
environmental history that the cell is exposed to (Fig. 1 a).
This strong coupling between the dynamics of memory
retention and the dynamics of the stimulus being remem-
bered is not found in common physical systems such as
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FIGURE 1 Model for dynamic mechanical memory in cells. (a) Experimental observations indicate that cells alter their phenotype when placed on stiff

substrates (priming) in a matter of hours. The length of time that these phenotype features are retained when the cell is transitioned backed to soft substrates

depends on the length of priming time on the scale of days. (b) Integrated cellular picture of mechanosensitive signaling and positive reinforcement enable by

transcription and translation. Increased ECM stiffness leads to F-actin formation, increased cellular contractility, and nuclear localization of mechanosensors

(legend continued on next page)
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magnetic or shape memory materials. Understanding these
unique dynamical phenomena is critical to engineering cell
behavior and fate through temporal control of the cell’s
physical environment.

Cellular adaptation to changes in the mechanical environ-
ment occurs in both the cytoskeletal and nuclear domains
(11,12). On stiff substrates, examples of cytoskeletal pheno-
type changes include increased clustering of focal adhe-
sions, actomyosin contractility, cell spreading area, and
migration speed (13–15). On soft substrates, contractility
is reduced, and the mechanical properties of the cell adjust
to match that of the surrounding environment by depolymer-
ization of F-actin (16–18). In the nucleus, the population of
transcriptionally active proteins changes with ECM stiffness
as certain transcription factors relocate in response to me-
chanical signals (19,20). The chromatin structure experi-
ences epigenetic modifications and physical deformation
of the nuclear envelope from contractile forces, leading to
alterations in gene expression (21,22). The dynamic nature
of mechanical memory development and depletion indicates
that information about microenvironmental mechanics is
continuously consumed by the cell, allowing stem cell dif-
ferentiation to proceed from different time series of mechan-
ical microenvironments (1,4,6,23).

A hallmark ofmathematical models ofmemory is bistabil-
ity, which is a property of a system to have more than one
steady state, and this concept forms the basis for Wadding-
ton’s famous landscape of cell differentiation. Bistability
alone does not contain any information about dynamics of
memory development or retention, only that it can occur
(24,25). Several mechanistic models have been put forward
to explain the relationship betweenmechanics and cell differ-
entiation (5,26–28), but these models do not simultaneously
capture 1) the timescale disparity between mechanical
signaling and cell adaptation and memory development and
2) the continuous range of memory outcomes. More gener-
ally, regulatory gene network models with different topol-
ogies can give rise to memory using network motifs such as
positive and negative reinforcement (29–34). However,
explicit molecular network models for mechanotransduction
are difficult to develop because there are not enough data
available to determine the many model parameters or assert
which components of the regulatory network are rate
limiting. This leads to rigid models that are difficult to inter-
pret and cannot generalize across variations in priming time
and priming stiffness, limiting their predictive power.

In this work, we propose a model to describe the dy-
namics of mechanotransductive memory acquisition and
persistence. The model starts from a general molecular
framework, incorporating both fast and slow mechanosen-
sitive pathways. We simplify this model to two ordinary
(blue arrows), whereas soft-ECM stiffness leads to decomposition of these featur

nuclear tension, epigenetic changes, and shifts in the post-transcriptional regulat

levels of reinforcement stabilize the stiff phenotype features. To see this figure

5076 Biophysical Journal 120, 5074–5089, November 16, 2021
differential equations, representing cytoskeletal and nu-
clear dynamics, respectively. First, we show that simple
positive reinforcement between signaling and transcription
is sufficient for mechanical memory acquisition. Second,
we show that dynamic coupling between the cellular
phenotype and the sensitivity of this reinforcement leads
to a continuous range of memory persistence time. Biolog-
ically, the sensitivity of positive reinforcement corre-
sponds to the epigenetic state and transcriptional
environment of the cell, which govern the steady-state bal-
ance between synthesis and degradation of proteins corre-
lated with either a stiff-ECM or soft-ECM phenotype. The
rate at which signaling induces changes in the positive
reinforcement sensitivity (transcriptional environment) de-
termines memory by shifting the phenotype (protein
composition) from requiring external mechanical signal
to a self-sustaining state. Simulating priming programs
that match experimentally tested configurations, we
observe emergent cases of no memory, temporary mem-
ory, and quasipermanent memory (differentiation) by
varying only the priming time and keeping other model
parameters fixed. In designing future experiments or ther-
apeutics, this simple but robust framework could help
decouple the importance of positive reinforcement of me-
chanosensitive gene expression and their sensitivity to me-
chanical cues, thus optimizing the role of mechanical
memory in optimizing biological outcomes.
MATERIALS AND METHODS

Model for dynamic mechanosensitivity in the
cytoskeleton and the nucleus

We begin our model of mechanotransduction and mechanosensitive gene

expression by introducing a variable x, which represents the average func-

tional concentration of all the stiff-activated proteins and transcription fac-

tors in the cell. Examples of cytoskeletal protein components contributing

to x include F-actin (or a-smooth muscle actin (SMA)), vinculin, and integ-

rins. Transcription factors contribute to x through their transcriptionally

eligible concentrations, which incorporates nuclear localization as well as

cell concentration. Examples of transcription factors with well-known

stiff-correlated nuclear localization include YAP (35,36), MKL-1 (20,37),

and RUNX2 (38,39). Finally, we include epigenetically modifying enzymes

such as HDAC and HAT as contributing components to x, which influence

chromatin organization and demonstrate mechanosensitive activity patterns

(8). Although these contributing components to x have independent dy-

namics, we pursue an approximate approach because limited data are

available to characterize all the individual interactions between mechano-

sensitive components. As an average, xmeasures the net mechanoactivation

of the cell induced by increased ECM stiffness. If more information is

known about the mechanosensitive dynamics of the individual components

of x for a specific cell type, this approach can be generalized as shown in

Supporting materials and methods, Section I. The linear dynamics of x

can be written as
es (red arrows). (c) Slow changes in the stable chromatin state in response to

ion environment affect the efficiency of stiff phenotype reinforcement. High

in color, go online.
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dx

dt
¼ kx[ðmÞ

�
xref � x

�� kxYðmÞx; (1)

where m is the matrix stiffness, kx[(m) gives the mechanosensitive rate of

cytoskeletal protein synthesis and/or transcription factor nuclear import,

kxY(m) gives the rate of the reverse processes (degradation and nuclear

export), and xref is a reference level of mechanoactivation at a characteristic

stiffness m0. Processes described by kx[(m) are shown with blue arrows in

Fig. 1 b, and processes described by kxY(m) are shown with red arrows. We

choose kx[(m) to be a monotonically increasing but saturating function of

stiffness, kx[ ¼ tx[ � exp(� m
m0
), to capture the mechanosensitivity of stiff

activation, and for simplicity we choose the degradation and export rate

kxY(m) to be a constant txY over stiffness (36) (Fig. S1). This is motivated

by experimental evidence that nuclear import of transcription factors is

more mechanosensitive than nuclear export (36) and that cellular response

saturates at very high stiffness (40). Although specific functional choices

are arbitrary, the results we present are general to different functional forms

that maintain a positive correlation of kx[ with stiffness. A systems circuit

of our model is included in Fig. S2 for further reference.
Transcription creates positive reinforcement loop
for mechanical signaling

Next, we consider that the transcriptional activity of the many individual

components of x creates a positive reinforcement loop by enhancing adap-

tations to increased stiffness of the ECM. For example, YAP and MKL-1

activate transcription of genes that lead to increased stability of focal adhe-

sions, F-actin, and contractility through Rho-Rock pathways and support of

G-actin polymerization (41–43). This stabilization releases additional

bound cytoplasmic transcription factors to translocate to the nucleus,

further increasing x. The transcriptional positive reinforcement is depicted

in Fig. 1 b by the purple arrows; we incorporate this positive reinforcement

mechanism into Eq. 1 by adding a nonlinear Hill relation:

dx

dt
¼ kx[ðmÞ

�
xref � x

�� kxYðmÞx þ a
xb

xb þ 1
(2)

Here, a is the sensitivity of the positive reinforcement and b determines the

sharpness of the Hill function, which transitions from a low value to a high

value like a smoothed step function. Positive reinforcement loops in cells

have been extensively modeled using Hill relations and are a known source

of bistability in dynamical systems (44–46). Bistability indicates at least

two steady-state solutions to a dynamical system and underpins hysteresis

andmemory inmany physical systems. Biologically, the sensitivity parameter

a contains all the information about the efficiency of the mechanosensitive

self-reinforcement, which directly corresponds to the transcription landscape.

