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Future cyber-physical systems will require higher capacity, meet more stringent real-time requirements, and adapt quickly to a
broader range of network dynamics. However, the traditional approach of using fixed schedules to drive the operation of wireless
networks has inherent limitations that make it unsuitable for these systems. As an alternative, we propose to replace schedules with
domain-specific programs that coordinate the operation of the network. Our idea is that nodes in the network will run automatically
generated programs that make informed decisions about flows at run time rather than using an a priori fixed schedule. We will sketch
a domain-specific language that uses this additional flexibility to increase network capacity significantly. Furthermore, the constructed
programs are also sufficiently simple to efficiently analyze key performance metrics such as flow response time and reliability. We

conclude with future research directions.
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1 INTRODUCTION

Wireless networks provide critical infrastructure for the next generation of cyber-physical systems (CPS). Examples
of such systems include smart factories [8], automated warehouses [10], and clinical healthcare decision-support
systems [9]. The basic requirement of these applications is the need to support communication between sensors,
controllers, and actuators as part of feedback control loops typical of CPS. Unlike traditional wireless networks, CPS
infrastructure must provide real-time and reliable performance. Meeting this requirement is challenging due to the
limited wireless resources available and significant network dynamics common to industrial settings. Network dynamics
include fluctuations in the quality of wireless links, variations in the workload of applications, and topology changes
induced by node failures or mobility [7, 12].

A predictable wireless network is one where it is possible to check its safety and performance requirements under
explicit assumptions about variations in network dynamics. A range of tools such as model checkers [16] and satisfiability

solvers [21] aim to verify whether a system’s requirements are met. Such tools effectively analyze classical safety
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properties, though computational complexity is a concern even for moderate-size networks. Moreover, it can be
challenging to express network performance properties (e.g., latency, throughput, reliability, buffer utilization, and
energy consumption) in the form needed by the analysis tools. One contribution of recent research and standardization
efforts is to accommodate the limitations of tools by constraining the network architecture and its programming
model (e.g., WirelessHART, ISA100, TSCH [2]). Simplifying network architecture and its primitives helps us reason
about the behavior of the protocols; such simplification might also enable us to leverage existing analysis tools to
analyze even performance properties.

As an illustrative example, industrial standards such as WirelessHART and ISA100 use a centralized control plane
managed by a network manager. An application expresses its communication needs using flows whose parameters
(i.e., source, destination, period, the maximum number of packets) are fixed and known at design time. Based on this
information and the statistics about the quality of network links, the network manager constructs schedules that specify
the time slot and frequency of each packet transmission. The schedule determines the data plane behavior (the timing,
retries, and acknowledgments of data packets). The schedule is executed synchronously and cyclically by all nodes.
Reliability can be ensured by overprovisioning retransmissions performed over different channels and, potentially, over
multiple paths. The relatively simple design of these industrial protocols enables us to guarantee, with high probability,
the reliable and timely delivery of flows’ packets.

The current state-of-the-art approach has intrinsic limitations, which make it unsuitable for the next-generation
CPS applications. New applications are thought to need more flexibility, greater capacity, and more stringent real-time
requirements. New hardware offers increased memory on nodes, more in-network computing resources, and timer
improvements: the hope is that newer hardware will suffice for new CPS application needs. Higher bandwidth needs
are motivated by the deployment of data-intensive sensors like cameras, microphones, and LIDAR. Inherent in the CPS
vision is feedback ("closing the loop") to actuators, hence bounded latency is essential. In the short term, improvements
in wireless technology may be enough to satisfy new application demands; however, in the long run, it will be difficult
for such improvements alone to keep up with the growth and variety of applications. Consequently, we look to how we
can redesign and engineer network software with CPS applications in mind.

