FastZ: Accelerating Gapped Whole Genome Alignment on GPUs

Sree Charan Gundabolu
Purdue University
West Lafayette, Indiana, USA
sgundabo @purdue.edu

ABSTRACT

Recognizing the importance of whole genome alignment (WGA), the
National Institutes for Health maintains LASTZ, a sequential WGA
application. As genomic data grows, there is a compelling need for
scalable, high-performance WGA. Unfortunately, high-sensitivity,
‘gapped’ alignment which uses dynamic programming (DP) is slow,
whereas faster alignment with ungapped filtering is often less sensi-
tive. We develop FastZ, a GPU-accelerated, gapped WGA software
which matches gapped LASTZ in sensitivity. FastZ employs a novel
inspector-executor scheme in which (a) the lightweight inspector
elides DP traceback except in common, extremely short alignments,
where the inspector performs limited, eager traceback to eliminate
the executor, and (b) executor trimming avoids unnecessary work.
Further, FastZ employs register-based cyclic-buffering to drastically
reduce memory traffic, and groups DP problems by size for load
balance. FastZ running on an RTX 3080 GPU and our multicore
implementation of LASTZ achieve 111x and 20x speedups over the
sequential LASTZ, respectively.

CCS CONCEPTS

* Applied computing — Bioinformatics.

ACM Reference Format:

Sree Charan Gundabolu, T. N. Vijaykumar, and Mithuna Thottethodi. 2021.
FastZ: Accelerating Gapped Whole Genome Alignment on GPUs. In The
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC "21), November 14-19, 2021, St. Louis, MO, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3458817.
3476202

1 INTRODUCTION

Gene sequence alignment [2, 9, 11, 22, 34] is one of the basic com-
putational kernels of genomics. Such alignment is used in many
contexts including genome assembly (from fragmented reads) and
comparative genomics (comparing whole genomes of organisms).
Specifically, comparative genomics examines the alignment between
whole genomes of two or more organisms to answer many key
evolutionary and genetic questions [10]. Reflecting the broad in-
terest in such alignment, the National Institutes of Health (NIH)
maintains servers for whole genome alignment (WGA), specifi-
cally LASTZ [11], as a computational service for the genomics

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SC 21, November 14-19, 2021, St. Louis, MO, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8442-1/21/11.

https://doi.org/10.1145/3458817.3476202

T. N. Vijaykumar
Purdue University
West Lafayette, Indiana, USA
vijay @ecn.purdue.edu

Mithuna Thottethodi
Purdue University
West Lafayette, Indiana, USA
mithuna@purdue.edu

community [24]. Our focus is WGA and not genome assembly
(e.g., [1, 14, 33, 36]).

Genomic data continues to grow with (1) increasing numbers of
fully-sequenced genomes, (2) genome assemblies of more complex
life forms (e.g., the genome of D. simulans has orders of magnitude
more base pairs than that of Salmonella enterica, a simpler life
form), and (3) faster, cheaper ways to capture genomic data [13,
20, 26]. As such, there is a compelling need for scalable, high-
performance WGA. Further, there is a well-understood trade-off
of sensitivity for performance. For instance, SegAlign [8] proposes
GPU optimizations for the version with ungapped filtering, which
is faster but finds fewer, high-scoring alignments than the gapped
version which includes insertions and deletions. Because our goal is
high-performance WGA without trading off sensitivity, we consider
only the gapped version of LASTZ.

LASTZ employs a ‘seed-and-extend’ approach wherein short
sequences that are exact matches (i.e., ‘seeds’) are extended with
gaps, if necessary, to form longer, higher-scoring matches. The local
alignment algorithm used in LASTZ for the seed extension [9] is a
variant of the Smith-Waterman algorithm [34] which is a dynamic
programming (DP) algorithm for assigning scores to matches. Re-
cent work [37] has focused on acceleration of gapped WGA using
custom ASICs (or FPGAs at a lower performance point), which
remains unavailable for most genomics users until research pro-
posals become products. In this paper, we show that off-the-shelf
GPUs can achieve high-performance, gapped WGA. To that end,
(1) we identify the key workload characteristics and performance
bottlenecks, and (2) based on those insights we develop FastZ, a
GPU-accelerated, drop-in replacement for gapped LASTZ. There
are also older GPU-accelerated Smith-Waterman implementations
for gapped extension (e.g., [38]) against which we compare.

The WGA workload can be characterized in two ways. First, there
are a large number of seed extensions that must be computed. Indi-
vidual seed-extensions are independent of one another and can be
computed in parallel (although some work-reduction optimizations
are possible if they are computed in sequential order). The distribu-
tion of work across these seed extensions is highly skewed. A vast
majority of seed extensions have little work because they result in
low-scoring, short alignments. For example, over 97% of seed sites
result in alignments no longer than 128 base pairs. In contrast, the
high-scoring alignments can be orders of magnitude longer (e.g.,
tens of thousands of base pairs).

Second, the Smith-Waterman computation accounts for most
of the execution time (e.g., > 99%) of gapped LASTZ. The DP
scoring matrix is a key data structure that is populated progressively
with optimal solutions to smaller problems which are then used to
identify optimal solutions to larger problems. Figure 1 shows the
Smith-Waterman DP matrix for the two sequences shown along
the row and column. The recurrences on the right fully define the

https://doi.org/10.1145/3458817.3476202
https://doi.org/10.1145/3458817.3476202
https://doi.org/10.1145/3458817.3476202

Q> |I>|Io|d|00(H[>

I;; = max lij-1 %+ 5e
L Si.i—l + So + Se
Di—l,j + Se
Duj = max {Si—l,j + So t+se
Ii'l
Syj = max Dy

Si-1j-1 + Sx,v;

Figure 1: Dependencies and parallelism in Smith-Waterman

computation for each matrix cell. Each matrix position (i, j) holds
information about the optimal score of a partial alignment of the two
sequences up to and including the i’ ad j** base pair, respectively.
For each cell, the algorithm tracks the overall score (S), the score
assuming a gap insertion (I) and deletion (D), and traceback pointers
(T), which enable the reconstruction of the precise alignment.

Such DP algorithms have several key characteristics, some of
which are relevant to GPUs.

(1) The DP algorithm computes the scores and traceback pointers
for a much larger alignment space beyond the point of the
optimal alignment to make sure that no higher-scoring align-
ment is missed. For example even though more than 97% of
the alignments are shorter than 128 base pairs, more than 90%
of searches explore alignments as long as 5700 base pairs
(including gaps).

(2) The DP computation performs only a modest amount of work
per byte accessed (e.g., four comparisons and five additions
requiring five cell reads and six cell writes, as seen in the
recurrences in Figure 1). When parallelized, the lopsided
compute-to-bandwidth ratio results in a memory-bandwidth
bound algorithm. Darwin [36], Darwin-WGA’s [37] prede-
cessor, emphasizes memory footprint but does not mention
memory bandwidth-boundedness.

(3) Unlike traceback data, which must be preserved till the end
of the DP algorithm to reconstruct the alignment, the scores
are read fewer than five times soon after being written and
then are dead.

Left unaddressed, the memory accesses along the DP matrix diag-
onals would degrade memory bandwidth because the discontiguous
accesses cannot be coalesced. However, there are well-known miti-
gations (e.g., Feng et al. [38]) which transform the layout to ensure
that the diagonal elements are contiguous and can be coalesced, Nev-
ertheless, the low memory-to-compute ratio remains a challenge.

FastZ employs two high-level strategies for memory to address
this challenge. First, the optimal alignment length, and hence the
sizes of the DP and traceback matrices, are unknown a priori, and
at the same time dynamic memory allocation in GPU kernels is

slow [12, 18, 23, 35, 40]. Consequently, FastZ employs the well-
known inspector-executor approach [30] where a lightweight inspec-
tion of the (larger) alignment search-space quickly determines the
optimal alignment lengths without any dynamic memory allocation
for the DP matrix; the executor completely computes the (much
smaller) actual alignment via memory allocation at kernel launch
for traceback using the alignment lengths from the inspector. Sec-
ond, FastZ employs additional memory optimizations (1) to identify
and eliminate a large fraction of the DP matrix accesses in both the
inspector and executor, and (2) to elide global memory accesses to
the traceback matrix in the common case of short alignments.
FastZ’s key contributions are as follows.

e We observe that the traceback state is needed only for the op-
timal alignment and not for the larger alignment search space.
Accordingly, the inspector elides traceback state tracking to
be lightweight, with one exception (eliding the DP matrix
allocation is next). Thus, the inspector not only eliminates
unnecessary memory accesses but also reduces the memory
footprint enabling more parallelism (i.e., more threads).

