
44

Recorp: Receiver-oriented Policies for Industrial

Wireless Networks

RYAN BRUMMET, MD KOWSAR HOSSAIN, OCTAV CHIPARA, TED HERMAN, and
DAVID E. STEWART, University of Iowa

Future Industrial Internet-of-Things (IIoT) systems will require wireless solutions to connect sensors, actua-

tors, and controllers as part of high data rate feedback-control loops over real-time flows. A key challenge in

such networks is to provide predictable performance and adaptability in response to link quality variations.

We address this challenge by developing RECeiver ORiented Policies (Recorp), which leverages the stability

of IIoT workloads by combining offline policy synthesis and run-time adaptation. Compared to schedules that

service a single flow in a slot, Recorp policies share slots amongmultiple flows by assigning a coordinator and

a list of flows that may be serviced in the same slot. At run-time, the coordinator will execute one of the flows

depending on which flows the coordinator has already received. A salient feature of Recorp is that it provides

predictable performance: a policy meets the end-to-end reliability and deadline of flows when the link quality

exceeds a user-specified threshold. Experiments show that across IIoT workloads, policies provided a median

increase of 50% to 142% in real-time capacity and a median decrease of 27% to 70% in worst-case latency when

schedules and policies are configured to meet an end-to-end reliability of 99%.

CCS Concepts: • Networks→ Network protocols; Network algorithms; Network dynamics; Network

reliability; Cyber-physical networks;

Additional Key Words and Phrases: Wireless communication, TDMA, reliability

ACM Reference format:

Ryan Brummet, Md Kowsar Hossain, Octav Chipara, Ted Herman, and David E. Stewart. 2021. Recorp:

Receiver-oriented Policies for IndustrialWireless Networks.ACMTrans. Sen. Netw. 17, 4, Article 44 (July 2021),

32 pages.

https://doi.org/10.1145/3460618

1 INTRODUCTION

Industrial Internet-of-Things (IIoT) systems are gaining rapid adoption in process control in-
dustries such as oil refineries, chemical plants, and factories. In contrast to prior work that has
focused primarily on low-data rate or energy-efficient applications, we are interested in the next
generation of smart factories expected to use sophisticated powered sensors such as cameras, mi-
crophones, and accelerometers (e.g., References [12, 23, 28]). Since such applications will require
higher data rates, we need to develop a versatile wireless solution to connect them with actuators

This work is funded in part by NSF under Grant No. CNS-1750155.

Authors’ address: R. Brummet, Md K. Hossain, O. Chipara, T. Herman, and D. E. Stewart, The University of Iowa, Iowa City,

IA 52242-1419; emails: {ryan-brummet, mdkowsar-hossain, octav-chipara, ted-herman, david-estewart}@uiowa.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1550-4859/2021/07-ART44 $15.00

https://doi.org/10.1145/3460618

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:2 R. Brummet et al.

Fig. 1. Design space of wireless control solutions.

and controllers as part of feedback-control loops over multihop real-time flows. A practical solu-
tion must meet the following two requirements: (1) must support high data rates, and (2) support
real-time communication overmultiple hops. Both requirementsmust bemet, notwithstanding sig-
nificant variations in the quality of wireless links common in harsh industrial environments [8, 17].
Let’s examine whether WirelessHART can meet the requirements of the next generation of IIoT

applications. WirelessHART is the state-of-the-art standard for industrial wireless communication
and has successfully provided high reliability in a broad range of industrial settings. At the heart of
WirelessHART is Time Slotted Channel Hopping (TSCH)—a MAC layer that combines Time

Division Multiple Access (TDMA) and channel-hopping in a mesh network. The TSCH data
plane relies on a centralized network manager to generate routes and a transmission schedule for
all the flows in the network. The schedule is represented as a two-dimensional scheduling matrix
that specifies the time and frequency of each transmission. TSCH supports both real-time and
best-effort traffic by using two scheduling strategies whose trade-offs are shown in Figure 1.
To support real-time traffic, a transmission is assigned to a dedicated entry in the scheduling ma-

trix and, at run-time, the transmission is performed without contention. The reliability of real-time
traffic is ensured by using retransmissions and channel hopping. The number of retransmissions
allocated is usually determined based on the worst-case quality of a link as required to tolerate
significant variations in link quality. Since the scheduling matrix cannot be updated at the rate at
which the link quality varies, the only run-time adaption available is to cancel a link’s retransmis-
sions when an acknowledgment is received. As a result, it is common for a significant number of
slots to remain unused when a packet is relayed successfully to the next hop before exhausting a
link’s allocated retransmissions. As demonstrated by the experiments in Section 6, protocols that
use dedicated entries cannot handle higher data rates efficiently.

In contrast, best-effort traffic is supported by having multiple transmissions assigned to a shared
entry in the scheduling matrix. At run-time, contention-based techniques are used to arbitrate
which transmissions will be performed. Shared entries provide more opportunities for locally
adapting what transmissions may be performed, resulting in more efficient use of network re-
sources. Unfortunately, there are no current techniques to effectively analyze the network’s per-
formance when shared entries are used. The open research question, and the focus of this article, is
whether it is possible to use shared entries to support higher throughput and respond more effectively

to changes induced by link quality variations while providing performance guarantees.

To answer this question, we propose RECeiver ORiented Policies (Recorp)—a new data plane
that provides higher performance and agility than traditional scheduling solutions that do not
use shared entries. We exploit the typical characteristics of the industrial setting to obtain im-
provements in network capacity and latency while providing predictability under prescribed link
variability. Specifically, our approach has the following features:

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:3

• Since IIoT workloads consist of sets of real-time flows that are stable for long periods of
time, we compute offline Recorp policies and disseminate them to all nodes. Recorp policies
assign a coordinator and a list of candidate flows for each entry in the scheduling matrix.
Only one of the candidate flows will be executed at run-time, depending on which flows the
coordinator has already received. The benefit of this approach is that it enables flows to be
dynamically executed in an entry depending on the successes and failures of transmissions
observed at run-time. As a consequence, Recorp policies can handle variations in link quality
more effectively than schedules.
• We propose a novel link model in which the quality of the links can vary arbitrarily within
an interval from slot to slot. Our model is motivated by current guidelines for deploying
wireless IIoT networks (e.g., Reference [29]), focusing on ensuring that communication links
have a minimum link quality. The proposed model is well-suited to industrial settings where
link quality may vary widely over short time scales.
• In contrast to best-effort entry sharing approaches that provide no performance guarantees,
we ensure that a constructed Recorp policy will meet a user-specified reliability and deadline
constraint for each flow as long as the quality of all (used) links exceeds a minimum link
quality as specified by our model.

We demonstrate the effectiveness of Recorp through testbed measurements and simulations.
When schedules and Recorp policies are configured to meet the same target end-to-end reliability
of 99%, empirical results show that Recorp policies increased the median real-time capacity by 96%
for a data collection workload. Furthermore, the performance bounds derived analytically were
safe: Recorp policies met all end-to-end reliability and deadline constraints when the minimum
link quality exceeded a user-specified level of 70%. Larger-scale multihop simulations that consider
two topologies indicate that across typical IIoT workloads, policies provided a median increase of
50% to 142% in the real-time capacity as well as a median decrease of 27% to 70% in worst-case
latency.
The remainder of the article is organized as follows. Section 2 describes the problem formula-

tion and informally introduces Recorp policies and the challenges associated with their synthesis.
Section 3 describes Recorp’s system and network models, while Section 4 introduces Recorp’s re-
liability model. Recorp is described in Section 5. Simulation and testbed experiments evaluating
Recorp’s performance against representative protocols using both dedicated and shared entries are
included in Section 6. Section 7 describes how Recorp handles network dynamics, aperiodic traffic,
and energy efficiency. Recorp is placed in the context of related work in Section 8. We conclude
the article in Section 9.

2 PROBLEM FORMULATION

In this section, we start by considering the problem of building real-time protocols from a fresh
perspective, discuss how this perspective opens new opportunities for optimization, and then in-
formally introduce Recorp policies while highlighting the challenges of their synthesis.
Optimization Problem: We consider supporting real-time and reliable communication as a

sequential decision problem. In each slot, the offline policy synthesis procedure uses the current
estimate of the network state to select the actions performed in the current slot. Then, the estimated
network state is updated to reflect the impact of those actions. In this article, we limit our attention
to myopic (or greedy) policies that maximize the number of flows that may be executed in a slot
while providing prioritization based on the flows’ statically assigned priorities. A myopic policy
selects the optimal actions over a time horizon of one slot, but those decisions may be suboptimal
over longer horizons. Our choice is motivated by the simplicity of myopic policies that can be

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:4 R. Brummet et al.

synthesized efficiently. The unique aspects of Recorp policies are what actions may be performed
in a slot and how the network state is represented.
Intuition: Schedules and policies differ in the information they use as part of the offline sched-

uling and synthesis process. Consider a star topology with three nodes where the base station is
the receiver of two incoming flows F0 and F1. Both flows are released at the beginning of slot 0
with flow F0 having a higher priority than flow F1. Since F0 and F1 share the same receiver, only
one of them can transmit in the first slot without conflict. In slot 0, both schedules and policies
assign and execute (at run-time) F0 to enforce prioritization.
Schedules and policies differ in how they account for the outcome of F0’s transmission. At run-

time, the network is in one of two states, depending on the outcome of F0’s transmission: either
F0’s data was relayed successfully to the base station, or it was not. Scheduling approaches ignore
this information and assign a fixed number of retransmissions for F0, regardless of whether these
retransmissions are successful or not at run-time. However, when we capture both possible out-
comes, there are new opportunities for optimization. Ideally, we would like to transmit F1 if F0 has
succeeded or otherwise retransmit F0. Surprisingly, we can achieve this behavior (which is impos-
sible for scheduling approaches): Offline, both flows F0 and F1 are assigned to be candidates to be
executed in slot 1. At run-time, the base station will track the flows from which it has received
packets in the previous slots. As a result, it will know whether F0 was successful or not at the end
of slot 0, i.e., the star network’s precise state. Using this information, in slot 1, the base station can
request F1’s packet if it has already received F0 or, otherwise, it can request a retransmission for
F0. We say that F0 and F1 share slot 1 as either flow may execute at run-time depending on the
observed successes and failures.
Actions: This approach can be generalized to multi-hop scenarios by observing that any node

withmultiple flows routed through it can act as a coordinator for those flows, not just a base station
in a star topology. A Recorp policy is represented as a matrix whose rows indicate channels and
columns indicate slots. In each entry of the matrix, a Recorp policy may include, at most, one pull.
A pull has two arguments: a coordinator and a service list. A pull is executed by a coordinator that
can dynamically request data (i.e., a pull, henceforth) from a service list of flows depending on
the outcome of previous transmissions. The synthesis procedure determines the nodes that will
be coordinators and the composition of the service list, both of which can change from slot to slot.
At run-time, a coordinator executing a pull requests the packet of the first flow in the service list
from which it has not yet received the packet. The adaptation mechanism is localized, lightweight,
and does not require carrier sense.
State Estimation: A challenge to synthesizing policies is to estimate the network’s state as

pulls are performed. Specifically, we need to know the likelihood that a flow’s packet is located at
a specific node in a given slot. Knowing this information offline is challenging, because the quality
of a link is probabilistic, and the likelihood of a successful transmission varies from slot to slot.
To address this challenge, we propose a Threshold Link Reliability (TLR) model. We model
the quality of a link LQi (t) in slot t used by flow i as a Bernoulli variable. TLR allows the quality
of the link to change arbitrarily from slot-to-slot as long as it exceeds a minimum value m (i.e.,
LQi (t) ≥ m ∀ t). We will show it is possible to provide guarantees on the performance of Recorp
when all links follow the TLR model.

