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A tracially AF algebra which is not Z-absorbing

Zhuang Niu and Qingyun Wang

With an appendix by Caleb Eckhardt

(Communicated by Joachim Cuntz)

Abstract. We show that there is a simple separable unital (non-nuclear but exact) tracially
AF algebra A which does not absorb the Jiang–Su algebra Z tensorially, i.e., A ≇ A⊗ Z.

1. Introduction

Recall that (see [16, 17]) a unital simple separable C*-algebra A is said to
be tracially AF, or TAF, if for any finite set F ⊆ A, any ε > 0, and any
a ∈ A+ \ {0}, there is a nonzero finite-dimensional C*-subalgebra F ⊆ A such
that with p = 1F ,
(i) ‖fp− pf‖ < ε, f ∈ F ,
(ii) pfp ∈ε F , f ∈ F , and
(iii) 1− p is Murray–von Neumann equivalent to a projection in aAa.

TAF algebras are relatively well-behaved. They always have real rank zero,
stable rank one, strict comparison of positive elements, and they are tracially
Z-absorbing [15]. The classification of simple separable nuclear TAF algebras
which satisfy the Universal Coefficient Theorem (UCT) is one of the milestones
in Elliott’s classification program for separable nuclear C*-algebras [18], and
this class of classifiable TAF algebras coincides with the class of simple AH al-
gebras with real rank zero and with no dimension growth [9]. By [25, Cor. 3.1],
in particular, this implies that a simple separable nuclear TAF algebra A with
the UCT is Z-absorbing, i.e., A ∼= A⊗Z, where Z is the Jiang–Su algebra.

But even without the UCT assumption, Matui and Sato showed that any
simple separable nuclear TAF algebra is Z-absorbing [20]. In this note, we show
that the nuclearity assumption is necessary for the Z-absorption: there are
non-nuclear (but exact—see Appendix A) TAF algebrasA such that A≇A⊗Z.
Since any tracially AF algebra is tracially Z-absorbing (see [15, Def. 2.1]),
this also gives examples of (non-nuclear) tracially Z-absorbing C*-algebras
which are not Z-absorbing, in contrast to the nuclear case (see [15, Thm. 4.1]).
(Among many other things, tracial Z-absorption is also studied in [11]).
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The main tool that we use is a version of Property Γ for C*-algebras. Recall
that (see [12]) a C*-algebra has Property Γ if there is a central sequence of
unitaries which vanish under all traces. It is a C*-algebra analog of Property Γ
of a von Neumann factor of type II1. The reduced group C*-algebra of F2 (the
free group on two generators) does not have the Property Γ. In [12], Gong,
Jiang and Su showed that all Z-absorbing C*-algebras have the Property Γ,
and therefore the reduced group C*-algebra of F2 is not Z-absorbing (see [12,
Section 2]).

In this note, a modified version of the Property Γ is considered (see Defini-
tion 2.6): instead of arbitrary traces, one considers a fixed state. It is shown
that for any unital Z-absorbing C*-algebra and any given state, there exists
a central sequence consisting of unitaries which are arbitrarily small under
the given state (Corollary 2.21). On the other hand, there are TAF algebras
in the class constructed by Dădărlat in [5] which do not have this property
(Proposition 2.17 below), and hence they cannot be Z-absorbing.

The authors hope that this work could lead to deeper investigations of possi-
ble connections between Z-absorption of (non-nuclear) C*-algebras and central
sequences in (type III) von Neumann algebras.

2. The main result and the proof

Let G be a countable discrete group. Let C[G], C∗
red(G), and C∗(G) denote

the group algebra, the reduced group C*-algebra, and the full group C*-algebra
of G, respectively. The trace map C[G] ∋ a 7→ a(e) ∈ C can be extended to
a tracial state of C∗

red(G), and it is denoted by τ throughout this paper. For
g ∈ G, we use ug to denote the associated standard unitary in C∗

red(G). We
will frequently write g for ug when there is no confusion.

2.1. Dădărlat’s construction. The C*-algebras we shall consider in this pa-
per were actually constructed by Dădărlat in [5]. We briefly describe the
construction for the reader’s convenience.

A C*-algebra is called residually finite-dimensional, or RFD, if it has a
separating family of finite-dimensional representations. Let D be a separable
unital RFD C*-algebra. Denote by π1, π2, . . . a sequence of finite-dimensional
representations of D which separates points, and denote by n1, n2, . . . the
dimension of π1, π2, . . . , respectively. Denote by A the direct limit of Mki

(D),
where k1 = 1 and ki = (n1 + 1) · · · (ni−1 + 1) for i = 2, 3, . . . , with the
connecting map from Mki

(D) to Mki+1
(D) defined by

a 7→ diag(a, πi(a)), a ∈ Mki
(D).

Then A is a simple unital separable TAF algebra. (See, for instance, [19,
Prop. 3.7.8 and Thm. 3.7.9] or [10, Ex. 4.16].)

As a TAF algebra, A has many regularity properties: real rank zero, stable
rank one, strict order on projections is determined by traces, and any state
on the ordered K0-group arises from a trace [10]. If A is nuclear, then A is
Z-absorbing, by [20, Thm. 5.4]. However, this is no longer true without the

Münster Journal of Mathematics Vol. 14 (2021), 41–57



A tracially AF algebra which is not Z-absorbing 43

nuclearity assumption, as is shown by the following result, the main result of
the paper.

