

1
2
3

4 **Contributions of gravity waves in the ocean to T -phase
5 excitation by earthquakes^{a)}**

6
7 **Oleg A. Godin^{b)}**

8 *Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California*

9 *93943-5216, USA*

10
11
12
13

14 Running title: Abyssal T -waves

15 Keywords: range-dependent waveguides; wave propagation theory; sound scattering; wind
16 waves; sea swell; internal gravity waves

17
18 Submitted to the *Journal of the Acoustical Society of America* on July 8, 2021
19

20
21

^{a)} Parts of this work have been previously reported at the 178th Meeting of the Acoustical Society of America (San Diego, December 2019).

^{b)} Electronic mail: oagodin@nps.edu

22 **Abstract**

23 Generation of *T*-waves in a deep ocean by an earthquake in its epicentral region is often observed
24 but the mechanism of the excitation of the acoustic waves travelling horizontally with the speed
25 of sound remains controversial. Here, the hypothesis is investigated that the abyssal *T*-waves are
26 generated by scattering of ballistic sound waves by surface and internal gravity waves in the
27 ocean. Volume and surface scattering are studied theoretically in the small perturbation
28 approximation. In the 3–50 Hz typical frequency range of the observed *T*-waves, linear internal
29 waves are found to lack the necessary horizontal spatial scales to meet the Bragg scattering
30 condition and contribute appreciably to *T*-wave excitation. In contrast, the ocean surface
31 roughness has the necessary spatial scales at typical sea states and wind speeds. Efficiency of the
32 acoustic normal modes' excitation at surface scattering of the ballistic body waves by wind seas
33 and sea swell is quantified and found to be comparable to that of the established mechanism of
34 *T*-wave generation at downslope conversion at seamounts. The surface scattering mechanism is
35 consistent with key observational features of abyssal *T*-waves, including their ubiquity, low-
36 frequency cutoff, presence on seafloor sensors, and weak dependence on the earthquake focus
37 depth.

38

39

40 PACS numbers: 43.30.Ma, 43.30.Dr, 43.30.Hw, 43.30.Ft, 43.30.Nb

41

42 **I. INTRODUCTION**

43 The *T*-, or tertiary, phase of an underwater earthquake is composed of low-frequency
 44 acoustics waves, which propagate to long ranges in underwater waveguide at speeds close to the
 45 sound speed in water and arrive later than *P*-, or primary, and *S*-, or secondary phases, which are
 46 due to compressional (*P*) and shear (*S*) body waves in the seabed, and later than seismo-acoustic
 47 interface waves.^{1–4} *T* waves weakly attenuate with range, travel over very large distances, and are
 48 observed throughout the world ocean. They are the most common earthquake sounds in the
 49 ocean and make strong but transient contributions to the ambient sound field.^{5, 6} A
 50 comprehensive review of *T*-wave research up to mid-2000s can be found in Refs. 2, 3, 7, and 8.

51 In addition to hydrophones at various depths in the water column,^{9–13} *T* waves are
 52 routinely observed by receivers on the seafloor in deep water,^{14–16} which indicates, in agreement
 53 with full-wave numerical modeling,^{8, 12, 17–19} that *T*-waves are not confined in the SOFAR
 54 channel. Because the wave speed and absorption in water are, respectively, smaller and much
 55 smaller than in the earth crust, *T* waves prove to be the most sensitive and rather accurate means
 56 to detect, characterize, and localize marine teleseismic events, including weak intraplate events.^{9,}
 57 ^{20–23} In addition, *T* waves carry information about the ocean. It was proposed to use
 58 measurements of temporal variability of *T*-wave travel times to characterize internal tides and
 59 associated ocean mixing²⁴ and, more recently, for ocean acoustic thermometry.^{25, 26}

60 Numerous observations show that conversion of seismic energy into guided acoustic
 61 waves in oceanic waveguide occurs in the vicinity of the earthquake epicenter and at prominent
 62 bathymetric features, which may be located hundreds of kilometers away from the epicenter.^{3, 9,}
 63 ^{13, 20, 27–31} *T*-wave amplitudes remain significant for intermediate-depth earthquakes^{9, 32} and are
 64 insensitive to water depth.² *T* waves from deep-focus earthquakes, with hypocenter depths of

65 hundreds of km, have been also observed.^{3, 14} The conversion mechanism and especially *T*-wave
66 excitation in the immediate vicinity of the epicenter are not well understood.^{2, 8, 22} Excitation of
67 acoustic normal modes at large-scale bathymetric features can be explained in terms of the
68 downslope conversion and diffraction of *P* and *S* body waves and/or seismo-acoustic interface
69 waves by horizontally inhomogeneous bathymetry.^{8, 19, 33–36} Ubiquitous “abyssal” *T* waves^{9, 32, 33,}
70³⁷ that are generated near the epicenter of earthquakes under flat abyssal planes, cannot be
71 attributed to any of these generation mechanisms. Unlike the trapping of acoustic energy in the
72 SOFAR channel by downslope conversion of steeply propagating sound, generation of abyssal *T*
73 waves does not lend itself to a ray interpretation. It had been realized early on^{9, 32, 37} that a wave
74 scattering mechanism was required to explain abyssal *T*-wave observations. Johnson, Norris, and
75 Duennebier discussed scattering at the ocean surface and seafloor and volume scattering of
76 sound in the ocean among the conceivable generation mechanisms and favored scattering by the
77 ocean surface.^{9, 32, 37} However, their crude estimates of the generation efficiency were not
78 encouraging. Keenan and Merriam³⁸ proposed sound scattering from keels on the undersurface
79 of the ice cover as the mechanism of generation of abyssal *T* waves in the Arctic. The idea that
80 sound scattering at the ocean surface could be an important mechanism of *T*-phase generation
81 has been recently re-visited by Bottero⁸ using full-wave, two-dimensional (2-D) numerical
82 modeling in a scenario with strong, discrete scatterers located on the ocean surface.

83 Following Fox et al.²⁰ and De Groot-Hedlin and Orcutt,^{39, 40} it is often implied in the
84 current literature^{3, 6, 22} that abyssal *T* waves are generated due to wave scattering by seafloor
85 roughness, specifically due to coupling between the seismo-acoustic normal modes that are
86 directly excited by the seismic source, and the normal modes comprising the *T*-phase.^{41, 42} By
87 modeling scattered waves as the field due to uncorrelated virtual sound sources distributed along

88 the seafloor, De Groot-Hedlin and Orcutt^{39, 40} and Yang and Forsyth²² successfully reproduced
89 the shapes of envelopes of observed *T*-phase waveforms. However, detailed information about
90 the seafloor roughness spectra is rarely if ever available around the epicenter of abyssal
91 earthquakes with the granularity and at the spatial scales necessary for *T*-phase modeling. To our
92 knowledge, the amplitude of the resulting *T* waves has never been related to actual seafloor
93 roughness data or models in a quantitative manner and shown to be sufficient to explain the
94 observed abyssal *T* waves.

95 Here, we examine an alternative hypothesis that sound waves coming at steep angles
96 directly from the earthquake focus (ballistic body waves) are coupled to normal modes of the
97 underwater acoustic waveguide by dynamic processes in the water column and on the ocean
98 surface. Specifically, we investigate the generation of abyssal *T* waves at scattering of ballistic
99 sound waves by the ocean surface roughness, which is due to surface gravity waves, and by
100 volume inhomogeneities of the water column, which are caused by internal gravity waves. We
101 view the ocean surface and volume scattering as either a complementary to the seafloor
102 scattering or possibly an alternative mechanism of generation of abyssal *T* waves. Unlike the
103 seafloor roughness data in the open ocean, extensive information on statistics of wind waves and
104 sea swell^{43–45} and internal gravity wave spectra^{46, 47} is available, which allows one to reach
105 definitive conclusions regarding significance of these generation mechanisms.

106 *T* waves are a seismo-acoustic phenomenon with representative wave frequencies being
107 very high on the seismic scale and low for underwater sound. Typically, *T* waves are observed in
108 the 1–100 Hz band.^{2, 3} Lower frequencies dominate the signals from stronger and deeper
109 earthquakes, while the highest frequencies are generated by the weakest detected seismic events.
110 Abyssal *T* waves exhibit higher frequencies than the *T* waves generated at down-slope

111 conversion.^{3,32} Therefore, this paper will focus on the 3–50 Hz frequency band that contains
112 most of the abyssal *T*-wave energy. Observations indicate existence of a low-frequency cutoff in
113 *T*-phase spectra, see, e.g., Refs. 13, 32, 48 and Ref. 8, p. 59. The low-frequency cutoff will be
114 related to the *T*-phase generation process in this paper.

115 Mathematically, we describe the excitation of abyssal *T*-waves as scattering from the
116 continuous spectrum into the discrete spectrum of the seismo-acoustic field. The continuous
117 spectrum is represented here by the body waves, that are generated by an earthquake and reach
118 the water column with a modest transmission loss at typical *T*-phase frequencies below about
119 40–50 Hz. This process is reciprocal of scattering of the normal modes propagating in the
120 oceanic waveguide by the rough ocean surface and/or volume inhomogeneities due to internal
121 gravity waves (scattering from the discrete into the continuous spectrum of the acoustic field). In
122 that problem, a part of the scattered energy is radiated into the seabed and carried away from the
123 waveguide, leading to the well-known contribution to attenuation of the normal modes.^{49–52}

124 The remainder of the paper is organized as follows. A theory of excitation of acoustic
125 normal modes at scattering of a low-frequency body wave by rough ocean surface and random
126 volume inhomogeneities is developed in Sec. II for underwater waveguides with either fluid or
127 solid bottom. Efficiency of *T*-phase excitation by ballistic body waves is related to the spectral
128 properties of the roughness and volume inhomogeneities. The theory is applied in Sec. III to
129 surface scattering by wind seas with the Pierson-Moskovitz spectrum and wavetrains of sea swell
130 to characterize the frequency spectra, directionality, and energy of the resulting *T* waves and the
131 dependence of the *T*-phase properties on the earthquake focus depth. Simple, order-of-magnitude
132 estimates of the *T*-phase energy are obtained in Sec. IV A and employed to argue, that surface
133 scattering of ballistic body waves in the vicinity of the earthquake epicenter is a significant *T*-

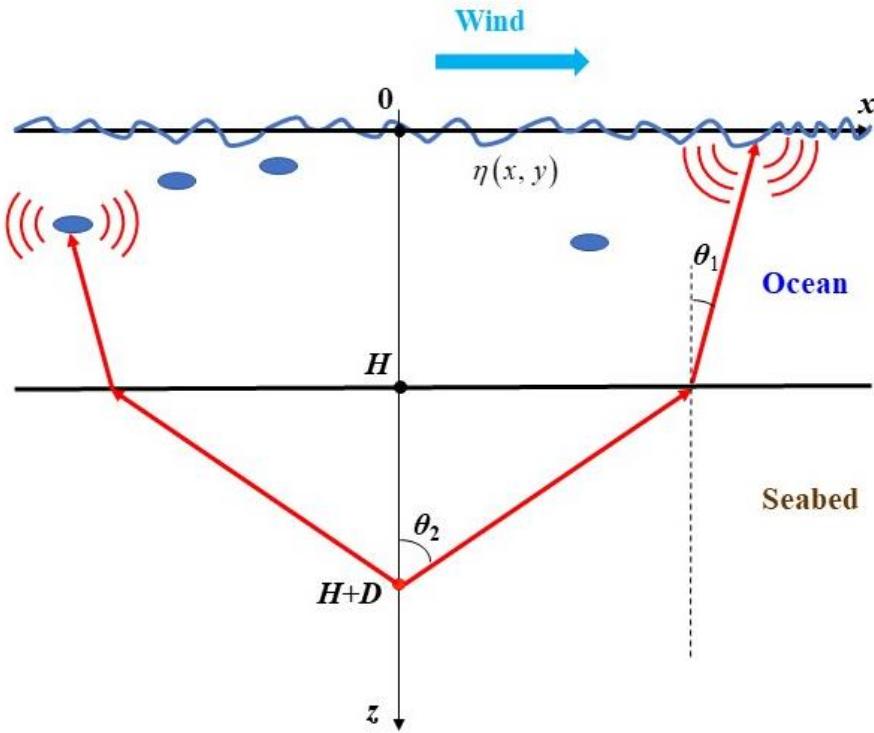
134 phase generation mechanism with a strength comparable to that of a seamount at a moderate
135 distance from the epicenter. Section IV B discusses possible extensions of the theory to quantify
136 other plausible mechanisms of generation of T waves and related waves in the atmosphere.
137 Section V summarizes our findings.

138

139 **II. T-PHASE GENERATION BY SURFACE AND VOLUME SCATTERING**

140 **A. Scattering of low-frequency sound by the rough ocean surface**

141 Consider a horizontally stratified ocean of depth H . Introduce Cartesian coordinates $x, y,$
142 z with the vertical coordinate z increasing downward. The mean position of the ocean surface is
143 the horizontal plane $z = 0$; the seafloor is located at $z = H$ (Fig. 1). The epicenter of an
144 earthquake, which generates T waves, is located in the vicinity of the origin $x = 0, y = 0$ of the
145 horizontal coordinates. In addition to the Cartesian coordinates, we will also use a cylindrical
146 coordinate system $\{r, \varphi, z\}$ with the same z axis. When averaged over perturbations due to
147 internal gravity waves, sound speed c in the ocean and water density ρ , as well as the density and
148 compressional and shear wave speeds in the seabed, are functions of z . We disregard the seafloor
149 roughness and the effects of horizontal inhomogeneities of the water column and seabed when
150 considering wave scattering by the ocean surface roughness.



151

152 **Figure 1. (Color online)** Geometry of the problem. Ballistic waves from the earthquake focus
 153 scatter at the rough ocean surface and volume inhomogeneities in the water column, which act as
 154 secondary sound sources and generate guided waves in the oceanic waveguide. The volume
 155 inhomogeneities are symbolically represented by ovals in the figure. The ocean surface
 156 roughness is described by the surface elevation η , which varies with the horizontal coordinates x
 157 and y . The earthquake focus is located at $x = y = 0$ at the depth $z = H + D$ under the seafloor $z =$
 158 H .

159

160 Wave heights on the ocean surface are small compared to acoustic wavelengths at T -
 161 phase frequencies (longer than 30 m for frequencies below 50 Hz). With a possible exception for
 162 some breaking waves, slopes of the ocean surface are small compared to unity. Sound scattering
 163 by such surfaces can be described by the small perturbation method.^{53, 54} Consider scattering of

164 monochromatic acoustic waves of frequency ω by a stationary (frozen) rough surface. We will
 165 use complex notation for monochromatic wave fields, where the time dependence $\exp(-i\omega t)$ of
 166 the acoustic pressure and other quantities is assumed and suppressed. In the first approximation
 167 of the small perturbation method, acoustic pressure p_{sc} in the wave scattered by a rough pressure-
 168 release surface is

$$169 \quad p_{sc}(\mathbf{R}) = - \int \left[\frac{\partial p_0}{\partial z_1} \frac{\partial G(\mathbf{R}; \mathbf{r}_1, z_1)}{\partial z_1} \right]_{z_1=0} \eta(\mathbf{r}_1) \frac{d\mathbf{r}_1}{\rho}. \quad (1)$$

170 Here integration is over the mean surface $z = 0$; \mathbf{r}_1 is a two-dimensional horizontal vector, \mathbf{R} is a
 171 three-dimensional position vector; p_0 is the acoustic pressure in the monochromatic wave in the
 172 absence of surface roughness, i.e., in the “unperturbed” waveguide with the pressure-release
 173 boundary $z = 0$. Acoustic pressure in the full acoustic field in water equals $p_{sc} + p_0$; p_0 contains

174 the incident wave and the wave reflected from the flat (horizontal) ocean surface. Surface
 175 elevation $\eta(\mathbf{r})$ is the vertical deviation of the rough surface from the mean plane $z = 0$.

176 Mathematically, the rough surface is given by the equation $z = \eta(\mathbf{r})$. Note that $p_{sc} \rightarrow 0$ in the limit
 177 $\eta \rightarrow 0$ of vanishing roughness. In Eq. (1), $G(\mathbf{R}; \mathbf{R}_1)$ is the acoustic Green’s function in the ocean
 178 with the flat upper boundary $z = 0$. The Green’s function has the meaning of the acoustic
 179 pressure at point \mathbf{R} due to a point sound source of volume velocity located at \mathbf{R}_1 . In the water
 180 column, the Green’s function satisfies the equation⁵⁵

$$181 \quad \frac{\partial}{\partial \mathbf{R}} \left[\frac{1}{\rho} \frac{\partial}{\partial \mathbf{R}} G(\mathbf{R}; \mathbf{R}_1) \right] + \frac{\omega^2}{\rho c^2} G(\mathbf{R}; \mathbf{R}_1) = -\delta(\mathbf{R} - \mathbf{R}_1) \quad (2)$$

182 as well as the appropriate boundary conditions on the ocean surface and the seafloor. Here $\delta(\mathbf{R})$
 183 is the Dirac delta function. The approximate solution Eq. (1) for the scattered wave describes
 184 single scattering from the rough surface but accounts for all multiple reflections in the ocean
 185 with the horizontal upper boundary.⁵³⁻⁵⁵

186 The physical meaning of Eq. (1) is that, in the first approximation of the small
 187 perturbation method, the waves scattered from the rough ocean surface are described as the
 188 waves generated by a known, distributed sound source in the ocean with the flat upper boundary.
 189 Indeed, acoustic pressure in the field generated by monochromatic sound sources in an
 190 inhomogeneous fluid satisfies the reduced wave equation⁵⁵

$$191 \quad \nabla \cdot \left(\frac{\nabla p}{\rho} \right) + \frac{\omega^2}{\rho c^2} p = i\omega A + \nabla \cdot \left(\frac{\mathbf{F}}{\rho} \right), \quad (3)$$

192 where \mathbf{F} and A stand for the volume densities of the external force and volume velocity (i.e., the
 193 volume injection rate), respectively. In terms of the acoustic Green's function G of the medium,
 194 solution of the reduced wave equation is given by the equation⁵⁵

$$195 \quad p(\mathbf{R}) = \int \left[\frac{\mathbf{F}(\mathbf{R}_1)}{\rho(\mathbf{R}_1)} \cdot \frac{\partial G(\mathbf{R}; \mathbf{R}_1)}{\partial \mathbf{R}_1} - i\omega A(\mathbf{R}_1) G(\mathbf{R}; \mathbf{R}_1) \right] d\mathbf{R}_1, \quad (4)$$

196 where the integration is over the entire volume occupied by the sources. Comparison of Eq. (1)
 197 and (4) shows that, in the first approximation of the small perturbation method, the scattered
 198 wave coincides with the field that would be generated in the medium with horizontal upper
 199 boundary by external forces with density

$$200 \quad \mathbf{F}(\mathbf{r}_1, z_1) = \left(0, \quad 0, \quad -\eta(\mathbf{r}_1) \frac{\partial p_{in}}{\partial z_1} \delta(z_1) \right). \quad (5)$$

201 Equation (5) describes an effective vertical external force applied on the horizontal ocean
 202 surface. The effective sound source depends on the incident wave and the roughness of the actual
 203 ocean surface.