Scalability: Another significant challenge in synthesizing policies is avoiding the state explo-
sion problem. The critical decision is how to balance the trade-off between the expressiveness of
policies, the performance improvements they provide, and the scalability of the synthesis proce-
dure. Cognizant of these trade-offs, we make two important design choices: (1) We limit nodes to
operating on their local states such that their decisions are independent of the state of other nodes.
As a consequence, the probabilities of packets being forwarded across links of a multi-hop flow are

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:5

independent. This property reduces the number of states maintained during synthesis, since it is
sufficient to capture the interactions of flows locally at each node rather than globally across the
network. (2) The synthesis procedure incrementally constructs policies in a slot-by-slot manner
using a builder and an evaluator. The builder casts the problem of determining the pulls performed
in the current slot as an Integer Linear Program (ILP). In turn, the evaluator applies each pull
selected by the builder to the system state and tracks the state as it evolves from slot to slot. The
iterative nature of the synthesis procedure improves its scalability as it suffices to maintain only
the states associated with the current slot.

3 SYSTEMMODEL

We base our network model on WirelessHART as it is an open standard developed specifically for
IIoT systems with stringent real-time and reliability requirements [2]. A network consists of a base
station and tens of field devices. Recorp is best-suited for applications that require high data rates
and have a backbone of grid-powered nodes to carry this traffic (e.g., References [4, 7, 10]).

A centralized network manager is responsible for synthesizing policies, evaluating their per-
formance, and distributing them across the network. The field devices form a time-synchronized
wireless mesh network that we model as a graph G (N ,E), where N and E represent the devices
(including the base station) and wireless links. The network can be synchronized using a high-
accuracy time synchronization protocol designed for wireless sensor networks (see Reference [32]
for a survey). We will initially assume that the communication graph remains fixed while each
link has a minimum link quality. In Section 7, we will discuss how Recorp can handle node failures
and topology changes, such as adding and removing nodes, by distributing new policies. The net-
work maintains two trees, an upstream tree and downstream tree, for packet routing to and from
the base station, respectively. We assume that both upstream and downstream trees are spanning
trees consistent with source routing in WirelessHART.
At the physical layer, WirelessHART adopts the 802.15.4 standard with up to 16 channels. This

article focuses on receiver-initiated communication, where a node requests data from a neighbor
and receives a response within the same 10 ms slot.
We use real-time flows as a communication primitive. The following parameters characterize a

real-time flow Fi : phase σi , period Pi , deadlineDi , end-to-end target reliability requirementTi , and
static priority i where lower values have higher priority. Thekth instance of flow Fi , Ji,k , is released
at time ri,k = ϕi + k ∗ Pi and has an absolute deadline di,k = ri,k + Di . We assume Di ≤ Pi , which
implies only one instance of a flow is released at a time. Consequently, to simplify the notation,
we will use Ji to refer to the instance of flow Fi that is currently released. The variable F denotes
the set of flows in the network. A flow i has a forwarding path Γi that is used by all of its instances.
During the execution of an instance, only one of the links on the Γi is active and considered for
scheduling. We will use the notation LQi (t) to refer to the link quality of the currently active link
at time t .

A Recorp policy π is a scheduling matrix whose number of slots is equal to the hyperperiod of
the flow’s periods. The policy may be represented as a two-dimensional matrix such that the rows
indicate channels, the columns indicate slots, and the entries that represent actions. An action may
be either a pull or a sleep. A policy is well-formed if it satisfies the following constraints: (1) Each
node transmits or receives at most once in an entry to avoid intra-network interference. (2) The
hop-by-hop packet forwarding precedence constraints are maintained such that senders receive
packets before forwarding them. (3) Nodes do not perform consecutive transmissions using the
same channel. (4) Each flow instance is delivered to its destination before its absolute deadline and
meets its reliability constraint.

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:6 R. Brummet et al.

Table 1. Summary of Key Notations

Description Symbol

Set of nodes N

Set of flows F

Flow i Fi
Period of flow i Pi
Deadline of flow i Di

Phase of flow i ϕi
Target end-to-end reliability of flow i Ti

Path of flow i Γi
Quality of the active link of flow i LQi

Instance k of flow i Ji,k (or simply Ji)
Release time of Ji,k ri,k

Absolute deadline of Ji,k di,k
Link quality of the active link of Ji,k LQi

Policy π

Service list of the pull in slot t (and channel c) srv (t) (or srv (t , c))

Set of all possible states Ψ

Transition matrix M

Reliability of instance Ji Ri

Lower-bound on reliability of Ji R̂i

4 RELIABILITY MODEL

The wireless communications community has developed a wide range of probabilistic models
to model link quality (e.g., References [19, 25]). Examples span the complexity-accuracy trade-
off from simple models such as Gilbert-Elliott [19] to more complex models that use multi-level
Markov Chains (e.g., Reference [25]) to distinguish between the short-term and long-term behav-
ior of wireless links. However, these models usually focus on the “average-case” behavior of links.
Guarantees on the end-to-end reliability of flows should hold even as links deviate from their
average-case behavior. Furthermore, a practical model must require little tuning, preferably hav-
ing reasonable default values for its parameters that fit the rules-of-thumb engineers use to deploy
real wireless networks.
To address the above challenges, we propose the TLR model. We model the likelihood that a

single pull for flow i is successful (including both the pull request and the response containing the
data) as a Bernoulli variable LQi (t). We assume that consecutive pulls performed over the same or
different links are independent. Empirical studies suggest that this property holds when channel
hopping is used [21, 24]. A minimum Packet Delivery Rate (PDR)m lower bounds the values of
LQi (t) such thatm ≤ LQi (t) ∀i ∈ F , t ∈ N. A strength of TLR is that aside from the lower bound
m on link quality, we make no assumptions regarding how the quality of a link varies from slot to slot.
This characteristic makes TLR widely applicable to networks experiencing significant link quality
variations. TLR can be integratedwith existing guidelines for deploying IIoTwireless networks. For
example, Emerson engineers suggest that WirelessHART networks should be deployed to provide
a minimum link quality between 60–70% [29]. Accordingly, in this article, we setm to either 60%
or 70%.

On a more technical note, it is important to note that TLR does not require the transmissions
in an actual network deployment to be independent—we only require that there is a TLR model
that lower bounds the behavior of the deployed network. Specifically, we require that a Bernoulli

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:7

Fig. 2. Design of Recorp.

distribution lower bounds the distribution of consecutive packet losses in the network. Thus, by
selecting an appropriate value for m, it is possible to find a model for which the assumption of
independence holds, albeit at the cost of increased pessimism regarding the quality of links.
The end-to-end reliability Ri of a flow i depends on both the likelihood of successfully relaying

a packet over the links of its path as well as the links of other flows it shares entries with. For
instance, returning to our running example, the probability the packet released by F1 reaches its
destination is dependent not only on the quality of its link but also F0’s link, since F1 is conditionally
attempted depending on the success of F0. One might assume that finding a lower bound on Ri
under the TLR model only requires considering the case when all links exhibit their worst link
quality in all slots (i.e., LQi (t) = m ∀i ∈ F , t ∈ N). While we will show that this approach
provides a safe lower bound for Recorp policies, this property does not hold for all policies that
use shared slots. Consider, for example, the two flows F0 and F1. Suppose these flows are scheduled
using the following simple (non-Recorp) policy. In the first slot, F0 will be executed. In the next
slot, F1 will be executed only if F0 failed in the first slot; otherwise, the base station sleeps. Under
this policy, the probability that F1 is attempted will decrease as the link quality increases, since
increasing the link’s quality will increase the probability that F0 is successful in the first slot. As a
consequence, the end-to-end reliability of F1 will drop as the link becomesmore reliable. Therefore,
for policies such as Recorp that share slots, it is essential to prove that they do not exhibit such
pathological behavior. Theorem 2 demonstrates that Recorp policies do not exhibit this behavior.

5 DESIGN

Recorp is a practical and effective solution for IIoT applications that require predictable, real-time,
and reliable communication in dynamic wireless environments (see Figure 2). Central to our ap-
proach is Recorp policies. The policy synthesis procedure runs on the network manager and has
as inputs the workload, routing information, and a user-specified minimum link quality threshold
m. If the synthesis procedure is successful, then the constructed policy guarantees probabilisti-
cally that all flows will meet their real-time and reliability constraints as long as the quality of
all links meets or exceedsm. The synthesis procedure fails when the workload is unschedulable,
i.e., when a policy that meets both the real-time and reliability constraints of all flows cannot be
found. Note that this case is unlikely to arise in practice, since an application’s workload specifi-
cation is known a priori, and the designer can validate that the workload remains unschedulable
during the system’s deployment. If the synthesis procedure is successful, then the manager dis-
seminates the generated policy to all nodes. During the operation of the network, some links may
fall below the minimum link quality thresholdm. Since Recorp provides no guarantees under this

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:8 R. Brummet et al.

Fig. 3. A schedule and policy for the topology shown in Figure 3(a) are constructed. At run-time, schedules
and policies behave differently depending on observed successes (green background) or failures (red back-
ground). The traces show how schedules and policies adapt run-time behavior in response to successes and
failures. Notably, the schedule drops packets in traces 2 and 3 (indicated by white “x”-es) while the policy
drops no packets.

regime, a new policy should be constructed after either changing the flows’ routes to avoid low-
quality links or by loweringm.
The separation between offline synthesis and run-time adaptation is essential to building agile

networks. The run-time adaptation is lightweight: When a node is the coordinator of a pull, it
can execute any of the flows included in its service list without requiring global consensus. In
contrast, policy synthesis is computationally expensive and ensures the global invariant that no
transmission conflicts occur regardless of coordinators’ local decisions.

We will formalize the semantics of Recorp policies and discuss their run-time adaptation mech-
anism in Section 5.1. After, we will consider synthesizing Recorp policies in a scalable manner.
We will start by considering the problem of synthesizing policies for a data collection workload
in a star topology in Section 5.2. In Section 5.3, we will extend our approach to handle general
workloads and topologies.

5.1 Recorp Policies and Their Run-time Adaptation

A Recorp policy is represented as a scheduling matrix with a sleep or a pull action in each entry.
A sleep action indicates that no action is taken in a slot and channel. A pull has two arguments: a
coordinator and a service list. The coordinator is the node that executes the action at run-time, and
the service list includes the instances thatmay be executed in that slot and channel. The instances
in the service list are ordered according to the priority of their flows. At run-time, only one of the
candidate flows in the service list will be executed. Any node can become a coordinator, and the
coordinators can change from slot to slot. The execution of a policy is cyclic, with nodes returning
to the policy’s beginning upon reaching its end.