Like x, we consider a to be an average measure over many components

involved in regulating the transcription-translation pipeline, including pro-

teins, messenger RNA (mRNA), noncoding micro RNA (miRNA), and the

fraction of heterochromatin/euchromatin in the nucleus. Implicitly, a subset

of these a components depend on mechanosensitive components of x and

therefore m, coupling cytoskeletal mechanosensing to nuclear activity in our

model. Fig. 1 c illustrates how changing a reflects changes in both three-

dimensional chromatin architecture and post-transcriptional regulation,

altering the efficiency of mechanosensitive transcription. In the heterochro-

matic state, fewer chromatin sites are available for transcription. In the more

active euchromatic state, a complex and modifiable regulatory environment

(includingmiRNAs) exists in between the chromatin and downstream protein

expression. These transcriptional machinery and regulatory components

interact with significant complexity and codependency, and there are insuffi-

cient data to parameterize a full microscopic description of these interactions.

A generalized derivation for a is given in Supporting materials and methods,

Section II, which considers these nonlinear interactions by expanding a as a
series expansion of terms weighted to account for cooperativity between reg-

ulatory components.
Fast and slow dynamics of transcriptional
reinforcement sensitivity

Because x and m have time dependence, we know that a must also have a

dynamic evolution da
dt that is bounded on the fast end by

dx
dt and

dm
dt because of

the underlying dependence of a components on mechanosensitive x compo-

nents. On the slow end, the dynamics of a can be severely limited by com-

plex rate-limiting or anticooperative relationships between the

transcription-translation regulatory components. Evidence of these time-

dependent relationships between reinforcement and transcription has been

collected on some individual mechanosensitive mechanisms (47,48).

Although we lack the data and explicit mechanistic understanding to

specify all the contributing mechanisms to a, we can capture the essential

nature of this time dependence by rewriting a as the sum of a fast-changing

component (on the scale of dm
dt or

dx
dt) and a slow-changing component that is

effectively constant on the timescale of x and m. Complete details of the

derivation beginning from the series expansion of a are included in Sup-

porting materials and methods, Section II; the result for a(t) is

aðtÞ ¼ aðtslowÞ þ c
mz

mz þ 1
(3)

We use another Hill relation in stiffness m with degree z and sensitivity c

to model the fast portion of a, which captures the fact that the positive rein-
forcement sensitivity is explicitly mechanosensitive and that stiff reinforce-

ment requires the presence of mechanosensitive transcription factors such

as YAP and MKL-1 to occur (41,42,49–51). Recent evidence indicates

that the nuclear structure and chromatin conformation physically respond

to environmental stiffness via forces transmitted through the linker of nu-

cleoskeleton and cytoskeleton (LINC) complex and not merely through

chemical signals, and these direct processes are captured by this fast

component of a(t) (12,52,53). For the remaining term a(tslow), we choose

a form that generally depends on x and m such that va
vtslow

(x, m) represents

a weighted average of the slow, nonlinear dynamics present in transcrip-

tion-translation reinforcement.

Plugging Eq. 3 back into Eq. 2, our time-dependent equation for cellular

mechanoactivation is now

dx

dt
¼ kx[ðmÞ

�
xref � x

�� kxYðmÞx

þ
�
aðtslow; x;mÞþ c

mz

mz þ 1

�
xb

xb þ 1
(4)

In this ordinary differential equation (ODE), we established mechanosen-
sitivity of synthesis and nuclear import of x (first term), mechanosensitivity

of degradation and nuclear export of x (second term), and positive rein-

forcement of cellular mechanoactivation (third term) with a time-dependent

sensitivity that evolves slowly with respect to changes in x. Equation 4 is the

key ODE that underpins the results. We can interpret this equation as the

negative gradient of a ‘‘Waddington-like’’ energy landscape with respect

to x; dxdt ¼ � vU
vx . Because a(tslow, x, m) evolves on a much slower timescale

than dx
dt, we treat a as a constant when finding the steady-state solutions of x.

Integrating Eq. 4, we arrive at

Uðx;m;aÞ ¼ � kx[ðmÞxref x þ x2

2
ðkx[ðmÞþ kxYðmÞÞ

þ x

�
aþ c

mz

mz þ 1

��
2F1

�
1;
1

b
; 1þ 1

b
; � xb

�
� 1

�
; (5)

where 2F1 is the special hypergeometric function.
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The model was implemented using a standard ODE solver (fsolve) in the

open source SciPy package (Python). Parameter selection for numerical

simulations was performed using Latin hypercube sampling over the

following parameter space: a0 (initial value for positive reinforcement),

m0 (stiffness normalization constant), xref (reference level of mechanoacti-

vation), ts (timescale for da
dt ), txY (timescale for x decrease), tx[ (timescale

for x increase), z, b (degree of Hill relations), s (standard deviation of

noise), and A (amplitude of noise). Each parameter combination was run

for priming times of 3, 7, and 10 days, with 250 noisy trials run for each

priming time. Parameter combinations were scored against the experi-

mental data from Yang et al. (6) using a Kolmogorov-Smirnov test, a

least-squares test, and manual inspection. We note that these parameter

combinations do not represent global best fits to the data but were sufficient

to show qualitative agreement and differentiate the two different dynamics

approaches.
RESULTS

By taking x and a as average quantities over many interact-
ing mechanosensitive components, our implemented model
framework sacrifices some mechanistic detail. However, we
successfully identify that nonlinear dependence of the pos-
itive reinforcement strength on the level of mechanosensa-
tion can lead to all the features of mechanical memory
observed in experiments. A mechanistic example of this
type of positive reinforcement is given in Fig. 2, with
FIGURE 2 Example microscopic mechanosensitive positive reinforcement lo

positive reinforcement loop in mechanotransduction mediated by transcription f

the soft mechanoresponse corresponds to smaller x. The degree of positive rei

inhibition, and transcription arrows, which is captured by a in the model an

online.
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connections to the model components illustrated in Fig. 1.
Under a stiff mechanoresponse, focal adhesion, integrin,
and stress fiber density all increase (54) from increased
F-actin polymerization, freeing transcription factors such
as MKL-1, YAP, and HDAC to translocate to the nucleus
(8,55). These processes correspond to the mechanosensitive
linear dynamics introduced in Eq. 1. Significant cross talk
has been observed for these transcription factors, which
can lead to nonlinear dynamics (56) such as those intro-
duced in Eq. 3. MKL-1 acts as a transcription factor for
the production of miR-21 (5), which was found to regulate
mechanical memory. miR-21 has also been shown to affect
YAP via RUNX1 and RUNX2, which are also mechanosen-
sitive transcription factors (57). Finally, YAP has been
shown to regulate actin dynamics, stabilizing F-actin
through the Rho pathway (58) and closing the positive rein-
forcement loop. These processes are examples of fast-acting
positive reinforcement; meanwhile, epigenetic modifiers can
lead to slow dynamics of chromatin conformational change
(59,60). Although this is not a complete account of mecha-
notransductive pathways by any means, this illustrates one
example of mechanically initiated positive reinforcement
that couples the cytoskeleton and nucleus and can lead to
memory.
op. Relationships assembled from the literature illustrate one example of a

actors. In the model, the stiff mechanoresponse corresponds to larger x, and

nforcement is controlled by the intensity and magnitude of the activation,

d exhibits both fast and slow dynamics. To see this figure in color, go
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Phase diagram of cellular mechanoactivation
shows selective bistability

We can visualize the steady-state solution space of x through
the lens of the energy landscape defined by Eq. 5. Fig. 3 a
gives a phase diagram with three distinct regions of the so-
lutions of x (identified as local minima in the free energy
landscape) as a function of the dimensionless ECM stiffness
m
m0

(y axis) and the reinforcement sensitivity a (x axis). The
insets on the phase diagram show representative slices of the
energy landscape for a point (a, m) within each region of
the landscape.

