
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

From Schedules to Programs — Reimagining Networking Infrastructure for

Future Cyber-Physical Systems

MD KOWSAR HOSSAIN, University of Iowa, USA

RYAN BRUMMET, University of Iowa, USA

OCTAV CHIPARA, University of Iowa, USA

TED HERMAN, University of Iowa, USA

STEVE GODDARD, University of Iowa, USA

Future cyber-physical systems will require higher capacity, meet more stringent real-time requirements, and adapt quickly to a

broader range of network dynamics. However, the traditional approach of using fixed schedules to drive the operation of wireless

networks has inherent limitations that make it unsuitable for these systems. As an alternative, we propose to replace schedules with

domain-specific programs that coordinate the operation of the network. Our idea is that nodes in the network will run automatically

generated programs that make informed decisions about flows at run time rather than using an a priori fixed schedule. We will sketch

a domain-specific language that uses this additional flexibility to increase network capacity significantly. Furthermore, the constructed

programs are also sufficiently simple to efficiently analyze key performance metrics such as flow response time and reliability. We

conclude with future research directions.

CCS Concepts: · Networks→ Network dynamics; Network reliability; Cyber-physical networks.

Additional Key Words and Phrases: Wireless networks, real-time wireless networks, reliability, software synthesis

ACM Reference Format:

MdKowsar Hossain, Ryan Brummet, Octav Chipara, Ted Herman, and Steve Goddard. 2021. From Schedules to Programs Ð Reimagining

Networking Infrastructure for Future Cyber-Physical Systems. In 8th International Conference on Networking, Systems and Security (8th

NSysS 2021), December 21ś23, 2021, Cox’s Bazar, Bangladesh.ACM, NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3491371.3491387

1 INTRODUCTION

Wireless networks provide critical infrastructure for the next generation of cyber-physical systems (CPS). Examples

of such systems include smart factories [8], automated warehouses [10], and clinical healthcare decision-support

systems [9]. The basic requirement of these applications is the need to support communication between sensors,

controllers, and actuators as part of feedback control loops typical of CPS. Unlike traditional wireless networks, CPS

infrastructure must provide real-time and reliable performance. Meeting this requirement is challenging due to the

limited wireless resources available and significant network dynamics common to industrial settings. Network dynamics

include fluctuations in the quality of wireless links, variations in the workload of applications, and topology changes

induced by node failures or mobility [7, 12].

A predictable wireless network is one where it is possible to check its safety and performance requirements under

explicit assumptions about variations in network dynamics. A range of tools such as model checkers [16] and satisfiability

solvers [21] aim to verify whether a system’s requirements are met. Such tools effectively analyze classical safety

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party

components of this work must be honored. For all other uses, contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

Manuscript submitted to ACM

1

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

8th NSysS 2021, December 21–23, 2021, Cox’s Bazar, Bangladesh Kowsar, et al.

properties, though computational complexity is a concern even for moderate-size networks. Moreover, it can be

challenging to express network performance properties (e.g., latency, throughput, reliability, buffer utilization, and

energy consumption) in the form needed by the analysis tools. One contribution of recent research and standardization

efforts is to accommodate the limitations of tools by constraining the network architecture and its programming

model (e.g., WirelessHART, ISA100, TSCH [2]). Simplifying network architecture and its primitives helps us reason

about the behavior of the protocols; such simplification might also enable us to leverage existing analysis tools to

analyze even performance properties.

As an illustrative example, industrial standards such as WirelessHART and ISA100 use a centralized control plane

managed by a network manager. An application expresses its communication needs using flows whose parameters

(i.e., source, destination, period, the maximum number of packets) are fixed and known at design time. Based on this

information and the statistics about the quality of network links, the network manager constructs schedules that specify

the time slot and frequency of each packet transmission. The schedule determines the data plane behavior (the timing,

retries, and acknowledgments of data packets). The schedule is executed synchronously and cyclically by all nodes.

Reliability can be ensured by overprovisioning retransmissions performed over different channels and, potentially, over

multiple paths. The relatively simple design of these industrial protocols enables us to guarantee, with high probability,

the reliable and timely delivery of flows’ packets.

The current state-of-the-art approach has intrinsic limitations, which make it unsuitable for the next-generation

CPS applications. New applications are thought to need more flexibility, greater capacity, and more stringent real-time

requirements. New hardware offers increased memory on nodes, more in-network computing resources, and timer

improvements: the hope is that newer hardware will suffice for new CPS application needs. Higher bandwidth needs

are motivated by the deployment of data-intensive sensors like cameras, microphones, and LIDAR. Inherent in the CPS

vision is feedback ("closing the loop") to actuators, hence bounded latency is essential. In the short term, improvements

in wireless technology may be enough to satisfy new application demands; however, in the long run, it will be difficult

for such improvements alone to keep up with the growth and variety of applications. Consequently, we look to how we

can redesign and engineer network software with CPS applications in mind.

