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Abstract

Fragile X syndrome results from the loss of expression of the Fragile X Mental Retardation

Protein (FMRP). FMRP and RNA helicase Moloney Leukemia virus 10 (MOV10) are impor-

tant Argonaute (AGO) cofactors for miRNA-mediated translation regulation. We previously

showed that MOV10 functionally associates with FMRP. Here we quantify the effect of

reduced MOV10 and FMRP expression on dendritic morphology. Murine neurons with

reduced MOV10 and FMRP phenocopied Dicer1 KO neurons which exhibit impaired den-

dritic maturation Hong J (2013), leading us to hypothesize that MOV10 and FMRP regulate

DICER expression. In cells and tissues expressing reduced MOV10 or no FMRP, DICER

expression was significantly reduced. Moreover, the Dicer1 mRNA is a Cross-Linking Immu-

noprecipitation (CLIP) target of FMRP Darnell JC (2011), MOV10 Skariah G (2017) and

AGO2 Kenny PJ (2020). MOV10 and FMRP modulate expression of DICER1 mRNA

through its 3’untranslated region (UTR) and introduction of a DICER1 transgene restores

normal neurite outgrowth in the Mov10 KO neuroblastoma Neuro2A cell line and branching

in MOV10 heterozygote neurons. Moreover, we observe a global reduction in AGO2-associ-

ated microRNAs isolated from Fmr1 KO brain. We conclude that the MOV10-FMRP-AGO2

complex regulates DICER expression, revealing a novel mechanism for regulation of

miRNA production required for normal neuronal morphology.

Introduction

Neuronal architecture is affected in many neurodevelopmental disorders. Fragile X syndrome

(FXS) is caused by loss of the RNA binding protein (RBP) FMRP [1]. Extensive characteriza-

tion of FMRP loss in Drosophila, mice and humans has led to robust observations revealing

the role of FMRP in the development of abnormal dendritic spines [2]. FMRP has also been

shown to play an important role in neuronal maturation. FXS patient-derived neurons from

induced pluripotent stem cells (iPSCs) and hippocampal neurons from neonatal Fmr1 knock-

out (KO) mice and adult Fmr1 knockdown (KD) exhibit defects in neurite extension and den-

dritic maturation [3–7].
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FMRP binds to both the coding region of mRNAs and the 3’ UTR [1, 2–9]. It is still poorly

understood how loss of a single protein can lead to cognitive impairment although it is known

that RBPs seldom act alone, existing in complexes with other RBPs and with the intermediary

carrier of information, the mRNA, can enact widespread translational changes depending on

their target [2, 10, 11].

FMRP functionally associates with the RNA helicase MOV10 [12], a component of the

microRNA (miRNA) pathway and cofactor of Argonaute family members AGO1 and AGO2

[13, 14]. Through Cross-Linking ImmunoPrecipitation (CLIP) experiments, it has been estab-

lished that FMRP and MOV10 share a common RNA interactome. Unlike FMRP, the Mov10
knockout (KO) is embryonic lethal [15, 16]; however the Mov10 heterozygous (Het) mouse

has increased anxiety and hyperactivity, which are features shared with Fragile X syndrome

[17] and suggest impaired neuronal function [15]. We were thus interested in investigating the

consequences of Mov10 and Fmr1 reduction on dendritic development. Here we show that

loss of FMRP and MOV10 leads to impaired dendrite maturation.

MOV10 and FMRP work dynamically to regulate expression of the Dicer1 mRNA. DICER, a

type III endonuclease, generates the final functional miRNA from pre-miRNAs, and is highly

regulated at every stage of transcription and translation from primary transcript processing to

enzyme activity [18]. DICER associates with AGO2 to facilitate the transfer of the mature

miRNA. It is unknown what other RBPs participate in this process. Many groups using different

organisms have shown that both FMRP and MOV10 associate with DICER and AGO2 [2, 8, 19,

20]). In addition, a recent paper provides compelling evidence that FMRP binds some miRNAs

in regions outside of the seed sequence [20]. This would be an intriguing mechanism for FMRP

to recruit specific AGO-miRNA complexes to its bound mRNAs. Here, we provide evidence for

local miRNA production through regulation of DICER1 expression by FMRP and MOV10.

Materials and methods

Animals

Experiments were performed on C57BL6/J WT, Mov10 Het and Fmr1 KO mice from both

sexes (The Jackson Laboratory, Bar Harbor, ME). Animals were kept on a 12/12 hour light/

dark cycle with food and water ad libitum. All experiments were performed during the light

phase (7 AM-7 PM). Animals were treated in accordance and with compliance with Institu-

tional Animal Care and Use Committee (IACUC) guidelines, IACUC protocol 19112.

Hippocampal neuron culture

Mov10 heterozygotes were genotyped at postnatal day 0 (P0) using tail samples and DNA was

extracted with the KAPA Fast Extract Kit (#KK7103, KAPA Biosystems, Wilmington, MA).

After genotyping, mouse hippocampi were dissected and cultured as described [21]. Coverslips

were coated overnight with 10 μg/mL poly-L-lysine (#P4704, Sigma, St. Louis, MO) and 105

cells/well were plated for immunofluorescence (IF) in minimum essential medium (MEM)

supplemented with 10% fetal bovine serum (FBS). After 24 h, the medium was switched to

Neurobasal (NB) medium (#21103049, Gibco, Dublin, Ireland) supplemented with B-27

(#17504–044, Gibco). Half of the media was removed and replaced with fresh NB medium

every three days. Neuron culture was performed on at least 3 litters from each genotype.