The exception is the common case of extremely short align-
ments (e.g., 16-base pairs or fewer in length) where the inspec-
tor performs limited, eager traceback to entirely eliminate the
executor. Eager traceback eliminates approximately 80% of
all DP computation from the executor. Further, the traceback
state is small enough (e.g., limited to 16x16) to fit in the
GPU’s Shared Memory or L1 cache, and does not generate
memory traffic.

e Using the optimal alignment information from the inspector,
FastZ employs executor trimming to compute the DP matrix
and traceback only for the much smaller optimal alignment.

As stated above, the DP matrix scores are needed only tem-
porarily for computing other matrix elements. Accordingly,
FastZ significantly reduces the DP matrix memory traffic by
using a cyclic-use-and-discard buffering scheme of produc-
ing values for one diagonal by using the values in the two
preceding diagonals in a cyclic pattern. Moreover, the three-
diagonal state is small enough to be held in registers; thus
eliminating a vast majority (97%) of memory accesses, and

any dynamic memory allocation for the DP score matrix. This
optimization is used in both the inspector and executor.

e Finally, because of the variation in alignment lengths, inter-
mingling short alignments with long alignments in the same
GPU kernel leads to load imbalance and under-utilization.
FastZ groups seed extension tasks into size bins based on
the alignment lengths (known from the inspector) to mitigate
such load imbalance.

We implement and evaluate FastZ on Nvidia’s RTX 3080 (Am-
pere), QV100 (Volta), Titan X (Pascal) GPUs. Our implementation
produces identical (or occasionally longer) alignments as NIH’s
gapped LASTZ. FastZ and our multicore implementation of LASTZ,
which require no custom hardware, achieve 111x and 20x speedups
over (the sequential) LASTZ, respectively.

2 BACKGROUND AND IMPLICATIONS FOR
FASTZ

Whole genome alignment typically proceeds as a three-stage compu-
tation. In the first stage, a lightweight exact-match search identifies
short sequences (19 base pairs long) to serve as seed sites. Because
the seed search results in numerous seeds, the second stage filters the
seed sites to obtain a shorter list of promising seed sites. Finally, the
third stage extends the filtered seed sites using the Smith-Waterman
dynamic programming (DP) algorithm for sequence alignment with
affine gap penalties [9].

2.1 Baseline LASTZ optimizations

LASTZ supports both ‘gapped’ alignment, which allows for gap
insertions and deletions, and ‘ungapped’ alignment, which looks for
exact matches at the filtering stage. In the final stage, both versions
use gapped extension. However, in ungapped filtering, many seeds
that lead to high-scoring alignments may be dropped resulting in
lower sensitivity, as also recognized in other work [37]. For brevity,
we refer to LASTZ with ungapped filtering as "ungapped LASTZ’
(even though it uses gapped seed extension after the filtering stage).
The more sensitive, gapped version is preferred for its higher quality
results (more, longer, higher-scoring alignments) whereas the less
sensitive, (but faster) ungapped version is preferred when run-time
is the primary constraint. Figure 2 illustrates this tradeoff by com-
paring the alignments found by the ungapped and gapped variants
of LASTZ when comparing subsequences of C. elegans and C. brig-
gsae genomes that each contain one million seeds. Each alignment
is shown as a point in the scatter-plot based on the alignment length
(in number of base pairs, X-axis) and alignment score (Y-axis). The
gapped version finds more, longer, higher-scoring alignments as
visible in the graph. For example, the gapped version finds more
than twice as many alignments with score exceeding 10,000 than the
ungapped version (41 versus 17).

The recently-proposed SegAlign [8] accelerates the ungapped ex-
tension as part of the filtering whereas FastZ accelerates the gapped
version for high-quality alignments. In the gapped version of LASTZ,
which is a sequential implementation, more than 99% of the time is
spent in the DP component, 1% of which is for traceback analysis.
For example, we profiled an alignment of the first chromosome of
C. elegans and C. briggsae using LASTZ (the high-sensitivity variant
without the ungapped filtering) using AMD uProf v3.4 profiler. We

80000 -

+ Ungapped [¢]
700004 © Gapped
&

60000 -
£ 50000 - +
E @ o
= 4
g 40000 ® R
5
=' 30000 +
< * 0 o

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
Alignment length(bp)

Figure 2: Gapped versus ungapped alignments

found that one function (ydrop_one_sided_align) that performs
the DP computation accounts for over 99.75% of the execution time.
Thus, the DP component is our focus.

The default operation of LASTZ’s gapped Smith-Waterman does
not evaluate all the cells of the DP matrix. Where possible, LASTZ
reduces the compute work without affecting the quality or length of
the alignment. Figure 3(a) illustrates the operation of the DP scor-
ing matrix as a score heat map (darker shades imply higher scores)
where only a fraction of the full matrix is explored. In evaluating the
matrix in the horizontal dimension (along rows), if the score of a
cell drops below a threshold (relative to the highest observed score),
the rest of the cells on that row are pruned. In the vertical dimension,
if all the scores of a row fall below the threshold, subsequent row ex-
ploration is also pruned. Though this pruning of later cells, captured
in the y-drop algorithm, fundamentally relies on LASTZ’s sequen-
tial nature and is not amenable fully to parallel implementations,
both FastZ and Darwin-WGA achieve a conservative approximation
wherein most of the areas below the threshold are pruned even in the
parallel implementations.

Furthermore, in the filtering stage, Darwin-WGA employs a
heuristic based on Banded Smith-Waterman [7] which limits the
search space to a bounded band around the diagonal of a fixed width,
where the optimal alignment is likely to be found. Many insertions
and deletions would mean straying away from the diagonal which is
likely to be sub-optimal. However, the optimal solution may not al-
ways be found within the band. In this paper, we pursue the optimal
solution and not the potentially suboptimal banded approach (ex-
plained in Section 3.4). In addition, LASTZ terminates an ongoing
seed extension upon reaching a previously-discovered alignment be-
cause it is not profitable to combine the prior and current alignments;
if it were, the prior alignment would have expanded to include the
current one. Because this work reduction also relies on LASTZ’s
sequential nature, FastZ, being parallel, forgoes this optimization
while still being significantly faster.

After the alignment search concludes, the traceback stage com-
putes the alignment (including gaps) from the highest-scoring cell
as shown in Figure 3(b). Consequently, the traceback space is much
smaller than the full search space. FastZ exploits this difference in
its inspector-executor approach.

(a) Alignment search: Score heatmap (b) Traceback of highest scoring align-

ment
Figure 3: Smith-Waterman operation

2.2 Memory-boundedness, Dependencies and
Parallelism

From the gapped Smith-Waterman recurrences shown in Figure 1,
we make four key observations.

(1) Inasingle seed extension, consider the computation-to-memory-
access ratio for an arbitrary cell of the DP matrix (say i, j),
as shown in Figure 1. The operation requires five memory
reads to previously computed cells, five additions and four
comparisons (for the max operator in Figure 1), and three
memory writes (accesses to S; j,1; j,D;, j scoring matrices).
Further, to reconstruct eventually the alignment via traceback,
there are three additional writes for the traceback pointers in
each matrix. The overall ratio of memory accesses to compute
operations (9) to memory accesses (11) is less than 1. Thus,
the workload becomes memory-bound with more parallelism;
and compute acceleration will not offer any further speedups
unless the memory-bandwidth bottleneck is ameliorated.

In extending a single seed, the (intra-seed parallelism) lies

along the diagonals (Figure 1). As discussed in Section 1, the

irregular accesses along the diagonal is a known problem for
which there are well-known data layout transformations of

the DP matrix to make the accesses contiguous (e.g., [38]).

The layout transformations provide a one-to-one mapping

of the original i, j coordinate of a matrix cell to a new ', j/

coordinate such that the elements originally along an anti-

diagonal lie along rows in the transformed coordinate system.

For example, Figure 4 shows such a transformation using i’ = i

+ jand j/ = j as the transformation functions. Parallel accesses

of locations that are along the anti-diagonal in the logical

DP matrix (see shaded cells in Figure 4) are in physically

contiguous rows in the transformed layout (and thus can

be coalesced on modern GPUs). Such transformed layouts
require some padding in the corners, which results in an
increase in memory footprint. However, the small increase in
memory is more than offset by the improved access pattern.

This transformation is necessary for performance but far from

sufficient.

(3) Although the footprint seems large at first glance (M x N
matrices for sequences of length M and N, respectively), the
shallow dependencies in the DP matrix ensures that only a
small fraction of the DP matrix needs to be preserved. For
example, in Figure 1, when computing the dark shaded cells,
only the two adjacent diagonals (lighter shaded) are needed.
FastZ exploits this observation via cyclic-use-and-discard
buffering within registers to elide most memory accesses.

2

~

oz |rx|lold]lojo|d|>

R ERIEIGIGI IS

Figure 4: Transformed layout for improved memory behavior

(4) The traceback pointers must be preserved to reconstruct the
alignment. However, FastZ’s inspector elides traceback alto-
gether. FastZ’s executor preserves the traceback only for the
highest-scoring alignment (and not the larger search space)
avoiding superfluous traceback state.