As a step in this direction, we consider a novel perspective on how industrial networks are designed. Specifically, we
propose to dispense with the use of schedules in favor of using node-communication programs. Our idea is that nodes
in the network will run automatically synthesized programs that make informed decisions about flows at run time
rather than having an a priori fixed schedule of packet transmissions, retries, queuing, etc. While it is true that fixed
schedules, which specify what is transmitted in a given time slot, are simpler to analyze, this simplicity sacrifices some
bandwidth that otherwise might be used for higher throughput and greater network capacity. Thanks to more powerful
node hardware, some degree of dynamic decision-making is possible in the nodes, based on local conditions. Our idea
transforms the design task from determining schedules for nodes into the task of determining the network programs
which will run in the nodes. The price we pay for this more powerful architecture is that flow reliability is more difficult
to analyze. Yet, we developed analysis techniques that make it tractable for moderate-size networks using automated
analysis tools. To facilitate tractability of analysis, node programs will be composed of primitives from a specialized
language, which we think of as a minimal domain-specific language (DSL).

The fertile research territory for the network program approach lies between two extremes, fixed schedules, and
nodes running programs specified with a general-purpose language. These extremes reflect trade-offs in analysis and
expressiveness. On the one hand, network behaviors are quite constrained when specified by fixed schedules, which are

less expressive than programs: all the actions in a schedule are executed unconditionally (and schedules do not depend
2
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on state information). Such constrained behavior facilitates traditional static analysis. On the other hand, a program
can express many potential behaviors. Tasks of verification and synthesis of node programs become complex due to
such expressiveness. Fundamental challenges are limiting the scope and scalability of analysis if node programs are too
general. In this paper, we sketch a limited DSL to balance these considerations.

In our design, each node maintains some state information and performs conditional actions which depend on that
information. The combination of state and conditional actions leads to programs having multiple possible execution
paths. This opens new opportunities for optimization unavailable in the case of schedules that have only a single
execution path. We exploit techniques from symbolic execution [3] to analyze execution paths, which automate
reasoning about the program properties.

Ongoing trends in networking support the strategy of using node programs rather than fixed schedules, e.g., networks
are becoming increasingly programmable. Such trends have precedents in older efforts such as active networks [1] and,
more recently, software-defined networks [11]. Furthermore, our proposal opens wireless networks to modern tools
that efficiently synthesize software, optimize it, and formally verify its properties. In the remainder of this paper, we
demonstrate techniques showing how node programs respond to packet losses, transmit packets opportunistically, and
provide guarantees of flow reliability given a prescribed number of packet losses. Node programs can be effectively
synthesized and analyzed for the specific problem of packet loss. The paper concludes with pointers for further

investigation.

2 MODELING ASSUMPTIONS

Network Model: CPS designers start by formally specifying their assumptions about the system’s organization,
workload, and reliability. A network is comprised of a network manager and up to a hundred nodes. Larger networks
can be built hierarchically. A network manager is a resource-rich machine that coordinates the control plane, constructs
programs or schedules, and acts as a bridge node for hierarchically-built larger networks. At the physical layer, we
assume that the network supports multiple channels and tight time synchronization. While here we focus on IEEE
802.15.4 or the more recent IEEE 802.15.4a, our general techniques apply to other types of wireless networks such as 5G
cellular networks.

Workload Model: A common model adopted in real-time and cyber-physical networks is to model an application’s
workload as a set of real-time flows that is known a priori. A real-time flow F; has a fixed route that packets traverse
through the network. A flow’s packets usually carry sensor data or actuation commands. In the broader network
community, flows are streams of packets; for real-time contexts, flows are sequences of independent packets generated
periodically at the source and must be delivered to the destination by the deadline. For each flow F;, a packet is generated
on the source node with a phase ¢;, period of P;, and deadline of D;. The k* h instance of flow F; is released at time
¥ik = ¢i +k = P; and has an absolute deadline d; ;. = r; ;. + D;. To simplify notation and the presentation, we assume that
the deadlines are less or equal to the periods (D; < P;). Since at most one instance per flow is present in the network,
the discussion will be in terms of flows rather than instances.

Entries, Pushes, and Pulls: Programs use both time division and multiple channels. We refer to a slot and channel pair
as an entry. Though a program may include several conditional pushes or pulls, only one such action may be executed
in an entry during the program’s run-time execution. A push(F;) involves the sender transmitting F;’s data and the
receiver replying with an acknowledgment (on the same channel). A push fails if the acknowledgment is not received
by the end of the slot. A pull(F;) involves the receiver requesting F;’s data and the sender replying with the flow’s data.