Theorem 2.2. There exists a simple separable unital (non-nuclear but exact)
tracially AF algebra A which does not absorb the Jiang–Su algebra Z tensori-

ally, i.e. A ≇ A⊗Z.
More precisely, let G be a discrete group which is not inner amenable (see [7]

or Definition 2.13 below), and let D be a separable unital RFD C*-algebra such

that C∗
red(G) is a quotient of D. Denote by A the TAF algebra constructed from

D as described above. Then A is not Z-absorbing, i.e., A ≇ A⊗Z. Moreover,

with a suitable choice of D and C∗
red(G), the C*-algebra A is exact.

Let G be a countable discrete group which is not inner amenable. Then
there always exists a (separable unital) RFD C*-algebra D which has C∗

red(G)
as a quotient (see [13, Thm. 1.6] or just choose D to be the universal group
C*-algebra of F∞, the free group on countably many generators). Thus the
pair (D,C∗

red(G)) always exists for any discrete non-inner-amenable group G.
Moreover, if G is exact, D can be chosen to be exact as well (see Proposi-
tion A.1, by Caleb Eckhardt).

The following are two concrete constructions of the pair (D,C∗
red(G)).

Example 2.3. Let G be a countable discrete non-inner-amenable group such
that D := C∗(G) is RFD. Then the pair (D,C∗

red(G)) satisfies Theorem 2.2.
One particular example of such a group is G = Fd, the free group on d gen-
erators, where d = 2, 3, . . . ,∞. The group Fd is not inner amenable (see [7]),
and its full group C*-algebra D is RFD by [4, Thm. 7].

The C*-algebra A constructed from G and D as in 2.1 is not exact. In
fact, by [24, Thm. 1.1], the group G is maximally almost periodic. Since G is
assumed not to be inner amenable, C∗(G) is not exact by the main theorem
of [6].

Example 2.4. Let G be a countable discrete group which is not inner amen-
able. Assume that C∗

red(G) is embedded into
∏∞

i=1 Mni
(C)/

⊕∞
i=1 Mni

(C) for
some matrix algebra Mni

(C), i = 1, 2, . . . (the MF property). Then the C*-
algebra D := π−1(C∗

red(G)) ⊆
∏

Mni
(C) is RFD, where π is the quotient map

∞∏

i=1

Mni
(C) →

∞∏

i=1

Mni
(C)/

∞⊕

i=1

Mni
(C).

The pair (D,C∗
red(G)) satisfies Theorem 2.2.

A particular example is G = Fd. It follows from [14, Cor. 8.4] that C∗
red(Fd)

is MF. Since C∗
red(Fd) can be embedded into the nuclear C*-algebraO2 (see [3]),

C∗
red(Fd) is exact, and hence D (as an extension of C∗

red(Fd) by
⊕∞

i=1 Mni
(C))

and A (constructed above as an inductive limit of matrix algebras over D) are
exact.

A more interesting example is given by Caleb Eckhardt (Proposition A.2),
where an exact RFD algebra D is constructed between C∗(Fd) and C∗

red(Fd).
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Eckhardt also pointed out a general way to produce exact examples (Proposi-
tion A.1).

2.5. Central unitaries in A. We first introduce the following version of
Property Γ which is similar to [12, Def. 2.1]:

Definition 2.6. Let A be a unital C*-algebra and let S be a collection of
states on A. We shall say that A has Property Γ with respect to S if there is
a central sequence of unitaries (ui) of A such that |ρ(ui)| → 0 as i → ∞ for
any ρ ∈ S. If S consists of a single state ρ, we shall say that A has Property Γ
with respect to ρ.

For the C*-algebra A constructed in Theorem 2.2, we shall show that there
is a state ρ of A such that A does not have Property Γ with respect to ρ. Let
us start with a simple observation.

Lemma 2.7. Let D be a unital C*-algebra and let n be a positive integer. Let

u =

(
a b
c d

)
∈ M1+n(D)

be a matrix over D with a ∈ D, d ∈ Mn(D), b ∈ M1,n(D), and c ∈ Mn,1(D).
Then

‖a‖, ‖b‖, ‖c‖, ‖d‖ ≤ ‖u‖.
Proof. Let p = diag(1, 0) and q = diag(0, 1n). Identify a with ( a 0

0 0 ) and,
similarly, for b, c, d. (This is justified since the identification does not change
the norm.) Then

a = pup, b = puq, c = qup, and d = quq.

The lemma follows. �

Notation 2.8. Let G be any discrete group and let m,n be natural numbers.
We shall use ‖·‖red to denote the operator norm on Mm,n(C

∗
red(G)) induced by

the C*-norm of C∗
red(G).

Recall that τ is the canonical trace of C∗
red(G). For b = (b1, b2, . . . , bn) ∈

M1,n(C
∗
red(G)), define

‖b‖2 =
(
τ(b1b

∗
1 + b2b

∗
2 + · · ·+ bnb

∗
n)
) 1

2 = τ(bb∗)
1
2 ,

and define b̃ to be the function

b̃ : G ∋ γ 7→ ‖b(γ)‖2 =

( n∑

i=1

|bi(γ)|2
) 1

2

∈ C.