A coordinator executes a pull at run-time by considering the instances in the service list in
priority order. For each instance, the coordinator checks whether it has received the instance’s
packet. If the coordinator has already received the instance, then it will consider the next instance
in the service list. Otherwise, it will request the instance’s packet from the coordinator’s neighbor
through which the instance is routed. Upon receiving a request, the neighbor may or may not
have the packet (the latter case can happen when the packet was dropped at a previous hop). If
the neighbor has the packet, then it includes it in its response to the coordinator. Otherwise, the
neighbor marks the packet as dropped in its response. In response to receiving either response, the
coordinator marks the instance as successfully executed. The invariant maintained by the execu-
tion of a pull is, at most, one instance from the service list is executed in a slot. Note that the request
or the response may not be delivered, since links are unreliable. We account for this by having an
instance be included in the service list of several pulls performed by the coordinator. As discussed

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:9

in Section 5.2, an instance is included in the service list of sufficient pulls to meet the flow’s target
end-to-end reliability, given the TLR’s minimum reliability threshold.
The proposed adaptation mechanism is sufficiently lightweight to run within 10 ms slots, as

specified by WirelessHART. The memory usage is proportional to the number of flows routed
through a node, which is small. Equally important, the adaptation mechanism does not employ
carrier sensing and, instead, relies on receiver-initiated pulls.
To illustrate the differences between Recorp policies and schedules, consider a star topology (see

Figure 3(a)). In this example, two flows—F0 and F1—relay data from B and C to the sink A. In slot
0, instances J0 and J1 are released from flows F0 and F1, respectively. WirelessHART requires the
construction of a schedule with two transmissions for each instance (see Figure 3(b)). Three traces
that differ in the pattern of packet losses observed at run-time are also included in the figure. The
only run-time adaptation mechanism available in schedules is to cancel scheduled transmissions
whose data has already been delivered. The notation TXB (J0) indicates that B transmits J0’s packet
to A. The synthesized Recorp policy is shown in Figure 3(c) and uses the notation PLA(J0, J1) to
indicate a pull with A as the coordinator and {J0, J1} as the service list.
To highlight several differences between policies and schedules, consider trace 2, where there

are failures in slots 0 and 1. For this trace, the schedule included in Figure 3(b) cannot successfully
deliver J0’s packet, because it is allocated only a single retransmission. In contrast, the Recorp
policy included in Figure 3(c) can successfully deliver J0’s packet. The policy includes J0 in the
service list of the pulls in slots 0, 1, and 2. At run-time, J0’s transmission in slots 0 and 1 fails, but J0
will be delivered in slot 2. In slot 3, the policy successfully executes J1. A similar scenario is included
in trace 3, where J1’s packets cannot be delivered by schedules but are successfully delivered using
a Recorp policy. Traces 2 and 3 highlight the flexibility of Recorp policies to improve reliability by
dynamically reallocating retransmissions based on the successes and failures observed at run-time.

A key property of the run-time adaptation mechanism that we will leverage during policy syn-
thesis is the following:

Theorem 1. The execution of Recorp actions on a node is not affected by the actions of other nodes.

Proof. Consider the execution of a pull by a node R. A pull’s behavior depends on what in-
stances are included in the service list and the local state of the node. Since the service list is
fixed once the policy is constructed, the only way another node may affect R’s state is by directly
modifying its state, which does not happen. �

5.2 Synthesizing Recorp Policies for Data Collection on Star Topologies

As a starting point, let us consider the problem of constructing Recorp policies for a star topology
where all flows have the base station as the destination (see Figure 3(a) for an example). This setup
simplifies the synthesis of policies in two regards: (1) The base station will be the coordinator of
all pulls. Therefore, we only have to focus on determining the service list of each pull. (2) Since
all flows have the base station as the destination, there will be no transmission conflicts, and a
(different) single channel can be used in each slot. We will generalize our approach to general
multi-hop topologies and workloads in the next section.
The policy synthesis procedure involves two key components—an evaluator and a builder (see

Figure 2). The policy is synthesized incrementally by alternating the execution of the builder and
evaluator in each slot.

• The builder determines the pulls that will be executed in each slot. The builder maintains
an active list that contains all of the instances that have been released but have not yet met
their end-to-end reliability. In a slot t , the builder checks whether an instance Ji,k is released

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:10 R. Brummet et al.

(i.e., when ri,k = t) and, if this is the case, Ji,k is added to the active list. If the active list is
not empty in t , then a pull having the base station as coordinator and the instances in the
active list as its service list is assigned in the entry t of the matrix.
• The evaluatormaintains the likelihood that each instance in the active list has been delivered
to the base station. The probabilities are updated incrementally to reflect the execution of
the pull provided by the builder in slot t .
• At the end of slot t , the builder removes all instances whose reliability exceeds their end-to-
end reliability targets from the active list.

In the remainder of the section, we will answer the question of how to estimate the reliability
of flows given the sequence of pulls determined by the builder. This problem can be modeled at a
high level as a Markov Decision Process (MDP) whose transitions depend on the likelihood of
successfully executing pulls. Let Ψ be the set of all possible states. A state s (s ∈ Ψ) is represented
as a vector of size |F |, where the ith entry represents the state of instance Ji . The state of an
instance Ji may be S or F, indicating whether the base station requested Ji ’s data and received a
reply successfully. The reply may either include a flow’s packet or an indication that it has been
dropped on a previous hop. A direct encoding of this information would require O (2 |F |) states,
which is not practical when there are numerous flows. To avoid state explosion, we propose the
following mechanism. We bound the length of the active list maintained by a coordinator. This
requires a simple modification to the builder: an instance is added to the active list until it reaches
the user-specified maximum size. The additional instances that are released when the active list is
full are added to an inactive list. The inactive list includes instances that are released but not
yet active. When an instance completes, the size of the active list decreases by one, and the highest
priority instance from the inactive list is moved to the active list.

With this modification, the maximum number of states a coordinator maintains is reduced to
O (2 |active list |). Additionally, we observe that the likelihood an instance is executed depends on its
index in the service list. If the index of an instance in the service list exceeds 3 or 4, then the
instance is unlikely to be executed. Accordingly, we also cap the maximum size of the service
list. The service list of a pull is then a subset of the active list. In our experiments, we constrain
|active list| ≤ 10 and |service list| ≤ 4 except where otherwise stated.
End-to-end Reliability Using Instantaneous Link Quality: Let us start by deriving a

method for computing the end-to-end reliability of flows under the assumption that there is an
omniscient oracle that can provide the instantaneous probability of a successful pull for all links
in a slot t . We will use the notation LQt to represent the link quality of all links in slot t . Later, we
will relax this requirement by constraining links to follow the TLR model i.e., their link quality is
lower bounded bym (i.e., LQi (t) ≥ m). Under this assumption, we will show that the worst-case
end-to-end reliability of a flow occurs when the quality of all links is equal tom in all slots.

The actions of the MDP are the pulls that the builder assigns in each slot. Initially, the system
is in a state s0, in which the base station has not received the data from any of the flows. Consider
the execution of a pullwith service list srv in slot t . To account for the impact of executing the pull
on the state of the system, we construct a transition matrixMsrv (t) of size 2

|active list | × 2 |active list |

using Algorithm 1. Let Ji be an instance included in the service list srv (not necessarily as the head
of the list). According to the semantics of pulls, Ji will be executed in any current state where
the ith entry of the vector is a failure (i.e., current[i] = F) and the execution of all instances Jj
with higher priority than Ji in the service list srv have already succeeded (i.e., current[j] = S).
From such a current state, there are two possible outgoing transitions depending on whether the
pull is successful or not. If the execution of Ji fails, then the system remains in the same state
(see line 7, Algorithm 1). Accordingly, the entry Msrv (t)[current , current] is set to 1 − LQi (t),

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:11

ALGORITHM 1: Computes the transition matrix Msrv (t) given the service list srv of a pull and a

snapshot of current link LQt

1: Procedure BuildTransitionMatrix(srv (t), LQ t)

2: Msrv (t) = I

3: for current in Ψ do

4: for Ji in srv do

5: Let i be the flow id of Ji

6: if current[i] = F then

/* the execution fails */

7: Msrv [current, current] = 1 - LQi (t)

/* the execution is successful */

8: next = onSuccess(current, i)

9: Msrv (t) [current, next] = LQi (t)

10: break

11: returnMsrv (t)

12: Procedure onSuccess(state, i)

/* the next_state is the same as current except for the entry for Ji becomes S */

13: next_state[j] = state[j] ∀j � i

14: next_state[i] = S

15: return next_state

where LQi (t) is the probability of performing a successful pull over the link used by flow i in
slot t . Conversely, if the execution of Ji succeeds, the system transitions from the current state
to a next state. The entries of the current and the next states are the same, except for the entry
associated with the Ji element for which next[i] = S (see line 12, Algorithm 1). In this case, we set
Msrv (t)[current ,next] = LQi (t). If a sleep is assigned slot t , then the state of the system does not
change.
After executing t pulls, the probability of each state is given by the vector P t :

P t = s
T
0Msrv (0)Msrv (1) · · ·Msrv (t), (1)

where s0 is the initial state of the system andMsrv (t ′) is the transition matrix associated with the
pull that has srv (t ′) as its service list and is executed in slot t ′ (0 ≤ t ′ ≤ t). Equation (1) describes
the evolution of the system as a discrete-time Markov Chain (MC) that is parametric and time
inhomogeneous. The structure ofMsrv (t ′) depends on the service list and its values depends on
the quality of all links in slot t ′.

The end-to-end reliability Ri of instance Ji after executing t pulls is computed by summing up
the probability of each state s (s ∈ Ψ) such that s[i] is S. Leveraging the properties of matrix
multiplication, Ri may be written as

Ri,t = P t χ i , (2)

where χ i is a vector such that χ i [k] = 1 for any state s such that s[k] = S and χ i [k] = 0 otherwise.
End-to-end reliability under TLR: Computing Ri,t requires that we know the instantaneous

quality of all links in any slot t . It is infeasible to have access to this information during the syn-

thesis of a policy. In the following, we will derive a lower bound R̂i,t on Ri,t . To this end, we will

construct a new MC with transition matrix M̂srv (t) that is computed by considering each transi-
tion matrixMsrv (t) and replacing each link quality variable LQi (t) with its lower-boundm. We

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:12 R. Brummet et al.

Fig. 4. Estimating the state of the network and lower-bounds on the end-to-end reliability.

claim that a lower bound on the end-to-end reliability of a flow Ri,t is

Ri,t ≥ R̂i,t = P̂ t χ i = s
T
0 M̂srv (0)M̂srv (1) · · · M̂srv (t)χ i . (3)

The following theorem implies that to compute a lower-bound on the reliability of a flow, it is
sufficient to consider only the case when all links perform their worst.

Theorem 2. Consider a star topology that has node A as a base station and a set of flows F =

{F0, F1, . . . FN } that have A as destination. Let LQ0 (t), LQ1 (t), . . .LQN (t) be the quality of the links

used by each flow in slot t such thatm ≤ LQi (t) ≤ 1 for all flows Fi (Fi ∈ F) and all slots t (t ∈ N).

Under these assumptions, the reliability Ri,t of an instance Ji after executing t pulls of the Recorp

policy π is lower bounded by R̂i,t .

Proof. See Section A. �

Let us return to our running example of the construction and execution of the policy shown
in Figure 3(c). In Figure 4, we will illustrate how the end-to-end reliability of flows will be esti-
mated for this example. The workload includes two flows—F0 and F1—with phases ϕ0 = 0 and
ϕ1 = 1. Accordingly, instances J0 and J1 are released in slots 0 and 1. We will evaluate the esti-

mated state of the network P̂ t and the lower-bounds on the reliability of each flow as the policy is
executed. Given that the workload involves only two flows, the possible states of the systems are
Ψ = {FF, SF, FS, SS}. Each state encodes whether the base station A has received the data of J0 and

J1. In any slot t , the probability vector P̂ t is the likelihood that the network is in a state FF, SF, FS,

and SS (in that order). The lower bound on the reliability of instance J0 is R̂0,t = P̂ t [SF]+ P̂ t [SS] =

P̂ t χ0, where χ 0 = [0, 1, 0, 1]. Similarly, R̂1,t = P̂ t [FS] + P̂ t [SS] = P̂ t χ 1, where χ 1 = [0, 0, 1, 1].
Initially, the system is in state s0 = [1, 0, 0, 0]T i.e., s0[FF] = 1 and the likelihood of the remaining

states is zero. The action PLA(J0) is executed in slot 0. The evaluator constructs the matrix M̂0 to
account for the impact of executing the pull on the state of the system. After executing the pull, the

state of the network is P̂0 = sT0 M̂0. The reliability of J0 after executing PLA(J0) is R̂0,0 = P̂0χ 0 =

P̂0[SF] + P̂0[SS] = 0.7. Figure 4 shows the states of the MC after the execution of each pull. The

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:13

Fig. 5. Multi-hop example.

transitionmatrices associatedwith each pull are included at the bottom of the figure. The reliability
of flows is evaluated in a similar manner in the remaining slots.