As a step in this direction, we consider a novel perspective on how industrial networks are designed. Specifically, we

propose to dispense with the use of schedules in favor of using node-communication programs. Our idea is that nodes

in the network will run automatically synthesized programs that make informed decisions about flows at run time

rather than having an a priori fixed schedule of packet transmissions, retries, queuing, etc. While it is true that fixed

schedules, which specify what is transmitted in a given time slot, are simpler to analyze, this simplicity sacrifices some

bandwidth that otherwise might be used for higher throughput and greater network capacity. Thanks to more powerful

node hardware, some degree of dynamic decision-making is possible in the nodes, based on local conditions. Our idea

transforms the design task from determining schedules for nodes into the task of determining the network programs

which will run in the nodes. The price we pay for this more powerful architecture is that flow reliability is more difficult

to analyze. Yet, we developed analysis techniques that make it tractable for moderate-size networks using automated

analysis tools. To facilitate tractability of analysis, node programs will be composed of primitives from a specialized

language, which we think of as a minimal domain-specific language (DSL).

The fertile research territory for the network program approach lies between two extremes, fixed schedules, and

nodes running programs specified with a general-purpose language. These extremes reflect trade-offs in analysis and

expressiveness. On the one hand, network behaviors are quite constrained when specified by fixed schedules, which are

less expressive than programs: all the actions in a schedule are executed unconditionally (and schedules do not depend

2

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Reimagining Networking Infrastructure for Future Cyber-Physical Systems 8th NSysS 2021, December 21–23, 2021, Cox’s Bazar, Bangladesh

on state information). Such constrained behavior facilitates traditional static analysis. On the other hand, a program

can express many potential behaviors. Tasks of verification and synthesis of node programs become complex due to

such expressiveness. Fundamental challenges are limiting the scope and scalability of analysis if node programs are too

general. In this paper, we sketch a limited DSL to balance these considerations.

In our design, each node maintains some state information and performs conditional actions which depend on that

information. The combination of state and conditional actions leads to programs having multiple possible execution

paths. This opens new opportunities for optimization unavailable in the case of schedules that have only a single

execution path. We exploit techniques from symbolic execution [3] to analyze execution paths, which automate

reasoning about the program properties.

Ongoing trends in networking support the strategy of using node programs rather than fixed schedules, e.g., networks

are becoming increasingly programmable. Such trends have precedents in older efforts such as active networks [1] and,

more recently, software-defined networks [11]. Furthermore, our proposal opens wireless networks to modern tools

that efficiently synthesize software, optimize it, and formally verify its properties. In the remainder of this paper, we

demonstrate techniques showing how node programs respond to packet losses, transmit packets opportunistically, and

provide guarantees of flow reliability given a prescribed number of packet losses. Node programs can be effectively

synthesized and analyzed for the specific problem of packet loss. The paper concludes with pointers for further

investigation.

2 MODELING ASSUMPTIONS

Network Model: CPS designers start by formally specifying their assumptions about the system’s organization,

workload, and reliability. A network is comprised of a network manager and up to a hundred nodes. Larger networks

can be built hierarchically. A network manager is a resource-rich machine that coordinates the control plane, constructs

programs or schedules, and acts as a bridge node for hierarchically-built larger networks. At the physical layer, we

assume that the network supports multiple channels and tight time synchronization. While here we focus on IEEE

802.15.4 or the more recent IEEE 802.15.4a, our general techniques apply to other types of wireless networks such as 5G

cellular networks.

Workload Model: A common model adopted in real-time and cyber-physical networks is to model an application’s

workload as a set of real-time flows that is known a priori. A real-time flow 𝐹𝑖 has a fixed route that packets traverse

through the network. A flow’s packets usually carry sensor data or actuation commands. In the broader network

community, flows are streams of packets; for real-time contexts, flows are sequences of independent packets generated

periodically at the source and must be delivered to the destination by the deadline. For each flow 𝐹𝑖 , a packet is generated

on the source node with a phase 𝜙𝑖 , period of 𝑃𝑖 , and deadline of 𝐷𝑖 . The k
𝑡ℎ instance of flow 𝐹𝑖 is released at time

𝑟𝑖,𝑘 = 𝜙𝑖 +𝑘 ∗ 𝑃𝑖 and has an absolute deadline 𝑑𝑖,𝑘 = 𝑟𝑖,𝑘 +𝐷𝑖 . To simplify notation and the presentation, we assume that

the deadlines are less or equal to the periods (𝐷𝑖 ≤ 𝑃𝑖). Since at most one instance per flow is present in the network,

the discussion will be in terms of flows rather than instances.

Entries, Pushes, and Pulls: Programs use both time division and multiple channels. We refer to a slot and channel pair

as an entry. Though a program may include several conditional pushes or pulls, only one such action may be executed

in an entry during the program’s run-time execution. A push(𝐹𝑖) involves the sender transmitting 𝐹𝑖 ’s data and the

receiver replying with an acknowledgment (on the same channel). A push fails if the acknowledgment is not received

by the end of the slot. A pull(𝐹𝑖) involves the receiver requesting 𝐹𝑖 ’s data and the sender replying with the flow’s data.

A pull fails if the data is not received by the end of the slot. A program may handle failed pushes or pulls by repeating

3

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

8th NSysS 2021, December 21–23, 2021, Cox’s Bazar, Bangladesh Kowsar, et al.

the action several times to achieve the desired reliability. We will refer to the node initiating the communication of a

push or a pull as the coordinator and the responding node as the follower.

Reliability Model: In this paper, we adopt a simple (and unrealistic) reliability model where the pushes and pulls of a

coordinator experience at most 𝑅 failures during the execution of a program whose length is𝑊 slots. We call this an

(R,W)-failure reliability model. In the included examples, there is a single failure during the operation of the network

(i.e., 𝑅 = 1 and𝑊 = ∞). Other reliability models that capture the lossy nature of wireless links better can be considered.

