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Abstract 22 

Generation of T-waves in a deep ocean by an earthquake in its epicentral region is often observed 23 

but the mechanism of the excitation of the acoustic waves travelling horizontally with the speed 24 

of sound remains controversial. Here, the hypothesis is investigated that the abyssal T-waves are 25 

generated by scattering of ballistic sound waves by surface and internal gravity waves in the 26 

ocean. Volume and surface scattering are studied theoretically in the small perturbation 27 

approximation. In the 3–50 Hz typical frequency range of the observed T-waves, linear internal 28 

waves are found to lack the necessary horizontal spatial scales to meet the Bragg scattering 29 

condition and contribute appreciably to T-wave excitation. In contrast, the ocean surface 30 

roughness has the necessary spatial scales at typical sea states and wind speeds. Efficiency of the 31 

acoustic normal modes’ excitation at surface scattering of the ballistic body waves by wind seas 32 

and sea swell is quantified and found to be comparable to that of the established mechanism of 33 

T-wave generation at downslope conversion at seamounts. The surface scattering mechanism is 34 

consistent with key observational features of abyssal T-waves, including their ubiquity, low-35 

frequency cutoff, presence on seafloor sensors, and weak dependence on the earthquake focus 36 

depth. 37 

 38 

 39 

PACS numbers: 43.30.Ma, 43.30.Dr, 43.30.Hw, 43.30.Ft, 43.30.Nb 40 

41 
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I. INTRODUCTION 42 

 The T-, or tertiary, phase of an underwater earthquake is composed of low-frequency 43 

acoustics waves, which propagate to long ranges in underwater waveguide at speeds close to the 44 

sound speed in water and arrive later than P-, or primary, and S-, or secondary phases, which are 45 

due to compressional (P) and shear (S) body waves in the seabed, and later than seismo-acoustic 46 

interface waves.1–4 T waves weakly attenuate with range, travel over very large distances, and are 47 

observed throughout the world ocean. They are the most common earthquake sounds in the 48 

ocean and make strong but transient contributions to the ambient sound field.5, 6  A 49 

comprehensive review of T-wave research up to mid-2000s can be found in Refs. 2, 3, 7, and 8. 50 

In addition to hydrophones at various depths in the water column,9–13  T waves are 51 

routinely observed by receivers on the seafloor in deep water,14–16 which indicates, in agreement 52 

with full-wave numerical modeling,8, 12, 17–19 that T-waves are not confined in the SOFAR 53 

channel. Because the wave speed and absorption in water are, respectively, smaller and much 54 

smaller than in the earth crust, T waves prove to be the most sensitive and rather accurate means 55 

to detect, characterize, and localize marine teleseismic events, including weak intraplate events.9, 56 

20–23 In addition, T waves carry information about the ocean. It was proposed to use 57 

measurements of temporal variability of T-wave travel times to characterize internal tides and 58 

associated ocean mixing24 and, more recently, for ocean acoustic thermometry.25, 26   59 

Numerous observations show that conversion of seismic energy into guided acoustic 60 

waves in oceanic waveguide occurs in the vicinity of the earthquake epicenter and at prominent 61 

bathymetric features, which may be located hundreds of kilometers away from the epicenter.3, 9, 62 

13, 20, 27–31 T-wave amplitudes remain significant for intermediate-depth earthquakes9, 32 and are 63 

insensitive to water depth.2 T waves from deep-focus earthquakes, with hypocenter depths of 64 

mailto:epicenter.@3
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hundreds of km, have been also observed.3, 14 The conversion mechanism and especially T-wave 65 

excitation in the immediate vicinity of the epicenter are not well understood.2, 8, 22  Excitation of 66 

acoustic normal modes at large-scale bathymetric features can be explained in terms of the 67 

downslope conversion and diffraction of P and S body waves and/or seismo-acoustic interface 68 

waves by horizontally inhomogeneous bathymetry.8, 19, 33–36 Ubiquitous “abyssal” T waves9, 32, 33, 69 

37 that are generated near the epicenter of earthquakes under flat abyssal planes, cannot be 70 

attributed to any of these generation mechanisms. Unlike the trapping of acoustic energy in the 71 

SOFAR channel by downslope conversion of steeply propagating sound, generation of abyssal T 72 

waves does not lend itself to a ray interpretation. It had been realized early on9, 32, 37 that a wave 73 

scattering mechanism was required to explain abyssal T-wave observations. Johnson, Norris, and 74 

Duennebier discussed scattering at the ocean surface and seafloor and volume scattering of 75 

sound in the ocean among the conceivable generation mechanisms and favored scattering by the 76 

ocean surface. 9, 32, 37 However, their crude estimates of the generation efficiency were not 77 

encouraging. Keenan and Merriam38 proposed sound scattering from keels on the undersurface 78 

of the ice cover as the mechanism of generation of abyssal T waves in the Arctic. The idea that 79 

sound scattering at the ocean surface could be an important mechanism of T-phase generation 80 

has been recently re-visited by Bottero8 using full-wave, two-dimensional (2-D) numerical 81 

modeling in a scenario with strong, discrete scatterers located on the ocean surface.  82 

Following Fox et al.20 and De Groot-Hedlin and Orcutt,39, 40 it is often implied in the 83 

current literature3, 6, 22  that abyssal T waves are generated due to wave scattering by seafloor 84 

roughness, specifically due to coupling between the seismo-acoustic normal modes that are 85 

directly excited by the seismic source, and the normal modes comprising the T-phase.41, 42 By 86 

modeling scattered waves as the field due to uncorrelated virtual sound sources distributed along 87 
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the seafloor, De Groot-Hedlin and Orcutt39, 40 and Yang and Forsyth22 successfully reproduced 88 

the shapes of envelopes of observed T-phase waveforms. However, detailed information about 89 

the seafloor roughness spectra is rarely if ever available around the epicenter of abyssal 90 

earthquakes with the granularity and at the spatial scales necessary for T-phase modeling. To our 91 

knowledge, the amplitude of the resulting T waves has never been related to actual seafloor 92 

roughness data or models in a quantitative manner and shown to be sufficient to explain the 93 

observed abyssal T waves. 94 

Here, we examine an alternative hypothesis that sound waves coming at steep angles 95 

directly from the earthquake focus (ballistic body waves) are coupled to normal modes of the 96 

underwater acoustic waveguide by dynamic processes in the water column and on the ocean 97 

surface. Specifically, we investigate the generation of abyssal T waves at scattering of ballistic 98 

sound waves by the ocean surface roughness, which is due to surface gravity waves, and by 99 

volume inhomogeneities of the water column, which are caused by internal gravity waves. We 100 

view the ocean surface and volume scattering as either a complementary to the seafloor 101 

scattering or possibly an alternative mechanism of generation of abyssal T waves. Unlike the 102 

seafloor roughness data in the open ocean, extensive information on statistics of wind waves and 103 

sea swell43–45 and internal gravity wave spectra46, 47 is available, which allows one to reach 104 

definitive conclusions regarding significance of these generation mechanisms.  105 

T waves are a seismo-acoustic phenomenon with representative wave frequencies being 106 

very high on the seismic scale and low for underwater sound. Typically, T waves are observed in 107 

the 1–100 Hz band.2, 3 Lower frequencies dominate the signals from stronger and deeper 108 

earthquakes, while the highest frequencies are generated by the weakest detected seismic events. 109 

Abyssal T waves exhibit higher frequencies than the T waves generated at down-slope 110 
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conversion.3, 32 Therefore, this paper will focus on the 3–50 Hz frequency band that contains 111 

most of the abyssal T-wave energy. Observations indicate existence of a low-frequency cutoff in 112 

T-phase spectra, see, e.g., Refs. 13, 32, 48 and Ref. 8, p. 59. The low-frequency cutoff will be 113 

related to the T-phase generation process in this paper. 114 

Mathematically, we describe the excitation of abyssal T-waves as scattering from the 115 

continuous spectrum into the discrete spectrum of the seismo-acoustic field. The continuous 116 

spectrum is represented here by the body waves, that are generated by an earthquake and reach 117 

the water column with a modest transmission loss at typical T-phase frequencies below about 118 

40–50 Hz. This process is reciprocal of scattering of the normal modes propagating in the 119 

oceanic waveguide by the rough ocean surface and/or volume inhomogeneities due to internal 120 

gravity waves (scattering from the discrete into the continuous spectrum of the acoustic field). In 121 

that problem, a part of the scattered energy is radiated into the seabed and carried away from the 122 

waveguide, leading to the well-known contribution to attenuation of the normal modes.49–52  123 

The remainder of the paper is organized as follows. A theory of excitation of acoustic 124 

normal modes at scattering of a low-frequency body wave by rough ocean surface and random 125 

volume inhomogeneities is developed in Sec. II for underwater waveguides with either fluid or 126 

solid bottom. Efficiency of T-phase excitation by ballistic body waves is related to the spectral 127 

properties of the roughness and volume inhomogeneities. The theory is applied in Sec. III to 128 

surface scattering by wind seas with the Pierson-Moskovitz spectrum and wavetrains of sea swell 129 

to characterize the frequency spectra, directionality, and energy of the resulting T waves and the 130 

dependence of the T-phase properties on the earthquake focus depth. Simple, order-of-magnitude 131 

estimates of the T-phase energy are obtained in Sec. IV A and employed to argue, that surface 132 

scattering of ballistic body waves in the vicinity of the earthquake epicenter is a significant T-133 
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phase generation mechanism with a strength comparable to that of a seamount at a moderate 134 

distance from the epicenter. Section IV B discusses possible extensions of the theory to quantify 135 

other plausible mechanisms of generation of T waves and related waves in the atmosphere. 136 

Section V summarizes our findings. 137 

 138 

II. T-PHASE GENERATION BY SURFACE AND VOLUME SCATTERING   139 

A. Scattering of low-frequency sound by the rough ocean surface  140 

Consider a horizontally stratified ocean of depth H. Introduce Cartesian coordinates x, y, 141 

z with the vertical coordinate z increasing downward. The mean position of the ocean surface is 142 

the horizontal plane z = 0; the seafloor is located at z = H (Fig. 1). The epicenter of an 143 

earthquake, which generates T waves, is located in the vicinity of the origin x = 0, y = 0 of the 144 

horizontal coordinates. In addition to the Cartesian coordinates, we will also use a cylindrical 145 

coordinate system {r, φ, z} with the same z axis. When averaged over perturbations due to 146 

internal gravity waves, sound speed c in the ocean and water density ρ, as well as the density and 147 

compressional and shear wave speeds in the seabed, are functions of z. We disregard the seafloor 148 

roughness and the effects of horizontal inhomogeneities of the water column and seabed when 149 

considering wave scattering by the ocean surface roughness. 150 
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 151 