5.3 Synthesizing Recorp Policies for General Topologies

In this section, we extend the results from the previous subsection to general workloads and topolo-
gies. Doing so requires that we determine both a coordinator and a service list for each pull. The
buildermust assign coordinators and service lists such that no transmission and channel conflicts
occur. The evaluator must provide lower bounds on the reliability of the flows as they interact
across multiple hops. A naive evaluation that simply keeps track of when a coordinator received
packets from all combinations of flows does not scale. We will start by discussing how a scalable
evaluator may be built and then extend the builder.

5.3.1 The Multi-hop Evaluator. The key insight to building a scalable evaluator is to require
coordinator nodes to operate independently. Consider a multi-hop flow F2 shown in Figure 5 whose
data is forwarded using the path Γ2 = {D,C,B,A}. To forward F2’s data, a policy must include a
sequence of pulls that have the nodes C , B, and A as coordinators and include F2 as part of their
service lists. A simple approach to ensure that coordinators operate independently is to use an
approach similar to the Phase Modification Protocol [5], where a multi-hop flow is divided into
single-hop subflows flows and allocate δ2 = D2/|Γ2 | slots for the execution of each flow. The first
subflow F2,1 from D toC is released ϕ2,1 = ϕ2 and must complete with δ2 slots. The second subflow
F2,2 fromC to B is released at ϕ2,2 = ϕ2+δ2 and it must complete within δ2 slots. The remainder of
the subflows are set up in a similar fashion. To ensure that coordinators operate independently, it is
essential that each subflow releases a packet regardless of whether the previous subflow delivered
it successfully or unsuccessfully to the next hop. By taking advantage of the independence, we can
use the single-hop evaluator described in the previous section to evaluate the reliability of each
subflow. Then, the end-to-end reliability of the original flow is simply the product of the reliability
of each subflow (due to independence).

The drawback of this approach is that each subflow is allocated an equal number of slots, which
can be problematic when the workload of nodes is not uniform. To address this issue, we first
convert the end-to-end target reliability of Ti into a local reliability target that each subflow must
meet:

T
1
|Γi |

i , (4)

where |Γi | is the length of Fi ’s path measured in hops. Each subflow is then allowed to release the
earliest slot in which all subflows associated with the previous hops of the original flow have met

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:14 R. Brummet et al.

Fig. 6. Possible ways two instances may share at least one node. Green cases have no transmission conflict
while red cases do.

the local reliability target. Notably, different subflows may need to be executed a different number
of times to meet their local target reliability to handle non-uniform workloads effectively.

5.3.2 TheMulti-hop Builder. The optimization problem can be formulated as an Integer Linear
Program (ILP). The ILP includes three types of variables. For each node R (R ∈ N), the variable
NR (NR ∈ {0, 1}) indicates whether R is the coordinator of a pull. For each released instance Ji , the
variable Ii (Ii ∈ {0, 1}) indicates whether its associated active link will be added to a service list.
Finally, variable CR,ch (CR,ch ∈ {0, 1}) indicates whether R will use channel ch to communicate.
The ILP solution is converted into a set of pulls as follows: for each node R such that NR = 1, we
add a pull that has R as the coordinator and a service list with all instances Ji where Ii = 1 and R is
the receiver of the active link of Ji . The pull is assigned to the entry in the matrix for the current
slot and the channel ch for which CR,ch = 1. We let A be the union of the active list of all nodes.

A well-formed policy must ensure that no transmission conflicts will be introduced at run-time.
Consider a pull that has R as a coordinator and services instance Ji . Let (SR) be the active link of
Ji , where S = src (Ji) and R = dst (Ji). If Ji will be assigned in the current slot (i.e., Ii = 1), then S

cannot be a coordinator for any other instance, since this would require S to transmit and receive
in the same slot. We enforce this using the following constraint:

NS ≤ (1 − Ii) ∀Ii ∈ A : S = src (Ji). (5)

A similar constraint must also be included for the receiver R. If node R is not a coordinator (i.e.,
NR = 0), then Ji cannot be assigned and Ii = 0. Conversely, ifR is selected as a coordinator, instance
Ji may (or may not) be assigned (i.e., Ii ≤ NR = 1) depending on the objective of the optimization,
which we will discuss later in this section. These aspects are captured by the following constraint:

Ii ≤ NR ∀Ii ∈ A : R = dst (Ji). (6)

The above constraints avoid all transmission conflicts with one exception. Consider the case
when two instances Ji and Jj share the same sender but have different receivers. An assignment
that respects constraint Equations (5) and (6) is for both instances to be assigned in the current
slot (i.e., Ii = Ij = 1). However, this would result in a conflict, since the common sender can only

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:15

transmit one packet in a slot. To avoid this situation, we introduce the following constraint:

Ii + Ij − 1 ≤ NS , (7)

∀Ii , Ij ∈ A : S = src (Ji) = src (Jj) & dst (Ji) � dst (Jj).

Theorem 3. Constraint Equations (5), (6), and (7) ensure that the execution of pulls will result in

no node receiving or transmitting more than once in a time slot.

Proof. To prove Theorem 3 holds it is sufficient to consider whether two arbitrary flow in-
stances may conflict. Accordingly, there are six cases to be considered, as depicted in Figure 6,
where two instances Ji and Jj share at least a node.

Case 1—Same link (see Figure 6(a)): If Ii = Ij = 1, then NRi = NRj = 1 due to constraint
Equation (6). In this case, both Ji and Jj will be serviced as part of the same Recorp operation that
is coordinated by node R = Ri = R j . At run-time, the coordinator R will pull either Ji or Jj (but
not both) depending on its local state. Note that this is one the cases Recorp exploits to adapt and
improve performance.
Case 2—Opposite link (see Figure 6(b)): Executing Ji and Jj in the same slot would result in a

conflict, since one of the common nodes would have to be both a sender and a receiver. We will
prove by contradiction that Ji and Jj will not be assigned in the same slot. Assume that Ii = Ij = 1
and, without loss of generality, that the common node is N = Si = R j . Since Since Ij = 1, then
NRj = 1 due to constraint Equation (6). Also, since Ii = 1, then NSi = 0 due to constraint Equation
(5). This is a contradiction, since NRj = NSi and R j and Si refer to the same node. The proofs for
the cases given in Figures 6(e) and 6(f) are similar.
Case 3—Common receiver (see Figure 6(c)): The common receiver case is similar to the same link

case with the exception that the senders for both Ji and Jj are different. Note that this is one the
cases Recorp exploits to adapt and improve performance.
Case 4—Common sender (see Figure 6(d)): Executing Ji and Jj in the same slot would result in

a conflict, since S = Si = S j would have to transmit two packets in the same slot. We will prove
by contradiction that this cannot happen. Assume that Ii = Ij = 1. Since Ii = 1, then NSi = 0
according to constraint Equation (5). However, Ii + Ij − 1 = 1 ≤ NSi due to constraint Equation (7),
which is a contraction. �

The next set of constraints ensures that each pull is assigned a unique channel. We accomplish
this by introducing CR,ch to indicate whether coordinator R uses channel ch (ch = 1 . . .K), where
K is the number of channels. The selection of channels is subject to the constraints:

∑

R∈N

CR,ch ≤ 1 ∀ch ∈ 1 . . .K , (8)

K∑

ch=1

CR,ch = NR . (9)

A requirement of the TLR model described in Section 4 is that coordinators must switch chan-
nels between pulls to ensure independence between transmissions. We enforce this property by
introducing additional constraints to prevent coordinators from using the same channel.

To enforce the prioritization of instances, we set the optimization objective to be

i< |A |∑

i=0

2 |A |−i Ii . (10)

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:16 R. Brummet et al.

The objective function ensures that a flow Fi will be assigned over lower priority flows unless
there is a higher priority flow with a conflict with Fi .

6 EXPERIMENTS

Our experiments demonstrate the efficacy of Recorp to support higher performance and agility
than traditional scheduling approaches. We focus on the next generation of smart factories that
will use sophisticated sensors that are grid-powered and require higher data rates than current
IIoT systems. Specifically, we are interested in answering the following questions:
• Does Recorp improve the real-time capacity in typical IIoT workloads?
• Does Recorp provide safe reliability guarantees as the quality of links varies significantly?
• Can Recorp synthesize policies in a timely manner?

6.1 Methodology

We compare Recorp policies against three baselines. First, we compare two scheduling approaches
that do not share entries. To provide a fair comparison between schedules and policies, we first
construct schedules (Sched) using the same ILP formulation as Recorp policies but without al-
lowing entries to be shared. This is accomplished by adding to the ILP an additional constraint that
the size of the service list is one. We also compare against the conflict aware least laxity first

scheduler (CLLF) [35]. CLLF has been shown to produce near-optimal schedules and constitutes
the current state-of-the-art scheduler. Similar to Sched, CLLF also does not share entries. Second,
we compare against the Flow Centric Policy (FCP) [6], which allows entry sharing only among
the links of a single flow, whereas Recorp can share entries across multiple flows. Sched, CLLF, and
FCP utilize sender-initiated transmissions, while Recorp utilizes receiver-initiated pulls.
Unless stated otherwise, we usem = 70% as suggested by Emerson’s guide to deploying Wire-

lessHART networks. In simulations, we set the probability of a successful transmission to equal
m. The number of retransmissions used by Recorp, Sched, CLLF, and FCP is configured to achieve
a 99% end-to-end reliability for all flows. The period and deadline are equal, and the phases are 0
in all workloads. Flow priorities are assigned such that flows with shorter deadlines have higher
priority. To break ties, flows with longer routes are assigned a higher priority. The remaining ties
are broken arbitrarily.
We quantify the performance of protocols using max flows scheduled, real-time capacity, and

response time. The max flows scheduled measures the maximum number of flows that can be sup-
ported without missing the deadlines or reliability requirements of any flows. The real-time capac-
ity is the highest rate at which flows can release packets without missing deadlines or reliability
constraints. The response time is the maximum latency of all instances of a flow as measured from
the time when an instance is released until it is delivered to its destination.

6.2 Simulations

We use a discrete event simulator to control m in the TLR model precisely, which is impractical
on a testbed. The simulator determines the success or failure of transmitting a packet and receiv-
ing the acknowledgment over a link by drawing from a Binomial distribution whose change of
success can be configured. Unless stated otherwise, all links are configured to have the same suc-
cess chance ofm. All simulations are either single-hop or performed on one of the following two
topologies: a 41-node, 6-hop diameter topology with an average of 5.5 links per node derived from
a testbed deployed at Washington University in St. Louis (WashU topology) [3] and an 85-node,
6-hop diameter topology with an average of 10.4 links per node derived from the Indriya testbed
(Indriya topology) [14]. In simulations, we used settings consistent with 802.15.4: the number of

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:17

Fig. 7. Simulations on star topologies.

channels was set to 16, and we used 10 ms slots sufficiently large to transmit a packet and receive
an acknowledgment.

