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Abstract—The earlier works in the context of low-rank-
sparse-decomposition (LRSD)-driven stationary SAR imaging
have shown significant improvement in the reconstruction-
decomposition process. Neither of the proposed frameworks,
however, can achieve a satisfactory performance when facing
a platform residual phase error (PRPE) arising from the insta-
bility of airborne platforms. More importantly, in spite of the
significance of real-time processing requirement in the remote
sensing applications, these prior works have only focused on
enhancing the quality of the formed image, not reducing the
computational burden. To address these two concerns, this paper
presents a fast and unified joint SAR imaging framework where
the dominant sparse objects and low-rank features of the image
background are decomposed and enhanced through a robust
LRSD. In particular, our unified algorithm circumvents the
tedious task of computing the inverse of large matrices for
image formation and takes advantages of the recent advances in
constrained quadratic programming to handle the unimodular
constraint imposed due to the PRPE. Furthermore, we extend
our approach to ISAR autofocusing and imaging. Specifically, due
to the intrinsic sparsity of ISAR images, the LRSD framework is
essentially tasked with the recovery of an sparse image. Several
experiments based on synthetic and real data are presented to
validate the superiority of the proposed method in terms of
imaging quality and computational cost as compared to the state-
of-the-art methods.

Index Terms—Autofocusing, Inverse Synthetic Aperture Radar
(ISAR), Low Rank and Sparse Decomposition (LRSD), Quadratic
Optimization, Synthetic Aperture Radar (SAR).

I. INTRODUCTION

SYNTHETIC Aperture Radar (SAR) is an active remote
sensing system which can capture high-resolution images

of the terrain [1]. A key challenge in remote sensing applica-
tions is to facilitate SAR imaging in real-time processing [2]–
[6]. Such a real-time processing in stripmap mode is defined
by the time duration before the next synthetic aperture data is
received, which is about several seconds [1], [2].

The SAR processor works to reconstruct the target image
from the backscattered data. The conventional SAR image for-
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mation schemes suffer from several practical limitations such
as available system bandwidth, speckle, and side-lobe artifacts
[5]–[13]. To address such shortcomings, [7] incorporated the
sparsity assumption into the SAR imaging problem as a prior.
In [8] and [9], the authors exploit the compressed sensing (CS)
theory for SAR imaging with the undersampled data. In prac-
tice, the platform fluctuations perturb the received signal, in
such a way that even after motion compensation, the platform
residual phase errors (PRPE) remains in the received signal at
various cross-range positions [10]. The authors of [10] have
aimed at addressing this issue by proposing an autofocus SAR
imaging method through which the sparse nature of the scene
is enhanced while the PRPE is corrected for simultaneously.
However, the above methods have no mechanism to deal with
non-smooth/non-sparse patterns involved in the scene which
can be represented as low-rank structures [12], [13].

To concurrently enhance and separate both the sparse and
low-rank features of the scene, the low-rank and sparse decom-
position (LRSD) model has been leveraged for SAR imagery
in [12]–[14]. Before applying an LRSD framework, the signal
sparsity is highlighted through an appropriate dictionary while
at the same time the low-rankness is captured by constructing
the so-called Casorati matrix from overlapping SAR image
patches [13]. To have a successful decomposition via LRSD,
there must only be slight differences among various columns
of the received data at different cross-range positions [14].
More explicitly, in the presence of PRPE, the existing LRSD-
SAR schemes can no longer work properly. In [14], we have
integrated the PRPE correction (PRPEC) step with the LRSD
technique to facilitate decomposing the sparse signatures of
moving objects along the temporal consecutive video-frames
from the static background. Although including the PRPEC
in static LRSD-based SAR imaging has not been studied
yet, motivated by the discussion in [14], it can be intuitively
inferred that the LRSD-based approach of [13] cannot achieve
a satisfactory decomposition result in the presence of realistic
PRPE assumption.

Note that, neither of the SAR imaging approaches men-
tioned above have focused on reducing the computational
burden, but rather enhancing the quality of output image. For
instance, the algorithms proposed in [10]–[14] rely on specific
gradient-based approaches, whose application would be prob-
lematic in large-scale data setting, due to the tedious task of
calculating large matrix inversions. Such difficulties would be
exacerbated in case the data is stored on various computers [6].
Additionally, the approaches in [5]–[14], involve the stacking
of two-dimensional matrices into large vectors, and large dic-
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tionary which is not efficient in terms of required storage and
computational loads. Furthermore, the conventional alternating
direction method of multiplier (ADMM) steps used in [13]
and [14] introduce some additional auxiliary steps which slow
down the emerging algorithm.

High resolution inverse synthetic aperture radar (ISAR)
autofocusing and imaging have been widely studied in recent
years [15]–[23]. ISAR images are known to be inherently
sparse [20]. Therefore, sparsity-driven methods have emerged
for ISAR image reconstruction. However, similar to the SAR
problem, conventional sparse representation-based methods
demand large memory and heavy computation loads, which
is a significant challenge for real-time processing [17]. Thus,
the sparse matrix models are exploited in [17], [22] for
faster ISAR reconstruction. Specifically, a fast ADMM based
algorithm was used in [22] to reduce the imaging complexity.
The authors of [19] introduce a sparse Bayesian learning
(SBL) method for ISAR autofocusing and imaging. On the
other hand, matrix inversion computations are required in this
approach, which renders it infeasible for real time scenarios.
Thus, [23] exploits ADMM steps and introduces an ADMM-
based SBL (ADMM-SBL) algorithm to do away with the
matrix inversion and reduce the computational cost. However,
the main drawback of ADMM-SBL is the computation of the
first and the second derivative of entropy which is still time
consuming.

Interestingly, due to the unimodular nature of PRPE, the
PRPEC creates an NP-hard problem known as a unimod-
ular quadratic program (UQP), where a quadratic form is
optimized over the unimodular vector set. Given the recent
advances in solving such kinds of problem [24]–[26], this
paper proposes a fast unified joint SAR imaging framework
where sparse dominant objects and low-rank features of the
background are decomposed and enhanced through a robust
LRSD. In particular, our unified proposed algorithm can deal
with the challenging matrix inversion tasks and speeds up
the process through recent advances in approximating UQP
solutions, while keeping the matrix forms of SAR kernel
rather than stacking them into inefficient vector forms. Another
appealing advantage of the proposed iterative approach is that
each iteration is given through a closed-form formula that
facilitates simple and immediate implementation. This idea is
also extended to ISAR autofocusing and imaging. The main
difference in this case is that the ISAR image is not low-rank.
Consequently, the task of the LRSD framework is reduced to
sparse recovery.