It is straight-forward to check that ‖b̃‖2 = ‖b‖2 for any b ∈ M1,n(C
∗
red(G)).

In particular, the function b̃ defined above is in l2(G).

Lemma 2.9. Let G be a discrete group. Let n ∈ N and let a, b be elements in
M1,n(C

∗
red(G)). With the notation as 2.8, one has

(i) b̃u = b̃ for any unitary u ∈ Mn(C),
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(ii) ‖b̃‖2 = ‖b‖2 ≤ ‖b‖red for any b ∈ M1,n(C
∗
red(G)),

(iii) ‖bu‖2 = ‖b‖2 for any unitary u ∈ Mn(C),
(iv) ‖gã− b̃‖2 ≤ ‖ga− b‖2 for any g ∈ G, and
(v) ‖b − bd‖22 ≤ 2‖b‖2(‖b‖2 − ‖bd‖2) for any matrix d ∈ Mn(C) which is

diagonal, positive, and contractive.

Proof. ((i)) and ((ii)) follow from straight-forward computation. ((iii)) is a
direct consequence of ((i)) and ((ii)). For ((iv)), note that for each γ ∈ G, a(γ)
is a vector in Cn and ‖a(γ)‖2 is the vector norm. Using the triangle inequality
at the third step and ((i)) at the last step, we have

‖gã− b̃‖22 =
∑

γ∈G

|(gã)(γ)− b̃(γ)|2

=
∑

γ∈G

(‖a(g−1γ)‖2 − ‖b(γ)‖2)2

≤
∑

γ∈G

‖a(g−1γ)− b(γ)‖22

=
∑

γ∈G

‖(ga− b)(γ)‖22

= ‖g̃a− b‖22 = ‖ga− b‖22.

For ((v)), set b = (b1, b2, . . . , bn) and d = diag{λ1, . . . , λn}, where bi ∈ C∗
red(G)

and λi ∈ [0, 1] for i = 1, 2, . . . , n. Note that (1 − λi)
2 ≤ (1 − λi)(1 + λi) =

(1− λ2
i ), and hence

‖b− bd‖22 =
∑

γ∈G

n∑

i=1

(1− λi)
2|bi(γ)|2

≤
∑

γ∈G

n∑

i=1

(1− λ2
i )|bi(γ)|2 = (‖b‖22 − ‖bd‖22)

= (‖b‖2 + ‖bd‖2)(‖b‖2 − ‖bd‖2) ≤ 2‖b‖2(‖b‖2 − ‖bd‖2),
as desired. �

Lemma 2.10. Let G be a discrete group, and let n ∈ N. Let b be an element

of M1,n(C
∗
red(G)) with ‖b‖red ≤ 1, and let g ∈ G. Assume that there are ε > 0

and a matrix π(g) ∈ Mn(C) with norm at most 1 such that

(1) ‖gb− bπ(g)‖2 < ε.

Then, with notation as 2.8, one has ‖gb̃− b̃‖2 < ε+
√
2ε.

Proof. Applying the polar decomposition to the matrix π(g), we have unitaries
u,w ∈ Mn(C) and a diagonal matrix d = diag{λ1, . . . , λn}, where λi ∈ [0, 1],
i = 1, 2, . . . , n, such that

π(g) = u(wdw∗).

Münster Journal of Mathematics Vol. 14 (2021), 41–57



46 Zhuang Niu and Qingyun Wang

It follows from Lemma 2.9 ((iii)) and (1) that

(2) ‖g(bw)− buwd‖2 = ‖(gb)w − buwd‖2 = ‖gb− buwdw∗‖2 < ε.

Since u,w are unitary matrices, by Lemma 2.9 ((iii)) again, we have

(3) ‖buw‖2 = ‖b‖2 = ‖bw‖2 = ‖g(bw)‖2 ≈ε ‖buwd‖2.
Since ‖b‖red ≤ 1, it follows from ((ii)) and ((iii)) of Lemma 2.9 that

(4) ‖buw‖2 = ‖b‖2 ≤ ‖b‖red ≤ 1.

Using Lemma 2.9 ((i)) in the first step, the triangle inequality in the second
step, Lemma 2.9 ((iv)) in the third step, (2) and Lemma 2.9 ((v)) in the fourth
step and (3) and (4) in the final step, we get

‖gb̃− b̃‖2 = ‖gb̃w − b̃uw‖2
≤ ‖gb̃w − b̃uwd‖2 + ‖b̃uwd− b̃uw‖2
≤ ‖gbw − buwd‖2 + ‖(buw)d− buw‖2
≤ ε+ 2‖buw‖

1
2

2 (‖(buw)‖2 − ‖buw‖2)
1
2

≤ ε+ 2
√
ε,

as desired. �

Lemma 2.11. Let G be a countable discrete group which is not amenable. For

any ε > 0, there exist δ > 0 and a finite set K ⊆ G such that if ξ ∈ l2(G)
satisfies

‖gξ − ξ‖2 < δ, g ∈ K,

then ‖ξ‖2 < ε.