2.3 Previous work

Darwin-WGA [37], an ASIC accelerator design, employs a special-
ized systolic array to exploit the parallelism along the DP matrix
diagonal. FastZ, on the other hand, employs the previously-proposed
data-layout transformation to achieve coalescing accesses on off-
the-shelf GPUs. Darwin-WGA uses hardware acceleration for seed
filtering, banded alignment, and traceback. Specifically for banded-
alignment, Darwin-WGA uses a heuristic approach based on Banded
Smith-Waterman [7]. In contrast, FastZ uses exact filtering, as we
discuss later in Section 3.4.

Finally, Darwin-WGA uses hardware tiling (inherited from Dar-
win [36]) wherein the scoring matrix is not spilled to memory except
for an inter-tile overlap region, which reduces the memory band-
width demand. By using fixed hardware tiles, Darwin-WGA avoids
memory allocation in the accelerator while the host may handle
allocation for the overlap regions, In contrast, FastZ employs cyclic-
use-and-discard to elide most memory accesses to the DP score
matrices and elides traceback in inspector.

Darwin-WGA’s (and FastZ’s) parallel implementations, cannot
exploit LASTZ’s work reduction based on previously-found align-
ments (i.e., the final outputs of previously computed seed extensions)
determined sequentially in LASTZ but concurrently in Darwin-
WGA and FastZ. Instead, Darwin-WGA achieves work-reduction via
some score-based heuristics which may change the obtained align-
ments. In contrast, FastZ gives up some work reduction to avoid
changing the alignment boundaries while still achieving significant
speedups.

GPU acceleration for a single Smith-Waterman DP computation
has been proposed [38]. However, the WGA problem is composed of
millions of DP computation instances (one for each seed extension).
The previous work exploits the limited single-problem parallelism

whereas FastZ focuses on the significant multi-problem parallelism.

3 FASTZ

The traditional one-pass execution used in WGA algorithms interacts
poorly with GPUs due the wide distribution of alignment lengths. On
one hand, allocating memory for the worst case alignment lengths
reduces parallelism since fewer seed extensions can be accommo-
dated within the available memory. On the other hand, dynamic
memory allocation on GPUs is slow [12, 18, 23, 35, 40]. To address
this problem, FastZ replaces the one-pass approach with a two-pass
inspector-executor approach [30].

FastZ’s design is driven by the two goals, each of which has
its own complications. The first goal is to split the functionality
into a lightweight inspector that gathers run-time information to
reduce significantly the amount of work and memory footprint in
the subsequent executor phase. The second goal is to improve GPU
memory performance and maximize parallelism, while operating
within the GPUs’ memory footprint and bandwidth limits. The rest
of this section describes FastZ’s design to achieve these two goals.

3.1 Inspector-executor design of FastZ

Recall from Section 2.1 that the alignment searches a large search-
space around short alignments to ensure that nearby, high-scoring
alignments are not missed. Recall that Figure 3(a) shows the scores
as a heatmap. The inspector explores the larger search-space to
find the cell with the highest score (black cell in Figure 3(a)). The
executor then performs a full computation up to (and including) the
highest-scoring cell but completely avoids the computations in the
rest of the search space, as shown in Figure 3(b).

FastZ’s approach fundamentally requires the inspector to be light-
weight; if the inspector is as heavyweight as the full computation,
the additional executor would make the performance strictly worse.

3.1.1 Inspector. To make the inspector lightweight, FastZ reduces
the inspector’s memory bandwidth demand and footprint, which
indirectly improves parallelism by enabling more concurrent DP
problems. Specifically, the inspector leaves the heavy work of cap-
ture of the traceback state to the executor, with one exception (ex-
plained next). This lightweight inspector is our first contribution.
The inspector precisely identifies the DP matrix cell which yields
the optimal alignment. This information is crucial for the executor.

In the inspector, FastZ assigns a single seed extension DP task to
a warp. The lanes within a warp effectively compute the independent
cells along a DP matrix diagonal. However, because of the diagonal
layout transformation, the elements of a diagonal are contiguous
(see Section 2.2). While the degree of this intra-DP parallelism, es-
pecially for the common case of short alignments, is lower than what
a GPU can exploit, the much higher degree of inter-DP parallelism
is more than sufficient to keep a GPU busy (e.g., a million seed ex-
tensions). Accordingly, multiple seed extensions (DP problems) are
concurrently run (as warps within a threadblock as well as multiple
threadblocks) to exploit GPU multithreading. This simple strategy
captures both intra- and inter-DP problem parallelism.

The load balancing optimization of binning the DP problems by
alignment lengths obtained from the inspector is available only for
the executor and not the inspector. Fortunately, because the inspector

is lightweight, load imbalance is far less severe in the inspector
and is alleviated further by well-known techniques, such as CUDA
streams [25].

3.1.2 Avoiding executor redundancy in the common case via eager
traceback. As attractive as the inspector-executor approach is in re-
ducing unnecessary memory traffic and increasing parallelism, the
approach does incur redundant computation for each seed-extension.
To minimize the redundancy without worsening memory traffic,
FastZ entirely eliminates the executor in the common case of ex-
tremely short alignments via limited, eager traceback in the inspec-
tor. This inspector traceback exception is our second contribution.

To achieve this traceback, FastZ augments the inspector to track a
small (16 x 16) traceback matrix. The limited case of any extremely
short alignment, that falls entirely within this range, can immediately
perform the traceback; thus entirely avoiding the executor. Align-
ments that exceed this range will be reevaluated in the executor stage.
One may think that the short alignments caught by this technique
would be uninteresting because they would be low scoring align-
ments anyway. However, LASTZ and FastZ perform left and right
extensions of any seed site separately before combining the two for
the final extension. Thus, a short left (right) alignment cannot be
eliminated a priori as it may yield a high-scoring final alignment
after combining.

Eager traceback is particularly attractive due to its high benefits
and low costs. The benefits are high because a significant majority of
seed extensions (> 80%) are short and avoid redundant computation
in the executor. The costs are low because the 16x16 traceback state
is small enough to fit in GPUs’ L1 cache (or Shared Memory). Thus,
the inspector’s memory traffic reduction is not degraded.

3.1.3 Executor. FastZ employs executor trimming where, using
the precise information of the optimal alignment, the executor com-
putes the DP matrix and tracks traceback information only for the
much shorter optimal alignment and not the larger search space
explored in the inspector (our third contribution). On its own, the
traceback state is dwarfed by the score matrices. As such, one may
think that this improvement is minor. However, FastZ also reduces
the memory accesses to the score matrices in both the inspector and
executor, as we discuss in the next subsection.

Another benefit of the inspector’s information is that the executor
can statically allocate the DP and traceback matrices according
to the exact size needed. Because most seed extensions are small,
the executor achieves a huge reduction in memory footprint. More
importantly, given the limited memory on GPUs, precise allocation
enables FastZ to pack many more seed extensions into one kernel,
thus maximizing parallelism. The executor stage inherits many of
the inspector’s optimizations such as the parallelism model (i.e., one
seed extension per warp). However, there are key differences mainly
due to the traceback state which is not captured by the inspector but
by the executor. We now focus on the traceback state.

The traceback state, which records the choices made at each cell,
is consumed only after the DP matrix is computed fully. During
the DP computation, traceback state is written, but never read. To
minimize this write memory bandwidth demand of writing traceback
data (within the constraint that traceback data cannot be discarded
like scoring data), FastZ employs two further optimizations.

First, we observe that the traceback data for any given DP matrix
need not be a full byte. Traceback data records the identity of the
maximum among the various score choices (see Figure 1). The
recurrences for the matrices /, D, and S select the maximum among
2, 2, and 3 choices respectively, which can be identified using 1, 1,
and 2 bits, respectively. Because modern systems disallow sub-byte
access, we compress the trace state from all three scoring matrices
into a single byte.

Second, to achieve cache block-level aggregation of trace write-
back, we consolidate the trace of multiple cells to fill a cache block
in Shared Memory which is written to memory in one single write.
While naively writing to the L1 cache may also achieve such coa-
lescing, GPUs’ small L1 caches are prone to unpredictable evictions
which may prevent such coalescing. FastZ’s approach of consolida-
tion in Shared Memory deterministically avoids such failures.

Traceback Parallelism. Despite being small (less than 1%), the
traceback can limit FastZ’s net speedup to 50x (Amdahl’s Law limit
assuming a speedup of around 100x for the main DP computation
except the traceback). Indeed, because FastZ speeds up the DP
computation by as much as 100, the Amdahl’s Law limit is a real
problem for FastZ. Unlike the DP computation, the traceback of a
given seed extension has no internal parallelism. As such, the only
available parallelism is inter-seed parallelism — the traceback of one
seed extension is independent of other seed extensions.