The rest of this paper is organized as follows. A brief review
of the previous related works is described in Section II. Section
III introduces the observation model and the conventional
ADMM-based approach. Section IV presents the proposed
fast SAR/ISAR imaging method. Then, several experiments
based on synthetic and real data are performed to validate the
efficiency and superiority of the proposed approach in Section
V. Finally, Section VI concludes the paper.

Notation: We use bold lowercase letters for vectors and
bold uppercase letters for matrices. (·)T and (·)H denote
the transpose operator and the conjugate transpose operator,
respectively. ⊙ and ⊗ denote the Hadamard product and Kro-

necker product, respectively. 1 is the all-ones vector/matrix.
Vec(·) stands for stacking an M ×N matrix into an MN × 1
vector column by column, and Mat(·) creates a matrix from
vector and actually is the inverse operator of Vec(·). diag{·}
denotes constructing a diagonal matrix from a vector. For a
given matrix A, Ai,j denotes its (i, j)-th element.

II. RELATED WORKS

Before presenting the signal model and our approach to
dealing with LRSD-based radar imaging, we briefly review
some related works in radar imaging as well as the previously
developed fast LRSD algorithms.

A. Applications of LRSD in Radar Imaging

Recently, the LRSD approach also known as robust principal
component analysis (RPCA) has been widely adopted in the
SAR community for various applications. In the previous
section, the application of LRSD in SAR imaging and decom-
position was briefly introduced and some recent works [12]–
[14] were taken into consideration. Besides, RPCA has been
applied in the other SAR subjects, such as ground moving
target indication (GMTI) SAR (SAR-GMTI) [27]–[32]. In
SAR-GMTI, the clutter is static and has approximately no
changes between successive SAR images. Therefore, it can
be considered as the low-rank part. On the other hand, due
to the Doppler effect, the moving target echo changes in
sequential images and is the sparse part to be recovered.
Therefore, the SAR-GMTI approach can be interpreted as
LRSD in which the goal is to extract the moving target, i.e.
the sparse part, from the SAR images. It is worth noting that
multiple images of the scene can be provided simultaneously
by a multichannel SAR system or in successive time durations
by a one-channel system. In [27], an approach for extracting
moving targets in a multichannel wide-area surveillance radar
system is introduced. In the proposed algorithm, after related
preprocessing, the radar echoes are combined in a matrix as
the superposition of three matrices, namely, a low-rank matrix
of ground clutter, a sparse matrix of moving targets, and
an entry-wise matrix of noise component. Then, the relaxed
principal component pursuit (PCP) is used to separate the
ground clutter (low-rank matrix) and the moving target (sparse
matrix). The ref. [28] is another work in multichannel SAR-
GMTI that provides an efficient along-track interferometry
(ATI) go decomposition (GoDec) approach for GMTI under
a strong clutter background. GoDec algorithm separates the
low-rank and sparse matrices from the original matrix by
tackling the RPCA basic model. Even though the GoDec
algorithm runs faster than the the augmented Lagrange mul-
tiplier (ALM) methods, it still needs a long time to iterate
for better performance [28]. Authors in [29] use LRSD for
maritime surveillance. Specifically, their goal is to separate
the sparse objects of interest, i.e. maritime targets, from the
stationary low-rank background by solving the RPCA problem
via convex programming. Forward-looking scanning radar is
another application that can utilize LRSD for multiple-target
extraction from the real-beam image [30].
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In LRSD, the problem of recovering the low-rank part is
usually transformed into a minimization of the nuclear-norm,
i.e. the sum of singular values of the original matrix. The
singular value thresholding (SVT), is a proximal mapping
corresponding to the nuclear-norm. However, it is compu-
tationally expensive due to the calculation of the singular
value decomposition [31]. Therefore, [31] exploits a rank-1
framework instead of SVT and provides an updated minimiza-
tion problem for LRSD. However, the main drawback of this
method is the non-convexity of the rank-1 constraint. As a
result, the convergence of the algorithm is not guaranteed.
In [32], a joint multi-channel sparsity approach to RPCA
is intoduced for SAR-GMTI by enhancing the performance
of clutter suppression and improving the sparse signature of
moving targets.

RPCA is also used in SAR peckle reduction problem for
the circular SAR system [33], in which the motion of aircraft
platform causes successive angular variations so that multiple
SAR images can be reached with a high interrelationship [33].
The authors in [33] develop a robust lp-regularized scheme
instead of RPCA to take into account the low-rank property
of targets with a flexible choice of 1 ≤ p ≤ 2 for sparsity
promotion to obtain a cleaner target structure while preseving
the edge features of the target. The ALM framework is then
applied to solve the joint optimization problem with efficient
computation of each ALM subproblem.

B. Current Fast Algorithms for LRSD

In recent years, several fast algorithms for solving the LRSD
problem have been introduced [34]–[40] that will be briefly
described in the following.

In [34], the authors surrogate singular value decompositions
(SVD) of the data matrix, which has a high computational
cost, with the so-called l1-filtering, to exactly solving PCP.
The l1-filtering approach not only is highly parallelizable but
also can solve a nuclear norm minimization problem exactly
in linear time, which facilitates the application of RPCA
to extremely large-scale problems. The ref. [35] introduces
a fast incremental RPCA (FRPCA) approach, in which the
low-rank matrices of the incrementally-observed data are
estimated using a convex optimization model. This model
exploits information acquired from the pre-estimated low-
rank matrices of the original observations and can be used
in specific applications with real-time characteristics such as
background subtraction in video streams.

