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Gaussian process (GP) emulator has been used as a surrogate model for predicting force field and molecular
potential, to overcome the computational bottleneck of ab initio molecular dynamics simulation. Integrating
both atomic force and energy in predictions was found to be more accurate than using energy alone, yet it
requires O((NM)3) computational operations for computing the likelihood function and making predictions,
where N is the number of atoms and M is the number of simulated configurations in the training sample, due
to the inversion of a large covariance matrix. The high computational cost limits its applications to simulation
of small molecules. The computational challenge of using both gradient information and function values in
GPs was recently noticed in machine learning communities, whereas conventional approximation methods
may not work well. Here we introduce a new approach, the atomized force field (AFF) model, that integrates
both force and energy in the emulator with many fewer computational operations. The drastic reduction on
computation is achieved by utilizing the naturally sparse covariance structure that satisfies the constraints
of the energy conservation and permutation symmetry of atoms. The efficient machine learning algorithm
extends the limits of its applications on larger molecules under the same computational budget, with nearly
no loss of predictive accuracy. Furthermore, our approach contains uncertainty assessment of predictions of
atomic forces and energies, useful for developing a sequential design over the chemical input space.

I. INTRODUCTION

Fast and accurate emulation of atomic forces and ener-
gies is essential to access the microscopic details of chem-
ical and biological events via molecular simulation. Clas-
sical molecular dynamics (cMD) relies on a pre-defined
force field with semi-empirical forms of the potential
energy which often lacks accuracy, while ab initio MD
(AIMD) sacrifices computational efficiency. In princi-
ple, machine learning (ML) approaches can provide a
surrogate model to achieve both accuracy of AIMD at
the computational cost similar to cMD, thus providing
new applications that would not be achievable by con-
ventional methods. While recent years have witnessed
enormous development of ML potentials, the field is still
rapidly evolving. Many theoretical and computational
issues remain to be addressed for the efficient repre-
sentation of potential-energy surfaces.Our essential task
in establishing an ML force field is to efficiently corre-
late molecule-level energetics, such as potential energy
surface and atomic forces, with the atomic coordinates.
Deep neural network (DNN) and Gaussian process (GP)
are popular tools to emulate AIMD simulation contain-
ing a large number of single atoms or small molecules
(such as H2O)? ? ? . Some effective machine learning ap-
proaches have been developed to emulate the dynamics of
molecules containing a larger number atoms with differ-
ent types. The kernel ridge regression (KRR) approach
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based on pairwise diatomic positions and nuclear charge,
for instance, was proposed to emulate potential energies
of organic molecules? . Prediction by KRR is equiva-
lent to using the predictive mean in Gaussian process
regression (GPR)? , where the uncertainty of predictions
can be assessed without additional cost in a GPR. The
Gaussian approximation potential framework (GAP)? ,
as another example, approximates the total energy func-
tional through a decomposition of local atomic energy
functional by using self-designed atomic neighborhood
information. This approach is often used along with the
smooth overlap of atomic positions (SOAP)? to measure
the local atomic neighborhood information, such that
predictions satisfy translational, permutational and ro-
tational symmetries of atoms. The inducing point sparse
approximation? is often used to improve computational
scalability in these approaches. DNN architectures have
also been developed to emulate AIMD? , where a large
number of training samples were often used in training
the model. The GPR typically requires fewer samples
for accurate predictions, because of two reasons. First,
GPR is a nonparameteric model and the complexity of
the model, such as the number of basis in predictions,
increasing with the sample size, which makes it flexible
to estimate nonlinear response surface. Second, the pre-
dictive mean in GPR has a closed-form expression, and
only a few parameters are required to be numerically es-
timated, whereas DNN typically relies on numerical opti-
mization in a large parameter space. In both approaches,
an appropriate descriptor that encodes the geometry in-
formation is important for predictions.

Combining force and energy samples with energy con-
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servation constraints can improve the predictive accu-
racy of atomic forces and potential energies in AIMD
simulation? ? ? ? ? . The approach, called gradient-
domain machine learning (GDML)? , starts with the con-
servation of energy. The force on each atom Fi(x) is
related to the potential energy E(x)

Fi(x) = �rriE(x), (1)

where x = [r1, r2, · · · , rN ] is a 3 ⇥ N matrix of atomic
Cartesian coordinates for a system with N atoms, and ri
denotes the 3D coordinates for each atom. The pairwise
inverse distances of atomic positions were often used to
construct the descriptor D(x) of a molecule

D(x)ij =

(
kri � rjk�1 for i > j,
0 o.w. ,

(2)

where ||.|| denotes the Euclidean distance. Given M con-
figurations of a molecule containing N atoms, parameter
estimation and predictions of the atomic forces by the
GDML approach? and its symmetric version? involve
constructing and inverting a 3NM ⇥ 3NM Hessian co-
variance matrix. The computational cost of constructing
this covariance matrix scales as O(M2N3) and the cost of
its inversion scales as O(M3N3), both increasing rapidly
along with the number of atoms and the number of train-
ing simulation runs. The large computational cost of the
surrogate model prohibits predicting molecular informa-
tion in larger and more complex systems.

A wide range of approximation methods for alleviat-
ing the computational cost of GP models have been pro-
posed in recent years, including, for instance, the induced
point approach? , low rank approximation? , covari-
ance tapering? , hierarchical nearest neighbor methods? ,
stochastic partial differential equation approach? , local
Gaussian process approach? . Though these methods are
useful for approximating GP models with observations at
a low dimensional input space, none of them is focused
on approximating GP models with high-dimensional gra-
dient observations. The large computational cost pre-
vents the direct applications of GP models with high-
dimensional gradient information in large-scale systems,
a problem which was recently realized in the statistics
and machine learning communities? . Low rank approxi-
mation and sparse approximation of the covariance were
studied? , yet the predictive accuracy can be degraded.
The recent approach? reduces the computational com-
plexity for GP with gradient observations with respect
to the dimension of gradients, but the method requires
O(M6) computational operations, which is prohibitive
for moderately large training runs M . Surprisingly, we
found that after enforcing energy conservation and per-
mutation symmetry of atoms onto the covariance func-
tion, the covariance matrix of atomic forces is approxi-
mately sparse. This property can be utilized to reduce
the computational operations substantially without sac-
rificing the accuracy of predictions.