Figure 1. (Color online) Geometry of the problem. Ballistic waves from the earthquake focus 152 

scatter at the rough ocean surface and volume inhomogeneities in the water column, which act as 153 

secondary sound sources and generate guided waves in the oceanic waveguide. The volume 154 

inhomogeneities are symbolically represented by ovals in the figure. The ocean surface 155 

roughness is described by the surface elevation η, which varies with the horizontal coordinates x 156 

and y. The earthquake focus is located at x = y = 0 at the depth z = H + D under the seafloor z = 157 

H. 158 

 159 

Wave heights on the ocean surface are small compared to acoustic wavelengths at T-160 

phase frequencies (longer than 30 m for frequencies below 50 Hz). With a possible exception for 161 

some breaking waves, slopes of the ocean surface are small compared to unity. Sound scattering 162 

by such surfaces can be described by the small perturbation method.53, 54 Consider scattering of 163 
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monochromatic acoustic waves of frequency ω by a stationary (frozen) rough surface. We will 164 

use complex notation for monochromatic wave fields, where the time dependence exp(–iωt) of 165 

the acoustic pressure and other quantities is assumed and suppressed. In the first approximation 166 

of the small perturbation method, acoustic pressure psc in the wave scattered by a rough pressure-167 

release surface is  168 

 ( )
( )

( )
1

1 10 1
1

1 1 0

; ,
.sc

z

G zp dp
z z




=

 
= −  

  


R r rR r   (1) 169 

Here integration is over the mean surface z = 0; r1 is a two-dimensional horizontal vector, R is a 170 

three-dimensional position vector; p0 is the acoustic pressure in the monochromatic wave in the 171 

absence of surface roughness, i.e., in the “unperturbed” waveguide with the pressure-release 172 

boundary z = 0. Acoustic pressure in the full acoustic field in water equals psc + p0; p0 contains 173 

the incident wave and the wave reflected from the flat (horizontal) ocean surface. Surface 174 

elevation η(r) is the vertical deviation of the rough surface from the mean plane z = 0. 175 

Mathematically, the rough surface is given by the equation z = η(r). Note that psc → 0 in the limit 176 

η → 0 of vanishing roughness. In Eq. (1), G(R; R1) is the acoustic Green’s function in the ocean 177 

with the flat upper boundary z = 0. The Green’s function has the meaning of the acoustic 178 

pressure at point R due to a point sound source of volume velocity located at R1. In the water 179 

column, the Green’s function satisfies the equation55  180 

 ( ) ( ) ( )
2

1 1 12

1 ; ;G G
c



 

  
+ = − − 

  
R R R R R R

R R
 (2) 181 

as well as the appropriate boundary conditions on the ocean surface and the seafloor. Here δ(R) 182 

is the Dirac delta function. The approximate solution Eq. (1) for the scattered wave describes 183 

single scattering from the rough surface but accounts for all multiple reflections in the ocean 184 

with the horizontal upper boundary.53–55 185 
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The physical meaning of Eq. (1) is that, in the first approximation of the small 186 

perturbation method, the waves scattered from the rough ocean surface are described as the 187 

waves generated by a known, distributed sound source in the ocean with the flat upper boundary. 188 

Indeed, acoustic pressure in the field generated by monochromatic sound sources in an 189 

inhomogeneous fluid satisfies the reduced wave equation55  190 

 
2

2 ,p p i A
c



  

   
 + = +   

   

F  (3) 191 

where F and A stand for the volume densities of the external force and volume velocity (i.e., the 192 

volume injection rate), respectively. In terms of the acoustic Green’s function G of the medium, 193 

solution of the reduced wave equation is given by the equation55  194 

 ( )
( )

( )

( )
( ) ( )1 1

1 1 1
1 1

;
; ,

G
p i A G d



 
=  − 

 


F R R R
R R R R R

R R
 (4) 195 

where the integration is over the entire volume occupied by the sources. Comparison of Eq. (1) 196 

and (4) shows that, in the first approximation of the small perturbation method, the scattered 197 

wave coincides with the field that would be generated in the medium with horizontal upper 198 

boundary by external forces with density  199 

 ( ) ( ) ( )1 1 1 1
1

, 0, 0, .inpz z
z

 
 

= − 
 

F r r  (5) 200 

Equation (5) describes an effective vertical external force applied on the horizontal ocean 201 

surface. The effective sound source depends on the incident wave and the roughness of the actual 202 

ocean surface.  203 

One can also reach the same conclusion that the scattered wave in an inhomogeneous 204 

medium is equivalent to the sound field generated by the effective sound source Eq. (5) on the 205 

horizontal boundary by comparing the boundary condition53, 54 206 
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( ) ( )( )
1

1 1 1 0
, 0sc in z

p z p z
=

= + = −  r r  for the scattered wave in the first approximation of the 207 

small perturbation method with the discontinuity (jump)55 ( ) ( )1 1, 0 , 0p z p z= + − =r r208 

( ) ( )1 0 1, 0 zp z F= = + =r r  of the acoustic pressure, which, according to Eq. (3), is caused by the 209 

distribution of external vertical forces with volume density ( )0zF z  just below a pressure-210 

release boundary z = 0. Here z = +0 denotes points situated below the boundary z = 0 211 

infinitesimally close to it.  212 

 213 

B. Excitation of normal modes at surface scattering   214 

In a horizontally stratified oceanic waveguide with a fluid seabed, the acoustic Green’s 215 

function is given by the sum of normal modes55, 56   216 

 

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

1
1 1 0 1

1
1

11

;
4

exp 4 11
8

n n n
n

n
n n

n nn

iG f z f z H

i i
f z f z O



 



= −

 − +  
= +   −−    





R R r r

r r
r rr r

 (6) 217 

plus a contribution of the continuous spectrum. The latter is usually negligible at long-range 218 

propagation. Here H0(1)(.) is a Hankel function of the first kind of order zero, ξn and fn(z) are the 219 

propagation constant and shape function of the nth normal mode, n = 1, 2, …. The shape 220 

functions are normalized by the condition   221 

 
( )

( )2

0

1.n
dz f z

z



=   (7) 222 

The shape function fn(z) gives the vertical dependence of acoustic pressure in the nth normal 223 

mode. When the horizontal separation of the points R = (r, z) and R1 = (r1, z1) is large compared 224 

to the wavelength, the Hankel function can be replaced by the dominant term of its asymptotic 225 
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expansion57 leading to the right-most side in Eq. (6). With the points R and R1 located in water,  226 

Eq. (6) remains valid in the waveguide with stratified solid seabed58 but, instead of Eq. (7), the 227 

normalization condition of the normal mode shape functions in the fluid-solid waveguide takes 228 

the form  229 

 ( )1 2

0

1,
H

n xz z xx x
n H

f dz v v dz
   



+

− + − =    (8) 230 

where H is water depths, τxx and τxz are components of the stress tensor and vx and vz are 231 

components of the particle velocity v = (vx, 0, vz) in the seabed in the nth normal mode with the 232 

dependence exp(iξnx) of its field on horizontal coordinates.58 The shape functions fn(z) are real-233 

valued in the absence of dissipation. The physical meaning of the normalization Eq. (8) is that 234 

modes with the same amplitude carry the same power flux; the acoustic power flux Jn in a single 235 

propagating normal mode with ( ) ( ) ( ) ( )1
0, ,n np z af z H r=r  where a is a constant, equals 236 

22nJ a = .55, 56, 58   237 

Substitution of the Green’s function Eq. (6) into Eq. (1) for the scattered wave and 238 

changing the order of the summation and integration gives  239 

 ( )
( ) ( )

( )
( )

0

exp 3 4
, ,

8 0
n n

sc n
n zn

f z i fp z Q
z



  =

− 
=


r r  (9) 240 

 ( )
( )

( ) ( )
1 0

1 1 1 1
11

exp
, 0 ,n

n

i pQ d z
z




− 
= =

−


r r
r r r r

r r
 (10) 241 

provided ξn |r – r1 | >> 1. Equation (9) represents the scattered wave in the waveguide as a sum 242 

of normal modes, with fn(z) being the dependence of the acoustic pressure on depth in the nth 243 

normal mode. In the summand, the factor in front of Qn is controlled by the waveguide’s 244 

properties and the receiver depth. Dependence on horizontal coordinates of the receiver, the 245 
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incident wave, and the properties of the rough surface is described by the factor Qn, Eq. (10). 246 

When discussing the scattered wave, we will refer to Qn as the mode amplitude for brevity. 247 

Equations (9) and (10) show that each normal-mode component of psc is a result of 248 

interference of the contributions generated by scattering at different points on the rough surface. 249 

A more intuitive derivation of the normal-mode representation, Eqs. (9) and (10), of the scattered 250 

wave is obtained using the concept of the effective sources of the scattered wave. The surface 251 

density of the effective vertical force on the flat surface of a horizontally stratified oceanic 252 

waveguide is given by Eq. (5). A point source of the vertical force with 253 

( ) ( ) ( )( )1 1 0 1 1, 0, 0,z F z =F r r  generates the acoustic field56  254 

 ( )
( )

( )
( ) ( ) ( )110

0 1
1 14

n
n n

n

f ziFp f z H
z z





= −


R r r  (11) 255 

in the waveguide. Here, as in Eq. (6) for the Green’s function, we disregard the continuous 256 

spectrum of the field. Adding the contributions (11) of elementary effective sources located at 257 

different points on the boundary, i.e., by calculating the convolution of the field  of a unit vertical 258 

force with the source density Eq. (5), leads again to Eqs. (9) and (10). 259 

 Equation (10) can be further simplified in the far field of the distributed effective source 260 

of the scattered wave. However, the far field assumption proves to be too restrictive to be useful 261 

in the T-phase excitation problem. For orientation, with the effective source dimensions of LT = 262 

O(10 km) and sound frequency f ~ 20 Hz the far-field condition r >> ξn LT2 requires the range r 263 

from the epicenter to be more than 10 Mm. Here, we will obtain more relevant and widely 264 

applicable results by taking into account that the correlation scale of the ocean surface roughness 265 

is much smaller than LT. 266 
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 As discussed in Sec. III C, extensive areas on the ocean surface can contribute to T-phase 267 

generation, and we need to allow for variations of the surface roughness statistics within these 268 

areas. Let the ocean surface elevation η(r) have zero mean and be a locally stationary random 269 

function;53 then ( ) 0 =r and   270 

 ( ) ( ) 1 2
1 2 1 2; .