Yang [36] utilized an smoothing technique to smooth the
non-smooth terms in the objective function, and presented a
fast alternating direction method for solving RPCA. In order
to avoid the high computation cost to compute a SVD in SVT,
Oh et al. [37] surrogate SVT with the fast randomized SVT
(FRSVT), where the direct computation of SVD is no longer
needed. Moreover, FRSVT can reduce the computational time
of low-rank applications without losing accuracy and hurting
the convergence behavior. A Normalized Coherence Pursuit
(NCP) method was introduced by [38] to solve RPCA and
was shown (theoretically and numerically) to be robust to
different types of outliers. Zhang et al. [39], extended the

proximal gradient methods (PGMs) to the proximal Jacobian
iteration methods (PJIMs) for handling with a family of
nonconvex composite optimization problems with two splitting
variables. The authors showed that PJIMs not only keep fast
convergence speed but also have a high precision. Finally, [40]
presented a new convergent parallel splitting ALM (PSALM)
for two block separable convex programming, which is the
regularizing ALM’s minimization subproblem by some simple
proximal terms. This new PSALM can be used to solve video
background extraction problems efficiently.

To summarize what we have discussed, it can be understood
that the recent fast LRSD methods focus mainly in exchanging
the conventional algorithms for solving RPCA with new fast
approaches. Specifically, SVT, ALM or PGM methods are
replaced with new faster counterparts. However, none of these
works target the RPCA problem in SAR applications. By
applying the SAR kernel in the LRSD problem, as we will
discuss in the next sections, we have to compute matrix
inversions that are time consuming. On the other hand, the
SAR signal model in the LRSD problem is usually written in
the vector form which is not efficient. Finally, dealing with
PRPE in the LRSD-based SAR imaging and decomposition
is a challenging task. Therefore, our goal is to tackle these
problems in a computationally efficient way as discussed in
detail in the following sections.

III. PRELIMINARIES

In this section, after presenting the SAR imaging model,
the LRSD principle, as well as the LRSD-based SAR image
formation based on the work in [13], are reviewed. However,
we consider a slight extension as compared to [13], where the
practical impact of uncertainties due to platform motion is also
taken into account and compensated for.

A. Observation Model

Using a spotlight mode, a chirp pulse is transmitted at
equal angular intervals to illuminate a single spot of a terrain.
After applying the far-field approximation, the preprocessing
steps of de-chirping and low-pass filtering, as well as two
dimensional under-sampling [22], the discrete form of the
back-scattered signal in the presence of realistic phase error
due to PRPE, is formulated as follows [14], [41]:

r = PΘHf + n (1)

in which r ∈ CM is comprised of the undersampled phase
histories corresponding to azimuth angles {θi}

Na
i=1, H ∈ CN×I

is the discretized approximation of the observation kernel with
N = Na ×Nr where Na and Nr, respectively, stand for the
number of full-sampled data at azimuth and range directions,
and I is the number of pixels in the scene. Additionally,

P ≜ diag{p}
= IMr ⊗Φ (2)

with Φ = diag
{
ejϕ1 , ejϕ2 , . . . , ejϕMa

}
∈ CMa×Ma contain-

ing the exponentiated PRPE values, and IMr
is an Mr ×

Mr identity matrix. The vector f ∈ CI×1 represents the
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vectorized form of the unknown reflectivity image. Finally,
Θ ∈ CM×N (with M = MaMr ≪ N where Mr and Ma

respectively stand for the number of undersampled data at
range and azimuth directions) and n ∈ CM denote the sensing
matrix and the undersampled Gaussian noise, respectively.
Note that, H can be viewed as the 2-D Fourier transform of the
reflectivity field whose support region constitutes a sectorial
part of an annulus [13], [14].

B. LRSD-Based SAR Image Formation

The LRSD approach decomposes the hypothetical matrix F
into its low rank L and sparse S components by solving the
following convex optimization problem [42]–[45]:

min
L,S
∥L∥∗ + λ∥S∥1 s.t. F = L+ S (3)

where, ∥·∥∗ represents the nuclear norm and ∥·∥1 denotes
the l1-norm of the matrix argument. It has been readily
shown in [42] the decomposition via LRSD is unique and
the problem is well-posed if the matrix F is truly composed
of low rank (L) and sparse (S) components. In a complete
SAR image, while sparsity is caused by the dominant point
scatterers, the low-rank presumption is not entirely realistic.
In order to make the model more accurate, and to highlight
the inherent low-rankness embedded in the scene, a patch-
based model can be used [13]. To do so, using the linear
operator G a patch-based matrix F ∈ Cn×K is built from
the image f , i.e., F = G {Mat {f}} = P {f}, such that the
emerging matrix has both sparse and low rank components,
i.e. F = L + S. The dimension of the obtained matrix F is
determined by the number of sliding steps of the considered
sliding window, denoted by K, and the number of pixels in-
cluded within the sliding window, i.e., n. In the reconstruction
process, we can utilize an inverse operator1 P−1 {.}, such
that f = Vec

{
G−1 {F}

}
= P−1 {F}. It is worth noting

that the parameter λ in (3) is the regularization parameter
which plays an important role in the trade-off between the
low-rankness and sparsity of L and S, respectively. Candes
et al. [42] suggested the theoretically supported value of
λ = max(n,K)−1/2.

Using the observation model in (1), the LRSD-SAR imaging
framework can then be formulated via a coordinate decent
approach where in the first step, considering known p, the
following optimization problem has to be solved[
L̂, Ŝ

]
= argmin

1

2
∥r− E {L+ S}∥22 + λL∥L∥∗ + λs ∥S∥1

(4)
where E {·}≜PΘHP−1 {·}, and λL and λs are the reg-
ularization parameters. In the next step, using the matrix
parameters L, S acquired from (4), and by reformulating (1)
in the form r = Tp+ n with T ≜ diag {ΘHf}, an estimate
of vector p can be found through the following minimization
problem:

p̂ = argmin
p
∥r−Tp∥22 s.t. |(p)i| = 1, ∀i. (5)

1We have omitted the elaborate derivations associated with the operators G
and G−1 here due to space constraints. The interested reader, however, may
refer to [13] for details.