204 One can also reach the same conclusion that the scattered wave in an inhomogeneous
 205 medium is equivalent to the sound field generated by the effective sound source Eq. (5) on the
 206 horizontal boundary by comparing the boundary condition^{53, 54}

207 $p_{sc}(\mathbf{r}_1, z = +0) = -\eta(\mathbf{r}_1)(\partial p_{in}/\partial z_1)_{z_1=0}$ for the scattered wave in the first approximation of the
 208 small perturbation method with the discontinuity (jump)⁵⁵ $p(\mathbf{r}_1, z = +0) - p(\mathbf{r}_1, z = 0)$
 209 $= p(\mathbf{r}_1, z = +0) = F_{0z}(\mathbf{r}_1)$ of the acoustic pressure, which, according to Eq. (3), is caused by the
 210 distribution of external vertical forces with volume density $F_{0z}\delta(z)$ just below a pressure-
 211 release boundary $z = 0$. Here $z = +0$ denotes points situated below the boundary $z = 0$
 212 infinitesimally close to it.

213

214 **B. Excitation of normal modes at surface scattering**

215 In a horizontally stratified oceanic waveguide with a fluid seabed, the acoustic Green's
 216 function is given by the sum of normal modes^{55, 56}

$$217 \quad G(\mathbf{R}; \mathbf{R}_1) = \frac{i}{4} \sum_n f_n(z) f_n(z_1) H_0^{(1)}(\xi_n |\mathbf{r} - \mathbf{r}_1|) \\ = \sum_n f_n(z) f_n(z_1) \frac{\exp(i\xi_n |\mathbf{r} - \mathbf{r}_1| + i\pi/4)}{\sqrt{8\pi\xi_n |\mathbf{r} - \mathbf{r}_1|}} \left[1 + O\left(\frac{1}{\xi_n |\mathbf{r} - \mathbf{r}_1|}\right) \right] \quad (6)$$

218 plus a contribution of the continuous spectrum. The latter is usually negligible at long-range
 219 propagation. Here $H_0^{(1)}(\cdot)$ is a Hankel function of the first kind of order zero, ξ_n and $f_n(z)$ are the
 220 propagation constant and shape function of the n th normal mode, $n = 1, 2, \dots$. The shape
 221 functions are normalized by the condition

$$222 \quad \int_0^\infty \frac{dz}{\rho(z)} f_n^2(z) = 1. \quad (7)$$

223 The shape function $f_n(z)$ gives the vertical dependence of acoustic pressure in the n th normal
 224 mode. When the horizontal separation of the points $\mathbf{R} = (\mathbf{r}, z)$ and $\mathbf{R}_1 = (\mathbf{r}_1, z_1)$ is large compared
 225 to the wavelength, the Hankel function can be replaced by the dominant term of its asymptotic

226 expansion⁵⁷ leading to the right-most side in Eq. (6). With the points \mathbf{R} and \mathbf{R}_1 located in water,
 227 Eq. (6) remains valid in the waveguide with stratified solid seabed⁵⁸ but, instead of Eq. (7), the
 228 normalization condition of the normal mode shape functions in the fluid-solid waveguide takes
 229 the form

$$230 \quad \int_0^H \rho^{-1} f_n^2 dz + \frac{\omega}{\xi_n} \int_H^{+\infty} (\tau_{xz} v_z - \tau_{xx} v_x) \rho dz = 1, \quad (8)$$

231 where H is water depths, τ_{xx} and τ_{xz} are components of the stress tensor and v_x and v_z are
 232 components of the particle velocity $\mathbf{v} = (v_x, 0, v_z)$ in the seabed in the n th normal mode with the
 233 dependence $\exp(i\xi_n z)$ of its field on horizontal coordinates.⁵⁸ The shape functions $f_n(z)$ are real-
 234 valued in the absence of dissipation. The physical meaning of the normalization Eq. (8) is that
 235 modes with the same amplitude carry the same power flux; the acoustic power flux J_n in a single
 236 propagating normal mode with $p(\mathbf{r}, z) = a f_n(z) H_0^{(1)}(\xi_n r)$, where a is a constant, equals

$$237 \quad J_n = 2 |a^2| / \omega. \quad ^{55, 56, 58}$$

238 Substitution of the Green's function Eq. (6) into Eq. (1) for the scattered wave and
 239 changing the order of the summation and integration gives

$$240 \quad p_{sc}(\mathbf{r}, z) = \sum_n \frac{f_n(z) \exp(-3i\pi/4)}{\sqrt{8\pi\xi_n} \rho(0)} \left. \frac{\partial f_n}{\partial z} \right|_{z=0} Q_n(\mathbf{r}), \quad (9)$$

$$241 \quad Q_n(\mathbf{r}) = \int d\mathbf{r}_1 \frac{\exp(i\xi_n |\mathbf{r} - \mathbf{r}_1|)}{\sqrt{|\mathbf{r} - \mathbf{r}_1|}} \eta(\mathbf{r}_1) \frac{\partial p_0}{\partial z_1}(\mathbf{r}_1, z_1 = 0), \quad (10)$$

242 provided $\xi_n |\mathbf{r} - \mathbf{r}_1| \gg 1$. Equation (9) represents the scattered wave in the waveguide as a sum
 243 of normal modes, with $f_n(z)$ being the dependence of the acoustic pressure on depth in the n th
 244 normal mode. In the summand, the factor in front of Q_n is controlled by the waveguide's
 245 properties and the receiver depth. Dependence on horizontal coordinates of the receiver, the

246 incident wave, and the properties of the rough surface is described by the factor Q_n , Eq. (10).

247 When discussing the scattered wave, we will refer to Q_n as the mode amplitude for brevity.

248 Equations (9) and (10) show that each normal-mode component of p_{sc} is a result of

249 interference of the contributions generated by scattering at different points on the rough surface.

250 A more intuitive derivation of the normal-mode representation, Eqs. (9) and (10), of the scattered

251 wave is obtained using the concept of the effective sources of the scattered wave. The surface

252 density of the effective vertical force on the flat surface of a horizontally stratified oceanic

253 waveguide is given by Eq. (5). A point source of the vertical force with

254 $\mathbf{F}(\mathbf{r}_1, z_1) = (0, 0, F_0 \delta(\mathbf{r}_1) \delta(z_1))$ generates the acoustic field⁵⁶

$$255 \quad p(\mathbf{R}) = \frac{iF_0}{4\rho(z_1)} \sum_n f_n(z) \frac{\partial f_n(z_1)}{\partial z_1} H_0^{(1)}(\xi_n |\mathbf{r} - \mathbf{r}_1|) \quad (11)$$

256 in the waveguide. Here, as in Eq. (6) for the Green's function, we disregard the continuous

257 spectrum of the field. Adding the contributions (11) of elementary effective sources located at

258 different points on the boundary, i.e., by calculating the convolution of the field of a unit vertical

259 force with the source density Eq. (5), leads again to Eqs. (9) and (10).

260 Equation (10) can be further simplified in the far field of the distributed effective source

261 of the scattered wave. However, the far field assumption proves to be too restrictive to be useful

262 in the T -phase excitation problem. For orientation, with the effective source dimensions of $L_T =$

263 $O(10 \text{ km})$ and sound frequency $f \sim 20 \text{ Hz}$ the far-field condition $r \gg \xi_n L_T^2$ requires the range r

264 from the epicenter to be more than 10 Mm. Here, we will obtain more relevant and widely

265 applicable results by taking into account that the correlation scale of the ocean surface roughness

266 is much smaller than L_T .

267 As discussed in Sec. III C, extensive areas on the ocean surface can contribute to T -phase
 268 generation, and we need to allow for variations of the surface roughness statistics within these
 269 areas. Let the ocean surface elevation $\eta(\mathbf{r})$ have zero mean and be a locally stationary random
 270 function;⁵³ then $\langle \eta(\mathbf{r}) \rangle = 0$ and

$$271 \quad \langle \eta(\mathbf{r}_1) \eta(\mathbf{r}_2) \rangle = C \left(\mathbf{r}_1 - \mathbf{r}_2; \frac{\mathbf{r}_1 + \mathbf{r}_2}{2} \right). \quad (12)$$

272 Here and below angular brackets $\langle \cdot \rangle$ denote statistical average; C has the meaning of the
 273 correlation function of the surface elevations. The characteristic spatial scales l and L of the
 274 variation of the correlation function with respect to the difference $\mathbf{r}_1 - \mathbf{r}_2$ and centroid $0.5(\mathbf{r}_1 + \mathbf{r}_2)$
 275 coordinates satisfy the condition $l \ll L$. In the particular case of wide-sense stationary random
 276 elevations, $L \rightarrow \infty$ and the correlation function C depends only on $\mathbf{r}_1 - \mathbf{r}_2$. In terms of the
 277 correlation function, the root mean square (rms) surface elevation σ_η and the roughness spectrum
 278 are given by the equation $\sigma_\eta = \langle \eta^2(\mathbf{r}) \rangle^{1/2} = \sqrt{C(0; \mathbf{r})}$ and

$$279 \quad S_\eta(\mathbf{q}; \mathbf{r}) = (2\pi)^{-2} \int C(\mathbf{r}_1; \mathbf{r}) \exp(-i\mathbf{q} \cdot \mathbf{r}_1) d\mathbf{r}_1. \quad (13)$$

280 The spectrum and rms elevation of the surface roughness gradually vary with the position \mathbf{r} .

281 At reflection from the random rough surface, mode amplitudes Eq. (10) are also random,
 282 and $\langle Q_n(\mathbf{r}) \rangle = 0$. For the mode amplitude variance, from Eqs. (10) and (12) we find

$$283 \quad \langle |Q_n(\mathbf{r})|^2 \rangle = \int d\mathbf{r}_1 d\mathbf{r}_2 \frac{\exp\left[i\xi_n(|\mathbf{r} - \mathbf{r}_1| - |\mathbf{r} - \mathbf{r}_2|)\right]}{\sqrt{|\mathbf{r} - \mathbf{r}_1||\mathbf{r} - \mathbf{r}_2|}} C\left(\mathbf{r}_1 - \mathbf{r}_2; \frac{\mathbf{r}_1 + \mathbf{r}_2}{2}\right) \frac{\partial p_0(\mathbf{r}_1, 0)}{\partial z} \left(\frac{\partial p_0(\mathbf{r}_2, 0)}{\partial z} \right)^*. \quad (14)$$

284 Here and below the asterisk * denotes complex conjugation. The main contribution to the
 285 integral is from such \mathbf{r}_1 and \mathbf{r}_2 that $|\mathbf{r}_1 - \mathbf{r}_2|$ is of the order of or smaller than the roughness
 286 correlation scale l . When the horizontal separation r from the epicenter is large compared to the

287 size L_T of the effective source of the scattered wave and $r \gg \xi_n l^2$, one can approximate the
 288 product $|\mathbf{r} - \mathbf{r}_1| |\mathbf{r} - \mathbf{r}_2|$ with r^2 in the integrand in Eq. (14) and retain in the exponent only linear
 289 terms of the developments

$$290 \quad \left| \mathbf{r} - \frac{\mathbf{r}_1 + \mathbf{r}_2}{2} \pm \frac{\mathbf{r}_1 - \mathbf{r}_2}{2} \right| = \left| \mathbf{r} - \frac{\mathbf{r}_1 + \mathbf{r}_2}{2} \right| \pm \left| \mathbf{r} - \frac{\mathbf{r}_1 + \mathbf{r}_2}{2} \right|^{-1} \left(\mathbf{r} - \frac{\mathbf{r}_1 + \mathbf{r}_2}{2} \right) \cdot \frac{\mathbf{r}_1 - \mathbf{r}_2}{2} + O\left(\frac{|\mathbf{r}_1 - \mathbf{r}_2|^2}{|2\mathbf{r} - \mathbf{r}_1 - \mathbf{r}_2|^2} \right) \quad (15)$$

291 of $|\mathbf{r} - \mathbf{r}_j|, j = 1, 2$, in powers of $|\mathbf{r}_1 - \mathbf{r}_2|$. We also assume that the unperturbed field p_0 can be
 292 represented as

$$293 \quad p_0(\mathbf{r}, z) = P(\mathbf{r}, z) \exp[i\mathbf{q}_{in}(\mathbf{r}) \cdot \mathbf{r}] \quad (16)$$

294 in the vicinity of the ocean surface in water. Here the complex amplitude P and the local
 295 horizontal wave vector \mathbf{q}_{in} are gradually varying functions of \mathbf{r} , which are little changed over
 296 distances $O(l)$.

297 Changing integration variables in Eq. (14) from \mathbf{r}_1 and \mathbf{r}_2 to the difference and centroid
 298 position vectors, $\mathbf{r}_1 - \mathbf{r}_2$ and $\mathbf{r}_3 = 0.5(\mathbf{r}_1 + \mathbf{r}_2)$, and using Eqs. (13), (15), and (16), we obtain a
 299 compact expression for the mode amplitude variance:

$$300 \quad \langle |Q_n(\mathbf{r})|^2 \rangle = \frac{4\pi^2}{r} \int d\mathbf{r}_3 \left| \frac{\partial P(\mathbf{r}_3, 0)}{\partial z} \right|^2 S_n(\xi_n \mathbf{e} - \mathbf{q}_{in}; \mathbf{r}_3), \quad \mathbf{e} = \frac{\mathbf{r} - \mathbf{r}_3}{|\mathbf{r} - \mathbf{r}_3|}. \quad (17)$$

301 Here \mathbf{e} has the meaning of the unit horizontal vector from an elementary scatterer to the
 302 observation point, and $\xi_n \mathbf{e}$ is the horizontal wave vector of the n th mode propagating from \mathbf{r}_3 to \mathbf{r} .
 303 For the distant observation points that we consider, it is close to the unit horizontal vector from
 304 the epicenter to the observation point: $\mathbf{e} = r^{-1}\mathbf{r} + O(L_T/r)$. Inspection shows that Eq. (17) is
 305 consistent with the more general result, Eq. (9) in Ref. 59, for the cross-correlation function of
 306 the surface reverberation in the oceanic waveguide.

307 Integration in Eq. (17) is over the entire horizontal plane $z = 0$. The ocean surface area
 308 that significantly contributes to normal mode excitation is controlled by the decrease of the
 309 amplitude of the unperturbed field p_0 with horizontal separation from the epicenter and is
 310 affected by spatial distribution of the surface roughness. The integrand is proportional to the
 311 average power scattered into the n th mode in the vicinity of the point $(\mathbf{r}_3, 0)$ on the ocean surface.
 312 The contributions of different points into the average mode's power are added incoherently,
 313 according to Eq. (17). The first argument, $\xi_n \mathbf{e} - \mathbf{q}_{in}$, of the roughness spectrum S_η in the integrand
 314 equals the change of the horizontal wave vector of sound at scattering and corresponds to
 315 Bragg's scattering, as expected in the first approximation of the small perturbation method.^{53, 54}
 316 We will use Eq. (17) in Section III to investigate the effects on T -phase generation of the wind
 317 speed, sea swell parameters, and depth of the earthquake focus.

318 Acoustic power flux in T waves can be calculated by integrating the power flux density
 319 over the cylindrical surface $r = \text{const.} > L_T$, $0 < z < \infty$. At distances r from the epicenter that are
 320 large compared to the diameter L_T of the region, where T waves are excited, $\nabla Q_n \approx i\xi_n r^{-1} Q_n \mathbf{r}$
 321 according to Eq. (10). Using this equation and the normalization condition (8), for the power flux
 322 J_n in the n th mode we find

$$323 \quad J_n = \frac{r}{16\pi\omega} \left(\frac{1}{\rho} \frac{\partial f_n}{\partial z} \right)_{z=0}^2 \int_0^{2\pi} |Q_n^2(r \cos \varphi, r \cos \varphi)| d\varphi \quad (18)$$

324 from Eq. (9). The total power flux is given by the sum of the contributions J_n , Eq. (18), of all
 325 propagating normal modes. For a random rough surface with the spectrum S_η , Eqs. (17) and (18)
 326 give

$$327 \quad \langle J_n \rangle = \frac{\pi}{4\omega} \left(\frac{1}{\rho} \frac{\partial f_n}{\partial z} \right)_{z=0}^2 \int_0^{2\pi} \left[\int d\mathbf{r}_3 \left| \frac{\partial P(\mathbf{r}_3, 0)}{\partial z} \right|^2 S_\eta(\xi_n \mathbf{e} - \mathbf{q}_{in}; \mathbf{r}_3) \right] d\varphi, \quad (19)$$

328 where $\mathbf{e} = (\cos\varphi, \sin\varphi, 0)$. As expected, the power flux is independent of r as long as the effect of
 329 absorption on the propagating normal mode is negligible over ranges of the order of r .