2
C 

+ 
= − 

 

r rr r r r  (12) 271 

Here and below angular brackets   denote statistical average; C has the meaning of the 272 

correlation function of the surface elevations. The characteristic spatial scales l and L of the 273 

variation of the correlation function with respect to the difference r1 – r2 and centroid 0.5(r1 + r2) 274 

coordinates satisfy the condition l << L. In the particular case of wide-sense stationary random 275 

elevations, L →∞ and the correlation function C depends only on r1 – r2. In terms of the 276 

correlation function, the root mean square (rms) surface elevation ση and the roughness spectrum 277 

are given by the equation ( ) ( )
1/22 0;C = =r r  and  278 

 ( ) ( ) ( ) ( )
2

1 1 1; 2 ; exp .S C i d 
−

= − q r r r q r r  (13) 279 

The spectrum and rms elevation of the surface roughness gradually vary with the position r.  280 

 At reflection from the random rough surface, mode amplitudes Eq. (10) are also random, 281 

and ( ) 0nQ =r . For the mode amplitude variance, from Eqs. (10) and (12) we find  282 

 ( )
( ) ( ) ( )

*
1 2 0 1 0 22 1 2

1 2 1 2
1 2

exp ,0 ,0
; .

2
n

n

i p p
Q d d C

z z
 − − −   +  = −   

  − −  


r r r r r rr rr r r r r
r r r r

(14) 283 

Here and below the asterisk * denotes complex conjugation. The main contribution to the 284 

integral is from such r1 and r2 that |r1 – r2| is of the order of or smaller than the roughness 285 

correlation scale l. When the horizontal separation r from the epicenter is large compared to the 286 
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size LT of the effective source of the scattered wave and r >> ξn l2, one can approximate the 287 

product |r – r1| |r – r2| with r2 in the integrand in Eq. (14) and retain in the exponent only linear 288 

terms of the developments  289 

 
21

1 21 2 1 2 1 2 1 2 1 2 1 2
2

1 2
2 2 2 2 2 2 2

O
−  −+ − + + + − 

−  = −  − −  +       − − 

r rr r r r r r r r r r r rr r r r
r r r

(15) 290 

of |r – rj|, j = 1, 2, in powers of |r1 – r2|. We also assume that the unperturbed field p0 can be 291 

represented as  292 

 ( ) ( ) ( )0 , , exp inp z P z i=   r r q r r  (16) 293 

in the vicinity of the ocean surface in water. Here the complex amplitude P and the local 294 

horizontal wave vector qin are gradually varying functions of r, which are little changed over 295 

distances O(l).  296 

 Changing integration variables in Eq, (14) from r1 and r2 to the difference and centroid 297 

position vectors, r1 – r2 and r3 = 0.5(r1+ r2), and using Eqs. (13), (15), and (16), we obtain a 298 

compact expression for the mode amplitude variance: 299 

 ( )
( )

( )
22

32 3
3 3

3

,04 ; , .n n in

P
Q d S

r z 




 −
= − =

 −
r r rr r e q r e

r r
 (17) 300 

Here e has the meaning of the unit horizontal vector from an elementary scatterer to the 301 

observation point, and ξne is the horizontal wave vector of the nth mode propagating from r3 to r. 302 

For the distant observation points that we consider, it is close to the unit horizontal vector from 303 

the epicenter to the observation point: ( )1
Tr O L r−= +e r . Inspection shows that Eq. (17) is 304 

consistent with the more general result, Eq. (9) in Ref. 59, for the cross-correlation function of 305 

the surface reverberation in the oceanic waveguide.  306 
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Integration in Eq. (17) is over the entire horizontal plane z = 0. The ocean surface area 307 

that significantly contributes to normal mode excitation is controlled by the decrease of the 308 

amplitude of the unperturbed field p0 with horizontal separation from the epicenter and is 309 

affected by spatial distribution of the surface roughness. The integrand is proportional to the 310 

average power scattered into the nth mode in the vicinity of the point (r3, 0) on the ocean surface. 311 

The contributions of different points into the average mode’s power are added incoherently, 312 

according to Eq. (17). The first argument, ξne – qin, of the roughness spectrum Sη in the integrand 313 

equals the change of the horizontal wave vector of sound at scattering and corresponds to 314 

Bragg’s scattering, as expected in the first approximation of the small perturbation method.53, 54 315 

We will use Eq. (17) in Section III to investigate the effects on T-phase generation of the wind 316 

speed, sea swell parameters, and depth of the earthquake focus.  317 

Acoustic power flux in T waves can be calculated by integrating the power flux density 318 

over the cylindrical surface r = const. > LT, 0 < z < ∞. At distances r from the epicenter that are 319 

large compared to the diameter LT of the region, where T waves are excited , 1
n n nQ i r Q −  r320 

according to Eq. (10). Using this equation and the normalization condition (8), for the power flux 321 

Jn in the nth mode we find  322 
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from Eq. (9). The total power flux is given by the sum of the contributions Jn, Eq. (18), of all 324 

propagating normal modes. For a random rough surface with the spectrum Sη, Eqs. (17) and (18) 325 

give  326 

 ( )
( )

22 2
3

3 3
00

,0
,1 ;

4
n

n n in
z

PfJ d S d
z z






 

 
=

   
 = − 

     
 

r
r e q r  (19) 327 



Godin, JASA 

 17 

where e = (cosφ, sinφ, 0). As expected, the power flux is independent of r as long as the effect of 328 

absorption on the propagating normal mode is negligible over ranges of the order of r.  329 

 330 

C. Excitation of normal modes at volume scattering by internal gravity waves   331 

Consider internal gravity waves propagating in otherwise horizontally stratified, 332 

stationary ocean. The internal wave-induced currents u and variations of the sound speed, δc, and 333 

density, δρ, from their unperturbed (background) values c(z) and ρ(z) are horizontally 334 

inhomogeneous. The currents are slow and environmental perturbations are weak in the 335 

following sense: |δc| + u << c, δρ << ρ. Neglecting terms of the second order in the small ratio 336 

u/c, monochromatic acoustic waves satisfy the following wave equation55, 60  in the horizontally 337 

inhomogeneous ocean with slow currents:  338 

 
2 3

2 2
10 0 0 0 0 0

2 2 1 0.
j j j

p i i pp p
c c x x

 

     =

    
 + +  −  =        


uu  (20) 339 

Here ρ0 = ρ + δρ, c0 = c + δc, and (x1, x2, x3) = (x, y, z) are Cartesian coordinates. Acoustic 340 

pressure p = p0 + psc consists of the acoustic pressure p0 in the horizontally stratified ocean and 341 

the perturbation (scattered wave) psc. In the water column, p0 satisfies Eq. (20) with u = 0 and ρ0 342 

and c0 replaced with ρ and c, respectively.  343 

The scattered wave vanishes when the environmental perturbations u, δc, and δρ vanish. 344 

Retaining only terms of the first order in the acoustic and environmental perturbations, from Eq. 345 

(20) we find  346 

 
2

2 ,sc sc
sc sc

p p i A
c



  

    
  + = +   

   

F  (21) 347 

where 348 
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uu F  (22) 349 

The above assumptions correspond to calculation of the scattered wave in the single-scattering, 350 

or (first) Born, approximation. Comparison of Eqs. (3) and (21) shows, that in the Born 351 

approximation the scattered wave can be viewed as the wave generated in horizontally stratified 352 

ocean by distributed virtual sources with volume densities Asc and Fsc, Eq. (22), respectively, of 353 

the volume velocity and external force. Using Eq. (4) for the field of distributed sources and Eq. 354 

(6) for the Green’s function, we find  the scattered wave in the following form:  355 

 ( )
( ) ( )

( )
exp 4
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n
sc n

n n
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−
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where   357 
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  (24) 358 

and (Fsc)z stands for the vertical component of the vector Fsc defined in Eq. (22). Equation (23) 359 

represents the scattered wave as a sum of normal modes, with Vn describing the dependence of 360 

the nth mode amplitude on horizontal coordinates.  361 

In small-amplitude, or linear, internal waves, the sound speed and density perturbations 362 

are proportional to the vertical displacement ζ of fluid particles due to the internal wave: 363 

( ) ( )1 2, .c z c z     = = 46 Vertical velocity u3 of fluid particles is given by time 364 

derivative of ζ, and horizontal components of the velocity are related to ζ by the 365 

incompressibility condition 0. =u 46 In a random field of linear internal waves, let the vertical 366 

displacement ζ have zero mean and be a random function that is locally stationary in the 367 

horizontal plane. Then the correlation function of vertical displacements is related to the spatial 368 

spectrum Sζ of internal waves as follows: 369 
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 ( ) ( ) ( )1 21 2
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2
iz z S z z e d 
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
q r rr rr r q q   (25) 370 

Under these assumptions, the densities of the effective sources of the scattered sound wave are 371 

also zero-mean random functions that are locally stationary in the horizontal plane. Using Eq. 372 

(22), the spectra of the random sources can be related to the spectrum of the vertical 373 

displacement of fluid particles; importantly, the source spectra have the same spatial scales as Sζ.  374 

At scattering by random internal waves, the mode amplitudes Vn are random and have 375 

zero mean. Calculation of the variance of the mode amplitude, and particularly the reduction of a 376 

double integral over horizontal coordinate to a single integral, is similar to the calculation of 377 

2
nQ  in Sec. II B. From Eqs. (16), (22), (24), and (25) we find that 378 
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  (26) 379 

Here, the unit horizontal vector e is the same as in Eq. (17). For brevity, contributions of the 380 

internal wave-induced currents into sound scattering are not included in Eq. (26). Equations (17) 381 

and (26), which describe the variances of mode amplitudes that are proportional to the power 382 

flux in respective normal modes resulting, respectively, from surface and volume scattering, 383 

differ by additional integration over depths z1 and z2 of volume scatterers in Eq. (26). Note that 384 

the spatial spectra Sη and Sζ of the surface elevation and the vertical displacement due to internal 385 

waves in Eqs. (17) and (26) have the same vector argument ξne – qin , which equals the 386 

difference of the horizontal wave vectors of the normal mode and the incident wave.  387 

