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Abstract

Biochemical interactions in systems and synthetic biology are often modeled with chemical
reaction networks (CRNs). CRNs provide a principled modeling environment capable of
expressing a huge range of biochemical processes. In this paper, we present a software
toolbox, written in Python, that compiles high-level design specifications represented using
a modular library of biochemical parts, mechanisms, and contexts to CRN implementations.
This compilation process offers four advantages. First, the building of the actual CRN repre-
sentation is automatic and outputs Systems Biology Markup Language (SBML) models
compatible with numerous simulators. Second, a library of modular biochemical compo-
nents allows for different architectures and implementations of biochemical circuits to be
represented succinctly with design choices propagated throughout the underlying CRN
automatically. This prevents the often occurring mismatch between high-level designs and
model dynamics. Third, high-level design specification can be embedded into diverse bio-
molecular environments, such as cell-free extracts and in vivo milieus. Finally, our software
toolbox has a parameter database, which allows users to rapidly prototype large models
using very few parameters which can be customized later. By using BioCRNpyler, users
ranging from expert modelers to novice script-writers can easily build, manage, and explore
sophisticated biochemical models using diverse biochemical implementations, environ-
ments, and modeling assumptions.

Author summary

This paper describes a new software package BloCRNpyler (pronounced “Biocompiler”)
designed to support rapid development and exploration of mathematical models of bio-
chemical networks and circuits by computational biologists, systems biologists, and syn-
thetic biologists. BlioCRNpyler allows its users to generate large complex models using

very few lines of code in a way that is modular. To do this, BioCRNpyler uses a powerful
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new representation of biochemical circuits which defines their parts, underlying biochem-
ical mechanisms, and chemical context independently. BioCRNpyler was developed as a
Python scripting language designed to be accessible to beginning users as well as easily
extendable and customizable for advanced users. Ultimately, we see Biocrnpyler being
used to accelerate computer automated design of biochemical circuits and model driven
hypothesis generation in biology.

This is a PLOS Computational Biology Software paper.

1 Introduction

Chemical reaction networks (CRNs) are the workhorse for modeling in systems and synthetic
biology [1]. The power of CRNSs lies in their expressivity; CRN models can range from physi-
cally realistic descriptions of individual molecules to coarse-grained idealizations of complex
multi-step processes [2]. However, this expressivity comes at a cost. Choosing the right level of
detail in a model is more an art than a science. The modeling process requires careful consider-
ation of the desired use of the model, the available data to parameterize the model, and prioriti-
zation of certain aspects of modeling or analysis over others. Additionally, biological CRN
models can be incredibly complex including dozens or even hundreds or thousands of species,
reactions, and parameters [3]. Maintaining complex hand-built models is challenging and
errors can quickly grow out of control for large models. Software tools can answer many of

these challenges by automating and streamlining the model construction process.

Formally, a CRN is a set of species S = {S;} and reactions R : {I oY O} where I'and O are

multisets of species, p is the rate function or propensity, s is a vector of species’ concentrations
(or counts), and 0 are rate parameters. Typically, CRNs are simulated using as ordinary differ-
ential equations (ODEs) and numerically integrated [2]. A stochastic semantics also allows
CRNs to be simulated as continuous-time Markov chains [4]. Besides their prevalence in bio-
logical modeling, there is rich theoretical body of work related to CRNs from the mathematical
[5], computer science [6], and physics communities [7]. Despite these theoretical foundations,
many models are phenomenological in nature and lack mechanistic details of various biologi-
cal processes. The challenge of constructing correct models is compounded by the

difficulty in differentiating between correct and incorrect models based upon experimental
data [8-10].

Due to CRNS’ rich history and diverse applications, the available tools for a CRN modeler
are vast and include: extensive software to generate, simulate, and analyze CRNs [11-14] as
well as databases of models [15, 16], and many more. However, even though synthetic biolo-
gists have adopted a module and part-driven approach to their laboratory work [17], models
are still typically built by hand on a case-by-case basis. Recognizing the fragile non-modular
nature of hand built models, several synthetic biology design automation tools have been
developed for specific purposes such as implementing transcription factor or integrase-based
logic [18, 19]. These tools indicate a growing need for design and simulation automation in
synthetic biology, as part and design libraries are expanded.

As the name would suggest, BioCRNpyler (pronounced bio-compiler) is a Python package
that compiles CRNs from simple specifications of biological motifs and contexts. This package
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is inspired by the molecular compilers developed by the DNA-strand displacement commu-
nity and molecular programming communities which, broadly speaking, aim to compile mod-
els of DNA circuit implementations from simpler CRN specifications [20-22], rudimentary
programming languages [23, 24], and abstract sequence specifications [25]. This body of work
has demonstrated the utility of molecular circuit compilers and highlights that a single specifi-
cation can be compiled into multiple molecular implementations which in turn can corre-
spond to multiple CRN models at various levels of detail. For example, there are multiple
DNA-strand implementations of catalysis [21, 22, 26, 27] and the interactions of the DNA
strands involved in each of these implementations can be enumerated to generate different
CRN models based upon the assumptions underlying enumeration algorithm [28]. Drawing
from these inspirations, BioCRNpyler is a general-purpose CRN compiler capable of convert-
ing abstract specifications of biomolecular components into CRN models with full program-
matic control over the compilation process. Importantly, BioCRNpyler is not a CRN simulator
—models are saved in the Systems Biology Markup Language (SBML) [29] to be compatible
with the user’s simulator of choice.