In this work, we propose a new surrogate model, which
is called the atomized force field (AFF) emulator, for pre-
dicting the atomic force and the total energy in AIMD
simulations. We demonstrate that AFF is computation-
ally more scalable than prior approaches. Unlike other
sparse GP approximations, the AFF method reduces the
complexity of GP with derivatives without sacrificing
predictive accuracy, as many terms in the covariance is
already close to zero. New features of the proposed ap-
proach include: First, we partition the atoms into per-
mutationally equivalent (PE) atom sets (formally defined
later), where the correlation of atomic forces at different
atom sets is found to be almost negligible. Thus, we
can decompose the large covariance matrix of the sim-
ulated force vectors into small sub-covariance matrices
for each permutationally distinguishable atom, where the
sub-covariance contains the most information for making
predictions. The computational complexity of the AFF
emulator is between O(NM3) and O(N3M3), depend-
ing on the permutational symmetry of the molecule. For
molecules with unique atomic environment on all atoms
like uracil, this feature reduces computational opera-
tions in matrix inversion from O(N3M3) in the GDML
approach? to O(NM3) in the AFF model. For molecules
with all identical atoms, the computational complexity
is the same as previous approaches. Fortunately, the
reduction of complexity is typically more significant on
more complex systems, since the size of the largest set
of identical atoms is much less than the total number of
atoms. For periodic systems such as crystal and metal,
the reduction of the computational cost depends on the
local atomic structure. When the number of PE atoms
is close to the number atoms in the unit cell, the com-
putational reduction is larger. Second, inspired by the
popular induced input approach in approximating Gaus-
sian processes? ? , we develop a new model that approx-
imates the prediction of potential energy based on sim-
ulated energy and force observations that are strongly
correlated to this molecular configuration, which reduces
computational operations in emulating potential energy
surface. Third, our model gives both predictions and un-
certainty quantification, as any quantile of the predictive
distribution has a closed-form expression. Quantifying
the uncertainty in predictions is critically important in
an inverse problem, such as optimizing molecular struc-
tures based on constraints of physical properties. Based
on these new features, we are able to accurately predict
atomic force vectors and the potential energy from sim-
ulation for molecules with more atoms given the same
computational budget.

Furthermore, the AFF model is motivated by phys-
ically informed sparse structure in the covariance ma-
trix and maintains some key physical ingredients of the
more computationally intensive approaches, such as the
GDML approach and its variants? ? . In the AFF model,
predicting the force on each atom depends on the in-
formation of all other atoms in a molecular configura-
tion, expressed as the pairwise distance of atomic posi-
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FIG. 1. Covariance structure between atomic forces. Displayed on the left are permutationally symmetric covariance matrices

of atomic forces on 3 simulated configurations for (a) benzene, (b) uracil, (c) aspirin and (d) naphthalene. Lighter colors means

a smaller absolute covariance, and they indicate most elements in these matrices are near-zero. The right side of the figure

shows covariance matrices of atoms in the AFF method on uracil, a molecule for which each atom is its own PE set. Here

there is large correlation between atomic force on the same atom at different configurations, but very small correlation between

different atoms at the same or different configurations. The rightmost part of the figure shows the subcovariance matrix of

atomic force of each atom in uracil across 5 simulated configurations.

tions. Thus, our approach should not be interpreted as
a conventional method to capture local atomic informa-
tion. Empirical results of various examples show that our
method is more efficient and accurate than the alterna-
tives based on the same held-out data set.

The rest of the article is organized as follows. In Sec.
??, We first present the motivation of the AFF method.
The notions of PE atoms and an algorithm to find PE
atom sets are introduced in Sec. ??. The atomic force
predictions and energy prediction are introduced in Sec.
?? and Sec. ??, respectively. In Sec. ??, we compare
our approach with other alternative in predicting atomic
force vectors and potential energies, which demonstrates
high predictive accuracy and reliable uncertainty assess-
ment from our approach. We conclude this study and
provide potential future research directions in Sec. ??.

II. METHODOLOGY

Consider a molecule consisting of N atoms. For two
configurations of this molecule, using the vectorized de-
scriptors D(xa) and D(xb) as input, the covariance of
the potential energy of the two configurations is encoded
by a kernel function, denoted as K(D(xa),D(xb)). The
explicit form of the kernel function will be discussed in
Sec. ??. By applying the conservation law to energy in
Equ. (??), the 3N ⇥ 3N Hessian covariance matrix of
atomic forces, denoted as R(xa,xb), has the (i, j)th el-
ement (R(xa,xb))ij = rraiK(D(xa),D(xb))rT

rbj
, where

rai and rbi denote the ith column of xa and the jth col-
umn of xb. Each term of of the Hessian covariance matrix
R(xa,xb) can be written explicitly by the chain rule dis-

cussed in Appendix ??.Part (b) in Fig. ?? gives the em-
pirical covariance for force vectors of three configurations
of uracil in the MD17 dataset? . Note that the correlation
between the force vectors of the same atom in three simu-
lations is relatively large, whereas the correlation of force
vectors between different atoms is close to zero, which
coincides with mathematical results shown in Appendix
??. Therefore, we can construct separate force emulators
based on the sub-covariance matrix of force vectors of
the same atom in different configurations, which reduces
computational complexity. Note that, here, we have al-
most no loss of information, as the covariance contains
a sparse structure, which differs from other methods to
create a sparse structure to approximate the original co-
variance matrix? . As will be seen from numerical com-
parison in Sec. ??, our approach is more computation-
ally scalable than the GDML approach and its symmet-
ric variant? ? . Compared with the sparse approximation
method? , our approach is an order of magnitude more
accurate in terms of out of sample predictive error, shown
in the supplementary materials.

Another advantage of our approach comes from in-
corporating the physical symmetries into the emulator,
resulting in higher predictive accuracy. Atoms in a
molecule may rotate or switch positions when recorded
in simulation, so emulators that encode physical symme-
try information can typically achieve higher predictive
accuracy? ? ? ? ? . The covariance function of force vec-
tors in the symmetric GDML (sGDML) approach? , for
example, was an improved version compared to GDML,
as it takes the permutational symmetry of atoms into
consideration. Here, we use a similar way to define
permutational symmetry, and extend it to find the PE
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groups of atoms. This method identifies a few PE groups
for molecules such as benzene, aspirin and naphthalene,
in the MD17 dataset? . After grouping these PE atoms
and parameterizing the covariance by the permutation-
ally symmetric kernel function (formally defined in Sec.
??), the model can capture the large absolute covariance
between these atoms. This feature empirically improves
the predictive accuracy, as will be shown in Sec. ??.