Proof. Let (Kn) be an increasing sequence of finite subsets of G whose union
is G. If the statement were not true, there will be ε0 > 0 such that for any
n ∈ N, there is ξn ∈ l2(G) with

‖gξn − ξn‖2 <
1

n
, g ∈ Kn,

but
‖ξn‖2 ≥ ε0.

Then the sequence {‖ξn‖−1
2 ξn | n = 1, 2, . . . } forms an almost invariant vector

for the left regular representation of G, which implies that G is amenable, a
contradiction. �

The following result is a consequence of Lemma 2.10 and Lemma 2.11.

Corollary 2.12. Let G be a countable discrete non-amenable group. For any
ε > 0, there exist δ > 0 and a finite set K ⊆ G with the following property:

For any n ∈ N and any b ∈ M1,n(C
∗
red(G)), if ‖b‖red ≤ 1, and if for each

g ∈ K, there is a matrix π(g) ∈ Mn(C) with norm at most 1 such that

(5) ‖gb− bπ(g)‖2 < δ,

then ‖b‖2 < ε.
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Proof. Let δ0 > 0 and K ⊆ G denote, respectively, the constant and finite set
provided by Lemma 2.11 with respect to ε. Pick δ > 0 such that δ+

√
2δ ≤ δ0.

With b̃ as 2.8, it follows from Lemma 2.10 that if

‖gb− bπ(g)‖2 < δ, g ∈ K,

then
‖gb̃− b̃‖2 < δ +

√
2δ ≤ δ0, g ∈ K.

By the choice of δ0 and K, it follows that

‖b‖2 = ‖b̃‖2 < ε,

as desired. �

Recall that a mean on a countable discrete group G is a positive linear
functional m on l∞(G) with m(1) = 1. Let e be the neutral element of G.
It is easy to check that the map de : l

∞(G) → C, defined by de(f) = f(e),
f ∈ l∞(G), is always a mean, which is called the trivial mean.

If ξ is a function on G and g is an element of G, define gξg−1 to be the
function

(gξg−1)(x) = ξ(g−1xg), x ∈ G.

Definition 2.13 (See [7]). A countable discrete group G is said to be inner

amenable if there is a nontrivial inner invariant mean m, in the sense that

m(gξg−1) = m(ξ), ξ ∈ l∞(G) and g ∈ G.

The following lemma is surely well known. A proof is included for the
reader’s convenience.

Lemma 2.14. Let G be a countable discrete group which is not inner amenable.
Let 1e denote the identity of C[G]. For any ε > 0, there are δ > 0 and a finite

set K ⊆ G such that if ξ ∈ C∗
red(G) satisfies

‖gξg−1 − ξ‖2 < δ, g ∈ K,

then ‖ξ − τ(ξ)1e‖2 < ε.

Proof. Assume that the statement were false. Choose an increasing sequence
of finite subsets (Kn) whose union is G. Then there is some ε0 > 0 such that
for any n ∈ N, there is ξn ∈ C∗

red(G) satisfying

‖gξng−1 − ξn‖2 <
1

n
, g ∈ Kn,

but ‖ξn − τ(ξn)1e‖2 ≥ ε0. Let ηn = ‖ξn − τ(ξn)1e‖−1
2 (ξn − τ(ξn)1e). Then

‖ηn‖2 = 1, ηn(e) = 0, and for any g ∈ G,

‖gηng−1 − ηn‖2 =
‖gξng−1 − ξn‖2
‖ξn − τ(ξn)1e‖2

≤ 1

ε0n
→ 0 as n → ∞.

By the main theorem of [7], this implies that G is inner amenable (the state-
ment of the main theorem of [7] assumes that G is i.c.c., but the proof of
(2) ⇒ (3) ⇒ (4) of the main theorem of [7] does not use this assumption),
which contradicts the assumption. �
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Definition 2.15. Consider the C*-algebra M1+n(C
∗
red(G)), where G is a dis-

crete group and n is a natural number, and consider the state

ρ : M1+n(C
∗
red(G)) ∋

(
a b
c d

)
7→ τ(a) ∈ C,

where τ is the canonical trace of C∗
red(G). Define the semi-norm ‖·‖#ρ of

M1+n(C
∗
red(G)) by

‖x‖#ρ =
(ρ(xx∗) + ρ(x∗x)

2

) 1
2

=
(τ(aa∗) + τ(bb∗) + τ(a∗a) + τ(c∗c)

2

) 1
2

,

if x = ( a b
c d ) ∈ M1+n(C

∗
red(G)). Note that ‖·‖#ρ ≤ ‖·‖red.

Corollary 2.16. Let G be a countable discrete group which is not inner

amenable. For any ε > 0, there exist δ > 0 and a finite set K ⊆ G such

that for any element

u =

(
a b
c d

)
∈ M1+n(C

∗
red(G)),

with a ∈ C∗
red(G), which satisfies ‖u‖red ≤ 1, if for each g ∈ K, there is a

matrix π(g) ∈ Mn(C) with norm at most 1 such that

(6)

∥∥∥∥
[(

a b
c d

)
,

(
g 0
0 π(g)

)]∥∥∥∥
#

ρ

< δ, g ∈ K,

then
‖b‖2, ‖c‖2 < ε and ‖a− τ(a)1e‖2 < ε.