A pull fails if the data is not received by the end of the slot. A program may handle failed pushes or pulls by repeating
3
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the action several times to achieve the desired reliability. We will refer to the node initiating the communication of a

push or a pull as the coordinator and the responding node as the follower.

Reliability Model: In this paper, we adopt a simple (and unrealistic) reliability model where the pushes and pulls of a

coordinator experience at most R failures during the execution of a program whose length is W slots. We call this an

(R,W)-failure reliability model. In the included examples, there is a single failure during the operation of the network

(i.e., R=1and W = ). Other reliability models that capture the lossy nature of wireless links better can be considered.

However, the (R,W)-failure model is sufficient to illustrate the challenges of synthesizing and analyzing programs that

tolerate packet losses.

Constraints: A program must meet the following constraints:

o Transmission constraints: At run-time, a node is involved in at most one push or pull in a slot.

o Channel constraints: At most, one transmission is performed in an entry to avoid intra-network interference. Addi-
tionally, a node must perform consecutive transmissions on different channels.

o Forwarding constraints: Each flow has at most one link that is active in any slot. The first link on the flow’s route is
activated at release time; subsequent links are activated as the previous ones complete relaying the packets.

® Real-time and reliability constraint: The packets of a flow reach their destination before their deadline while tolerating

at most R failures within a program’s W slots at each coordinator.

3 NODE COMMUNICATION PROGRAMS

CPS networks must include sufficient transmissions to deliver a flow’s data despite a prescribed number of failures. This
problem becomes challenging when we require a solution to satisfy the following two requirements. First, the solution
must minimize the overhead of retransmissions. Otherwise, it is unlikely the network will support the high data rates
required by future CPS applications. Second, since link quality can vary from slot to slot significantly, the network must
respond to packet losses quickly without the involvement of the control plane (which is designed to handle slower
dynamics such as workload changes). Therefore, a node can only adapt its behavior based on local information, and its
adaptation decisions cannot conflict with the transmissions of other nodes. Avoiding conflicting decisions is challenging
as nodes have incomplete and inconsistent views of the outcome of transmissions and the state of other nodes.

We first introduce the concept of node communication programs and illustrate their advantages over static schedules
using a simple star topology network with one hop flows. Then, we will relax this restriction by allowing multihop

topologies and flows.

3.1 Programs on Star Topologies

Consider the star topology shown in Figure 1a and a workload consisting of three real-time flows — Fy, F1, and F. The
flows are listed in decreasing order of priority. All flows have a period and deadline of six slots and a phase of zero.
Flows Fy and F; originate at B and C and are destined for A; F» transmits data from A to C.

Schedules: A real-time scheduler (e.g., [14, 18, 20, 22] and surveys [17, 19]) constructs schedules that enforce
prioritization and incorporate retransmissions as follows. In slot 0, Fy, Fi, and F, are released. The highest priority flow,
Fo, is scheduled to transmit first. Using the actions defined in Section 2, node B is scheduled to transmit Fy’s data using
a push(Fp) command. In the same slot, A waits on the same channel and acknowledges the reception if it receives the
push. However, since this transmission may be lost, a retransmission is scheduled in the next slot. During slots 0 and 1,
C can sleep because it is not communicating. The remainder of the static schedule is built similarly and included in

Figure 1b. Observe that each entry in the schedule consists of a single instruction that either has a node transmit a
4
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Slot | Node A Node B | Node C
0 start(Fp) wait sleep
pull(Fo)
Slot | Node A | Node B | Node C 1 start(Fy) wait wait
0 wait push(Fy) | sleep if thas(Fy) then pull(Fy)
@\ 1 wait push(Fp) | sleep else pull(F;)
Fof \F Fa 2 wait sleep push(Fy) complete(Fy)
N 3 wait sleep push(F;) 2 start(Fy) sleep wait
\@ 4 | push(Fy) | sleep wait if thas(Fy) then pull(F;)
5 push(Fz) | sleep wait else push(F,)
complete(F;)
3 if thas(F,) then push(Fz) | sleep wait
complete(F)

