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Abstract—One-bit compressive sensing is concerned with the
accurate recovery of an underlying sparse signal of interest from
its one-bit noisy measurements. The conventional signal recovery
approaches for this problem are mainly developed based on the
assumption that an exact knowledge of the sensing matrix is
available. In this work, however, we present a novel data-driven
and model-based methodology that achieves blind recovery; i.e.,
signal recovery without requiring the knowledge of the sensing
matrix. To this end, we make use of the deep unfolding technique
and develop a model-driven deep neural architecture which is
designed for this specific task. The proposed deep architecture is
able to learn an alternative sensing matrix by taking advantage of
the underlying unfolded algorithm such that the resulting learned
recovery algorithm can accurately and quickly (in terms of the
number of iterations) recover the underlying compressed signal of
interest from its one-bit noisy measurements. In addition, due to
the incorporation of the domain knowledge and the mathematical
model of the system into the proposed deep architecture, the
resulting network benefits from enhanced interpretability, has a
very small number of trainable parameters, and requires very
small number of training samples, as compared to the commonly
used black-box deep neural network alternatives for the problem
at hand.

Index Terms—Blind compressive sensing, deep-unfolded neural
networks, interpretable deep learning, one-bit sampling.

I. INTRODUCTION

COMPRESSIVE sensing (CS) is a sampling framework
that utilizes the frequently-encountered sparse nature of

the underlying signals to overcome the limitations of the
Nyquist and other traditional sampling paradigms [1]. Within
this framework, far fewer samples are needed to maintain
a high accuracy in signal reconstruction—in effect, leading
to significant improvements in sensing and signal recovery
performance in various sparse settings. It is thus no surprise
that CS has attracted a great deal of interest from many
researchers due to its wide range of applications; see, e.g.,
[2]–[5], and the references therein.

In practice, the sampled signal needs to be quantized to
certain levels for convenient data storage, transmission, and
processing. One-bit CS [6]–[11] is a CS formulation that
takes such a quantization to its extreme, where the quantizer
is essentially a comparator that encodes the signal into one-
bit of information {+1,−1} based on its instantaneous level
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which is compared to a given threshold level. Employing
such a comparator can significantly reduce the complexity of
the sampling hardware and achieves a faster data-acquisition
speed [12]. However, using the one-bit quantization model
inevitably introduces additional noise to the acquired signal,
which renders the accurate recovery of the underlying signal
a challenging task.

The existing CS reconstruction techniques can be classified
into two main categories of data-driven techniques that require
sufficient training data for neural networks and model-based
techniques with good interpretability. For instance, in [13]–
[15], the authors consider the CS reconstruction problem from
a deep learning viewpoint and develop data-driven techniques
for reconstruction purposes. Particularly, the authors of [14]
proposed a data-driven deep neural network based on two-
branch convolutional neural networks (CNNs) to reconstruct
image signals. Moreover, in [16], the authors presented a
framework for combining CS and deep networks via meta
learning to jointly train the measurement and generation
functions. On the other hand, several effective model-based
CS algorithms have garnered popularity, including the Renor-
malized Fixed-Point Iteration (RFPI) method [17], Matching
Pursuit (MP) [18], Binary Iterative Hard Thresholding (BIHT)
[19], and their extended versions. A main drawback of these
model-based algorithms, however, is that a full knowledge
of the sensing matrix is usually required during the recovery
process. In the absence of such knowledge, the sensing matrix
must first be recovered through a separate estimation module,
upon which the estimated sensing matrix will be employed
for signal reconstruction purposes. Specifically, the problem of
one-bit blind compressive sensing was first considered in the
seminal work [20] in which the authors proposed a dictionary
learning algorithm to learn the underlying unknown sparsity
domain. A similar problem was considered in [21] in which
the authors utilize the geometric conjugate gradient algorithm
to learn the sensing matrix in an adaptive manner and during
the signal reconstruction process.

Additionally, a prominent problem in CS is the presence of
noise, causing difficulties that have led many existing works
in the field to assume a noise-free scenario. This problem is
in fact exacerbated in the realm of one-bit data-acquisition
where the quantized values are much more prone to additive
noise near the threshold values. From a practical perspective,
blind CS algorithm can recover dynamic magnetic resonance
images from undersampled measurements [22]. Also, learning
a task-specific sensing matrix adaptively allows for an accurate
recovery of sparse signal in the presence of noise.
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In this paper, we propose a hybrid model-based and data-
driven method for the problem of blind one-bit compressive
sensing based on the deep unfolding methodology [23], which
can both learn the task-specific sensing matrix and recover the
sparse signals of interest. This problem has been known for
its difficulty even when high-resolution samples are available
— let alone the highly-quantized one-bit setting [24].

