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Abstract

Fluids are commonly invoked as the primary cause for weakening of detachment shear zones.
However, fluid-related mechanisms such as pressure-solution, reaction-enhanced ductility,
reaction softening and precipitation of phyllosilicates are not fully understood. Fluid-facilitated
reaction and mass transport cause rheological weakening and strain localization, eventually
leading to departure from failure laws derived in laboratory experiments. This study focuses
on the Miocene Raft River detachment shear zone in northwestern Utah. The shear zone is
localized in the Proterozoic Elba Quartzite, which unconformably overlies the Archaean base-
ment, and consists of an alternating sequence of quartzite and muscovite-quartzite schist.
In this study, we characterize fluid-related microstructures to constrain conditions that
promoted brittle failure in a plastically deforming shear zone. Thin-section analyses reveal
the presence of healed microcracks, transgranular fluid inclusion planes and grain boundary
fluid inclusion clusters. Healed microcracks occur in three sets, one sub-perpendicular
to the mylonitic foliation, and a set of two conjugate microcracks oriented at ~40–60° to
the mylonitic foliation. Healed microfractures are filled with quartz, which has a distinct fabric,
suggesting that microcracks healed while the shear zone was still at conditions favourable for
quartz crystal plasticity. Transgranular fluid inclusion planes also occur in three sets, similar in
orientation to the healed microfractures. Fluid inclusions commonly decorate grain and
subgrain boundaries as inter- and intragranular clusters. Our results document ductile over-
print of brittle microstructures, suggesting that, during exhumation, the Raft River detachment
shear zone crossed the brittle–ductile transition repeatedly, providing pathways for fluids to
permeate through this shear zone.

1. Introduction

Fluids play a critical role in controlling the chemical and physical behaviour of the crust
and mantle (e.g. Caine et al. 1996; Hirschmann, 2006). Fluid–rock interaction controls rock
deformation through a variety of processes including hydrolytic weakening (e.g. Griggs,
1967), pressure-solution creep (e.g. Shimizu, 1995) or metamorphic reactions (e.g. Ferry,
1994). Faults and shear zones are important structures that control fluid circulation from
the upper to the lower crust (e.g. Reynolds & Lister, 1987; McCaig, 1988). Fluid circulation
in the brittle upper crust is accommodated through faults and fractures that commonly increase
porosity and permeability of the host rock, allowing fluids to penetrate to mid-crustal levels
(e.g. McCaig, 1988; Sibson, 1992; Wehrens et al. 2016; Fig. 1). Faults also exhibit fault-valve
behaviour, becoming highly permeable after seismic failure, channelling fluid discharge in
the seismogenic zone (Sibson, 1990, 1992). This mechanism involves pre-seismic stress
build-up causing increased dilatancy and drawing-in of fluid into the stressed rock, followed
after seismic rupture by a pressure drop and fluid venting out of networks of microcracks
(Reynolds & Lister, 1987; McCaig, 1988; Sibson, 1990). This fault-valve behaviour or ‘seismic
pumping’ suggests that fluids may be one of the primary drivers of the seismic cycle (Cox, 2010;
Miller, 2013; Zhu et al. 2020; Prando et al. 2020). In the ductile regime, fluid circulation is
conceptually challenging (e.g. Connolly & Podladchikov, 2004). Recent studies have demon-
strated that viscous flow can produce porosity in deforming rocks through dynamic recrystal-
lization (Gilgannon et al. 2020) and creep cavitation processes (Fusseis et al. 2009; Menegon
et al. 2015; Précigout et al. 2019; Dobe et al. 2021).

The brittle–ductile transition is therefore a critical zone to study fluid–rock interaction that
occurs in faults and shear zones (e.g. Marchesini et al. 2019). Deformation at the brittle–ductile
transition is cyclical, oscillating between brittle and ductile behaviour (e.g. Famin et al. 2004,
2005; Siebenaller et al. 2013, 2016; Carter et al. 2015; Compton et al. 2017). A switch in failure
mode is typically attributed to a perturbation in one of the parameters controlling deformation,
such as deviatoric stress, strain rate or pore fluid pressure. Detachment shear zones associated
with metamorphic core complexes evolved at the brittle–ductile transition and are rapidly
exhumed (e.g. review by Whitney et al. 2013 and references therein). These shear zones are
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therefore a prime candidate to study in detail fluid–rock interac-
tion and brittle–ductile deformation.