(a) Topology (b) Schedule (c) Node program
slot 0 slot 1 slot 2 slot 3
Rl Fi ] Fe oo R [F]F|
FU FO

RN
AAALSAAA

F F

~ 3
[Fo [ F [Re Far Fo | P [Fe]

F,

(d) Execution DAG

Fig. 1: Star topology example — We build a node program for the topology and flows shown in Figure 1a. Figure 1b
shows a static schedule for this workload. The generated node program and its associated execution DAG are provided
in Figures 1c and 1d, respectively.

packet, wait for a transmission request from another node on a specified channel, or sleep. These actions are performed
independent of the outcome of transmissions observed at run-time.

An advantage of static schedules is that they are easy to analyze, especially in terms of each flow’s latency and
reliability. However, due to their rigidity, networks that use schedules cannot reclaim resources that are not needed
when errors do not occur because they do not include state information or support conditional commands. For example,
consider the schedule listed in Figure 1b. It is desirable to cancel the push(Fp) scheduled in slot 1 if the push(Fp) scheduled
in slot 0 has succeeded, which frees up this slot for another instruction if needed. This observation motivated us to
consider transforming schedules of unconditional actions to programs by additing of state information and conditional
statements, as shown next.

Programs: To write a program that can tolerate failures efficiently, we make the following two observations. First,
observe that node A is in a unique position to determine whether the packets of any flow have reached its destination
successfully. Since A is F»’s source, pushes can be used to relay the flow’s data. A will know the outcome of Fy’s
transmission because C responds with an acknowledgment to a push(Fz). Node A is the destination of Fy and F;. For
such flows, pulls can be used to retrieve the data of those flows. A can determine the outcome of those transmissions
since the recipient of a pull responds with a flow’s data. Therefore, using the right combination of pushes and pulls, the

5
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central node of a star topology knows precisely the outcome of the flow’s transmissions at run-time. In contrast, the
other nodes in the star topology have a partial and inconsistent view of these outcomes.

The consequence of the above observation is that we can construct a consistent view of the failures in the star
topology by maintaining state at node A. Specifically, let node A maintain a dictionary M that associates a single bit
with each flow, indicating a flow’s successful (S) or failed (F) delivery. Then, A can conditionally execute different
actions depending on its state and according to the packet losses observed at run-time.

Armed with these two insights, a program that delivers the flows when a single packet loss may occur can be written
and analyzed. In slot 0, when the flows are released, A marks each flow as not received by initializing M = {Fy : F, F; :
F, F5 : F}. In this slot, A executes a pull(Fp) resulting in A having two possible states at run-time. Either A received Fy
and its state is M = {Fy : S, F1 : F, Fp : F}, or A’s state is M = {Fy : F, F; : F, F» : F}. Scheduling approaches ignore this
information and simply assume the worst-case behavior. In contrast, programs consider both states (and the execution
paths that led to the states) when determining future actions.

Consider the case when A’s state is M = {Fy : F,F; : F, F5 : F} at the beginning of slot 1. In this case, A has not
received Fy yet (indicated by !has(Fy) being true), so it should execute pull(Fp). Since there can be at most one failure
under the assumed fault model with R = 1 and this failure already occurred in slot 0, then the pull(Fy) executed in slot 1
must be successful, and A’s state becomes M = {Fy : S,F; : F, F5 : F}.

The other option is that at the beginning of slot 1, A’s state is M = {Fy : S,F; : F, F5 : F}. Since Fy was already
delivered successfully, A can execute a pull(F;). On this execution path, a packet loss has not yet been observed. Thus,
the pull can either succeed reaching state M = {Fy : S, Fj : S, F2 : F} or fail reaching state M = {Fy : S, F; : F, Fy : F}.
Figure 1c shows the complete program. The different execution paths through the program can be captured as an
execution DAG shown in Figure 1d. The red and green backgrounds in the figure indicate whether a flow’s delivery
failed (F) or succeeded (S), respectively. The arrows are labeled with the flow that was executed in a given state. The
label’s color indicates the outcome of each action.