Given that FastZ’s parallelism employs one warp per seed exten-
sion for the DP computation, we use one thread of the same warp
to perform the traceback computation after the DP computation is
complete. With this structure, FastZ effectively exploits inter-seed
traceback parallelism which is captured both by multithreading and
execution on different SMs. Because of the presence of multiple
warps per SM, the degree of multithreading (and the resultant latency
hiding) remains the same as that for the DP computation.

One may think that the loss of intra-warp parallelism is a setback
for traceback. However, the purpose of traceback parallelization
is merely to push the Amdahl’s law limit to a point where the DP
component speedup is not dampened. For this limited purpose, fully-
multithreaded inter-SM parallelism (which can vary from 28-way
on a Titan X(Pascal), 68-way on the RTX 3080(Ampere) to 80-way
on a Volta (QV100)) is more than adequate. A 1% component when
parallelized 28-ways is under 0.04%, which pushes the Amdahl’s
Law limit away from the DP component’s speedup of 100x.

3.2 Minimizing memory bandwidth demand via
Cyclic Use-and-Discard

Ideally, we want to minimize writing the DP scores back to memory.
Recall from Section 2.2 that the live state is limited to three consecu-
tive diagonals of data because whenever one diagonal of cells in the
matrix are fully computed, there is no further use of cells that are at
the third-previous diagonal and beyond. The live state being limited
to three diagonals of DP matrix data is not enough to avoid severe
cache pollution due to the scan-like access pattern of the large matrix.
With parallel execution of multiple problems, the number of scans
are amplified; and large numbers of large scans result in unnecessary
spills to (and reloads from) memory. To address this challenge, FastZ
uses cyclic use-and-discard buffers that can hold three diagonals of
the DP matrix, as shown in Figure 5 (our fourth contribution). In

O AN O « N
5 555 55
N 0 O oM
1
2
2 _ Warp Progress
.Boundary
332 IChi
33 Spill
34
35
64
65
66
67
96

Figure 5: FastZ’s Cyclic Use-and-discard Buffer Management

Figure 5, the original DP matrix diagonals have been transformed
into rows as shown in Figure 4, but shown transposed as columns to
match the familiar DP row-major traversal. FastZ cyclically reuses
the three buffers by overwriting (and hence discarding) the oldest
diagonal as a new diagonal is computed.

Because the scores are not needed (only the position of the maxi-
mum score is remembered) even for the final solution, FastZ uses
cyclic use-and-discard optimization for both the inspector and ex-
ecutor phases. For the executor, the elimination of the scoring matrix
writes reduces the memory bandwidth demand by 92%. (The remain-
ing 8% accounts for the traceback state which must be written back
to memory in order to reconstruct the alignment.)

FastZ’s strategy for parallelization on GPUs directly impacts
buffer management. Because FastZ parallelizes only a warp-wide
strip of a given DP matrix computation (Section 3.1.1), the cyclic
buffers hold warp-wide strips of three original diagonals at a time
(Figure 5). Consequently, the strip boundary issues must be ad-
dressed. Specifically, the boundary cells of the strip cannot be dis-
carded as they hold live state that will be needed when the computa-
tion proceeds to the next strip in the diagonal. As such, the state will
have to be preserved and written out to memory to be re-loaded later
for the next strip of the same diagonals. The other, non-boundary
cells may be discarded. Because such boundary conditions affect
only one cell out of the 32 cells handled in a warp, the bandwidth
reduction is effectively more than 96% (=31/32).

We considered both GPU Shared Memory and GPU registers as
the physical locations for the cyclic use-and-discard buffers. The
aggregate state for the three diagonals for all the threads that can
be scheduled on a single Streaming Multiprocessor (SM) exceeds
Shared Memory capacity of current GPUs. For example, 2 thread-
blocks each with 64 warps of 32 threads, each requiring 36 bytes
(3 scores of 4 bytes each), corresponds to 144 KB of Shared Mem-
ory storage. In contrast, the per-thread storage of 36 bytes can be
accommodated easily in the register space of each CUDA thread.

Finally, our parallelization requires each thread in a warp to ac-
cess live state produced by other threads (neighboring DP matrix

cells), which can be a challenge when using thread-private registers.
Fortunately, CUDA includes fine-grained register exchange instruc-
tions that allow for the necessary cross-thread communication. As
such, FastZ houses the cyclic use-and-discard buffers in registers.

3.3 Load-balancing via inspector-determined
alignment length-binning

In addition to optimizing memory traffic, FastZ exploits information
from the inspector to achieve load balance on the GPU (our fifth con-
tribution). The GPU’s bulk-synchronous approach, wherein a kernel
completes only when the threadblocks on all the SMs complete, can
cause load imbalance when long alignments are intermingled with
short alignments within the same kernel. Accordingly, FastZ uses
the precise knowledge of the length of the alignment (from the in-
spector) to bin the seed extensions by length. FastZ bundles the seed
extensions in each bin into its own kernel which ensures load bal-
ance. We use four bins with bin boundaries at 512x512, 2048x2048,
8192x8192, and 32,768x32,768 respectively. An optimal alignment
found at DP matrix cell 7, j is placed in the smallest bin in which the
alignment is contained. Our benchmarks did not need larger bins,
but one could add bins using a similar 4x scaling factor if needed.

3.4 Implementation

GPU performance can be fragile without careful tuning. To that end,
FastZ employs other well-known optimizations.

Streams. As mentioned in Section 3.1, each seed extension takes
a variable amount of time even in the inspector. (The length-binning
optimization cannot be used at the inspector stage as the alignment
lengths are unknown.) To achieve good scheduling of thread blocks
to SMs, we use CUDA streams [25]. Each stream’s kernels launch
asynchronously with respect to other streams; thus preventing long-
running kernels on one SM from blocking execution on other SMs.

Work Reduction in Parallel Implementations. Recall from Sec-
tion 2.1 that LASTZ performs two work-reduction optimizations: (1)
pruning when the score along a row or column falls below a thresh-
old, and (2) termination upon reaching previous alignments. For the
first optimization, because FastZ cannot use the score information
that is being produced concurrently without significant communi-
cation overhead, FastZ uses previously-completed scores along the
row or column at the cost of some extra work (if the completed score
is already below the threshold, it is safe to stop the exploration).
Though conservative, this approximation achieves good pruning.
LASTZ’s sequentially-dependent second optimization is infeasible
in any parallel implementation. As such, each seed extension in
FastZ (like those in Darwin-WGA) uses only score-based work re-
ductions which do not depend on other alignments. The benefits of
inter-seed parallelism outweigh the costs of the modest loss in work
reduction. Consequently, FastZ explores the same or a strict superset
of basepairs as LASTZ, resulting in the same or occasionally longer
alignments (at most 0.005% of alignments across all benchmarks
with a median length increase of 5.5x).

Control divergence. The recurrence computation uses the max
operator which is implemented using data-dependent branch instruc-
tions, likely leading to control flow divergence. However, the control

Table 1: Genomes

Common Name | Species Basepairs

. C. elegans (chrl) 15,072,434

Nematodes C. briggsae (chrl) 15,455,979

C. elegans (chr2) 15,279,421

C. briggsae (chr2) 16,627,154

C. elegans (chr3) 13,783,801

C. briggsae (chr3) 14,578,851

C. elegans (chrd) 17,493,829

C. briggsae (chr4) 17,485,439

C. elegans (chr5) 20,924,180

C. briggsae (chr5) 19,495,157

Fruit flies D. melanogaster (chr2R) | 25,286,936

D. pseudoobscura (chr2) | 30,794,189

A. albimanus (chrX) 12,318,379

Mosquitoes A. atroparvus (chrX) 17,503,697

A. gambiae (chrX) 24,393,108

C. D. A A
elegans pseudoobscura gambiae albimanus

C1 D1

C. D. A.
briggsae melanogaster atroparvus

Figure 6: Pairs used for whole genome alignment

Al

divergence is limited to only a few paths each with only a few in-
structions. For example, computing the maximum of two operands
(for the I and D matrices) requires at most two control paths, each
with only a few instructions (e.g., 2-4). Even though SIMT execution
has to execute all possible control paths, the overhead is limited.

We implemented FastZ in CUDA as a kernel launched by LASTZ.
In our prototype, LASTZ identifies seeds which are extended by
FastZ. We ensure correctness by comparing unmodified LASTZ’s
alignments with ours.

Multicore Implementation. As a comparison, we also develop a
variant of LASTZ that exploits multiprocess parallelism on multi-
cores. Our implementation partitions the set of seeds where each
partition runs in a sequential process. FastZ’s innovations are not
relevant for multicore execution. FastZ’s inspector-executor inno-
vation is needed for slow GPU dynamic memory allocation, not
for multicores; Multicores do not have enough CPU registers for
FastZ’s cyclic use-and-discard buffers. FastZ’s eager traceback de-
creases inspector-executor’s overheads, which is not relevant with-
out inspector-executor. Finally, FastZ uses size binning to mitigate
within-kernel load imbalance in GPUs, which is non-existent in mul-
ticores. Even the well-known layout transformation (Figure 4) is not
relevant to multicores which do not have SIMT’s warp parallelism
and traverse the DP matrix in a memory-friendly row-wise order
(i.e., no need for anti-diagonal parallelism).