Metamorphic core complexes form during orogenic collapse of
an overthickened crust (e.g. review by Whitney et al. 2013 and
references therein). Extension in the cool and brittle upper crust
is accommodated by faulting and fracturing, providing pathways
(high porosity/permeability fractures and faults) and head gradient
(steep topography) for fluid infiltration (Fig. 1). The hot, ductile
lower crust flows laterally. Because of this rheologic contrast
between the upper and lower crust, combined with hydrolytic
weakening, pressure-solution creep and metamorphic reactions
in a fluid-saturated system, strain commonly localizes at the
brittle–ductile transition, leading to the development of detach-
ment shear zones. Progressive exhumation of the detachment
shear zone leads to the formation of a metamorphic core complex.

In this contribution, we investigate the record of fluid–rock
interaction at the brittle–ductile transition in the detachment shear
zone associated with the Miocene Raft River metamorphic core
complex (e.g.Wells et al. 2000). Previous work demonstrates abun-
dant evidence of chemical, physical and isotopic water–rock inter-
actions in this detachment shear zone (Gottardi et al. 2011, 2015;
Methner et al. 2015). The goal of this study is to characterize fluid-
related microstructures to constrain conditions that promoted
brittle failure in a plastically deforming system.

2. Regional geology

2.a. The Raft River metamorphic core complex

The Raft River Mountains are located in northwestern Utah’s
portion of the Great Basin province and are a component of
the larger Raft River–Albion–Grouse Creek metamorphic core
complex (Fig. 2; Compton, 1975). The Raft River Mountains are
composed of Archaean through Permian aged amphibolite- to
greenschist-facies rocks. Following several episodes of contraction
during the Mesozoic to early Cenozoic Sevier orogeny (Wells,
1997; Hoisch et al. 2002; Harris et al. 2007), the Raft River expe-
rienced two pulses of extension during Cenozoic time: an initial
Eocene to early Oligocene (~42–37 Ma) extension along the

W-rooted Middle Mountain shear zone (Saltzer & Hodges,
1988; Wells et al. 2000), and Oligo-Miocene extension (~25 to
15 Ma) along the top-to-the-E Raft River detachment shear zone
(Wells et al. 2000; Wells, 2001; Gottardi et al. 2011; Gottardi &
Teyssier, 2013).

The Raft River detachment fault and associated shear zone
displace upper plate Neoproterozoic to Palaeozoic rocks ~30 km
against Archaean to Proterozoic footwall rocks (Fig. 2; Wells et al.
2000). The footwall of the Raft River detachment shear zone is
composed of the Green Creek Complex (Armstrong & Hills,
1967; Armstrong, 1968), which consists of ~2.55 Ga gneissic
monzogranite that intrudes metatrondhjemite, metagabbro and
hornblende-biotite schist (Armstrong, 1968; Compton et al.
1977; Miller, 1980; Todd, 1980) and overlying Proterozoic Elba
Quartzite (Compton, 1975). The only remnants of the upper plate
crop out as scattered klippen of Palaeozoic metasedimentary rocks
in the eastern Raft River Mountains (Fig. 2; Compton, 1975; Wells,
1997, 2001; Wells et al. 1998).

2.b. The Raft River detachment shear zone

The Miocene Raft River detachment shear zone is localized within
the Proterozoic Elba Quartzite (Fig. 2; Compton, 1972, 1975;
Compton et al. 1977; Malavieille, 1987a; Wells, 2001; Sullivan,
2008; Gottardi & Teyssier, 2013). The basement shows little defor-
mation, suggesting that the rheology contrast between the Elba
Quartzite and basement facilitated strain localization, and the
Elba Quartzite acted as a stress guide (Malavieille, 1987a; Wells,
2001; Sullivan, 2008; Gottardi & Teyssier, 2013).