Immunofluorescence and microscopy of cultured neurons

Neurons grown on coverslips were fixed in 4% paraformaldehyde for 10 minutes at room tem-

perature. Samples were blocked in 10% normal donkey serum (#017-000-121, Jackson
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ImmunoResearch, West Grove, PA) for 30 min at room temperature. MAP2 antibody (1:1000

dilution, # AB5622, RRID: AB_91939, Millipore, Burlington, MA) was incubated overnight at

4˚C. Secondary antibody (Alexa 594 goat anti-rabbit [1:4000, RRID:AB_2307325, Jackson

ImmunoResearch, 111-585-144,]) was added for 2 h at room temperature. Coverslips were

inverted unto glass slides containing mounting media with 1 μg/mL 40,6-diamidino-2-pheny-

lindole (DAPI). Fluorescence images of DIV14 neurons were obtained with a Zeiss LSM 700

inverted confocal microscope (Zeiss, Oberkochen, Germany) using a 40× and 63× EC Plan-

Neufluar 1.30 oil objective respectively. Images were captured with a cooled charge-coupled

device (CCD) camera running Zen 2012 software (Zeiss). A total of 10–15 0.2-μM-thick sec-

tions were acquired as z-stacks for each neuron imaged.

Neuronal transfection

P0 brains from Fmr1 knockout mice Mov10 heterozygotes mice were harvested for hippocam-

pal neuron culture as above and on DIV2 transfected with pDESTmycDICER, (Addgene plas-

mid # 19873; RRID:Addgene19873) and empty MYC- or EGFP- expression vector plasmid

DNA (Stratagene and Clontech, respectively) using Lipofectamine 2000 (Thermofisher

#11668019) for 15 minutes. Half of the transfection media was removed and replaced with

Neurobasal (NB) medium (#21103049, Gibco, Dublin, Ireland) supplemented with B-27

(#17504–044, Gibco). After four hours, media was fully replaced, and half of the media was

removed and replaced with fresh NB medium every three days. At DIV 7, neurons were pre-

pared for immunofluorescence. Transfection efficiency was measured as percentage of MYC-

expressing cells per number of cells plated on coverslip (~50,000) cells and for both conditions,

was ~ 0.05%.

Sholl analysis

Anonymized Sholl analysis of all orders of branches (Total Sholl) was performed using confo-

cal z-stacks of WT, Mov10 Het, and Fmr1 KO DIV14 neurons immunostained for MAP2 and

imported into ImageJ (Fiji, RRID:SCR_002285). A dendritic complexity analysis, including

Sholl analysis, was performed according to the protocol described [22]. Neurite lengths from

the soma and soma size area were traced and measured using Image J software and SNT plugin

and the data were compiled and analyzed using the Excel program (RRID:SCR_016137,

Microsoft, Redmond, WA) and GraphPad Prism (RRID:SCR_002798, San Diego, CA).

Neurite outgrowth

WT and Mov10 KO N2A cells were plated in triplicate (density of 1.5 x 104cells/well) and incu-

bated at 37˚C in Dulbecco’s modified Eagle’s medium (DMEM, 10% fetal calf serum). Cells

were allowed to differentiate for 48 hours in DMEM (2% FCS) and 20uM Retinoic Acid

(Sigma-Aldrich) and imaged under transmitted light using an EVOS cell-imaging microscope

(Thermofisher). The images were anonymized and analyzed by an experimenter blinded to

the conditions using the Axiovision Image analysis software (Zeiss). 800–1000 differentiated

neurons were counted from 10 images per condition.

Golgi staining

Brain tissue was processed separately in three sets of experiments performed at different times

from P14 WT (n = 5), Fmr1 KO (n = 5) and Mov10 Het (n = 4). Animals were deeply anesthe-

tized with sodium pentobarbital injection (60 mg/kg, i.p.) and transcardially perfused with

0.9% saline, pH 7.4. The brains were immediately processed for Golgi–Cox analysis using a
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standard protocol [23], embedded in celloidin [24] and sectioned in a coronal plane at 175 μm.

Spine analysis was conducted as outlined by [24] from somatosensory cortex. Briefly, a 10 μM

region was selected from each branch (apical and baslar) and all spines in that region were

counted and categorized based on morphology. The same region was subsequently utilized for

the dendrite width measurements.

Western blot

Samples from at least three biological replicates were prepared for immunoblotting after quan-

tification by Bradford assay and suspension in 1× sample buffer, resolved by SDS-PAGE and

analyzed by western/immunoblotting. Briefly, membranes were blocked with 10% non-fat dry

milk in phosphate-buffered saline (PBS) containing 1% TWEEN-20 for 1 h at room tempera-

ture. Primary antibody was applied for 1 h at room temperature or overnight at 4˚C followed

by a brief wash in 1% non-fat milk PBS containing 1% TWEEN-20 wash buffer. Horseradish

peroxidase (HRP)-conjugated secondary antibody was applied at 1:5000 dilution for 1 h at

room temperature and washed 4 × 15 min using wash buffer. The HRP signal was detected

using an enhanced chemiluminescent (ECL) substrate and exposed using iBright digital imag-

ing platform. The antibodies used were anti-Dicer (1:100, #sc-393328, RRID:AB_2802128,

Santa Cruz Biotechnology, Santa Cruz, CA). anti-eIF5 (RRID:AB_631427, Santa Cruz) at

1:5,000, anti-KIF1A (1ug/ml), (#ab91029, RRID:AB_10862338, Abcam, Cambridge, United

Kingdom), 1:1000 anti-MAP1b (# 21633-1-AP, RRID:AB_10793666, Proteintech Group,

Rosemont, IL), and HRP-conjugated anti-rabbit and anti-mouse antibodies (RRID:

AB_772191, GE Healthcare, Chicago, IL) and Jackson Immunoresearch, (RRID:AB_2338512)

respectively. The level of significance and tests performed are described in the Fig legends for

each experiment.