Program Properties: A feature of programs is that a single slot may be shared by multiple transmissions, though
only one transmission is executed per slot. For example, in slot 1, either Fy or F; may be executed depending on the
outcome of the previous transmission. It is important to note that sharing is possible without having to resort to
contention-based techniques. The ability to share slots among multiple flows depending on the execution path is why
the program is two slots shorter than the schedule. As the number of flows and allowable failures increases, these
improvements will also increase, resulting in significant gains in capacity and reductions in latency.

Formalizing Programs: Let us formalize the concept of a node program. The resources involved in executing a
program include a single coordinator node and one or more follower nodes. The followers are constrained to be within
one hop of the coordinator. We will refer to a grouping of these program resources (a coordinator and its followers)
as a container. In the above example, there is a single container whose coordinator is node A; the nodes B and C are
followers. Each container has an input, a running, and an output queue of flows. The input queue includes flows that the
container must process. The running queue includes flows currently executed by the container, using the coordinator
and follower nodes. Finally, the output queue includes the completed flows i.e., flows that are guaranteed to deliver
their packets under the prescribed reliability model.

A node program is executed by the coordinator and followers of a container. The instruction start removes a flow
from the container’s input queue for processing. The instruction complete indicates that a flow completed its execution

and adds it to the container’s output queue.
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fragment := start-blk; action_blk; complete_blk
start_blk := start(flow)

complete_blk := complete(flow); | complete_blk
action_blk := action | if-statement

if-statement := if bool-expr then action else-part
else-part := else action_blk | €

bool-expr := has(flow) | thas(flow)

action := pull(flow) | push(flow) | wait | sleep

Fig. 2: EBNF rules of a program fragment

A node program is structured as an array of fragments indexed by the slot in which the fragment is executed. A
fragment may include actions and if-statements that allow actions to be executed conditionally. The coordinator may
execute either push or pull while the followers execute waits or sleeps. In each fragment, at most a single action can be
executed at run-time to ensure that its execution time does not exceed the length of a slot.

The state of a node program currently includes only M, which keeps track of the state of each flow. When flow F;
starts executing, M[F;] is initialized to failure (F). When push(F;) or pull(F;) is executed successfully, M[F;] is set to
success (S). Flow F; is removed from M when complete(F;) is executed. Conditional if-statements may query the state
of the program using has(F;), which returns true if M[F;] is successful (S).

The grammar of a fragment is included in Figure 2. A fragment has three blocks: a start block, an action block, and
a complete block. The start block may include a single starts to begin the execution of a flow within the container.
Similarly, the complete block may include one or more completes to indicate that a flow is complete. The action block
may include one of push, pull, wait, or sleep in the base case. We allow for the inclusion of conditional if-then-else
statements. As part of the condition, a program may use has(F;) or its negation !has(F;) to determine whether node A
has F;. In any slot, we constrain a node to execute at most one action per slot to guarantee its completion by the end of
the slot.

Analysis of Execution DAGs: Analyzing whether the program can tolerate the prescribed single packet loss is
more difficult than static, schedule-table approaches. For this simple example, we can determine this is the case by
visually inspecting the execution DAG and observing that each path includes at most one failure and reaches the final
state when all flows deliver their packets. The response time of each flow can also be computed as the maximum length
of the paths in the execution DAG that start with the state in which the flow is released and end with the state in which
the flow is completed. A general method for analyzing the reliability and latency of flows is to consider those properties
along all possible execution paths. This fact should be concerning as it is known that the number of paths and reachable
states can grow exponentially, leading to a state explosion problem. While we may bring techniques used in verification
to mitigate the state explosion problem to bear, we found the strategy of synthesizing code with a fixed structure can
simplify analysis. The synthesis procedure described next enables such simpler reliability analysis by controlling the
“structure” of the generated code.