The Elba Quartzite contains, from bottom to top, a basal
quartzite-cobble metaconglomerate, an alternating sequence of
white quartzite and muscovite-quartzite schist, a very distinctive
layer of red quartzite and a sequence of alternating feldspar-rich
micaceous quartzite, pure quartzite and pebble-gravel metacon-
glomerate (Fig. 2; Wells et al. 1998; Sullivan, 2008; Gottardi &
Teyssier, 2013). Microstructural analysis combined with oxygen
stable isotope geothermometry of quartz–muscovite pairs from
the Elba Quartzite mylonite suggests that the Miocene Raft
River detachment shear zone evolved under greenschist-facies
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Fig. 1. (Colour online) (a) Fluid–rock interaction in a detachment system associated with the formation of a metamorphic core complex and (b) strength profile through the
crust plotted with Coulomb frictional failure criterion for the upper crust and quartzite flow law for the lower crust, using a 25 °C/km geothermal gradient (modified from Gottardi
et al. 2018).
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conditions (~350–475 °C; Gottardi et al. 2011; Gottardi &
Teyssier, 2013).

Themylonitic foliation, defined by flattened and elongatedmusco-
vite grains, is sub-horizontal, shallowly dipping to the east and follows
the gentle domal shape of the core complex (Compton, 1980; Wells,
1997; Sullivan, 2008; Gottardi & Teyssier, 2013). The lineation,

expressed by stretched muscovite grains on the foliation planes,
clearly indicates a top-to-the-E sense of shear (Compton, 1980;
Wells, 1997, Sullivan, 2008; Gottardi & Teyssier, 2013). Previous
kinematic analyses of the Raft River detachment shear zone, including
type-II S-C fabrics, asymmetric tails around feldspar porphyroclasts,
shear bands, asymmetric quartz c-axis cross-girdles and single girdles
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Fig. 2. (Colour online) Simplified regional geologic map of the eastern Raft River Mountains, with the location of the Clear Creek Canyon (study area). (a) Detailed map of the
study area, the Clear Creek Canyon. White dot indicates location of collected samples. (b) Cross-section through the Raft River Mountains. Modified from Gottardi & Teyssier (2013)
and Gottardi et al. (2015). (c) Vertical profile through the Raft River detachment shear zone. The ~50 to 75 m thick shear zone is localized in the Elba Quartzite. The Quartzite
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all provide consistent evidence of a top-to-the-E sense of shear
(Compton, 1980; Sabisky, 1985; Malavieille, 1987a,b; Wells, 1997,
2001; Sullivan, 2008; Gottardi et al. 2011, 2015; Gottardi &
Teyssier, 2013).

3. Methodology

The samples investigated in this study were collected on a vertical
transect across the Raft River detachment shear zone at Clear
Creek Canyon. Six representative samples of the quartzitemylonite
were analysed (Fig. 2). The detachment shear zone also hosts
numerous quartz veins that are either transposed parallel to the
foliation (samples RR09-Ky06 and RR10-02) or at a high angle
to the foliation (sample RR10-09). Petrographic analysis was
conducted on standard thin-sections (30 μm thick) prepared from
eight quartzite mylonite samples collected across the Raft River
detachment shear zone (Fig. 2c). Thin-sections were prepared
from billets cut perpendicular to the mylonitic foliation and
parallel to the lineation. Whole thin-section scans were acquired
with a digital film scanner to gather plain- and crossed-polarized
images in order to investigate the orientation of healed microfrac-
tures. Microstructural analysis was then conducted using a Nikon
Eclipse LV100 microscope using 5×, 10×, 20× and 50× objectives
and a 100× oil immersion objective to observe fluid inclusions.
Using a Leitz Wetzlar 3-axis universal stage mounted to a Zeiss

optical microscope, the orientation of intracrystalline fluid inclu-
sion planes and their host quartz crystal c-axis were determined
using 150 μm thick thin-sections of the same eight samples. The
software ImageJ (Schneider et al. 2012) was used for measuring
fluid inclusion plane orientation and fluid inclusion size. The soft-
ware Orient (Vollmer, 2015) was used to plot stereographic projec-
tions of orientation data, such as fluid inclusion planes.

4. Results

We first present a microstructural analysis of the quartzite
mylonite, then focus on the secondary fluid inclusions found in
six quartzite mylonite samples collected across the detachment
shear zone, and two quartz vein samples collected near the top
of the detachment shear zone (Fig. 2c). Our results show that fluid
inclusions are found in three types of microstructures: (1) healed
microcracks, (2) transgranular fluid inclusion planes, and (3) grain
boundary fluid inclusion clusters.