4 METHODOLOGY

Genomes and pairwise alignment: In our evaluation, we use the
genomes of seven species shown in Table 1, including two nema-
todes, two fruit flies, and three mosquitoes. Table 1 includes the
number of base pairs in each species’ genome in specific chromo-
somes. As shown in Figure 6, while we perform alignments across
all chromosomes of C. elegans and C. briggsae, we align selected
individual chromosome pairs from among the fruit fly and mosquito
genomes.

200

HEm GPU-Baseline(Pascal)
180 1 mmm GPU-Baseline(Volta)
160 1 ™8 GPU-Baseline(Ampere)
B 32-process

H FastZ(Pascal)
FastZ(Volta)
N FastZ(Ampere)

140 1
120 A

100 A

Speedup

80

60 -

40 A

Cls,s Cl,,» Cly Cls,3 Clya

Aly x A2y, x A3x, x D12, Mean

Benchmark

Figure 7: FastZ Performance

We use the pair labels shown in Figure 6 to refer to the specific
chromosome pair being aligned. For example, the pairwise align-
ment of chromosome chrl of C. elegans and C. briggsae genomes is
labeled C11 ;. Similarly, we perform a total of nine pairwise align-
ments — five between nematodes (C1; ; where j = 1..5), one among
fruit flies (D12g), and three among mosquitos (Alx x, A2x x, and
A3x x). To achieve manageable run-times for the sequential version,
we report the performance of seed extension for a million seed sites.
We choose a random seed site from the entire chromosome and use a
million seed sites from the immediate vicinity of the chosen seed site.
This choice preserves seed-site density so that LASTZ maximally
benefits from its work-reducing optimizations (Section 2.1).
Baseline Configurations: While we compare FastZ against the
publicly-available LASTZ sequential version, we also include a
multi-process-based multicore implementation and a GPU imple-
mentation in the comparison. Our multicore version uses coarse-
grained, inter-seed parallelism across cores; each process performs
LASTZ’s default DP computation for a subset of the seeds. We also
developed a GPU implementation of the Feng et al. scheme [38] for
a single Smith Waterman computation that exploits intra-seed paral-
lelism (Section 2.3). The GPU implementation (1) exploits the data
layout transformation for improved memory coalescing behavior,
and (2) uses synchronization across warps to preserve diagonal-to-
diagonal dependencies. All GPU-based implementations use CUDA
Runtime version 11.0.

FastZ performance: FastZ’s execution time includes the inspector
stage (without any traceback data collection) and the executor stage
(with full traceback). The executor uses four bins for load balancing,
as described in Section 3.3.

Evaluation platforms: We evaluate FastZ on three GPUs: (1) an
Nvidia Titan X (Pascal) GPU with 28 streaming multiprocessors
(SMs) and 12 GB of memory, (2) a V100 GPU with 80 SMs and
32 GB of memory, and (3) an RTX 3080 (Ampere) GPU with 68
SMs and 10 GB of memory. We also evaluate LASTZ (the original
sequential version and our multi-process version) on an AMD Ryzen
3950x with 16 high-performance cores, and 32 GB of memory.

S RESULTS

5.1 Performance

Figure 7 shows the speedup over the sequential LASTZ baseline
(Y-axis) for each of the benchmarks (groups of bars on the X-axis).
In addition, the rightmost group of bars shows the mean speedups
over all the benchmarks. The benchmarks are ordered left to right
by decreasing load-balancing bin4 counts (Table 2, discussed later)
to show performance trends clearly. In each group, the individual
bars (from left to right) show the speedup achieved by the GPU
Baseline (parallelizing single Smith Waterman DP [38] described
in Section 2.3) on the three GPU configurations (Pascal, Volta, and
Ampere), 32-process multicore configuration, and finally FastZ on
the three GPUs.

The first three bars (GPU Baseline on the Pascal, Volta and Am-
pere GPUs) are barely visible because the baselines achieve slow-
downs (18% to 43% slower) relative to sequential LASTZ across all
the benchmarks. The GPU baseline’s inadequate parallelism due to
handling only one seed extension at a time, and the costly inter-SM
synchronization needed for parallelizing one seed extension over
multiple SMs are the reasons behind the slowdowns.

The multicore configuration with 32-process parallelism achieves
20x mean speedup over all benchmarks (with similar speedups for
individual benchmarks). Although the seed extensions can be triv-
ially parallelized across 32 processes, the speedup does not scale
up linearly to 32x due to memory bandwidth limits. Recall from
Section 3.4 that multicores cannot benefit from FastZ’s innovations;
hence our techniques cannot improve these speedups.

FastZ achieves significantly higher speedups across all bench-
marks with overall mean speedups of 43x, 93x, and 111x on the
Pascal, Volta, and Ampere generation GPUs, respectively. The trend
shows that speedups are higher for later generation GPUs. The Pas-
cal generation TitanX GPU in particular is also handicapped by its
fewer SMs (28) compared to significantly more SMs for the Volta
V100 (80) and Ampere RTX3080 (68) GPUs. Further, to put FastZ’s
and the multicore’s speedups in perspective, we note that the Titan X,
for example, has 3584 1-wide lanes running at 1 GHz with a 3-MB
L2 cache compared to the 16-core multicore with 4-wide superscalar
cores running at 3,5 GHz and a 64-MB L3 cache. While the GPU

Table 2: Alignment length distribution of 1 million seeds

Benchmark Eager Bins

Traceback 1 2 3 4
Clss 776453 | 222663 651 | 208 | 25
Clan 771776 | 227211 810 | 187 | 16
Cly, 757731 | 240979 | 1101 | 177 | 12
Clss 764269 | 234331 | 1225 | 165 | 10
Clyy 759240 | 240040 603 | 114 3
Alx x 816817 | 182879 240 62 2
A2x x 814634 | 185014 300 50 2
A3x x 819519 | 179978 426 76 1
Dl 812578 | 187408 13 1 0

has more memory bandwidth, FastZ cuts the bandwidth demand and
does not use GPU’s bandwidth, whereas the CPU has more cache
benefiting the memory-bound LASTZ.

Finally, for a given GPU, FastZ’s speedups vary across the bench-
marks due to differences in the optimal alignment lengths and the
number of long alignments. More, shorter alignments result in higher
speedups because shorter alignments naturally induce less load im-
balance in the inspector which dominates FastZ’s execution time, as
discussed next.

5.2 Execution Time Breakdown

Figure 8 shows the breakdown of FastZ’s normalized execution time
(Y-axis, stacked bars) for our benchmarks (X-axis) on the Ampere
GPU. For each benchmark, the execution time is broken down into
three components: inspector, executor, and other. As expected, in-
spector is the largest component accounting for around two-thirds
(and as high as 79%) of the execution time for most benchmarks.
The executor accounts for a smaller fraction (approximately 10%).
Although more heavy-weight than the inspector, the executor is in-
voked only for a small subset of seed extension problems that survive
eager-traceback. Finally, the remainder (other in Figure 8) accounts
for other work such as reading the anchor points, sequence files,
allocating memory, copying all these over to the GPU, reading final
alignments, sorting the anchors into bins based on alignment length
and copying the eager traceback-surviving anchor points for the
executor. Note that the other component is a much smaller fraction
for sequential LASTZ. It is only after FastZ’s acceleration, which
vastly reduces the execution time of the inspector and executor, that
the other component is seen as a non-negligible fraction.

The differences in execution time breakdown among individual
benchmarks is entirely explained by the same reason that explains
benchmark speedup differences for a given GPU in Figure 7 — the
number of long alignments. Table 2 shows the distribution of the
alignment lengths for our 1 million seeds in each benchmark. The
lengths are binned as per our load balancing bins from Section 3.3:
upto 16 base pairs in eager traceback, 16-512 base pairs in binl, 512-
2K base pairs in bin2, 2K-8K base pairs in bin3, and 8K-32K base
pairs in bin4. The table shows that 75-80% of the alignments are 16
base pairs or fewer. A vast majority of the remaining alignments fall
within binl. The rest of the bins are quite small. However, bin4’s
long alignments, though the least, are the primary reason for the
differences in speedups (Figure 7) and execution time breakdown
(Figure 8), The lower the bin4 count for a benchmark (e.g., D12z 2),
the smaller the inspector and executor run time components in Fig-
ure § and the lower the inspector load imbalance, and the higher the
benchmark speedup in Figure 7.