However, the (R,W)-failure model is sufficient to illustrate the challenges of synthesizing and analyzing programs that

tolerate packet losses.

Constraints: A program must meet the following constraints:

• Transmission constraints: At run-time, a node is involved in at most one push or pull in a slot.

• Channel constraints: At most, one transmission is performed in an entry to avoid intra-network interference. Addi-

tionally, a node must perform consecutive transmissions on different channels.

• Forwarding constraints: Each flow has at most one link that is active in any slot. The first link on the flow’s route is

activated at release time; subsequent links are activated as the previous ones complete relaying the packets.

• Real-time and reliability constraint: The packets of a flow reach their destination before their deadline while tolerating

at most 𝑅 failures within a program’s𝑊 slots at each coordinator.

3 NODE COMMUNICATION PROGRAMS

CPS networks must include sufficient transmissions to deliver a flow’s data despite a prescribed number of failures. This

problem becomes challenging when we require a solution to satisfy the following two requirements. First, the solution

must minimize the overhead of retransmissions. Otherwise, it is unlikely the network will support the high data rates

required by future CPS applications. Second, since link quality can vary from slot to slot significantly, the network must

respond to packet losses quickly without the involvement of the control plane (which is designed to handle slower

dynamics such as workload changes). Therefore, a node can only adapt its behavior based on local information, and its

adaptation decisions cannot conflict with the transmissions of other nodes. Avoiding conflicting decisions is challenging

as nodes have incomplete and inconsistent views of the outcome of transmissions and the state of other nodes.

We first introduce the concept of node communication programs and illustrate their advantages over static schedules

using a simple star topology network with one hop flows. Then, we will relax this restriction by allowing multihop

topologies and flows.

3.1 Programs on Star Topologies

Consider the star topology shown in Figure 1a and a workload consisting of three real-time flows Ð 𝐹0, 𝐹1, and 𝐹2. The

flows are listed in decreasing order of priority. All flows have a period and deadline of six slots and a phase of zero.

Flows 𝐹0 and 𝐹1 originate at 𝐵 and 𝐶 and are destined for 𝐴; 𝐹2 transmits data from 𝐴 to 𝐶 .

Schedules: A real-time scheduler (e.g., [14, 18, 20, 22] and surveys [17, 19]) constructs schedules that enforce

prioritization and incorporate retransmissions as follows. In slot 0, 𝐹0, 𝐹1, and 𝐹2 are released. The highest priority flow,

𝐹0, is scheduled to transmit first. Using the actions defined in Section 2, node 𝐵 is scheduled to transmit 𝐹0’s data using

a push(𝐹0) command. In the same slot, 𝐴 waits on the same channel and acknowledges the reception if it receives the

push. However, since this transmission may be lost, a retransmission is scheduled in the next slot. During slots 0 and 1,

𝐶 can sleep because it is not communicating. The remainder of the static schedule is built similarly and included in

Figure 1b. Observe that each entry in the schedule consists of a single instruction that either has a node transmit a

4

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Reimagining Networking Infrastructure for Future Cyber-Physical Systems 8th NSysS 2021, December 21–23, 2021, Cox’s Bazar, Bangladesh

A

B C

F0 F1

F2

(a) Topology

Slot Node A Node B Node C

0 wait push(𝐹0) sleep

1 wait push(𝐹0) sleep

2 wait sleep push(𝐹1)

3 wait sleep push(𝐹1)

4 push(𝐹2) sleep wait

5 push(𝐹2) sleep wait

(b) Schedule

Slot Node A Node B Node C

0 start(𝐹0) wait sleep

pull(𝐹0)

1 start(𝐹1) wait wait

if !has(𝐹0) then pull(𝐹0)

else pull(𝐹1)

complete(𝐹0)

2 start(𝐹2) sleep wait

if !has(𝐹1) then pull(𝐹1)

else push(𝐹2)

complete(𝐹1)

3 if !has(𝐹2) then push(𝐹2) sleep wait

complete(𝐹2)

(c) Node program

F
0

F
1

F
2 F

0
F

1
F

2

F
0

F
1

F
2

F
0

F
1

F
2

F
0

F
0

F
0

F
0

F
1

F
0

F
1

F
2

F
1

F
0

F
1

F
2

F
2

F
1

F
0

F
1

F
2

F
2

slot 0 slot 1 slot 2 slot 3

(d) Execution DAG

Fig. 1: Star topology example Ð We build a node program for the topology and flows shown in Figure 1a. Figure 1b

shows a static schedule for this workload. The generated node program and its associated execution DAG are provided

in Figures 1c and 1d, respectively.

packet, wait for a transmission request from another node on a specified channel, or sleep. These actions are performed

independent of the outcome of transmissions observed at run-time.

An advantage of static schedules is that they are easy to analyze, especially in terms of each flow’s latency and

reliability. However, due to their rigidity, networks that use schedules cannot reclaim resources that are not needed

when errors do not occur because they do not include state information or support conditional commands. For example,

consider the schedule listed in Figure 1b. It is desirable to cancel the push(𝐹0) scheduled in slot 1 if the push(𝐹0) scheduled

in slot 0 has succeeded, which frees up this slot for another instruction if needed. This observation motivated us to

consider transforming schedules of unconditional actions to programs by additing of state information and conditional

statements, as shown next.