II. MODELING AND PROBLEM FORMULATION

A. One-Bit Compressive Sensing Model

The one-bit compressive sensing data-acquisition model in
a noise-free scenario can be formulated as follows:

y = fΘ(x) = sign(Φx− τ ), (1)

where sign(x) = 1 if x ≥ 0, and sign(x) = −1 otherwise,
Φm×n represents the underlying sensing matrix, x ∈ Rn is
a K-sparse signal and τ denotes the quantization threshold
vector which pave the way for amplitude recovery. Here and
in the rest of this work, we assume that all the functions are
applied element-wise on the vector arguments. We refer the
interested reader to consult [6], [7], and the references therein,
for more detailed explanations on the one-bit CS paradigm and
related models.

Our main goal in one-bit CS is to recover the K-sparse
signal of interest x ∈ Rn from the one-bit measurements y ∈
Rm at the decoder. Based on the availability of information
on the sensing variables, the below settings can be considered.

• Standard Setting: Assuming that an exact knowledge of
the measurement matrix Φ is available at the decode, one
may recover the signal of interest as follows [25]:

x⋆
Φ(y) ∈ argmin

x
∥ρ(y⊙ (Φx− τ ))∥1, s.t. ∥x∥0 = k,

(2)
where ρ(x) = max{−x, 0}, and is applied on the vector
argument in an element-wise manner. The underlying
optimization problem manifested in (2) is non-convex,
and may be tackled by resorting to local optimization
techniques. For instance, a first-order optimizer known
as Binary Iterative Hard Thresholding (BIHT) was used
in [19], which takes the form:

xt+1 = Hk

(
xt + αΦT (y − sign(Φxt − τ ))

)
, (3)

where α > 0 is the step-size and Hk(·) is a non-linear
operator that retains the largest k elements (in magnitude)
of the vector argument and sets the remaining values to
zero.

• Blind Setting: In this scenario, which is the focus of this
work, the decoder does not have any direct knowledge of
the sensing matrix Φ, to directly realize (2). Instead, to
make the recovery possible in a data-driven manner, we
assume that the decoder has access to a dataset containing
the input-output pairs {(xi,yi)}, generated from the data-
acquisition model.

B. Problem Formulation

Existing algorithms for CS, including the one-bit CS prob-
lem, commonly require the exact or partial [26] knowledge of
the sensing matrix Φ to perform the recovery task. The main
idea behind blind compressive sensing, and the blind one-bit
CS problem [24], is to circumvent requiring a prior knowledge
of the measurement matrix Φ, and to indirectly facilitate
learning the exact or an alternative sensing matrix from the
available data at hand—so to augment the recovery algorithm.
Since the noise is inevitable during signal acquisition stage, in
contrast to many prior works, the measurements corrupted with
a Gaussian noise are considered to secure the effectiveness
of our algorithm. Such a recovery algorithm must be able
to recover the signal of interest x from its one-bit noisy
measurements:

y = fΘ(x) = sign(Φx+ n− τ ), (4)

where n ∼ N (0,C) denotes the additive Gaussian noise
with an arbitrary covariance matrix C.

All the existing recovery models are based on the assump-
tion that the sensing matrix Φ is known a priori for signal
reconstruction purposes or a separate signal processing and
estimation stage is required to obtain an estimation of Φ.
To the best of our knowledge, none of the existing works
consider learning the sensing matrix as part of the decoder
algorithm, i.e., learning a sensing matrix that result in the best
performance of the decoder module. As such, our goal in a
blind one-bit CS recovery is to reconstruct the signal of interest
x from its noisy one-bit measurements y without knowledge
of the underlying sparse basis Φ. In doing so, we make the
following assumptions:

• Data-acquisition model, i.e., the decoder is aware that
the one-bit measurements y are generated according to
the sensing model:

y = sign(Φx+ n− τ ) (5)

where the threshold vector τ is also known at the receiver.

• An ensemble of input-output signal dataset {xi,yi}Bi=1

is accessible to the decoder, where B denotes the size of
dataset, and we have that

yi = sign(Φxi + n− τ ), i ∈ {1, 2, ..., B}. (6)

We will utilize the above assumptions to tackle the problem
of blind one-bit CS in the following.