Il Inspector Il Executor Other

100 +
90 A
80
70 4
60
50 4
40 A
30 1
20 1
10 +

Percentage(%)

Clss Clzz Clia Clszsz Clga Alxx A2xx A3xx Dl
Benchmark

Figure 8: Execution time breakdown (Ampere GPU)

5.3 Isolating the impact of FastZ’s optimizations

Figure 9 isolates the impact of the individual optimizations of FastZ.
To that end, we start with a variant of FastZ that uses the inspector-
executor approach with length-binned load balancing and the light-
weight inspector. We do not include a configuration that excludes
load balancing which would result in high slowdowns due not only
to load imbalance but also to per-problem memory allocation in the
absence of per-bin allocation. We then progressively add one by
one cyclic use-and-discard buffer management, eager traceback for
short alignments, and executor trimming. Finally, we also isolate
the impact of CUDA streams. Figure 9 shows the speedup (Y-axis)
of these progressively composed schemes (X-axis, individual bars)
for our three GPUs (X-axis, groups of bars). Progressive addition
of optimizations implies that any bar in Figure 9 includes all the
optimizations of the bars to its left (within the same group). The
penultimate bar with all optimizations is FastZ. To isolate the impact
of streams, the last bar shows FastZ using a single CUDA stream
(FastZ-single-stream) whereas all the previous bars use 32 streams.
For each GPU, we show the mean speedup across all benchmarks
as the results are qualitatively similar for each individual bench-
mark. In each case, the following common observations hold. First,
FastZ’s load balancing on its own, yields small slowdowns to modest
speedups — between 8% slowdown (on the Pascal) and 2.8x speedup
(on the Ampere) over the sequential LASTZ baseline. Second, each
optimization is valuable. The addition of cyclic use-and-discard
buffers (green bars) boosts the speedup to 4.7x, 6.1x, and 17x on the
Pascal, Volta and Ampere architectures, respectively. Eager trace-
back for seed extensions whose optimal alignment lies within a
16x16 DP matrix further boosts performance to 15x, 21x, and 46x on
the Pascal, Volta and Ampere GPUs, respectively. The penultimate
bar, which adds executor trimming wherein the executor trims its
own execution footprint based on the inspector’s knowledge of the
optimal alignment, is FastZ; and achieves speedups of 43x, 93x, and
111x on the Pascal, Volta and Ampere GPUs, respectively. Finally,
using a single stream reduces the mean performance by 1.7x, 1.7x,
and 2.4x on the Pascal, Volta, and Ampere GPUs, respectively.
Because we progressively add FastZ’s optimizations, the later op-
timizations improve performance on top of a higher-performing base.

140

EEm +Lightweight inspector and load balance
Hmm +Cyclic use-and-discard
1201 wmm +Eager traceback
EEm +Executor trimming (FastZ)
100 | M FastZ single stream
o]
S 80
ke
9]
8
& 60+
40 -
20 4

Volta

Pascal Ampere

Figure 9: Isolating the Impact of FastZ’s optimizations
cDp1
A A A
gambiae atroparvus albimanus
AN Act AC6
AD4 AC:

AD2

@
elegans

C
briggsae

Figure 10: Cross-genus pairs for whole genome alignment

cDp2

Improvements on a larger base create the optical illusion that the
later optimizations offer higher speedups (e.g., a 50x to 100x jump
visually looks larger than a 2x to 4x jump, even though the speedup
increment in the two cases is the same factor of 2). Analyzing the
relative speedups, we found that no single optimization is respon-
sible for a large fraction of FastZ’s gains. Rather, the contributions
of lightweight inspector and load balancing, cyclic-use-and-discard,
eager traceback, and executor trimming are somewhat comparable
(1.4x, 5.8x, 3x, and 3.4x mean speedups across the GPUs).

5.4 FastZ’s performance for dissimilar genomes

Thus far, we have focused on genome alignments within the same
genus (e.g., among nematodes, mosquitoes, and fruit flies), where
the genomes are expected to align quite well. To understand FastZ’s
performance on dissimilar genome alignments, we evaluate FastZ’s
speedups over LASTZ for several cross-genus comparisons as shown
in Figure 10. As before, the benchmark names are derived from the
edge labels in Figure 10 with the chromosome numbers specified in
the subscript. We verified that these comparisons are indeed dissimi-
lar as no alignment falls in the two largest size bins.

Figure 11 shows the speedups (Y-axis) over LASTZ for each
of our benchmarks (X-axis) on Ampere. The rightmost bar shows
the mean speedup across all benchmarks. We observe that FastZ’s
speedups are higher for dissimilar alignments (mean speedup 137x)
than those for the similar alignments (mean speedup 111x). Dis-
similar genomes have fewer high-score alignments which results in
relatively more time being spent in the (faster) inspector compared
to similar genomes whose longer alignments require relatively more
time to be spent in the (slower) executor.

CDliz ADliz AClgi AD2y2r AC2x1 CD212s CD312r AD3y2n ADAy2r AC3x1 AC4x1 ACS51
Benchmark

Figure 11: FastZ performance on Ampere for dissimilar (cross-
genus) sequence alignment

6 DISCUSSION

Multi- GPU/node extension: FastZ’s approach lends itself to multi-
GPU (and if necessary, multi-node) acceleration because the seeds
can be partitioned easily. As such, each partition can be assigned
to different GPUs and/or nodes for parallel execution. We defer
multi-GPU/multi-node implementations for future work.
Remaining bottlenecks: FastZ reduces the number of memory
accesses significantly; but to understand the impact of such memory
access reduction, we consider the three phases of the application
separately. First, in the inspector phase, FastZ requires only 3 FP
words (12 bytes) of output (the S, D, and I scores) for every 32 x 9 (9
= 4 comparisons + 5 additions) operations of a GPU warp, yielding
an operational intensity of 24 ops/byte. (Recall from Section 3.2 that
only the boundary lane writes the scores back to memory.)

Second, in the executor phase, FastZ requires one byte of trace-
back state for every cell of the DP matrix, which results in an addi-
tional 32 bytes (beyond the 12 bytes needed for the scores) accessed
per 32 x 9 =288 operations of a GPU warp for an operational inten-
sity of 6.5 (= 288/(12 + 32)) ops/byte.

The nominal peak compute- and memory-bandwidth of the RTX
3080 GPU are 29.77 TFlops/s and 760 GB/s, yielding a threshold
operational intensity of 39 ops/byte. This nominal intensity has to
be derated for the maximum achievable compute bandwidth due
to branch-divergence (arising from the max operator in the Smith-
Waterman recurrence). Examining the instruction-level overheads
yields a derating factor of 2.56, because the 9 operations expand to
23 operations under SIMT divergence. Thus, the true threshold is
39/2.56 = 15.2 ops/byte which means that the inspector is slightly
compute-bound and the executor is slightly memory-bound. Note
that FastZ would have been deeply memory-bound without our
optimizations (roughly 0.75 (= 9/12) op/byte in inspector and 0.69
(=9/13) op/byte in executor).

Finally, because of the sequential nature of the traceback phase,
FastZ leverages only inter-SM parallelism (and not warp-parallelism).
This stage remains memory-bound but is a small fraction of execu-
tion time (< 0.2%). Recall that the traceback is parallelized only to
prevent it from becoming an Amdahl’s law bottleneck.

7 RELATED WORK

Acceleration of sequence alignment: There are software-only
multicore libraries which focus on the core Smith-Waterman func-
tionality (e.g., Parasail [4]). However, we focus on the full WGA

application rather than on the Smith-Waterman kernel. As such FastZ
and Parasail are not comparable in functionality. Moreover, FastZ ex-
ploits GPU-scale parallelism (with hundreds of concurrent threads)
compared to Parasail’s multicore-scale parallelism (tens of threads).

LOGAN [39] implements a subset of Smith-Waterman function-
ality which does not include traceback. It is not comparable to FastZ
or LASTZ which produce alignments and not just scores. Finally,
LOGAN minimizes memory footprint by reusing memory for the
anti-diagonals in the DP matrix, but writes out each anti-diagonal to
memory and thus does not reduce memory bandwidth of the scoring
matrices — a key optimization of FastZ.

CUDAIlign [31] eschews the traditional seed-filter-extend align-
ment and instead performs a computationally-expensive global Smith-
Waterman on the extremely long sequences. This approach results in
tens of petabytes of DP matrix state and requires hundreds of GPUs
to compute. While impressive as a big-iron computing achievement,
CUDAlign is not a practical option for most users. In contrast, FastZ
accelerates practical alignment based on the seed-extend framework
that is accessible to practitioners.

SegAlign [8], which we have discussed previously in Section 2,
accelerates only the seed-and-filter stages of LASTZ. Because Se-
gAlign targets ungapped extension in the filter stage, its acceleration
applies only to the lower-sensitivity, variant of LASTZ with un-
gapped filtering. In contrast, FastZ targets gapped extensions like
the high-sensitivity variant of LASTZ.

On the hardware front, Darwin [36] and Darwin-WGA [37] are
two recently-proposed accelerators that rely on hardware-based tiled
execution of the Smith-Waterman algorithm. There are other FPGA-
based Smith-Waterman acceleration proposals as well [5, 6, 29].
FastZ shows that much of the advantage of such custom hardware
accelerators can be captured entirely in software (e.g., eliminating
DP matrix reads/writes) running on commodity GPUs.