Because of the large values of the compressional and shear wave speeds around the 388 

earthquake focus, earthquake-generated incident waves propagate at steep grazing angles in the 389 

water column, see Sec. III C for details. Therefore, |ξne – qin| ~ ξn. The internal wave spectrum 390 
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peaks around 5 km horizontal wavelength, with minimum and maximum internal wave 391 

wavelength in the ocean being about 0.5 km and 50 km, respectively.46 In the 3–50 Hz frequency 392 

range of observed T waves, horizontal wavelength 2π/ξn of acoustic normal modes ranges from 393 

about 30–500 m. Hence, the internal wave spectrum in the integrand in Eq. (26) has negligibly 394 

small values. The short-wave tail of the internal wave spectrum can possibly contribute to 395 

generation of the lowest-frequency T waves away from the earthquake epicenter. In other words, 396 

the internal wave field lacks the relatively short horizontal scales (< 500 m) that are required for 397 

Bragg scattering of the earthquake-generated body waves into normal modes of the underwater 398 

waveguide. As discussed below, ocean surface roughness spectrum is rich in the spatial scales 399 

required for Bragg scattering into normal modes and, therefore, efficiently contributes to T-phase 400 

generation.   401 

 402 

III. CONTRIBUTIONS OF WIND SEAS AND SEA SWELL INTO T-PHASE 403 

GENERATION   404 

A. T-phase excitation due to wind seas  405 

Dependence of the ocean surface roughness on wind speed and fetch have been studied 406 

extensively, which allows for a reliable prediction of T waves generation at scattering by sea 407 

surface roughness. Here, we use a simple Pierson-Moskovitz model43, 44 of fully developed wind 408 

seas to investigate the dependence of amplitudes of the normal mode components of the scattered 409 

acoustic wave on its frequency, wind speed, and direction of propagation of the incident wave.  410 

The Pierson-Moskovitz spectrum43, 44 of the random surface elevation η is given by the 411 

following equations:  412 

 ( ) ( ) ( ) ( ); , , , 1,W WS W q D q D q d






  
−

= =q r  (27) 413 
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2

4 2 4

0.024 0.74exp .gW q
q q U

 
= − 

 
 (28) 414 

Here g is the acceleration due to gravity; U is the wind speed measured at height of 19.5 m above 415 

the sea surface. The factor DW describes the directionality of the surface waves; q = q (cosψ, 416 

sinψ, 0) is the wave vector of the waves, and angle ψ indicates the vector q direction. The wind 417 

speed may gradually change along the ocean surface: U = U (r), and W and DW in Eqs. (27) and 418 

(28) depend on r via U. In wind waves with the Pierson-Moskovitz spectrum, the spectral peak is 419 

located at 20.70 ;pq gU −=  and rms surface elevation 20.13 .U g =  The wave height rapidly 420 

increases, and the spectrum peak shifts towards longer waves, when the wind speed increases 421 

(Fig. 2a). According to Eq. (28), the spectrum falls off very rapidly (exponentially) as the surface 422 

wave wavelength becomes longer than at the spectrum peak, i.e., at q < qp. The spectrum 423 

decrease is much slower for short gravity waves, i.e., at q > qp (Fig. 2a). Because of the Bragg 424 

scattering condition, these properties of the wind wave spectrum are directly reflected in the 425 

spectrum of abyssal T-waves and its wind dependence. 426 

 The rms amplitude 
1/22

nQ of the nth normal mode component of the T-phase field is 427 

given by Eq. (17). Figure 2b illustrates the wind dependence of the T-phase energy in terms of 428 

the contribution to the acoustic power flux in a normal mode from a unit area of the sea surface 429 

above the earthquake focus. In this geometry, the horizontal wave vector of the incident wave qin 430 

= 0 in the right side of Eq. (17). Then, directionality of the T-phase radiation is given by the 431 

factor DW in the wind wave spectrum Eq. (27). Equation (18) shows that the wind speed 432 

dependence of the acoustic power flux in the T-wave is obtained by integrating (or averaging) of 433 

2
nQ  over the T-wave propagation direction. In Fig. 2b we show the mode amplitude squared, 434 
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2 ,nQ  that is averaged over the statistical ensemble of fully developed wind waves. It is also 435 

averaged over the T-wave propagation direction for a given wind direction or, equivalently, over 436 

the wind direction for a given receiver position. On the other hand, it follows from Eq. (27) that, 437 

after averaging over the wind direction, 2
nQ  is given by Eq. (17), where ( )3;n inS  −e q r  is 438 

replaced with ( )n inW  −e q  in the integrand. Hence, the result is independent of the surface wave 439 

directionality DW and its dependence on q in Eq. (27). Since averaging over wind direction is 440 

equivalent to integration over receiver azimuth, acoustic power flux in T-waves is also 441 

independent of DW at normal incidence of ballistic waves. Numerical values of the sound 442 

frequency f indicated in Fig. 2b refer to the mode with the nominal phase speed cn of 1500 m/s. 443 

For a generic mode dispersion relation cn = cn(f), the frequency f should be re-scaled to (1500 444 

m/s)f /cn(f). 445 

 T-phase amplitude rapidly increases with the wind speed for weak and moderate winds 446 

and saturates at very high wind speeds (Fig. 2b). Higher acoustic frequencies are more readily 447 

excited by weaker winds and saturate at smaller wind speeds. For an incident wave with a white 448 

spectrum, higher acoustic frequencies dominate in the T-phase spectrum at low wind speeds, 449 

while low frequencies prevail at strong winds. Abyssal T-phase energy and spectrum can be very 450 

sensitive to the wind speed. Away from the saturation regime, a drastic, 40 dB increase in the 451 

narrow-band mode amplitude requires an increase in the wind speed of just a few meters per 452 

second (Fig. 2b).  453 

 454 
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 455 

 456 

Figure 2. (Color online) Dependence of the abyssal T-phase mode amplitude on wind speed. (a) 457 

Azimuthally averaged Pierson-Moskovitz spectrum of wind waves as described by Eq. (28) is 458 

shown as a function of surface gravity wave wavenumber q and wind speed U at 19.5 m above 459 
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the sea surface; W0 = 1 m4. (b) The rms amplitude of a normal mode of the T-waves generated by 460 

scattering on wind seas in a unit area above the earthquake focus is shown for four frequencies: 5 461 

Hz (1), 10 Hz (2), 20 Hz (3) and 40 Hz (4), and the mode phase speed of 1500 m/s. The mode 462 

amplitude is arbitrarily normalized assuming a frequency-independent acoustic pressure 463 

amplitude in the earthquake-generated incident wave.   464 

 465 

The spectrum of T-waves at different wind speeds is further illustrated in Fig. 3. The 466 

figure shows the mode amplitude squared, 2 ,nQ  which is averaged over the statistical ensemble 467 

of fully developed wind waves and over the wind direction. Therefore, the result is independent 468 

of the wind waves directionality that is described by the factor DW(q, ψ) in Eq. (27). Similar to 469 

Fig. 2b, Fig. 3a refers to the T-phase generation at normal incidence of ballistic waves from the 470 

earthquake focus. The figure shows a steady increase of normal mode amplitudes with wind 471 

speed in the entire range of T-phase frequencies. The most distinctive feature of the predicted T-472 

phase spectra is a sharp low-frequency cutoff. At low acoustic frequencies, Bragg scattering into 473 

proper normal modes of the underwater waveguide requires long wind waves, with their 474 

wavevector matching the horizontal wave vector of the acoustic normal mode, see Eq. (17). For 475 

instance, the resonance scattering into the modes at 5 Hz occurs at surface gravity waves with 476 

wavelength of about 300 m. Thus, the low-frequency acoustic cutoff reflects the sharp drop in 477 

the wind wave spectrum at q < qp. The cutoff shifts to lower acoustic frequencies and the T-478 

phase spectrum broadens when the wind speed increases (Fig. 3a).  479 

 480 
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 481 

 482 

Figure 3. (Color online) Dependence of the amplitude of a modal component of the T-wave, 483 

which is generated by scattering on fully developed wind seas, on sound frequency and the mode 484 

propagation direction. (a) The frequency dependences of the rms amplitude of a normal mode, 485 
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which is generated by scattering in a unit area above the earthquake focus, are shown for six 486 

wind speeds: 5 m/s (1), 10 m/s (2), 15 m/s (3), 20 m/s (4), 25 m/s (5) and 30 m/s (6). (b) The rms 487 

amplitude of a normal mode is shown for scattering in a unit area above the earthquake focus (1) 488 

and away from the epicenter (2–4), where the grazing angle of the earthquake-generated incident 489 

wave is 60° at the depth, where c(z) = cm. The horizontal propagation directions of the mode and 490 

incident wave are either opposite (2), the same (3), or orthogonal (4). Solid and dashed lines 491 

refer to the wind speeds of 15 m/s and 8 m/s, respectively. A nominal value of 1500 m/s is 492 

assumed for the mode phase speed cm.    493 

 494 

The frequency dependence of the efficiency of T-wave generation by scattering of 495 

obliquely incident waves is qualitatively similar to but quantitatively different from the case of 496 

normal incidence. This is illustrated in Fig. 3b. At points on the ocean surface away from the 497 

earthquake epicenter, T-phase is generated with different amplitudes in different horizontal 498 

propagation directions, even after averaging over the wind direction (Fig. 3b). For obliquely 499 

incident waves, wind waves of different wavelength are responsible for the T-waves propagating 500 

in different azimuthal directions, see Eq. (17).  When the incident wave and T-wave propagate in 501 

opposite horizontal directions, the low-frequency cutoff shifts somewhat towards lower 502 

frequencies; when the propagation directions are the same, there is a more significant shift 503 

towards higher frequencies (Fig. 3b). 504 

In addition to the frequency dependence of the generation efficiency of each normal 505 

mode that is illustrated in Fig. 3, T-phase spectrum at a distant receiver is influenced by the 506 

number of propagating modes, which increases with frequency, frequency-dependent 507 

transmission losses due to sound attenuation, and the spectrum of the seismic source.  508 
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 509 