Programs: To write a program that can tolerate failures efficiently, we make the following two observations. First,

observe that node 𝐴 is in a unique position to determine whether the packets of any flow have reached its destination

successfully. Since 𝐴 is 𝐹2’s source, pushes can be used to relay the flow’s data. 𝐴 will know the outcome of 𝐹2’s

transmission because 𝐶 responds with an acknowledgment to a push(𝐹2). Node 𝐴 is the destination of 𝐹0 and 𝐹1. For

such flows, pulls can be used to retrieve the data of those flows. 𝐴 can determine the outcome of those transmissions

since the recipient of a pull responds with a flow’s data. Therefore, using the right combination of pushes and pulls, the

5

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

8th NSysS 2021, December 21–23, 2021, Cox’s Bazar, Bangladesh Kowsar, et al.

central node of a star topology knows precisely the outcome of the flow’s transmissions at run-time. In contrast, the

other nodes in the star topology have a partial and inconsistent view of these outcomes.

The consequence of the above observation is that we can construct a consistent view of the failures in the star

topology by maintaining state at node 𝐴. Specifically, let node 𝐴 maintain a dictionary𝑀 that associates a single bit

with each flow, indicating a flow’s successful (S) or failed (F) delivery. Then, 𝐴 can conditionally execute different

actions depending on its state and according to the packet losses observed at run-time.

Armed with these two insights, a program that delivers the flows when a single packet loss may occur can be written

and analyzed. In slot 0, when the flows are released, 𝐴 marks each flow as not received by initializing𝑀 = {𝐹0 : F, 𝐹1 :

F, 𝐹2 : F}. In this slot, 𝐴 executes a pull(𝐹0) resulting in 𝐴 having two possible states at run-time. Either 𝐴 received 𝐹0

and its state is𝑀 = {𝐹0 : S, 𝐹1 : F, 𝐹2 : F}, or 𝐴’s state is𝑀 = {𝐹0 : F, 𝐹1 : F, 𝐹2 : F}. Scheduling approaches ignore this

information and simply assume the worst-case behavior. In contrast, programs consider both states (and the execution

paths that led to the states) when determining future actions.

Consider the case when 𝐴’s state is 𝑀 = {𝐹0 : F, 𝐹1 : F, 𝐹2 : F} at the beginning of slot 1. In this case, 𝐴 has not

received 𝐹0 yet (indicated by !has(𝐹0) being true), so it should execute pull(𝐹0). Since there can be at most one failure

under the assumed fault model with 𝑅 = 1 and this failure already occurred in slot 0, then the pull(𝐹0) executed in slot 1

must be successful, and 𝐴’s state becomes𝑀 = {𝐹0 : S, 𝐹1 : F, 𝐹2 : F}.

The other option is that at the beginning of slot 1, 𝐴’s state is 𝑀 = {𝐹0 : S, 𝐹1 : F, 𝐹2 : F}. Since 𝐹0 was already

delivered successfully, 𝐴 can execute a pull(𝐹1). On this execution path, a packet loss has not yet been observed. Thus,

the pull can either succeed reaching state 𝑀 = {𝐹0 : S, 𝐹1 : S, 𝐹2 : F} or fail reaching state 𝑀 = {𝐹0 : S, 𝐹1 : F, 𝐹2 : F}.

Figure 1c shows the complete program. The different execution paths through the program can be captured as an

execution DAG shown in Figure 1d. The red and green backgrounds in the figure indicate whether a flow’s delivery

failed (F) or succeeded (S), respectively. The arrows are labeled with the flow that was executed in a given state. The

label’s color indicates the outcome of each action.

Program Properties: A feature of programs is that a single slot may be shared by multiple transmissions, though

only one transmission is executed per slot. For example, in slot 1, either 𝐹0 or 𝐹1 may be executed depending on the

outcome of the previous transmission. It is important to note that sharing is possible without having to resort to

contention-based techniques. The ability to share slots among multiple flows depending on the execution path is why

the program is two slots shorter than the schedule. As the number of flows and allowable failures increases, these

improvements will also increase, resulting in significant gains in capacity and reductions in latency.

Formalizing Programs: Let us formalize the concept of a node program. The resources involved in executing a

program include a single coordinator node and one or more follower nodes. The followers are constrained to be within

one hop of the coordinator. We will refer to a grouping of these program resources (a coordinator and its followers)

as a container. In the above example, there is a single container whose coordinator is node 𝐴; the nodes 𝐵 and 𝐶 are

followers. Each container has an input, a running, and an output queue of flows. The input queue includes flows that the

container must process. The running queue includes flows currently executed by the container, using the coordinator

and follower nodes. Finally, the output queue includes the completed flows i.e., flows that are guaranteed to deliver

their packets under the prescribed reliability model.

A node program is executed by the coordinator and followers of a container. The instruction start removes a flow

from the container’s input queue for processing. The instruction complete indicates that a flow completed its execution

and adds it to the container’s output queue.

6

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Reimagining Networking Infrastructure for Future Cyber-Physical Systems 8th NSysS 2021, December 21–23, 2021, Cox’s Bazar, Bangladesh

fragment := start-blk; action_blk; complete_blk

start_blk := start(flow)

complete_blk := complete(flow); | complete_blk

action_blk := action | if-statement

if-statement := if bool-expr then action else-part

else-part := else action_blk | 𝜖

bool-expr := has(flow) | !has(flow)

action := pull(flow) | push(flow) | wait | sleep

Fig. 2: EBNF rules of a program fragment

A node program is structured as an array of fragments indexed by the slot in which the fragment is executed. A

fragment may include actions and if-statements that allow actions to be executed conditionally. The coordinator may

execute either push or pull while the followers execute waits or sleeps. In each fragment, at most a single action can be

executed at run-time to ensure that its execution time does not exceed the length of a slot.

