
1. Introduction
The Community Earth System Model version 2 (CESM2) is the newest and most comprehensive model of the 
CESM family and is a participant in the Coupled Model Intercomparison Projects phase 6 (CMIP6; Bacmeister 
et  al.,  2020; Danabasoglu et  al.,  2020; Meehl, Arblaster, et  al.,  2020). A conspicuous difference between 
CESM2 and its predecessor models is its high equilibrium climate sensitivity (ECS; Bacmeister et al., 2020; 

Abstract The Community Earth System Model version 2 (CESM2) simulates a high equilibrium 
climate sensitivity (ECS > 5°C) and a Last Glacial Maximum (LGM) that is substantially colder than proxy 
temperatures. In this study, we examine the role of cloud parameterizations in simulating the LGM cooling 
in CESM2. Through substituting different versions of cloud schemes in the atmosphere model, we attribute 
the excessive LGM cooling to the new CESM2 schemes of cloud microphysics and ice nucleation. Further 
exploration suggests that removing an inappropriate limiter on cloud ice number (NoNimax) and decreasing 
the time-step size (substepping) in cloud microphysics largely eliminate the excessive LGM cooling. NoNimax 
produces a more physically consistent treatment of mixed-phase clouds, which leads to an increase in cloud 
ice content and a weaker shortwave cloud feedback over mid-to-high latitudes and the Southern Hemisphere 
subtropics. Microphysical substepping further weakens the shortwave cloud feedback. Based on NoNimax 
and microphysical substepping, we have developed a paleoclimate-calibrated CESM2 (PaleoCalibr), which 
simulates well the observed twentieth century warming and spatial characteristics of key cloud and climate 
variables. PaleoCalibr has a lower ECS (∼4°C) and a 20% weaker aerosol-cloud interaction than CESM2. 
PaleoCalibr represents a physically more consistent treatment of cloud microphysics than CESM2 and is a 
valuable tool in climate change studies, especially when a large climate forcing is involved. Our study highlights 
the unique value of paleoclimate constraints in informing the cloud parameterizations and ultimately the future 
climate projection.

Plain Language Summary The Community Earth System Model version 2 (CESM2) shows a 
much higher equilibrium climate sensitivity (ECS > 5°C) than its predecessor models (≤4°C), which, if true, 
implies a greater future warming than previously thought and a more severe challenge for climate adaptation 
and mitigation. It is critical to determine whether the high ECS is realistic and what causes its increase. In 
a previous study, we suggested that the high ECS is likely unrealistic because CESM2 simulates excessive 
cooling for an ice age climate—the Last Glacial Maximum (LGM; ∼21,000 years ago). In this study, we 
investigate which aspects of CESM2 are responsible for the extreme LGM cooling and the high ECS. We find 
that the simulated LGM climate is very sensitive to treatments of cloud microphysical processes, and that 
removing an inappropriate limiter on cloud ice number and using a smaller time-step size in the microphysics 
largely eliminate the excessive LGM cooling. With these microphysical modifications, CESM2 simulates a 
much lower ECS (∼4°C) and matches present-day observations well. Our study suggests that an ECS > 5°C 
is likely unrealistic and highlights the importance of using past climates to inform and validate the model 
development including the treatment of clouds.
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is developed that removes an 
inappropriate cloud-ice-number limiter 
and decreases microphysical timestep

•  PaleoCalibr simulates realistic LGM 
and modern climates, a lower ECS 
(3.9°C), and a weaker shortwave cloud 
feedback
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Bitz et  al.,  2011; Gettelman et  al.,  2012,  2019; Kiehl et  al.,  2006). In the 
early versions of CESM (the Climate System Model version 1, the Commu-
nity Climate System Model versions 2–4, and CESM1), ECS ranges from 
2.0°C to 4.0°C, increasing with the model version and spanning the likely 
(66%) range from multiple synthesis reports (Figure 1; Charney et al., 1979; 
IPCC,  2013; Sherwood et  al.,  2020). In CESM2, ECS has risen to 5.6°C 
(calculated using a 1° atmosphere coupled to a slab ocean; Zhu et al., 2021) 
and well beyond the likely range in different synthesis reports including 
the Sixth Assessment Report of the Intergovernmental Panel on Climate 
Change (IPCC, 2021). These increases of ECS with CESM model versions 
have been attributed to increases of model resolution and improvements of 
physical parameterizations, in particular clouds (Bacmeister et al., 2020; Bitz 
et al., 2011; Gettelman et al., 2012, 2019; Kiehl et al., 2006). Specifically, the 
higher ECS in CESM2, configured with the Community Atmosphere Model 
version 6 (CAM6), than that in CESM1 with CAM5 (hereafter CESM1) 
is attributed to changes in the atmospheric parameterizations of stratiform 
cloud microphysics, unified turbulence, ice nucleation, and convection, as 
well as the adjustment of aerosol-cloud interactions (ACIs) to match the 
twentieth century temperature record (Gettelman et al., 2019). A high ECS 
similar to that of CESM2 has been reported in other CMIP6 models and simi-
larly attributed to the simulation of cloud processes (Zelinka et al., 2020).

Whether the high ECS of CESM2 and many other CMIP6 models is realistic 
remains uncertain and is difficult to address using evidence from present-day 
observations. CESM2 reproduces well the magnitude of the twentieth century 
global warming in instrumental records and outperforms CESM1 in many 
observation-based climate metrics (Danabasoglu et al., 2020). In particular, 
CESM2 simulates a more realistic cloud phase distribution with more super-

cooled liquid water over the Southern Ocean, largely correcting a major model deficiency in CESM1 and many 
other CMIP5-class models (Bjordal et al., 2020; Gettelman et al., 2020; Kay et al., 2012, 2016). An increase in the 
mean state supercooled liquid water is attributed to the updated ice nucleation and cloud microphysical schemes in 
the atmosphere model and should lead to a weaker (less negative) cloud-phase feedback than in CESM1 (Gettel-
man et al., 2020). Thus, the net stronger cloud feedback and subsequent increase in ECS in CESM2 is an expected 
outcome of model improvements (Bjordal et al., 2020; Frey & Kay, 2018; Tan et al., 2016). On the other hand, 
process understanding from satellite observations suggests that high-ECS models including CESM2 overestimate 
the cloud feedback over tropical shallow cumulus regions (Cesana & Del Genio, 2021; Myers et al., 2021), which 
is consistent with a recent work showing models (including CESM2) underestimate a negative cloud feedback 
from cloud lifetime changes (Mülmenstädt et al., 2021). The representation of cloud feedbacks in climate models 
remains as a large source of uncertainty in climate model projections. Thus, CESM2's successful simulation of 
the twentieth century warming could result from coexisting and compensating model biases due to excessive 
sensitivities to both aerosol and greenhouse gas (GHG) increases. In this case, the resultant cooling and warming 
during the historic period offset each other (C. Wang et al., 2021; Kiehl, 2007; Meehl, Senior, et al., 2020).