330

331 **C. Excitation of normal modes at volume scattering by internal gravity waves**

332 Consider internal gravity waves propagating in otherwise horizontally stratified,
 333 stationary ocean. The internal wave-induced currents \mathbf{u} and variations of the sound speed, δc , and
 334 density, $\delta\rho$, from their unperturbed (background) values $c(z)$ and $\rho(z)$ are horizontally
 335 inhomogeneous. The currents are slow and environmental perturbations are weak in the
 336 following sense: $|\delta c| + u \ll c$, $\delta\rho \ll \rho$. Neglecting terms of the second order in the small ratio
 337 u/c , monochromatic acoustic waves satisfy the following wave equation^{55, 60} in the horizontally
 338 inhomogeneous ocean with slow currents:

$$339 \quad \nabla \cdot \left(\frac{\nabla p}{\rho_0} \right) + \frac{\omega^2}{\rho_0 c_0^2} p + \frac{2i\omega}{\rho_0 c_0^2} \mathbf{u} \cdot \nabla p - \frac{2i}{\omega} \nabla \cdot \left(\frac{1}{\rho_0} \sum_{j=1}^3 \frac{\partial p}{\partial x_j} \frac{\partial \mathbf{u}}{\partial x_j} \right) = 0. \quad (20)$$

340 Here $\rho_0 = \rho + \delta\rho$, $c_0 = c + \delta c$, and $(x_1, x_2, x_3) = (x, y, z)$ are Cartesian coordinates. Acoustic
 341 pressure $p = p_0 + p_{sc}$ consists of the acoustic pressure p_0 in the horizontally stratified ocean and
 342 the perturbation (scattered wave) p_{sc} . In the water column, p_0 satisfies Eq. (20) with $\mathbf{u} = 0$ and ρ_0
 343 and c_0 replaced with ρ and c , respectively.

344 The scattered wave vanishes when the environmental perturbations \mathbf{u} , δc , and $\delta\rho$ vanish.
 345 Retaining only terms of the first order in the acoustic and environmental perturbations, from Eq.
 346 (20) we find

$$347 \quad \nabla \cdot \left(\frac{\nabla p_{sc}}{\rho} \right) + \frac{\omega^2}{\rho c^2} p_{sc} = i\omega A_{sc} + \nabla \cdot \left(\frac{\mathbf{F}_{sc}}{\rho} \right), \quad (21)$$

348 where

349
$$A_{sc} = \frac{-i\omega p_0}{\rho c^2} \left(\frac{\delta\rho}{\rho} + \frac{2\delta c}{c} \right) - \frac{2}{\rho c^2} \mathbf{u} \cdot \nabla p_0, \quad \mathbf{F}_{sc} = \frac{\delta\rho}{\rho} \nabla p_0 + \frac{2i}{\omega} \sum_{j=1}^3 \frac{\partial p_0}{\partial x_j} \frac{\partial \mathbf{u}}{\partial x_j}. \quad (22)$$

350 The above assumptions correspond to calculation of the scattered wave in the single-scattering,
 351 or (first) Born, approximation. Comparison of Eqs. (3) and (21) shows, that in the Born
 352 approximation the scattered wave can be viewed as the wave generated in horizontally stratified
 353 ocean by distributed virtual sources with volume densities A_{sc} and \mathbf{F}_{sc} , Eq. (22), respectively, of
 354 the volume velocity and external force. Using Eq. (4) for the field of distributed sources and Eq.
 355 (6) for the Green's function, we find the scattered wave in the following form:

356
$$p_{sc}(\mathbf{r}, z) = \sum_n \frac{f_n(z) \exp(-i\pi/4)}{\sqrt{8\pi\xi_n}} V_n(\mathbf{r}), \quad (23)$$

357 where

358
$$V_n(\mathbf{r}) = \int d\mathbf{r}_1 \frac{\exp(i\xi_n |\mathbf{r} - \mathbf{r}_1|)}{\sqrt{|\mathbf{r} - \mathbf{r}_1|}} \int \frac{dz_1}{\rho} \left[\left(\omega\rho A_{sc} + \xi_n \frac{\mathbf{r} - \mathbf{r}_1}{|\mathbf{r} - \mathbf{r}_1|} \cdot \mathbf{F}_{sc} \right) f_n + i \frac{\partial f_n}{\partial z_1} (\mathbf{F}_{sc})_z \right], \quad (24)$$

359 and $(\mathbf{F}_{sc})_z$ stands for the vertical component of the vector \mathbf{F}_{sc} defined in Eq. (22). Equation (23)
 360 represents the scattered wave as a sum of normal modes, with V_n describing the dependence of
 361 the n th mode amplitude on horizontal coordinates.

362 In small-amplitude, or linear, internal waves, the sound speed and density perturbations
 363 are proportional to the vertical displacement ζ of fluid particles due to the internal wave:

364 $\delta c = \alpha_1(z) c \zeta, \quad \delta\rho = \alpha_2(z) \rho \zeta$.⁴⁶ Vertical velocity u_3 of fluid particles is given by time
 365 derivative of ζ , and horizontal components of the velocity are related to ζ by the
 366 incompressibility condition $\nabla \cdot \mathbf{u} = 0$.⁴⁶ In a random field of linear internal waves, let the vertical
 367 displacement ζ have zero mean and be a random function that is locally stationary in the
 368 horizontal plane. Then the correlation function of vertical displacements is related to the spatial
 369 spectrum S_ζ of internal waves as follows:

370
$$\langle \zeta(\mathbf{r}_1, z_1) \zeta(\mathbf{r}_2, z_2) \rangle = \int S_\zeta \left(\mathbf{q}; z_1, z_2; \frac{\mathbf{r}_1 + \mathbf{r}_2}{2} \right) e^{i\mathbf{q}(\mathbf{r}_1 - \mathbf{r}_2)} d\mathbf{q}, \quad (25)$$

371 Under these assumptions, the densities of the effective sources of the scattered sound wave are
 372 also zero-mean random functions that are locally stationary in the horizontal plane. Using Eq.
 373 (22), the spectra of the random sources can be related to the spectrum of the vertical
 374 displacement of fluid particles; importantly, the source spectra have the same spatial scales as S_ζ .

375 At scattering by random internal waves, the mode amplitudes V_n are random and have
 376 zero mean. Calculation of the variance of the mode amplitude, and particularly the reduction of a
 377 double integral over horizontal coordinate to a single integral, is similar to the calculation of
 378 $\langle |Q_n|^2 \rangle$ in Sec. II B. From Eqs. (16), (22), (24), and (25) we find that

379
$$\begin{aligned} \langle |V_n|^2(\mathbf{r}) \rangle &= \frac{4\pi^2}{r} \int d\mathbf{r}_3 dz_1 dz_2 \Phi(\mathbf{r}_3, z_1) \Phi(\mathbf{r}_3, z_2)^* S_\zeta(\xi_n \mathbf{e} - \mathbf{q}_{in}; z_1, z_2; \mathbf{r}_3), \\ \Phi(\mathbf{r}, z) &= [\alpha_2 \xi_n \mathbf{e} \cdot \mathbf{q}_{in} - k^2 (2\alpha_1 + \alpha_2)] \frac{f_m P}{\rho} + \frac{\alpha_2}{\rho} \frac{\partial P}{\partial z} \frac{\partial f_m}{\partial z}. \end{aligned} \quad (26)$$

380 Here, the unit horizontal vector \mathbf{e} is the same as in Eq. (17). For brevity, contributions of the
 381 internal wave-induced currents into sound scattering are not included in Eq. (26). Equations (17)
 382 and (26), which describe the variances of mode amplitudes that are proportional to the power
 383 flux in respective normal modes resulting, respectively, from surface and volume scattering,
 384 differ by additional integration over depths z_1 and z_2 of volume scatterers in Eq. (26). Note that
 385 the spatial spectra S_n and S_ζ of the surface elevation and the vertical displacement due to internal
 386 waves in Eqs. (17) and (26) have the same vector argument $\xi_n \mathbf{e} - \mathbf{q}_{in}$, which equals the
 387 difference of the horizontal wave vectors of the normal mode and the incident wave.

388 Because of the large values of the compressional and shear wave speeds around the
 389 earthquake focus, earthquake-generated incident waves propagate at steep grazing angles in the
 390 water column, see Sec. III C for details. Therefore, $|\xi_n \mathbf{e} - \mathbf{q}_{in}| \sim \xi_n$. The internal wave spectrum

391 peaks around 5 km horizontal wavelength, with minimum and maximum internal wave
 392 wavelength in the ocean being about 0.5 km and 50 km, respectively.⁴⁶ In the 3–50 Hz frequency
 393 range of observed *T* waves, horizontal wavelength $2\pi/\zeta_n$ of acoustic normal modes ranges from
 394 about 30–500 m. Hence, the internal wave spectrum in the integrand in Eq. (26) has negligibly
 395 small values. The short-wave tail of the internal wave spectrum can possibly contribute to
 396 generation of the lowest-frequency *T* waves away from the earthquake epicenter. In other words,
 397 the internal wave field lacks the relatively short horizontal scales (< 500 m) that are required for
 398 Bragg scattering of the earthquake-generated body waves into normal modes of the underwater
 399 waveguide. As discussed below, ocean surface roughness spectrum is rich in the spatial scales
 400 required for Bragg scattering into normal modes and, therefore, efficiently contributes to *T*-phase
 401 generation.

402

403 **III. CONTRIBUTIONS OF WIND SEAS AND SEA SWELL INTO *T*-PHASE**

404 **GENERATION**

405 **A. *T*-phase excitation due to wind seas**

406 Dependence of the ocean surface roughness on wind speed and fetch have been studied
 407 extensively, which allows for a reliable prediction of *T* waves generation at scattering by sea
 408 surface roughness. Here, we use a simple Pierson-Moskovitz model^{43, 44} of fully developed wind
 409 seas to investigate the dependence of amplitudes of the normal mode components of the scattered
 410 acoustic wave on its frequency, wind speed, and direction of propagation of the incident wave.

411 The Pierson-Moskovitz spectrum^{43, 44} of the random surface elevation η is given by the
 412 following equations:

$$413 \quad S_\eta(\mathbf{q}; \mathbf{r}) = W(q) D_w(q, \psi), \quad \int_{-\pi}^{\pi} D_w(q, \psi) d\psi = 1, \quad (27)$$

414

$$W(q) = \frac{0.024}{q^4} \exp\left(-\frac{0.74g^2}{q^2 U^4}\right). \quad (28)$$

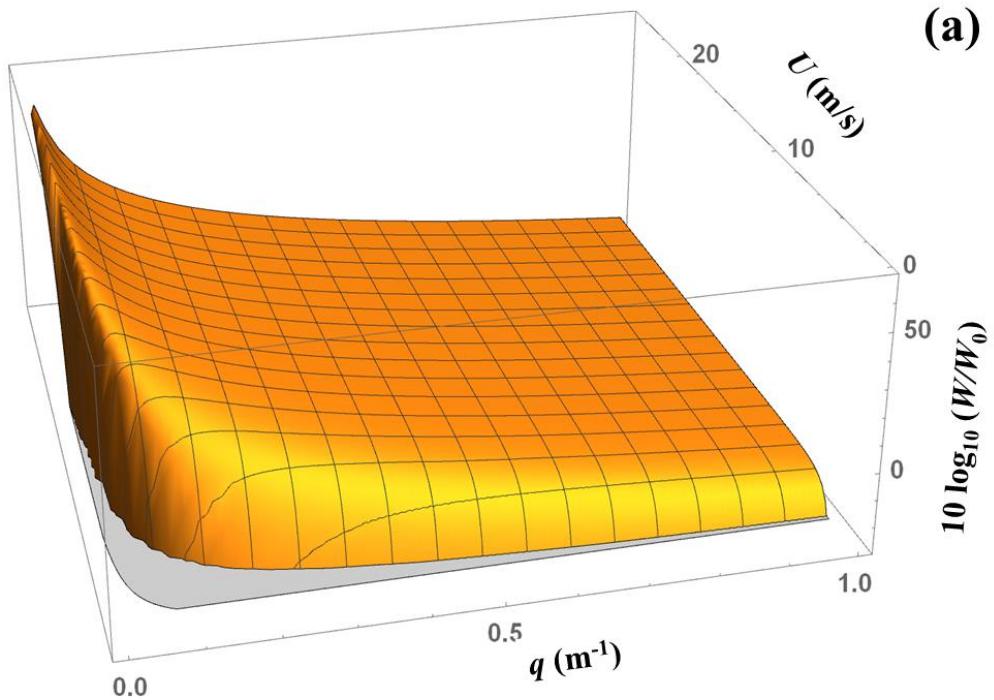
415 Here g is the acceleration due to gravity; U is the wind speed measured at height of 19.5 m above
 416 the sea surface. The factor D_W describes the directionality of the surface waves; $\mathbf{q} = q (\cos\psi,$
 417 $\sin\psi, 0)$ is the wave vector of the waves, and angle ψ indicates the vector \mathbf{q} direction. The wind
 418 speed may gradually change along the ocean surface: $U = U(\mathbf{r})$, and W and D_W in Eqs. (27) and
 419 (28) depend on \mathbf{r} via U . In wind waves with the Pierson-Moskovitz spectrum, the spectral peak is
 420 located at $q_p = 0.70gU^{-2}$; and rms surface elevation $\sigma_\eta = 0.13U^2/g$. The wave height rapidly
 421 increases, and the spectrum peak shifts towards longer waves, when the wind speed increases
 422 (Fig. 2a). According to Eq. (28), the spectrum falls off very rapidly (exponentially) as the surface
 423 wave wavelength becomes longer than at the spectrum peak, i.e., at $q < q_p$. The spectrum
 424 decrease is much slower for short gravity waves, i.e., at $q > q_p$ (Fig. 2a). Because of the Bragg
 425 scattering condition, these properties of the wind wave spectrum are directly reflected in the
 426 spectrum of abyssal T -waves and its wind dependence.

427 The rms amplitude $\langle |Q_n^2| \rangle^{1/2}$ of the n th normal mode component of the T -phase field is
 428 given by Eq. (17). Figure 2b illustrates the wind dependence of the T -phase energy in terms of
 429 the contribution to the acoustic power flux in a normal mode from a unit area of the sea surface
 430 above the earthquake focus. In this geometry, the horizontal wave vector of the incident wave \mathbf{q}_{in}
 431 = 0 in the right side of Eq. (17). Then, directionality of the T -phase radiation is given by the
 432 factor D_W in the wind wave spectrum Eq. (27). Equation (18) shows that the wind speed
 433 dependence of the acoustic power flux in the T -wave is obtained by integrating (or averaging) of
 434 $|Q_n^2|$ over the T -wave propagation direction. In Fig. 2b we show the mode amplitude squared,

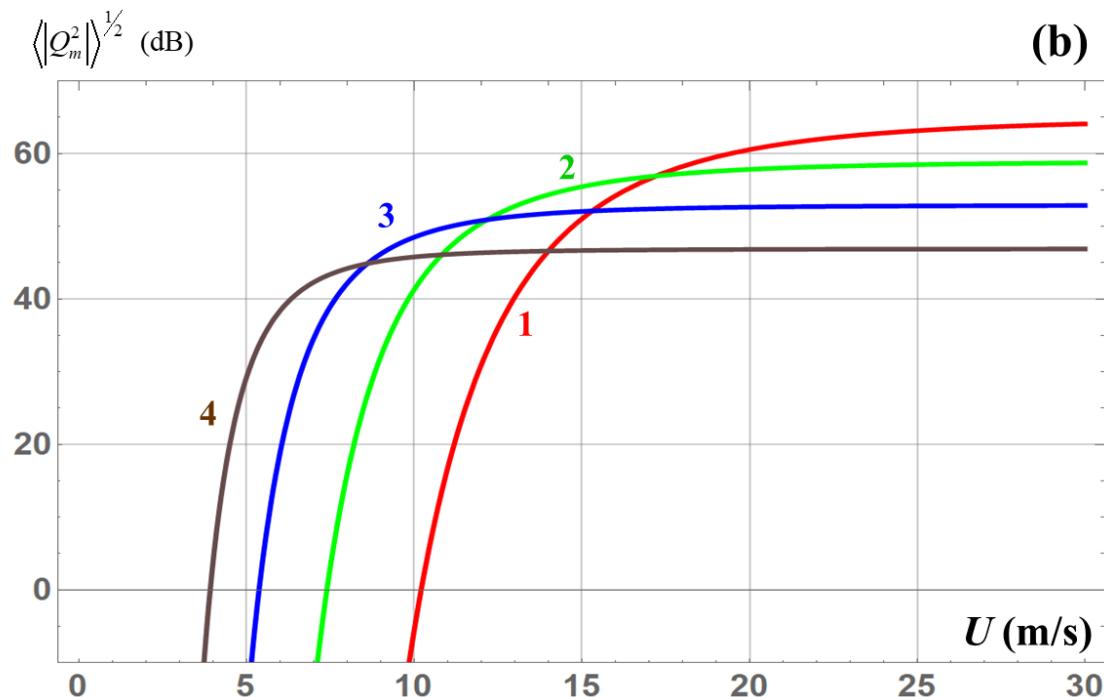
435 $|Q_n^2|$, that is averaged over the statistical ensemble of fully developed wind waves. It is also
 436 averaged over the T -wave propagation direction for a given wind direction or, equivalently, over
 437 the wind direction for a given receiver position. On the other hand, it follows from Eq. (27) that,
 438 after averaging over the wind direction, $\langle |Q_n^2| \rangle$ is given by Eq. (17), where $S_\eta(\xi_n \mathbf{e} - \mathbf{q}_{in}; \mathbf{r}_3)$ is
 439 replaced with $W(|\xi_n \mathbf{e} - \mathbf{q}_{in}|)$ in the integrand. Hence, the result is independent of the surface wave
 440 directionality D_W and its dependence on q in Eq. (27). Since averaging over wind direction is
 441 equivalent to integration over receiver azimuth, acoustic power flux in T -waves is also
 442 independent of D_W at normal incidence of ballistic waves. Numerical values of the sound
 443 frequency f indicated in Fig. 2b refer to the mode with the nominal phase speed c_n of 1500 m/s.
 444 For a generic mode dispersion relation $c_n = c_n(f)$, the frequency f should be re-scaled to $(1500$
 445 m/s) $f/c_n(f)$.