The key idea of the AFF emulator is to partition atoms
into different PE groups and to encode large correlation
between force vectors of PE atoms at different configu-
rations into the model. In the next subsection, we intro-
duce the idea of partitioning the atomic space to obtain
PE subsets of atoms.

A. Permutationally equivalent set

Because of the existence of the different permutation
orders of the atoms for the same molecule, one molecule
might have several relevant physical permutation symme-
tries, leading to the same potential energy surface and
force field. The similar idea has been discussed in? ? .
To follow this idea, we first define a group of atoms to
be permutationally equivalent if they are interchangeable
through any permutational operation. It is worthy notic-
ing that the permuational symmetry here does not con-
sider the reflection symmetry. In other words, atoms are
not considered as the same PE set because they may have
very different local chemical environments, and thus dif-
ferent forces even if they are plane symmetry. We call
atoms from different PE sets permutationally distinct
atoms. The AFF approach predicts the force of an atom
in a molecule based on the force from its PE group of
atoms rather than all atoms in this molecule. Fig. ??
indicates that we may not need to include all atoms in
a large covariance matrix for predicting atomic force to
achieve computational efficiency in emulation, as many
elements in the Hessian kernel matrix are near-zero.

For example, all four hydrogen atoms in methane
(CH4) form one set of PE atoms, while the carbon atom
itself is another PE set, as the coordinates of all hydrogen
atoms are interchangeable among all permutation sym-
metries. Benzene (C6H6), as another example, is com-
prised of just two sets of PE atoms–the first PE set con-
taining the six carbon atoms and the second PE set con-
taining the six hydrogen atoms. By contrast, all twelve
atoms in a uracil molecule (C4H4N2O2) are permutation-
ally distinctive, due to the unique atomic environments
of each atom, which leads to twelve PE atom sets.

The PE sets of atoms can be found by minimizing the
loss function through the permutation matrix P⇤? ?

P⇤ = argmin
P

kPAHPT
�AGk, (3)

where AH and AG are adjacency matrices of two iso-
morphic molecules, and (A)ij = kri � rjk. By analyzing
the index location from the permutation matrices of all

permutation symmetries on the same type of molecule,
we can partition the atoms from the same molecule into
sets of PE atoms Si = {ri1, · · · , r

i

li
}, where ri1, · · · , r

i

li
are

atoms belonging to the ith atom set, for i = 1, ..., L.
Note that the atom in a PE set may exchange po-

sitions (e.g. through rotation) and thus the force may
be recorded in different order in simulation. The Eu-
clidean distance of the inverse pairwise distance descrip-
tor in Equ. (??) cannot capture the similarity between
two atomic forces in this scenario. To represent the large
similarity between force of atoms in a PE set, one may
permute the positions of atoms, through a permutation-
ally symmetric (PS) kernel function proposed in? :

Ks(D(xa),D(xb)) =
1

S2

SX

p=1

SX

q=1

K(D(P⇤
p
xa),D(P⇤

q
xb)),

(4)
where S is the number of permutation symmetries found
by Equ. (??), and P⇤

p
is the permutation matrix of pth

permutation symmetry. For molecule like uracil, where
no permutation symmetry exists, we have S = 1, P⇤

1 =
IN , and the kernel reduces to a conventional Hessian ker-
nel. The correlation between the ith atom of xa and the
jth atom of xb using the PS kernel function are the aver-
age of Hessian covariance matrix (R(P⇤

p
xa,P⇤

q
xb))ij .

As shown in Fig. 1 (a) and (d), the absolute corre-
lation between the atoms in a PE set in Equ. (??) is
much larger than zero. We found that using the PE
atoms significantly improves the predictive accuracy of
atomic forces, compared with the approach that groups
each atom as one set. This result is sensible as forces
of PE atoms are similar, and the correlation of forces
from the PS kernel between PE atoms can capture the
similarity. In contrast, the conventional Hessian kernel
does not encode the permutational symmetries into the
model. Note that the correlation of atomic forces from
different PE sets is close to zero.This feature allows us
to model atomic forces in each PE set separately, which
substantially reduces the computational complexity.

B. Atomized force field model

Consider a molecule that has N atoms grouped into
L PE atom sets, each set containing li atoms, for i =
1, ..., L. we decompose the large covariance matrix to
construct predictive models for each PE atom set in par-
allel. Let X = {x1, ...,xM} be M configurations of this
molecule that have been simulated from AIMD, and let
xi

j
be a 3⇥li matrix that contains the ith PE set’s atomic

coordinates in xj . Denote the forces of the atoms of ith
PE set in M training configurations by a 3Mli vector Fi.
For a new molecular configuration x⇤, the KRR estimator
minimizes the loss function that penalizes both squared
error fitting loss, and the complexity of the latent func-
tion simultaneous? , leading to a weighted average of the
force vectors at M training configurations:
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F̂i(D(x⇤)) = !⇤
i
Fi, (5)

where the weights follow !⇤
i
= RT

x⇤(R+ �I3Mli)
�1 with

I3Mli being an identity matrix of size 3Mli⇥3Mli. Here
R is a 3Mli ⇥ 3Mli covariance matrix with the (j,k)th
3li⇥3li block term being the Hessian matrix of the kernel
function rx

i
j
K(D(xj),D(xk))rT

x
i
k
; � is an estimated reg-

ularization parameter; Rx⇤ is a 3Mli⇥3li matrix, where
the jth 3li⇥ 3li block term is rx

i
j
K(D(xj),D(x⇤))rT

x⇤i .
Note that the KRR estimator in Equ. (??) is the pre-

dictive mean of GP regression? ? . In addition to a point
prediction on an untested run, the GP regression can pro-
vide closed-form predictive intervals, which is useful for
uncertainty assessment of predictions. Thus, we can con-
struct a GP regression model of atomic forces separately
for each PE atom set. Given any M training simula-
tion runs, the marginal distribution of the force vector
Fi follows a multivariate normal distribution:

�
Fi | R,�2

i
,�

�
⇠ MN

�
0,�2

i
(R+ �I3Mli)

�
, (6)

for i = 1, · · · , L, where �2
i

is a variance parameter for the
ith PE set, and � is the nugget parameter shared across
all PE sets. Here the variance parameter �2

i
can differ

across different PE sets, as the scale of the force can vary
significantly for atoms in each PE atom set. The range
and nugget parameter are assumed to be the same, as
the smoothness of the latent function that maps atoms’
positions to forces are approximately the same across dif-
ferent atom sets. The computational complexity of the
predictive mean in a GP emulator with the same kernel
and nugget parameters across atom sets is much smaller
than the GP emulator with different parameters? .