Inspector-Executor approach: The inspector-executor is a gen-
eral dynamic optimization to exploit run-time information that is not
known at compile time [30]. The approach has found uses in many
areas such as graph/tree traversals [19] and sparse linear algebra
kernels [16]. FastZ uses the approach to address similar challenges.
WGA on a GPU can benefit from run-time information like align-
ment length (e.g., to minimize unnecessary traceback tracking via
executor trimming, and to improve load balancing by binning by
length).

Other applications of Smith-Waterman sequence alignment: Smith-
Waterman and its variants are used in several sequence alignment
applications including de novo and reference-guided genome as-
sembly from long [14, 33] and short reads [3, 15, 17, 27, 28, 32].
MUMmer4 [21], which uses Banded Smith-Waterman, has been
parallelized for multicores. As such, MUMmer4 achieves speedups
comparable to our multicore implementation of LASTZ, which is
significantly slower than FastZ on GPUs. Moreover, FastZ imple-
ments full Smith-Waterman and not the banded variant which does
not guarantee optimal alignments (Section 2.1).

Some of FastZ’s techniques that optimize a single seed exten-
sion are directly applicable in the above contexts. For example, the
inspector-executor approach, and cyclic use-and-discard buffer man-
agement are applicable to any Smith-Waterman application. How-
ever, some of FastZ’s other techniques depend on specific application

characteristics such as the distribution of alignment lengths and the
number of independent alignments/seed-extensions. For example,
our eager traceback, is driven by the observation that 75%-80% of
the seed extensions result in extremely short alignments. If other
applications differ in those characteristics, those specific aspects of
FastZ may have to be revisited and potentially redesigned. This limi-
tation is not unique to FastZ; existing sequence alignment software
packages are also specialized for specific use cases.

8 CONCLUSION

Whole genome alignment (WGA) is an important application for
comparative genomics, with NIH-supported servers offering (WGA)
as a service. Unfortunately, researchers have to choose between high
performance at the cost of low sensitivity, ungapped alignment, or
highly sensitive, gapped alignment that is slow. Prior attempts to
overcome this dilemma have proposed either GPU-based solutions
that are only modestly better, or have proposed ASIC accelerators
which will not be available to practitioners till they are commercially
produced.

FastZ fills this void and achieves high speedups on off-the-shelf
GPUs for high-sensitivity, gapped alignment using the Smith-Waterman
dynamic programming (DP) algorithm. The challenges are (1) the
workload is memory bandwidth-bound, (2) the final alignments for
different seeds vary widely in length, with short alignments being a
vast majority, requiring dynamic memory allocation which is slow in
GPUs, and (3) the algorithm searches through longer matches to find
the shorter optimal alignment. FastZ’s five key innovations are based
on the well-known inspector-executor approach. (1) The inspector
stage discovers the optimal alignment by searching longer matches
but remains lightweight by eliding DP traceback with the following
exception. (2) To eliminate the redundancy between the inspector and
executor in the common case of extremely short alignments, FastZ
employs limited, eager traceback in the inspector without degrading
the inspector’s memory traffic efficiency while completely remov-
ing those alignments from the executor. (3) An efficient, "trimmed’
executor stage computes the DP matrix and tracks traceback data
only for the shorter optimal alignment determined by the inspector.
Both inspector and executor avoid dynamic memory allocations. (4)
FastZ’s design employs a novel cyclic use-and-discard buffer man-
agement strategy which drastically shrinks the DP matrix footprint
and eliminates a majority of DP matrix memory accesses in both
stages by fitting the buffers in registers. (5) Finally, FastZ bins the
executor tasks by their alignment lengths as a load balancing mea-
sure to minimize GPU under-utilization arising from intermingling
long and short alignments in a single GPU kernel.

We implemented and evaluated FastZ on Nvidia’s Titan X (Pas-
cal), V100 (Volta) and RTX 3080 (Ampere) GPUs. Our implemen-
tation, which requires no custom hardware and produces identical
(or occasionally longer) alignments, achieves 43x, 93x, and 111x
speedups over (the sequential) LASTZ on the Pascal, Volta and
Ampere GPUs, respectively. In comparison, our multicore imple-
mentation of LASTZ on a 16-core AMD Ryzen 3950x achieves 20x
over LASTZ. FastZ’s high speedups on commodity, off-the-shelf
hardware has the potential to help accelerate progress in genomics.

REFERENCES

[1]

[2]
3

[4

[5

[6

[7

[8

[9

(10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Nauman Ahmed, Jonathan Lévy, Shanshan Ren, Hamid Mushtaq, Koen Bertels,
and Zaid Al-Ars. 2019. GASAL2: a GPU accelerated sequence alignment library
for high-throughput NGS data. BMC Bioinformatics 20 (10 2019). https://doi.
org/10.1186/s12859-019-3086-9

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. 1990. Basic local
alignment search tool. Journal of Molecular Biology 215 (1990), 403—410.
Jacek Blazewicz, Wojciech Frohmberg, Michal Kierzynka, and Pawel Woj-
ciechowski. 2013. G-MSA — A GPU-based, fast and accurate algorithm for
multiple sequence alignment. J. Parallel and Distrib. Comput. 73, 1 (2013), 32-41.
https://doi.org/10.1016/j.jpdc.2012.04.004 Metaheuristics on GPUs.

Jeff Daily. 2016. Parasail: SIMD C library for global, semi-global, and local
pairwise sequence alignments. BMC Bioinformatics 17 (12 2016). https://doi.org/
10.1186/512859-016-0930-z

Lorenzo Di Tucci, Kenneth O’Brien, Michaela Blott, and Marco D. Santambrogio.
2017. Architectural optimizations for high performance and energy efficient Smith-
Waterman implementation on FPGAs using OpenCL. In Design, Automation Test
in Europe Conference Exhibition (DATE), 2017. 716-721. https://doi.org/10.
23919/DATE.2017.7927082

Wael Abou El-Wafa, Asmaa G. Seliem, and Hesham F. A. Hamed. 2016. Hardware
Acceleration of Smith-Waterman Algorithm for Short Read DNA Alignment
Using FPGA. In 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC), Vol. 2. 604-605. https://doi.org/10.1109/COMPSAC.
2016.127

Norman E. Gibbs, William G. Poole, Jr., and Paul K. Stockmeyer. 1976. A
Comparison of Several Bandwidth and Profile Reduction Algorithms. ACM Trans.
Math. Softw. 2, 4 (Dec. 1976), 322-330. https://doi.org/10.1145/355705.355707
Sneha D. Goenka, Yatish Turakhia, Benedict Paten, and Mark Horowitz. 2020.
SegAlign: A Scalable GPU-Based Whole Genome Aligner. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (Atlanta, Georgia) (SC "20). IEEE Press, Article 39, 13 pages.
https://doi.org/10.5555/3433701.3433752

Osamu Gotoh. 1982. An improved algorithm for matching biological sequences.
Journal of Molecular Biology 162, 3 (1982), 705 — 708. https://doi.org/10.1016/
0022-2836(82)90398-9

Ross C Hardison. 2003. Comparative Genomics. PLOS Biology 1,2 (11 2003).
https://doi.org/10.1371/journal.pbio.0000058

Robert S. Harris. 2007. Improved Pairwise Alignment of Genomic Dna. Ph.D.
Dissertation. Pennsylvania State University, USA.

X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W. Hwu. 2010. XMalloc: A
Scalable Lock-free Dynamic Memory Allocator for Many-core Machines. In 2010
10th IEEE International Conference on Computer and Information Technology.
1134-1139. https://doi.org/10.1109/CIT.2010.206

Illumina [n.d.]. Illumina: Next Generation Sequencing. https://www.illumina.
com/science/technology/next- generation-sequencing.html.

Abdul Rafay Khan, Muhammad Tariq Pervez, Masroor Ellahi Babar, Nasir Naveed,
and Muhammad Shoaib. 2018. A Comprehensive Study of De Novo Genome As-
semblers: Current Challenges and Future Prospective. Evolutionary Bioinformat-
ics 14 (2018), 1176934318758650. https://doi.org/10.1177/1176934318758650
PMID: 29511353.

Petr Klus, Simon Lam, Dag Lyberg, M. Cheung, G. Pullan, Ian McFarlane, G.
Yeo, and B. Lam. 2011. BarraCUDA - a fast short read sequence aligner using
graphics processing units. BMC Research Notes 5 (2011), 27 —27.

Christopher D. Krieger and Michelle Mills Strout. 2012. A Fast Parallel Graph
Partitioner for Shared-Memory Inspector/Executor Strategies. In Proceedings
of the 25th International Workshop on Languages and Compilers for Parallel
Computing (LCPC).