In orange region I (low reinforcement sensitivity and
stiffness), the energy minimum and single corresponding
steady state are found at small x. In this monostable region,
there is low mechanical signal from the soft ECM, and low a
FIGURE 3 Phase diagram of the stiff-correlated

phenotype. (a) Phase diagram of steady-state stiff

phenotype expression in the space of ECM stiffness
m
m0

and transcriptional reinforcement sensitivity a. In-

sets demonstrate a slice of the energy surface versus

x for a typical point in each region, where the dots

mark the energy minima and the corresponding

steady-state values of x. (b and c) Transitioning

from region I to region II (gray arrows) by increasing

a at constant stiffness above mc leads to a significant

increase in the steady-state value of x. Green line in-

dicates crossing the phase boundary between re-

gions. (d and e) Transitioning from region I to

region III (pink arrows) at constant stiffness by

increasing a below mc traps the system in a low-x

steady state. However, the transition from region II

to region III by dropping the ECM stiffness at large

a (gold arrows) keeps the system in a high-xminima.

To see this figure in color, go online.
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corresponds to a small influence of the positive reinforce-
ment process on x. In light blue region II, the system is still
monostable, but the increased ECM stiffness induces me-
chanical signaling and shifts the steady-state value of x to
a much higher value than in region I. Biologically, this cor-
responds to mechanotransductive responses that occur on a
timescale of hours, such as polymerization of G-actin to
F-actin and increased density of focal adhesions, stress
fibers, and integrins. Compared to region I, a cell in region
II exhibits greater nuclear localization of transcription fac-
tors such as YAP, RUNX2, and MKL-1 and increased focal
adhesions, contractility, and areal spreading (Fig. 1 b).
When m >> m0, this mechanically induced phenotype shift
occurs for all values of reinforcement a. In dark blue region
III (low stiffness and large reinforcement sensitivity), the
system is bistable; there are two steady states for x, one cor-
responding to a soft phenotype (expected because of the
ECM stiffness) and one corresponding to a stiff phenotype
(stabilized by the positive reinforcement even without direct
mechanical signal). For a given value of ECM stiffness and
reinforcement sensitivity in region III, the cell will exhibit
either low or high mechanoactivation contingent on the prior
mechanical history and the gene expression environment.
This hysteresis forms the basis in this framework for cellular
mechanical memory.

Dynamically, region boundaries (green lines) in the phase
diagram can be crossed by altering either the ECM stiffness
or the reinforcement feedback sensitivity, inducing transi-
tions in the steady-state mechanoactivation. Considering
the soft phenotype region I as the initial condition, there
are two possible transition pathways. Traversing to region
II by increasing a above a critical stiffness (gray arrow)
leads to a continuous and reversible increase in the observed
value of x (Fig. 3, b and c). If the mechanical signal is then
removed (region II to region III, gold arrow), x will remain
elevated as the minimum from region II smoothly transitions
to the large x minima in region III (Fig. 3, c and e).
Traversing from region I to region III below the critical stiff-
ness value (pink arrow, Fig. 3 d) will not observably change
x from the low region I value, as the region I minimum
smoothly transitions to the small x local minimum in region
III (Fig. 3 e). Further increasing the positive reinforcement
sensitivity within region III eventually leads back to region
II, with a single ‘‘stiff’’ steady state at large x for all values of
ECM stiffness. The hysteresis loop created by the path
dependence in the stiffness-reinforcement phase diagram
provides a mechanism for dynamic mechanosensitive mem-
ory. A key feature of the phase diagram that corresponds to
experimental observations is that increasing mechanical
stiffness alone can increase x, allowing the cell to begin
adapting to the environment on short timescales by express-
ing stiff-correlated proteins and localizing stiff-correlated
transcription factors to the nucleus (1). However, these
changes are fully reversible (exhibit no memory) unless
the sensitivity of the positive reinforcement is sufficiently
5080 Biophysical Journal 120, 5074–5089, November 16, 2021
large. In the next section, we explore how evolving a on a
slow timescale can lead to different expressions of mechan-
ical memory depending on the time program of external me-
chanical stimulus.
Nonlinear dynamics of positive reinforcement
sensitivity capture full range of memory retention
outcomes

Having shown that the trajectory of a can determine whether
memory is observed for a particular ECM mechanical his-
tory, we return to a(tslow) in Eq. 3 and consider an explicit
form for the slow evolution of the reinforcement sensitivity.
Given sufficient data on low-level biological dynamics,
a(tslow) can be rigorously derived from Eq. S3 (Supporting
materials and methods, Section II), but in lieu of these
data, we choose the following form to maximize simplicity
while capturing key phenomenological features from
experiment:

da

dtslow
¼

8>>>>>>><
>>>>>>>:

�a� a0

tf
; I

a

ts

m

m0

exp� x

xref
; II

�a

ts

m0

m
exp� x

xref
; III

; (6)

where tf and ts are time constants on the scale of hours and
days, respectively, and can be directly related to dyi

dt and
dz
dt in

Eq. S4. Fig. 4 overlays the biological interpretations of the
different piecewise components of Eq. 6 on top of the phase
diagram from Fig. 3 a. The y axis remains the rescaled ECM
stiffness m/m0 and the x axis the strength of positive mecha-
nosensitive reinforcement a.

In region I (low stiffness and cytoskeletal reinforcement),
we simply set da

dtslow
to quickly converge to a reference value

a0. At low levels of mechanical signaling and without prior
mechanical activation, there is no driving force to spur
phenotypic change. Although soft ECMs promote cell dif-
ferentiation and memory, in our example we are only
considering stiff-correlated genes for x, and there is no evi-
dence for undifferentiated cells to develop memory that re-
sists stiff priming. In Fig. 4, this corresponds to no change in
the chromatin state or transcriptional activity over time.
Memory develops at high stiffness and is lost at low stiffness
unless the cell differentiates, so we choose a to increase in
region II and decrease in region III to complete our piece-
wise description. By our definition, increasing a(tslow) in re-
gion II accounts for slow, nonlinear processes (shifts in the
three-dimensional chromatin and transcriptional regulation
environment) that increase reinforcement of a stiff cellular
phenotype (Fig. 4). Decreasing a(tslow) in region III models
net decay of these stiff phenotype features (which can have
lifetimes on the scale of days to weeks (61)) and reversal of



TABLE 1 Parameters for simulations.

Parameters (Fig. 5) Values Units

Phase diagram

m0 6.5 kPa

xref 2 arbitrary

b 6 n/a

z 35 n/a

c 1 h�1

txY 1.5 h

tx[ 1.5 h

Dynamics

tf 12 h

ts 150 h

a0 1 arbitrary

Priming

mstiff 10 kPa

msoft 2 kPa

Simulations in Fig. 5, a–d. n/a, not applicable.