446 T -phase amplitude rapidly increases with the wind speed for weak and moderate winds
 447 and saturates at very high wind speeds (Fig. 2b). Higher acoustic frequencies are more readily
 448 excited by weaker winds and saturate at smaller wind speeds. For an incident wave with a white
 449 spectrum, higher acoustic frequencies dominate in the T -phase spectrum at low wind speeds,
 450 while low frequencies prevail at strong winds. Abyssal T -phase energy and spectrum can be very
 451 sensitive to the wind speed. Away from the saturation regime, a drastic, 40 dB increase in the
 452 narrow-band mode amplitude requires an increase in the wind speed of just a few meters per
 453 second (Fig. 2b).

454



455



456

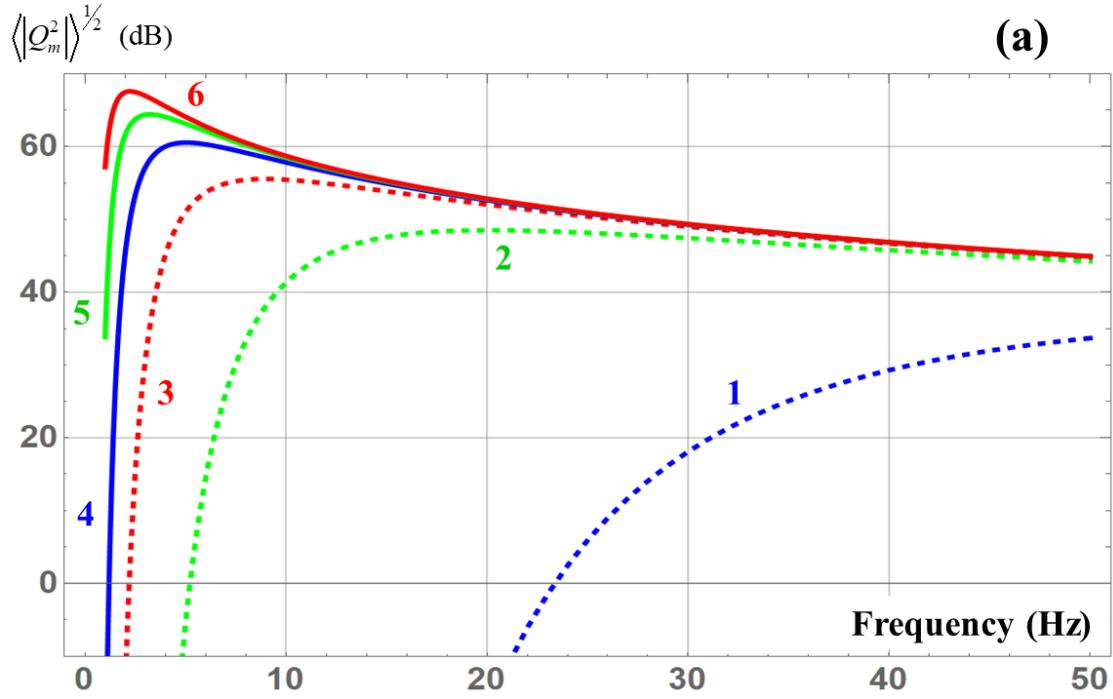
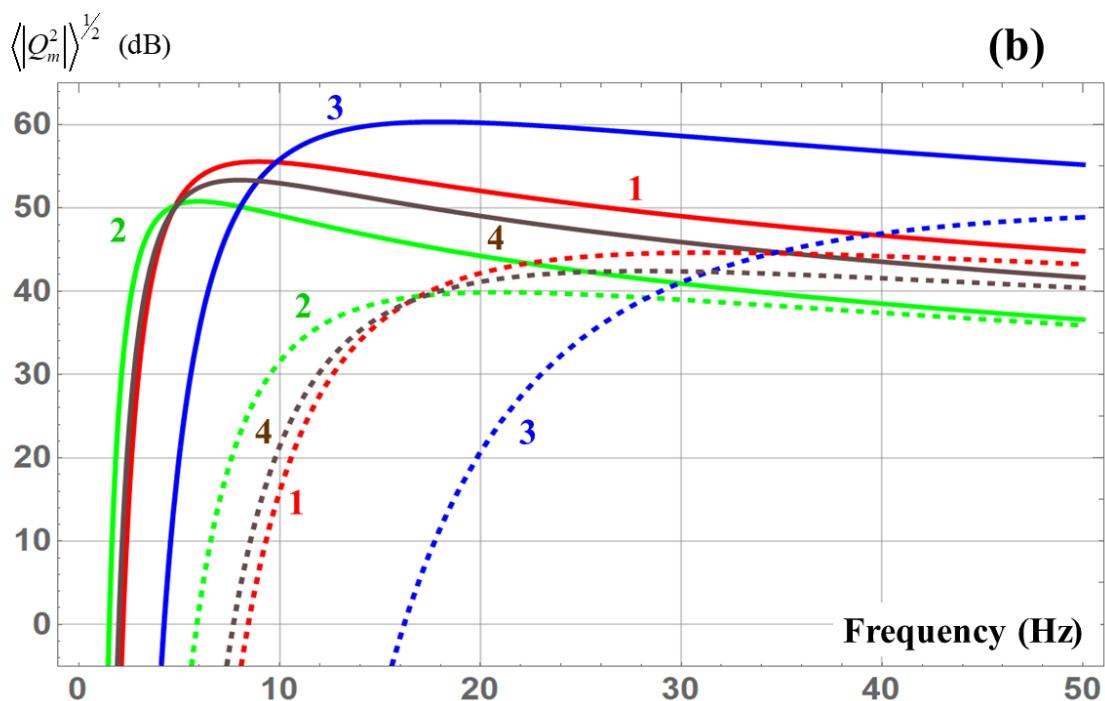
457 **Figure 2. (Color online)** Dependence of the abyssal T -phase mode amplitude on wind speed. (a)
 458 Azimuthally averaged Pierson-Moskovitz spectrum of wind waves as described by Eq. (28) is
 459 shown as a function of surface gravity wave wavenumber q and wind speed U at 19.5 m above

460 the sea surface; $W_0 = 1 \text{ m}^4$. (b) The rms amplitude of a normal mode of the T -waves generated by
 461 scattering on wind seas in a unit area above the earthquake focus is shown for four frequencies: 5
 462 Hz (1), 10 Hz (2), 20 Hz (3) and 40 Hz (4), and the mode phase speed of 1500 m/s. The mode
 463 amplitude is arbitrarily normalized assuming a frequency-independent acoustic pressure
 464 amplitude in the earthquake-generated incident wave.

465

466 The spectrum of T -waves at different wind speeds is further illustrated in Fig. 3. The
 467 figure shows the mode amplitude squared, $|\mathcal{Q}_n^2|$, which is averaged over the statistical ensemble
 468 of fully developed wind waves and over the wind direction. Therefore, the result is independent
 469 of the wind waves directionality that is described by the factor $Dw(q, \psi)$ in Eq. (27). Similar to
 470 Fig. 2b, Fig. 3a refers to the T -phase generation at normal incidence of ballistic waves from the
 471 earthquake focus. The figure shows a steady increase of normal mode amplitudes with wind
 472 speed in the entire range of T -phase frequencies. The most distinctive feature of the predicted T -
 473 phase spectra is a sharp low-frequency cutoff. At low acoustic frequencies, Bragg scattering into
 474 proper normal modes of the underwater waveguide requires long wind waves, with their
 475 wavevector matching the horizontal wave vector of the acoustic normal mode, see Eq. (17). For
 476 instance, the resonance scattering into the modes at 5 Hz occurs at surface gravity waves with
 477 wavelength of about 300 m. Thus, the low-frequency acoustic cutoff reflects the sharp drop in
 478 the wind wave spectrum at $q < q_p$. The cutoff shifts to lower acoustic frequencies and the T -
 479 phase spectrum broadens when the wind speed increases (Fig. 3a).

480



483 **Figure 3. (Color online)** Dependence of the amplitude of a modal component of the T -wave,
484 which is generated by scattering on fully developed wind seas, on sound frequency and the mode
485 propagation direction. (a) The frequency dependences of the rms amplitude of a normal mode,

486 which is generated by scattering in a unit area above the earthquake focus, are shown for six
 487 wind speeds: 5 m/s (1), 10 m/s (2), 15 m/s (3), 20 m/s (4), 25 m/s (5) and 30 m/s (6). (b) The rms
 488 amplitude of a normal mode is shown for scattering in a unit area above the earthquake focus (1)
 489 and away from the epicenter (2–4), where the grazing angle of the earthquake-generated incident
 490 wave is 60° at the depth, where $c(z) = c_m$. The horizontal propagation directions of the mode and
 491 incident wave are either opposite (2), the same (3), or orthogonal (4). Solid and dashed lines
 492 refer to the wind speeds of 15 m/s and 8 m/s, respectively. A nominal value of 1500 m/s is
 493 assumed for the mode phase speed c_m .

494

495 The frequency dependence of the efficiency of *T*-wave generation by scattering of
 496 obliquely incident waves is qualitatively similar to but quantitatively different from the case of
 497 normal incidence. This is illustrated in Fig. 3b. At points on the ocean surface away from the
 498 earthquake epicenter, *T*-phase is generated with different amplitudes in different horizontal
 499 propagation directions, even after averaging over the wind direction (Fig. 3b). For obliquely
 500 incident waves, wind waves of different wavelength are responsible for the *T*-waves propagating
 501 in different azimuthal directions, see Eq. (17). When the incident wave and *T*-wave propagate in
 502 opposite horizontal directions, the low-frequency cutoff shifts somewhat towards lower
 503 frequencies; when the propagation directions are the same, there is a more significant shift
 504 towards higher frequencies (Fig. 3b).

505 In addition to the frequency dependence of the generation efficiency of each normal
 506 mode that is illustrated in Fig. 3, *T*-phase spectrum at a distant receiver is influenced by the
 507 number of propagating modes, which increases with frequency, frequency-dependent
 508 transmission losses due to sound attenuation, and the spectrum of the seismic source.

509

510 **B. *T*-phase excitation due to swell**

511 Statistically, wave height and surface gravity wave energy are dominated by sea swell, rather
 512 than wind waves, almost everywhere in the World Ocean.⁴⁵ We argue below that swell is also
 513 expected to dominate in generation of abyssal *T*-waves.

514 Sea swell is generated by very strong winds in distant storms. Because of the pronounced
 515 dispersion of surface gravity waves in deep water, swell is observed at large distances from its
 516 source as a wave train of long gravity waves with nearly identical wavelengths. A typical width
 517 of the wavetrain is several tens of wavelengths across the wavefronts with even longer extent
 518 along the wavefronts.⁶¹ Thus, ocean surface elevations due to swell have much larger correlation
 519 length than the surface roughness caused by wind waves. This difference has a major effect on
 520 scattering of low-frequency sound. While wind waves can be modeled as a random wave field, it
 521 is more appropriate to model a snapshot of sea swell in an area of several and perhaps a few tens
 522 of km as a deterministic wave field.

523 Unlike wind waves, there are no widely accepted swell models. We will utilize the
 524 following simple, idealized model to illustrate distinctive features of *T*-phase generation at sound
 525 scattering by swell. At the time of an earthquake, let the surface elevation η in a swell wave train
 526 be

$$527 \quad \eta(x, y) = \sqrt{2}\sigma_\eta(y) \sin(\mu x - \mu x_0), \quad |x - x_0| < L/2, \quad (29)$$

528 in a region of width L in the direction of swell propagation, which is chosen as the x coordinate
 529 axis; $\eta = 0$ at $|x - x_0| \geq L/2$. A large, integer number of swell wavelengths $2\pi/\mu$ fits in the band
 530 $|x - x_0| \leq L/2$, and $\eta(x, y)$ is a continuous function of horizontal coordinates. The rms surface
 531 elevation σ_η is a gradually varying function of y and tends to zero at $|y - y_0| \rightarrow \infty$, so that the

532 energy of the wavetrain is finite. The center of the swell wavetrain is at the point $(x_0, y_0, 0)$,
 533 which can be located either at the earthquake epicenter $(0, 0, 0)$ or away from it.

534 At scattering of ballistic sound waves [Eq. (16)] at the ocean surface with surface
 535 elevations Eq. (29), Eq. (10) for the amplitude of a T -phase modal component becomes

$$536 \quad Q_n(\mathbf{r}) = \sqrt{2} \int_{x_0-L/2}^{x_0+L/2} dx_1 \sin(\mu x_1 - \mu x_0) \int_{-\infty}^{\infty} dy_1 \frac{\exp(i\xi_n |\mathbf{r} - \mathbf{r}_1| + i\mathbf{q}_{in} \cdot \mathbf{r}_1)}{\sqrt{|\mathbf{r} - \mathbf{r}_1|}} \sigma_\eta(y_1) \frac{\partial P(\mathbf{r}_1, 0)}{\partial z}, \quad (30)$$

537 where the two-dimensional horizontal position vector $\mathbf{r}_1 = (x_1, y_1)$. In the integral over y_1 in Eq.
 538 (30), the integrand contains a rapidly varying exponential and slowly varying functions $\sigma_\eta, \mathbf{q}_{in} =$
 539 $(q_{in1}, q_{in2}, 0)$, and $\partial P/\partial z$. The integral can be calculated by the method of stationary phase.⁵⁵
 540 Disregarding small derivatives of q_{in2} , equation for the stationary point⁵⁵ $y_1 = y_{1s}$ becomes

$$541 \quad \frac{y - y_{1s}}{\sqrt{(x - x_1)^2 + (y - y_{1s})^2}} = \frac{q_{in2}}{\xi_n}. \quad (31)$$

542 For any observation point at $|x - x_0| > L/2$, the integrand has a single stationary point. By
 543 approximating the integral over y_1 in Eq. (30) by contribution of the stationary point,⁵⁵ we obtain

$$544 \quad Q_n(\mathbf{r}) = 2\sqrt{\pi\xi_n} e^{i\pi/4} \times \int_{x_0-L/2}^{x_0+L/2} \frac{\sin(\mu x_1 - \mu x_0) \sigma_\eta(y_{1s}) \frac{\partial P(x_1, y_{1s}, 0)}{\partial z}}{\sqrt{\xi_n^2 - q_{in2}^2}} \exp\left(i\sqrt{\xi_n^2 - q_{in2}^2} |x - x_1| + iq_{in1}x_1 + iq_{in2}y\right) dx_1. \quad (32)$$

545 Assuming negligible variation of $\sigma_\eta, \mathbf{q}_{in}$, and $\partial P/\partial z$ with x_1 within the swell wave train,
 546 the integral in the right side of Eq. (32) is easily calculated, and we obtain

$$547 \quad Q_n(\mathbf{r}) = 2e^{i\pi/4} \sqrt{\frac{\pi\xi_n}{\xi_n^2 - q_{in2}^2}} \frac{\partial P}{\partial z} \sigma_\eta L \left(\frac{\sin Y_2}{Y_2} - \frac{\sin Y_1}{Y_1} \right) \exp\left(i\sqrt{\xi_n^2 - q_{in2}^2} |x - x_0| + iq_{in2}y\right), \quad (33)$$

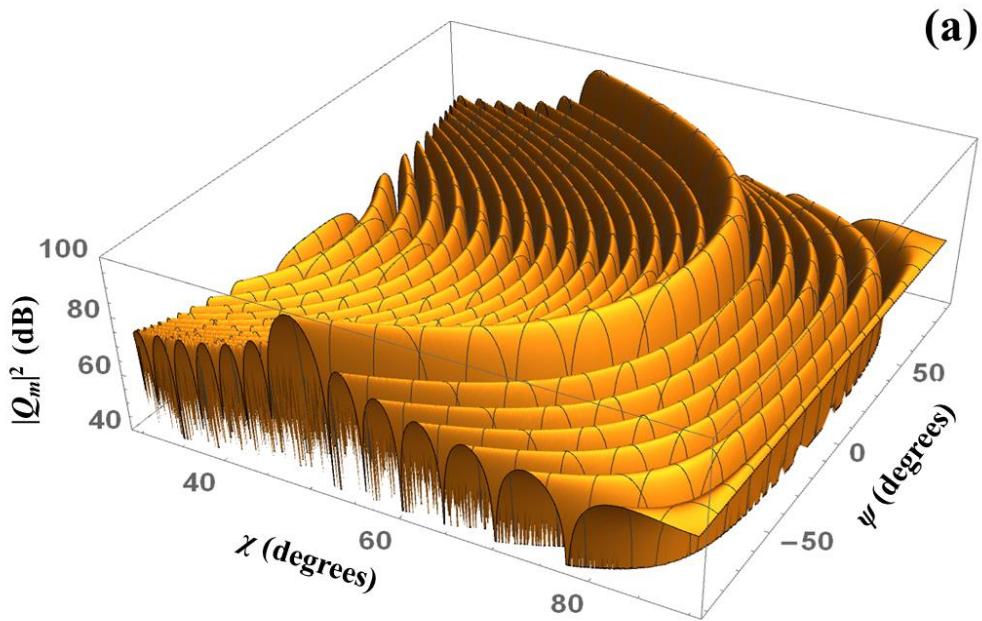
548 where

$$549 \quad Y_j = \left[q_{in1} - \sqrt{\xi_n^2 - q_{in2}^2} \frac{x - x_0}{|x - x_0|} + (-1)^j \mu \right] \frac{L}{2}, \quad j = 1, 2. \quad (34)$$