4.a. Microstructural analysis

The quartzite is characterized by two quartz grain populations:
coarse elongate (>500 μm long) grains or ‘relict’ grains, and finer
recrystallized grains (20–100 μm) (Fig. 3a–c). The relict grains
have moderate to high aspect ratios (1:2 to 1:5) and define the
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Fig. 3. (Colour online) Cross-polarized thin-section photomicrographs showing (a) representative quartz and muscovite microstructures of the Elba Quartzite mylonite from the
Raft River detachment shear zone. (b, c) The quartz grain population is divided into large relict grains and small recrystallized grains (arrows). (d) Relict grains show strong
undulose extinction (ue) and commonly contain deformation lamellae (dl). When present, shear bands (sb) form at a shallow angle (~10–20°) to the mylonitic foliation.
Thin-sections cut perpendicular to foliation (fol) and parallel to lineation; the photomicrographs are taken oriented top-to-the-E.
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macroscopic fabric. They typically exhibit strong undulose extinc-
tion, deformation bands and deformation lamellae (Fig. 3d).
Recrystallized grains are found at the boundaries of relict grains
(Fig. 3b, c). They are equant or blocky to slightly elongate and
have a direct relation to subgrains present in large grains.
Recrystallized grains locally form a low-angle oblique secondary
foliation at 30–35° to the macroscopic foliation, indicating a
top-to-the-E sense of shear, consistent with other kinematic
criteria (Compton, 1980, Sullivan, 2008; Gottardi & Teyssier,
2013). Although not common, shear bands tend to form at a
shallow angle (~10–20°) to the mylonitic foliation. Shear bands
are typically associated with grain-size reduction. Relict grains
in the vicinity of shear bands show an asymmetric shape and
muscovite tails indicative of a top-to-the-E sense of shear.

Muscovite grains define the mylonitic foliation and typically
pin relict quartz grains (Fig. 3c). Muscovite tends to form thin folia
that rarely exceed a thickness of 50 μm.Muscovite grains also form
two populations: large folia defining the foliation (Fig. 3c) and
occasionally forming shear bands (Fig. 3d), and small, rhomb-
shaped grains commonly found pinning quartz grains (Fig. 3b).

4.b. Fluid inclusions related to deformation fabrics

The distribution of fluid inclusions was observed in thin-sections
oriented perpendicular to the foliation and parallel to the lineation
(XZ). The nomenclature for describing fluid inclusions is defined
by the physical and chemical properties of each inclusion (Kranz,
1983; Roedder, 1984; Lespinasse, 1999; Lespinasse et al. 2005).
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Fig. 4. (Colour online) Cross-polarized photomicrographs of thin-sections oriented perpendicular to the foliation and parallel to the lineation. (a–c) Microcracks tend to be
oriented at a high angle to the mylonitic foliation (see circular frequency polygon). They are filled with quartz, which has a distinct fabric, not as strong as the mylonitic fabric,
suggesting thatmicrocracks healedwhile the shear zonewas still at conditions favourable for quartz crystal plasticity. Fluid inclusions are abundant within the quartz fill and seem
to be forming fluid inclusion planes that are sub-parallel with the walls of the microcracks (yellow arrow). (d) Horsetail structures (yellow arrow) are commonly found at the tip of
mineralized microcracks. These structures contain a large number of fluid inclusion planes that typically fan out both upward and downward at the tip of the cracks.
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Fluid inclusions that define planar trails (fluid inclusion planes)
are known as secondary fluid inclusions (Fig. 6). We observe
secondary fluid inclusions that cross multiple grains, referred to
as transgranular, and single grains, referred to as intragranular.
Grain boundary fluid inclusions are also common in the studied
samples. Although not observed in this study, the nomenclature
for individual isolated fluid inclusions that formed coevally with
either vein formation or host mineral crystallization are called
primary fluid inclusions.