III. DEEP UNFOLDING NETWORK FOR ONE-BIT
COMPRESSIVE SENSING

In this section, we present our model-based deep architec-
ture that is able to jointly optimize the measurement sensing
matrix Φ and find an optimal decoder of the signals in order
to tackle the blind one-bit CS problem. This is done as a two-
stage alternating process in every deep training epoch. The
first stage is devoted to finding a measurement matrix that
maximizes the accuracy of the recovery algorithm through a
judicious utilization of the system model and the available data
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at hand. The second stage is concerned with finding an optimal
decoder of the signals given the obtained measurement matrix
from the previous stage. All in all, the proposed methodology
can be viewed as a single signal decoding framework that can
learn to perform the task of recovering the underlying signal
from one-bit measurements without the explicit knowledge of
the measurement matrix Φ. The specific details of these two
stages are described below.

First Stage: System Identification Problem. We formally
define this stage as the optimization process associated with

Φ⋆ = argmin
Φ

∑
i

∥x⋆
Φ(y

i)− xi∥22 (7)

where x⋆
Φ represents the estimated signal from the reconstruc-

tion algorithm. In other words, we find a measurement matrix
Φ⋆ such that it minimizes the reconstruction error between the
true signal and the one recovered from the unfolded recon-
struction algorithm. Nonetheless, the underlying optimization
problem manifested above is very difficult to solve. This is
due to the fact that any attempt to perform the optimization
with respect to the measurement matrix Φ requires that the
function x⋆

Φ be continuous and differentiable with respect to
Φ, which is clearly not the case. In order to overcome this
obstacle, we first obtain an approximation of x⋆

Φ by using
the iterations of the algorithm presented in (3) such that the
resulting approximation is differentiable with respect to its
parameters, including Φ. More precisely, our approximated
function takes the form

gϕi(x;y, τ ) = Hk(x+ αiΦ
T (y − sign(Φx− τ ))), (8)

where ϕi = {Φ, αi} denotes the set of tunable parameters.
Observe that the above mapping can be viewed as a layer of
a deep neural network whose activation function is given by
Hk and its input is given by x, while (y, τ ) represents the
known system information. In light of this, we define GL

∆ as

GL
∆(x0;y, τ ) ≜ gΦL

◦ gΦL−1
◦ · · · ◦ gΦ1

(x0;y, τ ), (9)

where ∆ =
⋃

i ϕi denotes the global parameters of the system.
In the following, we delve deeper by discussing two distinct,
although connected perspectives on (9).

• Optimization Theory Perspective: The mapping (9) can
be viewed as performing L first-order iterations of the form (8)
which is basically designed to solve the optimization problem
manifested in (2). The mapping function G is parameterized
not only on the per-iteration step-sizes {αi}, but also on
the measurement matrix Φ. Moreover, note that for a fixed
αL = αL−1 = · · · = α1 = α, and some proper choice of α,
the function GL

∆ approaches the first-order stationary point of
the objective function with limited error. It should be clear at
this point that the mapping G∆ provides an approximation of
x⋆
Φ, for a proper choice of L and α. Accordingly, we propose

to regard the measurement matrix Φ as a trainable parameter
of the function GL

∆ and seek to learn it by exploiting the
available data, i.e., solving (7). On the other hand, once a
solution Φ⋆ is obtained, we regard {αi} as the set of train-
able parameters of the mapping and perform another round

Algorithm 1: Training Procedure for Proposed Method

1 Initialize Φ(0) and αi(0)
2 for epoch = 1,...,N do
3 for k = 1,...,L do
4 Feed x(k) to the k-th layer of the DNN (9)
5 end
6 Compute the loss function (12)
7 Utilize back propagation to update parameters ∆
8 end

of training to accelerate the convergence of the underlying
mapping to the true signal.
• Deep Learning Perspective: The mapping (9) can be

further viewed as a L-layer feed forward neural network
whose input is given by an initial point x0, the one-bit
measurements y, and the quantization thresholds τ . Unlike
the traditional black-box data-driven approaches, the resulting
neural network GL

∆ is tailored to the problem at hand and
is now interpretable. Due to the incorporation of domain-
knowledge into the architecture and computational dynamics
of the proposed neural network, it is expected to learn to
decode a K-sparse signal without an explicit knowledge of
Φ, with significantly smaller number of training data points
and trainable parameters.

In light of the above discussion, we reform (7) into the
following tractable form:

Φ⋆ = argmin
Φ

∑
i

∥∥∥GL
∆={αi=α,Φ}i

(
x0;y

i, τ
)
− xi

∥∥∥2
2
. (10)

Hence, obtaining Φ⋆ via (10) can be viewed as training the
proposed deep neural network GL

∆ over the parameter Φ.
Second Stage: Learning to Optimize. In this part, we

discuss the second training stage of the proposed methodology,
which corresponds to learning a set of step-size scalars {αi}
such that the resulting network converges to an stationary
point of the optimization problem in L′ iterations [27]. We
note that during the first training stage, we usually choose
a large value for L to ensure the convergence of G∆ to a
stationary point, and hence, facilitating the inference of the
measurement matrix. Once Φ⋆ is obtained through (10), we
reduce the number of layers of the neural network from L to
L′, i.e. L′ ≤ L, and perform the training of the neural network
on the set of parameters {αi}L