There are many existing tools that provide some of the features present in BioCRNpyler.
Antimony (part of the Tellerium software suite) provides an elegant high level language that is
converted into SBML models [12, 30]. Systems Biology Open Language (SBOL) [31] is a for-
mat for sharing DNA-sequences with assigned functions and does not compile a CRN. Hierar-
chical SBML and supporting software [32] provide a file format which encapsulates CRNs as
modular functions. The software package iBioSim [33, 34] can compile SBOL specifications
into SBML models. Similarly, Virtual Parts Repository uses SBOL specifications to combine
existing SBML models together [35]. The rule-based modeling framework BioNetGen [36]
allows for a system to be defined via interaction rules which can then be simulated directly or
compiled into a CRN. Similarly, PySB [37] provides a library of common biological parts and
interactions that compile into more complex rule-based models. Finally, the MATLAB TX-TL
Toolbox [38, 39] can be seen as a prototype for BioCRNpyler but lacks the object-oriented
framework and extendability beyond cell-free extract systems.

BioCRNpyler compliments existing software packages by providing a novel abstraction and
framework which allows for complex CRN's to be easily generated and explored via the compi-
lation process. To do this, BioCRNpyler specifies a biochemical system as a set of modular bio-
logical parts, biochemical processes codified as CRNs, and biochemical and modeling context.
Moreover, BioCRNpyler allows for synthetic biological parts and systems biology motifs to be
reused and recombined in diverse biochemical contexts at customizable levels of model com-
plexity with minimal coding requirements (BioCRNpyler is designed to be a scripting lan-
guage). Additionally, BioCRNpyler is purposefully suited to in silico workflows because it is an
extendable object-oriented framework written entirely in Python that integrates existing soft-
ware development standards and allows complete control over model compilation. Simulta-
neously, BloCRNpyler accelerates model construction with extensive libraries of biochemical
parts, models, and examples relevant to synthetic biologists, bio-engineers, and systems biolo-
gists. The BioCRNpyler package is available on GitHub [40] and can be installed via the
Python package index (PyPi).

2 Design and implementation

BioCRNpyler is an open-source Python package that compiles high-level design specifications
into detailed CRN models, which then are saved as SBML files [41]. BioCRNpyler is written in
Python with a flexible object-oriented design, extensive documentation, and detailed examples
which allow for easy model construction by modelers, customization and extension by
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developers, and rapid integration into data pipelines. The utility of BioCRNpyler comes from
the way it abstracts biological systems using modular objects. A BioCRNpyler model consists
of a collection of biological parts called Components which interact via different biological
processes called Mechani sms. Sets of Components and Mechanisms are bundled
together to form a system, called a Mixture, which represents a specific biological and
modeling context. During compilation, each Component in aMixture generates the spe-
cies and reactions which model its behavior using Mechanisms. This abstraction is powerful;
it allows modelers to examine how a specific system, represented by one or more Compo-
nents, behaves in diverse environments and/or under different modeling assumptions repre-
sented by different Mixtures. Importantly, Mechanisms provide a universal underlying
abstraction used to define both the way Components and Mixtures function. In the fol-
lowing subsections, we describe the BioCRNpyler modeling abstraction in detail.

2.1 Internal CRN representation

Underlying BioCRNpyler is a comprehensive chemical reaction network class. The species
classes in BioCRNpyler consist of object-oriented data structures with increasing complexity
which generate their own unique string representations. Table A in S1 Text describes the dif-
ferent species classes in BioCRNpyler. Similarly, BioCRNpyler comes equipped with many
diverse propensity function types including mass-action, Hill functions, and general user spec-
ified propensities described in Table B in S1 Text. The CRN classes inside BiloCRNpyler pro-
vide useful functionality so that users can easily modify CRNs produced via compilation,
produce entire CRNs by hand, or interface hand-produced CRNs with compiled CRNs. Addi-
tionally, user-friendly printing functionality allows for the easy visualization of CRNs in multi-
ple text formats or as interactive reaction graphs formatted and drawn using Bokeh and
ForceAtlas2 [42, 43].

2.2 Mechanisms are reaction schemas

When modeling biological systems, modelers frequently make use of mass-action CRN kinet-
ics which ensure that parameters and states have clear underlying mechanistic meanings.
However, for the design of synthetic biological circuits and analysis using experimental data,
phenomenological or reduced-order models are commonly utilized as well [2]. Empirical
phenomenological models have been successful in predicting and analyzing complex circuit
behavior using simple models with only a few lumped parameters [44-46]. Bridging the con-
nections between the different modeling abstractions is a challenging research problem. This
has been explored in the literature using various approaches such as by direct mathematical
comparison of mechanistic and phenomenological models [47-49] or by studying particular
examples of reduced models [2]. BioCRNpyler provides a computational approach using reac-
tion schemas to easily change the mechanisms used in compilation from detailed mass-action
to coarse-grained at various level of complexity.