6.2.1 Star Topology. We compare Recorp and Sched in the practically important case of star
topologies. In star topologies, for the workloads we consider, Sched, CLLF, and FCP perform iden-
tically and, therefore, we only report the results of Sched. In this experiment, we consider work-
loads consisting of flows that have a period and deadline of 100 slots. We increase the number of
flows until the workload becomes unschedulable under both Recorp and Sched.
Performance in Star Topologies: Figure 7(a) plots the max response time of all scheduled

flows as the number of flows in the workload is increased. We configure Sched and Recorp to have
an end-to-end reliability of 99% for each flow whenm = 60% andm = 70%. The figure indicates
the max response time increased until each protocol reached its real-time capacity, as indicated by
the vertical line in the figure. Whenm = 70%, Recorp supports 63 flows without missing deadlines
compared to only 25 flows supported by Sched. This represents a real-time capacity improvement
of 2.52 times atm = 70% and 3.25 times atm = 60%.
Impact of the Service List Size: Schedules and Recorp policies differ in how many instances

can share an entry, which can be controlled by constraining the size of the service list. Schedules
provide no sharing and are limited to a service list size of one. In contrast, Recorp policies allow
multiple flows to be included in the service list to share an entry. Figure 7(b) plots the maximum
number of flows scheduled as the service list size is varied whenm = 70%. When the size of the
service list is one, Recorp behaves like Sched. Aswe allowmore flows to potentially share a slot, the
number of flows scheduled increases. However, there are diminishing returns; most of the benefit
is observed when the service list is capped at 4 to 6 flows. No meaningful improvement in the
real-time capacity may be observed after increasing the service list size beyond 7 flows. Based on
this result, we set the maximum service list size to 4 for all remaining experiments. These results
indicate that it is sufficient to share slots across only a few flows to gain most of the benefits of using

Recorp policies.

6.2.2 Multihop Topology. To provide a comprehensive comparison between Recorp, Sched,
CLLF, and FCP, we consider four typical workloads: data collection, data dissemination, a mix
of data collection and dissemination, and route through the base station. The results presented
in this section are obtained from 100 simulation runs for each workload type on each multihop
topology. In all runs, the node closest to the center of the target topology is selected as the base
station. In each run, we generate 50 flows whose sources and destinations are picked as follows:

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:18 R. Brummet et al.

Fig. 8. Real-time capacity results.

• Data Collection (COL): Flows are randomly generated from the nodes to the same base
station.
• Data Dissemination (DIS): Flows are randomly generated from the same base station to
nodes.
• Data Collection and Dissemination (MIX): Each flow is randomly selected to use either
COL or DIS
• Route Through the Base Station (RTB): The source and destination of flows are selected
at random, but the routes are constrained to pass through the base station.

Each flow is assigned at random to one of three flow classes whose periods and deadlines maintain
a 1:2:5 ratio. For example, if Class 1 has a period of 100 ms, then Class 2 has a period of 200 ms,
and Class 3 has a period of 500 ms. We refer to the period of Class 1 as the base period. In a run,
the base period of the flows is decreased until the workload is unschedulable. The results of a run
are obtained for the smallest base period for which the workload is schedulable.

Real-time Capacity and Response Time: Figures 8(a) and 8(b) plot the distribution of the
observed real-time capacities for the WashU and Indriya topologies, respectively. FCP provides a
median improvement over Sched and CLLF only for the RTB workload. Moreover, the improve-
ment is minor, with FCP increasing real-time capacity by only 1.15 and 1.16 pkt/s overCLLF for the
RTB workload in the WashU and Indriya topologies, respectively. The improvement over Sched
was similar. For the other workloads where the base station is the source/destination, FCP has
worse performance, since sharing within a flow reduces only the utilization of the intermediary
nodes on a flow’s path, but not on the source and destination nodes. In contrast, Recorp outper-
forms all other protocols. For example, Recorp outperforms the overall next best protocol, CLLF,
by a median margin of 28.74, 18.63, 19.05, and 5.94 pkt/s in the WashU topology and 30.00, 14.96,
16.67, and 4.97 pkt/s in the Indriya topology for the COL, DIS, MIX, and RTB workloads, respec-
tively. Together these results correspond to a median increase in real-time capacity over CLLF of
between 50% and 142% across each workload and topology. Moreover, Recorp outperforms both
Sched and FCP by similar amounts across all workloads and topologies.

Figures 9(a) and 9(b) show the distribution of the response times of each flow class from the previ-
ous experiment for the MIX workload (including all runs). Consistent with the real-time capacity
for the MIX workload, FCP underperforms both Sched and CLLF with one exception. For both
topologies, FCP provides a slightly lower median response time than CLLF for Class 2. The reason
for this, and the reason that CLLF has a higher response time than Sched across all workloads and
topologies, is due CLLF making scheduling decisions as a function of remaining conflict-aware

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:19

Fig. 9. Response time per flow class.

Fig. 10. Synthesis time.

laxity. The consequence of this approach is that CLLF occasionally allows lower priority flows
to preempt higher priority flows. In contrast, Recorp maintains deadline-monotonic prioritization
and reduces the response time for all classes in both topologies, with particularly good perfor-
mance for the middle and lowest priority flow classes. Specifically, Recorp decreased the median
response time in the WashU topology by 0.11 s, 0.40 s, and 2.50 s and in the Indriya topology by
0.13 s, 0.48 s, and 2.32 s over the next best protocol, Sched, for flow Class 1, Class 2, and Class 3,
respectively. Similar trends and performance differences were observed for the other workloads
under all topologies, with one exception. FCP slightly outperformed Sched in the RTB workload
across flow classes and topologies. However, Recorp still significantly outperformed Sched, CLLF,
and FCP. These results indicate Recorp policies can significantly improve real-time capacity and

response times for common IIoT workloads.

Synthesis Time: Next, we turn our attention to the feasibility of synthesizing policies. Typical
IIoT systems haveworkloads that are stable for tens ofminutes, which justifies synthesizing Recorp
policies. We divided the total time to synthesize a policy into two categories: the time the evaluator
spends managing the system state and the time the builder spends solving ILPs to determine the
pulls in each slot. Figures 10(a) and 10(b) plot the distribution of the execution times for each
workload under the WashU and Indriya topologies, respectively. The median total synthesis time
is below 93 s for all workloads and both topologies. The synthesis time of the route through the

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:20 R. Brummet et al.

Fig. 11. PDR at different link qualities for a representativeMIXworkload in theWashU topology form = 70%.

base station is significantly higher than the other workloads, as flows tend to have longer paths.
This results in more states to be managed and longer schedules. The builder tends to be the most
expensive, followed by the evaluator. We plan to explore ways to reduce the synthesis time further.
These results indicate that it is feasible to synthesize policies within 1–3 min for realistic networks.

Threshold Link Reliability Model Evaluation: Next, consider Recorp’s reliability guaran-
tees. Recorp uses a safe lower bound on a flow’s end-to-end reliability under the TLR model (i.e.,
when the link quality of a flow exceedsm) described in Theorem 2. We are interested in provid-
ing simulated and empirical evidence that the lower bound is safe. Additionally, when the link
quality degrades belowm, Recorp provides no performance guarantees. However, the end-to-end
reliability of flows should degrade gracefully as link quality falls belowm.
To this end, we simulated a representative MIX workload Recorp policy on the WashU topol-

ogy with m = 70%. We varied the link quality from 50% to 100% in increments of 5%. For each
setting, we simulated 1,000,000 hyperperiods and recorded each flow instance’s outcome in each
hyperperiod, delivering their data successfully or otherwise. For each instance, we computed the
probability of delivering its data and plotted the distribution of all instances as “Simulated” in
Figure 11. Additionally, we used the evaluator to compute the lower bound on each instance’s re-
liability. We plotted the worst-case reliability across all instances in the same figure as “Predicted
worst case.” The worst-case bounds computed by the evaluator are smaller than those predicted
through simulations for all test link qualities indicating that they are safe (i.e., Theorem 2 holds).
As expected, when link quality exceeds m = 70%, all instances had reliability above their target
end-to-end reliability of 99%. When the link quality is belowm = 70%, Recorp provides no guaran-
tees regarding the reliability of flows. Nevertheless, the results indicate that the reliability of flows
degrades gracefully as link quality deteriorates. In the next section, we additionally validate the
safety of the TLR model on a real testbed.

6.3 Testbed Results

We evaluated Recorp and the baselines on a testbed of 16 TelosBmotes deployed at the Univesity of
Iowa (see Figure 12(b)). At the beginning of each protocol’s hyperperiod 3 slots are reserved for a
broadcast graph that is used to control traffic and time synchronization. When a parent broadcasts
a packet, it includes its current time in the packet. The children detect the start-of-frame delimiter
upon receiving the packet and adjust their clocks to match their parent’s clock. We consider a
data collection workload that involves ten flows with equal periods whose routes are included
in Figure 12(a). We configured Recorp, Sched, and FCP to provide an end-to-end reliability of 99%
whenm = 70%. We did not considerCLLF in this experiment, sinceCLLF provided nearly identical

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:21

Fig. 12. Testbed topology and flow routes. The green, purple, and red nodes indicate the flow sources, in-
termediary nodes, and the base station, respectively. Link quality (with interference) was calculated over a
sliding interval of 100 runs (about 200 s). The min, median, and max observed link quality over all intervals
for each link is given as median:(min-max).

Fig. 13. Evaluating the safety of the reliability bound.

performance to Sched. The experiments use 802.15.4 channels 11, 12, 13, and 14, which overlap
with the 802.11g WiFi network co-located in the building. We have evaluated the performance of
Recorp with andwithout additional interference generated by a laptop near the base station, which
transmitted ping packets at a rate of 1.5 Mbps. When no interference was present, all flows met
their end-to-end reliability, and the quality of the links exceededm = 70%. In the following, we will
focus on when interference was present to evaluate Recorp’s ability to adapt in an environment
with significant link quality variation. We organized our experiments into multiple runs, each run
consisting of running the schedule/policy of each protocol for one hyperperiod and storing the
outcome of each transmission to flash at the end of the run. The reported results were obtained
from releasing 10,000 packets for each protocol (i.e., 10,000 runs) over approximately 6 h.
Real-time Capacity and Reliability: We determined the maximum rates of the ten data col-

lection flows that can be supported using Recorp, Sched, and FCP. Recorp provides a real-time
capacity of 38.46 pkt/s compared to 19.6 and 18.2 pkt/s provided by Sched and FCP, respectively.
The real-time capacity of Recorp is 96% higher than Sched. This result is consistent with the mul-
tihop experiments where Recorp significantly outperforms the baselines. Next, we will evaluate
whether the improved capacity comes at the cost of lower reliability.

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:22 R. Brummet et al.

We computed the packet delivery rate (PDR) over slidingwindows of 100 runs. In Figure 13(a),
we plot the fraction of windows that met the end-to-end reliability target of 99% for each proto-
col. The lowest reliability was observed for FCP’s flow 2. We found that the root cause behind
the lower performance of FCP is the contention-based mechanism used to arbitrate access to the
entries shared by the links of a flow. FCP prioritizes the transmission of nodes closer to the flow’s
destination by having them transmit at the beginning of the slot while the other nodes only trans-
mit after clear channel assessment (CCA) indicates the slot is not used. In the presence of WiFi
interference, CCA was not a robust indicator of transmissions. This experience highlights the po-
tential advantage of using receiver-initiated pulls over contention-based approaches that rely on
CCA.

Recorp policies guarantee probabilistically that the end-to-end reliability constraints are met
as long as the quality of all used links exceeds a minimum packet reception rate m. When the
quality of the links falls belowm, we provide no guarantees on the end-to-end reliability of flows.
We evaluate whether our guarantee holds as follows. Based on the trace of successes and failures
observed during the experiment, we fit a Bernoulli P̄m random variable to lower bound the ob-
served failure distributions. Accordingly, Recorp’s analytical bounds on flow reliability hold only
if P̄m ≥ Pm = 70%. Figure 13(b) classifies each window of 100 runs into the following cases:

(1) Case P̄m ≥ 70%, E2EMet: For 86% of thewindows, theminimum link qualitymet or exceeded
70% (i.e., 70% = m ≤ P̄m). Over all these windows, Recorp policies indeed guaranteed that
the end-to-end reliability of all flows exceeded the 99% target.