In order to solve (4) an algorithm based on ADMM, was
developed in [13]. In particular, auxiliary variables of (W,Q)
were introduced to mirror (L,S), through which the associated
augmented Lagrangian function is minimized with respect to
each of W,Q,L, S separately. Namely, the estimates of L
and S at the (k + 1)th iteration are obtained as follows [13]:

Ŵk+1 = Prox(λL/δ1)∥.∥∗

{
Fk − Sk + δ−1

1 Zk
1

}
, (6)

Q̂k+1 = Prox(λs/δ2)∥.∥1

{
Fk − Lk + δ−1

2 Zk
2

}
, (7)

L̂k+1 =
(
EHkEk + δ1I

)−1

︸ ︷︷ ︸
(a)

×
(
EHk {r}+ δ1W

k+1 − Zk
1 − EHkEk

{
Sk

})
, (8)

Ŝk+1 =
(
EHkEk + δ2I

)−1

︸ ︷︷ ︸
(b)

×
(
EHk {r}+ δ2Q

k+1 − Zk
2 − EHkEk

{
Lk

})
,

(9)

where EH {·} ≜ P
{
HHΘTPH (·)

}
, Z1, Z2 are Lagrange

multipliers, δ1 and δ2 denote for penalty parameters [13]. The
penalty parameters can be set to the specific value δ1,2 =
(nK)/(4∥F∥1) as suggested in [42], [46] or updated dy-
namically according to [47]. Proxρ∥.∥1

{·} and Proxρ∥·∥∗
{·}

with parameter ρ, denote the soft-thresholding and the SVT
operators [13], respectively.

Similarly, to estimate the vector p in (5) we can again
resort to the conventional ADMM. To do so, one can define
new auxiliary variables (w1,w2), followed by minimizing
the corresponding augmented function over each parameter
separately. The solution at the (k + 1)th iteration is thus
obtained as:

ŵk+1
1 =

ρ1
ρ1 + 2λϕ

(
pk + ρ−1

1 Υk
1

)
, (10)

ŵk+1
2 = Prox(−2λϕ/ρ2)∥.∥1

(
pk + ρ−1

2 Υk
2

)
, (11)

p̂k+1 =
(
THk

Tk + (ρ1 + ρ2) I
)−1

︸ ︷︷ ︸
(c)

×
(
THk

r+ ρ1w
k+1
1 + ρ2w

k+1
2 − (Υk

1 +Υk
2)
)
,

(12)

where {ρi}2i=1, {Υi}2i=1, and λϕ represent the penalty param-
eters, Lagrange multipliers, and the regularization parameter,
respectively. The estimated p̂ is then used to update (4) and the
procedure continues unless the stopping criterion is satisfied.

IV. PROPOSED FAST ADMM-BASED SOLUTION

The brunt of the computational burden associated with the
conventional ADMM steps (6)-(12) stems from the following:
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L̂ =
(
Wk+1 − δ−1

1 Zk
1

)
− 1

1 + δ1
G
{
FH

a ΘT
aΦ

H
[
ΦΘaFaG−1

{
Wk+1 − δ−1

1 Zk
1 + Sk

}
FT

r Θ
T
r −R

]
ΘrF

∗
r

}
, (16)

Ŝ =
(
Qk+1 − δ−1

2 Zk
2

)
− 1

1 + δ2
G
{
FH

a ΘT
aΦ

H
[
ΦΘaFaG−1

{
Qk+1 − δ−1

2 Zk
2 + Lk

}
FT

r Θ
T
r −R

]
ΘrF

∗
r

}
. (17)

(i) The matrix inversion operations (a), (b), (c) in (8), (9),
and (12), respectively.

(ii) Stacking the received echo and the unknown image into
the large vectors r and f , as well as the SAR kernel H
with NaNr × I elements, which is not efficient in terms
of increased storage and computational costs compared
to the 2-D signal model which requires (Na

√
I+Nr

√
I)

parameters altogether [17].
(iii) The NP-hard problem of optimizing a quadratic form

while adhering to the unimodular vector constraint as
seen in Eq. (5).

In what follows, we have presented our alternative solutions
in three different sub-sections to deal with each of abovemen-
tioned concerns (i)-(iii):

A. Proposed Solution for Concern (i)

By taking advantage of the matrix inversion lemma, we can
replace (8), (9), and (12), with the following efficient versions
in which costly matrix inversions are avoided:

L̂k+1 =
(
Wk+1 − δ−1

1 Zk
1

)
− 1

1 + δ1
EH

{
E
{
Wk+1 − δ−1

1 Zk
1 + S

}
− r

}︸ ︷︷ ︸
(d)

,

(13)

Ŝk+1 =
(
Qk+1 − δ−1

2 Zk
2

)
− 1

1 + δ2
EH

{
E
{
Qk+1 − δ−1

2 Zk
2 + Lk

}
− r

}︸ ︷︷ ︸
(e)

,

(14)

p̂k+1 = Λh̃ ×
(
THk

r+ ρ1w
k+1
1 + ρ2w

k+1
2 −Υk

1 −Υk
2

)
,

(15)

where Λh̃ ≜ diag
{

1
h̃1
, 1
h̃2
, . . . , 1

h̃M

}
with h̃i representing the

ith element of h̃ ≜ (ΘHf)
∗⊙ (ΘHf)+ (ρ1 + ρ2)1. A proof

of the above is provided in Appendix A.

B. Proposed Solution for Concern (ii)

To alleviate this concern, r and f have to be maintained in
their original 2-D matrix forms R ∈ CMa×Mr and G−1 {F} ∈
C

√
I×

√
I rather than being reshaped into vectors. We note that

H and Θ in (1) can be decomposed into their azimuth and
range components as H = Fr ⊗ Fa and Θ = Θr ⊗Θa. The
observation model (1) may thus be recast as

R = ΦΘaFaXFT
r Θ

T
r + Z, (18)

where X = G−1{F} is the desired image of the scene,
Fa ∈ CNa×

√
I and Fr ∈ CNr×

√
I denote the Fourier matrices

in azimuth and range directions, respectively (as defined in
Appendix A), Z ∈ CMa×Mr is the the undersampled Gaussian
noise matrix, and Θa ∈ CMa×Na and Θr ∈ CMr×Nr denote
the corresponding undersampling matrices.

Given the model in (18), we can formulate more efficient
versions of (13) and (14); the results of which are given by
(16) and (17) shown at the top of this page. A proof of these
relations is presented in Appendix B.