Paleoclimate constraints represent a unique and independent way to assess the climate sensitivity of models and 
consist of performing paleoclimate simulations that incorporate reconstructed climate forcings and assessing 
them against proxy reconstructions of paleotemperature (e.g., Manabe & Broccoli, 1985). Simulations of the Last 
Glacial Maximum (LGM; an extreme ice-age climate of ∼21,000 years ago) have been performed using many 
versions of the CESM models and exhibit a close relationship between global cooling and ECS (Figure 1; corre-
lation coefficient = −0.96; Brady et al., 2013; Otto-Bliesner et al., 2006; Shin et al., 2003; Zhu & Poulsen, 2021; 
Zhu et al., 2017, 2021). CESM2, for instance, has the highest ECS (5.6°C) and also simulates the coldest LGM 
global temperature among the CESM models, a temperature that is at least 5°C lower than a recent proxy based 
estimate and the CESM1 LGM global temperature (Tierney et al., 2020; Zhu et al., 2021). CESM2 also overesti-
mates global and regional temperature responses for past warm climates including the Early Eocene (an extreme 
greenhouse climate of ∼50 million years ago) and the Pliocene (the most recent warm climate of ∼3.2 million 
years ago with atmospheric CO2 comparable to today's; Feng et al., 2020; Zhu et al., 2020). Taken together, these 

Figure 1. Model simulated Last Glacial Maximum (LGM) global cooling 
and equilibrium climate sensitivity (ECS) in different versions of Community 
Earth System Model (CESM). ECS is estimated using coupled simulation with 
a slab ocean (see text for references). CESM2 PaleoCalibr is developed in this 
study. Vertical patch indicates the 95% confidence interval of proxy estimation 
of the LGM global cooling (−6.8°C to −4.4°C) from Tierney et al. (2020). 
Horizontal patches denote the 66% confidence intervals of ECS from the 
IPCC Assessment Report 5 (IPCC, 2013; light gray), Assessment Report 6 
(IPCC, 2021; medium gray), and Sherwood et al. (2020; dark gray).
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paleoclimate simulations suggest that CESM2 is too sensitive to large external forcings and that its high ECS 
and strong cloud feedbacks are likely unrealistic. The excessive cooling in the CESM2 LGM simulation has been 
attributed to the strong shortwave cloud feedback in the Southern Hemisphere (SH) subtropics and mid-to-high 
latitudes (Zhu et al., 2021). However, it remains unclear which aspects of the cloud feedback processes (such as 
processes related to stratiform cloud microphysics, unified turbulence, ice nucleation, and convection) in CESM2 
are causing the unrealistic climate sensitivity.

In this study, we use LGM constraints to examine details of the cloud feedback processes in CESM2 and to 
develop a paleoclimate-calibrated version of CESM2 that has a realistic sensitivity to LGM forcings. We adopt 
the fully coupled LGM configuration in Zhu et al. (2021) and utilize the fact that CESM2 with CAM5 simulates 
a much more realistic LGM global surface temperature than with CAM6. We evaluate the impact of individual 
CAM6 cloud schemes on simulated LGM global cooling through simulations in which CAM6 schemes are 
replaced, one at a time, with older CAM5 schemes. Additionally, we explore physical and numerical aspects of 
key cloud parameterizations. Finally, we compare the paleoclimate-calibrated version of CESM2 to present-day 
observations including the scale-aware and definition-aware diagnostics available in satellite simulators. Our 
study demonstrates that paleoclimate information provides unique constraints on the cloud parameterizations, 
which critically determine climate sensitivity.

2. Models and Experiments
CESM2 consists of state-of-the-art models of the atmosphere, ocean, land, sea ice, and river and has the capabil-
ity to simulate ice-sheet dynamics (Danabasoglu et al., 2020). Among the substantial science and infrastructure 
improvements from CESM1 to CESM2, updates to the cloud-related parameterizations in CAM6 are the primary 
reason for the high sensitivity to external forcings (Gettelman et al., 2019; Zhu et al., 2021). Specifically, CAM6 
uses an updated cloud microphysics scheme (MG2) that predicts rather than diagnoses the mass and number 
concentration of rain and snow (Gettelman & Morrison, 2015). Of key significance in this study, MG2 introduced 
a classical-theory-based heterogeneous ice nucleation scheme that links the mixed-phase ice nucleation directly 
to temperature and aerosols (HetFrz; Hoose et al., 2010; Y. Wang et al., 2014). Alongside the microphysics revi-
sions, CESM1's separate schemes of the moist turbulence in planetary boundary layer, shallow convection, and 
cloud macrophysical quantities have been replaced with a unified treatment, the Cloud Layers Unified by Binor-
mals (CLUBB; Bogenschutz et al., 2013; Larson & Golaz, 2005). CLUBB is a higher-order turbulence closure 
scheme that uses a double-Gaussian probability density function to provide a self-consistent closure treatment of 
higher-order turbulence moments of vertical velocity, temperature, and moisture, as well as boundary layer cloud 
properties of both stratocumulus and cumulus. Additional updates and modifications have been implemented 
to schemes of aerosols, deep convection, orographic gravity wave, and boundary layer form drag (Danabasoglu 
et al., 2020).

We employ the same LGM initial and boundary conditions as in Zhu et al. (2021). GHGs are 190 ppm, 375 ppb, 
and 200 ppb for CO2, CH4, and N2O, respectively. Ice sheets are from the ICE-6G reconstruction at 21 ka (thou-
sand years before present) with changes in land surface properties, surface topography, and land-sea mask (Peltier 
et al., 2015). Earth orbital parameters are fixed at the 21-ka values. Preindustrial aerosol emissions and vegetation 
cover are used in all the LGM simulations. Similar to Zhu et al.  (2021), coupled preindustrial (PI) and LGM 
simulations are run with prescribed satellite vegetation phenology (unless noted), which allows us to focus on the 
radiative climate feedback without the need to be concerned about the vegetation phenology feedback. Differ-
ent from Zhu et al. (2021), a lower horizontal resolution of the atmosphere and land is used to save computing 
resources (1.9 × 2.5° instead of 0.9 × 1.25°; referred to as FV2 and FV1, respectively). CESM2 FV2 differs from 
FV1 in the cloud tuning parameters, which are required to achieve an overall top-of-atmosphere (TOA) energy 
balance for the preindustrial simulation. Specifically, the microphysical autoconversion size threshold for ice to 
snow (micro_mg_dcs) is decreased from 500 × 10 −6 to 200 × 10 −6 m and constant of the width of probability 
density function of vertical velocity (clubb_gamma_coef) is decreased from 0.308 to 0.28.

We perform paired PI and LGM simulations using different configurations of the atmosphere model within 
the fully coupled CESM2 framework (Table 1). We use the LGM proxy sea-surface temperature (SST)-derived 
global cooling of 5.6°C (4.4°C–6.8°C; 95% confidence interval; Tierney et al., 2020) as a benchmark to evaluate 
these configurations. The first two configurations use CAM6 and CAM5 as the atmosphere component model, 
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respectively (referred to as CAM6 and CAM5; hereafter italic font is used for 
a specific CESM2 configuration). To explore the reason for the greater LGM 
cooling in CAM6 than in CAM5, additional sensitivity configurations are 
tested with one cloud scheme in CAM6 either replaced with the older CAM5 
version or altered from the default setting (cf., Gettelman et al., 2019). In 
HetFrzOff, we use the CAM6 configuration, except that the new heteroge-
neous ice nucleation scheme (HetFrz) is replaced with the older scheme 
in CAM5. In ClubbOff, we replace the unified moist turbulence scheme 
(CLUBB) in CAM6 with the corresponding CAM5 schemes. In Mg2Off, we 
replace the new cloud microphysics scheme (MG2) with the older version 
(MG1). Considering its overall importance, we developed additional config-
urations (NoNimax and Mg2Sub8) to further examine details of the cloud 
microphysics (see Section 3.2 and 3.3 for the rationale for these sensitivity 
configurations). In NoNimax, a limiter on the cloud ice number concentra-
tion is removed in MG2. In Mg2Sub8, a microphysical substep of 8 is used 
(the default value being 1), which decreases the MG2 time-step size from 
600 to 75 s. An additional configuration (NnSub8) that combines NoNimax 
and Mg2Sub8 is also tested (substep numbers of 4 and 16 are also performed 
but only briefly discussed in this paper). We emphasize that no parameter 
tuning is performed in any of the configurations, so the difference between 
CAM6 and a sensitivity configuration is due to the cloud scheme or modifi-
cation in question. These fully coupled simulations with various configura-
tions are performed for 100 model years after initializing from the same PI 
or LGM state. Although many of the simulations have not reached equilib-
rium in surface climate after 100 model years (Table 1), they are sufficiently 
integrated to demonstrate the sensitivity of the simulated LGM cooling and 
cloud feedback to individual cloud schemes and modifications (see results 
below). Averages of the last 30 years of each simulation are used for analysis.