(2) Case P̄m ≥ 70%, E2E Miss: There are no cases where the minimum link quality exceeds
70%, and the flows do not meet the target 99% reliability. These first two cases demonstrate
that the TLR model is safe, since no flows miss their end-to-end reliability targets when the
minimum link quality is met.

(3) Case P̄m < 70%: When the actual link quality falls below the minimum link quality ofm =
70%, we provide no guarantees on the flow’s reliability. Out of the 14% of windows where
P̄m < 70%, in 12%, the end-to-end reliability is met, while for the other 2%, it is not.

These experiments show that Recorp policies can significantly improve real-time capacity while

meeting the end-to-end reliability of flows as the quality of links fluctuates above the minimum link

qualitym.
Effective Adaptation: To analyze Recorp’s ability to adapt to variations in link quality, we

consider the trace of Sched and Recorp for flow 10, which exhibits the lowest link reliability and
highest variability in our experiments. Figure 14 plots the end-to-end reliability (after retrans-
missions), the parameter P̄m of a Bernoulli distribution that is fitted to account for the burst of
failures observed empirically in each window, and the maximum number transmissions used by
Sched and Recorp over a trace of 4,000 s. Notably, the end-to-end reliability of Sched and Recorp
is similar during this time frame (Figures 14(a) and 14(b)). Recorp achieves a similar level of end-
to-end reliability by performing more retransmissions, as it is clear from comparing Figures 14(e)
and 14(f). Sched uses 3–4 maximum retransmissions over the course of the hour but notably still
briefly missed the end-to-end PDR target. In contrast, Recorp uses between 3 and 7 retransmis-
sions to combat a slightly lower link quality it experienced and did not miss the end-to-end PDR
target over the interval. Remarkably, Recorp can (almost) double the number of retransmissions
that may be used for flow 10 over Schedwithout degrading the performance of other flows. These
results indicate that Recorp can provide higher agility than schedules by using its lightweight and

local run-time adaptation mechanism to reallocate retransmissions in response to variations in link

quality.

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:23

Fig. 14. Performance of Recorp and Sched on flow 10 over time.

7 DISCUSSION

7.1 Deployment

Wireless networks that support IIoT applications require careful planning and deployment. The
deployment process usually involves profiling the quality of links and the interference on all 16
channels. The collected statistics are used to ensure that there are redundant routes that con-
nect each node to the base station whose link quality exceeds them threshold of the TLR model.
Consistent with Emerson’s guide for deploying WirelessHART networks, the value of m is usu-
ally set to 60%–70%. Additionally, the channels that have consistently poor reliability are usually
blacklisted [22].

7.2 Handling Network Dynamics

Recorp’s design focuses on supporting the communication needs of IIoT applications with long-
running real-time flows. The network manager uses the current set of flows to build a policy that
meets a flow’s end-to-end reliability as long as the link quality exceedsm. This approach makes it
feasible to run the same policy for prolonged periods of time without modification. However, the
industrial environment may change and lead to node and link failures. The primary mechanism
used by Recorp to adapt to topology changes and node failures is to synthesize new policies. How-
ever, the frequency with which new policies need to be synthesized can be reduced by integrating
Recorp with multi-hop routing techniques (e.g., References [11, 34]) to allow Recorp to tolerate
some link or node failures without having to reconstruct policies. In the following, we describe a
centralized management and control plane that can detect and adapt to node failures and topology
changes using an approach similar to WirelessHART.
The network manager uses three different types of specialized flows to implement the control

plane. These specialized flows are periodic, but unlike regular flows, they have a higher priority
then regular and require different mechanisms to allocate their slots. A dissemination flow is used
to disseminate policies to all nodes after its synthesis. A dissemination flow reserves a single slot
during which the base station floods a packet to all the nodes. An efficient approach to handle
this type of communication is to use GLOSSY floods [18]. A join flow reserves a single slot during
which all nodes wait to listen to a fixed channel for nodes to request joining the network. A node
wanting to join will use CSMA techniques to broadcasts its request to join the network. All nodes
receiving the request will forward it to the base station using a report flow. A report flow is used to

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:24 R. Brummet et al.

inform the network manager about the status of nodes and links. A report flow is set up from each
leaf node in the upstream graph to the base station. As the packet of a report flow is forwarded,
nodes along the paths may append to the payload node and link health information to be delivered
to the network manager. Each node along the path is provided a fixed number of bytes that they
may use. As described next, node and link failure reports are prioritized while the remaining space
is used for the quality of links that are not currently part of the routing tree. Node and link health
reports can also be piggy-backed onto periodic traffic to improve network agility.
Each node collects statistics about the bursts of packet losses within a window of slots to assess

the quality of links currently in use. As described in Section 6.3, a node uses this information
to fit a Binomial distribution whose chance of success Ps is sufficiently large to account for the
observed burst. On the one hand, if Ps < m, then the TLR assumptions are violated, and the
network manager is notified immediately about the link failure. Accordingly, this information is
included in the report flow. On the other hand, if Ps ≥ m, then the TLR assumptions are not
violated. This information is not as urgent to the network’s operation and is included in a control
packet only if there is room available. This approach can also be extended to collect statistics of
links that are currently not in use. However, a node should only use the reception of the data
packets (ignoring the pull requests) to estimate the one-way link quality between itself and the
packet’s sender. This information should be included infrequently in control packets to allow the
network manager to update the upstream and downstream graphs.
Recorp allows nodes to join or leave the network dynamically. A node wanting to join the net-

work first listens to a fixed channel until it receives the packet of a report flow that allows it to
synchronize with the network and learn the join flows’ parameters. When the join flow is released,
the node broadcasts a request to join the network, which is routed to the network manager using
the next available report flow. Upon receiving a join request, the network manager updates the up-
stream and downstream graphs to include the new node and starts the synthesis of a new policy.
When the synthesis is complete, the policy is disseminated to all nodes, including the new node.
A node leaving the network uses a report flow to send its request to the base station.

7.3 Handling Other Traffic

Recorp is optimized for improving the performance of real-time flows that are expected to carry
the bulk of the traffic in IIoT applications. However, other types of traffic may also exist. For ex-
ample, IIoT applications may benefit from supporting even-triggered emergency communication
in response to unsafe situations or failures. Recorp can support emergency communication using
techniques proposed in Reference [26]: each slot is modified such that emergency traffic is trans-
mitted at the beginning of the slot. In contrast, regular traffic is transmitted after a short delay.
Other examples of traffic include aperiodic communication. The simplest solution for handling
these transmissions is to dedicate slots for their transmission periodically. Transmissions during
these slots are done using typical CSMA/CA techniques. This approach reserves a portion of the
bandwidth for other types of traffic. Moreover, it is straightforward to account for these additional
slots in our analysis.

7.4 High Data-Rates and Energy Efficiency

Recorp is designed for IIoT applications that require high data rates and usually use grid-powered
nodes. Our simulation and testbed results are performed using the IEEE 802.15.4 physical layer.
The standard supports a maximum packet size of 128 bytes and a maximum data rate of 250 kbps.
Under these settings, the maximum real-time capacity from the testbed experiments equates to
only approximately 39 Kbps. While this data rate may be able to meet the real-time and reliability
requirements of some high data rate sensors such as torque and temperature sensors with update

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:25

rates on the order of 10 – 500ms [43], it is unlikely to be sufficient formicrophones and cameras. For
this type of application, Recorp can be used unmodified with IEEE 802.15.4a UWB. IEEE 802.15.4a
provides a significantly higher data rate of 27.24 Mbps and some UWB radios (e.g., DWM1001)
support packets as large as 1024 bytes. In future work, we will explore using other physical layers
to extend Recorp’s applicability further.
One of the limitations of Recorp is its potentially high energy usage. Indeed, an entry in the

scheduling matrix using the Sched protocol will involve at most two nodes using their radios. In
contrast, a Recorp pull may involve as many as five nodes for a service list of size four. The nodes
in the service list size must turn on their radio for a short duration to determine whether the coor-
dinator will request information from them. As a result, the real-time capacity and response time
improvements offered by Recorp come with the cost of additional energy consumption. However,
industrial applications that require higher data rates usually use grid-powered sensors. Addition-
ally, many applications use a powered backbone to carry high data-rate traffic while including
some battery-powered nodes (e.g., References [4, 7, 10]). Recorp can be configured in such sce-
narios to use service lists size of size one on battery-operated devices to achieve the same energy
consumption level as existing scheduling approaches. Moreover, Recorp could use larger service
list sizes for the powered nodes to provide higher throughput and lower latency.

8 RELATEDWORK

Due to its predictability, TDMA has become the de facto standard for IIoT systems. There are many
scheduling algorithms to construct TDMA schedules (e.g., References [16, 31, 35, 37, 39]). However,
a common weakness of TDMA protocols is their lack of adaptability to network dynamics. To ad-
dress this limitation, various techniques to handle variations in link quality, topology changes, and
fluctuations in workloads have been proposed (e.g., References [13, 20, 30]). In this article, we focus
on handling variations in link quality, as they are common in harsh industrial environments [8, 17].
Our work is complementary to and may be integrated with techniques designed to handle other
types of network dynamics.

Researchers have considered various approaches to combining CSMA and TDMA into hybrid
protocols, ultimately sacrificing either flexibility or predictability. A common approach to combine
CSMA and TDMA is to have each protocol run in different slots. This approach is adopted in indus-
trial standards such as WirelessHART [2] and ISA100.11a [1]. However, predictable performance
cannot be provided for the traffic carried in CSMA slots. Another alternative is to dynamically
reuse slots (e.g., Reference [33]) or transmit high-priority traffic (e.g., Reference [27]) by selecting
primary and secondary slot owners. In this approach, slot owners are given preference to transmit
and send data using a short initial back-off. If a slot owner does not have any data to transmit, then
other nodes may contend for its use after some additional delay. A generalization of this scheme is
prioritized MACs that divide a slot into sub-slots to provide different levels of priority [36]. How-
ever, none of these protocols provide analytical bounds on their performance. In contrast to the
above approaches that involve carrier sensing, our policies rely on receiver-initiated polling and
the local state of nodes to adapt. We expect policies to be less brittle in practice than solutions that
use carrier sense as they do not require tight time synchronization for adaptation.
Several distributed protocols for constructing TSCH schedules that support best-effort [15, 40]

and real-time [42] traffic have been proposed. Our work is complementary, since these works focus
primarily on handling workload changes while we focus on adapting to variations in link quality
over short time scales. These protocols can’t adapt at the time scales required to handle link quality
variations due to their communication overheads. Our approach combines offline policy synthesis
with local adaptation performed at run-time. This approach can effectively handle changes over
short time scales as the adaptation process is local and lightweight.

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:26 R. Brummet et al.

Transient link failures are common in wireless networks [9, 38] and even more prevalent in
harsh industrial environments [8, 17]. The state-of-the-art is to schedule a fixed number of retrans-
missions for each link, potentially using different channels. Little consideration is usually given
to selecting the correct number of retransmissions based on link quality. Recently, some work has
been done to tune the number of retransmissions based on the burstiness of links [30, 41]. While
this is a step in the right direction, the fundamental problem is that links are treated in isolation
and provisioned to handle worst-case behavior in a fixed manner. As a result, retransmissions can-
not be redistributed across links as needed at run-time. A notable exception is our prior work [6],
which proposes a technique to share transmissions among the links of a flow at run-time. However,
this technique’s performance benefits are sensitive to the length of flows, with the most benefit
occurring in large multi-hop networks uncommon in practice. Our experiments show that this
approach is only effective when flows are routed through the base station and not for the more
common data collection and dissemination scenarios. By enabling entries to be shared across flows,
we can significantly reduce the number of slots needed by flows tomeet their end-to-end reliability,
resulting in significant performance improvements.