B. T-phase excitation due to swell  510 

Statistically, wave height and surface gravity wave energy are dominated by sea swell, rather 511 

than wind waves, almost everywhere in the World Ocean.45 We argue below that swell is also 512 

expected to dominate in generation of abyssal T-waves.  513 

Sea swell is generated by very strong winds in distant storms. Because of the pronounced 514 

dispersion of surface gravity waves in deep water, swell is observed at large distances from its 515 

source as a wave train of long gravity waves with nearly identical wavelengths. A typical width 516 

of the wavetrain is several tens of wavelengths across the wavefronts with even longer extent 517 

along the wavefronts.61 Thus, ocean surface elevations due to swell have much larger correlation 518 

length then the surface roughness caused by wind waves. This difference has a major effect on 519 

scattering of low-frequency sound. While wind waves can be modeled as a random wave field, it 520 

is more appropriate to model a snapshot of sea swell in an area of several and perhaps a few tens 521 

of km as a deterministic wave field.  522 

Unlike wind waves, there are no widely accepted swell models. We will utilize the 523 

following simple, idealized model to illustrate distinctive features of T-phase generation at sound 524 

scattering by swell. At the time of an earthquake, let the surface elevation η in a swell wave train 525 

be  526 

 ( ) ( ) ( )0 0, 2 sin , 2,x y y x x x x L   = − −    (29) 527 

in a region of width L in the direction of swell propagation, which is chosen as the x coordinate 528 

axis; η = 0 at |x – x0| ≥ L/2. A large, integer number of swell wavelengths 2π/μ fits in the band 529 

|x–x0| ≤ L/2, and η(x, y) is a continuous function of horizontal coordinates. The rms surface 530 

elevation ση is a gradually varying function of y and tends to zero at |y – y0|→∞, so that the 531 
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energy of the wavetrain is finite. The center of the swell wavetrain is at the point (x0, y0, 0), 532 

which can be located either at the earthquake epicenter (0, 0, 0) or away from it.   533 

At scattering of ballistic sound waves [Eq. (16)] at the ocean surface with surface 534 

elevations Eq. (29), Eq. (10) for the amplitude of a T-phase modal component becomes  535 
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where the two-dimensional horizontal position vector r1 = (x1, y1). In the integral over y1 in Eq. 537 

(30), the integrand contains a rapidly varying exponential and slowly varying functions ση, qin = 538 

(qin1, qin2, 0), and ∂P/∂z. The integral can be calculated by the method of stationary phase.55 539 

Disregarding small derivatives of qin2, equation for the stationary point55 y1 = y1s becomes  540 
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For any observation point at |x – x0| > L/2, the integrand has a single stationary point. By 542 

approximating the integral over y1 in Eq. (30) by contribution of the stationary point,55 we obtain  543 
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(32) 544 

Assuming negligible variation of ση, qin, and ∂P/∂z with x1 within the swell wave train, 545 

the integral in the right side of Eq. (32) is easily calculated, and we obtain  546 
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where  548 
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Equations (33) and (34) give the normal mode amplitudes in the abyssal T waves due to swell at 550 

the observation points at |x – x0| > L/2, i.e., outside of the swell wavetrain.  551 

The Bragg scattering condition and the narrow-band, quasi-periodic nature of surface 552 

elevation in swell wavetrains combine to produce rather different dependence of T-phase energy 553 

on the mode frequency and propagation direction than in the case of wind waves (cf. Figs. 2b 554 

and 3 with Fig. 4). Figure 4 illustrates predictions of Eqs. (33) and (34). At a given sound 555 

frequency and normal mode propagation direction, a swell wavetrain most efficiently generates 556 

mth normal mode at a specific grazing angle χ of the ballistic wave (Fig. 4a), with secondary 557 

peaks in χ giving T waves that are weaker by tens of dB (Fig. 4a). The contrast between the main 558 

and subsequent peaks is controlled by the parameter μL ≫ 1. The resonance value of the grazing 559 

angle χ depends on the wavetrain position relative to the epicenter via the angle between 560 

azimuthal directions of the swell and ballistic wave propagation (Fig. 4a). For the sound 561 

frequency and swell wavelength (10 Hz and 200 m) in Fig. 4a, resonance excitation occurs for 562 

the wavetrains away from the epicenter, where χ is between about 47° and 78°. 563 

 564 
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 567 

 568 

Figure 4. (Color online) Generation of T waves at scattering of ballistic waves from an 569 

earthquake by a wavetrain of sea swell. (a) Dependence of the amplitude of a normal-mode 570 

component of the T wave on the grazing angle χ of incident wave at the location of the swell 571 
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wavetrain and the angle ψ between the azimuthal directions of propagation of the incidence 572 

waves and swell. Sound frequency is 10 Hz. Swell wavelength λsw = 200 m. (b) Variation of the 573 

normal mode amplitude with the grazing angle of incident waves and sound frequency, when the 574 

angle between the azimuthal directions of propagation of the incidence waves and swell is 45°. 575 

Swell wavelength λsw = 200 m. (c) Dependence of the acoustic mode amplitude on sound 576 

frequency and the wavelength of swell at normal incidence for vertically propagating ballistic 577 

waves. (d) Same as in (c) but for the swell wavetrain located away from the earthquake 578 

epicenter; χ = 60°, ψ = 45°. A common but otherwise arbitrary normalization of the acoustic 579 

mode amplitude is used in all panels. The width of the swell wavetrain in the direction of its 580 

propagation equals 20 swell wavelengths. A nominal value of 1500 m/s is assumed for the phase 581 

speed cm of the acoustic normal mode. Numerical values of the grazing angle of the earthquake-582 

generated incident waves refer to the depth, where c(z) = cm.   583 

 584 

T-phase spectrum and, in particular, the frequency, at which a normal mode is resonantly 585 

generated, depend on the propagation directions of the ballistic wave and sea swell. It is 586 

illustrated in Fig. 4b, where the mode amplitude is shown as a function of frequency and grazing 587 

angle of the ballistic wave, when the sea swell travels at 45° angle to qin. In terms of variables Yj 588 

introduced in Eq. (34), a resonance occurs when either Y1 = 0 or Y2 = 0. The T-phase spectrum 589 

and resonance frequency for each normal mode also depend on the swell wavelength λsw = 2π/μ. 590 

Longer λsw favors excitation of lower-frequency T-waves (Figs. 4c and 4d). The same swell 591 

wavetrain generates lower-frequency T-waves, when it is located around the epicenter (Fig. 4c) 592 

than away from it (Fig. 4d). If sea swell with the same wavelength and propagation direction is 593 

present in a large area with dimension comparable to the hypocenter depths, the resonantly 594 
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excited normal mode is received at different frequencies at the observation points that are located 595 

at different azimuthal directions from the epicenter. Note also that, according to Eq. (34), any 596 

swell wavetrain resonantly scatters the ballistic waves of the compressional and shear-wave 597 

origin in different azimuthal directions and at different frequencies.  598 

According to Eqs. (33) and (34), the magnitude squared of the amplitude of nth normal 599 

mode generated at scattering by sea swell is  600 
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where  602 
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is the one-dimensional wavenumber spectrum of the surface elevation due to swell, Eq. (29), 604 

viewed as a function of x. We show below that same result for 2
nQ  can be formally obtained 605 

from the results that have been derived in Sec. II B for random sea surface roughness, if one uses  606 

 ( ) ( ) ( )
2

1 2 1 2
8,S q q q q
L


=   (37) 607 

for the swell power spectrum in Eq. (17). Here, δ(∙) denotes the Dirac delta function. It originates 608 

from the surface elevation being independent of coordinate y. We assume here that ση is 609 

independent of coordinates. We will also assume for simplicity that variations of qin and ∂P/∂z in 610 

the incident wave are negligible within the swell wave train.  611 

In the integrand in the right side of Eq. (17) ( )
1

2 3 3 2 ,n inq y y q
−

= − − −r r  and q2 = 0 612 

when y3 = y1s, see Eq. (31). Then, ( )
1/22 2

3 3 21 n inx x q
−

−− = − −r r and 613 
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 (38) 614 

Inserting Eqs. (37) and (38) in the integrand in Eq. (17) and integrating first over y3 and then 615 

over x3 gives Eq. (35). Note that this derivation of Eq. (35), like Eq. (17), apply in the far field 616 

with respect to the correlation scale of the sea surface roughness. This is a very significant 617 

limitation in the case of swell. No such assumption was made in the derivation of Eq. (33), which 618 

is applicable everywhere outside the swell wavetrain itself.   619 

To elucidate the relative significance of wind seas and swell in the abyssal T wave 620 

problem, let us compare the acoustic power fluxes Jn in the normal modes generated at sound 621 

scattering by two types of ocean surface roughness in the same area |x–x0| ≤ L/2 of the ocean 622 

surface. For simplicity, we will disregard dependence of ∂P/∂z on x and variation of qin and 623 

wind wave spectrum with coordinates within the area that contributes the most to the scattering. 624 

Then, Eq. (19) gives  625 
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for wind seas. Here, S  is the value of the wind wave spectrum at some point within the 627 

integration domain in Eq. (19). [Equation (39) follows immediately from application of the first 628 

mean value theorem for integrals to the right side of Eq. (19).] S  in Eq. (39) can be viewed as a 629 

weighted average of the spectrum Sη over the horizontal direction of the mode propagation 630 

within the interval |ξn – qin| < q < ξn + qin of wavenumbers q of wind seas. This interval contains 631 

all possible q = |ξne – qin| in the integrand in Eq. (19). When the peak q = qp of the wave 632 
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spectrum lies within the interval |ξn – qin| < q < ξn + qin, 2 2~ 2pS q  −  according to Eqs. (27) 633 

and (28); S  is small otherwise.   634 

For scattering by swell, acoustic power flux in a normal mode can be calculated by 635 

integrating the x component of the acoustic power flux density along the vertical planes x – x0 = 636 

const. > L/2 (toward increasing x) and x – x0 = const. < –L/2 (toward decreasing x). Similar to 637 

derivation of Eq. (18), from Eqs. (9) and (33) we find  638 
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for the power flux toward increasing x. Y1, 2 in Eq. (40) are given by Eq. (34) with (x – x0)/|x – x0| 640 