Reaction schemas refer to BioCRNpyler’s generalization of switching between different
mechanistic models: a single process can be modeled using multiple underlying motifs to gen-
erate a class of models which may have qualitatively different behavior. Mechanisms are the
BioCRNpyler objects responsible for defining reaction schemas. In other words, various levels
of abstractions and model reductions can all be represented easily by using built-in and custom
Mechanisms in BioCRNpyler. Biologically, reaction schemas can represent different under-
lying biochemical mechanisms or modeling assumptions and simplifications. For example, to
model the process of transcription (as shown in Fig 1), BioCRNpyler allows the use of various
phenomenological and mass-action kinetic models by simply changing the choice of reaction
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User Specified
Input Species and
Parameters

Reaction Schemas are Black Box CRNs

Simple Transcription:
G->G+T

Michaelis Menten Transcription
G + RNAP = G:RNAP
G:RNAP - G+ RNAP+T

Michaelis Menten Transcription with Hill Function
p(G,RNAP)
G —

G+T

G
p(G,RNAP) =k RNAPm

Multi-Occupancy Michaelis Menten Transcription User Specified
G + RNAP = G:RNAP,

G:RNAP, + RNAP = G:RNAP, ;1

G:RNAP, - G+nRNAP+nT

Output Species

Fig 1. Mechanisms (reaction schemas) representing transcription.

https://doi.org/10.1371/journal.pcbi.1009987.g001

schema. The simplest of these schemas “Simple Transcription” includes no details about how a
gene produces a transcription. “Michaelis Menten Transcription” elaborates on this simplifica-
tion by including the RNA polymerase enzyme in the model. “Michaelis Menten Transcription
with a Hill Function” simplifies the previous mass action model assuming a quasi-equilibrium
approximation of RNA polymerase binding. Finally, the “Multi-Occupancy Michaelis Menten
Transcription Model” aims to be more realistic by examining the possibility of multiple RNA
polymerase enzymes bound to a single transcript. Of course, these are not the only possible
transcription Mechani sms: more detailed models may include transcript elongation or
organism-specific co-factors, such as o-factors in E. coli, which could also easily be included in
a BioCRNpyler Mechanism.

Formally, reaction schemas are functions that produce CRN species and reactions from a
set of input species and parameters: f: (S, 6)—(S, R). Here the inputs §’ are chemical species
and 6 are rate constants. The outputs S O §' is an increased set of species and R is a set of reac-
tions. The functions f used to define the transcription reaction schemas in Fig 1 are examples
of relatively simple Mechanisms which do not have any internal logic. However, BloCRNpy-
ler allows for reaction schemas to be defined directly in Python. This allows for incredible flex-
ibility in defining Mechanisms capable of complex logic, combinatoric enumeration, or
other advanced functionality. The object oriented design of Mechani sms also allows model-
ers to generate CRNs at different levels of complexity and reuse CRN motifs for some Compo-
nents while customizing Mechanisms for others. Internally, each Mechani sm class has a
type (e.g. transcription) which defines the input and output species it requires. BioCRNpyler
contains an extensive library of Mechanisms (Table Cin S1 Text) which are easy to repur-
pose without extensive coding. Custom Mechanisms are also easy to define by subclassing
Mechanism as described in Section I in S1 Text. Ultimately, Mechanisms provides a
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unique capability to quickly compare system models across various levels of abstraction
enabling a more nuanced approach to circuit design and exploring system parameter regimes.

2.3 Components represent functionality

In BioCRNpyler, Components are biochemical parts or motifs, such as promoters, enzymes
and chemical complexes. Components represent biomolecular functionality; a promoter
enables transcription, enzymes perform catalysis, and chemical complexes must bind together.
Components express their functionality by calling particular Mechani sm types during
compilation. Importantly, Components are not the same as CRN species; one species might
be represented by multiple Components and a Component might produce multiple species.
For example, a promoter Component will call transcription Mechanisms like those shown
in Fig 1. If the “Simple Transcription” Mechanism is used, the promoter will be represented
by a single species G. On the other hand, if the “Michaelis Menten Transcription” schema is
used, the promoter will actually have two forms: G and G:RNAP representing the free promoter
and the promoter bound to RNA polymerase. Components are flexible and can behave dif-
ferently in different contexts or behave context-independently. To define dynamic-context
behavior, Components will automatically use Mechanisms and parameters provided by
the Mixture. To define context-independent behavior, Components can have their own
internal Mechanisms and parameters. The BioCRNpyler library includes many kinds of
Component some of which are listed in S1 Text Table D. Custom Components can also be
easily created by subclassing another Component as described in Section IT in S1 Text.

2.4 Mixtures represent context

Mixtures are collections of Components, Mechanisms, and parameters. Mixtures
can represent chemical context (e.g. cell extract vs. in vivo), as well as modeling resolution (e.g.
what level of detail to model transcription or translation at) by containing different internal
Components, Mechanisms, and parameters. BioCRNpyler comes with a variety of Mix -
tures (see Table E in S1 Text) to represent cell-extracts and cell-like systems with multiple
levels of modeling complexity. Custom Mixtures can also be easily created either by subclas-
sing an existing mixture or via a few simple scripting operations as described in Section III in
S1 Text.