To directly show the impacts of each configuration on ECS and to link the 
cloud feedbacks in paleoclimate and present-day climate simulations, paired 

PI and 2 × CO2 simulations with each CESM2 configuration are performed using a slab ocean model (SOM). 
The same mixed layer depth and heat transport convergence (“q-flux” hereafter; derived from the coupled CMIP6 
PI simulation using CESM2 FV2) are prescribed in each SOM simulation. No parameter tuning is performed for 
the SOM simulations except for ClubbOff, in which the relative humidity threshold for low clouds (rhminl) is 
increased from 0.95 to 0.99. This tuning of ClubbOff SOM simulations decreases the low-cloud fraction, which is 
necessary to prevent the model from drifting into a cold climate. Each SOM simulation is carried out for 80 years 
and has reached equilibrium (TOA net radiation < |0.1|W m −2) with the last 30 years used for calculation of ECS 
(denoted as ECSSOM) and the shortwave cloud feedback.

We use the approximate partial radiative perturbation method (APRP) to quantify the shortwave cloud feedback 
(Taylor et al., 2007). APRP uses monthly model output of radiation fields to build a simplified radiation model 
and quantify the shortwave feedbacks. The shortwave cloud feedback parameters in the paired PI and LGM in 
a fully coupled configuration and the paired PI and 2 × CO2 in a SOM configuration are denoted as λsw_cld_LGM 
and λsw_cld_2×, respectively. The longwave feedback in the simulations is not quantified because it is not a major 
driver for the differences in ECS and the LGM temperature response between CESM2 configurations (Gettelman 
et al., 2019; Zhu et al., 2021).

After the individual cloud schemes and changes are evaluated against the proxy-derived LGM global cooling, a 
paleoclimate-calibrated CESM2 configuration (PaleoCalibr) in FV2 is developed. A suite of DECK (Diagnostic, 
Evaluation and Characterization of Klima) simulations and a CMIP6 historical simulation are performed (Eyring 
et al., 2016), which follows the experimental setup of the simulations using the standard CESM2. Results from the 
PaleoCalibr preindustrial, historical Atmospheric Model Intercomparison Project (AMIP), historical, and abrupt 
4 × CO2 simulations are discussed. The historical AMIP simulation is run with the satellite simulator to facilitate 
a direct comparison with satellite observations (Swales et al., 2018). We also have additional atmosphere-only 

Configurations PI ΔN
LGM 
ΔN ΔTLGM λsw_cld_LGM ECSSOM λsw_cld_2×

CAM6 ‒0.18 ‒1.01 ‒9.0 0.81 6.1 0.95

CAM5 0.30 0.27 ‒6.3 0.29 3.7 0.32

HetFrzOff 0.42 0.15 ‒5.9 0.37 3.8 0.47

ClubbOff ‒0.48 ‒1.1 ‒8.9 0.64 6.2 0.86

Mg2Off 0.41 0.01 ‒6.3 0.49 4.3 0.54

NoNimax 0.13 ‒0.29 ‒6.9 0.64 5.0 0.79

Mg2Sub8 ‒0.21 ‒0.81 ‒8.2 0.72 4.8 0.74

NnSub8 0.09 ‒0.14 ‒6.4 0.49 4.0 0.59

Note. Results from the last 30 years of simulations with various configuration 
of the atmosphere model are shown. CAM6 uses the default CESM2(CAM6); 
CAM5 uses the old CAM5 cloud parameterizations; ClubbOff uses the CAM5 
shallow convection and boundary layer schemes; HetFrzOff uses the CAM5 
ice nucleation scheme; Mg2Off uses the CAM5 cloud microphysics; NoNimax 
removes the “nimax” limiter; Mg2Sub8 uses 8 substeps in the microphysical 
scheme; NnSub8 removes the “nimax” limiter and uses 8 substeps in the 
microphysics. See text for details of these configurations.

Table 1 
List of Top-of-Atmosphere Net Radiation (ΔN; Units: W m −2) in the Coupled 
Preindustrial (PI) and Last Glacial Maximum (LGM) Simulations, the 
Derived Global Mean Surface Temperature Change (ΔTLGM; Units: °C) and 
Shortwave Cloud Feedback (λSW_CLD_LGM; Units: W m −2 K −1) in the LGM 
Simulations, and Equilibrium Climate Sensitivity (ECSSOM; Units: °C) and 
Shortwave Cloud Feedback (λSW_CLD_2×; Units: W m −2 K −1) Derived in a Pair 
of Slab Ocean Simulations With the PI Condition and an Abrupt 2 × CO2 
Forcing
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simulations with prescribed SST and sea ice from observation at 2000 CE that are used to quantify the ACI and 
to test sensitivity to some parameters (see details below).

3. Sensitivity of LGM Global Temperature to Cloud Microphysical Processes
3.1. Role of Individual Cloud Schemes

CESM2(CAM6) with a ∼2° atmosphere significantly overestimates the LGM global cooling, which is consist-
ent with the results with a ∼1° atmosphere in Zhu et al.  (2021). The LGM global mean surface temperature 
change (ΔGMST) in CAM6 reaches −9.0°C with a large TOA imbalance of approximately −1.0 W m −2 after 
100 model years, suggesting that if the simulation were extended further, additional cooling would be expected 
(red in Figure 2; Table 1). In contrast, ΔGMST in CAM5 is −6.3°C (brown) and falls within the proxy suggested 
range of LGM global cooling (gray patch). Similar to CAM5, Mg2Off (green) and HetFrzOff (orange) have LGM 
ΔGMSTs of −6.3°C and −5.9°C after 100 years, respectively, which also fall within the proxy range. In contrast, 
ClubbOff has a ΔGMST of −8.9°C that is comparable to the CAM6 value (blue vs. red).