=1. The power flux toward decreasing x is given by the same Eq. (40) but now with (x – x0)/|x – 641 

x0| = –1 in Eq. (34) for Y1, 2.  642 

Resonant excitation of nth acoustic normal mode at scattering by swell occurs when one 643 

of the four conditions, 2 2
1 2 0,in n inq q  −  =  is met. Then, one of the Y1, 2 values in Eq. (40) is 644 

zero. Near the resonance frequency [more specifically, as long as 1,2Y  is either small or O(1)], 645 

the term in parenthesis in the integrand in the right side of Eq. (40) is O(1), and 646 

2 2~ 8 .n nJ EL    Note that Jn is proportional to L2 due to coherent scattering of sound by the 647 

swell wavetrain. Away from the resonance frequencies, when all |Yj| ≫ 1, Jn decreases by the 648 

factor of the order of μ2L2 ≫ 1. For the contribution of wind seas, Eq. (39) gives  649 

2 2~ 2 ,n nJ EL    when the peak of the wind wave spectrum fully contributes to generation 650 

of nth normal mode. As expected, nJ  is proportional to the area occupied by surface roughness 651 

and, hence, to L at incoherent scattering of sound by random surface waves.  652 
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Aside from the roughly estimated numerical factors, in the vicinity of resonance 653 

frequencies the energy of swell contribution to T-phase exceeds the maximum contribution of 654 

wind waves with the same wave height by the factor ξnL ≫ 1. Thus, T waves due to swell can 655 

dominate over the wind-wave contribution in narrow frequency bands not only in specific 656 

directions but also in the azimuthally integrated power flux, even when the local winds are strong 657 

and the peak of the wind wave spectrum qp ~ µ. However, according to Eq. (40), only a narrow 658 

vicinity δf ~ c/L of the resonant frequency contributes significantly to the energy of sound 659 

scattered by swell, and the broadband acoustic power fluxes due to scattering by wind waves and 660 

swell with the same wave height prove to be comparable. 661 

 662 

C. Dependence of T-phase energy and duration on the hypocenter depth  663 

Calculation of the T-wave spectrum with Eqs. (17) and (33) requires knowledge of the 664 

distribution of wind speed and sea swell in an area around earthquake epicenter as well as a 665 

model of the ballistic waves generated by the earthquake. In this section, we use a basic model of 666 

the seabed and simplified, semi-quantitative versions of the theoretical results for mode 667 

amplitudes in order to estimate the dimensions of the area of the ocean surface, where T waves 668 

are generated, and  understand the variation of the abyssal T-phase duration and energy with the 669 

depth of earthquake focus. For these estimates, the seabed is modeled as a homogeneous solid 670 

half-space with the density and elastic parameters of the Earth’s crust near the earthquake focus, 671 

and a compact, directional seismic source is supposed to be located at the focus. For orientation, 672 

cl = 8 km/s, ct = 4 km/s, and M = 3 can serve as representative values of the compressional and 673 

shear wave speeds and the ratio of the densities of earth’s crust and sea water, respectively. The 674 

hypocenter (focus) of the earthquake is at the point (0, 0, H + D) at depth D below the seafloor 675 
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(Fig. 1). The source will be characterized by the frequency-dependent amplitudes AP and ASV and 676 

corresponding directional factors BP(θ, φ) and BSV(θ, φ) of compressional (P) and vertically 677 

polarized shear (SV) waves that are radiated by the earthquake. Horizontally polarized shear 678 

waves in the crust do not contribute to acoustic field in water.62 By definition, |BP| ≤ 1 and |BSV| 679 

≤ 1. When considering the incident waves that are scattered at the ocean surface, we focus on the 680 

ballistic waves arriving directly from the source and disregard the weaker arrivals, which reach 681 

the ocean surface and are scattered after previously undergoing surface and bottom reflections.  682 

Parameters of the incident acoustic wave, which is scattered by the rough ocean surface, 683 

affect the wind wave contribution to T-phase mode amplitudes, Eq. (17), via ∂P/∂z  and qin. The 684 

amplitude and the angle of incidence of the incident wave vary along the ocean surface. With 685 

wind waves being independent from the focal depth and the other earthquake properties, after 686 

averaging over wind speeds and directions, Eq. (17) can be written as follows: 687 

2 2 14 ,nQ r S −=   where 688 

 ( )
2

3 3,0 .P z d =   r r  (41) 689 

The average S  of the wind wave spectrum is largely insensitive to the angle of incidence of 690 

the ballistic waves from the earthquake. For instance, it follows from Eqs. (27) and (28) that 691 

2 2~ 2pS q  −  and is controlled by the representative wind speed alone, when the peak of the 692 

wind wave spectrum contributes to T-phase generation. Hence, the effect of the earthquake 693 

parameters on T-phase generation is characterized by the surface integral Ψ in Eq. (41).  694 

Averaging Eq. (40) over the swell wavelength and wave trains’ location and propagation 695 

direction shows that Ψ Eq. (41) also encapsulates the effect of the incident wave on T-phase 696 

generation due to sound scattering by sea swell.   697 
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 For the steep angles, at which ballistic waves from the earthquake propagate in the water 698 

column, variations of the sound speed in water with depth are insignificant. Sound speed c and 699 

density ρ in water will be assumed constant in the analysis of the ballistic waves. Then, using the 700 

results for spherical wave transmission through a plane interface of two homogeneous media,55 701 

we find  702 
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 (42) 703 

at the point r = r(cosφ, sinφ, 0) on the ocean surface. Equation (42) describes the contribution of 704 

compressional waves in the seabed and is obtained in the ray approximation. Here θ and θl are 705 

the incidence angles (i.e., the angle ray makes with the z axis) in the ocean and seabed, 706 

respectively; αl denotes attenuation coefficient of compressional waves, and Tl is the plane-wave 707 

transmission coefficient of compressional waves at the seafloor. The incident angles are related 708 

by Snell’s law and can be found from the equations   709 

 1 1sin sin , tan tan .l l lc c r H D   − −= = +  (43) 710 

 When r increases from 0 to infinity, θl increases from 0 to π/2 according to Eq. (43), while θ 711 

increases from 0 to arcsin(c/cl). The horizontal wave vector qin, which enters Eqs. (16), (17), and 712 

(33), is qin = ωc–1sinθ∙(cosφ, sinφ, 0). 713 

Contribution of shear waves in the seabed into ∂P/∂z at the ocean surface is given by 714 

equations similar to Eqs. (42) and (43), except the SV wave source amplitude ASV, directional 715 

factor BSV, and attenuation coefficient αt should be used instead of AP, BP, and αl. Transmission 716 

coefficient Tt of SV waves replaces Tl in Eq. (42). In addition, the shear wave speed ct and 717 

incidence angle θt should be used instead of cl and θl in Eqs. (42) and (43). Since cl > ct, it 718 
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follows from Eq. (43) that at any r > 0 the ballistic waves due to compressional waves in the 719 

seabed arrive at the sea surface at steeper angles than the ballistic waves due the shear waves 720 

radiated by the earthquake. 721 

In the case of fluid-fluid interfaces, the transmission coefficient62  722 

 ( ) ( )2 cos cos cos .l l l l lT c c Mc   = +  (44) 723 

At a solid-fluid interface, Tl and Tt are given by more cumbersome equations,62 but, as in Eq. 724 

(44), Tl is proportional to cosθl and vanishes when θl → π/2, while Tt is proportional to cosθt and 725 

vanishes when θt → π/2, see equations (4.2.37)–(4.2.42) in Ref. 62. These properties of the 726 

transmission coefficients ensure that areas far from the epicenter contribute little to T wave 727 

generation. Transmission coefficients Tl (θl) and Tt (θt) have O(1) values for all real θl and θt, 728 

respectively; Tt (0) = 0 and Tt (0) is nonzero.  729 

Since the ballistic waves originating from compressional and shear waves in the seabed 730 

have distinct horizontal wave vectors qin, the integral Ψ in Eq. (41) should be calculated 731 

separately for these incident waves. [The qin values are close at near-normal incidence of ballistic 732 

waves, which occurs in the vicinity r ≪ H + D of the epicenter. However, since Tt (0) = 0, the 733 

amplitude is then negligible of the incident wave due to SV waves in the bottom, and interference 734 

of the two incident waves has no effect on T wave generation.] For the compressional wave 735 

contribution, from Eqs. (41)–(43) we find   736 
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Equation (43) has been used to change the integration variable in Eq. (41) from r3 to θl. The 738 

result for the contribution Ψ SV of the shear waves in the seabed differs from Eq. (45) by the 739 

obvious change of notations, which has been discussed above for Eq. (42).  740 
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Note that Eq. (45) does not contain ocean depth H. Hypocenter depth D enters Eq. (45) 741 

only via the exponential term that describes wave attenuation in the solid bottom. Thus, our 742 

estimates show that the energy of abyssal T waves is independent of the ocean depth and is 743 

insensitive to the hypocenter depth at such frequencies that wave energy dissipation is weak. 744 

This finding is not restricted to the basic ocean and earth’s crust model we consider and, by 745 

changing the integration variables to ray launch angles, can be extended to stratified seabed as 746 

long as the ray-theoretical description of the ballistic waves remains applicable.  747 

The independence or lack of sensitivity of the abyssal T-wave energy to H and D appears 748 

counter-intuitive at first. Indeed, according to Eq. (42), amplitudes of the incident waves on the 749 

ocean surface rapidly decrease with increasing H and D. However, the decrease in amplitude is 750 

compensated by an increase in the ocean surface area that contributes to T wave generation. For 751 

instance, if H and D are increased by the same factor β > 1 and the ray launch angle θl (or θt) is 752 

kept constant, r in Eq. (43) increase the same factor β. Incident wave amplitude in Eq. (42) is 753 

decreased by the factor β as long as the wave dissipation is negligible. The decrease of the 754 

integrand in the surface integral for Ψ in Eq. (41) by the factor β 2 is exactly compensated by the 755 

increase in dr3 = r3dr3dφ. This is closely related to the fact that, as long as dissipation is 756 

negligible, the energy of body waves (as opposed to interface seismo-acoustic waves) reaching 757 

the ocean surface remains unchanged, when depth of a compact seismic source varies.   758 