9 CONCLUSIONS

Recorp is a practical and effective solution for IIoT applications that require predictable, real-time,
and reliable communication in dynamic wireless environments. We leverage the stability of IIoT
workloads and the improving resources of wireless nodes to build a solution that combines offline
policy construction and run-time adaptation. A Recorp policy assigns a Recorp operation to each
slot and channel, which specifies a coordinator that will arbitrate channel access and a list of flows
that may be serviced. At run-time, the coordinator dynamically executes the flows in the service
list from which it has not received a packet. The advantage of Recorp is that nodes can locally
reallocate the retransmissions of flows in response to variations in link quality and, as a result,
provide higher performance than scheduling approaches.

The synthesis of policies required us to address two key challenges: handling the state explosion
problem and providing predictable performance as the quality of links varies. We developed a prac-
tical approach to synthesize policies iteratively. In each slot, the builder employs an ILP program to
determine the Recorp operations that will be performed in the current slot. Based on the selected
operations, the evaluator determines a lower-bound on the end-to-end reliability of each flow to
determine if it met its target end-to-end reliability. A key advantage of Recorp is that it provides
guarantees when slots are shared under a realistic model of wireless communication. Specifically,
we guarantee that a constructed Recorp policy will meet a user-specified reliability and deadline
constraint for each flow as long as the quality of all (used) links exceeds a minimum link quality.
We have extensively evaluated the performance of Recorp through both simulations and testbed

experiments. Our results indicate that due to their increased agility, Recorp policies can signifi-
cantly improve real-time capacity (median 50%–142%) and reduce worst-case response time (me-
dian 27%–70%) while meeting a specified end-to-end reliability. These trends hold across typical
IIoT workloads, including data collection, data dissemination, and route through the base station.
Additionally, we showed empirically that our theoretical guarantees of real-time performance and
reliability hold even in the presence of significant interference.

APPENDIX

A PROOF OF THEOREM 2

In this section, we prove Theorem 2. Before proving the theorem though, we will introduce some
definitions and lemmas. We will illustrate their use using a single-hop scenario with two flows F0

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:27

Fig. 15. Possible transition matrices when two flows are active.

and F1 (F = {F0, F1}) that relay data to the base station (see Figure 3(a)). In the following, we let
N = |F |.We consider the execution of two generic instances—J0 and J1—of these flows.
Under the considered example, the state of the system is represented as a vector where the ith

entry indicates whether the currently released instance of flow i was received successfully (S) or
not (F) by the base station. Accordingly, the states of our example are FF, SF, FS, and SS. There are
four possible pulls that may be performed in a slot t : PLA(J0), PLA(J1), PLA(J0, J1), and PLA(J1, J0).
Note that the builder described in Section 5.2 would never assign PLA(J1, J0) as it strictly enforces
prioritization among flows. Nevertheless, the theorem and lemmas presented in this section apply
to a broader class of builders that allow priority inversions and may assign PLA(J1, J0). For each
pull, we construct an associated transition matrix according to Algorithm 1:

• M0—the transition matrix associated with PLA(J0),
• M1—the transition matrix associated with PLA(J1),
• M0,1—the transition matrix associated with PLA(J0, J1),
• M1,0—the transition matrix associated with PLA(J1, J0).

Each of the matrices for the considered example are included in Figure 15. Note that all of the
transition matrices depend on the quality of the links LQ0 (t) and LQ1 (t) at time t .

According to Equation (1), the network state after executing t pulls is

P t = s
T
0Msrv (0)Msrv (1) · · ·Msrv (t),

where s0 is an initial state andMsrv (t ′) is the transition matrix associated with the pull performed
in slot t ′, 0 ≤ t ′ ≤ t , and in our example is equal to eitherM0,M1,M0,1 orM1,0. This equation
describes the state evolution of a MC over time. Note that unlike traditional MCs, the transition
matrix of this MC is parametric and the value of those parameters change over time.
The transition matrices have a special structure, which we will characterize next. We impose a

partial order on the states that reflects how the network changes its state in response to a successful
pulls (see procedure onSuccess() of Algorithm 1).

Definition A.1. We say the states s1 and s2 are partially ordered, s1 	 s2, if and only if the
following is true:

s1[k] = S⇒ s2[k] = S ∀k ∈ [0,N).

The partial order induced by 	 in our example is: FF 	 SF 	 SS and FF 	 FS 	 SS. The states SF
and FS are not comparable. Relating 	 to the onSuccess() method, the ordering FF 	 SF implies
that there is a service list srv (e.g., srv = {J0} or srv = {J0, J1}) such that onSuccess(FF, J0) = SF.
We make two observations of this partial order:

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:28 R. Brummet et al.

Lemma A.2. s1 	 onSuccess(s1, Jk) for all instances Jk .

Proof. onSuccess can change only the kth entry in s1 to S. If s1[k] = S, then the partial order
holds as the state will not change (i.e. s1 = onSuccess(s1, Jk)). If s1[k] = F, then the kth entry in
s1 will change to S and all other entries will stay the same. This also does not violate the partial
order. �

Lemma A.3. If s1 	 s2, then onSuccess(s1, Jk) 	 onSuccess(s2, Jk), for all instances Jk .

Proof. onSuccess can change only the kth entry of a state so there are four possibilities. (1)
If s1[k] = S and s2[k] = S, then s1 = onSuccess(s1, Jk) and s2 = onSuccess(s2, Jk). Therefore,
onSuccess(s1, Jk) 	 onSuccess(s2, Jk). (2) If s1[k] = F and s2[k] = F, then the kth entry of s1
and s2 will change to S and all other entries will stay the same. Therefore, onSuccess(s1, Jk) 	
onSuccess(s2, Jk). (3) If s1[k] = S and s2[k] = F, then the assumed partial ordering is violated and
therefore the lemma is not violated. (4) If s1[k] = F and s2[k] = S, then the kth entry of s1 will
change to S with all other entries staying the same and s2 = onSuccess(s2, Jk). Since s2[k] = S,
onSuccess(s1, Jk) 	 onSuccess(s2, Jk). �

We will use the notationMsrv (t)[i, j] to refer to the i, j element of the matrix andMsrv (t)[i, :]
to refer to the ith row. The values ofMsrv (t)[i, :] include the likelihood of transitioning from si to
another state in Ψ. The values of a row follow one of two patterns: (1) If the current state is si , Jk is
an instance in the current service list to be executed such that si [k] = F, and sj = onSuccess(si , Jk),
then all entries inMsrv (t)[i, :] are zero except forMsrv (t)[i, i] = 1 − LQk (t) andMsrv (t)[i, j] =
LQk (t). (2) Otherwise, if the current state is si , then there is only one non-zero entry inMsrv (t)[i, :]
and it isMsrv (t)[i, i] = 1. Based on these observations, we can rewriteMsrv (t) as

Msrv (t) = I + LQ0 (t)E0 + LQ1 (t)E1 + · · · + LQN (t)EN = I +

N∑

i=0

LQi (t)Ei , (11)

where I is the identity matrix and matrix Ei (t) has the following properties: (1) Ei (t) is upper-
triangular, (2) the entries of Ei (t) are in {−1, 0, 1}, and (3) in each row, Ei (t)[i, :], there is either
exactly one +1 entry off the diagonal and one −1 entry on the diagonal or all the entries of the row
are zero. As an example, the transition matrixM0,1 may be rewritten as

M0,1 = I + LQ0 (t)E0 (t) + LQ1 (t)E1 (t)

=

�����
�

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�����
	

+ LQ0 (t)

�����
�

−1 1 0 0
0 0 0 0
0 0 −1 1
0 0 0 0

�����
	

+ LQ1 (t)

�����
�

0 0 0 0
0 −1 0 1
0 0 0 0
0 0 0 0

�����
	

.

We now create the following definition to relate the partial ordering to the actual state proba-
bilities and make the following two observations.

Definition A.4. A vector f given the partial order induced by 	, if si 	 sj implies f [i] ≤ f [j].

LemmaA.5. If f T is an increasing vector andMsrv (t) is a transitionmatrix , thenдT = f TMT
srv (t)

is also an increasing vector.

Proof. Consider an arbitrary instance Jk and let si 	 sj , sa = onSuccess(si , Jk), and sb =

onSuccess(sj , Jk). Consider the ith and jth entries of дT :

дT [i] = f T [i](1 − LQk (t)) + f T [a]LQk (t),

дT [j] = f T [j](1 − LQk (t)) + f T [b]LQk (t).

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:29

Notice that f T [i] ≤ f T [j] by definition, since si 	 sj and f T [a] ≤ f T [b] by Lemma A.3. As a

result, we can conclude дT [i] ≤ дT [j]. Since дT [i] ≤ дT [j] holds for an arbitrary instance Jk , д
T

must be an increasing vector. �

Lemma A.6. If f T is an increasing vector,дT = f TMT
srv (t)

, andд′T = f T M̂T
srv (t)

with M̂srv (t) =

(I +
∑N

i=0mEi (t)) and LQi (t) ≥ m, then дT ≥ д′T component-wise.

Proof. Consider дT − д′T :

дT − д′
T
= f TMT

srv (t) − f T M̂T
srv (t)

= f T �
�
I +

N∑

i=0

LQi (t)Ei (t)�
	

T

− f T �
�
I +

N∑

i=0

mEi (t)�
	

T

=
�
�

N∑

i=0

(LQi (t) −m)Ei (t)�
	
f .

Consider now an arbitrary instance Jk and state si such that sa = onSuccess(si , Jk). By Lemma A.2,

si 	 sa . Since f is an increasing vector (because f T is an increasing vector), f [i] ≤ f [a] =⇒ 0 ≤
f [a] − f [i]. Notice that either Ei (t)[i, i] = Ei (t)[i,a] = 0 or Ei (t)[i, i] = −1 and Ei (t)[i,a] = 1.
If Ei (t)[i, i] = Ei (t)[i,a] = 0, then

�
�

N∑

i=0

(LQi (t) −m)Ei (t)�
	
[i, :]f = 0.

If instead Ei (t)[i, i] = −1 and Ei (t)[i,a] = 1, then

�
�

N∑

i=0

(LQi (t) −m)Ei (t)�
	
[i, :]f = (LQi (t) −m) f [a] − (LQi (t) −m) f [i]

≥ 0.

Since this result holds for an arbitrary instance Jk , д
T ≥ д′T component-wise. �

We are now prepared to prove Theorem 2, which we reproduce below for convenience.

Theorem 2. Consider a star topology that has node A as a base station and a set of flows F =

{F0, F1, . . . FN } that have A as destination. Let LQ0 (t), LQ1 (t), . . .LQN (t) be the quality of the links

used by each flow in slot t such thatm ≤ LQi (t) ≤ 1 for all flows Fi (Fi ∈ F) and all slots t (t ∈ N).

Under these assumptions, the reliability Ri,t of an instance Ji after executing t pulls of the Recorp

policy π is lower bounded by R̂i,t .

Proof. The end-to-end reliability of flow instance Ji after t slots is

Ri,t = P t χ i = s
T
0Msrv (0)Msrv (1) · · ·Msrv (t)χ i .

Since Ri,t is a number, we can apply the transpose to obtain

Ri,t = (Ri,t)
T

= χT
i M

T
srv (0)M

T
srv (1) · · ·M

T
srv (t)s0.

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:30 R. Brummet et al.