Luciferase reporter assays

Luciferase assay constructs were obtained from Addgene (RRID:SCR_002037, Cambridge,

MA). N2A or HEK293T cells were seeded at 5x104 cells into a 24 well plate for 24 hours and

transfected with irrelevant or Fmr1-specific siRNAs (M-019631-00-0020; D-001810-0X, Dhar-

macon, Lafayette, CO) using Lipofectamine 2000 (Thermofisher #11668019) for N2A and PEI

(Thermofisher #BMS1003-A) for HEK293T for 4 hours. Addition of siRNAs was repeated

daily for 72 hours, followed by transfection on Day 4 with luciferase constructs. The procedure

was identical for transfection of miRNA mimics (C-310389-05-0002; C-310532-05-0002; C-

310427-07-0002, Dharmacon) and pIS1 DICER1 long-mut-miR103/107, (Addgene plasmid #

21652; RRID:Addgene_21652) into N2A cells. For N2A cells, seeding was identical, and trans-

fection of control and luciferase reporter constructs was 24 hours after initial seeding. 1 μg of

luciferase (renilla only) containing reporter was transfected along with 10–50 ng of pluc vector

(firefly) post knockdown and 24 hours after initial seeding in N2A cells. Luciferase activity was

measured in quadruplicate using a dual luciferase reporter assay kit (#E1910, Promega,

Madison, WI) on a SynergyTM HT Multi-detection plate reader (Biotek, Winooski, VT) 24

hours post-secondary transfection. Renilla expression from the Dicer “long” 3’UTR construct

was normalized to the firefly expression as a control for transfection efficiency. For miRNA

mimic and miR deletion and OE experiments, the Dicer "short" 3’UTR was subtracted to

account for the effect of MOV10 and FMRP on the luciferase coding sequence itself. Finally,

single variate ANOVA was performed to determine if there were any statistically significant

differences among the treatment groups versus control followed by a Student’s t-test. All mea-

sured data are expressed as means +/- SEM.
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eCLIP of P0 WT and Fmr1 KO brain

P0 Brains from Jax WT C57BL/6 and Fmr1ko mice were sent to Eclipse BioInnovations (San

Diego, CA). eCLIP was performed per [25], using anti-AGO2 antibody (EAG009, Eclipse

BioInnovations). Briefly, single-end (75nt) sequencing was performed on the HiSeq 4000 plat-

form (Illumina, San Diego, CA). The first 10 nt of each read contains a unique molecular iden-

tifier (UMI) which was extracted from each read with UMI tools (version 5.2) and appended

to the end of the read name. Next, sequencing adapters were trimmed from the 3’ end of each

read. Reads were then mapped to a database of mouse repeats using STAR (version 2.6.0c)

Reads that mapped to the repeats were removed. The remaining reads were mapped to the

mouse genome (mm10) using STAR (version 2.6.0c). PCR duplication removal was performed

using UMI tools (version 5.2). CLIP per (version 1.4) was then used to identify clusters within

the IP samples, and read density within clusters was compared against the size matched input

sample using a custom perl script to identify peaks enriched in the CLIP sample versus the

input sample. The significance threshold was -log10(P-value) � 3 and a log2 fold change � 3.

miRNAseq of P0 WT and Fmr1 KO brain

University of Illinois Urbana Champaign sequencing center prepared the libraries from three

P0 brains from each genotype and sequenced using NovaSeq 6000 and performed FASTQC

(version 0.11.8) on individual samples (N = 3 of each genotype). Average per-base read quality

scores are over 30 until ~90 bp and no adapter sequences were found indicating those reads

are high in quality. The Sequence Length Distribution plot shows a large spike at 22 bp that are

the mature miRNA and a smaller spike at 66 which are tRNAs and hairpin/precursor miRNAs.

Weighted counts to mature miRNA, hairpin miRNA and tRNAs were generated. Percentages

of total reads that mapped to any of these three ranged from 58.6 to 64.8% (S4 Fig). The map-

ping percentage did not differ between WT and Fmr1 KO samples. The unmapped reads were

discarded while the number of remaining reads (range: 31.5–37.9 million per sample) were

kept for further analysis which were then mapped onto each small RNA type.

A total of 3,429 smRNAs (1,978 mature, 1,234 hairpin and 217 tRNA) were detected. The

detection threshold was set at 0.25 cpm (counts per million) in at least 3 samples, which

resulted in 2,413 genes being filtered out, leaving 1,016 smRNAs (795 mature, 99 hairpin and

122 tRNA) to be analyzed for differential expression that contain 99.99% of the reads. After fil-

tering, Trimmed Mean of M values (TMM) normalization was performed again (S4 Fig) and

normalized log2-based count per million values (logCPM) were calculated using edgeR’s cpm

() function with prior.count = 2 to help stabilize fold-changes of extremely low expression

genes. Differential gene expression (DE) analysis was performed using the edgeR-quasi

method (edgeR version 3.30.3). Multiple testing correction was done using the False Discovery

Rate method.

Results

Both Mov10 Heterozygote (Het) and Fmr1 Knockout (KO) cultured

hippocampal neurons show abnormal morphology

We cultured hippocampal neurons from Mov10 Het mice and showed that they have signifi-

cantly reduced dendritic arborization compared to wild type (WT) [(p < .0001, Fig 1A and

1C) and [15]. Because MOV10 and FMRP bind a common set of mRNAs [15] and colocalize

in dendrites [26], it was logical that FMRP would also be required for normal dendritic arbori-

zation of hippocampal neurons, as reported by others [3–7, 27].