In addition to T-phase energy, signal duration is another important characteristic of T 759 

waves. At distant receivers, T-phase duration is controlled by the seismic event (rupture) 760 

duration in the earthquake focus, normal mode dispersion in the oceanic waveguide, and linear 761 

dimensions of the region, where T waves are generated. Generation of T waves due to sound 762 

scattering occurs with different efficiency at various points on the ocean surface and tends to 763 
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gradually decrease with distance from the epicenter. Assuming spatially uniform statistics of 764 

surface gravity waves, the effective radius rg of the of the area around the epicenter, where 765 

abyssal T waves are generated, can be estimated as follows [cf. Eq. (41)]: 766 

 ( )
21 ,0 .gr r P z d−=    r r  (46) 767 

Much like ΨP and ΨSV above, rg needs to be estimated separately for the incident waves due to P 768 

and SV waves in the seabed. In terms of rg, the lower bound of the T-phase duration can be 769 

roughly estimated as the difference 2rg/c of acoustic travel times from the opposite margins of 770 

the region, where T waves are generated. Similarly, rg/c provides an estimate of the rise (onset) 771 

time of the envelope of the T-phase waveform. 772 

 For the ballistic wave due to P waves in the seabed, from Eqs. (42), (43), and (46) we 773 

find  774 
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Derivation of Eq. (47) is quite similar to that of Eq. (45). For the ballistic wave due to SV waves 776 

in the seabed, the result follows from Eq. (47) after the previously discussed change in notation. 777 

The integral in the right side of Eq. (47) and ΨP depend on the source directionality and 778 

environmental parameters. In the case of an omnidirectional source in a homogeneous medium (c 779 

= cl, Tl ≡ 1) without dissipation, Eqs. (45) and (47) give rg = 0.5π(H + D). We now show that rg 780 

remains of the order of H + D in the general case, with a possible exception for high frequencies.  781 

Note that the integrands in Eqs. (45) and (47) are small, when either sinθl ≪ 1 (because 782 

of the factors sin2θl and sin2θl, respectively) or cosθl ≪ 1 (because of the transmission 783 

coefficient). Hence, tanθl = O(1) in the range of θl that contributes most to the integrals. The 784 

integrand in Eq. (47) differs from the integrand in Eq. (45) by the factor r = H tanθ + D tanθl, 785 
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which is of the order of H + D, when tanθl = O(1). Thus, rg = O(H + D) generally, and our 786 

estimates indicate longer abyssal T-phase duration for deeper earthquakes. At sufficiently high 787 

frequencies, i.e., when waves are strongly dissipated in the seabed over the path of length D, the 788 

exponential factor ( )exp 2 cosl lD −  in the integrands of Eqs. (45) and (47) favors small θl. It 789 

results in smaller rg values at higher T-wave frequencies than at lower ones.  790 

Our results indicate, in agreement with observations,63–66 that the T-phase rise (onset) 791 

time increases with the hypocenter depth D. Furthermore, rg and the rise (onset) time increase 792 

with the water depth H. This prediction is opposite to that of the seafloor scattering model by de 793 

Groot-Hedlin and Orcutt40 but agrees with the observations analyzed by Williams et al.2  794 

 795 

IV. DISCUSSION 796 

A. Comparison to other mechanisms of T-phase generation  797 

For scattering of ballistic waves by rough ocean surface to be a significant mechanism of T-798 

phase generation, the resulting T waves should have a sufficiently large amplitude. At the very 799 

least, surface scattering should excite acoustic normal modes much more efficiently than these 800 

are excited in a horizontally stratified ocean with plane, horizontal boundaries and interfaces. 801 

The direct excitation of the T waves, which have phase and group speeds close to the 802 

sound speed c in water, by seismic sources in layered media is very weak because of the 803 

exponential attenuation of shape functions of the corresponding normal modes in the seabed.1, 3, 804 

41 For a rough semi-quantitative estimate of the direct excitation, we model the seabed as a 805 

homogeneous fluid half-space with the sound speed cb > c. The seismic wave source is modeled  806 

as a point monopole acoustic source with A = A0δ(x) δ(y) δ(z – D) in Eq. (3). (The conclusions 807 

remain essentially unchanged for the more complicated dipole or quadrupole sources.) From Eqs. 808 
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(2), (3), and (6), we find the power flux ( ) ( )2 2
0 8D

n nJ A f H D= +  in the nth mode, generated in 809 

a layered medium by a point source at the earthquake focus. Here A0 is the source amplitude. 810 

Acoustic pressure is evanescent in the seabed: ( ) ( ) ( )2 2exp ,n n n bf H D f H D c c − −+ = − −  where 811 

fn(H) can be estimated from Eq. (7): ( )2
nf H ≲ 2ρ(0)/H. When estimating ( ) ,D

nJ  one has to use 812 

shear wave speed, rather than the larger compressional wave speed, for cb because evanescent 813 

shear waves attenuate more slowly below the seafloor and provide stronger coupling of the 814 

seismic source to the normal modes we consider [i.e., a larger value of fn(H + D)].  815 

The resulting expression for the power flux in the normal mode directly excited by the 816 

seismic source should be compared to the power flux in the same mode excited due to scattering 817 

of ballistic waves at the rough ocean surface. To estimate the average power flux ( )W
nJ  due to 818 

scattering by wind waves on the ocean surface, we employ Eq. (19) and the estimates of the 819 

spatial average of the surface roughness spectrum ( )
22 2 4~ 2 0.091 2pS q     − =  (Secs. III 820 

A and III C) and the radius of the contributing region on the ocean surface rg ~ H + D (Secs. III 821 

C). For the modal power flux due to scattering by the wind waves, we arrive at the estimate  822 
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 (48) 823 

In terms of the amplitude A0 of omnidirectional point source, for ballistic waves on the ocean 824 

surface at the epicenter we have ( ) ( )2
00 4 ,bP z T A H D    +  where ρb = Mρ(0) is the 825 

seabed density and T is the transmission coefficient Eq. (44).  826 

Combining the above estimates, we find  827 
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 (49) 828 

for the ratio of the acoustic power fluxes in T waves at surface scattering and direct excitation in 829 

layered waveguide. The ratio F1 characterizes the relative significance of scattering by wind 830 

waves compared to the direct excitation. Note that F1 rapidly increases with sound frequency, 831 

roughness amplitude, and the earthquake focus depth. With χn ≅ 0.1 rad, cn ≅ 1500 m/s, and cb ≅ 832 

4000 m/s, Eq. (49) predicts that scattering due to wind waves generates T waves hundreds of dBs 833 

stronger, than the direct excitation, at frequencies as low as 1 Hz and rms surface elevations as 834 

small as ση = 0.3 m even for rather shallow earthquakes with D = 10 km (or at 2 Hz with even 835 

smaller D = 5 km). Thus, excitation due to surface scattering of ballistic body waves dominates 836 

over the direct excitation at all T-phase frequencies, as expected. 837 

In a full-wave, 2-D SPECFEM simulation, Bottero8 compared T-phase generation at a 838 

large-scale bathymetric feature (a six kilometer-long, 12° bottom slope centered on the 839 

earthquake epicenter) with contributions due to sound scattering by a compact scatterer on the 840 

ocean surface. The scatterer was intended to roughly represent a large commercial vessel. 841 

Bottero found that, in his model, the compact surface scatterers (“ships”) were as strong a T-842 

wave source as the downslope conversion on the large bathymetric feature.8 While the target 843 

strength of the scatterer in Ref. 8 is much larger than that of actual ships of the same 844 

dimensions,67 the full-wave simulation results8 are extremely valuable as the first rigorous 845 

comparison of the efficiency of surface scattering and downslope conversion as T-phase sources. 846 

By analytic evaluation of T-phase generation by the compact scatterer considered in Ref. 8 and 847 

by wind waves, the numerical results8 have been used to demonstrate67 that sound scattering by 848 

wind waves dwarfs the contribution of scattering by ships in 3-D and can generate T waves at 849 
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least as efficiently as the presumably dominant3 generation mechanism of the downslope 850 

conversion on large bathymetric features.   851 

We now provide a direct, semi-quantitative comparison of the energy of the T waves that 852 

are generated in a 3-D ocean by either a large bathymetric feature (a seamount) or sound 853 

scattering due to gravity waves on the ocean surface. Let an isolated seamount or a small island 854 

be located at distance R from the epicenter. The seamount rises from the otherwise horizontal 855 

seafloor to the ocean surface. Width of the seamount in the azimuthal direction is l. It is small 856 

compared to R and large compared to water depth H and acoustic wavelengths in the T-wave 857 

frequency band. The surface of the seamount makes angle γ with the horizontal plane. The 858 

amplitude of the normal component of the oscillatory velocity of the surface of the seamount 859 

differs from the velocity amplitude in the ballistic waves at the ocean surface at the epicenter by 860 

the factor w > 0, which includes the effects of the geometric spreading and wave attenuation in 861 

the bottom. For a seamount at range R ≫ D + H from the epicenter, the ratio of the ballistic wave 862 

amplitudes at the seamount and on the ocean surface at the epicenter w ~ exp(–αR)(H + D)/R, 863 

where α stands for the attenuation coefficient of P or S waves in the seabed.   864 

Consider the vertical cross-section of the ocean from its surface to the foot of the 865 

seamount, where it meets horizontal seafloor. In this cross-section, the horizontal component of 866 

the particle velocity due to seismic waves of frequency ω in the seamount can be estimated as 867 

( ) ( )2 2 2
1

2 sin exp cot sin ,w Pv i z i c H z z
z


   



−  =  + − −
 

 where factor 2isinβz accounts 868 

for interference of incident and surface reflected acoustic waves with the vertical wavenumber β, 869 

Φ describes variation of the phase of seismic waves along the seamount slope, and P z  is 870 

evaluated on the ocean surface at the earthquake’s epicenter. Using normal mode orthogonality 871 

to find modal components of the horizontal velocity, we obtain  872 
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 ( ) ( )2 2 2
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f zU dz i i c H z
   



− =  + − −
   (51) 874 

for acoustic power flux in the nth mode generated by oscillations of the seamount surface. 875 

Here, we disregarded guided acoustic mode penetration into the seabed and used the mode 876 

normalization condition Eq. (7).  877 

Using the Cauchy–Schwarz inequality and the normalization condition Eq. (7), the upper 878 

bound of the integral Un Eq. (51) can be estimated as follows: ( )2 1 2

0

0 sin 2.
H

nU dz z H  −   879 

A more accurate estimate of Un, which accounts for oscillations of the integrand with z, is  880 