4.b.1. Healed microfractures
Healed microfractures are common structures found in all studied
samples (Fig. 4). These through-going fractures cut across the entire
thin-section (Fig. 4a). The fractures cut across themylonitic foliation,
and often offset muscovite grains (Fig. 4b). The width of the healed
microfractures ranges from ~20 to 100 μm (Fig. 4b). The microfrac-
tures are filled with quartz, which has a fabric, not as strong as the
fabric in adjacent quartz grains in themylonite. Two adjacent micro-
fractures sometimes exhibit stepover patterns. Fluid inclusions are
abundant in the vicinity of the healedmicrofractures, typically occur-
ring in planes parallel to the microfracture (Fig. 4c). The tip of the
microfractures is commonly accompanied by horsetail structures
that fan out both upward and downward (Fig. 4d). Fluid inclusions
are particularly abundant in the horsetail fractures and follow the
offshoot fractures (Fig. 4d). The dip of the healed microfracture
was measured with respect to the mylonitic foliation in the XZ plane
of each thin-section (Fig. 5a). Three sets have been identified: a conju-
gate set that is oriented at ~30° ± 10° and ~130° ± 10° clockwise from
the mylonitic foliation, and a set that is sub-perpendicular to the
mylonitic foliation (Fig. 5).

4.b.2. Transgranular fluid inclusion planes
Fluid inclusion planes cross multiple grains (transgranular)
and single grains and subgrain boundaries (intergranular).
Transgranular fluid inclusion planes tend to group in multiple
parallel sets rather than be isolated (Fig. 6a, b). The orientation
of these transgranular fluid inclusion planes is somewhat similar
to the healed microcracks: in boudinaged vein samples collected
near the top of the detachment shear zone, transgranular fluid
inclusion planes are oriented sub-perpendicular to the mylonitic
foliation (Fig. 6a). In the quartzite mylonite samples, the transgra-
nular fluid inclusion planes occur in two conjugate orientations,
dipping at ~40° ± 10° and 135° ± 10° measured clockwise from
the mylonitic foliation (Figs 5b, 6b), an orientation similar to
the conjugate sets of healed microfractures. These transgranular
fluid inclusion planes typically cut across multiple elongate relict
quartz grains that define the mylonitic foliation and can be
hundreds of microns long. Conjugate sets of fluid inclusions
commonly cross-cut each other (Fig. 6b). Transgranular planes
typically preserve a high number (100–1000s) of fluid inclusions.

Fluid inclusion planes are predominantly found to be populated
by small circular 1–3 μm single-phase inclusions within mylonite
(Figs 7, 8). Many of these inclusions have dark rims that could indi-
cate possible trapped high-density fluids (Fig. 8a). Isolated inclu-
sions are multi-phased at room temperature and are typically
characterized by a vapour and liquid component (Fig. 8b).
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Larger inclusions commonly exhibit three phases (Fig. 8c). These
triphase inclusions are composed of the typical vapour and liquid
components but exhibit a euhedral solid crystal overlying the top
section of the inclusion (Fig. 8c).

4.b.3. Grain boundary fluid inclusions
Grain boundary fluid inclusions and clusters of intragranular fluid
inclusions are common in all studied quartzite mylonite samples,
rare in the boudinaged vein samples. They are common around
recrystallized quartz grains and typically outline subgrain bounda-
ries in large relict grains (Fig. 6c). They form dense clusters at grain
boundaries. When inclusions are trapped within the interior
of a relic, they form clusters that are sub-planar, oriented sub-
perpendicular to transgranular fluid inclusion planes.

Lastly, fluid inclusions are particularly abundant in quartz
deformation lamellae (Fig. 6d). Deformation lamellae are found

in 20–50 % of quartz grains in the quartzite mylonite. They are very
well developed in large relict quartz grains that are elongated at a
high angle to foliation but occur also in smaller recrystallized
grains. Deformation lamellae are commonly decorated by
fluid inclusions. Deformation lamellae and fluid inclusion planes
usually have a similar orientation.