FIGURE 4 Dynamics of the transcriptional environment. In region I, the

cell receives little mechanical signal and has limited positive reinforcement,

so there is no driving force for the transcriptional environment to shift. In

region II, signaling is sufficient to drive chromatin reorganization and

changes to the post-transcriptional regulatory environment, such as miRNA

synthesis. In region III, the mechanical signal is lost, and there is net degra-

dation and reversal of the stiff-correlated phenotype. As self-reinforcement

a increases, less external mechanical signal is required to maintain the stiff

phenotype cultivated in region II. To see this figure in color, go online.
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the transcriptional environment in the absence of sufficient
mechanical signal.

In the priming region II, multiplying by m
m0

ensures that the
priming time required to achieve a given level of memory
decreases when increasing the priming stiffness. Including
a dependence on x ensures that the persistence time of me-
chanical memory increases nonlinearly with priming time
for a specified priming stiffness (6). Mechanistically, our
definition of x includes mechanosensitive epigenetic modi-
fiers such as HDAC and HAT (8,62,63), and although the ac-
tivity of these enzymes to flip epigenetic marks occurs on
shorter timescales relative to memory (62), chromatin struc-
tural organization and downstream effects on transcription
can be much slower because of the glassy dynamics of
actual chromatin conformational change (59,60,64). This
couples the slow dynamics of the reinforcement sensitivity
to the steady-state value of x, which changes depending
on the specific location within each region of the phase di-
agram. To our knowledge, this coupling of reinforcement
sensitivity to the signal itself is a new feature of our model
that has not been studied in other models of cellular positive
reinforcement loops. For simplicity and to limit free param-
eters, we choose the a degradation dynamics in region III to
be the reverse of the priming dynamics. Net degradation of
the reinforcement and dissipation of memory will be faster
at smallerm and will smoothly change from the value of a in
region II.

Each of the three arrows (gray, red, and blue) in Fig. 4
correspond to a different hypothetical stiff-priming program
that leads to a different class of memory outcome. The
initial conditions, priming stiffness, and model parameters
(Table 1) are fixed across the three programs. The corre-
sponding time evolution of x and a for each mechanical
priming program is plotted in Fig. 5, a–c. Between each
of the three priming program results shown in Fig. 5, a–c,
only the length of time that the simulated cell is exposed
to stiff substrate (10 kPa) is changed; the soft substrate is
modeled at 2 kPa.
Short priming does not lead to memory formation

The gray program does not exhibit any memory; the time
that the cell is exposed to the stiff environment is short,
and when the cell is returned to a soft ECM, the system re-
turns to region I. Although the phenotype quickly shifts to
respond to the stiffening substrate at the beginning of the
priming program (crossing the dashed green line corre-
sponding to the boundary between regions I and II), the me-
chanical signal is not maintained long enough to alter the
transcriptional environment to the point where it can sustain
memory. The stiff phenotype is lost just as rapidly as it was
gained (timescale of hours), as the dynamic trajectory re-
turns directly to region I when the stiffness is relaxed. In
the case of a stem cell, this corresponds to an insufficient
mechanical signal to sustain differentiation.
Medium priming leads to temporary memory with
variable retention time

The red program in Fig. 4 exhibits temporary memory: by
holding the cell in priming region II for longer than the
gray program, a increases sufficiently such that when the
Biophysical Journal 120, 5074–5089, November 16, 2021 5081



FIGURE 5 Applying different mechanical priming programs. Dot-dash lines xref indicate the value of x without a dynamics (a ¼ a0). Chart highlight

colors indicate phase diagram regions in Fig. 2 and Fig. 3. (a) Short priming time of a few days does not result in memory (gray trajectory in Fig. 3).

(b) Medium priming time (red trajectory in Fig. 3) results in memory on the timescale of priming, but eventually this memory decays and the system resets.

(c) Longer priming time (blue trajectory in Fig. 3) prevents the system from entering the memory dissipation region when the substrate stiffness is decreased,

leading to permanent memory of stiff phenotype. All model parameters in (a)–(c) are fixed except for the length of priming time in the mechanical program

(top plots). (d) Two-phase mechanical priming program that illustrates cumulative priming. The first priming phase is identical to (b), and the total priming is

equivalent to (c). The second short priming pulse generates significantly more memory than the first priming pulse, yet the cell remains reversibly plastic

compared to (c) because some priming decays between the two pulses. To see this figure in color, go online.
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cell is returned to a soft environment, it enters the bistable
region III. The positive reinforcement loop traps the system
in a steady state of large x despite the absence of persisting
stiff mechanical signaling (Fig. 5 b). The dot-dash line xref
shows the phenotype expression of x in the absence of a dy-
namics (a is fixed at a0) under the same priming program.
The significant deviation of x from xref represents the
‘‘phenotypic distance’’ of the cell from the low reinforce-
ment case; the length of time that this difference is main-
tained (while the cell is in region III) gives the length of
time of observed memory. Because the dynamic evolution
of a fundamentally changes the energy surface, the persis-
tence time of memory is decoupled from the relaxation
rate of x, as is observed experimentally. Depending on the
specific length of priming time and priming stiffness, the
model predicts a continuous range of memory persistence
times from much shorter than the priming time to much
longer than the priming time using the same parameter
set. Over time, a slowly decreases (driving x to decrease)
because of the absence of continued signaling promoting
epigenetic change and natural degradation of stiff phenotype
proteins, dissipating memory and eventually returning the
system to region I. The model also predicts that as substrate
stiffness decreases after priming, the window of reversible
memory (range of a that corresponds to region III) grows
significantly. This means that the phenotype of the cell is
more likely to be reversible if the dissipative mechanical
signal is stronger.
Long priming leads to permanent memory

Finally, the blue program corresponds to permanent mem-
ory, which in the case of MSCs indicates lineage specifica-
tion to a stiff phenotype (osteocyte). As the sensitivity of the
positive reinforcement a continues to increase, it requires a
stronger reversing signal (softer ECM) to enter the bistable,
temporary memory regime. At a certain point (beyond the
axis break in Fig. 4), it becomes practically impossible to
sufficiently reverse the mechanical signaling, and the cell
will permanently exhibit a phenotype correlated with large
x and saturated large a. In vitro experiments confirm that
differentiated osteocytes exhibit sustained higher nuclear
activation of YAP/TAZ and other stiff-correlated proteins,
qualitatively agreeing with our picture of a phenotype that
retains features of high x (50). Fig. 5 c shows how simply
increasing the priming time using the same ECM stiffnesses
of the mechanical programs in Fig. 5, a and b prevents the
system from leaving region II of the phase diagram after
the priming phase. Physically, this means that the transcrip-
tional and epigenetic state of the cell has absorbed enough
mechanical signal during the priming phase to self-sustain
the stiff phenotype once that signal is removed. Even after
reducing the ECM stiffness, a and x will continue to slowly
increase until they reach a saturation value that corresponds
to lineage specification (Fig. S3). The model predicts that
this transition to a ‘‘permanent’’ phenotype is a result of
the net cumulative mechanical signal absorbed by the cell;
for example, consecutive short priming programs will
have an additive effect due to the dynamics of a in regions
II and III (Fig. 5 d). In this trajectory, the initial priming
period is the same as that in Fig. 5 b, but the short second
prime ends up building significantly longer memory than
in Fig. 5 b because of the accumulated ‘‘environmental
knowledge,’’ which is not dissipated in the short intermedi-
ate soft period. This agrees with experimental evidence
that cyclical stretching and stress stiffening of cellular sub-
strates induces stiff differentiation (a ‘‘pumping’’ effect)
(23,65,66). The model also predicts that if the epigenetic-
transcriptional state labeled by a is manipulated by a drug
or other mechanism, the cell can lose its permanent mechan-
ical memory and be ‘‘reprogrammed,’’ which corresponds
physically to reversible lineage specification enabled by
so-called Yamanaka factors (67).
Noise in a dynamics results in qualitatively
accurate memory distributions when compared
with experiment