Proof. Applying Corollary 2.12 and Lemma 2.14 to ε, one obtains (δ1, K1)
and (δ2, K2), respectively. Set δ = 1√

2
min{δ1, δ2} and K = K1 ∪K2.

Let ( a b
c d ) ∈ M1+n(C

∗
red(G)) satisfy the assumption for this choice of δ andK.

It follows from (6) that

(7)

∥∥∥∥
(

ag − ga bπ(g)− gb
cg − π(g)c dπ(g) − π(g)d

)∥∥∥∥
#

ρ

< δ, g ∈ K,

and hence, by the definition of ‖·‖#ρ , one has that for any g ∈ K,

‖ga− ag‖2 < δ2,(8)

‖gb− bπ(g)‖2 < δ1,(9)

‖cg − π(g)c‖2 < δ1.(10)

Applying Lemma 2.14 to (8), one obtains

‖a− τ(a)1e‖2 < ε.

For the estimates on b and c, since ‖u‖red ≤ 1, by Lemma 2.7, one has
‖b‖red ≤ 1 and ‖c‖red ≤ 1. With the choice of δ and K, by (9) and (10), it
follows from Corollary 2.12 that

‖b‖2 < ε and ‖c‖2 < ε,

as desired. �

Münster Journal of Mathematics Vol. 14 (2021), 41–57



A tracially AF algebra which is not Z-absorbing 49

Recall that in Dădărlat’s construction (2.1), the C*-algebra A is the direct
limit of Mki

(D) with the connecting maps

a 7→ diag(a, πi(a)),

and there is a surjective homomorphism θ : D → C∗
red(G). Consider the state

of A defined by

ρθ((ajk)) = τ(θ(a11)), (ajk) ∈ Mki
(D),

where τ is the canonical trace of C∗
red(G). Similar to Definition 2.15, consider

the semi-norm

‖a‖#ρθ
:=

(ρθ(aa∗) + ρθ(a
∗a)

2

) 1
2

, a ∈ A.

Note that the successive connecting maps D → Mki
(D) always have the

form

(11) a → diag(a, π(a)),

where π : D → Mki−1(C1D) ⊆ Mki−1(D) is a finite-dimensional representation
of D. This induces an embedding of D into A. We shall identify D as a
sub-C*-algebra of A via this embedding.

Proposition 2.17. Let G be a countable discrete group which is not inner

amenable, and let D be a separable unital RFD algebra such that C∗
red(G) is a

quotient of D. Let A be the TAF algebra constructed from D and let ρθ be the

state described as above.

For any g ∈ G, pick an element ǧ of D with norm 1 which lifts ug, and regard
ǧ as an element of A via the embedding induced by the maps (11). Then, for

any ε > 0, there exist δ > 0 and a finite set K ⊆ G such that if u ∈ A is a

unitary satisfying

‖uǧ − ǧu‖#ρθ
< δ, g ∈ K,

then

|ρθ(u)| > 1− ε.

In particular, since ‖·‖#ρθ
≤ ‖·‖, the TAF algebra A does not have Property Γ

with respect to ρθ.

Proof. Let ε > 0 be arbitrary. Choose ε0 > 0 small enough so that
√
1− ε0 − 2ε20 − ε0 > 1− ε.

Let δ0 > 0 and K ⊆ G be the constant and finite subset provided by Corol-
lary 2.16 with ε0 in the place of ε. Set

δ = min
{δ0
3
,
ε0
2

}
.

Let u be a unitary in A satisfying

‖uǧ − ǧu‖#ρθ
< δ, g ∈ K.

Münster Journal of Mathematics Vol. 14 (2021), 41–57



50 Zhuang Niu and Qingyun Wang

By the construction of A, there is n ∈ N and

v =

(
a b
c d

)
∈ M1+n(D) ⊆ A,

with a ∈ D, ‖v‖ = 1, and ‖v − u‖ < δ.
Note that ǧ is identified with

(
ǧ 0
0 π(ǧ)

)
∈ M1+n(D) ⊆ A,

where π(ǧ) is a scalar matrix of norm at most 1; so θ(π(ǧ)) = π(ǧ). Since
∥∥∥∥
[(

θ(a) θ(b)
θ(c) θ(d)

))
,

(
g 0
0 π(ǧ)

)]∥∥∥∥
#

ρ

= ‖θ(ǧv − vǧ)‖#ρ = ‖ǧv − vǧ‖#ρθ

≤ ‖ǧu− uǧ‖#ρθ
+ 2‖u− v‖ < 3δ ≤ δ0,

for g ∈ K, by the choice of δ0 and K, it follows from Corollary 2.16 that

(12) ‖θ(b)‖2, ‖θ(c)‖2 < ε0

and

(13) ‖θ(a)− τ(θ(a))1e‖2 < ε0.

Since ‖u− v‖ < δ ≤ ε0/2 and u is a unitary, one has

‖(aa∗ + bb∗)− 1D‖ ≤ ‖vv∗ − 1M1+n(D)‖ ≤ ‖uu∗ − 1A‖+ 2‖v − u‖ < ε0.