The state of a node program currently includes only𝑀 , which keeps track of the state of each flow. When flow 𝐹𝑖

starts executing,𝑀 [𝐹𝑖] is initialized to failure (F). When push(𝐹𝑖) or pull(𝐹𝑖) is executed successfully,𝑀 [𝐹𝑖] is set to

success (S). Flow 𝐹𝑖 is removed from 𝑀 when complete(𝐹𝑖) is executed. Conditional if-statements may query the state

of the program using has(𝐹𝑖), which returns true if𝑀 [𝐹𝑖] is successful (S).

The grammar of a fragment is included in Figure 2. A fragment has three blocks: a start block, an action block, and

a complete block. The start block may include a single starts to begin the execution of a flow within the container.

Similarly, the complete block may include one or more completes to indicate that a flow is complete. The action block

may include one of push, pull, wait, or sleep in the base case. We allow for the inclusion of conditional if-then-else

statements. As part of the condition, a program may use has(𝐹𝑖) or its negation !has(𝐹𝑖) to determine whether node 𝐴

has 𝐹𝑖 . In any slot, we constrain a node to execute at most one action per slot to guarantee its completion by the end of

the slot.

Analysis of Execution DAGs: Analyzing whether the program can tolerate the prescribed single packet loss is

more difficult than static, schedule-table approaches. For this simple example, we can determine this is the case by

visually inspecting the execution DAG and observing that each path includes at most one failure and reaches the final

state when all flows deliver their packets. The response time of each flow can also be computed as the maximum length

of the paths in the execution DAG that start with the state in which the flow is released and end with the state in which

the flow is completed. A general method for analyzing the reliability and latency of flows is to consider those properties

along all possible execution paths. This fact should be concerning as it is known that the number of paths and reachable

states can grow exponentially, leading to a state explosion problem. While we may bring techniques used in verification

to mitigate the state explosion problem to bear, we found the strategy of synthesizing code with a fixed structure can

simplify analysis. The synthesis procedure described next enables such simpler reliability analysis by controlling the

łstructurež of the generated code.

Program Synthesis: A real-time scheduler can be adapted to efficiently synthesize the fragments that will be

executed in each slot. The node-synthesizer manages the container’s run queue, which includes the flows currently

executing inside the container. With each flow in the run queue, we associate a counter indicating the number of times

it was scheduled for execution. In each slot, the node-synthesizer inspects the container’s input queue to determine if

any flows need to be serviced. If the queue is not empty, the flow at the head of the container’s input queue is removed

and added to the run queue. Its execution counter is initialized to zero. The node-synthesizer generates the fragment

7

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8th NSysS 2021, December 21–23, 2021, Cox’s Bazar, Bangladesh Kowsar, et al.

that will be executed in the current slot based on flows in the run queue. We consider each flow 𝐹𝑖 in the run queue

iteratively and in order of priority. We synthesize a conditional statement that checks if 𝐹𝑖 is not yet complete (i.e.,

has(𝐹𝑖) is False) and, if this is a case, either a push(𝐹𝑖) or pull(𝐹𝑖) is generated. The execution counter of all flows in

the run queue is incremented by one at the end of the slot. A flow in the run queue whose execution counter equals

the maximum number of failures 𝑅 + 1 has been scheduled in sufficient executions to tolerate 𝑅 failures. Therefore,

the flow is complete and can be moved from the run queue to the container’s output queue. This algorithm generates

the programs shown in Figure 1c, except for slot 0. In slot 0, we already know that has(𝐹0) is False, so the pull(𝐹0) is

performed unconditionally (and the if-statement does not need to be generated).

We can prove that the program tolerates the desired 𝑅 failures by leveraging the structure of the synthesized

code. Specifically, proving that flow 𝐹𝑖 will reach its destination despite 𝑅 packet losses requires showing that all

possible program execution paths reach a state where𝑀 [𝐹𝑖] = S. The constrained structure of the program results in a

constrained execution DAG similar to the one shown in Figure 1d. The proof revolves around determining the number

of failures on each of the paths that reach a state where 𝐹𝑖 was received. When programs are less regular or for different

reliability models, the reliability analysis can be more complicated. In [4ś6], we considered a more realistic reliability

model called the Threshold Link Reliability (TLR) model. TLR models the likelihood that an action (i.e., a push or pull)

of flow 𝐹𝑖 (including both exchanges of data between sender and receiver) is successful as a Bernoulli variable 𝐿𝑄𝑖 (𝑡).

We assume that consecutive pushes or pulls performed over the same or different links are independent. Empirical

studies suggest that this property holds when channel hopping is used [13, 15]. TLR has only one parameter ś the

minimum packet delivery rate𝑚, which lower bounds the values of 𝐿𝑄𝑖 (𝑡) such that𝑚 ≤ 𝐿𝑄𝑖 (𝑡) ∀𝑖, 𝑡 ∈ N. We have

developed efficient synthesis techniques that ensure that when packet losses follow the TLR model, we can construct

programs that guarantee the delivery of a flow’s packets.

3.2 Programs on Multihop Topologies

In this section, we consider how we may construct programs for multihop topologies.