Program Synthesis: A real-time scheduler can be adapted to efficiently synthesize the fragments that will be
executed in each slot. The node-synthesizer manages the container’s run queue, which includes the flows currently
executing inside the container. With each flow in the run queue, we associate a counter indicating the number of times
it was scheduled for execution. In each slot, the node-synthesizer inspects the container’s input queue to determine if
any flows need to be serviced. If the queue is not empty, the flow at the head of the container’s input queue is removed
and added to the run queue. Its execution counter is initialized to zero. The node-synthesizer generates the fragment

7



366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

384

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

416

8th NSysS 2021, December 21-23, 2021, Cox’s Bazar, Bangladesh Kowsar, et al.

that will be executed in the current slot based on flows in the run queue. We consider each flow F; in the run queue
iteratively and in order of priority. We synthesize a conditional statement that checks if F; is not yet complete (i.e.,
has(F;) is False) and, if this is a case, either a push(F;) or pull(F;) is generated. The execution counter of all flows in
the run queue is incremented by one at the end of the slot. A flow in the run queue whose execution counter equals
the maximum number of failures R + 1 has been scheduled in sufficient executions to tolerate R failures. Therefore,
the flow is complete and can be moved from the run queue to the container’s output queue. This algorithm generates
the programs shown in Figure 1c, except for slot 0. In slot 0, we already know that has(F) is False, so the pull(Fp) is
performed unconditionally (and the if-statement does not need to be generated).

We can prove that the program tolerates the desired R failures by leveraging the structure of the synthesized
code. Specifically, proving that flow F; will reach its destination despite R packet losses requires showing that all
possible program execution paths reach a state where M[F;] = S. The constrained structure of the program results in a
constrained execution DAG similar to the one shown in Figure 1d. The proof revolves around determining the number
of failures on each of the paths that reach a state where F; was received. When programs are less regular or for different
reliability models, the reliability analysis can be more complicated. In [4-6], we considered a more realistic reliability
model called the Threshold Link Reliability (TLR) model. TLR models the likelihood that an action (i.e., a push or pull)
of flow F; (including both exchanges of data between sender and receiver) is successful as a Bernoulli variable LQ; ().
We assume that consecutive pushes or pulls performed over the same or different links are independent. Empirical
studies suggest that this property holds when channel hopping is used [13, 15]. TLR has only one parameter — the
minimum packet delivery rate m, which lower bounds the values of LQ;(t) such that m < LQ;(¢) Vi,t € N. We have
developed efficient synthesis techniques that ensure that when packet losses follow the TLR model, we can construct

programs that guarantee the delivery of a flow’s packets.

3.2 Programs on Multihop Topologies

In this section, we consider how we may construct programs for multihop topologies.

At a high level, our approach to handling multihop topologies is based on a two-level synthesis strategy. At the
node level, containers synthesize their node programs as described in the previous section. At the network level, the
problem is to arbitrate the allocation of nodes to containers to ensure nodes are in at most one container. Each node
has its own container for which it is the coordinator. A container runs a node-synthesizer responsible for synthesizing
programs that execute the flows in its input queue. The node-synthesizer generates code to be executed by both the
coordinator and the followers (but involves no nodes outside the container). Then, the net-synthesizer runs centrally
and constructs a cyclic schedule that executes or suspends containers in each slot. A node can be either a container’s
coordinator or a follower for a single container in given slot. Multiple containers may be assigned in a slot on different
channels if they do not share followers or coordinators to maximize throughput. The containers that are executed and
their follower nodes may change from slot to slot.