PLOS ONE FMRP and MOV10 regulate Dicer1 expression and dendrite development

PLOS ONE | https://doi.org/10.1371/journal.pone.0260005 November 30, 2021 5 / 22

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1371/journal.pone.0260005


Fig 1. Mov10 Het hippocampal neurons show an abnormal morphology similar to Fmr1 KO neurons. (A) MAP2/DAPI

immunostaining of hippocampal neurons from DIV14 WT, Mov10 het, and Fmr1 KO neurons. Neurons were prepared from 3

independent litters of each genotype and thus, 3 independent cultures. The total number, N, was compiled from the three biological

experiments. (B) Dendritic morphology analysis of average dendritic length, dendritic nodes and primary branches. Confocal z-stacks of

MAP2-stained WT, Mov10 het and Fmr1 KO DIV14 neurons were analyzed. (C) Dendritic morphology analysis. Confocal z-stacks of

PLOS ONE FMRP and MOV10 regulate Dicer1 expression and dendrite development

PLOS ONE | https://doi.org/10.1371/journal.pone.0260005 November 30, 2021 6 / 22

https://doi.org/10.1371/journal.pone.0260005


We characterized the neurons by measuring average dendrite length, average dendritic

branch points, called nodes, and the number of primary branches. Neurons from the Mov10
Het and the Fmr1 KO had significantly shorter dendrites than those of WT; however, dendrite

length was not significantly different between the Mov10 Het and the Fmr1 KO neurons (p <

.001, Fig 1B). In contrast, the average number of dendritic nodes and the number of primary

branches in the Mov10 Het neurons were significantly reduced compared to WT (p < 0.05);

furthermore, these same features in Fmr1 KO neurons were significantly reduced compared to

both WT and Mov10 Het (p < .0001, Fig 1B), suggesting that the reduction in both the number

of nodes and the number of primary branches may underlie the results illustrated in Fig 1A.

Concordantly, we observed significantly reduced dendritic branching in the Fmr1 KO neurons

compared to WT within 190 micrometers from the cell body. The amount of branching of the

Fmr1 KO neurons was also significantly reduced compared to the Mov10 Het neurons within

50 micrometers of the cell body, suggesting that complete loss of FMRP was more detrimental

to normal dendritic arborization than a 50% reduction in MOV10 (p < .0001, Fig 1C).

Our results agree with independent studies of neurons in Fmr1 KO mice, which had signifi-

cant reductions in dendritic complexity, total dendritic length, number of branching points

and number of dendritic ends compared to WT neurons in the dentate gyrus [4, 7, 27]. A simi-

lar result was observed with FXS human neurons which also exhibited impaired dendritic mat-

uration [7].

It was previously shown that loss of MOV10 and FMRP results in shorter neurites in a

murine neuroblastoma cell line (Neuro2A) compared to WT [15]. When we measured the

length and width of neurites in Mov10 KO Neuro2A, we confirmed that in the absence of

MOV10, neurites are shorter than in the WT cells independent of the amount of retinoic acid

(RA) used to differentiate the Neuro2A cells (p < 0.001, S1A–S1C Fig). Furthermore, we

found that the neurites have a larger width in the absence of MOV10 (p < 0.001, S1D Fig).

Reduced expression of Mov10 leads to smaller soma size

When we further analyzed our neurons in culture, one individual characteristic stood out: a

reduction in soma size between WT and Mov10 Het (Fig 2). A reduction in cell body size is a

feature observed in various X-linked disorders, including human FXS neurons [5] and Rett

syndrome [28]. It has also been observed in schizophrenia [28–31]. Accordingly, we quantified

the cell soma of the Mov10 Het neurons compared to WT neurons and discovered a significant

reduction in total soma area in Mov10 Het neurons (p < .05, Fig 2A and 2B). We also mea-

sured the soma size of the Fmr1 ko cultured hippocampal neurons and although it, too, was

smaller, it was not significantly different than WT (NS, p < .05, S2A and S2B Fig).

Mov10 Het mice have reduced density of immature dendritic spines

compared to WT

Because we observed a dendritic phenotype in the hippocampal neurons cultured for 14 days

from the three genotypes, we examined dendritic spines in brain sections from animals aged

postnatal day 14 (P14) (Fig 3A; [33]). In WT brains, we observed a significantly increased den-

sity of the immature spines compared to mature spines (p < .0001, Fig 3B and 3C), which was

expected at this particular time point, when rapid pruning is taking place [33, 34]. In contrast,

in the Mov10 Het, the mature spine density was the same as the immature spine density,

MAP2-stained WT, Mov10 het and Fmr1 KO DIV14 neurons were analyzed using Sholl. Statistics were calculated using two-way

ANOVA followed by Bonferroni multiple comparisons test. Error bars indicate SEM and �p < 0.05; ����p < 0.0001 (n = 56 neurons for

WT, n = 94 neurons for Mov10 Het, n = 58 for Fmr1 KO). Scale bar = 10 μm.

https://doi.org/10.1371/journal.pone.0260005.g001
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suggesting an increase in the rate of immature spine elimination when MOV10 is reduced

(NS, Fig 3B and 3C). Thus, MOV10 appears to stabilize immature spines (Fig 3C). This is a

novel role for MOV10 because in Fmr1 KO animals, the ratio of immature to mature spines is

skewed towards thinner, immature spines in four-week-old and adult mice [24, 33, 35, 36–39].

When we examined the spine density of mature and immature spines at P14 in Fmr1 ko mice,

we observed no difference between WT and Fmr1 ko mice. We conclude that FMRP and

MOV10 participate in dendritic arborization but have distinct roles in spine maturation.

We observed no difference in the width of the apical dendritic branches between WT and

Mov10 Het at P14. However, the widths of the apical oblique and basilar dendritic branches

were significantly decreased when MOV10 was reduced (NS, p < .05, p < .0001, Fig 2D).

Recent work shows that dendritic widths may be shaped by intracellular transport and forces

from the cytoskeleton and the area proportionality accords with a requirement for microtu-

bules to transport materials and nutrients for dendrite tip growth [40]. Thus, reduced MOV10

levels likely perturb dendrite formation because MOV10 binds cytoskeletal mRNAs [15].

The impaired neurite phenotype, reduced soma size, and spine maturation have previously all

been found to be associated with impaired miRNA biogenesis [41–44]. miRNAs are 22–26 nucle-

otides long [45] and are produced upon processing from a longer precursor RNA by the endonu-

clease DICER [46–51]. Once processed, miRNAs complex with AGO2, forming what is referred

to as the RNA induced Silencing Complex (RISC). Since both MOV10 and FMRP are known

interactors of AGO2 and are involved in miRNA-associated regulation [12, 26, 52–57], we asked

whether miRNA biogenesis could possibly be affected by the loss of MOV10 and FMRP.