We have so far identified and predicted a wide range of
phenomenological features of cellular mechanical memory
with our simple, dynamic positive reinforcement model at
the single cell level. However, biological systems are inher-
ently noisy and experimental measurements of cellular
phenotype and mechanical memory are most often taken
over a population of cells. We categorize possible random
fluctuations in our model into two categories: noise that af-
fects mechanosensation and signaling (‘‘fast’’ noise) and
noise that affects the slower dynamics of reinforcement
(‘‘slow’’ noise). ‘‘Fast’’ noise contains all the fluctuations
that might cause the phenotype of a cell to not occur at
the local minimum of the energy landscape on fast time-
scales (deviations away from steady state). This is particu-
larly relevant in the bistable region III, where fluctuations
could cause cells to jump between different local minima,
corresponding to changes in phenotype and changing obser-
vations of memory. In a bistable energy landscape, a normal
distribution of fluctuations away from steady-state values of
x will bias a population toward the global minimum over the
local minimum because the jump rate will be higher if the
energy barrier height between wells is lower (Fig. S4).
Fig. 6 a shows the global minimum steady-state value of x
over the stiffness-reinforcement phase diagram from
Fig. 3 a (region boundaries in green). In the majority of re-
gion III, the high-xminimum is lower in energy. For our pur-
poses of stiff-priming programs that enter region III from a
single-minima, high-x state in region II, this means that fluc-
tuations from steady state will tend to reinforce a noisy pop-
ulation to remain in the high-x state, preserving memory and
having little qualitative effect on the model results.
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FIGURE 6 Adding noise to nonlinear a dy-

namics. (a) Global energy minima of x vs. a and

m overlaid with priming programs from Fig. 3

and phase boundaries from Fig. 2. For the majority

of region III, the large x minima are also the global

energy minima, indicating that noise on fast time-

scales is unlikely to cause well hopping and disrupt

temporary memory. (B and C) CDF of memory

times from simulations with slow, Gaussian noise

incorporated onto da
dt for priming of 7 days (b)

and 10 days (c), matching experimental conditions

from Yang et al. (6). Fig. 3 (green bars and purple

control lines). The black dashed line shows the

CDF of a normal distribution with the same

mean and standard deviation as the model distribu-

tion for reference. To see this figure in color, go

online.
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‘‘Slow’’ noise captures fluctuations in the dynamic evolu-
tion of a, and this is more interesting to consider because of
the nonlinearity of a(t). The fact that dadt depends on the cur-
rent steady state of x (and therefore the prior history of da

dt )
means that a normal distribution of noise in the dynamics
of a could lead to a non-normal distribution of memory re-
sults. We investigated the impact of including noise on da

dt by
introducing a normal distribution of noise with 0 mean, unit
standard deviation, and magnitude A ¼ 0.01 at each time
step of the simulations conducted in Fig. 5, a–c and gener-
ating a distribution of results over N¼ 256 simulations. The
distribution of memory times observed from the noisy sim-
ulations is shown in blue in Fig. 6, b and c. These data
contain all simulation runs including those without memory,
so the difference between the first bin and second bar shows
the percentage of trials (cells) that did not exhibit any me-
chanical memory. The thin black line gives the cumulative
distribution function of a normal distribution with the
same mean and standard deviation as our generated data
set. This confirms that applying normally distributed noise
to the dynamic evolution of a results in a non-normal distri-
bution of observed memory persistence times because of the
nonlinearity of the a dynamics.
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Experimental data on the persistence time of YAP and
RUNX2 nuclear localization as a function of priming time
on stiff substrates (10 kPa) taken from (6) are overlaid on
Fig. 6, b and c. We averaged their results from YAP and
RUNX2 to get a general sense of how the mechanoactivated
cell population changes over time (green bars) after the
substrate is switched from stiff to soft (2 kPa). The purple
control lines indicate the experimental baseline of mecha-
noactivation in nuclear-localized YAP and RUNX2 without
any substrate switching. With added noise, our model cap-
tures the qualitative changes in the phenotype distribution
over time as priming time is changed, with longer-primed
cells being more resistant to return to the soft control pheno-
type. As in Fig. 5, all parameters aside from priming time
are held constant between Fig. 6b and Fig. 6c, replicating
experimental conditions (Table 2). In both the experimental
data and the model, 10 days of priming leads to significantly
higher retention of the stiff phenotype in the cell population
than 7 days of priming.

To isolate the effect of the nonlinear coupling between me-
chanical signaling (x) and transcriptional environment dy-
namics a(t) on the population statistics, we attempted the
same noisy simulations using a linear form for da

dtslow
without



TABLE 2 Parameters for simulations

Parameters (Fig. 6) Values Units

Phase diagram

m0 6.1 kPa

xref 1.2 arbitrary

b 4.9 n/a

z 35 n/a

c 1 h�1

txY 1.1 h

tx[ 1.5 h

Dynamics

tf 12 h

ts 160 h

a0 1 arbitrary

Noise

s 0.7 arbitrary

A 0.01 arbitrary

Priming

mstiff 10 kPa

msoft 2 kPa

Simulations in Fig. 5, b and c.
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x or m dependence (Fig. S5), and did not find the same quali-
tative agreement. This emphasizes that the nonlinear coupling
between mechanical signaling and the dynamic evolution of
the transcriptional environment is a fundamental conceptual
ingredient that can explain both the disparate timescales of
cellular adaptation andmemory and capture non-normal pop-
ulation statistics. The linear noise simulations can still result in
zero, temporary, or permanentmemory. However, the popula-
tion statistics reflect the normal distribution of the noise
applied, as seen by the agreement between the red model re-
sults and the black normal cumulative distribution function
(CDF). Although the available experimental data are limited,
the same set of parameters using linear dynamics cannot qual-
itatively capture the experimental population distribution
change with priming time nearly as well as the nonlinear dy-
namics, despite the same number of free parameters. The se-
lection procedure for choosing the free parameters is
discussed in the Materials and methods.
Model feature comparison with general
experimental observations

We selected the data from the Yang et al. study (6) on mesen-
chymal stem cells for direct comparison with our model
because this is one of the few experimental studies to explic-
itly track components of cellular mechanotransduction as a
function of mechanical priming time. Although drawing
quantitative comparisons across different experimental
studies is difficult because of confounding variables such as
cell lineage and growth media, we highlight several features
of our model that appear in other studies (results summarized
in Table S1). In our model, increasing ECM stiffness enough
will always lead to cellular expression of a stiff phenotype on
the scale of txY and tx[ irrespective ofmemory formation; our
chosenvalues for these parameters are based on the adaptation
time observed experimentally of�1 h (17). The characteristic
stiffness valuem0 thatwe use inFigs. 5 and 6 is consistentwith
the priming andmemory stiffnesses used in other experiments
in Table S1. A short priming of�1 day does not lead to appre-
ciable memory in both our model and experiments (7), and
temporary memory retention time is generally greater than
or equal to the priming time across different experiments. In
our phase diagram, reduction of a from region II to region
III or region I erases permanent memory; experimentally,
knockdown of miR-21 (a component of a(tslow)) also erased
permanent memory even after long priming (5). Temporary
memory development correlated with RUNX2 nuclear local-
ization using stiff and soft substrates of 8 and 0.5 kPa after
7 days of priming was recently observed by Watson et al. in
epithelial cells (9); these values are similar to the data from
Yang et al. (6), indicating that similar parameters in ourmodel
are translatable to a different cell type. Finally, in our model
the reinforcement strength and acquired memory are cumula-
tive; this agrees qualitatively with experiments that have
investigated dynamic cyclical stretching as a way to observe
mechanical memory (23,66). Fig. 7, a–c gives a schematic
overview of the progression from external mechanical signal
to self-sustainingmechanicalmemorywith increased priming
time by way of increased transcriptional reinforcement,
spurred by mechanotransduction.
Simple generalization for analogous soft-ECM
correlated mechanical memory