C. Proposed Solution for Concern (iii)

To deal with the optimization problem in (5) more effi-
ciently, we can resort to the recent advances in solving this
class of problems [24]–[26]. To do so, we can recast (5) into
the following equivalent unimodular quadratic program (UQP)
form:

p̂ = argmax
p

p̃HUp̃ s.t. |(p̃)i| = 1, ∀i (19)

where p̃ ≜ [p, 1]
T and the positive definite matrix U is formed

as U ≜ µI− T̃, with

T̃ ≜

[
THT −THr
−rHT 0

]
(20)

and µ being an arbitrary real-valued constant larger than
the maximum eigenvalue of T [24]–[26]. Note that (19) is
NP-hard in general. To approximate the solutions to (19), a
computationally efficient approach was introduced in [24]–
[26] where p is updated through the following nearest vector
problems with convergence guarantees:

p̂ = argmin
p

∥∥p̃t+1 −Up̃t
∥∥
2

, s.t.
∣∣(p̃t+1

)
i

∣∣ = 1, ∀i.
(21)

The closed-form solution of (21) is simply obtained as a set
of power method-like iterations, given by

p̃t+1 = ejarg(Up̃t) (22)

In fact, using the recursive formula of (22), an inner loop
is added to each ADMM iteration whose (t + 1)th iteration
consists of monotonically boosting the criterion of (21). The
proof of the monotonically increasing behaviour of the crite-
rion in (21) through the power method-like iterations (22) is
presented in Appendix C. Therefore, we can simply surrogate
(15) by the recursive formula of (22). The inner loop continues
unless a maximum tolerable iteration is reached.

Based on the above solutions, the proposed fast ADMM-
based scheme, is presented in Algorithm 1.
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Algorithm 1 Fast ADMM-based LRSD-SAR Imaging
1: Input: δ1, δ2, ρ1 ρ2, ð, αx, λL, λS ;
2: Initialization: F0 = L0 = P

(
(ΘH)

H
r
)

, S0 = 0, Φ =

I,
{
Z0

i

}2

i=1
=

{
Υ0

i

}2

i=1
= 0, k = 0;

3: while
∥∥∥|f |k+1 − |f |k

∥∥∥
2
/
∥∥∥|f |k∥∥∥

2
<αx do (I)-(IV)

4: I: Reconstruction of f
5: t = 0;
6: Calculate (6), (7), (16), (17);
7: fk+1 ← P−1

{
Lk+1 + Sk+1

}
;

8: II: Estimation of p
9: while

∥∥arg (pt+1 − pt
)∥∥

2
/ ∥arg (pt)∥2 < ð do

10: (i): Calculate (22)
11: (ii): Extract p from p̃ by change of the variable
12: end while
13: III: Model Matrices Update
14: Ek+1 {.} = ΘPk+1HP−1 {.},
15: Tk+1 = diag

{
ΘHfk+1

}
,

16: Building Φk+1 from pk+1

17: IV: Lagrange Multipliers Update
18: Zk+1

1 = Zk
1 + δk1

(
Lk+1 −Wk+1

)
;

19: Zk+1
2 = Zk

2 + δk2
(
Sk+1 −Qk+1

)
20: end while
21: Output: S, L.

D. Accelerating the Autofocusing Algorithm

Due to the large sizes of U and p, the computational cost of
(22) is considerable. According to (2), however, in the vector
p we only have Ma distinct phase error components which are
repeated Mr times. This observation can be used to simplify
(22). In fact, by combining (5), (20) and (22), and some trivial
algebraic manipulations, we obtain,

arg
(
pt+1

)
=

[
µ1− (ΘHf)

∗ ⊙ (ΘHf)
]
⊙pt + (ΘHf)

∗ ⊙ r
(23)

Now, assume that the range compression has been performed.
Consequently, we can further simplify (23) by substituting the
equivalent matrix representation model (18) and averaging the
estimated phase error over various range cells, leading to:

ϕk+1
i =arg

 1

Mr

Mr∑
j=1

[(
µ−Y∗

i,jYi,j

)
ejϕ

k
i +Y∗

i,jR̃i,j

] ,

for 1 ≤ i ≤Ma, (24)

where Y = ΘaFaX, and R̃ = RΘrF
∗
r is the range

compressed signal. We update the PRPE in the main loop,
in which the SAR image is obtained, and thus, the inner loop
is omitted. Moreover, (24) can be written efficiently in the
matrix form as

ϕk+1 =arg
{
sum

(
Φk(µ1−Y∗ ⊙Y) +Y∗ ⊙ R̃

)}
, (25)

where ϕ = [ϕ1, ϕ2, · · · , ϕMa
]T and sum(·) denotes a summa-

tion of matrix elements in the column direction. The obtained
simpified algorithm is presented in Algorithm 2. For the
purposes of simplicity, we denote our algorithm by ADMM-

UQP in the rest of the paper.

Algorithm 2 Simplified Fast ADMM-based LRSD-SAR Imag-
ing

1: Input: δ1, δ2, ρ1, ρ2, αx, λL, λS ;
2: Initialization: F0 = L0 = G

(
FH

a ΘT
aRΘrF

∗
r

)
, S0 = 0,

Φ = I,
{
Z0

i

}2

i=1
=

{
Υ0

i

}2

i=1
= 0, k = 0;

3: while
∥∥∥|X|k+1 − |X|k

∥∥∥
2
/
∥∥∥|X|k∥∥∥

2
< αx do (I)-(III)

4: I: Reconstruction of X
5: Calculate (6), (7), (16), (17);
6: Xk+1 ← G−1

{
Lk+1 + Sk+1

}
;

7: II: Estimation of PRPE
8: Calculate ϕk+1 from (25)
9: Update Φk+1

10: III: Lagrange Multipliers Update
11: Zk+1

1 = Zk
1 + δk1

(
Lk+1 −Wk+1

)
;

12: Zk+1
2 = Zk

2 + δk2
(
Sk+1 −Qk+1

)
13: end while
14: Output: S, L.