Global reduction of AGO2-associated miRNAs in the absence of FMRP

We were interested in the FMRP dependence of AGO2-association with RNAs, thus, queried

miRNA association with AGO2 in WT and Fmr1 KO P0 brain using enhanced CLIP (eCLIP)

Fig 2. Mov10 Het neurons have a reduction in total soma area in vitro. (A) Immunofluorescence microscopy of

control (WT) and Mov10 Het primary hippocampal neural cultures at 14 days in vitro (DIV14) showing MAP2 (red)

and DAPI [32]. The dashed box indicates the region shown at higher magnification. The area encircled by the white

line indicates the region of soma size analysis. (B) Measurements of soma size area in DIV14 primary hippocampal

neurons revealed a significant reduction in Mov10 Het (n = 94) cell body size compared to WT (n = 56). Data are

presented as mean ± SEM; p values in relation to control (�p < 0.05), (Student’s t-test with Welch’s correction). Scale

bar: 25 μm. Soma sizes are in S2 Table.

https://doi.org/10.1371/journal.pone.0260005.g002
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[25]. The advantage of eCLIP over traditional cross-linking immunoprecipitation (IP) experi-

ments is that it includes the amount of input RNA in the calculation of the RNA enrichment

in the IP [25]. Using this method, we found that the significantly enriched peaks fell within

261 miRNAs (p < .001, Fig 4A, S1 Table), which is a large subset of the 454 miRNAs identified

in an earlier study of P13 brain in association with AGO [58]. The miRNAs are highly corre-

lated between Fmr1 KO and WT but show an average two-fold depletion in the AGO2 IP from

Fmr1 KO compared to WT. Thus, FMRP is required for normal AGO2-miRNA complex for-

mation. Previous work [59] showed that the level of AGO2 protein is the same in WT and

Fmr1 KO mouse brain thus, different AGO2 levels do not explain our result.

Because there is a global reduction in AGO2-associated miRNAs in the absence of FMRP,

we hypothesized that one of the miRNA processing proteins could be compromised—either

decreased or potentially mislocalized in the absence of FMRP. Examination of the original

FMRP brain iCLIP list published by Darnell and colleagues revealed Dicer1 as a target among

the 842 genes identified [60]. Dicer1 is a MOV10 iCLIP target in brain [15] and Dicer1 is also a

target of AGO2 in mouse brain eCLIP [59]. Thus, Dicer1 is one of the 29 genes in the intersec-

tion of these gene sets (Fig 4B). DICER1 expression was significantly reduced in MOV10-

knockdown HEK293 cells [12], suggesting that MOV10 protects both murine Dicer1 and

human DICER1 mRNAs from AGO2-mediated degradation.

Fig 3. Mov10 Het mice have fewer immature spines and wider apical oblique and basilar (secondary and tertiary) branches. (A) Spine

morphology analysis was classified into one of ten different groups, which were further subdivided into immature (yellow) or mature spines (white)

based on [34]. (B) Representative images of cortical neurons from WT and Mov10 Het mice using Golgi staining, scale bar = 2 μm. (C-D) Spine

density and average dendrite width were measured per 10 μm dendritic segments of n = 5 (WT animals (8 neurons total) and n = 4 Mov10 Het

animals (8 neurons total) and n = 5 Fmr1 ko animals. All measured data are expressed as means ± SEM. ����p < 0.0001; NS = not significant;

p > 0.05 (Student’s t-test with Welch’s correction).

https://doi.org/10.1371/journal.pone.0260005.g003
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Finally, because of the impaired dendrite phenotype in Fig 1, we used the DAVID Gene

Functional Classification tool on the significantly changed AGO2-associated mRNAs between

WT and Fmr1 KO brain from an eCLIP experiment [59] and found the mRNAs encode pro-

teins involved in neuron projection (Fig 4C), as previously shown [15].

Reduced DICER expression in the absence of FMRP or MOV10

When MOV10 and FMRP bind in the 3’UTR of their mRNA targets, depending on where

they bind, the fate of the mRNA changes. When FMRP and MOV10 bind in proximity to each

Fig 4. Global miRNA reduction in brain in the absence of FMRP. (A). Two-fold less miRNAs associate with AGO2 in the absence of FMRP. Reads per

million of WT (X-axis) and Fmr1 KO (Y-axis) AGO2-IPs at each cluster that maps to miRNAs. The IPs had a log2 fold change �3 over input and p-

value � 0.001. Solid black line = best fit of data. Dashed blue line = actual fit of data. (B). Venn diagram showing the overlap between brain-derived iCLIP

targets of FMRP [2], MOV10 [15], and AGO2. All three proteins in the brain commonly bound 29 mRNAs (Dicer1 included). (C). GO analysis of the shared

mRNAs from postnatal brain. Y axis: GO terms for Cellular Compartment; X axis: negative log (base 10) of the 15 lowest p values showing FMRP binds

mRNAs encoding proteins involved in neuron projection.

https://doi.org/10.1371/journal.pone.0260005.g004
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other on the mRNA, it appears that FMRP binds first and recruits MOV10 to unwind miRNA

Recognition Elements (MREs) to facilitate AGO2 association [59]. In contrast, when a G-

quadruplex is present in the 3’UTR, FMRP binds it first and binding of FMRP to MOV10

through its KH1 domain stabilizes association of FMRP to the G-quadruplex through its RGG

box [59]. If an MRE is present in proximity to the G-quadruplex, association with AGO2 is

blocked by the FMRP-MOV10 complex and is temporarily protected from degradation [12,

59]. We hypothesized that the FMRP/MOV10/AGO2 complex regulates Dicer1 expression by