The different LGM ΔGMSTs in these configurations are linked to the strength of shortwave cloud feedback. 
λsw_cld_LGM in CAM6 is 0.81 W m −2 K −1, more than double the CAM5 value of 0.29 W m −2 K −1 (Figure 3 red vs. 
brown; Table 1). λsw_cld_LGM in CAM6 is larger than in CAM5 over all latitudes, especially over the SH subtropics 
and the Southern Ocean (SO). λsw_cld_LGM is 0.49, 0.37, and 0.64 W m −2 K −1 in Mg2Off, HetFrzOff, and ClubbOff, 
respectively. In the subtropics, Mg2Off produces a λsw_cld_LGM comparable to CAM5 (green vs. brown), indicating 
that the stronger subtropical λsw_cld_LGM in CAM6 than in CAM5 is largely due to the new cloud microphysics 

Figure 2. Time series of global mean surface temperature (GMST) in (a) the preindustrial (PI) and (b) the Last Glacial 
Maximum (LGM) simulations using various atmosphere model configurations within the coupled Community Earth 
System Model version 2 framework. (c) Changes in GMST between paired LGM and PI simulations. (d) Changes in top-of-
atmosphere radiation (ΔN) versus GMST (ΔGMST) in paired simulations. ΔN and ΔGMST (markers) are the 5-year running 
mean of the LGM time series with the last-30-year averages of the PI simulation subtracted. A linear regression between ΔN 
and ΔGMST is shown as dashed line for each configuration. In panels (c and d), the LGM ΔGMST and the 95% uncertainty 
interval from Tierney et al. (2020) are shown. See text and Table 1 for details of the model configurations.
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scheme (MG2). Over the SO, HetFrzOff produces a λsw_cld_LGM comparable to CAM5 (orange vs. brown), indi-
cating that the new ice nucleation scheme (HetFrz) explains the stronger SO λsw_cld_LGM in CAM6. Over the SH 
subtropics, λsw_cld_LGM in HetFrzOff is also weaker than CAM6, although not as weak as in CAM5. HetFrzOff 
simulates more ice nucleation particles and cloud ice than CAM6 (Figure 4b), which, we speculate, produces 
larger negative cloud phase and lifetime feedbacks due to the increase in mean state cloud ice which leads to a 
larger cloud phase transition in response to warming (Mülmenstädt et al., 2021; Tan et al., 2016).

The tests of individual cloud schemes suggest that the cloud microphysical processes, including those related 
to mixed-phase and liquid clouds, are important in driving the strong cloud feedback in CAM6 (Gettelman 
et al., 2019) and are likely responsible for the unrealistically high CESM2 ECS. Nevertheless, the new cloud 
schemes were developed according to theory and process-level understanding and were found to be critical to the 
improved simulation of the SO cloud phase distribution (Gettelman et al., 2020). Given that the new schemes in 
CAM6 are “better physics,” we next examine details of the cloud microphysical processes while using these more 
advanced cloud schemes.

3.2. Role of a Cloud-Ice-Number Limiter

A cloud-ice-number limiter (named “nimax” in MG2) sets the maximum allowed number of cloud ice particles 
to a sum of terms representing each source of ice crystals. The MG2 ice nucleation in mixed-phase clouds was 
replaced with a more process-based scheme (Hoose et al., 2010; Y. Wang et al., 2014), yet “nimax” was not 
re-coded to account for the new source terms. Shaw et al. (2022) reported the “nimax” issue and noted that, with-
out a correction, the heterogeneous ice nucleation processes can increase the mass of cloud ice but not raise the 

Figure 3. Zonal mean shortwave cloud feedback (λsw_cld; units: W m −2 K −1) for various atmosphere model configurations 
in (a) the paired preindustrial and Last Glacial Maximum (LGM) simulations using fully coupled Community Earth System 
Model version 2 (CESM2) and (b) the paired preindustrial and 2 × CO2 simulations using CESM2 slab ocean model. (c) 
Differences in λsw_cld between the LGM and 2 × CO2 simulations using the same atmosphere model configuration. (d) 
Scatter plot of the global mean λsw_cld in the LGM and 2 × CO2 simulations. See text and Table 1 for details of the model 
configurations.
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number concentration, that is, artificially increasing ice crystal size and sedi-
mentation. Investigating Arctic clouds, Shaw et al. (2022) found that “nimax” 
suppressed the formation of stable ice clouds and affected cloud feedbacks. 
Additionally, “nimax” prevents secondary ice number production through the 
Hallett-Mossop process. With “nimax,” the cloud ice number also has less 
freedom to adjust to internal or forced variations. Here we examine the role 
of “nimax” on the climate sensitivity and cloud feedbacks through a suite of 
simulations (NoNimax), in which “nimax” is removed to improve the physical 
consistency in mixed-phase clouds. “nimax” was designed in MG1 to avoid 
excessive nucleation with the old ice nucleation scheme and long microphys-
ical time step. In consideration of MG2's much shorter microphysical time 
step (600 s in MG2 vs. 1,800 s in MG1) and more advanced ice nucleation 
scheme, we propose that this ice number limiter is no longer fit for purpose.

NoNimax has minor impact on the preindustrial GMST but warms the LGM 
by close to 3°C in 100 years, leading to a much-improved LGM ΔGMST 
of −6.8°C (yellow vs. red in Figure 2). As expected, NoNimax changes the 
response to LGM forcing by affecting the cloud feedback. The global mean 
λsw_cld_LGM is 0.64  W m −2  K −1 in NoNimax, 20% smaller than the CAM6 
value (Table 1). Zonal mean λsw_cld_LGM in NoNimax is weaker over the SH 
subtropics and the mid-to-high latitudes in both hemispheres (yellow vs. red 
in Figure 3). To some degree, NoNimax impacts cloud properties and feed-
backs over the SH subtropics in a similar way as HetFrzOff, likely indicating 
a similar mechanism through increasing cloud ice content (Figure 4b) and 
strengthening the (negative) cloud phase and lifetime feedback. We note that 

the projected LGM ΔGMST for NoNimax is ∼‒8°C, estimated by extrapolation using TOA radiation and GMST 
(yellow in Figure 2d), and indicates that NoNimax would likely overestimate the LGM ΔGMST if the simulation 
were extended beyond 100 years.

NoNimax produces an unrealistic simulation of cloud ice number concentration (Figure 5b). The zonal-mean 
in-cloud ice number concentration in CAM6 is generally less than 50 L −1 below ∼400 hPa with maximum centers 
in the middle troposphere at the mid-latitudes and in the lower troposphere at polar regions. In the stratosphere, 
the zonal-mean in-cloud ice number reaches values greater than 900 L −1. The high values over the stratosphere 
likely reflect a model bias, while values over the middle and lower troposphere are roughly of the same order 
as observations (e.g., DeMott et al., 2010; Patnaude et al., 2021). NoNimax simulates a zonal mean in-cloud ice 
number greater than CAM6 almost everywhere. Over the Northern Hemisphere (NH) mid-latitudes, the zonal-
mean in-cloud ice number reaches values >900 L −1 at ∼400 hPa and >300 L −1 below; these values are roughly 
an order of magnitude larger than observations (e.g., DeMott et al., 2010).

3.3. Role of Substepping in Microphysics

The large overestimation of in-cloud ice number in NoNimax motivates us to explore whether substepping in the 
microphysics helps to improve the simulation. Microphysical substepping decreases the time-step size through 
increasing the substep number of microphysical calculations per calculation of the other model physical parame-
terizations. For simplicity, we perform a suite of atmosphere-only simulations forced by the observed climatolog-
ical SST and sea ice from 2000 CE. These simulations are run with NoNimax and with an increased microphysical 
substep of 2, 4, 8, 16, and 32, respectively (Figure 5). At the NH mid-latitudes, the zonal mean in-cloud ice 
number at 400 hPa decreases from ∼900 to ∼300 L −1 with 2 MG2 substeps (NnSub2; microphysical time step of 
300 s) and to ∼100 L −1 with 4 substeps (NnSub4; microphysical time step of 150 s). At ∼700 hPa, the cloud ice 
number decreases from ∼300 to <50 L −1 with substeps greater than 8. Overall, the simulated cloud ice number is 
converging after 8–16 MG2 substeps (a microphysical time step ≤75 s).