Traditional real-time schedulers can be easily adapted to operate on containers rather than flows. Specifically, we
can construct the high-level program iteratively in a slot-by-slot manner. In each slot, the net-synthesizer considers
the flows that are released according to their priority. Multihop flows are initially released on the link associated with
their first hop. We categorize flows as upstream or downstream depending on whether they forward data to or from
a common node, respectively. (This is common in wireless sensor networks that employ a base station.) If a flow is
upstream, the flow is added to the input queue of its destination’s container. Conversely, if the flow is downstream, the

flow is added to the input queue of its source’s container. Let the priority of a container be the maximum priority of the
8
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Slot — 0 1 | 2 3 | 4 | 5
container4 Input F, F, Fy, F1, F> F, F, F,

container4 Followers B B,C C C
containery Action suspend suspend exec([Fo ], #2) | exec([Fo, F1 ], #0) | exec([Fy, F2], #1) | exec([F:], #2)
container Output Fy F F
containerg Input Fy

containerg Followers D D

containerg Action exec([Fy],#0) | exec([Fo], #1) - - - -
containerg Output Fy

containerc Input F

containerc Followers E E

containerc Action exec([F;].#1) | exec([F], #2) - - - -
containerc Output F

(a) Multihop topology (b) Operation of net-synthesizer
Slot | Node A Node B Node C Node D Node E

0 suspend exec([Fy [, #0) in containerp exec([F; |, #1) in containerc exec([Fo [, #0) in containerg | exec([F; ], #1) in containerc
sleep start(Fy) start(F;) wait wait

pull(Fy) pull(Fy)

1 suspend exec([Fp ], #0) in containerg exec([F; ], #1) in containerc exec([Fp ], #0) in containerg | exec([F; ], #1) in containerc
sleep if 'has(Fy) then pull(Fp) if 'has(F;) then pull(F;) wait wait

complete(Fyp) complete(F;)

2 exec([Fy ], #2) in container 4 exec([Fy ], #2) in container 4 suspended suspend suspend
start(Fp) wait sleep sleep sleep
pull(Fo)

3 exec([Fo, Fy ], #0) in container 4 exec([Fo, F ], #0) in container 4 exec([Fo, F1], #0) in container 4 suspend suspend
start(Fy) wait wait sleep sleep
if 'has(Fy) then pull(Fp)
else pull(F;)
complete(Fp)

4 exec([Fy, F2], #1) in container4 | suspend exec([Fy, F2], #1) in container4 | suspend suspend
start(Fy) sleep wait sleep sleep
if thas(Fy) then pull(Fy)
else push(F,)
complete(F;)

5 exec([Fz ], #2) in container 4 suspend exec([Fz ], #2) in container 4 suspend suspend
if 'has(F;) then push(Fz) sleep wait sleep sleep
complete(Fz)

(c) Complete network program

Fig. 3: Multihop example — We build a network program for the topology and flows in Figure 3a. The net-synthesizer
determines which containers run and their associated resources. Its operation is summarized in Figure 3b. A node-
synthesizer runs in each container to generate code for the coordinator and follower nodes. The complete network
program is shown in Figure 1c. In blue text, we include the operation of the net-synthesizer for the slot (which is not
part of the node program).

flows’ priorities that are either in the input queue or are executing inside the container. The net-synthesizer considers

the containers in order of their priority and executes all the containers that do not share nodes in the current slot. In

addition, the net-synthesizer also determines a suitable transmission channel for each container. At the end of the

slot, the net-synthesizer inspects the output queue of each container. The queue will contain all the flows that have

been executed in sufficient slots to ensure that they can tolerate the prescribed number of packet losses. If a flow is

completed and has not reached its destination, the next link on its route is released. And, depending on whether the

flow is upstream or downstream, the flow is added to either the container of the link’s destination or source. The output

queues of node-synthesizer are cleared at the end of each slot.

Let us consider the operation of the net-synthesizer in the multihop topology shown in Figure 3a. We constructed

the example by extending the routes of Fy and F; from the original example to include an additional hop. The temporal

9
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parameters remain the same — flows have a period of six slots and a phase of zero. Figure 3b traces the state and
actions of the net-synthesizer. In slot 0, flows Fy, Fy, and F; are released, and the first link of the multihop flows Fy and
F; are considered for synthesis. Since Fy and F; are upstream, they will be added to the input queues of B’s and C’s
containers since B and C, are the destination of flow’s first hop. Similarly, since F; is downstream, it is added to the
input queue of container A. To determine the actions to be performed in this slot, we consider the containers in order
of priority (i.e., containerp, containerc, and containery). The highest priority container is guaranteed to be executed,
which requires that D is added to containerp followers. Node B’s node-synthesizer is invoked to generate code to run
Fy. The containerc has the next highest priority, and it would require node E if it were to be executed. Since E is not
used by another container there is no resource conflict, and containerg and containerc can be scheduled in the same
slot. Similarly, C’s node program is invoked to generate code to run Fj. Finally, containery is considered. However, it
cannot execute since Fp requires node C which is already used (since it is the coordinator of containerc). Therefore,
containery is suspended.