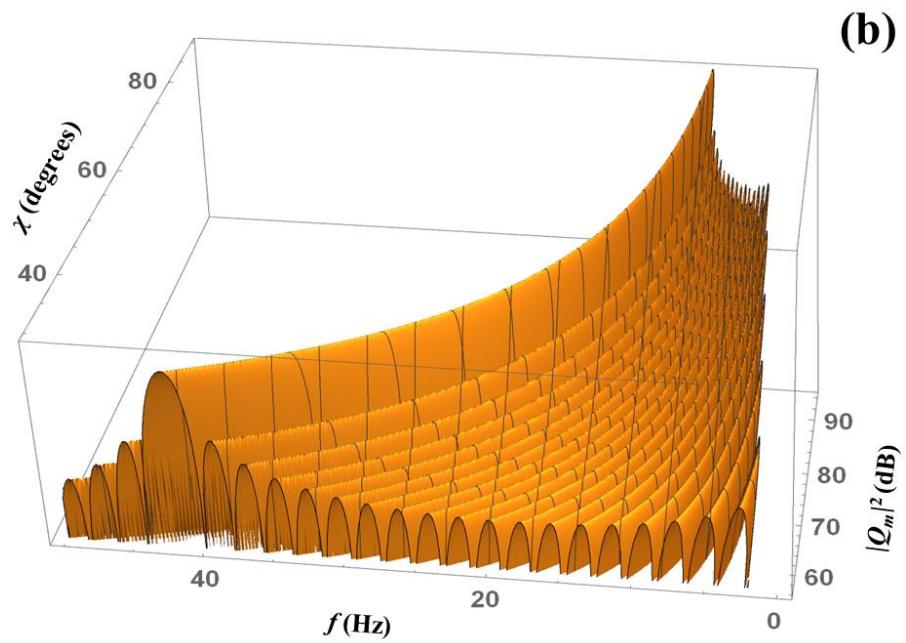
550 Equations (33) and (34) give the normal mode amplitudes in the abyssal T waves due to swell at
551 the observation points at $|x - x_0| > L/2$, i.e., outside of the swell wavetrain.

552 The Bragg scattering condition and the narrow-band, quasi-periodic nature of surface
553 elevation in swell wavetrains combine to produce rather different dependence of T -phase energy
554 on the mode frequency and propagation direction than in the case of wind waves (cf. Figs. 2b
555 and 3 with Fig. 4). Figure 4 illustrates predictions of Eqs. (33) and (34). At a given sound
556 frequency and normal mode propagation direction, a swell wavetrain most efficiently generates
557 m th normal mode at a specific grazing angle χ of the ballistic wave (Fig. 4a), with secondary
558 peaks in χ giving T waves that are weaker by tens of dB (Fig. 4a). The contrast between the main
559 and subsequent peaks is controlled by the parameter $\mu L \gg 1$. The resonance value of the grazing
560 angle χ depends on the wavetrain position relative to the epicenter via the angle between
561 azimuthal directions of the swell and ballistic wave propagation (Fig. 4a). For the sound
562 frequency and swell wavelength (10 Hz and 200 m) in Fig. 4a, resonance excitation occurs for
563 the wavetrains away from the epicenter, where χ is between about 47° and 78° .

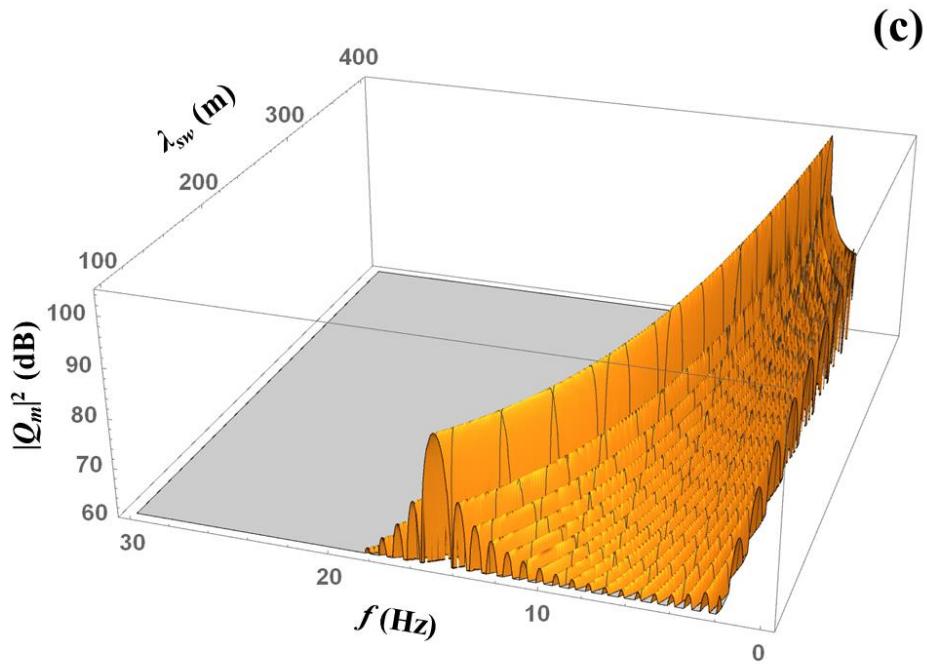
564



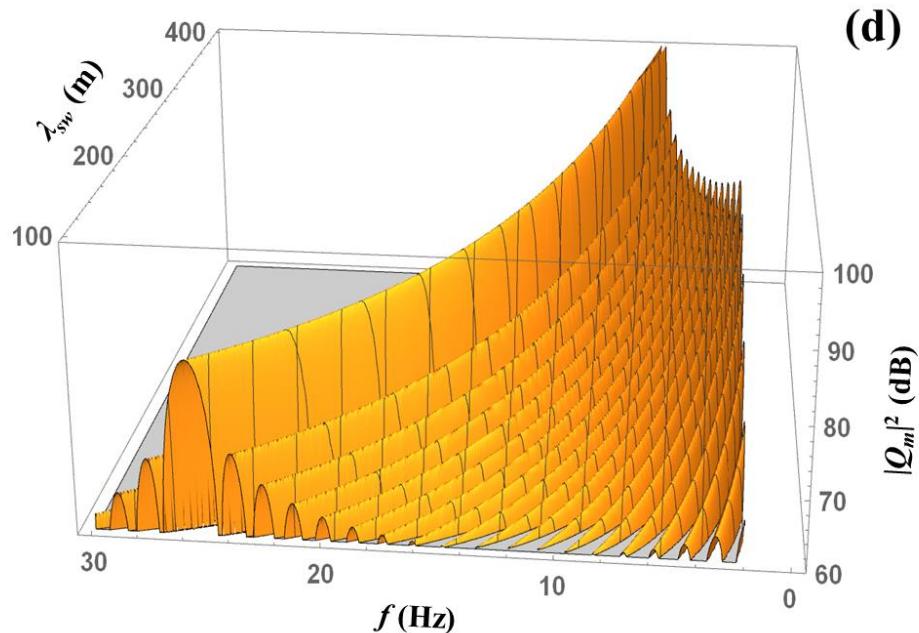
565



566



567



568

569 **Figure 4. (Color online)** Generation of T waves at scattering of ballistic waves from an
 570 earthquake by a wavetrain of sea swell. (a) Dependence of the amplitude of a normal-mode
 571 component of the T wave on the grazing angle χ of incident wave at the location of the swell

572 wavetrain and the angle ψ between the azimuthal directions of propagation of the incidence
 573 waves and swell. Sound frequency is 10 Hz. Swell wavelength $\lambda_{sw} = 200$ m. (b) Variation of the
 574 normal mode amplitude with the grazing angle of incident waves and sound frequency, when the
 575 angle between the azimuthal directions of propagation of the incidence waves and swell is 45° .
 576 Swell wavelength $\lambda_{sw} = 200$ m. (c) Dependence of the acoustic mode amplitude on sound
 577 frequency and the wavelength of swell at normal incidence for vertically propagating ballistic
 578 waves. (d) Same as in (c) but for the swell wavetrain located away from the earthquake
 579 epicenter; $\chi = 60^\circ$, $\psi = 45^\circ$. A common but otherwise arbitrary normalization of the acoustic
 580 mode amplitude is used in all panels. The width of the swell wavetrain in the direction of its
 581 propagation equals 20 swell wavelengths. A nominal value of 1500 m/s is assumed for the phase
 582 speed c_m of the acoustic normal mode. Numerical values of the grazing angle of the earthquake-
 583 generated incident waves refer to the depth, where $c(z) = c_m$.

584

585 *T*-phase spectrum and, in particular, the frequency, at which a normal mode is resonantly
 586 generated, depend on the propagation directions of the ballistic wave and sea swell. It is
 587 illustrated in Fig. 4b, where the mode amplitude is shown as a function of frequency and grazing
 588 angle of the ballistic wave, when the sea swell travels at 45° angle to \mathbf{q}_{in} . In terms of variables Y_j
 589 introduced in Eq. (34), a resonance occurs when either $Y_1 = 0$ or $Y_2 = 0$. The *T*-phase spectrum
 590 and resonance frequency for each normal mode also depend on the swell wavelength $\lambda_{sw} = 2\pi/\mu$.
 591 Longer λ_{sw} favors excitation of lower-frequency *T*-waves (Figs. 4c and 4d). The same swell
 592 wavetrain generates lower-frequency *T*-waves, when it is located around the epicenter (Fig. 4c)
 593 than away from it (Fig. 4d). If sea swell with the same wavelength and propagation direction is
 594 present in a large area with dimension comparable to the hypocenter depths, the resonantly

595 excited normal mode is received at different frequencies at the observation points that are located
 596 at different azimuthal directions from the epicenter. Note also that, according to Eq. (34), any
 597 swell wavetrain resonantly scatters the ballistic waves of the compressional and shear-wave
 598 origin in different azimuthal directions and at different frequencies.

599 According to Eqs. (33) and (34), the magnitude squared of the amplitude of n th normal
 600 mode generated at scattering by sea swell is

$$601 \quad |Q_n^2| = \frac{32\pi^3 \xi_n}{\xi_n^2 - q_{in2}^2} \left| \frac{\partial P}{\partial z} \right|^2 \left| \Phi \left(q_{in1} - \sqrt{\xi_n^2 - q_{in2}^2} \frac{x - x_0}{|x - x_0|} \right) \right|^2, \quad (35)$$

602 where

$$603 \quad \Phi(q_1) = \frac{iL\sigma_\eta}{2^{3/2}\pi} e^{-iq_1 x_0} \frac{\sin Y}{Y} \Big|_{Y=(q_1 - \mu)L/2}^{Y=(q_1 + \mu)L/2} \quad (36)$$

604 is the one-dimensional wavenumber spectrum of the surface elevation due to swell, Eq. (29),
 605 viewed as a function of x . We show below that same result for $|Q_n^2|$ can be formally obtained
 606 from the results that have been derived in Sec. II B for random sea surface roughness, if one uses

$$607 \quad S_\eta(q_1, q_2) = \frac{8\pi}{L} |\Phi(q_1)|^2 \delta(q_2) \quad (37)$$

608 for the swell power spectrum in Eq. (17). Here, $\delta(\cdot)$ denotes the Dirac delta function. It originates
 609 from the surface elevation being independent of coordinate y . We assume here that σ_η is
 610 independent of coordinates. We will also assume for simplicity that variations of \mathbf{q}_{in} and $\partial P/\partial z$ in
 611 the incident wave are negligible within the swell wave train.

612 In the integrand in the right side of Eq. (17) $q_2 = \xi_n (y - y_3) |\mathbf{r} - \mathbf{r}_3|^{-1} - q_{in2}$, and $q_2 = 0$
 613 when $y_3 = y_{1s}$, see Eq. (31). Then, $|\mathbf{r} - \mathbf{r}_3| = |x - x_3| (1 - \xi_n^{-2} q_{in2}^2)^{-1/2}$ and

614
$$\delta(q_2) = \left| \frac{\partial}{\partial y_3} \left(\xi_n \frac{y - y_3}{|\mathbf{r} - \mathbf{r}_3|} - q_{in2} \right) \right|^{-1} \delta(y_3 - y_{1s}) = \frac{\xi_n^2 |x - x_3|}{(\xi_n^2 - q_{in2}^2)^{3/2}} \delta(y_3 - y_{1s}). \quad (38)$$

615 Inserting Eqs. (37) and (38) in the integrand in Eq. (17) and integrating first over y_3 and then
 616 over x_3 gives Eq. (35). Note that this derivation of Eq. (35), like Eq. (17), apply in the far field
 617 with respect to the correlation scale of the sea surface roughness. This is a very significant
 618 limitation in the case of swell. No such assumption was made in the derivation of Eq. (33), which
 619 is applicable everywhere outside the swell wavetrain itself.

620 To elucidate the relative significance of wind seas and swell in the abyssal T wave
 621 problem, let us compare the acoustic power fluxes J_n in the normal modes generated at sound
 622 scattering by two types of ocean surface roughness in the same area $|x - x_0| \leq L/2$ of the ocean
 623 surface. For simplicity, we will disregard dependence of $\partial P/\partial z$ on x and variation of \mathbf{q}_{in} and
 624 wind wave spectrum with coordinates within the area that contributes the most to the scattering.
 625 Then, Eq. (19) gives

626
$$\langle J_n \rangle = \frac{\pi^2 E}{2\omega} L \tilde{S}_\eta, \quad E = \left(\frac{1}{\rho} \frac{\partial f_n}{\partial z} \right)_{z=0}^2 \int_{-\infty}^{+\infty} \left| \frac{\partial P}{\partial z} \right|^2 dy \quad (39)$$

627 for wind seas. Here, \tilde{S}_η is the value of the wind wave spectrum at some point within the
 628 integration domain in Eq. (19). [Equation (39) follows immediately from application of the first
 629 mean value theorem for integrals to the right side of Eq. (19).] \tilde{S}_η in Eq. (39) can be viewed as a
 630 weighted average of the spectrum S_η over the horizontal direction of the mode propagation
 631 within the interval $|\xi_n - q_{in}| < q < \xi_n + q_{in}$ of wavenumbers q of wind seas. This interval contains
 632 all possible $q = |\xi_n \mathbf{e} - \mathbf{q}_{in}|$ in the integrand in Eq. (19). When the peak $q = q_p$ of the wave

633 spectrum lies within the interval $|\xi_n - q_{in}| < q < \xi_n + q_{in}$, $\tilde{S}_\eta \sim q_p^{-2} \sigma_\eta^2 / 2\pi$ according to Eqs. (27)

634 and (28); \tilde{S}_η is small otherwise.

635 For scattering by swell, acoustic power flux in a normal mode can be calculated by

636 integrating the x component of the acoustic power flux density along the vertical planes $x - x_0 =$

637 const. $> L/2$ (toward increasing x) and $x - x_0 = \text{const.} < -L/2$ (toward decreasing x). Similar to

638 derivation of Eq. (18), from Eqs. (9) and (33) we find

$$639 J_n = \frac{\xi_n L^2}{16\omega(\xi_n^2 - q_{in2}^2)} \left(\frac{1}{\rho} \frac{\partial f_n}{\partial z} \right)_{z=0}^2 \int_{-\infty}^{+\infty} \sigma_\eta^2 \left(\frac{\sin Y_2}{Y_2} - \frac{\sin Y_1}{Y_1} \right)^2 \left| \frac{\partial P}{\partial z} \right|^2 dy \quad (40)$$

640 for the power flux toward increasing x . $Y_{1,2}$ in Eq. (40) are given by Eq. (34) with $(x - x_0)/|x - x_0|$

641 = 1. The power flux toward decreasing x is given by the same Eq. (40) but now with $(x - x_0)/|x -$

642 $x_0| = -1$ in Eq. (34) for $Y_{1,2}$.

643 Resonant excitation of n th acoustic normal mode at scattering by swell occurs when one

644 of the four conditions, $q_{in1} \pm \sqrt{\xi_n^2 - q_{in2}^2} \pm \mu = 0$, is met. Then, one of the $Y_{1,2}$ values in Eq. (40) is

645 zero. Near the resonance frequency [more specifically, as long as $|Y_{1,2}|$ is either small or $O(1)$],

646 the term in parenthesis in the integrand in the right side of Eq. (40) is $O(1)$, and

647 $J_n \sim EL^2 \sigma_\eta^2 / 8\omega \xi_n$. Note that J_n is proportional to L^2 due to coherent scattering of sound by the

648 swell wavetrain. Away from the resonance frequencies, when all $|Y_j| \gg 1$, J_n decreases by the

649 factor of the order of $\mu^2 L^2 \gg 1$. For the contribution of wind seas, Eq. (39) gives

650 $\langle J_n \rangle \sim \pi EL \sigma_\eta^2 / 2\omega \xi_n^2$, when the peak of the wind wave spectrum fully contributes to generation

651 of n th normal mode. As expected, $\langle J_n \rangle$ is proportional to the area occupied by surface roughness

652 and, hence, to L at incoherent scattering of sound by random surface waves.