Employing microphysical substepping together with NoNimax further decreases the shortwave cloud feedback 
and the simulated LGM global cooling, in addition to improving the simulation of cloud ice number. Three 
pairs of coupled PI and LGM simulations are performed with NoNimax and microphysical substep of 4, 8, and 
16 (referred to as NnSub4, NnSub8, and NnSub16, respectively). The LGM ΔGMST are −6.4°C, −6.5°C, and 

Figure 4. (a) Zonal mean cloud liquid water path in the preindustrial 
simulations with various atmosphere model configurations in the coupled 
Community Earth System Model version 2 framework. Panels (b) same as 
panel (a), but for the cloud ice water path (IWP). Note that CAM5 IWP in 
panel (b) has been multiplied by 0.5 for illustrative purpose (shown as dashed 
brown line). See text and Table 1 for details of the model configurations.
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−6.5°C after 100 model years in NnSub4, NnSub8, and NnSub16, respectively. The global mean λsw_cld_LGM are 
0.53, 0.49, and 0.49 W m −2 K −1, respectively. The decrease of λsw_cld_LGM with the microphysical substepping 

reaches saturation at 8 substeps: successive substep increases from 1 to 4, 8, 
and 16 decrease λsw_cld_LGM by 0.11, 0.04, and 0.00 W m −2 K −1, respectively. 
Consistent with the global mean, the zonal mean λsw_cld_LGM also exhibits 
convergence with an MG2 substep of eight or higher (Figure 6). Although the 
decrease of the LGM global cooling is small from NoNimax (with a substep 
of 1) to NnSub8 (ΔGMST of −6.8°C vs. −6.4°C after 100 model years), the 
projected LGM ΔGMST is much larger (−8.0°C vs. −7.0°C; yellow vs. black 
in Figure  2d), which is consistent with the large impact on the shortwave 
cloud feedback (Figure 3) and TOA radiation (Table 1; see also the ECSSOM).

To understand the processes that weaken the cloud feedback with an increase 
in microphysical substeps, we perform an additional pair of coupled PI 
and LGM simulations with CAM6 and 8 microphysical substeps (referred 
to Mg2Sub8). Mg2Sub8 has the active “nimax” limiter and simulates a low 
tropospheric cloud ice number like CAM6 (not shown). Compared to CAM6, 
the global mean λsw_cld_LGM in Mg2Sub8 decreases by 0.09 W m −2 K −1 from 

Figure 5. Pressure-latitude section of the zonal mean in-cloud cloud ice number in (a) the default CAM6 simulation and 
(b–g) simulations with the “nimax” limiter removed and with substep of 1, 2, 4, 8, 16, and 32 in the microphysical scheme, 
respectively. Pressure is the y-axis with units of hPa. Results are from atmosphere-only simulations forced by the observed 
present-day sea surface temperature and sea ice (results are similar if coupled simulations are used). The in-cloud ice number 
is constructed by averaging monthly cloud ice numbers for grid points with a cloud ice mixing ratio greater than 0.01 part-
per-million by mass.

Figure 6. Zonal mean shortwave cloud feedback (λsw_cld) calculated in the 
paired preindustrial and Last Glacial Maximum simulations with various 
configurations. See text and Table 1 for details of the model configurations. 
NnSub4 and NnSub16 are the same as NnSub8 except for the 4 and 16 substeps 
in the microphysics, respectively.
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0.81 to 0.72 W m −2 K −1 (Table 1). In comparison, λsw_cld_LGM decreases by 0.15 W m −2 K −1 between NoNimax and 
NnSub8 with “nimax” removed. Both configurations with (CAM6 and Mg2Sub8) and without “nimax” (NoNimax 
and NnSub8) consistently show decreases of λsw_cld_LGM in the subtropics and SH mid-latitudes (Figure 6). These 
results suggest that a large part of the weakening of cloud feedback with microphysical substepping is through 
pathways other than changing cloud ice number. For example, the rain evaporation and self-collection processes 
in MG2 are found to exhibit large timestep dependence in a set of preindustrial simulations (Santos et al., 2020), 
but the exact reasons for the timestep-dependent cloud feedback need further investigation.

3.4. Connected Cloud Feedback Between LGM and 2 × CO2 Simulations

A strong correlation between λsw_cld_LGM and λsw_cld_2× is found across the major configurations that are explored 
in this study (Figure 3). In the global mean, the correlation coefficient between λsw_cld_LGM and λsw_cld_2× is 0.95 
(Figure 3d). A similar strong correlation (−0.93) is also found between LGM ΔGMST and ECSSOM among these 
CESM2 configurations (Table 1). Averaged across all the configurations, λsw_cld_2× is larger than λsw_cld_LGM by 
0.11 W m −2 K −1, which is consistent with previous findings that the shortwave cloud feedback increases with 
GMST in CESM models (Zhu & Poulsen, 2020; Zhu et al., 2019). In the zonal mean, λsw_cld_2× is larger than 
λsw_cld_LGM over the middle-to-high latitudes (Figure 3c), likely linked to the more positive cloud-phase feedback 
in response to warming than to cooling (Zhu & Poulsen, 2020). λsw_cld_LGM is larger than λsw_cld_2× in the tropics, 
which could be linked to the stronger glacial trade winds and the impact on low clouds through increasing latent 
heat flux (Zhu et al., 2021). This high correspondence between global and regional shortwave cloud feedback in 
paleoclimate and present-day simulations (as well as between the LGM ΔGMST and ECSSOM) supports the notion 
that paleoclimate information can be used to constrain the cloud feedback and ECS (Zhu et al., 2021). Moreover, 
λsw_cld_LGM is obtained with paired, short PI and LGM simulations of 100 model years, which may still have large 
GMST trends and TOA energy imbalances (Figure 2; Table 1). The high correlation between λsw_cld_LGM and 
λsw_cld_2× (obtained in equilibrated SOM simulations) suggests that our major findings on the shortwave cloud 
feedback depend little on the equilibration state of the coupled simulations. This is further supported by the high 
correlation (0.95) between λsw_cld_LGM and λsw_cld_2× in shorter coupled PI and LGM simulations of 50 years.

4. A Paleoclimate-Calibrated Configuration of CESM2
As in Zhu et al. (2020, 2021), we find that CESM2 with CAM6 performs poorly in climates with large radiative 
forcings that exceed that of the historical record. To mitigate this shortcoming, we develop a paleoclimate-cal-
ibrated CESM2 configuration (PaleoCalibr) based on NnSub8, whilst other configurations of CESM2, includ-
ing CAM5, HetFrzOff, and Mg2Off also produce acceptably realistic LGM global cooling (Figure 2), NnSub8 
uses the advanced cloud schemes in CAM6, in particular the ice nucleation and microphysical schemes that are 
based more on theory or process-level understanding. NnSub8 also represents a minimal departure in model code 
from CAM6 and probably its future versions. Moreover, NnSub8 simulates a slightly positive shortwave cloud 
feedback over the SO at ∼50°–60°S (Figure 3b), which is more consistent with satellite observations (Myers 
et al., 2021) than HetFrzOff and CAM5. Based on NnSub8, PaleoCalibr incorporates additional minor tuning. 
The CLUBB gamma parameter is lower from 0.280 to 0.275 to decrease the TOA radiation imbalance in the 
preindustrial simulation. The dust emission scaling factor (dust_emis_fact) is lower from 0.70 to 0.55 to ensure a 
more realistic global mean dust aerosol optical depth. Additionally, a new and simple limiter on cloud ice number 
(Ni < 1,000 L −1) is added at the end of the microphysical calculations to ensure a realistic simulation of cloud ice 
number over the stratosphere. This additional model tuning and cloud-ice-number limiter have no impact on the 
cloud feedback and LGM cooling, which has been confirmed in additional test simulations (not shown).