At a high level, our approach to handling multihop topologies is based on a two-level synthesis strategy. At the

node level, containers synthesize their node programs as described in the previous section. At the network level, the

problem is to arbitrate the allocation of nodes to containers to ensure nodes are in at most one container. Each node

has its own container for which it is the coordinator. A container runs a node-synthesizer responsible for synthesizing

programs that execute the flows in its input queue. The node-synthesizer generates code to be executed by both the

coordinator and the followers (but involves no nodes outside the container). Then, the net-synthesizer runs centrally

and constructs a cyclic schedule that executes or suspends containers in each slot. A node can be either a container’s

coordinator or a follower for a single container in given slot. Multiple containers may be assigned in a slot on different

channels if they do not share followers or coordinators to maximize throughput. The containers that are executed and

their follower nodes may change from slot to slot.

Traditional real-time schedulers can be easily adapted to operate on containers rather than flows. Specifically, we

can construct the high-level program iteratively in a slot-by-slot manner. In each slot, the net-synthesizer considers

the flows that are released according to their priority. Multihop flows are initially released on the link associated with

their first hop. We categorize flows as upstream or downstream depending on whether they forward data to or from

a common node, respectively. (This is common in wireless sensor networks that employ a base station.) If a flow is

upstream, the flow is added to the input queue of its destination’s container. Conversely, if the flow is downstream, the

flow is added to the input queue of its source’s container. Let the priority of a container be the maximum priority of the

8

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Reimagining Networking Infrastructure for Future Cyber-Physical Systems 8th NSysS 2021, December 21–23, 2021, Cox’s Bazar, Bangladesh

A

B C

F0 F1

F2

E

F1

D

F0

(a) Multihop topology

Slot −→ 0 1 2 3 4 5

container𝐴 Input 𝐹2 𝐹2 𝐹0, 𝐹1, 𝐹2 𝐹1, 𝐹2 𝐹2

container𝐴 Followers 𝐵 𝐵,𝐶 𝐶 𝐶

container𝐴 Action suspend suspend exec([𝐹0], #2) exec([𝐹0, 𝐹1], #0) exec([𝐹1, 𝐹2], #1) exec([𝐹2], #2)

container𝐴 Output 𝐹0 𝐹1 𝐹2

container𝐵 Input 𝐹0

container𝐵 Followers 𝐷 𝐷

container𝐵 Action exec([𝐹0],#0) exec([𝐹0], #1) - - - -

container𝐵 Output 𝐹0

container𝐶 Input 𝐹1

container𝐶 Followers 𝐸 𝐸

container𝐶 Action exec([𝐹1],#1) exec([𝐹1], #2) - - - -

container𝐶 Output 𝐹1

(b) Operation of net-synthesizer

Slot Node A Node B Node C Node D Node E

0 suspend exec([𝐹0], #0) in container𝐵 exec([𝐹1], #1) in container𝐶 exec([𝐹0], #0) in container𝐵 exec([𝐹1], #1) in container𝐶
sleep start(𝐹0) start(𝐹1) wait wait

pull(𝐹0) pull(𝐹1)
1 suspend exec([𝐹0], #0) in container𝐵 exec([𝐹1], #1) in container𝐶 exec([𝐹0], #0) in container𝐵 exec([𝐹1], #1) in container𝐶

sleep if !has(𝐹0) then pull(𝐹0) if !has(𝐹1) then pull(𝐹1) wait wait
complete(𝐹0) complete(𝐹1)

2 exec([𝐹0], #2) in container𝐴 exec([𝐹0], #2) in container𝐴 suspended suspend suspend
start(𝐹0) wait sleep sleep sleep
pull(𝐹0)

3 exec([𝐹0, 𝐹1], #0) in container𝐴 exec([𝐹0, 𝐹1], #0) in container𝐴 exec([𝐹0, 𝐹1], #0) in container𝐴 suspend suspend
start(𝐹1) wait wait sleep sleep
if !has(𝐹0) then pull(𝐹0)
else pull(𝐹1)
complete(𝐹0)

4 exec([𝐹1, 𝐹2], #1) in container𝐴 suspend exec([𝐹1, 𝐹2], #1) in container𝐴 suspend suspend
start(𝐹2) sleep wait sleep sleep
if !has(𝐹1) then pull(𝐹1)
else push(𝐹2)
complete(𝐹1)

5 exec([𝐹2], #2) in container𝐴 suspend exec([𝐹2], #2) in container𝐴 suspend suspend
if !has(𝐹2) then push(𝐹2) sleep wait sleep sleep
complete(𝐹2)

(c) Complete network program

Fig. 3: Multihop example ś We build a network program for the topology and flows in Figure 3a. The net-synthesizer

determines which containers run and their associated resources. Its operation is summarized in Figure 3b. A node-

synthesizer runs in each container to generate code for the coordinator and follower nodes. The complete network

program is shown in Figure 1c. In blue text, we include the operation of the net-synthesizer for the slot (which is not

part of the node program).

flows’ priorities that are either in the input queue or are executing inside the container. The net-synthesizer considers

the containers in order of their priority and executes all the containers that do not share nodes in the current slot. In

addition, the net-synthesizer also determines a suitable transmission channel for each container. At the end of the

slot, the net-synthesizer inspects the output queue of each container. The queue will contain all the flows that have

been executed in sufficient slots to ensure that they can tolerate the prescribed number of packet losses. If a flow is

completed and has not reached its destination, the next link on its route is released. And, depending on whether the

flow is upstream or downstream, the flow is added to either the container of the link’s destination or source. The output

queues of node-synthesizer are cleared at the end of each slot.