The power exponential covariance and the Matérn co-
variance function are widely used as the covariance func-
tion in GP models? . The Matérn kernel function with
roughness parameter 5/2 is used as default covariance
function of a few GP emulator packages? ? , as well as
the GDML appproach for energy-conserving force field
emulation? . This is partly because the sample path of
GP with this kernel is twice differentiable, leading to rel-
atively accurate predictions for both rough and smooth
response surfaces. Here we also use the Matérn kernel
function with roughness parameter 5/2:

K(D(xa),D(xb)) =

✓
1 +

p
5
d

�
+

5d2

3�2

◆
exp

✓
�
p
5
d

�

◆
,

(7)
where � is the range parameter, and d is the Euclidean
distance between D(xa) and D(xb). Similar to the ad-
justment of the kernel function used in sGDML? , we
transform the Matérn kernel to the PS kernel function
in Equ. (??) in the AFF emulator, to capture permuta-
tional symmetries between PE atoms. Conditional on �
and �, the maximum likelihood estimator (MLE) of �2

i

is �̂2
i
= S2

i
/M with S2

i
= FT

i
(R + �I3Mli)

�1Fi for the
ith PE atom set. The nugget parameter � and the range

parameter � can be estimated by numerically optimizing
the profile likelihood or by cross validation with respect
to squared error loss in predictions. When the number of
training configurations is small, the marginal posterior
mode may be used to avoid unstable estimation of the
range and nugget parameters? .

Conditional on the estimated parameters ✓̂i =
[�̂2

i
, �̂, �̂], the predictive distribution of the atomic forces

in the ith PE atom set Fi(D(x⇤)) at any configuration
x⇤ follows a multivariate normal distribution
⇣
Fi(D(x⇤)) | Fi, ✓̂i

⌘
⇠ MN (F̂i(D(x⇤)), �̂2

i
K⇤(x⇤,x⇤)),

(8)
where the predictive mean vector and predictive covari-
ance matrix follows

F̂i(D(x⇤)) = RT

x⇤(R+ �̂I3Mli)
�1Fi, (9)

�̂2
i
K⇤(x⇤,x⇤) = �̂2

i
(R⇤

�RT

x⇤(R+ �̂I3Mli)
�1Rx⇤),

(10)

with R⇤ being a 3li ⇥ 3li Hessian matrix of the kernel
function rx⇤iK(D(x⇤),D(x⇤))rT

x⇤i .

C. Predicting potential energy through the AFF model

Emulating energy based on integrating both simu-
lated force vector and energy can also induce high com-
putational costs, due to computing the inversion of a
large covariance matrix of simulated force vectors and
energies? . Here we introduce a computationally feasi-
ble approach to emulate the potential energy. For any
molecule with atomic configuration x⇤, the potential en-
ergy E(x⇤) correlates with the vector of potential en-
ergy from previously simulated molecular configurations
E = (E(x1), ..., E(xM )), and the unobserved atomic
force at this molecular configuration F(x⇤). Conditional
on E and F(x⇤), the correlation between E(x⇤) and
forces at other configurations is small. Thus the predic-
tive distribution of E(x⇤) conditional on both simulated
energy and atomic force (E(x⇤) | E,F) can be approxi-
mated by (E(x⇤) | E,F(x⇤)), where F(x⇤) can be esti-
mated by the predictive distribution in the AFF model
discussed in Section ??. The motivation of method is
relevant to the induced point approximation approach? ,
where given outcomes of a function at a set of well-chosen
induced pseudo-inputs, the predictive distribution of the
outcome at a new input is assumed to be conditionally
independent to outputs in the training dataset. Here
the induced input points of E(x⇤) are (E,F(x⇤)), due to
large correlation between these variables. Conditional on
(E,F(x⇤)), we assume the force vector F(x⇤) at this con-
figuration is approximately independent to other training
configurations of force vectors. This simplification avoids
constructing and computing the large Hessian covariance
matrix of force vectors, allowing us to perform inversion
of a (3N + M) ⇥ (3N + M) covariance matrix, instead
of inversion of a (3N + 1)M ⇥ (3N + 1)M covariance
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matrix, in energy prediction. When predicting energy at
many new molecular settings, matrix inversion of the sub-
covariance matrix for simulated energy is shared among
all predictive distributions. Thus they are only needed
to be computed once. Details of efficient computation for
predicting energy is discussed in Appendix ??.

For any molecule with atomic coordinates x⇤, the
learning objective can be represented by a combined vec-
tor of force and energy EF = (E(x⇤),ET ,FT (x⇤))T ,
where E(x⇤) is the potential energy of the molecule with
atomic coordinates x⇤, and F(x⇤) is the force field vec-
tor of this molecule. Assuming a GP model for potential
energy with covariance function K(·, ·) and mean func-
tion µ(·), the random vector EF follows a multivariate
normal distribution:

EF ⇠ MN (µEF ,⌃EF ) , (11)

where the mean vector follows

µEF =
�
µ(x⇤),µT

X
,�rrµ(x

⇤)T
�T

,

with µ(x⇤) assumed to be an unknown constant m (es-
timated by MLE in this work), and µX = m1M . The
covariance matrix in Equ. (??) follows

⌃EF = �2

0

@

2

4
Kx⇤,x⇤ KX,x⇤ �JT

x⇤,x⇤

Kx⇤,X KX,X �JX,x⇤

�Jx⇤,x⇤ �Jx⇤,X Rx⇤,x⇤

3

5+ �IM+3N+1

1

A ,

where the upper left 4 matrix blocks are the co-
variance of energy vectors (E(x⇤),ET )T . The
(i, j) element of the correlation matrix KX,X is
K(D(xi),D(xj)), for i = 1, ...,M and j = 1, ...,M ,
and Kx⇤,x⇤ = 1. The vector Kx⇤,X = KT

x⇤,X =

(K(D(x⇤),D(x1)), ...,K(D(x⇤),D(xM )))T denotes the
correlation between the potential energy at input x⇤ and
the potential energy at training inputs X. Besides, the
3N ⇥ 3N correlation matrix between forces is denoted
by R(x⇤,x⇤) = rx⇤K(D(x⇤),D(x⇤))rT

x⇤ . Finally, J de-
notes the correlation between energy and forces. Here
Jx⇤,X is a 3N ⇥ M matrix with the jth column being
rx⇤K(D(x⇤),D(xi)), and Jx⇤,x⇤ is the correlation ma-
trix between force and energy for molecule configuration
with atom positions x⇤.