4.c. Quartz c-axis orientation

The orientations of intracrystalline fluid inclusion planes and their
host quartz crystal c-axes were measured using a universal stage
mounted on an optical microscope. Results gathered with the
universal stage were plotted on equal-area, lower-hemisphere ster-
eographic projections (Fig. 9; Table 1). For both the quartzite
mylonite and quartz vein samples, quartz c-axes cluster in the
centre of the stereonet, forming a point distribution. The trend
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Fig. 6. (Colour online) Cross-polarized photomicrographs of thin-sections oriented perpendicular to the foliation and parallel to the lineation. Fluid inclusion planes cross
multiple grains (transgranular, tg) and single grains and subgrain boundaries (intergranular, ig). (a) In boudinaged vein samples collected near the top of the detachment shear
zone, transgranular fluid inclusion planes are oriented sub-perpendicular to themylonitic foliation (Fol). (b) In quartzitemylonite samples collected at deeper structural levels, the
transgranular fluid inclusion planes occur in two conjugate orientations, dipping at ~40–60° from the mylonitic foliation. These transgranular fluid inclusion planes typically cut
across elongate relict quartz grains that define themylonitic foliation and can be hundreds of microns long. Individual fluid inclusion planes (FIP) typically preserve a high number
of fluid inclusions. (c) Grain boundary fluid inclusions are common in the quartzite mylonite. They are either found around recrystallized quartz grains or they outline subgrain
boundaries in large relict grains (yellow arrows). (d) Deformation lamellae are found in 20–50 % of quartz grains in the quartzite mylonite (dashed yellow lines). They are very well
developed in large quartz grains that are elongated at a high angle to foliation but occur also in smaller recrystallized grains. Deformation lamellae are commonly decorated by
fluid inclusions (yellow arrow).
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and plunge of quartz c-axes ranges from 351° to 14° and 63° to 74°,
with an average of 4° ± 10° and 69° ± 2°. These results indicate that
the measured quartz grains are oriented such that their
c-axes are contained within the foliation plane, and oriented
perpendicular to the lineation. This orientation is consistent with
quartz dynamic recrystallization by prism <a> slip.

The orientation of the fluid inclusion planes within the
measured quartz grains is also very consistent across all samples.
The strike and dip of the fluid inclusion planes range from 48° to
98° and 10° to 17°, with an average of 82° ± 12° and 26° ± 2°. These
results indicate that the fluid inclusion planes are oriented sub-
parallel to the basal crystallographic planes of quartz (Fig. 9),
perpendicular to the foliation and parallel to the lineation.

5. Discussion

5.a. Deformation mechanisms

The crystal-plastic and brittle microstructural record of the
quartzite mylonite from the Raft River detachment shear zone
provides insight into fluid circulation during exhumation of the
shear zone. Microstructures indicate that quartz deformed
primarily by dislocation creep, subgrain rotation and minor grain
boundary migration recrystallization (Fig. 3; Regime II of Hirth &
Tullis, 1992), suggesting deformation temperatures of 450–500 °C
(Stipp et al. 2002). This temperature range is probably related to
the latest stages of crystal-plastic deformation of quartz, because
the majority of relict quartz grains exhibit microstructures such
as relict quartz grains with undulose extinction and deformation
lamellae, that are all evidence of high-stress/high-strain rate defor-
mation conditions (Fig. 3d), indicating that deformation was
occurring close to the brittle–ductile transition. In particular,
deformation lamellae have been interpreted to reflect plastic
high-stress deformation in alloys and metals (Drury, 1993), and
short-term plastic and eventually brittle deformation related to
coseismic loading in rocks (Trepmann & Stöckhert, 2003;
Trepmann & Seybold, 2019). Deformation lamellae were preserved
owing to a lack of recovery during deformation, suggesting
that recovery in the quartzite was not efficient enough to keep
up with strain rate and offset strain hardening (e.g. Gottardi &
Teyssier, 2013). These observations suggest that during the latest
stages of exhumation, the detachment system evolved close to
the brittle–ductile transition, switching back and forth between
dislocation creep and glide-controlled exponential creep, depending

on the temperature/strain-rate/fluid conditions (Gottardi &
Teyssier, 2013).

The mylonitic fabric is overprinted by several brittle structures:
healed microfractures and transgranular fluid inclusions planes
(Figs 4, 6). Both of these structures occur in similar orientations:
one is sub-perpendicular to themylonitic foliation, and a conjugate
set occurs oriented at ~35° ± 10° and ~135° ± 10° clockwise from
the mylonitic foliation (Fig. 10). These two different orientations
may be caused by a minor switch in the stress field during exhu-
mation of the detachment shear zone. Healed microfractures and
transgranular fluid inclusion planes are consistent in orientation
across all studied samples (Fig. 5). The orientation of these struc-
tures is consistent with the E-directed shear kinematics preserved
in plastically deformed footwall mylonite, such as type-II S-C
fabrics, asymmetric tails around feldspar porphyroclasts, shear
bands and asymmetric quartz c-axis cross-girdles (Wells, 1997;
Sullivan, 2008; Gottardi & Teyssier, 2013).