Let us consider the operation of the net-synthesizer in the multihop topology shown in Figure 3a. We constructed

the example by extending the routes of 𝐹0 and 𝐹1 from the original example to include an additional hop. The temporal

9

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

8th NSysS 2021, December 21–23, 2021, Cox’s Bazar, Bangladesh Kowsar, et al.

parameters remain the same ś flows have a period of six slots and a phase of zero. Figure 3b traces the state and

actions of the net-synthesizer. In slot 0, flows 𝐹0, 𝐹1, and 𝐹2 are released, and the first link of the multihop flows 𝐹0 and

𝐹1 are considered for synthesis. Since 𝐹0 and 𝐹1 are upstream, they will be added to the input queues of 𝐵’s and 𝐶’s

containers since 𝐵 and 𝐶 , are the destination of flow’s first hop. Similarly, since 𝐹2 is downstream, it is added to the

input queue of container 𝐴. To determine the actions to be performed in this slot, we consider the containers in order

of priority (i.e., container𝐵 , container𝐶 , and container𝐴). The highest priority container is guaranteed to be executed,

which requires that 𝐷 is added to container𝐵 followers. Node 𝐵’s node-synthesizer is invoked to generate code to run

𝐹0. The container𝐶 has the next highest priority, and it would require node 𝐸 if it were to be executed. Since 𝐸 is not

used by another container there is no resource conflict, and container𝐵 and container𝐶 can be scheduled in the same

slot. Similarly, 𝐶’s node program is invoked to generate code to run 𝐹1. Finally, container𝐴 is considered. However, it

cannot execute since 𝐹2 requires node 𝐶 which is already used (since it is the coordinator of container𝐶). Therefore,

container𝐴 is suspended.

In slot 1, container𝐵 and container𝐶 can be executed concurrently again. At the end of the slot, the node-synthesizers

running in each container place 𝐹0 and 𝐹1 to their respective output queues. Since 𝐹0 and 𝐹1 have not yet reached their

destination, they are added to container𝐴 , which is the source of their next-hop link. For the remaining slots of the

network program, container𝐴 executes flows 𝐹0, 𝐹1, and 𝐹2. The node program of container𝐴 for slots 3 ś 5 is the one

previously described in Figure 1c.

Our previous work ś RECORP [4, 6] and WARP [5] ś follow this strategy to synthesizing programs for wireless

CPS. RECORP considers node programs that only use pushes, while WARP uses both pulls and pushes. RECORP uses

an Integer Linear Program (ILP) to determine what containers run in a slot and what followers are assigned to each

container. The ILP lets us identify the optimal set of containers that may run in a slot while enforcing prioritization.

However, these decisions may not be optimal for longer time horizons. RECORP can synthesize programs that provide

probabilistic guarantees on packet delivery within a few minutes. In contrast to RECORP, WARP employs heuristics to

synthesize programs incrementally slot-by-slot on each node. As a result, WARP can synthesize and execute programs

that handle hundreds of flows using today’s hardware within 10 millisecond slots.

4 CONCLUSIONS AND FUTURE DIRECTIONS

Thus far, we have focused only on the challenge of handling packet failures under prescribed models of link reliability.

In a nutshell, we have found that significant gains in network performance may be garnered when considering multiple

execution paths when constructing programs. An inherent challenge with the proposed approach is state explosion,

which can significantly hamper both the program analysis and synthesis. Indeed, our initial prototypes could only scale

to handle tens of flows in moderately-sized networks. Ultimately, we have side-stepped the state explosion problem

and developed practical protocols by carefully constraining the expressiveness of the language and the structure of

the programs. We have been pleasantly surprised that it is sufficient to track only hundreds of states to outperform

state-of-the-art scheduling approaches.

We have only scratched the surface of what is possible when programs are used to coordinate the operation of

networks. Three directions for further exploration might include:

• Richer CPS Applications: As CPS applications grow in complexity, modeling their workloads as periodic flows

becomes inadequate. It is well-understood that sensors such as microphones or cameras generate variable workloads.

Similarly, our understanding of event-based feedback control is growing, and CPS applications that use it are starting

10

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Reimagining Networking Infrastructure for Future Cyber-Physical Systems 8th NSysS 2021, December 21–23, 2021, Cox’s Bazar, Bangladesh

to emerge. Furthermore, handling sporadic traffic in networks poses significant challenges, particularly in centrally

managed networks. Empirical studies into different application domains are needed to understand what are the

communication needs of CPS applications.

• Richer Models and Properties: CPS application designers mainly focus on analyzing network response time and

reliability due to the importance of feedback stability. This paper considers a simple reliability model where 𝑅 failures

can occur within the network. We should also consider more realistic models such as the TLR model. The impact of

reliability assumptions on program synthesis and analysis complexity is an area to be explored. Furthermore, other

specialized analyses (e.g., bounds on energy consumption) may be of interest in other CPS systems.

• Reinforcement Learning for Synthesis: As applications increase in complexity and designers will want to

enforce/analyze more diverse properties, we will reach a point when we transition from synthesizing programs using

handcrafted heuristics to reinforcement learning techniques. However, challenges abound. The number of action

and the state spaces for network programs are likely to be large. Building good policies will require algorithms that

reason about multi-objective optimization goals on complex data structures such as graphs or trees. Furthermore, is

insufficient to synthesize efficient network programs; for synthesis to be practical it must produce programs in a

timely manner.