653 Aside from the roughly estimated numerical factors, in the vicinity of resonance
 654 frequencies the energy of swell contribution to T -phase exceeds the maximum contribution of
 655 wind waves with the same wave height by the factor $\zeta_n L \gg 1$. Thus, T waves due to swell can
 656 dominate over the wind-wave contribution in narrow frequency bands not only in specific
 657 directions but also in the azimuthally integrated power flux, even when the local winds are strong
 658 and the peak of the wind wave spectrum $q_p \sim \mu$. However, according to Eq. (40), only a narrow
 659 vicinity $\delta f \sim c/L$ of the resonant frequency contributes significantly to the energy of sound
 660 scattered by swell, and the broadband acoustic power fluxes due to scattering by wind waves and
 661 swell with the same wave height prove to be comparable.

662

663 **C. Dependence of T -phase energy and duration on the hypocenter depth**

664 Calculation of the T -wave spectrum with Eqs. (17) and (33) requires knowledge of the
 665 distribution of wind speed and sea swell in an area around earthquake epicenter as well as a
 666 model of the ballistic waves generated by the earthquake. In this section, we use a basic model of
 667 the seabed and simplified, semi-quantitative versions of the theoretical results for mode
 668 amplitudes in order to estimate the dimensions of the area of the ocean surface, where T waves
 669 are generated, and understand the variation of the abyssal T -phase duration and energy with the
 670 depth of earthquake focus. For these estimates, the seabed is modeled as a homogeneous solid
 671 half-space with the density and elastic parameters of the Earth's crust near the earthquake focus,
 672 and a compact, directional seismic source is supposed to be located at the focus. For orientation,
 673 $c_l = 8 \text{ km/s}$, $c_t = 4 \text{ km/s}$, and $M = 3$ can serve as representative values of the compressional and
 674 shear wave speeds and the ratio of the densities of earth's crust and sea water, respectively. The
 675 hypocenter (focus) of the earthquake is at the point $(0, 0, H + D)$ at depth D below the seafloor

676 (Fig. 1). The source will be characterized by the frequency-dependent amplitudes A_P and A_{SV} and
 677 corresponding directional factors $B_P(\theta, \varphi)$ and $B_{SV}(\theta, \varphi)$ of compressional (P) and vertically
 678 polarized shear (SV) waves that are radiated by the earthquake. Horizontally polarized shear
 679 waves in the crust do not contribute to acoustic field in water.⁶² By definition, $|B_P| \leq 1$ and $|B_{SV}|$
 680 ≤ 1 . When considering the incident waves that are scattered at the ocean surface, we focus on the
 681 ballistic waves arriving directly from the source and disregard the weaker arrivals, which reach
 682 the ocean surface and are scattered after previously undergoing surface and bottom reflections.

683 Parameters of the incident acoustic wave, which is scattered by the rough ocean surface,
 684 affect the wind wave contribution to T -phase mode amplitudes, Eq. (17), via $\partial P/\partial z$ and \mathbf{q}_{in} . The
 685 amplitude and the angle of incidence of the incident wave vary along the ocean surface. With
 686 wind waves being independent from the focal depth and the other earthquake properties, after
 687 averaging over wind speeds and directions, Eq. (17) can be written as follows:

688 $\langle |Q_n^2| \rangle = 4\pi^2 r^{-1} \langle S_\eta \rangle \Psi$, where

689
$$\Psi = \int \left| \frac{\partial P(\mathbf{r}_3, 0)}{\partial z} \right|^2 d\mathbf{r}_3. \quad (41)$$

690 The average $\langle S_\eta \rangle$ of the wind wave spectrum is largely insensitive to the angle of incidence of
 691 the ballistic waves from the earthquake. For instance, it follows from Eqs. (27) and (28) that
 692 $\langle S_\eta \rangle \sim q_p^{-2} \sigma_\eta^2 / 2\pi$ and is controlled by the representative wind speed alone, when the peak of the
 693 wind wave spectrum contributes to T -phase generation. Hence, the effect of the earthquake
 694 parameters on T -phase generation is characterized by the surface integral Ψ in Eq. (41).

695 Averaging Eq. (40) over the swell wavelength and wave trains' location and propagation
 696 direction shows that Ψ Eq. (41) also encapsulates the effect of the incident wave on T -phase
 697 generation due to sound scattering by sea swell.

698 For the steep angles, at which ballistic waves from the earthquake propagate in the water
 699 column, variations of the sound speed in water with depth are insignificant. Sound speed c and
 700 density ρ in water will be assumed constant in the analysis of the ballistic waves. Then, using the
 701 results for spherical wave transmission through a plane interface of two homogeneous media,⁵⁵
 702 we find

$$703 \quad \frac{\partial P(\mathbf{r}, 0)}{\partial z} = -\frac{i\omega}{c} A_P B_P(\theta_l, \varphi) T_l(\theta_l) \left[\frac{\sin \theta_l}{r} \left/ \left(\frac{D}{\cos^3 \theta_l} + \frac{cH}{c_l \cos^3 \theta} \right) \right. \right]^{1/2} \\ \times \exp \left[i\omega \left(\frac{D}{c_l} \cos \theta_l + \frac{H}{c} \cos \theta \right) - \frac{\alpha_l D}{\cos \theta_l} \right] \quad (42)$$

704 at the point $\mathbf{r} = r(\cos \varphi, \sin \varphi, 0)$ on the ocean surface. Equation (42) describes the contribution of
 705 compressional waves in the seabed and is obtained in the ray approximation. Here θ and θ_l are
 706 the incidence angles (i.e., the angle ray makes with the z axis) in the ocean and seabed,
 707 respectively; α_l denotes attenuation coefficient of compressional waves, and T_l is the plane-wave
 708 transmission coefficient of compressional waves at the seafloor. The incident angles are related
 709 by Snell's law and can be found from the equations

$$710 \quad c^{-1} \sin \theta = c_l^{-1} \sin \theta_l, \quad r = H \tan \theta + D \tan \theta_l. \quad (43)$$

711 When r increases from 0 to infinity, θ_l increases from 0 to $\pi/2$ according to Eq. (43), while θ
 712 increases from 0 to $\arcsin(c/c_l)$. The horizontal wave vector \mathbf{q}_{in} , which enters Eqs. (16), (17), and
 713 (33), is $\mathbf{q}_{in} = \omega c^{-1} \sin \theta \cdot (\cos \varphi, \sin \varphi, 0)$.

714 Contribution of shear waves in the seabed into $\partial P/\partial z$ at the ocean surface is given by
 715 equations similar to Eqs. (42) and (43), except the SV wave source amplitude A_{SV} , directional
 716 factor B_{SV} , and attenuation coefficient α_l should be used instead of A_P , B_P , and α_l . Transmission
 717 coefficient T_l of SV waves replaces T_l in Eq. (42). In addition, the shear wave speed c_t and
 718 incidence angle θ_l should be used instead of c_l and θ_l in Eqs. (42) and (43). Since $c_l > c_t$, it

719 follows from Eq. (43) that at any $r > 0$ the ballistic waves due to compressional waves in the
 720 seabed arrive at the sea surface at steeper angles than the ballistic waves due the shear waves
 721 radiated by the earthquake.

722 In the case of fluid-fluid interfaces, the transmission coefficient⁶²

723
$$T_l(\theta_l) = 2c \cos \theta_l / (c \cos \theta_l + M c_l \cos \theta). \quad (44)$$

724 At a solid-fluid interface, T_l and T_t are given by more cumbersome equations,⁶² but, as in Eq.
 725 (44), T_l is proportional to $\cos \theta_l$ and vanishes when $\theta_l \rightarrow \pi/2$, while T_t is proportional to $\cos \theta_t$ and
 726 vanishes when $\theta_t \rightarrow \pi/2$, see equations (4.2.37)–(4.2.42) in Ref. 62. These properties of the
 727 transmission coefficients ensure that areas far from the epicenter contribute little to T wave
 728 generation. Transmission coefficients $T_l(\theta_l)$ and $T_t(\theta_t)$ have $O(1)$ values for all real θ_l and θ_t ,
 729 respectively; $T_t(0) = 0$ and $T_l(0)$ is nonzero.

730 Since the ballistic waves originating from compressional and shear waves in the seabed
 731 have distinct horizontal wave vectors \mathbf{q}_{in} , the integral Ψ in Eq. (41) should be calculated
 732 separately for these incident waves. [The \mathbf{q}_{in} values are close at near-normal incidence of ballistic
 733 waves, which occurs in the vicinity $r \ll H + D$ of the epicenter. However, since $T_t(0) = 0$, the
 734 amplitude is then negligible of the incident wave due to SV waves in the bottom, and interference
 735 of the two incident waves has no effect on T wave generation.] For the compressional wave
 736 contribution, from Eqs. (41)–(43) we find

737
$$\Psi_P = \left| \frac{\omega}{c} A_P \right|^2 \int_{-\pi}^{\pi} \frac{d\varphi}{2} \int_0^{\pi/2} |B_P(\theta_l, \varphi) T_l(\theta_l)|^2 \exp\left(-\frac{2\alpha_l D}{\cos \theta_l}\right) \sin 2\theta_l d\theta_l. \quad (45)$$

738 Equation (43) has been used to change the integration variable in Eq. (41) from r_3 to θ_l . The
 739 result for the contribution Ψ_{SV} of the shear waves in the seabed differs from Eq. (45) by the
 740 obvious change of notations, which has been discussed above for Eq. (42).

741 Note that Eq. (45) does not contain ocean depth H . Hypocenter depth D enters Eq. (45)
 742 only via the exponential term that describes wave attenuation in the solid bottom. Thus, our
 743 estimates show that the energy of abyssal T waves is independent of the ocean depth and is
 744 insensitive to the hypocenter depth at such frequencies that wave energy dissipation is weak.
 745 This finding is not restricted to the basic ocean and earth's crust model we consider and, by
 746 changing the integration variables to ray launch angles, can be extended to stratified seabed as
 747 long as the ray-theoretical description of the ballistic waves remains applicable.

748 The independence or lack of sensitivity of the abyssal T -wave energy to H and D appears
 749 counter-intuitive at first. Indeed, according to Eq. (42), amplitudes of the incident waves on the
 750 ocean surface rapidly decrease with increasing H and D . However, the decrease in amplitude is
 751 compensated by an increase in the ocean surface area that contributes to T wave generation. For
 752 instance, if H and D are increased by the same factor $\beta > 1$ and the ray launch angle θ_l (or θ_t) is
 753 kept constant, r in Eq. (43) increase the same factor β . Incident wave amplitude in Eq. (42) is
 754 decreased by the factor β as long as the wave dissipation is negligible. The decrease of the
 755 integrand in the surface integral for Ψ in Eq. (41) by the factor β^2 is exactly compensated by the
 756 increase in $d\mathbf{r}_3 = r_3 dr_3 d\varphi$. This is closely related to the fact that, as long as dissipation is
 757 negligible, the energy of body waves (as opposed to interface seismo-acoustic waves) reaching
 758 the ocean surface remains unchanged, when depth of a compact seismic source varies.

759 In addition to T -phase energy, signal duration is another important characteristic of T
 760 waves. At distant receivers, T -phase duration is controlled by the seismic event (rupture)
 761 duration in the earthquake focus, normal mode dispersion in the oceanic waveguide, and linear
 762 dimensions of the region, where T waves are generated. Generation of T waves due to sound
 763 scattering occurs with different efficiency at various points on the ocean surface and tends to

764 gradually decrease with distance from the epicenter. Assuming spatially uniform statistics of
 765 surface gravity waves, the effective radius r_g of the area around the epicenter, where
 766 abyssal T waves are generated, can be estimated as follows [cf. Eq. (41)]:

$$767 \quad r_g = \Psi^{-1} \int r |\partial P(\mathbf{r}, 0) / \partial z|^2 d\mathbf{r}. \quad (46)$$

768 Much like Ψ_P and Ψ_{SV} above, r_g needs to be estimated separately for the incident waves due to P
 769 and SV waves in the seabed. In terms of r_g , the lower bound of the T -phase duration can be
 770 roughly estimated as the difference $2r_g/c$ of acoustic travel times from the opposite margins of
 771 the region, where T waves are generated. Similarly, r_g/c provides an estimate of the rise (onset)
 772 time of the envelope of the T -phase waveform.

773 For the ballistic wave due to P waves in the seabed, from Eqs. (42), (43), and (46) we
 774 find

$$775 \quad r_g = \left| \frac{\omega}{c} A_P \right|^2 \Psi_P^{-1} \int_{-\pi}^{\pi} d\varphi \int_0^{\pi/2} |B_P(\theta_l, \varphi) T_l(\theta_l)|^2 \left(\frac{H \cos \theta_l}{\sqrt{c_l^2 c^{-2} - \sin^2 \theta_l}} + D \right) \exp\left(-\frac{2\alpha_l D}{\cos \theta_l}\right) \sin^2 \theta_l d\theta_l. \quad (47)$$

776 Derivation of Eq. (47) is quite similar to that of Eq. (45). For the ballistic wave due to SV waves
 777 in the seabed, the result follows from Eq. (47) after the previously discussed change in notation.
 778 The integral in the right side of Eq. (47) and Ψ_P depend on the source directionality and
 779 environmental parameters. In the case of an omnidirectional source in a homogeneous medium (c
 780 $= c_l$, $T_l \equiv 1$) without dissipation, Eqs. (45) and (47) give $r_g = 0.5\pi(H + D)$. We now show that r_g
 781 remains of the order of $H + D$ in the general case, with a possible exception for high frequencies.

782 Note that the integrands in Eqs. (45) and (47) are small, when either $\sin \theta_l \ll 1$ (because
 783 of the factors $\sin 2\theta_l$ and $\sin^2 \theta_l$, respectively) or $\cos \theta_l \ll 1$ (because of the transmission
 784 coefficient). Hence, $\tan \theta_l = O(1)$ in the range of θ_l that contributes most to the integrals. The
 785 integrand in Eq. (47) differs from the integrand in Eq. (45) by the factor $r = H \tan \theta_l + D \tan \theta_l$,

786 which is of the order of $H + D$, when $\tan\theta_l = O(1)$. Thus, $r_g = O(H + D)$ generally, and our
 787 estimates indicate longer abyssal T -phase duration for deeper earthquakes. At sufficiently high
 788 frequencies, i.e., when waves are strongly dissipated in the seabed over the path of length D , the
 789 exponential factor $\exp(-2\alpha_l D/\cos\theta_l)$ in the integrands of Eqs. (45) and (47) favors small θ_l . It
 790 results in smaller r_g values at higher T -wave frequencies than at lower ones.

791 Our results indicate, in agreement with observations,^{63–66} that the T -phase rise (onset)
 792 time increases with the hypocenter depth D . Furthermore, r_g and the rise (onset) time increase
 793 with the water depth H . This prediction is opposite to that of the seafloor scattering model by de
 794 Groot-Hedlin and Orcutt⁴⁰ but agrees with the observations analyzed by Williams et al.²

795

796 **IV. DISCUSSION**

797 **A. Comparison to other mechanisms of T -phase generation**

798 For scattering of ballistic waves by rough ocean surface to be a significant mechanism of T -
 799 phase generation, the resulting T waves should have a sufficiently large amplitude. At the very
 800 least, surface scattering should excite acoustic normal modes much more efficiently than these
 801 are excited in a horizontally stratified ocean with plane, horizontal boundaries and interfaces.

802 The direct excitation of the T waves, which have phase and group speeds close to the
 803 sound speed c in water, by seismic sources in layered media is very weak because of the
 804 exponential attenuation of shape functions of the corresponding normal modes in the seabed.^{1,3,}

805 ⁴¹ For a rough semi-quantitative estimate of the direct excitation, we model the seabed as a
 806 homogeneous fluid half-space with the sound speed $c_b > c$. The seismic wave source is modeled
 807 as a point monopole acoustic source with $A = A_0\delta(x)\delta(y)\delta(z - D)$ in Eq. (3). (The conclusions
 808 remain essentially unchanged for the more complicated dipole or quadrupole sources.) From Eqs.

809 (2), (3), and (6), we find the power flux $J_n^{(D)} = \omega |A_0|^2 |f_n^2(H+D)|/8$ in the n th mode, generated in
 810 a layered medium by a point source at the earthquake focus. Here A_0 is the source amplitude.
 811 Acoustic pressure is evanescent in the seabed: $f_n(H+D) = f_n(H) \exp(-\omega D \sqrt{c_n^{-2} - c_b^{-2}})$, where
 812 $f_n(H)$ can be estimated from Eq. (7): $f_n^2(H) \lesssim 2\rho(0)/H$. When estimating $J_n^{(D)}$, one has to use
 813 shear wave speed, rather than the larger compressional wave speed, for c_b because evanescent
 814 shear waves attenuate more slowly below the seafloor and provide stronger coupling of the
 815 seismic source to the normal modes we consider [i.e., a larger value of $f_n(H+D)$].