Hence, by (12),

(14) τ(θ(aa∗)) ≥ 1− ε0 − τ(θ(bb∗)) > 1− ε0 − ε20.

On the other hand, write a = λ1D + a0, with λ = τ(θ(a)) and a0 = a −
τ(θ(a))1D . Then

aa∗ = (λ1D + a0)(λ̄1D + a∗0) = |λ|21D + λa∗0 + λ̄a0 + a0a
∗
0.

Applying the quotient map θ and the trace τ on both sides, by (13), we have

τ(θ(aa∗)) = |λ|2 + τ(θ(a0a
∗
0)) = |λ|2 + ‖θ(a)− τ(θ(a))1e‖22 < |λ|2 + ε20.

Together with (14), we have

|λ|2 > 1− ε0 − 2ε20,

and therefore

|ρθ(u)| ≥ |ρθ(v)| − ε0 = |τ(θ(a))| − ε0 >
√
1− ε0 − 2ε20 − ε0 > 1− ε,

as desired. �

As a simple corollary, all unitary central sequences in the von Neumann
algebra generated by A under the GNS representation associated to ρθ are
trivial:
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Corollary 2.18. Consider the GNS representation of A associated to the state
ρθ, and consider the von Neumann algebra A′′

ρθ
. Then, if there is a sequence

of unitaries (un) ⊆ A′′
ρθ

such that for any x ∈ A′′
ρθ
, [un, x] → 0 in the strong*

topology, as n → ∞, one has

(un − ρθ(un)1A) → 0, n → ∞,

in the strong* operator topology.

Proof. Since the unitary group of A is strongly* dense in the unitary group of
A′′

ρθ
(Kaplansky density theorem), there is a sequence of unitaries (wn) ⊆ A

such that (un − wn) → 0 strongly* as n → ∞. Let x ∈ A′′
ρθ
. Since [un, x] → 0

in the strong* topology as n → ∞, one has

‖(unx− xun)(ξ1A)‖ρθ
+ ‖(unx− xun)

∗(ξ1A)‖ρθ
→ 0 as n → ∞,

and hence

‖(wnx− xwn)(ξ1A)‖ρθ
+ ‖(wnx− xwn)

∗(ξ1A )‖ρθ
→ 0 as n → ∞.

That is,

ρθ((wnx−xwn)
∗(wnx−xwn))+ρθ((wnx−xwn)(wnx−xwn)

∗) → 0 as n → ∞,

and

‖wnx− xwn‖#ρθ
→ 0 as n → ∞.

Since (wn) ⊆ A, by Proposition 2.17,

|ρθ(wn)| → 1 as n → ∞,

and this implies

ρθ
(
(wn − ρθ(wn)1A)

∗(wn − ρθ(wn)1A)
)

= ρθ
(
w∗

nwn − ρθ(wn)w
∗
n − ρθ(wn)wn + |ρθ(wn)|21A

)

= ρθ(1A)− |ρθ(wn)|2 → 0 as n → ∞.

The same calculation also shows

ρθ
(
(wn − ρθ(wn)1A)(wn − ρθ(wn)1A)

∗) → 0 as n → ∞.

Therefore,

‖wn − ρθ(wn)1A‖#ρθ
→ 0 as n → ∞,

and since (wn − un) → 0 strongly* as n → ∞,

‖un − ρθ(un)1A‖#ρθ
→ 0 as n → ∞.
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Let x1, x2 ∈ A be arbitrary. Set M = max{‖x1‖, ‖x2‖}. Then, since [un −
ρθ(un)1A, x] → 0 strongly* as n → ∞, for any x ∈ A, one has

lim sup
n→∞

(
‖(un − ρθ(un)1A)x1‖ρθ

+ ‖(un − ρθ(un)1A)
∗x2‖ρθ

)

≤ lim sup
n→∞

(
‖x1‖‖(un − ρθ(un)1A)‖ρθ

+ ‖x2‖‖(un − ρθ(un)1A)
∗‖ρθ

)

≤ lim sup
n→∞

M
(
‖(un − ρθ(un)1A)‖ρθ

+ ‖(un − ρθ(un)1A)
∗‖ρθ

)

≤ lim sup
n→∞

2
√
2M(‖(un − ρθ(un)1A)‖#ρθ

) = 0.

Thus,

(un − ρθ(un)1A) → 0 as n → ∞
in the strong* operator topology. �

2.19. Z-absorbing C*-algebras have Property Γ. Let us show that if
a C*-algebra is Z-absorbing, then it has Property Γ (in the sense of Defini-
tion 2.6) with respect to any given state (Corollary 2.21).

Proposition 2.20. Let p, q ∈ N be prime numbers and let Zp,q be the dimen-
sion drop algebra. Let ρ be a state on Zp,q. Then, for any ε > 0, there is a

unitary u ∈ Zp,q such that |ρ(u)| < ε.