We perform 500-year simulations for both the preindustrial and LGM using PaleoCalibr and the same experimen-
tal setups as the standard CESM2 runs. PaleoCalibr PI has a similar GMST as CESM2 (13.9°C vs. 14.1°C) and 
a small TOA energy imbalance (0.03 W m −2) at the end of the simulation. PaleoCalibr LGM has a ΔGMST of 
−6.7°C and a TOA radiation imbalance of −0.08 W m −2 (Figure 7). The projected LGM ΔGMST, using a linear 
regression between LGM GMST and TOA radiation, is approximately −7.3°C in PaleoCalibr, which is margin-
ally too cold when compared with the proxy estimation (Tierney et al., 2020). We contend that the PaleoCalibr 
LGM is acceptably realistic and suitable for glacial climate research, considering the uncertainty in the ice sheet 
forcing and the absence of LGM dust forcing in our simulations (Abe-Ouchi et al., 2015; Ohgaito et al., 2018). 
We note that the land biogeochemistry (BGC) model is inactive in the PaleoCalibr LGM simulation but is active 
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in PaleoCalibr PI. The PI simulation (and the associated historical and abrupt 
4 × CO2 simulations) with land BGC is consistent with the available stand-
ard CESM2 DECK simulations. We decided not to include land BGC in the 
PaleoCalibr LGM because it produces an extra LGM cooling of >1°C after 
100 simulation years (not shown) due to vegetation phenology feedbacks. 
This vegetation phenology-induced LGM cooling is consistent with results 
in CESM1.2 (Zhu & Poulsen,  2021) but we do not know how realistic it 
is, given that the land vegetation processes are highly parameterized for the 
present climate and may not work well under a much colder environment 
with a much lower CO2 (Lawrence et al., 2019).

4.1. A Realistic Simulation of the Present-Day Climate

We first evaluate the cloud simulation of PaleoCalibr in an AMIP historical 
simulation with an active Cloud Feedback Model Intercomparison Project 
Observational Simulator Package. We use the Taylor diagram (Taylor, 2001) 
for a compact visualization of the model performance (Figure  8). A suite 

of model variables was compared against observations using multiple metrics including the area-weighted 
pattern correlation and normalized root-mean-squared differences (RMSDs), as well as the relative bias. Cloud 

Figure 7. Time series of the global mean surface temperature anomaly in the 
Last Glacial Maximum (LGM) simulations with Community Earth System 
Model version 2 and the paleoclimate-calibrated (PaleoCalibr) configurations. 
Black dashed line with the gray patch denotes the 95% uncertainty interval 
from Tierney et al. (2020) for the LGM global cooling.

Figure 8. Taylor diagram evaluating key cloud variables in Community Earth System Model version 2 and PaleoCalibr with 
satellite observations. Model variables are from Atmospheric Model Intercomparison Project historical simulations with an 
active Cloud Feedback Model Intercomparison Project Observational Simulator Package. Cloud observations are the total 
cloud fraction from International Satellite Cloud Climatology Project (ISCCP; 60°S–60°N), Multiangle Imaging Spectro-
Radiometer (MISR; 60°S–60°N and ocean-only), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 
(CALIPSO), the cloud phase partition between liquid and ice from CALIPSO, and the shortwave and longwave cloud 
radiative forcing from Clouds and the Earth's Radiant Energy System Energy Balanced and Filled Edition-4.1. Averages 
between 2000 and 2014 are used for the model-data comparison, except for the CALIPSO cloud fraction that is averaged 
between 2008 and 2020.
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observations that are used in the model evaluation include the climatology of TOA cloud radiative forcing 
from Clouds and the Earth's Radiant Energy System Energy Balanced and Filled Edition-4.1 (CERES-EBAF; 
Loeb et al., 2018) and the cloud fraction products from the International Satellite Cloud Climatology Project 
(ISCCP; Pincus et al., 2012), the Multiangle Imaging Spectro-Radiometer (MISR; Marchand et al., 2010), and 
the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO; Chepfer et al., 2010), as well 
as the liquid and ice cloud fraction from CALIPSO. Averages between 2000 and 2014 CE are used in the model-
data comparison, except that CALIPSO cloud fraction between 2008 and 2020 CE is used.

PaleoCalibr improves the simulations of cloud fraction and its liquid-ice partition over the standard CESM2 but 
has degradations in cloud radiative forcing. In the total cloud fraction, PaleoCalibr shows smaller centered pattern 
errors than CESM2, that is, normalized RMSDs that are closer to one when compared with ISCCP (1.33 vs. 1.37; 
labeled “1”), MISR (1.43 vs. 1.50; labeled “2”), and CALIPSO (1.40 vs. 1.47; labeled “3”). PaleoCalibr cloud 
fraction also has a greater pattern correlation with CALIPSO (0.90 vs. 0.85) than CESM2. The phase partition of 
cloud fraction in PaleoCalibr shows large improvements over the standard CESM2 with greater pattern correla-
tion with the CALIPSO liquid clouds (0.86 vs. 0.76; label “4”) and smaller centered pattern error in both liquid 
(1.31 vs. 1.38 in the normalized RMSDs) and ice (1.47 vs. 1.61 in the normalized RMSDs; Label “5”) clouds. 
In shortwave cloud forcing (SWCF), PaleoCalibr exhibits a slightly smaller centered pattern error (1.08 vs. 1.11; 
label “6”) than CESM2 but has degradations in the pattern correlation with observations (0.85–0.88). PaleoCalibr 
LWCF degrades slightly from CESM2 with larger centered pattern error (0.91 vs. 0.99 in the normalized RMSD 
from observation; label “7”). For all the metrics that are examined in PaleoCalibr and CESM2, the relative biases 
from observations (marker size in the Taylor diagram) fall within the same category, indicating that the improve-
ments/degradations in PaleoCalibr come from a redistribution of cloud properties across the globe rather than a 
uniform shift.

From a spatial view, PaleoCalibr improves the cloud simulation in the Arctic but shows mixed results over other 
places (Figure 9). The standard CESM2 overestimates the Arctic cloud fraction in CALIPSO by as much as 20%, 
which results primarily from a larger modeled liquid cloud fraction. PaleoCalibr largely removes the model bias 
in CESM2 by simulating a smaller liquid cloud fraction that agrees much better with observation. In the subtrop-
ics and mid-latitudes, PaleoCalibr simulates a greater cloud fraction that agrees better with satellite observations 
(Figures 9a and 9b), but at the expenses of degradations in the SWCF (Figure 9d), reflecting a stubborn “too-few-
and-too-bright” model bias (Nam et al., 2012). In the deep tropics, PaleoCalibr simulates a smaller cloud frac-
tion than CESM2, which agrees less with observations. Over the SO, PaleoCalibr cloud fraction and its phase 
partition are similar to the standard CESM2, suggesting that the improvement from CESM1 to CESM2 in the SO 
clouds is largely preserved in PaleoCalibr. On average, PaleoCalibr has a more positive SWCF over middle-to-
high latitudes and more negative SWCF over the lower latitudes than CESM2.