E. Application in ISAR Imaging

Due to the duality of SAR and ISAR modes and the
similarity of the received signal models [15], we can develop
the proposed method for ISAR imaging and autofocusing.
However, we note that the SAR and ISAR scenes are fun-
damentally different. Since it is usually assumed that only
one target exists in the ISAR scene (e.g. in the imaging
of airborne or maritime targets), and the background only
contains noise, the ISAR scene is inherently sparse but has
no low-rank feature [20]; i.e. F = S and L = 0. It is worth
noting that we do not use the patch-based model for ISAR
imaging, and can apply the algorithm directly to the scene
image (i.e. F = Mat{f} = X). Therefore, in order to use the
proposed mehod for ISAR imaging, we only need to calculate
(7) and (17) in step 5 of Algorithm 2. On the other hand, for
ISAR autofocusing, we average the estimated phase in (24)
for the range cells that contain the reflected echo of the target.
This task is simply performed by utilizing a thershold in the
ISAR image [16].

F. Comparison of the Computational Costs

In this section, the computational complexity of the pro-
posed method is compared with the conventional approaches
in [13] and [14]. First, consider the LRSD algorithm for image
formation. Conventional ADMM [13] basically consists of
the operations (6)-(9). The complexity of each step can be
computed as follows. Equation (6) actually relies on SVT.
The largest computation cost of SVT is determined by the
SVD, which is O(nKmin(n,K)) [48]. Since the size of the
vectorized form of the sliding window (i.e., n) is usually
greater than the number of sliding windows (i.e., K), the
largest cost of SVT can be rewritten as O(nK2). Equation
(7) is simply governed by soft-thresholding which is mainly
an element-wise multiplication by the cost of O(nK). Without
loss of generality, we set I = N = M and Na = Nr =

√
I ,
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TABLE I
ALGORITHMS COMPARISON

Computation cost of: Image Reconstruction Autofocusing
Method of [13], [14] O(nK2 + nK + 2n3) O(I3)

Method of [23] O(I3) O(I3)

Proposed method O(nK2 + nK + 2I3/2) O(I2)

where I is the size of the vectorized form of the image. Thus,
the most expensive operations in (8) and (9) is matrix inversion
with a cost of O(n3) and matrix-vector multiplication which
costs O(I2). However, by assuming n3 > I2, the dominant
cost is O(n3), whose computation may prove impractical for
large scene sizes. Therefore the overall cost of conventional
ADMM is O(nK2+nK+2n3). A Conjugate-Gradient (CG)
algorithm is exploited in [13] to approximate the inverse.
However, applying the CG algorithm is also relatively inef-
ficient. In the proposed method, we first substitute (8) and
(9) with (13) and (14), respectively, and then, the equivalent
matrix representation is exploited that ultimately yields (16)
and (17). The cost of computing (13) grows as O(I2), while
the same operation with (16) costs O(I3/2). Thus, there is a√
I gain in the cost of the matrix version compared to the

vector approach. The same gains are achieved for (14) and
(17). Consequently, the overal cost of the proposed method
is O(nK2 + nK + 2I3/2). As a result, the image formation
with the proposed method (i.e., the step 6 of Algorithm 1)
is performed more efficiently compared to the conventional
approach. Specifically, the total gain in the cost of proposed
method compared to the conventional one is n3/I3/2.

For autofocusing, using (12) i.e. the method of [14], will
require computing a matrix inversion with the cost of O(I3) or
applying the CG approximation algorithm [14], which are both
time consuming. However, the matrix inversion is no longer
required by employing (25) and the closed-form solution is
obtained which only requires some element-wise operations
with the complexity of O(I2). In the ADMM-SBL algorithm
of [23], the authors take advantage of an entropy criterion and
the Newton method for autofocusing. However, the calcula-
tions of the first and the second derivatives of entropy is time
consuming compared to our proposed algorithm. Specifically,
for each ϕi, there are O(I2) element-wise operations, and for
the total I phase error elements, the complexity is O(I3).
Consequently, our method has a gain of I in the cost for
autofocusing compared to [23] and [14]. The computation
costs of the available algorithms are summarized in Table I.

V. EXPERIMENTAL RESULTS

In this section, several experiments on synthetic and real-
world data are presented to evaluate the performance of the
proposed algorithm. In particular, the range-Doppler algorithm
(RDA), the ADMM-SBL [23], and the conventional ADMM-
based method (ADMM-Conv) [13], [14], are compared with
our ADMM-UQP algorithm.

TABLE II
COMPARISON OF RUN-TIME FOR DIFFERENT IMAGE SIZES

Image size: 64× 64 128× 128 256× 256

ADMM-Conv [13] 1.6s 5s 25s
ADMM-UQP 0.4s 1.2s 8s

A. Synthetic Data Experiments

We first consider a 128 × 128 synthetic scene (Fig. 1a)
including a low-rank background and 4 point targets. Our
simulation setting is based on the parameter values considered
in [13], unless otherwise stated. The PRPE is a π/2 quadratic
phase error, and the observation noise, that follows a complex
white Gaussian distribution, contaminates the phase history
data with an SNR that is set to 10 dB. The length of the
sliding window and the sliding step used in the patch-based
operator G are set to 32 and 16, respectively. As observed
in Fig. 1, the proposed algorithm, decomposes the low-rank
and sparse components successfully. In order to compare the
computational cost, the run-time (in seconds) of the proposed
algorithm and the conventional method in [13] were computed
over an Intel core i7, 4 GHz processor, for different image
sizes, and the results are presented in Table II. It can be seen
that the ADMM-UQP approach is at least three times faster
than the conventional one in the performed experiments.

To investigate the convergence behavior, we have shown
the behavior of the mean squared error (MSE) of phase error
estimate [13], [14] vs. the iteration number in Fig. 2. The MSE
at the kth iteration is defined as,

MSEϕk =
1

Ma

∥∥∥∇ϕk
∥∥∥2
2
. (26)

As witnessed, our approach converges in fewer iterations as
compared to the approach in [13], [14].

In the next experiment, we consider an ISAR scenario. The
radar parameters are shown in Table III. The scene size is
64× 64, with 11 ideal point-like targets. The RDA, ADMM-
Conv, ADMM-SBL and ADMM-UQP algorithms have been
applied to the simulated data to form the ISAR images. In
order to have a fair comparison with ADMM-SBL, we apply
range compression to the raw data. Therefore, the ISAR kernel
is only comprised of the cross-range dictionary for ADMM-
Conv and ADMM-UQP. Moreover, for efficient autofocusing,
we only use the range cells that contain the energy of the
target in all autofocusing algorithms. The original target scene
is displayed in Fig. 3a. The ISAR images for SNR = 10dB
are shown in Fig. 3. It is clear that, the image obtained by
RDA suffers from sidelobes. However, the other three sparsity-
driven methods achieve similar images with high resolution
and clean background. The quality of the image obtained from
ADMM-UQP is slightly better than that of ADMM-Conv and
ADMM-SBL, which validate the effectiveness of the proposed
approach.