In slot 1, containerp and containerc can be executed concurrently again. At the end of the slot, the node-synthesizers
running in each container place Fy and F; to their respective output queues. Since Fy and F; have not yet reached their
destination, they are added to container4, which is the source of their next-hop link. For the remaining slots of the
network program, containery4 executes flows Fy, F1, and Fy. The node program of container4 for slots 3 — 5 is the one
previously described in Figure 1c.

Our previous work — RECORP [4, 6] and WARP [5] - follow this strategy to synthesizing programs for wireless
CPS. RECORP considers node programs that only use pushes, while WARP uses both pulls and pushes. RECORP uses
an Integer Linear Program (ILP) to determine what containers run in a slot and what followers are assigned to each
container. The ILP lets us identify the optimal set of containers that may run in a slot while enforcing prioritization.
However, these decisions may not be optimal for longer time horizons. RECORP can synthesize programs that provide
probabilistic guarantees on packet delivery within a few minutes. In contrast to RECORP, WARP employs heuristics to
synthesize programs incrementally slot-by-slot on each node. As a result, WARP can synthesize and execute programs

that handle hundreds of flows using today’s hardware within 10 millisecond slots.

4 CONCLUSIONS AND FUTURE DIRECTIONS

Thus far, we have focused only on the challenge of handling packet failures under prescribed models of link reliability.
In a nutshell, we have found that significant gains in network performance may be garnered when considering multiple
execution paths when constructing programs. An inherent challenge with the proposed approach is state explosion,
which can significantly hamper both the program analysis and synthesis. Indeed, our initial prototypes could only scale
to handle tens of flows in moderately-sized networks. Ultimately, we have side-stepped the state explosion problem
and developed practical protocols by carefully constraining the expressiveness of the language and the structure of
the programs. We have been pleasantly surprised that it is sufficient to track only hundreds of states to outperform
state-of-the-art scheduling approaches.

We have only scratched the surface of what is possible when programs are used to coordinate the operation of

networks. Three directions for further exploration might include:

o Richer CPS Applications: As CPS applications grow in complexity, modeling their workloads as periodic flows
becomes inadequate. It is well-understood that sensors such as microphones or cameras generate variable workloads.
Similarly, our understanding of event-based feedback control is growing, and CPS applications that use it are starting

10
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to emerge. Furthermore, handling sporadic traffic in networks poses significant challenges, particularly in centrally
managed networks. Empirical studies into different application domains are needed to understand what are the
communication needs of CPS applications.

Richer Models and Properties: CPS application designers mainly focus on analyzing network response time and
reliability due to the importance of feedback stability. This paper considers a simple reliability model where R failures
can occur within the network. We should also consider more realistic models such as the TLR model. The impact of
reliability assumptions on program synthesis and analysis complexity is an area to be explored. Furthermore, other
specialized analyses (e.g., bounds on energy consumption) may be of interest in other CPS systems.
Reinforcement Learning for Synthesis: As applications increase in complexity and designers will want to
enforce/analyze more diverse properties, we will reach a point when we transition from synthesizing programs using
handcrafted heuristics to reinforcement learning techniques. However, challenges abound. The number of action
and the state spaces for network programs are likely to be large. Building good policies will require algorithms that
reason about multi-objective optimization goals on complex data structures such as graphs or trees. Furthermore, is

insufficient to synthesize efficient network programs; for synthesis to be practical it must produce programs in a

timely manner.

In closing, we want to encourage the community to build on our work and extend program synthesis and analysis

for wireless CPS networks.
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