“protecting” the Dicer1 mRNA, such that in the absence of FMRP and/or MOV10, DICER

protein levels would be reduced. When we examined DICER expression in WT and Mov10
heterozygote brains, we saw no significant difference (NS, p > .05, S3 Fig). Because MOV10 is

a helicase, we hypothesized that we would need a complete knockout to see an effect. Thus, we

examined DICER expression in cells in which Mov10 and Fmr1, respectively, were knocked

out. We observed reduced DICER expression in the Mov10 Neuro2A KO and in brain extracts

from the Fmr1 KO mouse compared to WT (p < .001, Fig 5A and 5B). It is important to note

that the levels of Dicer1 mRNA do not change in N2A cells in the absence of Mov10 [15] (nor

in the absence of Fmrp [60, 61]), but Dicer1 mRNA is highly expressed in brain, similarly to

Mov10 and Fmr1 mRNA (S3 Fig). Thus, loss of MOV10 or FMRP leads to reduced DICER

expression, presumably by allowing access of AGO2 to block translation.

Changes in the levels of DICER in the absence of MOV10 and FMRP could potentially lead

to a defect in miRNA biogenesis, thus a significantly decreased pool of mature miRNAs. In

fact, other investigators have examined global miRNA levels in Fmr1 KO brains and found dif-

ferences from WT [62, 63]. To test this hypothesis, we performed miRNA-seq in P0 WT and

Fmr1 KO brains. Weighted counts to mature miRNA, hairpin miRNA and tRNAs ranged

from 58.6 to 64.8% (S4A Fig). The mapped reads overwhelmingly came from mature miRNA

ranging from 93.5 to 95.8%, with no obvious difference between WT and Fmr1 KO brains

(S4B Fig). The tRNA reads made up between 4.2 to 6.5% and did not differ between groups

(S4B Fig). The precursor/hairpin only accounted for a tiny of fraction of reads, ranging from

Fig 5. DICER protein expression is significantly decreased in the absence of MOV10 and FMRP. (A, B) Three representative images of WT and

Mov10 KO N2A cells (50 μg) and brain extract (50 μg) from P2 C57BL/6 WT and Fmr1 KO mice immunoblotted for DICER and eIF5 as a loading

control. Bar graphs of four and six biological replicates, respectively, are shown below. All measured data are expressed as means ± SEM. ���p < 0.001

(Student’s t-test with Welch’s correction).

https://doi.org/10.1371/journal.pone.0260005.g005
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0.03 to 0.05%. We had potentially expected to see an increase in hairpin RNA and a decrease

in mature in the Fmr1 KO samples since FMRP regulates Dicer1 and DICER processes hairpin

to mature miRNAs. However, we did not observe any consistent percentage changes between

WT and Fmr1 KO with the exception of two miRNAs, (mmu-miR-144-5p and mmu-miR-

3473c). Our results differ from others likely because the methodologies for miRNA measure-

ment differs as well as the ages of the mice [62, 63]. Therefore, the regulation of DICER expres-

sion by FMRP and MOV10 does not lead to a global reduction in miRNA levels, despite

observing significantly reduced AGO2-miRNA complexes isolated from the Fmr1 ko brain.

Dicer1 3’UTR regulation by MOV10 and FMRP

From the CLIP-seq data we know that MOV10 and FMRP bind murine Dicer1 mRNA and

human DICER1 mRNA in the 3’UTR, respectively. To further dissect the role of MOV10 and

FMRP on the 3’UTR of the DICER1 mRNA, we obtained two human DICER1 3’UTR lucifer-

ase constructs [64]. One contains the entire 3’UTR (referred to as “long”) and the second has

the 3’UTR truncated (referred to as “short”), essentially removing any possibility for miRNA-

mediated regulation (Fig 6A). In the absence of MOV10, luciferase expression of the full length

DICER1 3’UTR is significantly decreased compared to WT (p < .001 Fig 6C). We also knocked

down FMRP in HEK293T cells and observed a similar result (p < .001, Fig 6B and 6D), sug-

gesting that MOV10 and FMRP modulate expression of DICER1 via the 3’UTR.

Next we wanted to identify the specific sites in the 3’UTR of DICER1 through which

MOV10 and FMRP exert their effect. To determine this, we re-aligned the binding sites from

previously published CLIP-seq experiments [12, 65] to map all sequence sets to the same

updated transcriptome. Using these data, we used TargetScan software [66] to determine

which miRNA recognition elements (MRE) were the closest to the CLIP sites of MOV10 and

FMRP. We then tested several different MREs that according to TargetScan, were highly con-

served as potential miRNA binding sites of human DICER1 mRNA. miRNA mimics for miR-

103-3p, miR-195-3p and miR-206 were transfected into WT and Mov10 KO Neuro2A cells fol-

lowed by the DICER1 long 3’UTR luciferase reporter. We found that for the miRNAs tested,

MOV10 had the strongest effect on the miR-103-3p site (p < .001, Figs 6E and S5A). Addition

of miR-103-3p further suppressed the DICER1 long luciferase construct in the absence of

MOV10, suggesting that MOV10 blocks AGO2+miR-103-3p (Fig 6E, middle columns, green).

Moreover, when we introduced a luciferase construct with the miR-103-3p sites deleted, sup-

pression was lifted and expression of the construct in N2A cells was restored (Fig 6E, right col-

umns, red). The fact that loss of the miR 103–3 sites leads to even more expression than WT in

the MOV10 knockout suggests that MOV10 facilitates AGO2 association at other now accessi-

ble MREs in WT.