5.b. Condition of fluid entrapment

The oxygen and hydrogen stable isotope geochemistry of quartz,
muscovite and fluid inclusions from the quartzite mylonite
suggests that meteoric fluid infiltration occurred during the
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Fig. 8. (Colour online) Plain-polarized photomicrographs of thin-sections oriented
perpendicular to the foliation and parallel to the lineation. (a) Inclusion with dark
rims, possibly indicative of high-density fluid. (b) Photomicrograph of a two-phase
fluid inclusion with large inner phase that is stationary. (c) Photomicrograph of a
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Miocene extension and exhumation of the Raft River detachment
shear zone (Gottardi et al. 2011, 2015; Methner et al. 2015).
Oxygen isotope geothermometry of quartz and syn-kinematic
muscovite indicates that Miocene deformation by dynamic recrys-
tallization of quartz and muscovite occurred at a temperature of
350–485 °C (Gottardi et al. 2011, 2015). The hydrogen isotope
signatures of fluid inclusions (−94‰ to −82‰) and fabric-
forming recrystallized muscovite (−120‰ to −90‰) demon-
strate that meteoric fluids infiltrated the shear zone during the
Miocene deformation event (Gottardi et al. 2011, 2015).

The microstructural observations indicate that trapping condi-
tions of the fluid likely occurred during coeval brittle and plastic
deformation of quartz, but before complete cooling of the footwall
rocks. The fact the quartz grains filling the microfractures have a
preferred orientation and show evidence of subgrain rotation

recrystallization (Fig. 4) suggests that the temperature was still
above ~400 °C when the microfractures healed. Altogether, these
microstructural observations suggest that brittle–ductile processes
that allowed fluid flow and the trapping of fluid inclusions must
have occurred between the latest stage of crystal-plastic deforma-
tion and before the complete exhumation and cooling of the foot-
wall rocks.

5.c. Model for fluid circulation

The microstructural record preserved in the quartzite mylonite of
the Raft River detachment shear zone correlates to rapid exhumation
of hot mid- to lower crustal rocks that can drive fluid circulation
and heat advection into the upper crust (Morrison & Anderson,
1998; Gottardi et al. 2011; Siebenaller et al. 2013, 2016;

Table 1. Fisher spherical vector mean orientation of host quartz c-axis and respective fluid inclusion planes, with a 95 % confidence error

Sample no.

c-axis Fluid inclusion plane

Trend Plunge Strike Dip

Quartzite mylonite

91–02 (N= 30) 6 ±13 69 ±2 48 ±23 25 ±2

91–03 (N= 31) 14 ±11 70 ±2 69 ±13 28 ±1

91–06 (N= 30) 351 ±12 74 ±3 89 ±11 27 ±2

91–08 (N= 30) 5 ±9 69 ±2 86 ±14 25 ±2

91–09 (N= 30) 3 ±12 70 ±2 94 ±14 28 ±2

91–10 (N= 30) 359 ±11 71 ±3 81 ±15 27 ±2

Average 3 ±11 70 ±2 78 ±15 27 ±2

Quartz veins

10–02 (N= 20) 8 ±16 65 ±3 89 ±17 22 ±2

10–09 (N= 20) 9 ±12 64 ±3 98 ±12 28 ±2

Average 8 ±14 64 ±3 93 ±14 25 ±2

poles to fluid inclusion planes
host quartz grain c-axis

FOLIATIONFOLIATIONFOLIATION

200μm

EEE

FolFolFol

FIPFIPFIP

Fig. 9. (Colour online) (Left) Cross-polarized photomicrograph of the quartzite mylonite showing quartz grain (grey, in the centre of the image) with fluid inclusion plane (FIP).
(Right) Equal-area, lower-hemisphere stereographic projections of the orientation of poles to planes of intragranular fluid inclusions and host quartz c-axes, measured with
respect to the mylonitic foliation.
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Carter et al. 2015; Quilichini et al. 2015; Ceccato et al. 2017; Compton
et al. 2017; Dusséaux et al. 2019; Marchesini et al. 2019; Prando et al.
2020; Menegon & Fagereng, 2021). Our results show that both
crystal-plastic and brittle deformation mechanisms affected the
detachment shear zone at the time of fluid inclusion entrapment
(Figs 4, 6). These results suggest that brittle fractures, such as normal
faults and healed microcracks, are important structures for fluid
transfer in metamorphic core complexes and extending crustal rocks
in general (e.g. López et al. 1994; Sibson, 2000).