816 The resulting expression for the power flux in the normal mode directly excited by the
 817 seismic source should be compared to the power flux in the same mode excited due to scattering
 818 of ballistic waves at the rough ocean surface. To estimate the average power flux $J_n^{(W)}$ due to
 819 scattering by wind waves on the ocean surface, we employ Eq. (19) and the estimates of the
 820 spatial average of the surface roughness spectrum $\langle S_\eta \rangle \sim q_p^{-2} \sigma_\eta^2 / 2\pi = (0.091)^2 \sigma_\eta^4 / 2\pi$ (Secs. III
 821 A and III C) and the radius of the contributing region on the ocean surface $r_g \sim H + D$ (Secs. III
 822 C). For the modal power flux due to scattering by the wind waves, we arrive at the estimate

$$823 J_n^{(W)} \sim \frac{\pi^2 \omega \sigma_\eta^4 (H+D)^2 \sin^2 \chi_n}{2(0.091)^2 \rho(0) c^2(0) H} \left| \frac{\partial P}{\partial z} \right|_{z=0}^2. \quad (48)$$

824 In terms of the amplitude A_0 of omnidirectional point source, for ballistic waves on the ocean
 825 surface at the epicenter we have $|\partial P/\partial z| \approx \omega^2 \rho_b T(0) |A_0| / 4\pi (H+D)$, where $\rho_b = M\rho(0)$ is the
 826 seabed density and T is the transmission coefficient Eq. (44).

827 Combining the above estimates, we find

828

$$F_1 = \frac{J_n^{(W)}}{J_n^{(D)}} \sim \frac{\sin^2 \chi_n}{2(0.091)^2} \left(\frac{\omega \sigma_\eta}{c(0)} \right)^4 \left[\frac{Mc(H)}{c(H) + Mc_b} \right]^2 \exp\left(2\omega D \sqrt{c_n^{-2} - c_b^{-2}}\right) \quad (49)$$

829 for the ratio of the acoustic power fluxes in T waves at surface scattering and direct excitation in
 830 layered waveguide. The ratio F_1 characterizes the relative significance of scattering by wind
 831 waves compared to the direct excitation. Note that F_1 rapidly increases with sound frequency,
 832 roughness amplitude, and the earthquake focus depth. With $\chi_n \cong 0.1$ rad, $c_n \cong 1500$ m/s, and $c_b \cong$
 833 4000 m/s, Eq. (49) predicts that scattering due to wind waves generates T waves *hundreds of dBs*
 834 stronger, than the direct excitation, at frequencies as low as 1 Hz and rms surface elevations as
 835 small as $\sigma_\eta = 0.3$ m even for rather shallow earthquakes with $D = 10$ km (or at 2 Hz with even
 836 smaller $D = 5$ km). Thus, excitation due to surface scattering of ballistic body waves dominates
 837 over the direct excitation at all T -phase frequencies, as expected.

838 In a full-wave, 2-D SPECFEM simulation, Bottero⁸ compared T -phase generation at a
 839 large-scale bathymetric feature (a six kilometer-long, 12° bottom slope centered on the
 840 earthquake epicenter) with contributions due to sound scattering by a compact scatterer on the
 841 ocean surface. The scatterer was intended to roughly represent a large commercial vessel.
 842 Bottero found that, in his model, the compact surface scatterers (“ships”) were as strong a T -
 843 wave source as the downslope conversion on the large bathymetric feature.⁸ While the target
 844 strength of the scatterer in Ref. 8 is much larger than that of actual ships of the same
 845 dimensions,⁶⁷ the full-wave simulation results⁸ are extremely valuable as the first rigorous
 846 comparison of the efficiency of surface scattering and downslope conversion as T -phase sources.
 847 By analytic evaluation of T -phase generation by the compact scatterer considered in Ref. 8 and
 848 by wind waves, the numerical results⁸ have been used to demonstrate⁶⁷ that sound scattering by
 849 wind waves dwarfs the contribution of scattering by ships in 3-D and can generate T waves at

850 least as efficiently as the presumably dominant³ generation mechanism of the downslope
 851 conversion on large bathymetric features.

852 We now provide a direct, semi-quantitative comparison of the energy of the *T* waves that
 853 are generated in a 3-D ocean by either a large bathymetric feature (a seamount) or sound
 854 scattering due to gravity waves on the ocean surface. Let an isolated seamount or a small island
 855 be located at distance *R* from the epicenter. The seamount rises from the otherwise horizontal
 856 seafloor to the ocean surface. Width of the seamount in the azimuthal direction is *l*. It is small
 857 compared to *R* and large compared to water depth *H* and acoustic wavelengths in the *T*-wave
 858 frequency band. The surface of the seamount makes angle γ with the horizontal plane. The
 859 amplitude of the normal component of the oscillatory velocity of the surface of the seamount
 860 differs from the velocity amplitude in the ballistic waves at the ocean surface at the epicenter by
 861 the factor $w > 0$, which includes the effects of the geometric spreading and wave attenuation in
 862 the bottom. For a seamount at range $R \gg D + H$ from the epicenter, the ratio of the ballistic wave
 863 amplitudes at the seamount and on the ocean surface at the epicenter $w \sim \exp(-\alpha R)(H + D)/R$,
 864 where α stands for the attenuation coefficient of *P* or *S* waves in the seabed.

865 Consider the vertical cross-section of the ocean from its surface to the foot of the
 866 seamount, where it meets horizontal seafloor. In this cross-section, the horizontal component of
 867 the particle velocity due to seismic waves of frequency ω in the seamount can be estimated as

$$868 v_1 = \frac{2w\sin\gamma}{\omega\rho} \left| \frac{\partial P}{\partial z} \right| \exp \left[i\Phi(z) + i\sqrt{\omega^2 c^{-2} - \beta^2} (H - z) \cot\gamma \right] \sin\beta z, \text{ where factor } 2i\sin\beta z \text{ accounts}$$

869 for interference of incident and surface reflected acoustic waves with the vertical wavenumber β ,
 870 Φ describes variation of the phase of seismic waves along the seamount slope, and $\partial P/\partial z$ is
 871 evaluated on the ocean surface at the earthquake's epicenter. Using normal mode orthogonality
 872 to find modal components of the horizontal velocity, we obtain

873
$$J_n^{(SM)} = \frac{4w^2 l \sin^2 \gamma}{\omega \xi_n \rho(0)} \left| \frac{\partial P}{\partial z} \right|^2 |U_n^2|, \quad (50)$$

874
$$U_n = \sqrt{\rho(0)} \int_0^H dz \frac{f_n \sin \beta z}{\rho} \exp \left[i\Phi + i\sqrt{\omega^2 c^{-2} - \beta^2} (H - z) \cot \gamma \right] \quad (51)$$

875 for acoustic power flux in the n th mode generated by oscillations of the seamount surface.

876 Here, we disregarded guided acoustic mode penetration into the seabed and used the mode

877 normalization condition Eq. (7).

878 Using the Cauchy–Schwarz inequality and the normalization condition Eq. (7), the upper

879 bound of the integral U_n Eq. (51) can be estimated as follows: $|U_n^2| \leq \rho(0) \int_0^H dz \rho^{-1} \sin^2 \beta z \approx H/2$.

880 A more accurate estimate of U_n , which accounts for oscillations of the integrand with z , is

881
$$|U_n| \sim 2^{-1/2} (\omega^2 c^{-2}(0) - \xi_n^2)^{-1/4} = [2\omega c^{-1}(0) \sin \chi_n]^{-1/2}, \quad (52)$$

882 where χ_n has the meaning of grazing angle at the ocean surface. The estimate Eq. (52) refers to

883 modes with significant amplitudes throughout the water column. At higher frequencies, there

884 may be modes with deep turning points, which are very weakly manifested at the ocean surface

885 and the seafloor. These normal modes are not considered here.

886 From Eqs. (48), (50) and (52), we find

887
$$F_2 = \frac{J_n^{(W)}}{J_n^{(SM)}} \sim \frac{\pi^2 R^2 \exp(2\alpha R) \sin^3 \chi_n}{4(0.091)^2 l H \sin^2 \gamma} \left(\frac{\omega \sigma_\eta}{c(0)} \right)^4 \quad (53)$$

888 for the ratio of the modal power fluxes due to surface scattering and due to the seamount. The

889 ratio increases with the range R , surface roughness, and, in agreement with observations,³² with

890 T -wave frequency. It is larger for steeper normal modes (larger χ_n) and smaller for bigger (larger

891 l) and steeper (larger γ) seamounts.

892 Depending on environmental parameters and wave frequency, F_2 can be large (i.e.,
 893 surface scattering dominates) or small (i.e., contribution of surface scattering is negligible)
 894 compared to unity. Let $\chi_n = 0.1$, $\gamma = 0.4$, $H = 4$ km, the angular azimuthal dimension of the
 895 seamount as seen from the epicenter $L/R = 0.1$, and the rms surface elevation $\sigma_\eta = 1$ m. (All
 896 angles are in radian). To estimate the attenuation coefficient, we use compressional wave speed
 897 of 8 km/s and Q -factor of 400.^{68, 69} [Attenuation coefficient equals $27.3 Q_P^{-1}$ dB per wavelength
 898 in a wave with the quality factor Q_P .] Then, according to Eq. (53), surface scattering creates T
 899 waves as strong as those due to a seamount at the range $R = 400$ km from the epicenter at the
 900 frequency of about 5.0 Hz, with the surface scattering been the stronger T -wave source at higher
 901 frequencies. For $R = 600$ km, 300 km, 200 km and 100 km, the transition frequency, at which F
 902 = 1, shifts to about 3.7 Hz, 6.2 Hz, 8.3 Hz, and 13.5 Hz, respectively.

903 Because of their shorter wavelength and smaller quality factors, attenuation in the seabed
 904 plays a bigger role for shear than compressional waves. Therefore, the ratio F_2 Eq. (53) is larger
 905 for the shear-wave contributions of the seamount oscillations. Let the shear wave speed and Q -
 906 factor be 4 km/s and 200. Then, Eq. (53) gives rather low transition frequencies of 5.6 Hz, 3.3
 907 Hz, and 2.4 Hz for $R = 100$ km, 200 km, and 300 km, respectively.

908 It should be emphasized that Eq. (53) provides an estimate, rather than an accurate
 909 prediction, of the relative significance of the surface scattering and a large topographic feature as
 910 T -wave sources. On the other hand, our estimates of the contribution of the surface scattering are
 911 conservative in the sense that sea swell is expected to contribute to T -wave generation at least as
 912 much as wind waves (Sec. III B), and that typical values of σ_η are larger for most of the world
 913 ocean⁴⁵ than the 1 m assumed in our estimates.

914 Thus, scattering by surface gravity waves is expected to provide a significant contribution
 915 to T -phase energy, which is comparable to the contribution due to a downslope conversion on a
 916 seamount. In addition, being generated around the earthquake epicenter, the surface scattering
 917 contribution will generally separate from the bathymetric contributions by its arrival time and
 918 azimuth.

919

920 **B. Extensions of the theory**

921 We have assumed in Secs. II and III that the ocean is range-independent when averaged over
 922 time-dependent variations due to surface and internal gravity waves. This assumption may be too
 923 restrictive for the entire propagation path to distant receivers from the abyssal T -wave generation
 924 site in the vicinity of the earthquake epicenter. However, the assumption is sufficient to evaluate
 925 the acoustic energy of abyssal T waves and its modal distribution in the real ocean. Indeed,
 926 outside of the relatively small region, where the T waves are generated, acoustic energy of the
 927 scattered wave is conserved and is the same in the near field as in the far field, as long as
 928 acoustic dissipation is negligible. Normal-mode distribution of the T -phase energy also remains
 929 unchanged in horizontally inhomogeneous ocean as long as the adiabatic approximation⁵⁵ is
 930 applicable. After the normal mode amplitudes in the T -phase spectrum are calculated as
 931 described in Secs. II–III, the field can be readily propagated to long ranges with full account of
 932 sound absorption using either the adiabatic approximation, the coupled-mode or parabolic-
 933 equation propagation models.

934 We have focused on contributions of gravity waves in the ocean into T -phase generation.
 935 However, the theory of excitation of normal modes of the oceanic waveguide by scattering of
 936 body waves, as expressed by Eqs. (10), (17), and (26), can be applied to other types of surface

937 and volume scatterers. One important application is to *T*-phase generation at scattering by
938 volume inhomogeneities within the seabed and roughness of the seafloor and sediment layer
939 interfaces. This *T*-phase excitation mechanism has been previously considered^{41, 42} for coupling
940 within the discrete spectrum of the seismo-acoustic field. Arguably, the continuous spectrum
941 (ballistic body waves) make a stronger contribution to *T* wave excitation by bottom scattering
942 than the directly excited discrete spectrum modes, especially for earthquakes with deeper foci.
943 Application of the theory developed in this paper would allow one to better constrain the
944 effective sources of *T* waves on the seafloor and within the seabed (including their spatial
945 distribution, directionality, and frequency dependence), which were either not related
946 quantitatively to environmental properties⁴¹ or arbitrarily assigned^{22, 39, 40} in previous work.

947 Our finding that the contribution of the ballistic waves scattering by internal gravity
948 waves into *T*-phase generation is negligible compared to the contribution of the ocean surface
949 roughness does not necessarily mean that volume scattering in the water column plays no role in
950 this problem. At long-range propagation, internal waves contribute to coupling of the modes
951 generated by surface scattering to the modes confined in the SOFAR channel. Furthermore, the
952 water column contains many different types of inhomogeneities in a wide range of spatial scales.
953 Scattering of the infrasound generated by air guns from the thermohaline fine structure is
954 successfully utilized in seismic oceanography to measure physical parameters of the water
955 column.^{70, 71} The frequency band and propagation directions of incident waves that are exploited
956 in the seismic oceanography experiments^{70, 71} are comparable to those of the ballistic infrasound
957 waves in the ocean due to underwater earthquakes. Thus, seismic oceanography observations
958 suggest that contributions of the fine structure inhomogeneities into scattering of ballistic waves

959 from the earthquakes are non-negligible. Further research is needed to evaluate this mechanism
960 of volume scattering and its possible contribution to *T*-phase generation by volume scattering.

961 Evers et al.¹³ reported observations of *T* waves in the ocean and their atmospheric
962 counterpart, guided infrasonic waves in the atmosphere, which were generated by the same
963 underwater earthquake. Quantitative explanation of the atmospheric observations remains
964 elusive. We hypothesize that, akin to the abyssal *T*-phases, guided infrasonic waves in the
965 atmosphere were excited by the scattering of the earthquake-generated body waves on the rough
966 ocean surface and/or turbulence and internal gravity waves in the atmospheric boundary layer.
967 Although quantitative analysis of the observations¹³ is beyond the scope of this paper, it should
968 be noted that Eqs. (10), (17), and (26) can be employed to assess the scattering hypothesis. A
969 distinctive feature of the atmospheric observations by Evers et al.¹³ is the low-frequency cutoff in
970 the spectrum of the earthquake-generated infrasound. Observations of the low-frequency cutoff
971 are consistent with predictions of Eqs. (10) and (17), as illustrated in Fig. 3 for *T* waves in the
972 ocean, and provide a strong support for application of the surface scattering hypothesis to
973 atmospheric manifestations of underwater earthquakes.

974

975 VI. CONCLUSION

976 The theory, which is developed in this paper from first principles, offers a quantitative
977 explanation of ubiquitous observations of efficient generation of *T* waves in the vicinity of the
978 earthquake epicenter, including the earthquakes under abyssal plains with relatively smooth
979 seafloor. Wind waves and sea swell on the ocean surface have sufficient amplitudes for *T*-phase
980 excitation and are rich in the spatial scales needed for Bragg scattering of ballistic body waves
981 from the earthquake focus into the acoustic normal modes of the oceanic waveguide.

982 Surface scattering favors the acoustic modes, which span most of the water column, and
983 is consistent with *T*-wave observations by receivers on the seafloor. Observations of low-
984 frequency cutoff in the *T*-wave spectra find their natural explanation in the spectral properties of
985 the sea surface roughness. Weak correlation between *T*-phase amplitude and hypocentral depth
986 follows directly from a ray representation of ballistic waves in horizontally stratified fluid-solid
987 environment. Ocean surface scattering also offers a simple explanation for observations of the
988 increase of the *T*-phase onset time with the water depth and hypocentral depth.

989 Contributions of scattering by internal gravity waves into *T*-wave generation are found to
990 be negligible compared to the contributions of surface gravity waves, among which the sea swell
991 is expected to be the biggest contributor. Calculation of the wind-wave contribution to the
992 conversion of the ballistic waves into *T* waves at surface scattering gives the lower bound of the
993 abyssal *T*-wave energy.

994 Our focus on the gravity wave contributions to *T*-phase generation is not meant to imply
995 that other, previously identified mechanisms are weak or unimportant. To understand the *T*-wave
996 excitation, we suggest to consider sound scattering at the ocean surface in addition to the seafloor
997 scattering and the seismic wave interaction with large bathymetric features. Presumably,
998 depending on the local conditions, either the ocean surface scattering or the seafloor scattering
999 may be the dominant mechanism of abyssal *T*-phase generation or the two mechanisms may
1000 provide comparable contributions. The theory developed in this paper is expected to help in
1001 identifying the surface scattering contributions in the appropriate *T*-phase data.

1002 Rigorous 3-D, full-wave numerical modeling (e.g., using the SPECFEM approach^{12, 17-19})
1003 of *T*-phase in an ocean model, which combines a large bathymetric feature with a realistic
1004 representation of the rough ocean surface, appears to be the logical next step in investigation of

1005 the ocean surface scattering as a *T*-wave generation mechanism and ascertaining its significance.
1006 Further research is also needed to evaluate the significance of sound scattering by the
1007 thermohaline fine structure and other water-column inhomogeneities as possible additional
1008 sources of abyssal *T* waves and to extend the theory to the atmospheric counterpart¹³ of the *T*-
1009 phase phenomenon.

1010

1011 **ACKNOWLEDGMENTS**

1012 This work was supported in part by the Office of Naval Research, awards N00014-
1013 17WX00773 and N00014-20WX01312. Helpful discussions with A. Bottero, P. Cristini, L.
1014 Evers, and R. A. Stephen are gratefully acknowledged. The author thanks the Associate Editor
1015 and three anonymous reviewers for their advice on improving the presentation.