Overexpression of MYC-Dicer1 rescues impaired neuronal phenotype

To definitively show that it is the loss of DICER expression that is the primary cause of the

shortened neurites, we expressed MYC-tagged Human DICER1 in the Mov10 KO Neuro2A,

Mov10 HET and Fmr1 KO neurons and observed restored neurite length to WT levels (p <

.001, Fig 7A) and improved dendritic arborization within 100 μM of the soma (p < .05, Fig

7B), respectively. Although trending, we did not observe restoration of the dendritic arbor in

Fmr1 KO neurons when Dicer1 was OE (Fig 7C). Given that Fmr1 KO neurons had a more

severe neuronal phenotype, and that MOV10 and FMRP both regulate many different

mRNAs, this result was unsurprising. The data together suggest a mechanism for regulating

local DICER expression when MOV10 and FMRP are present.
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Discussion

Our work reveals a new understanding of how FMRP and MOV10 regulate cobound mRNAs

and neuronal development. Fmr1 KO and Mov10 Het neurons share the features of reduced

dendritic arborization, including reduced dendritic length, number of nodes, number of pri-

mary branches and reduced soma size. Reducing expression of either protein in Neuro2A cells

Fig 6. MOV10 and FMRP modulate expression of Dicer1 mRNA via the 3’UTR (A). Schematic illustration of Dicer1 mRNA with alternative

isoforms. Grey boxes show luciferase coding region; black line represents untranslated regions and AAAAAA represents the poly(A) tail. (B).

Blot (25ug) and graph showing Hek293T cells were treated with Irr small interfering RNA (siRNA) or Fmr1 siRNA (n = 3). (C,D). Effect of

Mov10 loss (in N2A cells) and FMRP KD (in Hek293T) on luciferase expression of full-length 3’ UTR of Dicer1 and the shortest Dicer1
isoform, which was subtracted, as it represents activity independent of miRNA recognition elements. (E) Effect of miR-103-3p overexpression

on Dicer long reporter and deletion of the miR-103-3p sites from the Dicer long construct in the absence of Mov10. Assays were performed in

quadruplicate from three independent experiments. All measured data are expressed as means ± SEM. ���p < 0.001 (single variate ANOVA).

https://doi.org/10.1371/journal.pone.0260005.g006
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Fig 7. Overexpression of MYC-Dicer1 rescues impaired neuronal phenotype. (A) Brightfield and immunofluorescence images of WT or Mov10 ko

N2A, untransfected or transfected with the empty MYC-vector or the MYC-tagged Human Dicer1, as indicated across the top, and stained with the anti-

MYC antibody. The average neurite length was measured and shown on the right. Scale bar = 200 μm. Neurite length in micrometers was measured as

described in the Methods. All measured data are expressed as means ± SEM. ���p < 0.001 (Student’s t-test with Welch’s correction). (B,C). Empty vectors,

either MYC or eGFP, and MYC-tagged Human Dicer1 was transfected (over-expressed [OE]) in Mov10 HET hippocampal neurons (B) and Fmr1 KO
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leads to reduced neurite length and simultaneously reducing both proteins does not lead to a

shorter phenotype [15] suggesting that FMRP and MOV10 operate in the same neurite out-

growth pathway and dendritic arborization. Although FMRP and MOV10 bind some of the

same mRNAs, which includes Dicer1, there is also a large number of RNAs that are unique to

FMRP and MOV10 and it is likely that misregulation of these mRNAs cause the unique spine

features.

Both proteins participate in the miRNA pathway, which plays an important role in normal

dendritic arborization. DICER is the primary producer of miRNAs and its mRNA is directly

bound by FMRP, MOV10 and AGO2 [15, 59, 60]. We observed significantly reduced levels of

AGO2-associated miRNAs in the Fmr1 knockout brain compared to wild type, initially sug-

gesting a global defect in miRNA production in the absence of FMRP; however, that was not

the case based on miRNA-seq of both WT and Fmr1 ko brains, showing that the global

miRNA levels were unchanged. To explain our AGO2-eCLIP results, we propose that FMRP

participates in loading AGO2 with miRNAs (Fig 8A and 8B). In fact, it was recently shown

that FMRP is able to bind miRNAs in regions outside of the seed sequence [20] and miRNAs

are present in the FMRP CLIP lists [8].

hippocampal neurons (C) at DIV 2 followed by immunofluorescence for MYC at DIV 7. Sholl statistics were calculated using two-way ANOVA followed

by Bonferroni multiple comparisons test. Error bars indicate SEM and �p < 0.05 (n = 3 neurons for Mov10 Het empty MYC-vector control, n = 5

neurons for Mov10 Het MYC Dicer overexpression, n = 5 for Fmr1 KO MYC Dicer overexpression, n = 5 for eGFP vector control. Bubbles were removed

from Mov10 Het OE images for easier viewing. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0260005.g007

Fig 8. MOV10 and FMRP interact with AGO2 to regulate Dicer1 mRNA expression. (A). Part I of model showing the recruitment of

AGO to a miRNA following interaction with FMRP (B). Part II of model showing fate of Dicer1 mRNA bound by MOV10 and FMRP.

Binding of both FMRP and MOV10 in proximity of MRE blocks association with AGO2 [12]. In the absence of MOV10 and FMRP,

AGO2 is free to bind the MRE and translational regulation takes place. Pink line indicates MRE.

https://doi.org/10.1371/journal.pone.0260005.g008
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We observed reduced DICER expression in the absence of MOV10 and FMRP in cell lines

and brain, respectively, although since DICER is an enzyme, there must be enough present to

produce normal levels of miRNAs in brain. Thus, we propose that the role of FMRP and

MOV10 on Dicer translation affects local expression of DICER in dendrites. In fact, local acti-

vation of DICER activity in neurons has been demonstrated before [67]. Dynamically altering

local production of miRNAs by changing expression levels of DICER is one way in which neu-

rons could respond to a wide range of temporal and environmental signals [68–70]. The

DICER protein itself, along with FMRP and MOV10, is found in neuronal granules and thus

can be rapidly dendritically and synaptically localized [71–74]. In fact, neuronal granules typi-

cally consist of one mRNA and a large composition of RNA binding proteins [71], suggesting

a mechanism in place for rapid control of miRNA synthesis upon signal stimulation.