2.5 Flexible parameter databases

Developing models is a process that involves defining then parameterizing interactions. Often,
at the early stage of model construction, exact parameter values will be unavailable. BioCRN-
pyler has a sophisticated parameter framework which allows for the software to search user-
populated parameter databases for the parameter that closest matches a specific Mechanism,
Component, and parameter name as illustrated in Fig 2. This allows for models to be rapidly
constructed and simulated with “ball-park” parameters and then later refined with specific
parameters derived from literature or experiments later. This framework also makes it easy to
incorporate diverse parameter files together and share parameters between many chemical
reactions. BloCRNpyler also allows each Component to have its own parameter database
allowing for multiple parameter sources to be combined easily. Components without their
own parameters default to the parameters stored in the Mixture.
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BioCRNpyler Parameter Hierarchy

(mechanism_name, part_id, param_name)

+ ParameterKey(Michaelis-Menten Transcription, J23119, kb)
(mechanism_type, part_id, param_name)

« ParameterKey(Transcription, J23119, kb)

(None, part_id, param_name)
+ ParameterKey(None, J23119, kb)

(mechanism_name, None, param_name)

« ParameterKey(Michaelis-Menten Transcription, None, kb)

J

(mechanism_t

+ ParameterKey(Transcription, None, kb)

e, None, param_name)

neterKev(None. None

. Pan;ameterKey(None, ane, kb) '

Fig 2. BioCRNpyler parameter defaulting hierarchy. If a specific ParameterKey (orange boxes) cannot be found, the ParameterDatabase
automatically defaults to other ParameterKeys. This allows for parameter sharing and rapid construction of complex models from relatively few
non-specific (e.g. lower in the hierarchy) parameters.

https://doi.org/10.1371/journal.pchi.1009987.g002

2.6 Component enumeration allows for arbitrary complexity

Component enumeration is a powerful and specialized compilation step which allows new
Components to be generated dynamically. Internally, this is achieved in BloCRNpyler by
subclassing the ComponentEnumerator class to implement an arbitrary function in
Python g: C — C' where C C C are sets of Components. In local component enumeration
the set C consist of just a single component ¢ which contains its own ComponentEnumera-
tor. In global component enumeration, C consists of all components in the Mixture. As
more Components are generated, C' will be fed back into g recursively until no new Compo-
nents are created or a user defined recursion depth is reached. Like Mechanisms, we
emphasize that component enumeration is highly flexible because the enumerators can be
written as Python code, allowing for diverse logic, combinatoric enumeration, and more. Sec-
tion 3.3 describes BioCRNpyler models that makes use of both local and global component
enumeration.

2.7 Specification example

Before describing the compilation algorithm in detail, we illustrate the central idea of a
BioCRNpyler specification via an example involving a DNAassembly Component which
represents a simple piece of DNA, called X, with a promoter, ribosome binding site, and cod-
ing sequence for a protein. The DNAassembly uses transcription and translation Mecha-

nisms which will be placed into a Mixture.
# Create Mechanisms
tx = SimpleTranscription() #Transcription
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tl = SimpleTranslation() #Translation

# Create a Component

G = DNAassembly (“X”, promoter = “prom”, rbs = “rbs

# Define Parameters

params = {“kb”:100, “ku”:10, “ktx”:0.1, “ktl”:0.5,}

# Place the Component and Mechanisms in a Mixture

M = Mixture (“mixture”, components = [G], mechanisms = [tx, tl],
parameters = params)

# Compile the CRN

CRN = M.compile crn()

”

, protein = “X”)

This simple code compiles the CRN:

0.1 0.5
Xona = Xpna T Xpwa Xena = Xena T Xerogein® (1)
The modularity of BioCRNpyler can be illustrated by considering what would happen if we
instead used “Michaelis Menten” transcription and translation Mechanisms which model

RNA-polymerase (P) and ribosomes (R):
tx = Transcription MM(rnap = Species (“P”)) #Transcription Mechanism
tl = Translation MM(ribosome = Species(“R”)) #Translation Mechanism

This compiles a considerably more complex CRN:
100 01
Xona + PﬁXDNA 2P =5 Xpna + P A Xpwa

100
— . 0.5
Xena + REXRNA ‘R ra T R A Xy

« »

Here, “” indicates that two species are bound together to form a new species.

2.8 Chemical reaction network compilation

Having provided an overview of the core classes in BioCRNpyler, we will now describe the com-
pilation algorithm in detail. First, we assume a user has specified a Mixture and populated it
with Components, Mechanisms, and parameters. We note that some Components may
have their own internal Mechanisms and Parameters while others will be reliant on the
Mixture. Compilation proceeds in 7 steps, shown in Fig 3 and elaborated on below.

1. Global Component Enumeration: this step is optional and will only occur ifaMixture
contains a one or more global ComponentEnumerators. All Components in the
Mixture will be fed into the ComponentEnumerator recursively until either no new
Components are created or a user-specified recursion depth is reached.