Similar to parameter estimation of AFF model dis-
cussed in Sec. ??, the mean and variance parameter can
be estimated by the MLE of the simulated (training) en-
ergy vector below

m̂ = (1T

M
(KX,X + �IM )�11M )�11T

M
(KX,X + �IM )�1E

�̂2 =
(E� 1m̂)T (KX,X + �IM )�1 (E� 1m̂)

M
.

The range parameter � and the nugget parameter � in
the kernel function can be estimated through numerical
optimization by cross-validation or MLE.

Based on previous discussion, assuming that the given
(E,F(x⇤)), E(x⇤) is approximately independent of the

FIG. 2. Schematic representation of different approaches in

predicting atomic force and potential energy of molecules.

GDML and sGDML methods predict force of molecule at

a new configuration based on forces on simulated configura-

tions. The predictive force and energy were used to estimate

the energy of this molecule. The FCHL method estimates the

energy and atomic force by a joint model fitted using both

the simulated force and energy samples. The AFF method

partitions the atoms into PE atoms set and the atomic force

of atoms of a new configuration is predicted based on the

simulated force of atoms in the same PE set. The energy

of molecule at this configuration was predicted based on the

predicted atomic force and energy from simulated samples.

rest of force vectors, then we have
⇣
E(x⇤) | E,F, m̂, �̂2, �̂, �̂

⌘
.
⇠ MN

⇣
Ê(x⇤), �̂2K⇤

E
(x⇤,x⇤)

⌘
,

(12)
where .

⇠ denotes the approximation of the predictive dis-
tribution, and the predictive mean is a weighted average
of training energy E and training force F:

Ê(x⇤) = !⇤
E
E+ !⇤

F
F. (13)

Closed form expressions of !⇤
E

, !⇤
F

and K⇤
E
(x⇤,x⇤) are

derived in Appendix ??.
In practice, the energy on the testing set is estimated in

batches using the conditional distribution in Equ. (??).
The advantage of our method is that we exploit the es-
timable information from the force vector, but avoid com-
puting the inverse of the gigantic kernel matrix on F,
which substantially simplifies the computation.

The comparison between AFF and the GDML model
for predicting the molecular energy is illustrated in Fig.
??. For GDML, as well as for both sGDML and FCHL
, all simulated energy and force are used, but inversion
of a large covariance matrix is computationally expen-
sive. Here, conditional on the simulated energy and force
of a new molecular configuration, we assume the poten-
tial energy of a new molecule is independent of forces
of other molecular configuration simulated before. Since
AFF does not need to handle the 3MN ⇥ 3MN covari-
ance matrix of simulated force vectors, it is more scalable
for predicting the molecular level information of larger
systems.
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III. NUMERICAL RESULTS

We evaluate the performance of the AFF approach by
analyzing the required training time and learning curves
on a variety of molecules, including benzene, uracil, and
naphthalene from the MD17 dataset, and aspirin, alpha-
glucose, hexadecane from our simulated dataset (see sup-
plementary material for molecules in MD17 dataset).
We compare the predictive error and required training
time from AFF with some of the most commonly used
KRR-based models, such as the GDML and sGDML ap-
proaches for force and energy predictions. All compar-
isons are implemented under the same training and test-
ing set. In addition, we provide the uncertainty assess-
ment of predictions from our model through the propor-
tion of held-out outcomes covered in the 95% predictive
interval and the average length of the predictive interval
(see Table ?? for details on the prediction accuracy, re-
quired training time, and uncertainty assessment of the
AFF predictions). The ratio of the average length of the
predictive interval to the range of testing forces Lnorm,
and the difference between 95% confidence level and the
proportion of the held-out samples contained in the pre-
dictive interval �p0.95

CI
on the held-out dataset are given

in Fig. ??. An efficient method should have small pre-
dictive error, small training cost, short average length of
the predictive interval, and around 95% of the held-out
test data covered by the 95% predictive interval. Fur-
thermore, the comparison between our method with the
sparse approximation method in a SOAP model? ? is
given in the supplementary material. We do not include
them in this section as our method seems to be an or-
der of magnitude more accurate than the method with a
sparse approximation to the covariance matrix, in terms
of predicting the same held-out dataset.

Previous studies have shown that the GDML and
sGDML have relatively small error, compared with other
approaches? ? . Indeed, according to Fig. ??, the predic-
tive error is relatively small for both approaches. How-
ever, both GDML and sGDML have a large computa-
tional cost, mainly due to the inversion of 3NM ⇥ 3NM
covariance matrix of force vectors at all training configu-
rations. Because of the reduced computational order on
force prediction by partitioning the atoms into PE atom
sets, the AFF model has a smaller predictive error of
force prediction (blue curves) when using similar or even
less training time (blue histograms) compared to GDML
and sGDML approaches. The improved accuracy of force
predictions by the AFF model is even more noticeable on
the additional simulation of aspirin, alpha-glucose and
hexadecane shown in Fig. ??. For some small molecules
in MD17 dataset, the AFF method could achieve bet-
ter accuracy with less computational cost by using more
training samples. For the larger molecules such as glucose
and hexadecane, the propose AFF method shows the no
losses of accuracy compare to the sGDML predictions at
the same number of training samples.

The sGDML approach typically has a smaller predic-

tive error compared with GDML for molecules with at
least two PE atom sets, such as benzene, aspirin and
naphthalene molecules, consistent with the result re-
ported in the previous study? . This is because sGDML
approach encodes the PS kernel to properly represent
the large correlation of forces between atoms in the PE
atom set. Note that here the reduced computational
cost in AFF allows us to train our models with more ob-
servations than the GDML and sGDML approaches for
predicting the force with a even smaller computational
budget. The number of training observations required
in training the AFF model, however, is still very small
(from a few hundred to a thousand).

In comparison, neural network (NN) approaches typ-
ically need a larger set of training observations (rang-
ing from 104 to 105) to achieve similar or better predic-
tive performance? ? ? ? . Several recent NN methods are
worth exploring? ? , as they seem to require less sam-
ples than conventional NN approaches. On the other
hand, only two parameters (range and nugget parame-
ters) in GP model are needed to be numerically opti-
mized, whereas a large number of parameters may need
to be numerically optimized in NN approaches.