We hypothesize that FMRP, like most RNA binding proteins, has many different functions

in the cell, based on its phosphorylation state, its binding partners and its location in the cell.

We might envision that in the cell body, DICER translation is facilitated by the association of

FMRP and MOV10 with its mRNA. When the DICER-AGO-MOV10-FMRP complex is

transported in the dendrite to the synapse, it awaits stimulation which activates DICER to pro-

duce miRNAs locally, which associate with AGO2 through its association with FMRP. Pre-

sumably translation is occurring of FMRP-MOV10 bound mRNAs because this complex

blocks AGO association. However, translation must eventually stop. Perhaps methylation of

FMRP’s RGG box releases the FMRP-MOV10 complex from the 3’UTR of synaptically local-

ized mRNAs and AGO now associates with the mRNAs to block translation.

In addition, there may be many roles for MOV10 in the regulation of miRNA production.

A recent study showed that shRNA-mediated knockdown of MOV10 in spermatogonial pro-

genitor cells resulted in a significant decrease in most miRNAs. The authors suggest that

MOV10 regulates miRNA biogenesis through nuclear RNA metabolism and splicing control,

as levels of the miRNA processing proteins were unchanged [75].

In summary, we describe a novel mechanism that has many potential implications. FMRP

and MOV10—by regulating the Dicer1 mRNA, an indispensable element of the canonical

miRNA processing machinery—could alter downstream expression of many genes. It has been

long known that there is a global increase in protein translation in the absence of FMRP [76].

Much research has focused on finding a single target of FMRP to develop novel therapeutics

for patients with FXS [77]. The work presented here might explain why this granular approach

has so far not yielded a single gene whose deficiencies explain all of the features of FXS. Our

work elucidates how it is possible that so many different genes can be affected by the loss of

Fmr1 and increases our understanding of the role of miRNA biogenesis elements in maintain-

ing proper neuronal cell homeostasis.

Conclusions

Our work provides a new understanding of how the microRNA processing pathway is regu-

lated and a novel mechanism for how FMRP loss leads to a global increase in translation.

DICER is the primary producer of miRNAs and its mRNA is directly bound by FMRP,

MOV10 and AGO2. We observed significantly reduced AGO2-associated microRNAs in the

Fmr1 knockout brain compared to WT. DICER protein is also significantly reduced in both

the Fmr1 knockout brain and in the Mov10 knockout Neuro2A cells, suggesting that FMRP

and MOV10 act to block AGO2-mediated suppression of Dicer1. This work describes how the

FMRP/MOV10/AGO2 complex regulates Dicer1 expression and suggests that FMRP facilitates

loading AGO2 with miRNAs.
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Supporting information

S1 Fig. Mov10 KO Neuro2A cells have shorter and wider neurites compared to WT. (A, B).

Brightfield images of N2A WT and Mov10 KO cells. Scale bar = 200 μm. (C). Quantification of

neurite length of WT and Mov10 KO in the presence of different concentrations of retinoic

acid (RA). Between 800–1000 proliferating and differentiated cells were counted from tripli-

cate experiments, and a total of 10 images were counted per condition. (D). Average neurite

width in differentiated WT and Mov10 KO N2A cells (1 mM RA) were measured n = 100–250

(WT and Mov10 KO). All measured data are expressed as means ± SEM. ���p < 0.001 (Stu-

dent’s t-test with Welch’s correction).

(TIF)

S2 Fig. No change in total soma area in vitro between WT and Fmr1 KO neurons. (A)

Immunofluorescence microscopy of control (WT) and Fmr1 KO primary hippocampal neural

cultures at 14 days in vitro (DIV14) showing MAP2 (red) and DAPI (Jentarra et al., 2010). The

dashed box indicates the region shown at higher magnification. (B) Measurements of soma

size area in DIV14 primary hippocampal neurons in Fmr1 KO (n = 58) compared to WT

(n = 56). Scale bar: 25 μm. Data are presented as mean ± SEM; p values in relation to control

(NS = p > 0.05), (Student’s t-test with Welch’s correction).

(TIF)

S3 Fig. DICER protein levels do not change in brain when Mov10 is reduced. A) Whole P2

WT and Mov10 Het (25 μg) were immunoblotted against DICER with Ponceau S as a loading

control in three independent experiments. Error bars represent SD, and p values were

obtained by Student’s t test with Welch’s correction (NS > 0.05).

(TIF)

S4 Fig. miRNAseq reveals no difference in the level of mature vs. immature microRNAs in

the absence of FMRP. A). Multidimensional scaling on the top 500 most variable genes in

brain samples. B). Percentages of total reads in the sequencing report that mapped to any of

these three: mature, hairpin and tRNA ranged from 58.6 to 64.8%. The mapping percentage

does not differ between WT and FMRKO samples. C). Percentage of mapped reads coming

from mature miRNA, hairpin miRNA, and tRNA.

(TIF)

S5 Fig. Overexpression of miR-195-3p and miR-206 does not significantly decrease Dicer

3’UTR expression in the absence of Mov10. (A). Effect of Mov10 KO on luciferase Dicer1 30

UTR and miR-195-3p and miR-206 site overexpression. (B) Screenshot from Integrated

Genome Browser (IGB) of Dicer1 3’UTR (running from right to left) with human AGO2 CLIP

sites (pink), human MOV10 CLIP sites (green) and human FMRP CLIP sites showing relative

locations to the MRES containing sites for miR-195-3p and miR-206 binding. (C). TargetScan

screenshot of Dicer1 3’UTR (running from right to left) with red circles showing location of

MRE sites whose miRNAs were overexpressed in A. Assays were performed in quadruplicate

from three independent experiments. All measured data are expressed as means ± SEM.
���p < 0.001 (Student’s t-test with Welch’s correction).

(TIF)

S1 Table. AGO2 eCLIP miRNAs.

(XLSX)

S2 Table. Soma size area in WT, Mov10 Het and Fmr1 KO neurons.

(XLSX)
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