We exploit the entropy values associated with the ISAR
images to quantitatively compare the performance of different
algorithms for three different SNR values as shown in Table
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Fig. 1. Results of the proposed ADMM-UQP algorithm. (a) Original scene.
(b) defocused image, (c) low-rank, (d) and sparse images
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Fig. 2. MSE of phase error estimation for a π/2 quadratic phase error.

TABLE III
RADAR PARAMETERS FOR SYNTHETIC DATA

Carrier frequency fc 10 GHz
Bandwidth B 500 MHz

Pulse Repetition Frequency PRF 50 Hz
Number of range cells Nr 64

Number of pulses Na 64

IV. The image entropy is defined as [20],

Ix = −
Na∑
n=1

Nr∑
m=1

|Xn,m|2

E
log
|Xn,m|2

E
(27)

where E =
∑Na

n=1

∑Nr

m=1 |Xn,m|2 is the image energy.
Generally, a well-focused image has a low entropy value.
As it can be observed, the image entropy of the proposed
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Fig. 3. ISAR imaging using synthetic data: (a) Original target scene, and the
obtained ISAR images using (b) RDA, (c) ADMM-Conv, (d) ADMM-SBL,
(e) and ADMM-UQP. For all algorithms, the SNR is set to 10dB.

TABLE IV
ENTROPY OF THE ISAR IMAGE FOR DIFFERENT ALGORITHMS

Algorithm SNR = 10dB SNR = 0dB SNR = -10dB
RDA 5.77 5.82 6.13

ADMM-Conv [13] 2.83 2.84 3.17
ADMM-SBL [23] 2.64 2.75 3.01

ADMM-UQP 2.60 2.61 2.65

algorithm in all cases is the lowest compared to the others.
This appears to confirm the superiority and robustness of
our algorithm. Furthermore, in Table V, the run-time of
different methods are compared. Interestingly, the proposed
ADMM-UQP is faster than the ADMM-Conv and ADMM-
SBL algorithms in all SNR values. Specifically, due to the
Bayesian parameters optimization and the calculations of the
autofocusing algorithm in ADMM-SBL, the run time of this
method is several folds larger than that of ADMM-UQP.

In the last simulation, we compare the algorithms when
they are given undersampled data. Fig. 4 demonstrates the
range profile and ISAR images obtained by ADMM-SBL,
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Fig. 4. Range profile and the ISAR images of the synthetic scene obtained from different methods using (a) 0.75, (b) 0.50, and (c) 0.25 of the measurements.

TABLE V
RUN-TIME FOR DIFFERENT ALGORITHMS

Algorithm SNR = 10dB SNR = 0dB SNR = -10dB
ADMM-Conv [13] 7.35s 7.56s 7.4s
ADMM-SBL [23] 10.62s 11.83s 11.09s

ADMM-UQP 3.54s 3.86s 3.65s

ADMM-conv and ADMM-UQP with the undersampling ratios
of 0.75, 0.50 and 0.25, respectively. It can be observed that
all sparsity-driven algorithms reconstruct the original image
successfully with small artifacts. However, the image artifacts
of the proposed method appears less than that of the other
algorithms.

B. Real-world Data Experiments

In order to show the effectiveness of our proposed frame-
work, we apply our algorithm on a 256 × 256 real SAR
scene courtesy of Sandia national laboratories, airborne ISR
[49], and the obtained results are displayed in Fig. 5. As in
the previous subsection, the proposed method decomposes the
low-rank and sparse components successfully.

Next, we take advantage of the measured dataset of a Yak-42
aircraft [50], to further validate the superiority of the proposed
approach. The measured dataset is collected by a radar with
a central frequency, bandwidth and PRF of 5.52 GHz, 400
MHz and 100 Hz, respectively. The target is a Yak-42 aircraft
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Fig. 5. Results of the proposed ADMM-UQP algorithm with airborne ISR
dataset (a) Original scene. (b) defocused image, (c) low-rank, (d) and sparse
images

of size 24m × 24m. The complete radar echo contains 256
pulses, and each pulse consists of 256 samples [22].

In Fig. 6, the ISAR images of Yak-42 obtained from
different methods are demonstrated. The number of pulses Ma,
and the range cells Mr are 64 and 256, respectively. In order
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Fig. 6. ISAR images of a Yak-42 aircraft [50] obtained by different methods for Ma = 64, Mr = 256 and with (a) SNR = 10 dB, (b) SNR = 0 dB, and
(c) SNR = -5 dB.

TABLE VI
ENTROPY OF THE ISAR IMAGE OF THE YAK-42 AIRCRAFT [50]

OBTAINED FROM DIFFERENT ALGORITHMS

Algorithm SNR = 10dB SNR = 0dB SNR = -5dB
RDA 6.12 8.29 9.32

ADMM-Conv [13] 4.22 3.97 3.83
ADMM-SBL [23] 4.35 5.03 6.70

ADMM-UQP 4.11 3.91 3.72

to have super-resolution ISAR images, we set Na = 2Ma. The
first, second and third rows of Fig. 6 are obtained under SNR
levels of 10dB, 0dB and -5dB, respectively. From Fig. 6, it can
be observed that while the RDA results have the lowest quality,
the rest sparsity-driven methods can denoise the images and
reconstruct the target even in low SNR conditions. To have a
more precise comparison, Table VI shows the entropy values
of the ISAR images in Fig. 6. Similar to the previous section,
the image entropy of ADMM-UQP is the lowest compared to
the other algorithms in all SNR regimes.

Table VII compares the run-time of different methods. As
expected, the proposed ADMM-UQP method converges faster
than ADMM-Conv and ADMM-SBL in all SNR settings.
Therefore, both entropy and run-time results confirm the
superiority of the proposed algorithm.