 ( )( ) ( )
1/4 1/21/2 2 2 2 1~ 2 0 2 0 sin ,n n nU c c   
− −

− − − − =  
 (52) 881 

where χn has the meaning of grazing angle at the ocean surface. The estimate Eq. (52) refers to 882 

modes with significant amplitudes throughout the water column. At higher frequencies, there 883 

may be modes with deep turning points, which are very weakly manifested at the ocean surface 884 

and the seafloor. These normal modes are not considered here.  885 

From Eqs. (48), (50) and (52), we find  886 
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 (53) 887 

for the ratio of the modal power fluxes due to surface scattering and due to the seamount. The 888 

ratio increases with the range R, surface roughness, and, in agreement with observations,32 with 889 

T-wave frequency. It is larger for steeper normal modes (larger χn) and smaller for bigger (larger 890 

l) and steeper (larger γ) seamounts. 891 
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Depending on environmental parameters and wave frequency, F2 can be large (i.e., 892 

surface scattering dominates) or small (i.e., contribution of surface scattering is negligible) 893 

compared to unity. Let χn = 0.1, γ = 0.4, H = 4 km, the angular azimuthal dimension of the 894 

seamount as seen from the epicenter l/R = 0.1, and the rms surface elevation ση = 1 m. (All 895 

angles are in radian). To estimate the attenuation coefficient, we use compressional wave speed 896 

of 8 km/s and Q-factor of 400.68, 69 [Attenuation coefficient equals 27.3 QP–1 dB per wavelength 897 

in a wave with the quality factor QP.] Then, according to Eq. (53), surface scattering creates T 898 

waves as strong as those due to a seamount at the range R = 400 km from the epicenter at the 899 

frequency of about 5.0 Hz, with the surface scattering been the stronger T-wave source at higher 900 

frequencies. For R = 600 km, 300 km, 200 km and 100 km, the transition frequency, at which F 901 

= 1, shifts to about 3.7 Hz, 6.2 Hz, 8.3 Hz, and 13.5 Hz, respectively.  902 

Because of their shorter wavelength and smaller quality factors, attenuation in the seabed 903 

plays a bigger role for shear than compressional waves. Therefore, the ratio F2 Eq. (53) is larger 904 

for the shear-wave contributions of the seamount oscillations. Let the shear wave speed and Q-905 

factor be 4 km/s and 200. Then, Eq. (53) gives rather low transition frequencies of 5.6 Hz, 3.3 906 

Hz, and 2.4 Hz for R = 100 km, 200 km, and 300 km, respectively. 907 

It should be emphasized that Eq. (53) provides an estimate, rather than an accurate 908 

prediction, of the relative significance of the surface scattering and a large topographic feature as 909 

T-wave sources. On the other hand, our estimates of the contribution of the surface scattering are 910 

conservative in the sense that sea swell is expected to contribute to T-wave generation at least as 911 

much as wind waves (Sec. III B), and that typical values of ση are larger for most of the world 912 

ocean45 than the 1 m assumed in our estimates.  913 
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Thus, scattering by surface gravity waves is expected to provide a significant contribution 914 

to T-phase energy, which is comparable to the contribution due to a downslope conversion on a 915 

seamount. In addition, being generated around the earthquake epicenter, the surface scattering 916 

contribution will generally separate from the bathymetric contributions by its arrival time and 917 

azimuth.  918 

 919 

B. Extensions of the theory  920 

We have assumed in Secs. II and III that the ocean is range-independent when averaged over 921 

time-dependent variations due to surface and internal gravity waves. This assumption may be too 922 

restrictive for the entire propagation path to distant receivers from the abyssal T-wave generation 923 

site in the vicinity of the earthquake epicenter. However, the assumption is sufficient to evaluate 924 

the acoustic energy of abyssal T waves and its modal distribution in the real ocean. Indeed, 925 

outside of the relatively small region, where the T waves are generated, acoustic energy of the 926 

scattered wave is conserved and is the same in the near field as in the far field, as long as 927 

acoustic dissipation is negligible. Normal-mode distribution of the T-phase energy also remains 928 

unchanged in horizontally inhomogeneous ocean as long as the adiabatic approximation55 is 929 

applicable. After the normal mode amplitudes in the T-phase spectrum are calculated as 930 

described in Secs. II–III, the field can be readily propagated to long ranges with full account of 931 

sound absorption using either the adiabatic approximation, the coupled-mode or parabolic-932 

equation propagation models.  933 

We have focused on contributions of gravity waves in the ocean into T-phase generation. 934 

However, the theory of excitation of normal modes of the oceanic waveguide by scattering of 935 

body waves, as expressed by Eqs. (10), (17), and (26), can be applied to other types of surface 936 
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and volume scatterers. One important application is to T-phase generation at scattering by 937 

volume inhomogeneities within the seabed and roughness of the seafloor and sediment layer 938 

interfaces. This T-phase excitation mechanism has been previously considered41, 42 for coupling 939 

within the discrete spectrum of the seismo-acoustic field. Arguably, the continuous spectrum 940 

(ballistic body waves) make a stronger contribution to T wave excitation by bottom scattering 941 

than the directly excited discrete spectrum modes, especially for earthquakes with deeper foci. 942 

Application of the theory developed in this paper would allow one to better constrain the 943 

effective sources of T waves on the seafloor and within the seabed (including their spatial 944 

distribution, directionality, and frequency dependence), which were either not related 945 

quantitatively to environmental properties41 or arbitrarily assigned22, 39, 40 in previous work.     946 

Our finding that the contribution of the ballistic waves scattering by internal gravity 947 

waves into T-phase generation is negligible compared to the contribution of the ocean surface 948 

roughness does not necessarily mean that volume scattering in the water column plays no role in 949 

this problem. At long-range propagation, internal waves contribute to coupling of the modes 950 

generated by surface scattering to the modes confined in the SOFAR channel. Furthermore, the 951 

water column contains many different types of inhomogeneities in a wide range of spatial scales. 952 

Scattering of the infrasound generated by air guns from the thermohaline fine structure is 953 

successfully utilized in seismic oceanography to measure physical parameters of the water 954 

column.70, 71 The frequency band and propagation directions of incident waves that are exploited 955 

in the seismic oceanography experiments70, 71 are comparable to those of the ballistic infrasound 956 

waves in the ocean due to underwater earthquakes. Thus, seismic oceanography observations 957 

suggest that contributions of the fine structure inhomogeneities into scattering of ballistic waves 958 
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from the earthquakes are non-negligible. Further research is needed to evaluate this mechanism 959 

of volume scattering and its possible contribution to T-phase generation by volume scattering.  960 

Evers et al.13 reported observations of T waves in the ocean and their atmospheric 961 

counterpart, guided infrasonic waves in the atmosphere, which were generated by the same 962 

underwater earthquake. Quantitative explanation of the atmospheric observations remains 963 

elusive. We hypothesize that, akin to the abyssal T-phases, guided infrasonic waves in the 964 

atmosphere were excited by the scattering of the earthquake-generated body waves on the rough 965 

ocean surface and/or turbulence and internal gravity waves in the atmospheric boundary layer. 966 

Although quantitative analysis of the observations13 is beyond the scope of this paper, it should 967 

be noted that Eqs. (10), (17), and (26) can be employed to assess the scattering hypothesis. A 968 

distinctive feature of the atmospheric observations by Evers et al.13 is the low-frequency cutoff in 969 

the spectrum of the earthquake-generated infrasound. Observations of the low-frequency cutoff 970 

are consistent with predictions of Eqs. (10) and (17), as illustrated in Fig. 3 for T waves in the 971 

ocean, and provide a strong support for application of the surface scattering hypothesis to 972 

atmospheric manifestations of underwater earthquakes. 973 

 974 

VI. CONCLUSION 975 

The theory, which is developed in this paper from first principles, offers a quantitative 976 

explanation of ubiquitous observations of efficient generation of T waves in the vicinity of the 977 

earthquake epicenter, including the earthquakes under abyssal plains with relatively smooth 978 

seafloor. Wind waves and sea swell on the ocean surface have sufficient amplitudes for T-phase 979 

excitation and are rich in the spatial scales needed for Bragg scattering of ballistic body waves 980 

from the earthquake focus into the acoustic normal modes of the oceanic waveguide.  981 
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Surface scattering favors the acoustic modes, which span most of the water column, and 982 

is consistent with T-wave observations by receivers on the seafloor. Observations of low-983 

frequency cutoff in the T-wave spectra find their natural explanation in the spectral properties of 984 

the sea surface roughness. Weak correlation between T-phase amplitude and hypocentral depth 985 

follows directly from a ray representation of ballistic waves in horizontally stratified fluid-solid 986 

environment. Ocean surface scattering also offers a simple explanation for observations of the 987 

increase of the T-phase onset time with the water depth and hypocentral depth.  988 

Contributions of scattering by internal gravity waves into T-wave generation are found to 989 

be negligible compared to the contributions of surface gravity waves, among which the sea swell 990 

is expected to be the biggest contributor. Calculation of the wind-wave contribution to the 991 

conversion of the ballistic waves into T waves at surface scattering gives the lower bound of the 992 

abyssal T-wave energy.  993 

Our focus on the gravity wave contributions to T-phase generation is not meant to imply 994 

that other, previously identified mechanisms are weak or unimportant. To understand the T-wave 995 

excitation, we suggest to consider sound scattering at the ocean surface in addition to the seafloor 996 

scattering and the seismic wave interaction with large bathymetric features. Presumably, 997 

depending on the local conditions, either the ocean surface scattering or the seafloor scattering 998 

may be the dominant mechanism of abyssal T-phase generation or the two mechanisms may 999 

provide comparable contributions. The theory developed in this paper is expected to help in 1000 

identifying the surface scattering contributions in the appropriate T-phase data.     1001 

Rigorous 3-D, full-wave numerical modeling (e.g., using the SPECFEM approach12, 17–19) 1002 

of T-phase in an ocean model, which combines a large bathymetric feature with a realistic 1003 

representation of the rough ocean surface, appears to be the logical next step in investigation of 1004 
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the ocean surface scattering as a T-wave generation mechanism and ascertaining its significance. 1005 

Further research is also needed to evaluate the significance of sound scattering by the 1006 

thermohaline fine structure and other water-column inhomogeneities as possible additional 1007 

sources of abyssal T waves and to extend the theory to the atmospheric counterpart13 of the T-1008 

phase phenomenon.  1009 
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