′

i=1, while keeping Φ⋆ fixed.
Mathematically speaking, this stage corresponds to perform-

ing the training according to:

min
{αi}i

∑
i

∥∥∥GL′

∆={αi=α,Φ⋆}i

(
x0;y

i, τ
)
− xi

∥∥∥2
2
. (11)

In this training process design, one should consider the con-
straint on the step sizes set {αi}L

′

i=1, which should be always
non-negative. Hence, it is necessary to apply regularization in
the training loss function to facilitate choosing positive step
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Fig. 1. The performance of the proposed model compared to the BIHT
Method for growing iterations/number of layers.
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Fig. 2. The performance of the proposed model compared to the BIHT
Method for a growing number of sparsity levels

sizes and to avoid overfitting. Accordingly, the loss function
we suggest for training is as follows:

LOSS =

L′∑
i=1

∥∥∥ĜL′

∆

(
x0;y

i, τ
)
− xi

∥∥∥2
2︸ ︷︷ ︸

accumulated MSE loss of all layers

+ λ

L′∑
i=1

ReLU (−αi)︸ ︷︷ ︸
regularization term for the step sizes

(12)

where ReLU is the Rectified Linear Unit activation function,
which can also help to avoid overfitting problem as a regular-
izer [28].

Once both training stages are carried out successfully, the
proposed neural network GL′

∆ can be used to decode a K-
sparse signal from its one-bit measurements.

IV. NUMERICAL RESULTS

In this section, we present our simulation results for the
proposed blind one-bit CS methodology in the presence of
the measurement noise in order to show the effectiveness
of the training in our deep model and its inference. The
simulations are implemented and performed using the PyTorch
library [29] and the parameter optimization process is done

on the Adam optimizer [30] with a learning rate of 10−4.
For training, the non-zero elements of K-sparse signals of
length n = 128 are randomly generated from N (0, 1) using
Xavier initialization [31], and the additive Gaussian noise
is generated with unit variance. Furthermore, the number of
layers of the proposed network model is fixed at L = 10.
For the sensing matrix training, we assume Φ ∈ R512×128,
and all initial elements in the matrix are generated from a
standard normal distribution. We develop the framework to
handle arbitrary user-specified quantization thresholds. For the
numerical experiments, we consider the more commonly-used
case of τ = 0. Since the gradient of sign function in (8)
is zero almost everywhere, straight-through estimator (STE)
[32] is implemented in the proposed model to back propagate
through the binary function sign. Also, a normalization step
that corresponds to implementing a projected gradient descent
step is implemented at the end of each layer in order to help the
algorithm converge. These two results presented are averaged
over 20 realizations of the system parameters.

Figure 1 illustrates NMSE between the recovered signal and
the true underlying signal, for the output of each layer, for the
proposed methodology and the baseline BIHT method. The
initial starting point of these two methods are the same. It can
be observed that the proposed deep model is indeed reducing
the NMSE per layer/iteration and the proposed methodology
results in accelerated convergence properties. We note that
such per-layer analysis is only possible due to the model-based
nature of the proposed deep architecture.

Figure 2 illustrates the performance of the proposed model
and the original BIHT method in terms of NMSE for various
sparsity levels (the length of the K-sparse signal is fixed at
n = 128). It can be observed from Fig. 2 that the proposed
methodology exhibits a superior performance when compared
to the state-of-the-art BIHT method yielding a slower degra-
dation in performance as compared to the baseline BIHT
algorithm, as sparsity level K grows larger.

It is worth mentioning that the proposed methodology is
performing the task of recovery in a blind manner (no access to
the underlying sensing matrix), while the BIHT methodology
exploits a full knowledge of Φ. The superior performance
of the proposed methodology is related to the fact that in
noisy scenarios, learning a surrogate sensing matrix can indeed
be beneficial and can result in more robust iterations as
compared to the base-line BIHT method. In addition, learning
the step-size scalars for each layer is helpful for the proposed
architecture to escape many poor local minima.

V. CONCLUSION
In this work, we considered the problem of blind one-bit

CS recovery. In particular, we assumed that the reconstruction
algorithm does not have the knowledge of the underlying
sensing matrix, and proposed a novel hybrid data-driven
and model-based technique for the problem at hand. Our
simulations demonstrate that our model-based deep neural
networks go beyond the performance of the conventional base-
line algorithm while requiring a relatively low number of
training parameters—which means both a high accuracy of
recovery and efficiency in data utilization.
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