'W. Langdon, Brian Yee Hong Lam, J. Petke, and M. Harman. 2015. Improving
CUDA DNA Analysis Software with Genetic Programming. Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation (2015).

C. Lauterbach, Q. Mo, and D. Manocha. 2010. gProximity: Hierarchi-
cal GPU-based Operations for Collision and Distance Queries. Computer
Graphics Forum 29, 2 (2010), 419-428. https://doi.org/10.1111/j.1467-
8659.2009.01611.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659.2009.01611.x

Jiangiao Liu, Nikhil Hegde, and Milind Kulkarni. 2016. Hybrid CPU-GPU
scheduling and execution of tree traversals. 1-2. https://doi.org/10.1145/2851141.
2851174

Glennis Logsdon, Mitchell Vollger, and Evan Eichler. 2020. Long-read human
genome sequencing and its applications. Nature Reviews Genetics 21 (06 2020).
https://doi.org/10.1038/s41576-020-0236-x

Guillaume Margais, A. Delcher, A. Phillippy, Rachel Coston, S. Salzberg, and A.
Zimin. 2018. MUMmer4: A fast and versatile genome alignment system. PLoS
Computational Biology 14 (2018).

Saul B. Needleman and Christian D. Wunsch. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology 48, 3 (1970), 443 — 453. https://doi.org/10.1016/0022-

23

[24]
[25]
[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[37]

[38]

[39]

[40]

2836(70)90057-4

David M. Nicol. 1990. Inflated speedups in parallel simulations via malloc ().
National Aeronautics and Space Administration, Langley Research Center.

NIH: LASTZ on Biowulf [n.d.]. NIH HPC: LASTZ on Biowulf. https://hpc.nih.
gov/apps/LASTZ.html

nvidia [n.d.]. CUDA Toolkit Documentation (Stream Management). https:
//docs.nvidia.com/cuda/cuda-runtime-api/group__ CUDART__STREAM.html
pacbio [n.d.]. PACBIO: Single Molecule, Real-Time (SMRT) Sequencing. https:
/lwww.pacb.com/smrt-science/smrt-sequencing/.

Jacopo Pantaleoni and Nuno Subtil. [n.d.]. NVBIO: nvBowtie Sequence Aligner.
([n.d.]). http://nvlabs.github.io/nvbio/nvbowtie_page.html

Ren. 2019. GPU accelerated sequence alignment with traceback for GATK
HaplotypeCaller.

Enzo Rucci, Carlos Garcia, Guillermo Botella, Armando De Giusti, Marcelo
Naiouf, and Manuel Prieto Matias. 2018. SWIFOLD: Smith-Waterman implemen-
tation on FPGA with OpenCL for long DNA sequences. BMC Systems Biology 12
(11 2018). https://doi.org/10.1186/s12918-018-0614-6

J. H. Saltz, R. Mirchandaney, and K. Crowley. 1991. Run-time parallelization
and scheduling of loops. IEEE Trans. Comput. 40, 5 (1991), 603-612. https:
//doi.org/10.1109/12.88484

Edans Flavius de Oliveira Sandes, Guillermo Miranda, Xavier Martorell, Eduard
Ayguade, George Teodoro, and Alba Cristina Magalhaes Melo. 2016. CUDAlign
4.0: Incremental Speculative Traceback for Exact Chromosome-Wide Alignment
in GPU Clusters. IEEE Transactions on Parallel and Distributed Systems 27, 10
(2016), 2838-2850. https://doi.org/10.1109/TPDS.2016.2515597

M. Schatz, Cole Trapnell, A. Delcher, and A. Varshney. 2007. High-throughput
sequence alignment using Graphics Processing Units. BMC Bioinformatics 8
(2007), 474 — 474.

Korbinian Schneeberger, Stephan Ossowski, Felix Ott, Juliane D. Klein, Xi
Wang, Christa Lanz, Lisa M. Smith, Jun Cao, Joffrey Fitz, Norman Warth-
mann, Stefan R. Henz, Daniel H. Huson, and Detlef Weigel. 2011. Reference-
guided assembly of four diverse Arabidopsis thaliana genomes. Proceedings
of the National Academy of Sciences 108, 25 (2011), 10249-10254. https:
//doi.org/10.1073/pnas.1107739108

T.F. Smith and M.S. Waterman. 1981. Identification of common molecu-
lar subsequences. Journal of Molecular Biology 147, 1 (1981), 195 — 197.
https://doi.org/10.1016/0022-2836(81)90087-5

M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg. 2012. ScatterAlloc:
Massively parallel dynamic memory allocation for the GPU. In 2012 Innovative
Parallel Computing (InPar). 1-10. https://doi.org/10.1109/InPar.2012.6339604
Yatish Turakhia, Gill Bejerano, and William J. Dally. 2018. Darwin: A Genomics
Co-Processor Provides up to 15,000X Acceleration on Long Read Assembly.
In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems (Williamsburg, VA,
USA) (ASPLOS ’18). Association for Computing Machinery, New York, NY,
USA, 199-213. https://doi.org/10.1145/3173162.3173193

Y. Turakhia, S. D. Goenka, G. Bejerano, and W. J. Dally. 2019. Darwin-WGA:
A Co-processor Provides Increased Sensitivity in Whole Genome Alignments
with High Speedup. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 359-372.

Shucai Xiao, Ashwin Aji, and Wu Feng. 2009. On the Robust Mapping of
Dynamic Programming onto a Graphics Processing Unit. In Proceedings of the
International Conference on Parallel and Distributed Systems - ICPADS. 26-33.
https://doi.org/10.1109/ICPADS.2009.110

Alberto Zeni, Giulia Guidi, Marquita Ellis, Nan Ding, Marco D. Santambrogio,
Steven Hofmeyr, Aydin Bulug, Leonid Oliker, and Katherine Yelick. 2020. LO-
GAN: High-Performance GPU-Based X-Drop Long-Read Alignment. In 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS).
462-471. https://doi.org/10.1109/IPDPS47924.2020.00055

Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. 2008. Real-Time KD-Tree
Construction on Graphics Hardware. ACM Trans. Graph. 27 (12 2008), 126.
https://doi.org/10.1145/1457515.1409079

https://doi.org/10.1186/s12859-019-3086-9
https://doi.org/10.1186/s12859-019-3086-9
https://doi.org/10.1016/j.jpdc.2012.04.004
https://doi.org/10.1186/s12859-016-0930-z
https://doi.org/10.1186/s12859-016-0930-z
https://doi.org/10.23919/DATE.2017.7927082
https://doi.org/10.23919/DATE.2017.7927082
https://doi.org/10.1109/COMPSAC.2016.127
https://doi.org/10.1109/COMPSAC.2016.127
https://doi.org/10.1145/355705.355707
https://doi.org/10.5555/3433701.3433752
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1371/journal.pbio.0000058
https://doi.org/10.1109/CIT.2010.206
https://www.illumina.com/science/technology/next-generation-sequencing.html
https://www.illumina.com/science/technology/next-generation-sequencing.html
https://doi.org/10.1177/1176934318758650
https://doi.org/10.1111/j.1467-8659.2009.01611.x
https://doi.org/10.1111/j.1467-8659.2009.01611.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01611.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01611.x
https://doi.org/10.1145/2851141.2851174
https://doi.org/10.1145/2851141.2851174
https://doi.org/10.1038/s41576-020-0236-x
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
https://hpc.nih.gov/apps/LASTZ.html
https://hpc.nih.gov/apps/LASTZ.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://www.pacb.com/smrt-science/smrt-sequencing/
https://www.pacb.com/smrt-science/smrt-sequencing/
http://nvlabs.github.io/nvbio/nvbowtie_page.html
https://doi.org/10.1186/s12918-018-0614-6
https://doi.org/10.1109/12.88484
https://doi.org/10.1109/12.88484
https://doi.org/10.1109/TPDS.2016.2515597
https://doi.org/10.1073/pnas.1107739108
https://doi.org/10.1073/pnas.1107739108
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1109/InPar.2012.6339604
https://doi.org/10.1145/3173162.3173193
https://doi.org/10.1109/ICPADS.2009.110
https://doi.org/10.1109/IPDPS47924.2020.00055
https://doi.org/10.1145/1457515.1409079

	Abstract
	1 Introduction
	2 Background and Implications for FastZ
	2.1 Baseline LASTZ optimizations
	2.2 Memory-boundedness, Dependencies and Parallelism
	2.3 Previous work

	3 FastZ
	3.1 Inspector-executor design of FastZ
	3.2 Minimizing memory bandwidth demand via Cyclic Use-and-Discard
	3.3 Load-balancing via inspector-determined alignment length-binning
	3.4 Implementation

	4 Methodology
	5 Results
	5.1 Performance
	5.2 Execution Time Breakdown
	5.3 Isolating the impact of FastZ's optimizations
	5.4 FastZ's performance for dissimilar genomes

	6 Discussion
	7 Related work
	8 Conclusion
	References