In this work, we focused on stiff priming and stiff-correlated
mechanical memory because these conditions are the most
widely studied because of applicability in stem cell therapies
for fibrosis and osteogenesis. However, cells can also develop
analogous soft-correlated mechanical memory, which can
eventually lead to soft tissue generation such as neurogenesis
with sufficient priming (1). Our model is instantly generaliz-
able to this case by reconstructing x as an averaged quantity
of soft-activated phenotype components (~x/~xstiff ; ~xsoft) and
inverting the scaled stiffness from m

m0
to m0

m (Fig. 7, a–c). The
phase diagram for soft-correlated memory and phenotypic
activation is shown in Fig. S6 and retains the three distinct
regions that allow for no memory, temporary memory, and
permanent memory depending on priming time. Recent ex-
periments that primed adipose stem cells on 1 kPa substrates
for 2 weeks found that temporary soft memory develops with
similar persistence times (between 1 and 2 weeks) to stiff
memory (10). In contrast with stiff priming, nuclear YAP
localization was not found to be a marker of soft priming.
This observation agrees well with our definition of the me-
chanically correlated phenotype fingerprint vector~x; nuclear
YAP is an element of the stiff-correlated~x, but not the soft-
correlated~x. Using this simple, modular model framework,
more complex models can be assembled that simultaneously
consider soft and stiff memory and downstream conse-
quences for differentiation.
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FIGURE 7 Summary of dynamic mechanical memory. (a) At short priming times, mechanical signaling leads to cellular adaptation but does not persist for

sufficient time to increase reinforcement, leading to no memory. subsequent reinforcement is low, preventing observation of memory. (b) At intermediate

priming times, reinforcement increases with persisting mechanical signal. The transcriptional environment shifts enough to build temporary memory, but

this reinforcement will slowly decay to erase memory once the mechanical signal is removed. (c) At long priming times, reinforcement strength continues

to grow with input mechanical signal and an adapting transcriptional environment. Reinforcement becomes strong enough to sustain without any mechanical

signal, and the new phenotype persists if the substrate is changed (permanent memory). To see this figure in color, go online.
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DISCUSSION

The acquisition and maintenance of mechanical memory is
a general phenomenon across different cell types and culture
environments (4–10,68). Balestrini et al. (4) cultured lung
fibroblasts for 2 weeks on stiff (100 kPa, priming phase)
substrates and found that they continued to express elevated
5086 Biophysical Journal 120, 5074–5089, November 16, 2021
fibrotic activity after being transferred to soft substrates
(5 kPa, dissipative phase) for at least 2 weeks. A follow-
up study by Li et al. under similar conditions identified
miR-21 as a necessary molecule for long-time memory
maintenance, indicating the role of transcriptional efficiency
in memory regulation (5). Some miRNAs can have
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half-lives on the scale of multiple days, which motivated our
formulation of a(tslow) to conceptually include these non-
coding RNA molecules. More recent experiments have
focused on detailed changes of chromatin organization
within the nucleus, confirming that epigenetic changes
occur in response to mechanical signaling (8) and high-
lighting the role of the LINC complex as a direct, physical
mechanosensory (12,52,62). Additionally, we have recently
shown that epithelial cell sheets primed on a stiff matrix for
3 days also store mechanical memory through nuclear YAP
localization, which continues to enhance cell migration
through enhanced pMLC expression and focal adhesion for-
mation on soft matrix for 2–3 days (7).

In developing our model, we sought to synthesize and
distill the phenomenological observations from these exper-
iments and related studies covering the impact of mechanics
on lineage specification, which has not been accomplished
by existing models to our knowledge. Li et al. (5) proposed
a reservoir model along with their identification of miR-21
as a memory regulator, in which priming leads to production
of memory keepers that slowly dissipate after priming halts.
This model alone does not explain the timescale disparity
between mechanical adaptation and development of mem-
ory. Mousavi et al. (28) and Peng et al. (26) proposed two
different mechanically activated differentiation models
based on population dynamics and gene regulatory net-
works, but these models do not capture the variable rates
of memory dissipation observed in experiments. These
models rely on �20 and �40 free kinetic parameters,
respectively, yet do not account for key qualitative features
of the memory phenomena. Our model uses eight unique
free parameters, which sacrifices resolution on specific bio-
logical mechanisms but allows us to identify that a simple
nonlinear coupling between signaling and transcriptional
evolution is sufficient to capture the phenomenological fea-
tures of cellular plasticity.

The continuous range of cellular plasticity persistence
time from zero (no memory, Fig. 7 a) to permanent (lineage
specification, Fig. 7 c) is unique when compared to other
physical memory systems, which often either exhibit perma-
nent memory or no memory. Although early studies of line-
age specification viewed this process as unidirectional (such
as the traditional Waddington landscape), the targeted
reversibility of plasticity under the right conditions is also
a unique physical feature. The traditional Waddington land-
scape identifies specific branch points that split cells into
separate wells representing stable phenotypes (24). Our
model generalizes this picture by showing that both the
Waddington landscape surface and the rate at which the
cell progresses down each well can be altered by external
stimuli such as stiffness. This ‘‘graduated reversibility’’
may function biologically to make the cell more resilient
to local short-term fluctuations in environment while still al-
lowing for long-term, correlated population shifts in
response to persistent environmental cues.
Predicting the memory response of cells to their mechan-
ical environment has significant implications for designing
cell-based therapy and studying other cellular mechanisms
in vitro. Based on our model, we predict that small changes
in priming stiffness or priming time can have large conse-
quences on the retention time of developed phenotypes
due to the nonlinearity of slow-evolving components. Our
phase diagram indicates that recovery of stem-like soft phe-
notypes can be enhanced after priming by reducing the stiff-
ness of the recovery substrate, extending the range of region
III that allows for memory dissipation. However, beyond a
certain point, mechanical signal alone will not lead to
phenotype reversal because of formation of permanent
memory. Measuring the extent of priming may require nu-
clear information and not just data on signal activity, as
the timescale of signaling is independent of the timescale
of memory development. External methods to change a,
such as Yamanaka factors or changes in growth media,
can overwrite the natural permanent persistence of the stiff
phenotype in these situations. In future work, we anticipate
that this model framework for mechanical memory can be
extended to include a chemical axis, which can be used to
consider more general cases of cell differentiation and
coupling between chemical and mechanical contributions
to memory acquisition and retention.
Limitations

In our model, we made two key assumptions: 1) positive
feedback loops exist in mechanosensing pathways and 2)
shifts in the transcriptional environment that affect these
feedback loops depend on signaling but occur on slow time-
scales. Quantitative predictions of cell responses will
require more experimental data to validate more complex
and precise models. Based on our results in this work, deter-
mining the rate of change of the transcriptional environment
(a(t)) as a function of priming stiffness and priming time is
the most important unknown quantity. This is difficult to
assess from epigenetic modifiers alone because chromatin
reorganization occurs on a longer timescale than epigenetic
enzyme activity. High throughput chromatin conformation
capture (Hi-C) experiments during both priming and mem-
ory dissipation would provide information on the rate of
change of the chromatin conformation. Although this would
not completely specify the transcriptional environment, this
information would be key to understand which steps are rate
limiting in the evolution of mechanically activated cellular
plasticity. The further that a(t) can be specified with mech-
anistic information from the nucleus, the greater predictive
accuracy on the dynamics of memory can be.
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Supplementary Text 
 