We next evaluate the coupled simulation of PaleoCalibr in a CMIP historical simulation. PaleoCalibr reproduces 
the magnitude of the global warming (∼1.1°C; Figure 10) from 1850 to 2014 CE in the Hadley Centre-Cli-
mate Research Unit Temperature Anomalies (HADCRU4) and the Goddard Institute for Space Studies Surface 
Temperature Analysis (GISTEMP; Jones et al., 2012; Lenssen et al., 2019). The large internal variability relative 
to the forced response prevents us from a more quantitative evaluation of the temporal characteristics of the 
historical simulation (green in Figure 10; Kay et al., 2015), but a visual examination suggests that the perfor-
mance of PaleoCalibr is as good as the ensemble of three CESM2 historical simulations (red, orange, and pink 
in Figure 10).

The spatial characteristics of the PaleoCalibr historical simulation match observations and reanalysis reasonably 
well with skills largely similar to the standard CESM2, which is summarized in a Taylor diagram (Figure 11). 
The model performance is evaluated against observations of SST from the Extended Reconstructed Sea Surface 
Temperature version 5 (ERSST; Huang et  al.,  2017), precipitation from the Global Precipitation Climatol-
ogy Project version 2.3 (GPCP; Adler et  al.,  2018), TOA cloud radiative forcing from CERES-EBAF (Loeb 
et  al.,  2018), and the surface air temperature, sea-level pressure, and zonal wind at 300 hPa from the ERA5 
(Hersbach et al., 2020). All the metrics are calculated for the mean fields averaged between 1979 and 2014, except 
for the CERES-EBAF cloud radiative forcing that is averaged between 2000 and 2014. The mean bias of all the 
fields examined is in the same category between PaleoCalibr and CESM2 (marker size in the Taylor diagram), 
except for precipitation that has a larger relative bias in PaleoCalibr (11.2% vs. 9.6%). Statistics for surface air 
temperature (labeled “2”) and longwave cloud forcing (labeled “5”) are very similar between the PaleoCalibr and 
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CESM2. The shortwave cloud forcing (SWCF; labeled “4”) shows a larger difference, which is consistent with 
results from the AMIP simulations. As a result of the more positive SWCF over middle-to-high latitudes and 
more negative SWCF over the lower latitudes, SST in PaleoCalibr is warmer by <1°C over mid-to-high latitudes 
and colder by <0.5°C over lower latitudes (not shown) with a larger centered pattern error than in CESM2 (label 
“3” in Figure 11). Small degradation in the normalized RMSD is also found in zonal wind at 300 hPa (label “6”) 
and precipitation (label “7”) with the former having insufficient spatial variance and the latter having too much 
spatial variance.

Based on the above analysis, we conclude that PaleoCalibr performs as well as the standard CESM2 in the 
simulation of key cloud and climate observations. We note that some aspects of PaleoCalibr simulations could 
be improved through additional parameter tuning that may have little net impact on climate sensitivity, but an 
extensive re-tuning of the model is beyond the scope of this study.

4.2. A Lower ECS and Weaker Cloud-Aerosol Interactions

ECS is quantified to be 3.9°C in PaleoCalibr by regressing GMST and TOA radiation in an abrupt 4 × CO2 
simulation of 150 years, which is much lower than the 5.3°C in CESM2 (Figure 12). If the first 20 years are 
used in the regression, the difference in the estimated ECS between PaleoCalibr and CESM2 is much smaller 
(ΔECS  =  0.2°C; 3.2°C vs. 3.4°C), suggesting that the effect from PaleoCalibr changes manifests mostly at 

Figure 9. Comparison of model simulations against (a) the zonal mean total cloud fraction in Cloud-Aerosol Lidar and 
Infrared Pathfinder Satellite Observation (CALIPSO), International Satellite Cloud Climatology Project (ISCCP), and 
Multiangle Imaging Spectro-Radiometer (MISR), (b) the CALIPSO liquid cloud fraction, (c) the CALIPSO ice cloud 
fraction, (d) the Clouds and the Earth's Radiant Energy System Energy Balanced and Filled Edition-4.1 (CERES-EBAF) 
shortwave cloud forcing (SWCF), and (e) the CERES-EBAF longwave cloud forcing (LWCF). Model variables are from 
Atmospheric Model Intercomparison Project historical simulations with an active Cloud Feedback Model Intercomparison 
Project Observational Simulator Package. Averages between 2000 and 2014 are used for the model-data comparison, except 
for the CALIPSO cloud fraction and phase partition that are averaged between 2008 and 2020. ISCCP and MISR cloud 
fraction is plot between 60°S and 60°N. MISR cloud fraction values are over ocean only.
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timescales longer than 1‒2 decades. With additional SOM simulations with 
an abrupt 2 × CO2, ECSSOM are estimated to be 4.0°C and 6.1°C in Paleo-
Calibr and CESM2, respectively. The lower ECS in PaleoCalibr is consistent 
with the much smaller magnitude of LGM global cooling (Figure 7). The 
shortwave cloud feedback averaged over the last 20 years of the 4 × CO2 
simulations are 0.52 and 0.74 W m −2 K −1 in PaleoCalibr and CESM2, respec-
tively. The shortwave cloud feedback shows lower values over the mid-lati-
tudes and the SH subtropics (Figure 13a). Compared to CESM2, the reduced 
shortwave cloud feedback in PaleoCalibr is more consistent with the obser-
vation-based estimates (Ceppi & Nowack, 2021; Cesana & Del Genio, 2021; 
Myers et al., 2021).

PaleoCalibr simulates an ACI that is 20% weaker than CESM2. ACI is 
quantified as the change in the net cloud radiative forcing between a pair of 
atmosphere-only simulations with aerosol emissions at 2000 CE and 1850 
CE, forced with the same observational SST and sea ice (IPCC, 2013). ACI 
are −1.3 and −1.7  W m −2 in PaleoCalibr and CESM2, respectively. ACI 
weakening is mostly found at mid-to-high latitudes, where we also observe 
decreases in the shortwave feedback (Figure 13). This highlights the fact that 
aerosol forcing and cloud feedback are not independent variables (Gettelman 
et al., 2019; Kiehl, 2007). A weaker GHG-induced warming and a weaker 
aerosol-induced cooling may explain the comparable historical warming 
between PaleoCalibr and CESM2 (C. Wang et  al.,  2021; Meehl, Senior, 
et al., 2020).

5. Conclusions and Discussion
In this study, we have investigated the impact of key cloud parameterizations of CESM2 on the simulated LGM 
global temperature through coupled simulations with individual CAM6 schemes substituted one-at-a-time by 
older CAM5 schemes. Our investigation takes advantage of the fact that CESM2(CAM6; referred to as CAM6) 
simulates an excessive LGM cooling but the CESM2(CAM5; referred to as CAM5) LGM simulation falls within 
the proxy suggested range (4.6°C–6.8°C; Tierney et al., 2020). The different performances of the LGM simula-
tions imply that changes in the cloud parameterizations between CAM5 and CAM6 are responsible for the exces-
sive LGM cooling and therefore the high climate sensitivity of CESM2. Our simulations show that the substitution 
of CAM6 ice nucleation or cloud microphysics scheme with the CAM5 version (HetFrzOff or Mg2Off) produces 
a much more realistic LGM than the default CAM6. In contrast, substituting the moist turbulence scheme to the 
CAM5 version (ClubbOff) has a small impact. Specifically, the LGM ΔGMST after 100 model years are −9.0°C, 
−6.3°C, −6.3°C, −5.9°C, and −8.9°C in the LGM simulations using CAM6, CAM5, Mg2Off, HetFrzOff, and 
ClubbOff, respectively. The different magnitude of LGM cooling in these simulations is primarily caused by 
variations of the shortwave cloud feedback, which are 0.81, 0.29, 0.49, 0.37, and 0.64 W m −2 K −1, respectively. 
These sensitivity tests suggest that the increased climate sensitivity in CESM2 is largely determined by cloud 
microphysical processes, which has guided our further examination.