Based on our microstructural observation, we propose
the following mechanism for meteoric fluid infiltration in the
deforming shear zone. Abundant evidence of high-stress plastic
deformation in the detachment shear zone suggests that the
response of the quartzite mylonite to stress hardening is seismic
failure (Fig. 11). When the detachment shear zone is still at
depth, a ~400–500 °C temperature allows quartz deformation by
dislocation creep processes such as subgrain rotation (Figs 3,
11a). However, owing to high differential stress, dislocation creep
cannot keep up with either a fast strain rate or strain hardening,
leading to high-stress plasticity features such as undulose extinc-
tion and deformation lamellae (Fig. 6d). Eventually, stress build-
up leads to embrittlement and brittle failure. Brittle failure leads
to the formation of faults, fractures and microcracks, which allow
for surface fluids to be pumped into the shear zone (Fig. 11b;
Sibson, 1977; McCaig, 1988; Lister & Davis, 1989; Carter et al.
2015; Siebenaller et al. 2016; Compton et al. 2017; Prando et al.
2020; Menegon & Fagereng, 2021). After rupture, during
post-seismic relaxation, stress decays and the detachment shear
zone re-enters the dislocation creep regime. Microfractures
heal, as indicated by the fabric preserved in the quartz fill, thereby
trapping fluid inclusions (Figs 4, 6, 11c). The intragranular fluid
inclusion planes and subgrain boundary fluid inclusions likely
represent the remnants of some former brittle fluid inclusion

plane reworked by the cyclical ductile shearing. Additional stress
build-up likely expelled large fluid inclusions from the fluid inclu-
sion planes and broke them down into smaller inclusions
(>1 μm). Crystal-plastic deformation by subgrain rotation and
grain boundary migration eventually redistributes these small
inclusions as grain and subgrain boundary fluid inclusion clusters
(Fig. 11). These tight clusters of small fluid inclusions (>1 μm)
typically indicate that explosion of larger inclusions was likely
caused by isobaric heating or decompression forces during
tectonic processes (Vityk & Bodnar, 1995). This cycle likely
repeated several times during the exhumation of the detachment
shear zone.

6. Conclusions

Microstructural analysis of samples of quartzite mylonite from
the Raft River detachment shear zone provides insight into
meteoric fluid infiltration near the brittle–ductile transition during
progressive exhumation of the shear zone. Our microstructural
observation reveals the presence of several fluid-related micro-
structures: healed microcracks, transgranular fluid inclusion
planes and grain boundary fluid inclusion clusters. The presence
of fluid-related microstructures, in combination with high-
stress/high-strain rate microstructures such as deformation
lamellae and undulose extinction, suggest that the detachment
shear zone evolved close to the brittle–ductile transition. Healed
microcracks and transgranular fluid inclusion planes occur in
three sets, one sub-perpendicular to the mylonitic foliation, and
a conjugate set oriented at ~40–60° to the mylonitic foliation.
Healed microfractures are filled with quartz, which has a distinct
fabric, not as strong as the mylonitic fabric, suggesting that micro-
cracks healed while the shear zone was still at conditions favourable
for quartz crystal plasticity. Fluid inclusions also commonly

500 500 μμmm 250 250 μμmm250 250 μμmm500 μm 250 μm250 μm

N = 392

a

b
c

(a) (b) (c)

Fig. 10. (Colour online) Composite frequency polygon and block diagram representing the general orientation of brittle microstructures (healed microfractures and transgra-
nular fluid inclusion planes) with respect to the mylonitic foliation and lineation.
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decorate grain and subgrain boundaries as inter- and intragranular
clusters. Our results show ductile overprint of brittle microstruc-
tures, which suggests that, during exhumation, the detachment
shear zone may have crossed the brittle–ductile transition repeat-
edly, providing opportunities for fluid to permeate the detachment
shear zone.
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