Proof. Recall (see, for instance, [8]) that for a pair of natural numbers p, q
which are relatively prime, the dimension drop algebra Zp,q is defined as

Zp,q := {f ∈ C([0, 1],Mpq(C)) : f(0) ∈ Mp(C)⊗ 1q and f(1) ∈ 1p ⊗Mq(C)}.
We assert that the enveloping Borel *-algebra of Zp,q is isomorphic to

Bp,q = {f ∈ L∞([0, 1],Mpq(C)) : f(0) ∈ Mp(C)⊗ 1q and f(1) ∈ 1p ⊗Mq(C)}.
Indeed, denote by B the enveloping Borel *-algebra of Zp,q. Since Bp,q is a
monotonic sequential closure of Zp,q, by [21, Thm. 4.5.9], there is a surjective
homomorphism from B to Bp,q. Suppose there is an element a ∈ B which is sent
to 0 under this map. Then amust be 0 under all the irreducible representations
of Zp,q, and hence a must be 0 by [21, Cor. 4.5.13]. Therefore, the surjection
from B to Bp,q is an isomorphism.

Let ρ be a state of Zp,q. Then ρ can be extended to a normal state of Bp,q,
which will still be denoted by ρ. Identify the center of Bp,q with L∞([0, 1]).
The restriction of ρ to the center of Bp,q is then induced by a probability Borel
measure µ on [0, 1]; that is,

ρ(f) =

∫

[0,1]

f dµ, f ∈ L∞([0, 1]) = Z(Bp,q).

Let tr denote the tracial state of Mpq(C). Define a (normal) trace of Bp,q

by

φ(f) =

∫

[0,1]

tr(f(t)) dµ(t).
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We assert that ρ ≪ φ. Indeed, if f ∈ Bp,q is a positive element such that
φ(f) = 0, then, with E = {x | f(x) 6= 0}, one has that µ(E) = 0. Set

f̂ = ‖f‖χE ∈ Z(Bp,q).

It is clear that f ≤ f̂ and ρ(f̂) = 0; hence, ρ(f) = 0.
By the Radon–Nikodym theorem (see, for instance, [21, Thm. 5.3.11]), there

is a positive (not necessarily bounded) operator h on Hφ which is affiliated to
πφ(Bp,q) such that

(15) ρ(a) = 〈hπφ(a)1Bp,q
, 1Bp,q

〉φ = φ(hπφ(a)), a ∈ Bp,q,

where (Hφ, πφ) is the GNS representation of Bp,q induced by φ. For each t ∈ R,
define a real function ft by ft(x) = min{x, t}, and set ht = ft(h). Note that
ht ∈ πφ(Bp,q). Since ρ(1) = 1,

1 = φ(h) = lim
t→∞

φ(ht).

Thus, for the given ε, there is a sufficiently large t that for any element a ∈ Bp,q

with ‖a‖ ≤ 1,

|φ(hπφ(a)) − φ(htπφ(a))|2 = |φ((h− ht)
1
2 πφ(a)(h− ht)

1
2 )|2(16)

≤ |φ(h− ht)|2 ≤
(ε
3

)2

.

Regarding ht as an element of Bp,q (by picking an element of the preimage),
there is h̄ ∈ (Bp,q)

+ satisfying

(17) ‖ht − h̄‖∞ <
ε

3
,

and h̄ is a simple function; that is, there are disjoint Borel sets E1, E2, . . . , En ⊆
[0, 1] with

⊔n
i=1 Ei = [0, 1] and positive matrices h1, h2, . . . , hn ∈ Mpq(C) such

that

h̄(t) = hi if t ∈ Ei.

Write hi = u∗
i diui, i = 1, 2, . . . , n, where ui are unitary matrices and di are

diagonal matrices. Note that if Ei ∋ 0, then hi, di ∈ Mp(C)⊗1q; and if Ei ∋ 1,
then hi, di ∈ 1p ⊗ Mq(C). We may require that the unitaries ui also satisfy
the same property: ui ∈ Mp(C)⊗ 1q if Ei ∋ 0, and ui ∈ 1p ⊗Mq(C) if Ei ∋ 1.
Define a unitary u′ ∈ Bp,q by

u′(t) = u∗
iwiui if t ∈ Ei,

where wi ∈ Mpq(C) is a unitary with all diagonal elements being zero, wi ∈
Mp(C)⊗ 1q if Ei ∋ 0 and wi ∈ 1p ⊗Mq(C) if Ei ∋ 1. Then, by (15), (16), and
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(17), one has

ρ(u′) = φ(hπφ(u
′)) ≈ ε

3
φ(htu

′) ≈ ε
3
φ(h̄u′)(18)

=

n∑

i=1

tr(hiu
∗
iwiui)µ(Ei) =

n∑

i=1

tr(u∗
i diuiu

∗
iwiui)µ(Ei)

=

n∑

i=1

tr(diwi)µ(Ei) = 0.

Consider the GNS representation (πρ, Hρ) of Zp,q. By [21, Cor. 4.5.10], the
homomorphism πρ extends to a normal surjective homomorphism π′′

ρ : Bp,q →
πρ(Zp,q)

′′. By the Kaplansky density theorem, there is a unitary v ∈ πρ(Zp,q)
such that

(19)
∣∣〈v1Zp,q

, 1Zp,q
〉ρ − 〈π′′

ρ (u
′)1Zp,q

, 1Zp,q
〉ρ
∣∣ < ε

3
.