2. Local Component Enumeration: this step is optional and will be applied to every Compo-
nent in the Mixture that contains a one or more local ComponentEnumerators.
Each of these Components will generate new Components from itself. If these new
Components contain local ComponentEnumerators they will also generate new
Components. Like global component enumeration, local component enumeration is
stopped when no new Components are created or a user-specified maximum recursion
depth is reached.

3. The Mixture iterates through all its internal Components (including those generated
via enumeration) and calls the Component’supdate species () and update r-
eactions () methods.

4. In each Component’supdate species () and update reactions () method,
the Component first searches for Mechani sms of the types it requires. Mechanisms
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A

Mixture

Biochemical &
Modeling Context

Component

Functional Parts

B 1. Global Component Enumeration [Optional]
5,6 Mixture dynamically generates components recursively

5 2. Local Component Enumeration [Optional]
Components dynamically generate more components

Component
Enumerator

Parameters 3. Mixture Iterates Through Components

Hierarchical Definitions Beginning of the core compilation sequence

4. Components Call Mechanisms

Mechanism Mechanisms are searched for in the component then the mixture
Biochemical Processes 5,6

5. Mechanisms Generate Species and Reactions
Parameters are searched for in the component then the mixture

6. Global Mechanisms Generate Species and Reactions
Compiled Global mechanisms are applied to all species generated in step 5

CRN 7. Compiled Chemical Reaction Network Returned
Species and reactions can still be added to the CRN

Fig 3. A. the organization of classes in BioCRNpyler. Gray arrows indicate the hierarchical organization of objects (e.g. Components are contained in a
Mixture). Dark gray arrows take precedence over light gray arrows (e.g. a Component will search for Mechanisms in itself before looking at its
Mixture). Colored arrows denote the generate of objects: Component s are orange, parameters are blue, and CRN species and reactions are yellow.

B. The compilation sequence in BioCRNpyler. The numbers on the arrows in (A) indicate which part of compilation these connections are involved in.

https://doi.org/10.1371/journal.pchi.1009987.g003

stored inside the Component will be used preferentially. If the Component does not
have a particular internal Mechani sm, that Mechanism is instead retrieved from the
Mixture. The Component then calls the update species(...) andupdate r-
eactions (...) methods of each Mechani sm supplying the proper parameters for that
Mechanism.

. Mechanisms generate species and reactions based upon the arguments supplied by the

Component that called them. Mechanisms search for rate parameters in the parameter
database of the Component that called them. If no parameters are found, the Mechanism
will then search for parameters in the Mixture’ s parameter database. Note that the same
Mechanism may be called multiple times with different parameters, effectively reusing the
reaction schema to compile a large CRN. The species and reactions generated this way are
returned to the Mixture.

. Global Mechanisms are a special kind of Mechani sm which are stored in the Mixture

and produce new species and reactions from a single species parameter. All species gener-
ated in previous steps are passed into the Mixture’ s global Mechanisms to generate
additional species and reactions. Note that global Mechanisms are not called recursively.

. The resulting species and reactions generated in the previous steps form a chemical reaction

network which can be modified programatically or exported as SBML.

2.9 Integrated testing

BioCRNpyler uses GitHub Actions and Codecov [50] to automate testing on GitHub. When-
ever the software is updated, a suite of tests is run including extensive unit tests and functional
testing of tutorial and documentation notebooks. Automated testing ensures that changes to
the core BioCRNpyler code preserve functionality of the package. The integration of Jupyter
notebooks into testing allows users to easily define new functionality for the software and doc-
ument that functionality with detailed explanations which are simultaneously tests cases.
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2.10 Documentation and tutorials

The BioCRNpyler GitHub page contains over a dozen tutorial Jupyter notebooks [40] and
video presentations explaining everything from the fundamental features of the code to spe-
cialized functionality for advanced models to how to add to the BioCRNpyler code-base [51].
This documentation has been used successfully in multiple academic courses and is guaran-
teed to be up-to-date and functional due to automatic testing.

3 Results

This section highlights the functionality of BioCRNpyler through a collection of models com-
piled using the software. All model simulations were conducted with Bioscrape [52], circuit
diagrams were created with DNAplotlib [53], and reaction network graphs were created with
BioCRNpyler’s plotting interface. Detailed descriptions alongside commented code for all the
following examples are available in S1 Text Section A and as Jupyter notebooks on the
BioCRNpyler GitHub page.

3.1 Synthetic biological circuit examples

Fig 4A, 4B and 4C show three models of synthetic biological circuits which demonstrate the
modularity and expressivity of BioCRNpyler. Underlying all these models is a single Compo—
nent class called a DNAassembly which was described in Section 2.7. These first three
examples use idealized models of their underlying biological processes via a very simple Mix—
ture. In Fig 4A two DNAassemblies are wired together with a repressor (red) repressing a
report (yellow). The repressor is expressed at a constant rate using the “Simple Transcription”
Mechanism shown in Fig 1 which is supplied by the Mixture. The reporter, on the other
hand, uses a different transcription Mechani sm, “Negative Hill Repression” stored in its
DNAassembly. This illustrates the ability for the same process, transcription, to be modeled
in different ways within a single model. In Fig 4B, two DNAassembly Components are
wired to repress each other, both using Hill functions, to produce a model of the famous bis-
table toggle switch [54]. Similarly, Fig 4C wires three repressors together so A represses B, B
represses C, and C represses A, giving rise to a transcriptional oscillator called the repressilator
[55].