Further exploration suggests that a combination of two changes in cloud microphysics (NoNimax and Mg2Sub8) 
reduces the excessive LGM cooling in CESM2 to a value that is consistent with the proxy reconstruction. 
NoNimax improves the physical consistency of mixed-phase clouds through removing an inappropriate limiter 
(“nimax”) on cloud ice number. NoNimax simulates a greater cloud ice mass and a weaker shortwave cloud 
feedback but produces excessive numbers of cloud ice particle (with the “nimax” limiter removed). To ensure a 
realistic simulation of cloud ice particle number, we perform microphysical substepping (Mg2Sub8; 8 substeps 
in MG2), which reduces the default microphysical timestep from 600 to 75 s Mg2Sub8, when combined with 
NoNimax, further weakens the shortwave cloud feedback, and simulates a realistic LGM global cooling. In our 
test simulations, 8 substeps in MG2 are sufficient to produce converging solutions in cloud ice particle number 
and the shortwave cloud feedback.

Figure 10. Time series of the global mean surface temperature anomaly 
during the historical period from observations (black), the Community 
Earth System Model version 2 historical simulations using Community 
Atmosphere Model version 6 (three members in red, orange, and pink), and 
the paleoclimate-calibrated configuration (PaleoCalibr; blue). Results from 
the CESM1 Large Ensemble (CESM1LE; green) are shown as a reference 
for a possible range of internal variability. The observations are from the 
HADCRU4 and Goddard Institute for Space Studies Surface Temperature 
Analysis. Temperature anomalies are calculated from the respective 1,850–
1,900 averages.
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A paleoclimate-calibrated CESM2 configuration (PaleoCalibr) is developed, 
which consists of NoNimax and Mg2Sub8 in the cloud microphysics, as well 
as a minimal model tuning. A historical simulation using PaleoCalibr repro-
duces the observed twentieth century warming. PaleoCalibr also simulates 
the spatial characteristics of key cloud and climate variables very well with 
improvements in the cloud fraction and its phase partition. PaleoCalibr has a 
lower ECS (∼4°C) than the standard CESM2 (∼5°C–6°C) and realistic LGM 
global cooling (∼7°C). PaleoCalibr simulates a 40% weaker shortwave cloud 
feedback and a 20% smaller aerosol cloud interaction.

We believe PaleoCalibr is a valuable tool in climate change studies, espe-
cially when a large climate forcing is involved. Removing the cloud-ice-num-
ber limiter represents a more physically consistent treatment of the cloud ice 
nucleation process than the standard CESM2. The use of a smaller micro-
physical timestep is supported by Santos et al. (2020), who find that multiple 
microphysical processes in atmosphere-only preindustrial simulations using 
MG2 are poorly resolved with a microphysical timestep of 300 s. Our results 
further show that a shorter microphysical timestep decreases the shortwave 
cloud feedback and climate sensitivity and that a timestep of 75 s seems to 
produce a convergent solution in a configuration with the ∼2° atmosphere. 
Further study is needed to examine which microphysical processes are 

Figure 11. A Taylor diagram evaluating key climate variables in Community Earth System Model version 22 and 
PaleoCalibr coupled historical simulations using observational and reanalysis data sets. Model simulated sea level pressure, 
surface air temperature, and zonal wind at 300 hPa are compared with averages between 1979 and 2014 from ERA5, 
shortwave and longwave cloud radiative forcing compared with averages between 2000 and 2014 from Clouds and the 
Earth's Radiant Energy System Energy Balanced and Filled Edition-4.1, precipitation compared with averages between 1979 
and 2014 from Global Precipitation Climatology Project version 2.3, and sea surface temperature compared with averages 
between 1979 and 2014 from Extended Reconstructed Sea Surface Temperature version 5.

Figure 12. Scatter plot of the global mean surface temperature anomaly 
(ΔGMST) and the top-of-atmosphere net radiation (ΔN) in the abrupt 4 
× CO2 simulations using Community Earth System Model version 22 and 
PaleoCalibr. 4 × CO2 simulations are run for 150 model years. equilibrium 
climate sensitivity is estimated using the regression method, that is, a half of 
the x-axis intercept.
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responsible for the timestep dependence, including the rain evaporation and 
self-collection processes (Santos et al., 2020).

We note that all the test simulations and the paleoclimate-calibrated config-
uration in this study use the CESM2 with a ∼2° atmosphere. We expect that 
the overall impact from removing the “nimax” and microphysical substep-
ping is largely independent of model resolution, but some details including 
the tuning parameters need to be examined if the ∼1° atmosphere model is 
used. For example, the exact microphysical substep number that produces 
a converging cloud feedback could be different due to the different model 
resolution and parameters. We note further that we have intentionally not 
performed parameter tuning for each CESM2 sensitivity configuration, 
which leads to a warmer preindustrial GMST in coupled and SOM simula-
tions in some configurations (e.g., GMST is 17.8°C in the PI SOM simula-
tion with Mg2Off). As a consequence and caveat, part of the differences in 
ECS and cloud feedback between CESM2 configurations could be caused 
by their state dependence, instead of changes in cloud treatment. However, 
we believe that the impact of state dependence on the global mean short-
wave cloud feedback is small (<<0.1 W m −2 K −1) in simulations presented 
here, considering that the shortwave cloud feedback in CESM2 increases 
from 0.97 to 1.07 W m −2 K −1 when the background GMST increases from 
15.2°C to 20.7°C (Zhu & Poulsen, 2020). Nevertheless, the large trend in the 
CESM2 test simulations (Table 1) prevents us from a meaningful examina-
tion of the simulated regional temperatures and the comparison with proxy 
SSTs in these test simulations.

Our study highlights the unique value of paleoclimate constraints in inform-
ing the cloud parameterizations and ultimately future climate projections. 

Among the CESM2 configurations that are explored in this study, a close correlation is found in cloud feedbacks 
and temperature responses between CO2 increasing and paleoclimate simulations (Table 1 and Figures 1 and 3d), 
which indicates that a common set of physical processes are active in past and future climates and serves as the 
physical basis for a paleo-constraint on clouds and climate sensitivity (e.g., Hargreaves et al., 2012; Schmittner 
et al., 2011; Zhu et al., 2020). Although the paleoclimate forcing and global temperature response do not provide 
process-level constraints on cloud feedback processes, they serve as a critical “out-of-sample” test for the cloud 
parameterizations that are usually developed to match the present-day observations. We encourage the use of 
paleoclimate constraints as an important tool in future model development and validation, as our knowledge of 
past climates continues to improve and climate models become more complex. We have ongoing work to evaluate 
the performance of the paleoclimate calibrated CESM2 in simulating past extreme warm climates, such as the 
Early Eocene (Zhu et al., 2020).

Data Availability Statement
CESM2 model code is available at https://doi.org/10.5281/zenodo.3895315. CESM2 code modifications and 
simulation data developed in this study are available via the Digital Asset Services Hub (https://doi.org/10.5065/
bdr7-wt42).
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