Given the same number of observations, the error in
predicting the potential energy by the AFF model is typ-
ically smaller than the sGDML and GDML approaches,
shown in the second rows of Fig. ??. Note that the
sGDML with a hybrid loss function? would further im-
prove the accuracy of energy prediction, and we also pro-
vide the comparison with it in the supplementary mate-
rial. For some molecules, such as naphthalene and ben-
zene in the MD17 data set, and alpha-glucose and hex-
adecane in our simulated data set, the AFF model has
much smaller predictive error than sGDML approach.
This is because our approach incorporates both force
and energy vectors in energy prediction when making
predictions on energy. Applying the sGDML with the
hybrid loss function, the predictive error of it is about
the same as the AFF model for alpha-glucose and hex-
adecane. Jointly modeling force and energy was recently
studied in? , whereas could have a large computational
cost. Here the approximated approach introduced in Sec.
?? allows us to keep the computational complexity of
predicting the energy the same as predicting the force,
whereas maintaining relatively high predictive accuracy
as that in? . For larger molecules, like alpha-glucose,
aspirin, and hexadecane (with 21 to 51 atoms) in our
simulated dataset, the computation reduction is huge
(see the blue histograms in Fig .??). For these exam-
ples, AFF achieves higher accuracy in predicting atomic
force, despite costing less than 10% of the training time
of the sGDML approach, as shown in Table. ??. Fur-
thermore, the sGDML method requires a larger memory
size to storage the covariance of the simulated force vec-
tors. Since we only need to store the covariance of force
vectors in each PE atom sets, the memory requirement
is often much smaller.

Among all molecules we compared, the AFF model has
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FIG. 3. The learning curves for force and energy on naphthalene, benzene, uracil from the MD17 dataset, and aspirin, alpha-

glucose, hexadecane from our simulated dataset (ordered from left to right). Learning curves are presented for the GDML

and sGDML methods as well as the AFF method under the same training, validation and testing set. The training sample

size (x-axis) are tweaked for AFF method on force prediction. The AFF uses a larger training set for predicting forces for

the first 4 molecules, and the computational time(shown as the blue bars) is still much lower compared with the GDML and

sGDML approaches. The top row contains the learning curve (in terms of mean absolute error (MAE)) and training time

for the out-of-sample force prediction. The bottom row contains the learning curve and training time for the out-of-sample

energy prediction. GDML and sGDML approach are equivalent on uracil, alpha-glucose and hexadecane, as all atoms are

permutationally distinct. Thus only two learning curves are shown for those molecules.

a larger predictive error for the uracil, using the same
number of training input (third panel in the second row
in Fig. ??). Since the AFF model estimates the en-
ergy based on the emulated atomic force, the accuracy
of energy prediction would be reduced when the emu-
lated force is not accurate. As shown in Fig. ??, the
estimated force by AFF for uracil is not accurate when
the number of training sample is small. This problem
can be solved by using a moderately large sample size
(⇡ 1000) to achieve similarly accurate predictions as the
sGDML model. The predictive energy vector by the AFF
model along the AIMD trajectories is graphed in Figure
?? along with the held-out energy in the simulation. Also
plotted are the predictive atomic forces and the truth at
two held-out configurations. Based on M = 800 simu-
lated forces and energies, predictions of potential energies
and forces by the AFF model are accurate.

Table ?? gives the predictive error of force vectors and
energy, the percentage of forces covered in the predictive
interval, the average length of the predictive intervals of
forces and computational costs in emulation from differ-
ent methods. First, the predictive error of AFF methods
for both forces and energy is typically not larger than the
sGDML approach. For some molecules such as alpha-
glucose and hexadecane, the predictive error of the AFF
model seems to be one order of magnitude smaller, based
on the same held-out test set. It is worth noting that

it takes the AFF model less computational costs (rang-
ing from 1/2 to 1/30 of costs compared to sGDML) to
achieve the similar or higher level of predictive accuracy.
These results indicate the AFF model is more efficient
in emulating atomic forces and energy in AIMD simula-
tion. Furthermore, around 95% (or higher percentage) of
the held-out atomic forces are covered by relatively short
95% predictive intervals from the AFF approach, indicat-
ing that AFF model provides a reliable way to quantify
the uncertainty in predictions.

Furthermore, it is worth mentioning that the reduc-
tion of computational cost by the AFF model is more
pronounced on molecules with more PE atoms’ sets, such
as alpha-glucose, aspirin, and hexadecane. For molecules
with fewer PE sets such as benzene (where we can only
partition the atoms into two PE sets for each config-
urations), the computational reduction will be smaller.
Thus, our approach may be useful for reducing the com-
putational cost of interactions between a large number of
molecules, as most PE sets may only contain one atom.

Finally, uncertainty assessments of predictions of the
AFF approach are given in Fig. ??. Compared with the
range of observations, the average length of 95% (pink
bar) is much shorter, indicating small uncertainty associ-
ated with predictions. The difference between the num-
ber of held-out test samples covered 95% interval and the
nominal 95% range (blue curves) is small, meaning that
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FIG. 4. Energy of uracil obtained from the AFF method

along the AIMD trajectories, where the AIMD energies are

displayed in black curve and predictions of held-out energies

from the AFF model are graphed in yellow crosses. The green

bars are the 95% predictive intervals of the AFF energies. As

the length of the intervals is very small, the intervals almost

overlap with the AIMD energies and they are nearly invisible.

Depicted above the panel of energy in the upper half of the

figure is a comparison of AIMD atomic forces and predicted

atomic forces by the AFF model on two randomly selected

molecules. Within each of the two pairs shown, the same

molecule is illustrated twice with the depiction on the left

displaying AIMD atomic forces and the depiction on the right

displaying the atomic forces by the AFF model. M = 800
simulated forces and energies were used to train the AFF

model for predictions.

the uncertainty is accurately quantified. The internal as-
sessment of the uncertainty of the AFF model can be
used to identify the input region with large uncertainty,
and sequentially design simulation runs for uncertainty
reduction or Bayesian optimization? ? .