For our final experiment, we evaluate the performance of
the proposed algorithm with the undersampled data. Assume
that the full pulse number is 128, and we select 96, 64 and 32

TABLE VII
RUN-TIME OF DIFFERENT ALGORITHMS FOR REAL DATA

Algorithm SNR = 10dB SNR = 0dB SNR = -5dB
ADMM-Conv [13] 14.01s 14.30s 14.10s
ADMM-SBL [23] 19.10s 18.80s 16.88s

ADMM-UQP 6.50s 6.45s 6.48s

pulses in the high resolution range profile (HRRP) randomly,
equivalent to 0.75, 0.5 and 0.25 undersampling schemes,
respectively. Fig. 7 shows the HRRP and the achieved results
by different algorithms. Artificially induced points emerge in
the images obtained from all methods specially for lower un-
dersampling ratios. However, ADMM-UQP appears to achieve
better results compared to other approaches.

VI. CONCLUSION

In this paper, an ADMM-UQP method for robust LRSD-
based SAR/ISAR imaging was proposed, and was shown to
be more computationally efficient than state-of-the-art meth-
ods and to require lower memory usage. A novel UQP-
based approach is used for autofocusing that achieves faster
convergence than the conventional methods. Moreover, the
performance of the proposed approach appears to be bet-
ter than RDA, ADMM-SBL and ADMM-Conv methods, at
different SNR levels and various undersampling conditions
which further validates the robustness of our algorithm. Both
synthetic and real-world data were used to show the superiority
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Fig. 7. Range profile and ISAR images of a Yak-42 aircraft [50] obtained by different methods with the udersampling ratio of (a) 0.75, (b) 0.50, and (c) 0.25.

of the proposed method in terms of quality and computational
cost.

APPENDIX A
PROOF OF THE RELATIONS IN SECTION IV-A

Let Fa ∈ CNa×
√
I and Fr ∈ CNr×

√
I denote the cor-

responding partial 1-D Fourier transform matrix in azimuth
and range directions with Na and Nr ≪

√
I to create a

super-resolution image, respectively. As the observation kernel
H can be approximated by the 2D-Fourier matrix, we can
re-express it through the Kronecker product decomposition
(KPD) as follows:

H = Fr ⊗ Fa, (28)

where the definitions of Fa and Fr are given as:

Fa ≜


1 1 . . . 1
1 ω . . . ω(Ia−1)

...
...

. . .
...

1 ω(Na−1) . . . ω(Na−1)(Ia−1)

 , (29)

Fr ≜


1 1 . . . 1
1 ν . . . ν(Ir−1)

...
...

. . .
...

1 ν(Nr−1) . . . ν(Nr−1)(Ir−1)

 , (30)

where ω ≜ exp (−j 2π
Na

) and ν ≜ exp (−j 2π
M ). Interestingly,

as FaF
H
a = FrF

H
r = I we can simply prove that HHH = I,

since:

HHH = (Fr ⊗ Fa) (Fr ⊗ Fa)
H

= (Fr ⊗ Fa)
(
FH

r ⊗ FH
a

)
=

(
FrF

H
r

)
⊗
(
FaF

H
a

)
= I. (31)

On the other hand, since the under-sampling matrix Θ is
obtained by selecting a subset of rows of an identity matrix,
we have ΘΘT = I and thus EEH = I. Now, using the matrix
inversion lemma [22] the terms (a), (b) in (8), (9) can be
equivalently written as(

EHE+ δiI
)−1

=
1

δi

(
I− 1

1 + δi
EHE

)
, i ∈ {1, 2} . (32)

Substituting (32) in (8) and (9) and we obtain (13) and (14),
respectively. The proof of (15) is also straightforward and can
be reached through trivial algebraic manipulations.

APPENDIX B
DERIVATIONS OF RELATIONS (16) AND (17) IN SECTION

IV-B

Given the matrix model in (18), the term (d) in (13) defined
as (d) ≜ EHE {Λ}−EHr with Λ ≜ W− δ−1

1 Z1 +S can be
recast as (33) at the top of next page.
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(d) = P
{[

(ΘrFr)
H ⊗ (ΦΘaFa)

H
]
[(ΘrFr)⊗ (ΦΘaFa)]P−1 (vec {Λ})− (ΘrFr)

H ⊗ (ΘaFa)
H
ΦHvec{R}

}
= P

{[(
FH

r ΘT
r ΘrFr

)
⊗
(
FH

a ΘT
aΦ

HΦΘaF a

)]
P−1 (vec {Λ})− FH

r ΘT
r ⊗ FH

a ΘT
aΦ

Hvec {R}
}

= G
{
FH

a ΘT
aΦ

HΦΘaFaG−1 {Λ}FT
r Θ

T
r ΘrF

∗
r − FH

a ΘT
aΦ

HRΘrF
∗
r

}
= G

{
FH

a ΘT
aΦ

H
[
ΦΘaFaG−1 {Λ}FT

r Θ
T
r −R

]
ΘrF

∗
r

}
. (33)

By substituting the above matrix representation of the term
(d) into (13), we obtain (16). We can follow a similar approach
to derive (17).

APPENDIX C
EFFECTVENESS OF THE UQP FORMULATION AND POWER

METHOD-LIKE ITERATIONS

We show herein that the iterations in (22) leads to a
monotonic increase of the UQP objective function (21). To do
so, we first note that the problem (21), after some mathematical
manipulations, can be transformed into

p̂ = argmax
p

p̃(t+1)HUp̃(t) , s.t. |(p̃)i| = 1, ∀i. (34)

At the (t+ 1)th iteration, if we assume p̃(t) is fixed, the
updated p̃(t+1) acquired by (22) is the solution to the maxi-
mization problem (34). Therefore, since U is positive definite
we have (

p̃(t+1) − p̃(t)
)H

U
(
p̃(t+1) − p̃(t)

)
≥ 0, (35)

which implies

p̃(t+1)HUp̃(t+1)

≥ 2R
{
p̃(t+1)HUp̃(t)

}
− p̃(t)HUp̃(t)

(∗)︷︸︸︷
≥ p̃(t)HUp̃(t). (36)

Note that (*) holds due to the fact that R
{
p̃(t+1)HUp̃(t)

}
≥

p̃(t)HUp̃(t).
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