1016

1017 **References**

1018 ¹ I. Tolstoy and M. Ewing, "The T-phase of shallow focus earthquakes," Bull. Seismol. Soc. Am.

1019 **40**, 25–51 (1950).

1020 ² C. M. Williams, R. A. Stephen, and D. K. Smith, "Hydroacoustic events located at the

1021 intersection of the Atlantis (30°N) and Kane (23°40'N) Transform Faults with the Mid-Atlantic

1022 Ridge," *Geochem. Geophys. Geosyst.*, **7**, Q06015 (2006).

1023 ³ E. A. Okal, "The generation of *T* waves by earthquakes," *Advances in Geophysics* **49**, 1–65

1024 (2008).

1025 ⁴ J. S. Buehler and P. M. Shearer, "T phase observations in global seismogram stacks," *Geophys.*

1026 *Res. Lett.* **42**, 6607–6613 (2015).

1027 ⁵ J. A. Hildebrand, "Anthropogenic and natural sources of ambient noise in the ocean," *Mar.*

1028 *Ecol. Prog. Ser.*, **395**, 5–20 (2009).

1029 ⁶ W. S. D. Wilcock, K. M. Stafford, R. K. Andrew, and R. I. Odom, "Sounds in the ocean at 1–

1030 100 Hz," *Annu. Rev. Mar. Sci.* **6**, 117–140 (2014).

1031 ⁷ I. F. Kadykov, *Acoustics of Underwater Earthquakes* (Nauka, Moscow, 1986) (in Russian).

1032 ⁸ A. Bottero, *Full-wave numerical simulation of T-waves and of moving acoustic sources*, Ph.D.

1033 thesis, Université Aix Marseille (2018).

1034 ⁹ F. K. Duennebier and R. H. Johnson, *T-phase sources and earthquake epicenters in the Pacific*

1035 *Basin*. Tech. Report, Inst of Geophysics, Hawaii Univ., Honolulu, 1967. 100 pp.

1036 ¹⁰ G. D'Spain, L. Berger, W. Kuperman, J. Stevens, and G. Baker, "Normal mode composition

1037 of earthquake T phases," *Pure Appl. Geophys.* **158**, 475–512 (2001).

1038 ¹¹ S. E. Freeman, G. L. D'Spain, S. D. Lynch, R. A. Stephen, K. D. Heaney, J. J. Murray, A. B.

1039 Baggeroer, P. F. Worcester, M. A. Dzieciuch, and J. A. Mercer, "Estimating the horizontal and

1040 vertical direction-of-arrival of water-borne seismic signals in the northern Philippine Sea," *J.*
1041 *Acoust. Soc. Am.* **134**(4), 3282–3298 (2013).

1042 ¹² G. Jamet, C. Guennou, L. Guillon, C. Mazoyer, and J. Y. Royer, "T-wave generation and
1043 propagation: A comparison between data and spectral element modeling," *J. Acoust. Soc. Am.*
1044 **134**(4), 3376–3385 (2013).

1045 ¹³ L. Evers, D. Brown, K. Heaney, J. Assink, P. Smets, and M. Snellen, "Evanescent wave
1046 coupling in a geophysical system: Airborne acoustic signals from the Mw 8.1 Macquarie Ridge
1047 earthquake," *Geophys. Res. Lett.* **41**, 1644–1650 (2014).

1048 ¹⁴ H. Shimamura, and T. Asada, "T waves from deep earthquakes generated exactly at the
1049 bottom of deep-sea trenches," *Earth Planetary Sci. Lett.*, **27**(2), 137–142 (1975).

1050 ¹⁵ R. Butler, "Observations of polarized seismoacoustic T waves at and beneath the seafloor in
1051 the abyssal Pacific ocean," *J. Acoust. Soc. Am.* **120**, 3599–3606 (2006).

1052 ¹⁶ A. Ito, H. Sugioka, D. Suetsugu, H. Shiobara, T. Kanazawa, and Y. Fukao, "Detection of small
1053 earthquakes along the Pacific-Antarctic Ridge from T-waves recorded by abyssal ocean-bottom
1054 observatories," *Mar. Geophys. Res.* **33**, 229–238 (2012).

1055 ¹⁷ A. Bottero, P. Cristini, and D. Komatitsch, "Numerical simulations of T-wave generation and
1056 conversion at shores: Influence of slope angles and of the SOFAR channel," *J. Acoust. Soc. Am.*
1057 **141**, 4045 (2017).

1058 ¹⁸ J. Lecoultant, C. Guennou, L. Guillon, and J. Y. Royer, "Three-dimensional modeling of
1059 earthquake generated acoustic waves in the ocean in simplified configurations," *J. Acoust. Soc.*
1060 *Am.* **146**, 2113–2123 (2019).

1061 ¹⁹ A. Bottero, P. Cristini, and D. Komatitsch, “On the influence of slopes, source, seabed and
1062 water column properties on T waves: Generation at shore,” *Pure Appl. Geophys.* **177**, 5695–
1063 5711 (2020).

1064 ²⁰ C. G. Fox, R. P. Dziak, H. Matsumoto, and A. E. Schreiner, “The potential for monitoring
1065 low-level seismicity on the Juan de Fuca Ridge using military hydrophone arrays,” *Mar.
1066 Technol. Soc. J.* **27**, 22–30 (1994).

1067 ²¹ D. K. Smith, M. Tolstoy, C. G. Fox, D. R. Bohnenstiehl, H. Matsumoto, and M. J. Fowler,
1068 “Hydroacoustic monitoring of seismicity at the slow-spreading Mid-Atlantic Ridge,” *Geophys.
1069 Res. Lett.*, 29(11), 1518 (2002).

1070 ²² Y. Yang and D. W. Forsyth, “Improving epicentral and magnitude estimation of earthquakes
1071 from T phases by considering the excitation function,” *Bull. Seism. Soc. Am.* **93**(5), 2106–2122
1072 (2003).

1073 ²³ R. P. Dziak, S. R. Hammond, and C. G. Fox, “A 20-year hydroacoustic series of seismic and
1074 volcanic events in the northeast Pacific Ocean,” *Oceanography* **24**(3), 280–293 (2011).

1075 ²⁴ H. Sugioka, Y. Fukao, and T. Hibiya, “Submarine volcanic activity, ocean-acoustic waves and
1076 internal ocean tides,” *Geophys. Res. Lett.*, **32**, L24616 (2005).

1077 ²⁵ W. Wu, Z. Zhan, S. Peng, S. Ni, and J. Callies, “Seismic ocean thermometry,” *Science*,
1078 **369**(6510), 1510–1515 (2020).

1079 ²⁶ C. Wunsch, “Advance in global ocean acoustics,” *Science*, **369**(6510), 1433–1434 (2020).

1080 ²⁷ D. A. Walker, C. S. McCreery, and Y. Hiyoshi, “T-phase spectra, seismic moments, and
1081 tsunamigenesis,” *Bull. Seism. Soc. Am.* **82**, 1275–1305 (1992).

1082 ²⁸ F. M. Graeber and P.-F. Piserchia, “Zones of T -wave excitation in the NE Indian ocean
1083 mapped using variations in backazimuth over time obtained from multi-channel correlation of
1084 IMS hydrophone triplet data,” *Geophys. J. International*, **158**, 239–256 (2004).

1085 ²⁹ N. R. Chapman and R. Marrett, “The directionality of acoustic T-phase signals from small
1086 magnitude submarine earthquakes,” *J. Acoust. Soc. Am.* **119**, 3669–3675 (2006).

1087 ³⁰ N. R. Chapman and R. Marrett, “Reply to ‘Comment on ‘The directionality of acoustic T-
1088 phase signals from small magnitude submarine earthquakes’ [J. Acoust. Soc. Am. **119**, 3669–
1089 3675 (2006)]’,” *J. Acoust. Soc. Am.* **121**, 1297–1298 (2007).

1090 ³¹ D. R. Bohnenstiehl, “Comment on ‘The directionality of acoustic T-phase signals from small
1091 magnitude submarine earthquakes’ [J. Acoust. Soc. Am. **119**, 3669–3675 (2006)],” *J. Acoust.*
1092 *Soc. Am.* **121**, 1293–1296 (2007).

1093 ³² F. K. Duennebier, *Spectral variation of the T-phase* Tech. Report (Inst of Geophysics, Hawaii
1094 Univ., Honolulu, 1967). 21 pp.

1095 ³³ R. H. Johnson, J. Northrop, and R. Eppley, “Sources of Pacific T-phases,” *J. Geophys. Res.*,
1096 **68**, 4251–4260 (1963).

1097 ³⁴ J. Talandier and E. A. Okal, “On the mechanism of conversion of seismic waves to and from T
1098 waves in the vicinity of island shores,” *Bull. Seismol. Soc. Am.*, **88**, 621–632 (1998).

1099 ³⁵ O. A. Godin, “Surface-to-volume wave conversion in shallow water with a gently sloping
1100 bottom,” *Acoust. Phys.* **53**(6), 714–720 (2007).

1101 ³⁶ O. A. Godin, “Surface-to-volume wave conversion in shallow water with a corrugated
1102 bottom,” *Acoust. Phys.* **54**(3), 346–352 (2008).

1103 ³⁷ R. H. Johnson, R. A. Norris, and F. K. Duennebier, Abyssally generated T-phases, in *The*
1104 *Crust and Upper Mantle of the Pacific Area*, ed. by L. Knopoff, C. L. Drake, and P. J. Hart, Am.
1105 Geophys. Union Geophys. Mono. No. 12, 70–78 (1968).

1106 ³⁸ R. E. Keenan, L. R. L. Merriam, “Arctic abyssal T phases: Coupling seismic energy to the
1107 ocean sound channel via under-ice scattering,” *J. Acoust. Soc. Am.* **89**, 1128–1133 (1991).

1108 ³⁹ C. D. de Groot-Hedlin, and J. A. Orcutt, “Synthesis of earthquake-generated T-waves,”
1109 *Geophys. Res. Lett.* **26**(9), 1227–1230 (1999).

1110 ⁴⁰ C. D. de Groot-Hedlin and J. A. Orcutt, “Excitation of T-phases by seafloor scattering,” *J.*
1111 *Acoust. Soc. Am.* **109**, 1944–1954 (2001).

1112 ⁴¹ M. Park, R. I. Odom, and D. J. Soukup, “Modal scattering: A key to understanding oceanic T-
1113 waves,” *Geophys. Res. Lett.* **28**, 3401–3404 (2001).

1114 ⁴² R. I. Odom and D. J. Soukup, “Modal scattering and T-waves: Sediment amplification and
1115 source effects,” *J. Acoust. Soc. Am.*, **115**(5), 2445 (2004).

1116 ⁴³ W. J. Pierson and L. Moskowitz, “A proposed spectral form for fully developed wind seas
1117 based on the similarity theory of A. A. Kitaigorodskii,” *J. Geophys. Res.* **69**, 5181–5190 (1964).

1118 ⁴⁴ J. H. G. M. Alves, M. L. Banner, and I. R. Young, “Revisiting the Pierson–Moskowitz
1119 asymptotic limits for fully developed wind waves,” *J. Phys. Oceanogr.* **33**(7), 1301–1323 (2003).

1120 ⁴⁵ A. Semedo, K. Sušelj, A. Rutgersson, and A. Sterl, “A global view on the wind sea and swell
1121 climate and variability from ERA-40,” *J. Climate*, **24**(5), 1461–1479 (2011).

1122 ⁴⁶ S. M. Flatté, R. Dashen, W. H. Munk, K. M. Watson, and F. Zachariasen, *Sound Transmission*
1123 *Through a Fluctuating Ocean*, (Cambridge University Press, Cambridge, 1979), pp. 44–61.

1124 ⁴⁷ K. L. Polzin and Y.V. Lvov, “Toward regional characterizations of the oceanic internal
1125 wavefield,” *Rev. Geophysics*, **49**(4), RG4003 (2011).

1126 ⁴⁸ A. Sukhovich, J.-O. Irisson, J. Perrot, and G. Nolet, “Automatic recognition of T and
1127 teleseismic P waves by statistical analysis of their spectra: An application to continuous records
1128 of moored hydrophones,” *J. Geophys. Res. Solid Earth*, **119**, 6469–6485 (2014).

1129 ⁴⁹ M. Hall, “Surface-duct propagation: An evaluation of models of the effects of surface
1130 roughness,” *J. Acoust. Soc. Am.* **67**(3), 803–811 (1980).

1131 ⁵⁰ N. S. Gorskaya and M. A. Raevskii, “Multiple scattering of low-frequency sound waves by
1132 surface roughness,” *Sov. Phys. - Acoust.* **32**(2), 99–102 (1986).

1133 ⁵¹ R. I. Odom, “A coupled mode examination of irregular waveguides including the continuum
1134 spectrum,” *Geophys. J. R. Astr. Soc.* **86**(2), 425–453 (1986).

1135 ⁵² R. A. Vadov, “Acoustic propagation in the subsurface sound channel,” *Acoust. Phys.* **52**(1), 6–
1136 16 (2006).

1137 ⁵³ F. G. Bass and I. M. Fuks, *Wave Scattering from Statistically Rough Surfaces* (Pergamon,
1138 Oxford, 1979), 525 pp. Chaps. 2, 3, 11.

1139 ⁵⁴ A. G. Voronovich, *Wave Scattering from Rough Surfaces* (Springer, Berlin, 1989), pp. 73–
1140 100.

1141 ⁵⁵ L. M. Brekhovskikh and O. A. Godin, *Acoustics of Layered Media. 2: Point Sources and*
1142 *Bounded Beams*. 2nd, extended edn. (Springer, Berlin, 1999), pp. 16–20, 108–126, 135–144,
1143 150–168, 263–282, 410–414.

1144 ⁵⁶ O. A. Godin, “Calculation of amplitudes of acoustic normal modes from the reciprocity
1145 principle,” *J. Acoust. Soc. Am.* **119**(4), 2096–2100 (2006).

1146 ⁵⁷ *Handbook of Mathematical Functions with Formulas, Graphs, and Tables*, Appl. Math. Ser.,
1147 Vol. 55, edited by M. Abramovitz and I. A. Stegun (Dover, New York, 1965). Sec. 9.1.

1148 ⁵⁸ O. A. Godin, Acoustic mode reciprocity in fluid/solid systems: implications on environmental
1149 sensitivity and horizontal refraction. In: *Theoretical and Computational Acoustics*, ed. by Y. C.
1150 Teng et al. (World Scientific, Singapore, 1999), pp. 59–75.

1151 ⁵⁹ O. A. Godin, “On the possibility of using acoustic reverberation for remote sensing of the
1152 ocean dynamics,” *Acoust. Phys.* **58**(1), 129–138 (2012).

1153 ⁶⁰ O. A. Godin, “Wave equation for sound in a medium with slow currents,” *Dokl. Akad. Nauk
1154 SSSR*, **293**(1), 63–67 (1987).

1155 ⁶¹ M. S. Longuet-Higgins, “Statistical properties of wave groups in a random sea state,” *Phil.
1156 Trans. Royal Soc. London. Ser. A: Math. Phys. Sci.* **312**(1521), 219–250 (1984).

1157 ⁶² L. M. Brekhovskikh and O. A. Godin, *Acoustics of Layered Media. I: Plane and Quasi-Plane
1158 Waves*. 2nd edn. (Springer, Berlin etc., 1998), pp. 11–24, 87–98.

1159 ⁶³ R. A. Norris and R. H. Johnson, “Submarine volcanic eruptions recently located in the Pacific
1160 by SOFAR hydrophones,” *J. Geophys. Res.* **74**(2), 650–664 (1969).

1161 ⁶⁴ A. E. Schreiner, C. G. Fox, and R. P. Dziak, “Spectra and magnitudes of T-waves from the
1162 1993 earthquake swarm on the Juan de Fuca Ridge,” *Geophys. Res. Lett.* **22**(2), 139–142 (1995).

1163 ⁶⁵ J. Hildebrand, C. G. Fox, and R. P. Dziak, “A multipath model for T-wave generation by
1164 seafloor earthquakes,” *J. Acoust. Soc. Am.*, **100**(4), 2639 (1996).

1165 ⁶⁶ P. D. Slack, C. G. Fox, and R. P. Dziak, “P wave detection thresholds, Pn velocity estimates,
1166 and T wave location uncertainty from oceanic hydrophones,” *J. Geophys. Res.*, **104**, 13,061–
1167 13,073 (1999).

1168 ⁶⁷ O. A. Godin, “On the possible role of gravity waves in the ocean in T-phase excitation by
1169 earthquakes,” *J. Acoust. Soc. Am.* **146**(4), 3068 (2019).

1170 ⁶⁸ Z. A. Der and T. W. McElfresh, "Short-period P-wave attenuation along various paths in
1171 North America as determined from P-wave spectra of the SALMON nuclear explosion," Bull.
1172 Seism. Soc. Am., **66**(5), 1609–1622 (1976).

1173 ⁶⁹ J. P. Montagner and B. L. N. Kennett, "How to reconcile body-wave and normal-mode
1174 reference Earth models," Geophys. J. International, **125**(1), 229–248 (1996).

1175 ⁷⁰ W. T. Wood, W. S. Holbrook, M. K. Sen, and P. L. Stoffa, "Full waveform inversion of
1176 reflection seismic data for ocean temperature profiles," Geophys. Res. Lett. **35**(4), L04608,
1177 (2008).

1178 ⁷¹ R. W. Hobbs, D. Klaeschen, V. Sallarès, E. Vsemirnova, and C. Papenberg, "Effect of seismic
1179 source bandwidth on reflection sections to image water structure," Geophys. Res. Lett. **36**(24),
1180 L00D08 (2009).