In closing, we want to encourage the community to build on our work and extend program synthesis and analysis

for wireless CPS networks.

ACKNOWLEDGMENTS

This work is funded in part by NSF under CNS-1750155.

REFERENCES

[1] [n.d.]. NSF Future Internet Design. http://www.nets-find.net/.

[2] 2012. IEEE Standard for Local and metropolitan area networksśPart 15.4: LR-WPANs. IEEE Std 802.15.4e-2012 (2012).

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A survey of symbolic execution techniques. ACM

Computing Surveys (CSUR) 51, 3 (2018), 1ś39.

[4] R. Brummet, O. Chipara, and T. Herman. 2020. Recorp: Receiver-Oriented Policies for Industrial Wireless Networks. In IoTDI.

[5] Ryan Brummet, Md Kowsar Hossain, Octav Chipara, Ted Herman, and Steve Goddard. 2021. WARP: On-the-fly Program Synthesis for Agile,

Real-time, and Reliable Wireless Networks. In Proceedings of the 20th International Conference on Information Processing in Sensor Networks (co-located

with CPS-IoT Week 2021). 254ś267.

[6] Ryan Brummet, Md Kowsar Hossain, Octav Chipara, Ted Herman, and David E Stewart. 2021. Recorp: Receiver-Oriented Policies for Industrial

Wireless Networks. ACM Transactions on Sensor Networks (TOSN) 17, 4 (2021), 1ś32.

[7] Richard Candell, Catherine A Remley, Jeanne T Quimby, David R Novotny, Alexandra E Curtin, Peter B Papazian, Galen H Koepke, Joseph E Diener,

and Mohamed T Hany. 2017. Industrial Wireless Systems: Radio Propagation Measurements. Technical Note (NIST TN)-1951 (2017).

[8] Baotong Chen, Jiafu Wan, Lei Shu, Peng Li, Mithun Mukherjee, and Boxing Yin. 2017. Smart factory of industry 4.0: Key technologies, application

case, and challenges. Ieee Access 6 (2017), 6505ś6519.

[9] Octav Chipara, Chenyang Lu, Thomas C Bailey, and Gruia-Catalin Roman. 2010. Reliable clinical monitoring using wireless sensor networks:

experiences in a step-down hospital unit. In SenSys.

[10] Behnam Dezfouli, Marjan Radi, and Octav Chipara. 2017. REWIMO: A real-time and reliable low-power wireless mobile network. TOSN (2017).

[11] Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2014. The road to SDN: an intellectual history of programmable networks. ACM SIGCOMM

Computer Communication Review 44, 2 (2014), 87ś98.

[12] Ken Ferens, Lily Woo, and Witold Kinsner. 2009. Performance of ZigBee networks in the presence of broadband electromagnetic noise. In CCECE.

[13] A. Gonga, O. Landsiedel, P. Soldati, and M. Johansson. 2012. Revisiting Multi-channel Communication to Mitigate Interference and Link Dynamics

in Wireless Sensor Networks. In ICDCS.

[14] James Harbin, Alan Burns, Robert I Davis, Leandro Soares Indrusiak, Iain Bate, and David Griffin. 2019. The AirTight Protocol for Mixed Criticality

Wireless CPS. TCPS (2019).

[15] Ozlem Durmaz Incel. 2011. A survey on multi-channel communication in wireless sensor networks. Computer Networks (2011).

11

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

8th NSysS 2021, December 21–23, 2021, Cox’s Bazar, Bangladesh Kowsar, et al.

[16] Ranjit Jhala and Rupak Majumdar. 2009. Software model checking. ACM Computing Surveys (CSUR) 41, 4 (2009), 1ś54.

[17] Chenyang Lu, Abusayeed Saifullah, Bo Li, Mo Sha, Humberto Gonzalez, Dolvara Gunatilaka, Chengjie Wu, Lanshun Nie, and Yixin Chen. 2015.

Real-time wireless sensor-actuator networks for industrial cyber-physical systems. Proc. IEEE (2015).

[18] Venkata Prashant Modekurthy, Abusayeed Saifullah, and Sanjay Madria. 2019. DistributedHART: A distributed real-time scheduling system for

wirelesshart networks. In RTAS.

[19] Marcelo Nobre, Ivanovitch Silva, and Luiz Affonso Guedes. 2015. Routing and scheduling algorithms for WirelessHART Networks: a survey. Sensors

(2015).

[20] Abusayeed Saifullah, You Xu, and Chenyang Lu. 2010. Real-Time Scheduling for WirelessHART Networks. In RTSS.

[21] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. 2015. Boolean satisfiability solvers and their applications in model checking. Proc. IEEE 103, 11

(2015), 2021ś2035.

[22] Tianyu Zhang, Tao Gong, Zelin Yun, Song Han, Qingxu Deng, and Xiaobo Sharon Hu. 2018. FD-PaS: A fully distributed packet scheduling framework

for handling disturbances in real-time wireless networks. In RTAS.

12

	Abstract
	1 Introduction
	2 Modeling Assumptions
	3 Node Communication Programs
	3.1 Programs on Star Topologies
	3.2 Programs on Multihop Topologies

	4 Conclusions and Future directions
	Acknowledgments
	References

