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Abstract
We show that for every d-dimensional polytope, the hypergraph whose nodes are k-
faces andwhose hyperedges are (k+1)-faces of the polytope is strongly (d−k)-vertex
connected, for each 0 ≤ k ≤ d − 1.
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1 Introduction

Balinski proved that the edge graph of any d-dimensional polytope is d-vertex con-
nected [2]. That is, removing fewer than d of the vertices leaves the remaining vertices
connected via edges. A number of natural generalizations of this result have since
been investigated. Sallee found bounds for several different notions of connectivity
of incidence graphs between r -faces and s-faces of a polytope [4]. More recently,
Athanasiadis considered the graphs Gk(P) for a convex polytope P , whose nodes are
the k-faces of P , and with two nodes adjacent if the corresponding k-faces are both
contained in the same (k + 1)-face. Vertex connectivity of Gk(P) is equivalent to one
of the connectivity notions on the incidence graphs considered by Sallee. Athanasiadis
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described exactly the minimum vertex connectivity of Gk(P) over all d-polytopes for
every k and d [1].

Let P be a convex d-dimensional polytope. We denote by Hk(P) the hypergraph
whose nodes are the k-faces of polytope P , andwhose hyperedges correspondnaturally
to the (k + 1)-faces of P . We say a hypergraph is strongly α-vertex connected if
removing fewer than α nodes along with all hyperedges incident to each removed
node leaves the remaining nodes connected. Using tropical geometry, Maclagan and
the second author showed that for every rational d-polytope,Hk(P) is strongly (d−k)-
vertex connected [3]. Our main result is generalizing this statement to all polytopes:

Theorem 1.1 For every d-polytope P, the hypergraphHk(P) is strongly (d−k)-vertex
connected, for each 0 ≤ k ≤ d − 1.

The result is tight. For simple polytopes, each k-face is contained in exactly d − k of
the (k + 1)-faces, so the hypergraph Hk(P) cannot have higher connectivity.

2 Proof of the Result

Wesay that a pure k-dimensional polyhedral complex is c-connected through codimen-
sion one if after removing fewer than c closedmaximal faces, the remaining maximal
faces are connected via paths through faces of dimension k − 1. That is, for any two
remaining maximal faces F, F ′, there remains a sequence F = G1, . . . ,G� = F ′
of maximal faces such that for each i , Gi ∩ Gi+1 is a face of dimension k − 1 not
belonging to a removed face. The m-skeleton of a polytope Q is the polyhedral com-
plex whose maximal faces are the m-dimensional faces of Q. Then Theorem 1.1 can
be rephrased as the following equivalent form on the polar dual Q = PΔ.

Theorem 2.1 For every d-polytope Q, the (d − k − 1)-skeleton is (d − k)-connected
through codimension one, for each 0 ≤ k ≤ d − 1. Equivalently, the k-skeleton of Q
is (k + 1)-connected through codimension one for each 0 ≤ k ≤ d − 1.

We will need some lemmas before proceeding with the proof by induction on dimen-
sion.

Lemma 2.2 Let F,G, R be three distinct k-faces of a d-polytope Q, for some 1 ≤ k ≤
d − 1. Then there is a hyperplane intersecting F and G and avoiding R. Moreover,
the hyperplane can be chosen to avoid all vertices of Q.

Proof Let f ∈ F and g ∈ G be relative interior points, and let L be the line through f
and g. Let Q′ be the smallest face of Q containing F ∪G. By convexity, L ∩ Q ⊂ Q′
and L meets the boundary of Q′ only at the two points f and g. In particular L does
not meet R or any other face of dimension ≤ k.

We may assume that Q is a d-dimensional polytope in R
d . Let π be a corank one

linear map from R
d to Rd−1 such that the image of L is a point. Then the image R′ =

π(R) does not contain π(L), and each vertex v1, . . . , vn of Q has v′
i = π(vi ) �= π(L)

since L does not contain any of the vertices.
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Since R′ is convex and does not contain π(L), there is a hyperplane through π(L)

which does not meet R′. Since R′ is compact, the set of normal vectors of such
hyperplanes form a full dimensional open set in RP

d−1. (More precisely, it is the
interior of the dual cone, and its negative, of the pointed cone generated by R′ after a
translation that sends π(L) to the origin.) On the other hand, the condition that such a
hyperplane contains each v′

i is a codimension one closed condition. Thus, as there are
finitely many v′

i , the cone of such normal vectors restricted to those whose hyperplane
does not contain any v′

i is non-empty. In particular, there is a hyperplane H ′ through
π(L) which does not meet R′ or any of the v′

i . Its preimage π−1(H) is a desired
hyperplane. 	


Lemma 2.3 Let Q be a polytope and H a hyperplane intersecting Q but not containing
any vertices of Q. The map φ mapping a face F to F ∩H is a poset isomorphism from
the poset of faces of Q that meet H to the face poset of Q ∩ H.

Proof For any face F of Q which meets H , since H does not contain any vertices
of F , F is not contained in H and H meets the relative interior of F , so dim(F∩H) =
dim F − 1. Moreover, F ∩ H is indeed a face of Q ∩ H : any supporting hyperplane
for F in Q is also a supporting hyperplane for F ∩ H in Q ∩ H . On the other hand,
for any face F ′ of Q ∩ H , let x ∈ F ′ be a relative interior point in F ′, and let F be the
unique face of Q for which x is a relative interior point. Then x is also in the relative
interior of F ∩ H . Since F ′ and F ∩ H are two faces of Q ∩ H that meet in their
relative interiors, we have F ∩ H = F ′. So φ is a surjective map between the desired
sets. If F ∩ H = G ∩ H for k-faces F,G meeting H , then F and G would have a
common relative interior point, which implies F = G. Thus φ is injective. It is clear
that φ preserves the inclusion relation. 	


Proof of Theorem 2.1 We will use induction on k. The statement is trivial for k = 0, as
we are not removing any faces, and the vertices of a polytope are connected through
the empty face. The case when k = 1 is clear, as removing a single edge does not
disconnect the vertex-edge graph of any polytope.

Suppose 2 ≤ k ≤ d − 1. Let Q be a d-polytope and B be any set of k k-faces of
Q to remove. We need to find a path between any two k-faces F,G /∈ B, through
codimension-one faces, which we will call ridge paths. Arbitrarily choose any R ∈ B.
Lemma 2.2 gives a hyperplane H intersecting F and G, and avoiding R and vertices
of Q. Let Q′ = Q∩H . Since H intersects F andG, F ′ = F∩H andG ′ = G∩H are
two (k − 1)-faces of Q′ by Lemma 2.3. Moreover, each face in B \ {R} corresponds
to at most one (k − 1)-dimensional face in Q′. Call these faces B′. As |B′| ≤ k − 1,
by induction there is a ridge path in Q′ connecting F ′ to G ′ and avoiding each face
in B′. Using Lemma 2.3, we can lift this path back up to a ridge path connecting F to
G in Q avoiding B. 	
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