Fig 4D, 4E and 4F examine similar circuits to Fig 4A, 4B and 4C but with more complex
implementations modeled in a more detailed context. In these three following examples, a less
idealized Mixture is used which models transcription, translation, and RNA degradation
with biological machinery including RNA polymerase, ribosomes, and RNAses. Fig 4D exam-
ines a detailed implementation of a repression circuit consisting DNAassembly Compo-—
nents which express a guide-RNA (gRNA) and deactived Cas9 (dCas9) protein [56]. The
dCas9-gRNA complex is capable of binding to the promoter of the reporter assembly, repress-
ing transcription. This more complex circuit in a complex context reveals some unexpected
behavior; if the amount of dCas9 and gRNA are not carefully balanced, resource loading can
give rise to unexpected increases and decreases of the reporter, a phenomena known as retro-
activity [57]. Fig 4E shows a hypothetical variation of a bistable toggle switch implemented via
translational regulation using targeted RN Ases (RNAse A degrades the transcript for RNAse B
and visa-versa). Such a system could potentially be engineered via RNA-targeting Cas9 [58] or
more complex fusion proteins [59]. Finally, Fig 4F compiles a model of the repressilator which
allows for multiple ribosomes to bind to each transcript. The added complexity creates much
more complicated dynamics, but oscillatory behavior still clearly occurs. This example illus-
trates how BioCRNpyler can be used to test different modeling assumptions (e.g. does multiple
occupancy of ribosomes matter?).
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Fig 4. Motivating examples. The idealized models (A, B, and C) do not model the cellular environment; genes and transcripts transcribe and translate
catalytically. A. Schematic and simulation of a constituitively active repressor gene repressing a reporter. B. Schematic and simulations of of a toggle
switch created by having two genes, A and B, mutually repress each other. C. Schematic and dynamics of a 3-repressor oscillator. The detailed models
(D, E, & F) model the cellular environment by including ribosomes, RNAases and background resource competition for cellular resources. D. A
dCas9-guideRNA complex binds to the promoter of a reporter and inhibiting transcription. Heatmap shows retroactivity caused by varying the amount
of dCas9 and guide-RNA expressed. The sharing of transcription and translational resources gives rise to increases and decreases of reporter even when
there is very little repressor. E. A proposed model for a non-transcriptional toggle switch formed by homodimer-RNAase; the homodimer-RNAase
made from subunit A selectively degrades the mRNA producing subunit B and visa-versa. F. A model of the Repressillator exploring the effects of
multiple ribosomes binding to the same mRNA. G. Histogram comparing the sizes of models A-F and the amount of BioCRNpyler code needed to

generate them.

https://doi.org/10.1371/journal.pcbi.1009987.g004
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A

Finally, we comment that all the examples from Fig 4 make use of the same underlying set
of 10-20 default parameters (estimated from Cell Biology by the Numbers [60]) demonstrating
how BioCRNpyler’s parameter database and defaulting behavior make model construction
and simulation possible even before detailed experiments or literature review. The efficiency
of using BioCRNpyler to explore diverse modeling assumptions and circuit architectures is
quantified in Fig 4G which compares the number of species, reactions, and ordinary differen-
tial equation terms in the compiled models to the lines of BioCRNpyler code needed to create
these models. In short, BioCRNpyler allows for the rapid generation of large and diverse mod-
els. Code for these six examples can be in Sections I-IV in S1 Text.

3.2 Systems biology circuit example

Fig 5 illustrates how a set of BioCRNpyler Components and Mechanisms can be joined
together to produce a systems level model of the lac operon—a highly studied gene regulatory
network in E. coli which regulates whether glucose or lactose is metabolized [61]. This specifi-
cation is shown in Fig 5A and consists of around a dozen Components and Mechanisms

Mixture: E. coli
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Q00 000
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0’”” 1 2 2 3 4 5 6
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Fig 5. A model of the lac operon compiled using BioCRNpyler specifications with 141 species and 271 reactions using ~ 50 lines of code. A. A
Mixture contains a set of Components and Mechanisms. The Component classes used for each element of the model are shown in brackets.
The colored circles show how Components correspond to compiled CRN species in panel C. B. A schematic of the lac operon and the three looped
and one open conformation it can take. Each conformation contains a combinatoric number of states based upon the accessible binding sites: R are
lac repressor binding sites; C is the activator c-CRP binding site; P is the promoter; and Z, Y, A are the three lac genes. The conformations are placed
over clusters of identically colored species corresponding to that conformation in the compiled CRN. C. A graph representation of the compiled
CRN. Each circle is a unique chemical species. Square boxes show how chemical species interact via reactions generated by specific Mechanisms. D.
Simulated output of the model.