Since Zp.q has stable rank one, it follows from [22, Prop. 4.3] that there is a
unitary u ∈ Zp,q such that πρ(u) = v. By (19), we have |ρ(u) − ρ(u′)| < ε

3 ,
and hence, by (18), |ρ(u)| < ε, as desired. �

Corollary 2.21. Let A be a unital C*-algebra such that A ∼= A ⊗ Z, and let
ρ be a state of A. Then, for any finite set F ⊆ A and any ε > 0, there is a

unitary u ∈ A such that

‖ua− au‖ < ε, a ∈ F , and |ρ(u)| < ε.

Proof. Since A is Z-absorbing, for any given ε > 0 and any finite set F ⊆ A,
there is a unital embedding ι : Zp,q → A such that

‖aι(c)− ι(c)a‖ < ε, a ∈ F and c ∈ Zp,q, ‖c‖ = 1.

Consider the composition ρ ◦ ι, which is a state on Zp,q. By Proposition 2.20,
there is a unitary u ∈ Zp,q satisfying |(ρ ◦ ι)(u)| < ε. Then ι(u) is a unitary
with the desired properties. �

Proof of Theorem 2.2. Assume that the TAF algebra A is Z-absorbing. By
Corollary 2.21, there is a central sequence consisting of unitaries (un) in A
with ρ(un) → 0. But this contradicts Proposition 2.17 which asserts that
|ρ(un)| → 1. �

Appendix A.
by Caleb Eckhardt

In this appendix we point out how to construct exact RFD C*-algebras
D that satisfy the conditions of Proposition 2.17 and therefore obtain exact,
simple separable tracially AF C*-algebras that are not Z-absorbing by Theo-
rem 2.2.

It is a well-known corollary of homotopy invariance of quasidiagonality [26]
that any exact C*-algebra is the quotient of an RFD, exact C*-algebra. (See
[1, Cor. 5.3], for example.) Therefore, one immediately obtains the following.
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Proposition A.1. Let Γ be a countable, discrete, exact non-inner-amenable
group. Then there is an exact, unital separable RFD C*-algebra D that maps

onto C∗
red(Γ) and subsequently produces an exact, simple separable tracially AF

C*-algebra that is not Z-absorbing by Theorem 2.2.

The point then of this appendix is to point out that in the case of free
groups Fd, a minor variant of the above construction produces an exact RFD
C*-algebra D that factors the natural quotient map C∗(Fd) → D → C∗

red(Fd).
The pair (D,C∗

red(Fd)) satisfies the hypothesis of Theorem 2.2 and the resulting
C*-algebra A is exact. Furthermore, this provides an example of a relatively
exotic C*-algebra with good approximation properties. Many examples of
exotic group C*-algebras have poor approximation properties—the standard
free group examples are neither quasidiagonal nor exact [23].

Proposition A.2. Let d ≥ 2 and consider the free group Fd on d generators.

Then there is an exact, RFD C*-algebra D such that the standard quotient
map C∗(Fd) → C∗

red(Fd) factors as C∗(Fd) → D → C∗
r(Fd).

Proof. Choi showed in [3] that C∗
red(Fd) embeds into the (nuclear) Cuntz al-

gebra O2 and is therefore exact. Let C denote the unitization of C0(0, 1] ⊗
C∗

red(Fd) and set A = M2(C). By standard facts about exact C*-algebras,
A is an exact C*-algebra (see [2], for example). By homotopy invariance of
quasidiagonality [26], it follows that A is also quasidiagonal.

By a result of Halmos (see [2, Cor. 7.5.2] for the statement used below),
there is a Hilbert space H , a sequence of orthogonal finite rank projections
pn ∈ B(H) whose sum increases strongly to the identity, and a C*-algebra
B ⊆ B(H) that commutes with each pn and fits into a split exact sequence

(A.3) 0 → K(H) → B +K(H) → A → 0,

where K(H) denotes the compact operators. Since A and K(H) are exact and
the sequence is split, it follows that B +K(H) is exact and therefore so is B.
By definition, B is RFD and we may, without loss of generality, suppose that
pnK(H)pn ⊆ B for all n.

Let u1, . . . , ud ∈ C∗
red(Fd) be standard generating unitaries. Then, for each

1 ≤ i ≤ d, the unitary ui ⊕ u−1
i ∈ M2(C

∗
red(Fd)) is homotopic to the identity.

Therefore, there are unitaries Ui ∈ A that lift each ui ⊕ u−1
i . Since the se-

quence in (A.3) splits, we may assume that each Ui belongs B +K(H). Since
pnK(H)pn ⊆ B for each n, it is straight-forward to find unitaries Vi ∈ B that
are compact perturbations of Ui.

The inclusion map B →֒ B +K(H) induces an isomorphism

B/(B ∩K(H)) ∼= (B +K(H))/K(H) ∼= A,

and hence the unitaries Vi are lifts of the Ui. Let D = C∗(V1, . . . , Vd) ⊆ B.
Since B is exact and RFD, D is also exact and RFD. We now have a quotient
D → C∗

red(Fd) defined by

Vi ∈ D 7→ Ui ∈ A 7→ diag(ui, u
−1
i ) ∈ M2(C

∗
red(Fd)) 7→ ui ∈ C∗

red(Fd).
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Since each Vi is unitary, we obtain the natural factorization C∗(Fd) → D →
C∗

red(Fd). �
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