IV. CONCLUDING REMARKS

We have proposed an accurate and computationally ef-
ficient approach to predict potential energy surfaces and
molecular force fields in ab initio simulation. While the
theoretical framework of the gradient-based KRR and
GP models such as GDML, sGDML, and FCHL, were
already established, the challenge posed by the huge com-
putational cost limited the applicability of these methods
in emulating systems with a larger size of molecules. We
propose the AFF emulator to overcome this computa-
tional challenge without compromising its accuracy. The
efficient emulation of forces was hinged upon the fact
that the similarity of atomic forces between permutation-
ally equivalent atoms is high, whereas the correlation is
small across different permutationally equivalent atom
sets. By partitioning the atoms of a molecule into differ-
ent atom sets, the AFF model can capture large correla-
tion of forces between PE atoms, thereby providing accu-

Performance of AFF

Molecule Energy

[kcal/mol]

Force

[kcal/mol/Å]

Training

Time [s]

PCI

(95%)

LCI

(95%)

Naphthalene 0.07 (0.12) 0.11 (0.11) 68 (345) 98.5% 1.36

Benzene 0.04 (0.07) 0.173 (0.176) 23 (45) 85% 0.7

Uracil 0.10 (0.10) 0.239 (0.249) 16 (43) 97.8% 2.37

Alpha-

glucose

0.09 (0.36) 0.0003 (0.012) 32 (543) 100% 0.03

Hexadecane 0.008

(0.35)

0.0008 (0.003) 37 (767) 99% 0.05

Aspirin 0.06 (0.09) 0.0028 (0.009) 32 (629) 99.8% 0.08

TABLE I. The second and third column show the MAE

on estimated energy and force. The fourth column is the

training time of the model at shown force accuracy, which

is provided in seconds. The numbers in parentheses are

the sGDML results, and they are tested under same held-

out test set. The specific criteria employed are the follow-

ing: PCI(95%) = 1
3NM⇤

PM⇤

i=1

P3N
j=1 1{F(x

⇤
i )j} 2 CIij(95%),

LCI(95%) = 1
3NM⇤

PM⇤

i=1

P3N
j=1 length{CIij(95%)}, where

M⇤
is the number of test samples, F(x⇤

i )j is the jth element

from the force vector prediction of the output of the ith held-

out molecule; CIij(95%) is the 95% predictive credible in-

terval from the multivariate normal distribution in (??); and

length{CIij(95%)} is the length of the 95% predictive credi-

ble interval. The number of training samples used in AFF and

sGDML (in parentheses) method is: naphthalene 1600 (1000),

benzene 1200 (1000), uracil 1600 (1000), alpha-glucose 1000

(1000), aspirin 1200 (1000), and hexadecane 600 (600).

rate predictions of atomic forces of the molecule at a new
configuration with less computational cost. Second, we
developed a new approach to reduce the computational
complexity for emulating the potential energy, compared
to a joint model of energy and atomic forces of simulated
configurations. Numerical results have shown predictions
by the AFF emulator are more accurate than alterna-
tive approaches, given the same computational budget.
The AFF approach discovers a novel path on representing
correlation between forces and energy with significantly
lower computational cost.

There are a few potential research directions of emulat-
ing simulations of a large-scale system with interactions
between a large number of atoms. First, for emulating
simulation involving a large number of molecules, one
may represent interactions between atoms by partition-
ing the atoms into PE atoms to decompose the covari-
ance matrix for efficient computation. Second, sparse
Cholesky factorization or Markov models may be used to
reduce the large computational cost when the required
number of simulations used in training machine learning
models gets large. Third, given a set of physical con-
straints, one may inversely design the atomic positions
to achieve a particular force field, or potential energy.
The uncertainty of the map from atomic positions to po-
tential energy learned by the AFF model is important
for a sequential design to reduce the uncertainty of this
problem.
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FIG. 5. The bar charts show the proportion of average AFF predicted atomic force confidence interval LCI(95%) over the

range from testing samples changing with the number of training samples. The blue line charts show the difference �p between

confidence level 0.95 and actual coverage of AFF predicted atomic force confidence level. The proportion Lnorm
is given by

⇢ = LCI(95%)/range(F(x⇤)), where LCI(95%) = 1
3NM⇤

PM⇤

i=1

P3N
j=1 length{CIij(95%), and range(F(x⇤)) = max(F(x⇤)) �

min(F(x⇤)) The �p0.95CI is given by �p0.95CI = 0.95� PCI(95%), where PCI(95%) = 1
3NM⇤

PM⇤

i=1

P3N
j=1 1{F(x

⇤
i )j} 2 CIij(95%).

SUPPLEMENTARY MATERIAL

The supplementary material contains numerical com-
parison between AFF models and sparse approxima-
tion approaches, and prediction results on additional
molecules.
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Appendix A: The correlation of force between different atoms

The correlation between the force of two molecules
a and b with positions xa and xb is a 3N ⇥

3N matrix R(xa,xb), where the (i, j) element
follows (R(xa,xb))ij = rraiK(D(xa),D(xb))rT

rbj
.

Direct computation through the chain rule gives
rraiK(D(xa),D(xb)) =

P
N

p,q=1
@D(xa)pq

@rai
@K(D(xa),D(xb)

@D(xa)pq
.

Based on the form of the descriptor matrix D(x) in Equ.
(??), the gradient of (p, q) element of D(x) w.r.t ri fol-

lows

@D(x)pq
@ri

=

8
><

>:

�
rp�rq

krp�rqk3 p > q and i = p,
rp�rq

krp�rqk3 p > q and i = q,

0 o.w .

(A1)

The correlation between the ith atom of molecule a and
the jth atom of molecule b is given by

(R(xa,xb))ij = rraiK(D(xa),D(xb))r
T

rbj

=
NNX

pq=11

NNX

mn=11

@2K

@Dpq@Dmn

@D(xa)pq
@rai

@D(xb)mn

@rbj

=

8
>>><

>>>:

@
2
K

@Dij@Dij

@D(xa)ij
@rai

@D(xb)ij
@rbj

if i > j,
@
2
K

@Dji@Dji

@D(xa)ji
@rai

@D(xb)ji
@rbj

if i < j,
P

p or q=i;

P
m or n=i

@
2
K

@Dpq@Dmn

@D(xa)pq
@rai

@D(xb)mn

@rbj
if i = j,

where @
2
K

@Dpq@Dmn
is the simplified notation of

@
2
K(D(xa),D(xb))

@D(xa)pq@D(xb)mn
.

According to the above equation, when i = j, the num-
ber of terms in the summation is much larger than the
number of terms when i 6= j, which indicates that the
absolute correlation between different atoms is typically
smaller than the correlation between same atoms. This
empirical result typically holds for usual kernel functions
such as Gaussian kernel and Matérn kernel before enforc-
ing the constraint for permutational symmetry.