https://doi.org/10.1371/journal.pchi.1009987.g005
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which jointly enumerate hundreds of species and reactions representing the combinatorial set
of conformations of the lac operon (depicted by the cartoons in panel B) and its associated
transcription factors, transcription, translation, transport, nRNA degradation and dilution.
Besides showing how BioCRNpyler can be applied to model the kinds of combinatoric interac-
tions common in systems biology, this example also graphically illustrates the BioCRNpyler
abstraction where Components interact via Mechani sms in order to generate a large, com-
plex CRN (panel C). Furthermore, this example highlights that the Component species map-
ping is not one-to-one. For example, the Lac Operon is modeled as two Components one
representing the promoter architecture and another coupling that promoter to translation.
Jointly, these two Components produce a combinatoric number of formal CRN species
(shown in panel C by the many different blue dots). Similarly, 3-galactosidase is modeled as
two Components: as an enzyme (which metabolizes lactose) and a chemical complex
(because it is a homeotetramer). Finally, we note that the simulated output of our model

(Fig 5D) produces a ~ 1-2 hour delay between the depletion of glucose and steady state lactose
metabolism, consistent with previous models and experiments [61]. Interestingly, this is
observed even though we made no efforts to fine-tune our parameters, suggesting that the
combinatorial nature of this system may give rise to this behavior in a manner that is robust to
detailed kinetic rates. The code used to generate this model can be found in Section VII in S1
Text.

3.3 Component enumeration example

Fig 6 shows three example circuits which make use of component enumeration in order to
produce sophisticated CRNs. Local component enumeration is illustrated in Fig 6A. Here, a
single DNA Component (top) uses local component enumeration to read through the parts
included in its plasmid and determine all possible correctly oriented terminator-promoter
pairs. This information is then used to produce multiple RNA Components which model
transcription and translation for complex genetic circuit architectures. The CRN and simula-
tion output for this circuit are shown in Fig 6B and 6C, respectively. Fig 6D provides an exam-
ple of global component enumeration involving the enzymatic recombination of DNA.
Specifically, serine integrases (such as Bxb1) are enzymes capable of recombining strands of
DNA at specific integration sites [62]. Integration events can happen within a single piece of
DNA (top two reactions in panel D) or between multiple DNA species (bottom 4 reactions of
panel D). In these reactions, the integrase binds to attP and attB sites and reorganizes them
into attL and attR sites which can result in DNA insertions, excisions, or re-orientations.
Importantly, each new DNA strand produced by an integrase reaction could potentially
recombine with itself or the other strands already produced. Such systems can give rise to theo-
retically infinite CRNs [63]. BloCRNpyler can approximate integrase systems by recursively
using a global component enumerator. In this example, only a single round of recursion is
shown for clarity. The clusters of dots in Fig 6E are due to the combinatoric number bound
and unbound states due to the potential for integrases to bind and unbind to attP, attB, attL,
and attR sites. Finally, the BloCRNpyler framework is designed so that local and global compo-
nent enumeration are mutually compatible. In Fig 6F, a model of a self-flipping promoter is
shown. Initially, the promoter faces right and expresses the integrase Bxb1 which in turn flips
the promoter causing Bxb1 expression to cease in favor of RFP expression. In BioCRNpyler,
this model is compiled by first using global component enumeration to produce all the possi-
ble DNA Components generated by integrase recombinations. Each of these DNA Compo-
nents then uses local component enumeration to produce RNA Components. All these
Components can then be used to compile a CRN by calling their respective Mechanisms.
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Fig 6. Examples involving component enumeration. A. Schematic of local component enumeration for a gene expression circuit where a single DNA
Component generates multiple RNA Components. B. The CRN for (A) represented graphically. Colored dots are species corresponding to the
components adjacent to the dots in (A). C. Simulated output from the CRN in (B). D. Schematic of global component enumeration in an integrase
circuit where one or more DNA Components recombine to produce new DNA Components. Note that the larger DNA outputs could also
recombined analogously but this is not shown. E. The CRN for (D) represented graphically. Colored dots are species which correspond to the
components adjacent to the dots in (D). F. A genetic circuit which combines global and local component enumeration to flip a promoter which drives
gene expression. G. The CRN for the circuit in (F). Colored dots are species representing the components adjacent to the dots in (F). H. Simulated
output of the CRN.

https://doi.org/10.1371/journal.pcbi.1009987.g006

More details about local and global component enumeration, including code for the example
models, can be found in Sections VIII-X in SI Text.

4 Availability and future directions

BioCRNpyler aims to be a piece of open-source community driven software that is easily
accessible to biologists and bioengineers with varying levels of programming experience as
well as easily customizable by computational biologists and more advanced developers.
Towards these ends, the software package is available via GitHub and PyP4i, requires very mini-
mal software dependencies, contains extensive examples and documentation in the form of
interactive Jupyter notebooks [40], YouTube tutorials [51], and automated testing to ensure
stability. Furthermore this software has been extensively tested via inclusion in bio-modeling
courses and bootcamps for users ranging from college freshmen and sophomores with mini-
mal coding experience to advanced computational biologists demonstrating the accessibility
and flexibility of the package. BioCRNpyler has already been deployed to build diverse models
in synthetic biology including modeling bacterial gene regulatory networks [64], modeling
bacterial circuits in the gut microbiome [65], and modeling cell extract metabolism [66].
Developing new software functionality is also a simple process documented on the GitHub
contributions page.
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Table 1. Comparison of different simulation software. Abstraction: how models can be represented in the software. Library: whether there is a substantial library of
pre-existing parts/components/sub-models that can be reused. Simulator: whether the software simulates models numerically. Source: the language(s) the software is writ-
ten in. UL the primary way a user interacts with the software. API: the primary programming language the software is designed to be accessed with.