We observe that χ i is an increasing vector by construction, and by extension, χT
i . By Lemma A.6

the following must be true as a result:

Ri,t = χT
i M

T
srv (0)M

T
srv (1) · · ·M

T
srv (t)s0

≥ χT
i M̂

T
srv (0)M

T
srv (1) · · ·M

T
srv (t)s0.

As a consequence of Lemma A.5, χT
i M̂

T
srv (0)

is an increasing vector, and therefore we can again

apply Lemma A.6 to get the following:

Ri,t ≥ χT
i M̂

T
srv (0)M̂

T
srv (1) · · ·M

T
srv (t)s0.

Continuing in this way gives the desired result:

Ri,t ≥ χT
i M̂

T
srv (0)M̂

T
srv (1) · · · M̂

T
srv (t)s0

= R̂i,t .

�

REFERENCES

[1] 2021. ISA100.11a. Retrieved from https://www.isa.org/isa100/.

[2] 2021. WirelessHART. Retrieved from https://fieldcommgroup.org/.

[3] 2021. WUSTL Wireless Sensor Network Testbed. Retrieved from http://mobilab.wustl.edu/testbed.

[4] Yuvraj Agarwal, Bharathan Balaji, Seemanta Dutta, Rajesh K. Gupta, and Thomas Weng. 2011. Duty-cycling build-

ings aggressively: The next frontier in HVAC control. In Proceedings of the International Conference on Information

Processing in Sensor Networks (IPSN’11).

[5] Riccardo Bettati. 1994. End-to-end scheduling to meet deadlines in distributed systems. Ph.D. Dissertation. University of

Illinois at Urbana-Champaign.

[6] Ryan Brummet, Dolvara Gunatilaka, Dhruv Vyas, Octav Chipara, and Chenyang Lu. 2018. A Flexible retransmission

policy for industrial wireless sensor actuator networks. In Proceedings of the IEEE International Conference on Industrial

Internet (ICII’18).

[7] Alan Burns, James Harbin, Leandro Indrusiak, Iain Bate, Rob Davis, and David Griffin. 2018. Airtight: A resilient

wireless communication protocol for mixed-criticality systems. In Proceedings of the IEEE International Conference on

Embedded and Real-time Computing Systems and Applications (RTCSA’18).

[8] Richard Candell, Catherine A. Remley, Jeanne T. Quimby, David R. Novotny, Alexandra E. Curtin, Peter B. Papazian,

Galen H. Koepke, Joseph E. Diener, and Mohamed T. Hany. 2017. Industrial wireless systems: Radio propagation

measurements. Technical Note (NIST TN)-1951 (2017).

[9] Alberto Cerpa, Jennifer L. Wong, Miodrag Potkonjak, and Deborah Estrin. 2005. Temporal properties of low power

wireless links: modeling and implications on multi-hop routing. In Proceedings of the International Symposium on

Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing (MobiHoc’05). https:

//doi.org/10.1145/1062689.1062741

[10] Octav Chipara, Chenyang Lu, Thomas C. Bailey, and Gruia-Catalin Roman. 2010. Reliable clinical monitoring using

wireless sensor networks: Experiences in a step-down hospital unit. In Proceedings of the ACMConference on Embedded

Networked Sensor Systems (SenSys’10).

[11] Octav Chipara, Chenyang Lu, John A. Stankovic, and Gruia-Catalin Roman. 2010. Dynamic conflict-free transmission

scheduling for sensor network queries. IEEE Trans. Mobile Comput. 10, 5 (2010), 734–748.

[12] Nikolaus Correll, Prabal Dutta, Richard Han, and Kristofer Pister. 2017. Wireless robotic materials. In Proceedings of

the 15th ACM Conference on Embedded Network Sensor Systems. 1–6.

[13] Behnam Dezfouli, Marjan Radi, and Octav Chipara. 2017. REWIMO: A real-time and reliable low-power wireless

mobile network. ACM Transactions on Sensor Networks (TOSN) 13, 3 (2017), 1–42.

[14] Manjunath Doddavenkatappa, Mun Chan, and A.L. Ananda. 2012. Indriya: A low-cost, 3D wireless sensor network

testbed. Lecture Notes Inst. Comput. Sci. Soc.-Info. Telecommun. Eng. 90 (2012), 302–316. https://doi.org/10.1007/978-3-

642-29273-6_23

[15] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas Watteyne. 2015. Orchestra: Robust mesh networks

through autonomously scheduled TSCH. In Proceedings of the ACMConference on Embedded Networked Sensor Systems

(SenSys’15).

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

Recorp: Receiver-oriented Policies for Industrial Wireless Networks 44:31

[16] O. Durmaz Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapudi. 2012. Fast data collection in tree-based wireless

sensor networks. IEEE Trans. Mobile Comput. 11, 1 (2012), 86–99. https://doi.org/10.1109/TMC.2011.22

[17] Ken Ferens, Lily Woo, and Witold Kinsner. 2009. Performance of ZigBee networks in the presence of broad-

band electromagnetic noise. In Proceedings of the IEEE Canadian Conference of Electrical and Computer Engineering

(CCECE’09).

[18] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. 2011. Efficient network flooding and time syn-

chronization with glossy. In Proceedings of the Conference on Information Processing in Sensor Networks.

[19] Edgar N. Gilbert. 1960. Capacity of a burst-noise channel. Bell Syst. Tech. J. 39, 5 (1960), 1253–1265.

[20] Tao Gong, Tianyu Zhang, Xiaobo Sharon Hu, Qingxu Deng, Michael Lemmon, and Song Han. 2019. Reliable dynamic

packet scheduling over lossy real-time wireless networks. In Proceedings of the Euromicro Conference on Real-Time

Systems (ECRTS’19).

[21] A. Gonga, O. Landsiedel, P. Soldati, and M. Johansson. 2012. Revisiting multi-channel communication to mitigate

interference and link dynamics in wireless sensor networks. In Proceedings of the IEEE International Conference on

Distributed Computing Systems (ICDCS’12). https://doi.org/10.1109/DCOSS.2012.15

[22] Dolvara Gunatilaka, Mo Sha, and Chenyang Lu. 2017. Impacts of channel selection on industrial wireless sensor-

actuator networks. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’17). IEEE, 1–9.

[23] Samira Hayat, Evşen Yanmaz, and Raheeb Muzaffar. 2016. Survey on unmanned aerial vehicle networks for civil

applications: A communications viewpoint. IEEE Commun. Surveys Tutor. 18, 4 (2016), 2624–2661.

[24] Ozlem Durmaz Incel. 2011. A survey on multi-channel communication in wireless sensor networks. Comput. Netw.

55, 13 (2011), 3081–3099. https://doi.org/10.1016/j.comnet.2011.05.020

[25] Ankur Kamthe,Miguel A. Carreira-Perpinán, andAlberto E. Cerpa. 2009.M&M:multi-levelMarkovmodel forwireless

link simulations. In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys’09).

[26] Bo Li, Lanshun Nie, Chengjie Wu, Humberto Gonzalez, and Chenyang Lu. 2015. Incorporating emergency alarms

in reliable wireless process control. In Proceedings of the ACM/IEEE 6th International Conference on Cyber-Physical

Systems (ICCPS’15). 218–227.

[27] Bo Li, Lanshun Nie, Chengjie Wu, Humberto Gonzalez, and Chenyang Lu. 2015. Incorporating emergency alarms in

reliable wireless process control. In Proceedings of the International Conference on Cyber-Physical Systems (ICCPS’15).

[28] J. P. Lynch, Yang Wang, R. A. Swartz, Kung-Chun Lu, and C. H. Loh. 2008. Implementation of a closed-loop structural

control system using wireless sensor networks. Struct. Control Health Monitor. 15, 4 (2008), 518–539.

[29] Emerson Process management. 2016. System Engineering Guidelines IEC 62591 WirelessHART.

[30] Sirajum Munir, Shan Lin, Enamul Hoque, S. M. Shahriar Nirjon, John A. Stankovic, and Kamin Whitehouse. 2010.

Addressing burstiness for reliable communication and latency bound generation in wireless sensor networks. In Pro-

ceedings of the International Conference on Information Processing in Sensor Networks (IPSN’10). https://doi.org/10.1145/

1791212.1791248

[31] Wolf-Bastian Pöttner, Hans Seidel, James Brown, Utz Roedig, and Lars Wolf. 2014. Constructing schedules for time-

critical data delivery in wireless sensor networks. Trans. Sensor Netw. 10, 3 (2014), 1–31.

[32] Ranganathan Prakash and Kendall Nygard. 2010. Time synchronization in wireless sensor networks: A survey. Int. J.

UbiComp 1 (04 2010). https://doi.org/10.5121/iju.2010.1206

[33] Injong Rhee, Ajit Warrier, Mahesh Aia, Jeongki Min, and Mihail L. Sichitiu. 2008. Z-MAC: A hybrid MAC for wireless

sensor networks. IEEE/ACM Trans. Netw. 16 (2008).

[34] Abusayeed Saifullah, Dolvara Gunatilaka, Paras Tiwari, Mo Sha, Chenyang Lu, Bo Li, Chengjie Wu, and Yixin Chen.

2015. Schedulability analysis under graph routing in WirelessHART networks. In Proceedings of the IEEE Real-Time

Systems Symposium. IEEE, 165–174.

[35] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. 2010. Real-Time scheduling for WirelessHART networks. In Proceedings of the

IEEE Real-Time Systems Symposium (RTSS’10). https://doi.org/10.1109/RTSS.2010.41

[36] Wei Shen, Tingting Zhang, Filip Barac, and Mikael Gidlund. 2013. PriorityMAC: A priority-enhanced MAC protocol

for critical traffic in industrial wireless sensor and actuator networks. IEEE Trans. Industr. Info. 10, 1 (2013), 824–835.

[37] P. Soldati, H. Zhang, and M. Johansson. 2009. Deadline-constrained transmission scheduling and data evacuation in

WirelessHART networks. In Proceedings of the Annual Enterprise Computing Community Conference (ECC’09).

[38] Kannan Srinivasan, Maria A. Kazandjieva, Saatvik Agarwal, and Philip Levis. 2008. The β -factor: Measuring wireless

link burstiness. In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys’08).

[39] Rodrigo Teles Hermeto, Antoine Gallais, and Fabrice Theoleyre. 2017. Scheduling for IEEE802.15.4-TSCH and slow

channel hopping MAC in low power industrial wireless networks: A survey. Comput. Commun. 114 (2017), 84 – 105.

https://doi.org/10.1016/j.comcom.2017.10.004

[40] Andrew Tinka, Thomas Watteyne, and Kris Pister. 2010. A decentralized scheduling algorithm for time synchronized

channel hopping. In Proceedings of the International Conference on Ad Hoc Networks. Springer, 201–216.

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

44:32 R. Brummet et al.

[41] Hao-Tsung Yang, Kin Sum Liu, Jie Gao, Shan Lin, Sirajum Munir, Kamin Whitehouse, and John Stankovic. 2017. Reli-

able stream scheduling with minimum latency for wireless sensor networks. In Proceedings of the International Con-

ference on Structural Engineering and Construction (SECON’17).

[42] Tianyu Zhang, Tao Gong, Song Han, Qingxu Deng, and Xiaobo Sharon Hu. 2018. Fully distributed packet scheduling

framework for handling disturbances in lossy real-time wireless networks. In Proceedings of the IEEE Real-time and

Embedded Technology and Applications Symposium (RTAS’18).

[43] J. Akerberg, M. Gidlund, and M. Bjorkman. 2011. Future research challenges in wireless sensor and actuator networks

targeting industrial automation. In Proceedings of the 9th IEEE International Conference on Industrial Informatics. 410–

415. https://doi.org/10.1109/INDIN.2011.6034912

Received June 2020; revised March 2021; accepted April 2021

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 44. Publication date: July 2021.