Section I: Generalized Model for Dynamic Self-Reinforcing Mechanosensitivity 
 

Consider a vector variable 𝑥⃗ where elements 𝑥𝑖=1..𝑛 represent functionally active 
concentrations of stiff-activated proteins and transcription factors. For a cytoskeletal protein, 𝑥𝑖 
corresponds to the steady-state concentration which emerges from synthesis and degradation. 
Examples of stiff-correlated cytoskeletal proteins include F-actin (or α-SMA), vinculin, and 
integrins. For transcription factors, 𝑥𝑖 refers to a transcriptionally eligible concentration, which 
includes the steady-state level of nuclear localization. Examples of transcription factors with well-
known stiff-correlated nuclear localization include YAP (1, 2), MKL-1 (3, 4), and RUNX2 (5, 6); 
nuclear localization is necessary for transcription factor activity due to the possibility of co-
activation requirements. Enzymes which modify the epigenome such as HDAC and HAT are also 
included as elements of  𝑥⃗,  as epigenetic changes demonstrate mechanosensitive activity patterns 
and alter chromatin organization (7). 𝑥⃗ is a fingerprint state vector for the mechanical phenotype 
of the cell. For each element of 𝑥⃗, we can write a linear steady-state rate equation  
 𝑥𝑖̇ = 𝑘↑𝑖(𝑚)(𝑥𝑖

𝑟𝑒𝑓
− 𝑥𝑖) − 𝑘↓𝑖(𝑚)𝑥𝑖 + ∑𝑐𝑖𝑗(𝑚)𝑥𝑖𝑥𝑗

𝑗

 (s1) 

where 𝑥𝑖̇ =
𝑑𝑥𝑖

𝑑𝑡
 , 𝑚 is the ECM stiffness, 𝑘↑𝑖(𝑚) is the stiffness-dependent rate of nuclear import 

or protein synthesis for component 𝑖, and 𝑘↓𝑖(𝑚) is the stiffness-dependent rate of nuclear export 
or protein degradation for component 𝑖. 𝑥𝑟𝑒𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ with elements 𝑥𝑖=1..𝑛

𝑟𝑒𝑓  is a vector of arbitrary reference 
concentrations such that the steady-state concentration 𝑥𝑖 = 𝑥𝑖

𝑟𝑒𝑓 when stiffness 𝑚 = 𝑚0. 𝑐𝑖𝑗 are 
elements of the cooperativity matrix 𝐶 which we define to be the matrix of activity coefficients 
which describe the degree of cooperation or anti-cooperation between different elements of 𝑥⃗. 
Additional cooperativity matrices corresponding to more complex interactions between elements 
of 𝑥⃗ can be defined and added to Eq. s1. This defines a coupled set of rate equations for each 
mechanosensitive phenotype marker of the cell which has a unique steady state depending on the 
value of 𝑚. 
 Next, we consider contributions from positive feedback loops to the dynamics of each 
element of 𝑥⃗. Positive feedback loops arise from active transcription which assists phenotypic 
shifts that promote further transcription. We add a Hill relation with coefficient 𝛽 to each equation 
for 𝑥𝑖̇ 
 

𝑥𝑖̇ = 𝑘↑𝑖(𝑚)(𝑥𝑖
𝑟𝑒𝑓

− 𝑥𝑖) − 𝑘↓𝑖(𝑚)𝑥𝑖 + ∑𝑐𝑖𝑗(𝑚)𝑥𝑖𝑥𝑗
𝑗

+ 𝛼𝑖(𝑦𝑘⃗⃗⃗⃗⃗, 𝑧)
𝑥𝑖
𝛽

𝑥𝑖
𝛽
+ 1

 
(s2) 

scaled by sensitivity 𝛼𝑖(𝑦𝑘⃗⃗⃗⃗⃗, 𝑧), which are components of the sensitivity vector 𝛼⃗. 𝑦𝑘⃗⃗⃗⃗⃗ is a vector of 
concentrations of global transcriptional participants, which may or may not all be explicitly 
mechanosensitive; 𝑦𝑘⃗⃗⃗⃗⃗ contains all the components of 𝑥⃗, and therefore has dependence on ECM 
stiffness 𝑚. 𝑧 is a label of the chromatin conformational state, which can be thought of as the 
single-cell Hi-C map of chromatin contacts; 𝑧 also depends on 𝑚 via physical changes to the 
nucleus initiated by the LINC complex (8, 9). Altogether, the chromatin state 𝑧 and the global 
transcriptional cofactors 𝑦𝑘⃗⃗⃗⃗⃗ determine how effectively the mechanosensitive components of 𝑥⃗ can 
self-reinforce.  
 
Section II: Derivation of Nonlinearly Dynamic Reinforcement Sensitivity 



 
Each element 𝛼𝑖(𝑦𝑘⃗⃗⃗⃗⃗, 𝑧) can be written as a sum expansion of reinforcement matrices 𝐴(𝑛) 

multiplying 𝑦𝑘⃗⃗⃗⃗⃗  and 𝑧: 
 𝛼𝑖 =  ∑𝑎𝑖𝑘

(1)
𝑦𝑘

𝑘

+ 𝑎𝑖𝑧
(1)
𝑧 +∑𝑎𝑖𝑘𝑧

(2)
𝑦𝑘𝑧

𝑘

+∑𝑎𝑖𝑘𝑙
(2)
𝑦𝑘𝑦𝑙

𝑘,𝑙

+ ∑𝑎𝑖𝑘𝑙𝑧
(3)
𝑦𝑘𝑦𝑙

𝑘,𝑙

𝑧 … (s3) 

where 𝑎𝑛 are elements of reinforcement matrices 𝐴𝑛 with dimension 𝑛 + 1. These matrix elements 
are weights which represent the degree to which each component of the global transcriptional 
environment or the global chromatin conformational state influences the self-reinforcing capability 
of mechanosensitive component 𝑥𝑖. The weights are analogous to activity coefficients in regular 
solution theory, where cooperativity between different species in solution can cause nonlinear 
thermodynamics of mixing far from the dilute limit. This cooperativity arises from favorable 
binding interactions between solute species and long-range forces in polar media. These same 
features are prominent in the nucleoplasm, particularly the catalysis of transcription by formation 
of multi-component binding complexes (10, 11).  