Software
BioCRNpyler [40]

BioNetGen [36]

PySB [37]

Tellurium [12] (using Antimony [30] and
libRoadrunner [14])

Virtual Parts Repository [35]
iBioSim [34]
COPASI [11]

MATLAB Simbiology [13]
https://doi.org/10.1371/journal.pchi.1009987.t001

Abstraction Library |Simulator |Source Ul API
Mixtures, Components, Yes No Python Python Python
Mechanisms, & CRNs
Rules No Yes Perl C+ .bng files .bng files
+ Python
Rules Yes No Python Text Rules | Python
CRNs No Yes Python Text Python
Reactions
SBOL Yes No Java Web Java
SBOL & CRNs Yes Yes Java GUI Command line
CRNs No Yes Java C++ GUI C++ & other derived
APIs
CRNs No Yes MATLAB MATLAB MATLAB

Given the plethora of model building and simulation software already in existence, it is
important to highlight how BioCRNpyler fits into the larger context of existing tools. Table 1
gives a high level overview of how BioCRNpyler compares to other tools. Firstly, BloCRNpyler
stands out due to the novel Mixture-Component-Mechanism abstraction. This frame-
work allows users to easily put together complex models using BioCRNpyler’s extensive library
or to develop their own extensions by writing Python code. Rule based frameworks, such as
BioNetGen [36] and PySB [37] offer similar abstractions to Mechani sms. However, these
must be codified in a formal language specific to the framework (BioNetGen uses .bng files
and PySB uses a specialized text format) which offers less flexibility than the arbitrary python
code allowed by BioCRNpyler. The Virtual Parts Repository [35] and iBioSim [34] take a dif-
ferent approach to abstract specifications by generating CRNs from SBOL files. This method-
ology is similar in spirit to BloCRNpyler but is restricted due to the reliance on the SBOL
standard, the need of software-specific SBOL annotations, and challenges in generalizing
beyond gene regulatory network architectures. BloCRNpyler also differs from many other
pieces of software because it includes a detailed library of biological parts and models. PySB,
Virtual Parts Repository, and iBioSim similarly include a variety of built-in rules, models, and
parts, respectively. However, BioCRNpyler is unique in its modularity: the ability to use the
same Component with different Mechanisms placed in different Mixtures allows for a
combinatoric variety of models to be easily specified and explored. Finally, we reiterate that
BioCRNpyler is not a CRN simulator like COPASI [11], MATLAB Simbiology [13], or Tellu-
rium (via libroadrunner) [12, 14]. This brings us to a final point about BioCRNpyler: it is a
pure Python package with very minimal dependencies meant to be used as a scripting lan-
guage, interfaced with existing simulators, used in Jupyter notebooks [67], and integrated into
existing pipelines.

BioCRNpyler is an ongoing effort which will grow and change with the needs of its commu-
nity. Extending this community via outreach, documentation, and an ever expanding suite of
functionalities is central to the goals of this project. We are particularly interested in facilitating
the integration of BioCRNpyler into existing laboratory pipelines in order to make modeling a
central part of the design-build-test cycle in synthetic biology. One avenue towards this goal is
to add compatibility to existing standards such as SBOL [31] and automation platforms such
as DNA-BOT [68] so BioCRNpyler can automatically compile models of circuits as they are
being designed and built. This approach will be a generalization and extension of Roehner
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et al. [69]. In particular due to the modular BioCRNpyler compilation process, it will be possi-
ble to have programmatic control over the SBML model produced from BioCRNpyler.

We also plan on extending the library to include more realistic and diverse Mixtures,
Mechanisms, and Components (particularly experimentally validated models of circuits
in E. coli and in cell extracts). We hope that these models will serve as examples and inspiration
for other scientists to add their own model systems in other organisms to the software library.

Finally, we believe that the Mixture-Component-Mechanism abstraction of model
compilation used in BioCRNpyler is quite fundamental and could be extended to other non-
CRN based modeling approaches. Advanced simulation techniques beyond chemical reaction
networks will be required to accurately model the diversity and complexity of biological sys-
tems. New software frameworks such as Vivarium [64] have the potential to generate models
which couple many simulation modalities. The abstractions used in BloCRNpyler could be
extended to compile models beyond chemical reaction networks such as mechanical models,
flux balance models, and statistical models derived from data. The integration of these models
together will naturally depend on both detailed mechanistic descriptions as well as overarching
system context. We emphasize that building extendable and reusable frameworks to enable
quantitative modeling in biology will become increasingly necessary to understand and design
ever more complex biochemical systems.

Supporting information

S1 Text. Table A: (CRN Species Classes the BioCRNpyler Library). Table B: (Reaction Pro-
pensities in the BioCRNpyler Library). Table C: (Some Mechanisms in the BioCRNpyler
Library). Table D: (Some Components in the BioCRNpyler Library). Table E: (Some Mixtures
in the BioCRNpyler. Library).
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