After applying the PS kernel function from Equ. (??),
the absolute correlation between different PE atoms is
typically smaller than the correlation between same PE
atoms. As shown in e.g. part (a) in Fig. ?? for benzene,
after adopting the KS kernel function, the correlation
between PE atoms is large due to permutational sym-
metries, whereas the correlation of force between atoms
in different PE atom sets is still small, indicating that
we may only need to condition on forces of atoms in the
same PE atom set for efficiently calculating the predictive
distribution.
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Appendix B: Fast Predictions of potential energies in batches

This section discusses the efficient way to calculate the
inversion of the covariance matrix in the AFF model
on energy prediction. We achieve the reduced compu-
tational cost by predicting the molecules’ energies in
batches rather than the energy for one configuration each
time. Let b be the batch size, and xb⇤ = [x⇤

1, · · · ,x
⇤
b
] be

b configurations of a molecular structure. For predict-
ing the energy of a new configuration of this molecular
structure, we need to calculate the inversion of ⌃sub,

where ⌃sub =


A B
C D

�
, with A = KX,X + �IM be-

ing a M ⇥ M matrix, B = �JX,xb⇤ being a M ⇥ 3Nb
matrix, C = �Jxb⇤,X being a 3Nb ⇥ M matrix, and
D = Rxb⇤,xb⇤ + �I3Nb being a 3Nb ⇥ 3Nb matrix. Note
that the sub-covariance matrix of training energy samples
A is the same among all different batches in prediction.
Thus we need to invert A once and by applying the block
matrix inversion for ⌃sub, we have:

⌃�1
sub

=


A�1 +A�1BD⇤�1CA�1

�A�1BD⇤�1

�D⇤�1CA�1 D⇤�1

�
,

(B1)

where D⇤ = D � CA�1B. Accordingly, for each batch
samples, we just need to do a matrix inversion on a 3Nb⇥
3Nb matrix D⇤, which is much faster than inverting the
entire covariance matrix ⌃sub for each batch sample.

Appendix C: Predictive distribution of potential energy

To simplify the notation, we would use the batch size
b = 1 in this section. Conditional on simulated energies
in the training dataset E, and the atomic force F(x⇤)
at the new configuration x⇤, and the estimated parame-
ters ✓̂ = [m̂, �̂2, �̂, �̂], the conditional distribution of the
energy at this configuration follows

E(x⇤) | E,F(x⇤), ✓̂ ⇠ MN
�
µ⇤
E
(x⇤), �̂2K⇤⇤

E
(x⇤,x⇤)

�
,

(C1)
where the conditional mean follows

µ⇤
E
(x⇤) = m̂+

⇥
Kx⇤,X �JT

x⇤,x⇤
⇤
⌃�1

sub


E� m̂1M

F(x⇤)

�
,

with ⌃sub =


KX,X �JX,x⇤

�Jx⇤,X Rx⇤,x⇤

�
+ �I3N+M , and the con-

ditional variance follows

K⇤⇤
E
(x⇤,x⇤) = Kx⇤,x⇤�

⇥
Kx⇤,X �JT

x⇤,x⇤
⇤
⌃�1

sub


KT

x⇤,X

�Jx⇤,x⇤

�
.

Note that we do not observe F(x⇤) and thus Equ. (??)
cannot be directly used for predicting energy at the new
configuration x⇤. Given the energy of training set E and
the atomic force of training set F, we use the total ex-
pectation to integrate the unobserved force vector by its

predictive distribution:

Ê(x⇤) = E[E(x⇤) | E,F]

= E[E[E(x⇤) | E,F,F(x⇤)]]
.
= E[E[E(x⇤) | E,F(x⇤)] | F]

= E[µ⇤
E
(x⇤) | E,F],

where .
= denotes the approximation of E[E(x⇤) |

E,F,F(x⇤)] by E[E(x⇤)|E,F(x⇤)], which is equivalent
to assume that given (E,F(x⇤)), E(x⇤) is independent
of the rest of force vectors in simulated configurations.
Plugging the predictive mean F̂(x⇤) from the above equa-
tion to replace F(x⇤) in µ⇤

E
(x⇤), we approximate the pre-

dictive mean of energy for E[Ê(x⇤) | E,F] by Ê(x⇤) with
the following expression:

Ê(x⇤)=m̂+
⇥
Kx⇤,X �JT

x⇤,x⇤
⇤
⌃�1

sub


E� m̂1M

F̂(x⇤)

�
.

The predictive variance in Equ. (??) can be computed
by properties of multivariate normal distributions:

K⇤
E
(x⇤,x⇤) = Kx⇤,x⇤�

⇥
Kx⇤,X �JT

x⇤,x⇤
⇤
⌃�1

sub


KT

x⇤,X

�Jx⇤,x⇤

�
.

Let W1 and W2 be the first 1⇥M block matrix and
the latter 1⇥3N block matrix of

⇥
Kx⇤,X �JT

x⇤,x⇤
⇤
⌃�1

sub
,

respectively, and F̂(x⇤) = !FF, where !F follows from
Equ. (??). We can also write the Ê(x⇤) as the weighted
average value of E and F̂(x⇤):

Ê(x⇤) = !⇤
E
E+ !⇤

F
F, (C2)

where

!⇤
E
= (1�W11M )(1T

M
K�1

X,X
1M )�11T

M
K�1

X,X
+W1,

and !⇤
F
= W2!F .

Appendix D: Simulation details

In addition to molecules available from the MD17
dataset, force and energy of additional molecules with
more atoms and complicated structure are generated in
this work. ab initio MD (AIMD) simulation is per-
formed via Q-Chem to generate highly accurate molecu-
lar force and energy to benchmark AFF and other ma-
chine learning force field. In this work, all AIMD simula-
tions are carried in NVT ensemble with timestep of 1 fs at
room temperature (300 K). All the calculations were per-
formed at the level of Perdew-Burke-Ernzerhof(PBE)/6-
31G(d,p). vdW interactions are taken into account by
using TS-vdW method. The Nosé-Hoover thermostat is
used to control the temperature.



Appendix E: Timings

All timings were performed on a compute cluster
equipped with Intel 6148 CPUs (20 cores each) with a

high speed OmniPath interconnect. The compute nodes
consist of 64 nodes of 40 core/192GB of RAM compute
systems, 4 nodes with 768GB of RAM plus 300 GB In-
tel Optane Memory Drive, and 3 GPU nodes with four
NVIDIA V100/32GB GPUs with NVLINK.