We are interested in how this self-reinforcing capability evolves over time, and using the 
chain rule we can write the time derivative of 𝛼𝑖 as  
 𝑑𝛼𝑖

𝑑𝑡
=∑

𝜕𝛼𝑖
𝜕𝑦𝑘

𝜕𝑦𝑘
𝑑𝑡

 
𝑘

+
𝜕𝛼𝑖
𝜕𝑧

𝜕𝑧

𝑑𝑡
 

(s4) 

Plugging Eq. s3 into Eq. s4, we arrive at  
 𝑑𝛼𝑖

𝑑𝑡
=∑ (𝑎𝑖𝑘

(1)
+ 𝑎𝑖𝑘𝑧

(2)
𝑧 + 𝑎𝑖𝑘𝑙

(2)
𝑦𝑙 + 𝑎𝑖𝑘𝑙𝑧

(3)
𝑦𝑙𝑧 + . . . )

𝜕𝑦𝑘
𝑑𝑡

 
𝑘,𝑙…

+ (𝑎𝑖𝑧
(1)

+ 𝑎𝑖𝑘𝑧
(2)
𝑦𝑘+ . . . )

𝜕𝑧

𝑑𝑡
 

(s5) 

Here, we see that the dynamics of self-reinforcement sensitivity depend on dynamics of the 
transcription regulatory environment and the chromatin conformation, weighted by the matrix 
elements of the reinforcement matrices 𝐴𝑖

(𝑛). 𝑑𝑦𝑘
𝑑𝑡

 and 𝑑𝑧
𝑑𝑡

 are equivalent to timescales 𝜏 for each 
transcriptionally active component and the chromatin conformation, respectively, and generally 
can depend on 𝑥𝑖 and 𝑚. The coefficients 𝑎𝑖𝑘𝑛  are generally non-linear functions of 𝑦𝑘, analogously 
for 𝑎𝑧𝑘

(𝑛) depending on 𝑧.  Given sufficient data to populate the partial derivative relations and 
reinforcement matrices in Eq. s5, the steady-state dynamics of cellular plasticity can be completely 
specified through this framework. However, this relies on highly detailed, time-dependent 
mechanistic knowledge which is far beyond the scope of current experimental or simulation 
techniques. Rather than estimate all these individual relationships with placeholder coefficients or 
linear rate equations, we separate the components of Eq. s5 into two timescales and perform an 
averaging to distill out complexity while preserving phenomenological features. Since the vector 
𝑦𝑘 contains transcriptionally active components of 𝑥 and therefore depends on the mechanical 
priming program 𝑚(𝑡), we know that some terms in Eq. s5 will change on the same timescale as 
𝑥𝑖 and that this timescale is an upper bound for 𝑑𝛼𝑖

𝑑𝑡
. We make an arbitrary but phenomenologically 

justified choice of 𝑐𝑖⃗⃗⃗
𝑚𝜁

𝑚𝜁+1
 to represent these fast non-linear processes, where the time dependence 

originates from 𝑚(𝑡), and gather the slower terms into a separate term 𝛼𝑖(𝑡𝑠𝑙𝑜𝑤). This term still 
retains 𝑥𝑖 dependence and 𝑚 dependence from components of 𝑑𝑦𝑘

𝑑𝑡
 and 𝑑𝑧

𝑑𝑡
 but contains all the slower 

processes in these vectors (introduced as 𝜏𝑠
𝑚

𝑚0
 and 𝜏𝑓) as well as the nonlinear scaling originating 



from the coefficients of 𝐴𝑖
(𝑛) (introduced as 𝛼 exp (− 𝑥

𝑥𝑟𝑒𝑓
)). Splitting 𝛼𝑖(𝑡𝑠𝑙𝑜𝑤) into a piecewise 

function by region is a phenomenological choice but reflects the fact that different terms favoring 
an increase, decrease, or equilibration of the sensitivity will dominate depending on the magnitude 
of the external mechanical signal. Finally, when we perform an averaging over the components 𝑥𝑖 
in the main text, the system of equations described in Eq. s5 collapse into a single equation below 
with two terms in each region describing both fast and slow dynamics of mechanosensitive self-
reinforcement.  

𝑑𝛼

𝑑𝑡
=  

{
 
 
 

 
 
 −

𝛼 − 𝛼0
𝜏𝑓

+ 𝑐
𝑚𝜁

𝑚𝜁 + 1
,                         𝐼 

𝛼

𝜏𝑠

𝑚

𝑚0
exp−

𝑥

𝑥𝑟𝑒𝑓
+ 𝑐

𝑚𝜁

𝑚𝜁 + 1
,             𝐼𝐼

−
𝛼

𝜏𝑠

𝑚

𝑚0
exp−

𝑥

𝑥𝑟𝑒𝑓
+ 𝑐

𝑚𝜁

𝑚𝜁 + 1
,       𝐼𝐼𝐼

 

 
 
 

(s6) 

 
Section III: Linear Dynamics used for Noise Simulations 

 
Linear Dynamics for 𝑑𝛼

𝑑𝑡𝑠𝑙𝑜𝑤
 (Figure S5): 

𝑑𝛼

𝑑𝑡𝑠𝑙𝑜𝑤
= 

{
 
 

 
 −

𝛼 − 𝛼0
𝜏𝑓

,        𝐼 

𝛼

𝜏𝑠
,                  𝐼𝐼

−
𝛼

𝜏𝑠
,              𝐼𝐼𝐼

 

 
 
  



 
Reference Cell Type Priming 

Stiffness 
(kPa) 

Priming 
Time 
(days) 

Memory 
Stiffness 
(kPa) 

Memory 
Time 
(days) 

Memory 
marker 

Yang et al. 
(12) 

hMSC 10 1, 7, 10 2 1, 5+, 10+ YAP, RUNX2 

Balestrini 
et al. (13) 

Fibroblasts 25, 100 14 5 14+ α-SMA 

Xi et al. 
(14) 

rMSC 100 21 5 14+ α-SMA, miR-
21 

Nasrollahi 
et al. (15) 

mcf10a 
A431 
Mcf7 

50 3 0.5 3+ pMLC, YAP, 
migration speed 

Watson et 
al. (16) 

SUM159 8 7 0.5 2 to 7 RUNX2, 
migration speed 

Dunham et 
al. (17) 

ASC  5 14 100 7 to 14 Cell area, α-
SMA 

Table S1. Summary of experimental data collected on mechanical memory. 
  



 

Fig. S1. 
Mechanosensitivity of synthesis and nuclear localization of stiff-correlated transcription factors 
(blue) and countering degradation and nuclear export (red).  
  



 

Fig. S2.  

Circuit diagram of the dynamic mechanical memory model. x represents the 
mechanoactivated phenotype of the cell including nuclear localized transcription factors such as 
YAP, RUNX2, and MKL-1.  m represents ECM stiffness. Nuclear x self-reinforces with 
transcriptional efficiency 𝜶 + 𝒎𝜻

𝒎𝜻+𝟏
 ; the first term represents signal-driven effects on 

transcription, while the second term represents LINC-driven physical processes. 𝒅𝜶
𝒅𝒕

 gives the 
change of the efficiency of this self-reinforcement over time via a modified transcriptional 
landscape. 
 
  



 

Fig. S3. 
Comparison of linear and non-linear dynamics of 𝛼. (A) Linear dynamics. (B) Nonlinear 
dynamics. While shorter primes (top row) lead to less memory (width of dark blue region) than 
longer primes (bottom row) for both (A) and (B), the initial rate of memory dissipation is much 
faster in (A) than in (B); (B) matches better with experiment. 
 
  



 

Fig. S4. 
Illustration of local minima in region III of the phase diagram shown in Figure 2. If random 
fluctuations perturb the state from the steady state minimum, the population in the shallow well 
(purple) will be reduced relative to the population in the deeper well (blue). 
 
  



 

Fig. S5. 

Noise study with linear dynamics, where dependence of the slow varying component of 𝑑𝛼
𝑑𝑡

 on 𝑥 
is removed. Gaussian noise applied in this situation leads to a normal distribution of memory 
time, in contrast with the non-normal distribution of nonlinear dynamics and in contrast with 
experimental results (green bars). 
 
  



 

Fig. S6. 
Analogous phase diagram of the model for soft-activated genes. In the model, the 
mechanoactivation profile / mechanical signaling is reversed by flipping 𝑚

𝑚0
 to 𝑚0

𝑚
, so that 𝑑𝑥

𝑑𝑡
 

increases when stiffness is reduce. In this case, high 𝑥 corresponds to activity of soft-correlated 
phenotypic genes and transcription factors. 𝛼 now represents positive reinforcement for gene 
expression correlating with a soft phenotype. 
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